Specifying Separation of Duty Constraints in
BPEL4People Processes

Jan Mendling!, Karsten Ploesser?, and Mark Strembeck®

1 BPM Cluster, Faculty of IT, Queensland University of Technology
126 Margaret Street, Brisbane QLD 4000, Australia
j.mendling@qut.edu.au
2 SAP Research, Brisbane QLD 4000, Australia
karsten.ploesser@sap.com
3 Vienna University of Economics and Business Administration
Institute of Information Systems, New Media Lab, Austria
mark.strembeck@wu-wien.ac.at

Abstract. Security issues have to be carefully considered for informa-
tion systems that support the business processes of an organization, in
particular, when these systems build on open interfaces such as web ser-
vices. In this paper, we examine the new BPEL extension BPEL/People
from an access control perspective. In particular, we discuss the impor-
tance of “separation of duty” constraints and identify options to specify
such constraints in BPEL4People processes. Moreover, we identify and
discuss shortcomings of the BPEL4People specifications that complicate
and/or impede separation of duty enforcement. In addition, we suggest
solutions which can be introduced into future versions of BPEL4People
to mitigate those shortcomings.

1 Introduction

The standardization of business process management and workflow technology
has been discussed for more than ten years, and several standardization bod-
ies have proposed specifications for different aspects of business process man-
agement (see, e.g., [16]). Since 2003, the Organization for the Advancement of
Structured Information Standards (OASIS) has driven the specification of the
Business Process Execution Language for Web Services (BPEL) [4] which has
become an important standard in this area thanks to its extensive support by
major software vendors.

Originally, the BPEL specification was lacking a generic concept for activities
that are performed by human agents. Due to this missing feature, BPEL could
hardly be used as a platform-independent format for describing and exchanging
human workflows. For this reason, major software vendors have been working
on the specification of human activities in BPEL based on its extension mecha-
nism. As a result, two complementary draft specifications were recently released:
BPEL4People [2] and WS-HumanTask [1]. WS-HumanTask defines the lifecycle
and the generic roles associated with a particular task, and BPEL4People defines

2 Jan Mendling, Karsten Ploesser, Mark Strembeck

how such tasks can be integrated in a BPEL process. In this paper, we refer to
both documents together as the BPEL4People specifications, or just B4P/HT.

While the introduction of B4P/HT is a valuable extension to BPEL, it raises
several questions from an access control perspective. When performing an IT-
supported workflow, human users and proactive/autonomous software agents
have to fulfill certain tasks to process the workflow. Each action in a workflow
(like changing a document or sending a message) is typically associated with a
certain access operation (e.g. to a document or a messaging service). Thus, an
active entity participating in a workflow (be it a human user or a software agent)
must be authorized to perform the actions that are needed to complete its tasks.
The business processes of an organization are therefore an ideal source to define
a tailored set of access control policies (also referred to as authorization policies)
for this organization, respectively their information system (see [18, 25]).

Access control deals with the elicitation, specification, maintenance, and en-
forcement of authorization policies in software-based systems [15, 22]. In role-
based access control (RBAC) [10], roles are used to model different job-positions
and scopes of duty within a particular organization and/or within an information
system. These roles are equipped with the permissions that are needed to per-
form their respective tasks. Human users and/or other active entities (subjects)
are assigned to roles according to their duties, respectively their work profile (see
[18, 24]). The descriptions of roles tend to change significantly slower than the
assignment of individuals to these roles. Thus, establishing roles as an abstrac-
tion mechanism for subjects facilitates the administration of the access control
policies. Moreover, the advantages of RBAC on the modeling and technical level
directly translate into lower maintenance costs [11].

A particular access control specification is said to be safe iff no subject can
obtain an “unauthorized” right. However, since the verification of the safety
property for general access control models like RBAC is not decidable [13], con-
straints are often used to enforce the safety property via explicit modeling-level
artifacts. Separation of duty constraints enforce conflict of interest policies (see,
e.g., [9, 23]). Conflict of interest arises as a result of the simultaneous assign-
ment of two mutual exclusive permissions or roles to the same subject. Mutual
ezxclusive roles, or permissions result from the division of powerful rights or re-
sponsibilities to prevent fraud and abuse. An example is the common practice
to separate the “controller” role and the “chief buyer” role in medium-sized and
large companies. Two mutual exclusive roles are not allowed to be assigned to
the same subject, and two mutual exclusive permissions must not be assigned to
the same role or the same subject. Moreover, in workflow environments it is of
central significance that separation of duty constraints can also be defined and
enforced on the level of tasks (see, e.g., [7]).

There has been some work on access control for BPEL processes (see, e.g.,
[5, 14, 17]). However, an analysis of the B4P/HT specification from a separation
of duty perspective is missing so far. In this paper, we thus address the enforce-
ability of separation of duty constraints in B4P/HT. This includes questions like:
How can we express in B4P/HT that a certain individual is not allowed to do

Specifying Separation of Duty Constraints in BPEL4People Processes 3

both the “check loan application” task and the “decide about loan acceptance”
task for one particular loan application? And if B4P/HT provides means to
express such separation of duty constraints, are there ways to circumvent them?

The remainder of this paper is structured as follows. In Section 2 we introduce
the concepts of B4P/HT which are important for the purposes of this paper.
Section 3 then gives an overview of role-based and task based access control, and
discusses the relevance of separation of duty constraints. Subsequently, Section
4 provides an analysis of B4P/HT from the separation of duty perspective. In
particular, we discuss how specific aspects of separation of duty constraints can
be enforced in B4P/HT, identify corresponding shortcomings of the B4P/HT
specifications, and suggest solutions which can be introduced into future versions
to mitigate those shortcomings. Next, Section 5 discusses related work before
Section 6 concludes the paper.

2 Preliminaries on B4P and WS-HT

In this section we give an overview of BPEL4People and WS-HumanTask
(B4P/HT). For this introduction there is no detailed knowledge of BPEL re-
quired. In essence, a BPEL Process defines a set of activities and their con-
trol flow. BPEL 2.0 [4] offers a so-called “extension activity” which is used by
B4P/HT for adding human tasks to BPEL. B4P/HT defines three generic pro-
cess roles: the process initiator, process stakeholder, and business administrator.
While in most cases the process initiator will be determined by the BPEL en-
gine at runtime, the other two generic roles are populated by evaluating a people
query. We use the term “people query” to abstract from the three different op-
tions provided by B4P/HT of assigning people to roles, i.e. using the so-called
logical people group which is an alias to a query, using literals, or using ex-
pressions (see [1, 2]). The specification, however, does not mandate a concrete
people query language, which leaves room for vendor-specific implementations.
The BPEL process related concepts of B4P/HT are depicted on the left-hand
side of Figure 1.

The right-hand side of this figure shows the task concept, its generic roles, the
task lifecycle states, and lifecycle transitions. These concepts are defined in the
WS-HumanTask specification. A single task has different generic roles assigned
to it. Similar to the overall process there are task initiators, task stakeholders
and business administrators. Beyond that, a task has a set of potential owners,
one actual owner, and a list of excluded owners. These three generic roles define
in essence who may legally be assigned to a task and who is actually assigned to
a task. The people that populate these different task generic roles can influence
the lifecycle of a task at predefined stages.

The typical sequence of B4P/HT task states is from created to ready to
reserved to in-progress to completed [1, p.37]. Depending on the task state and
on their assignment to one of the generic task roles, people can control the task
lifecycle via predefined transitions. Several of these transitions are only allowed
for members of the potential owner role, including to claim and to start, to

4 Jan Mendling, Karsten Ploesser, Mark Strembeck

N .
BPEL Process L. Task * 2| TaskLifecycle
State
* * from to
3 3
Process Generic | 1.* 1 People Quen 1 1.*| Task Generic |* *| Task Lifecycle
Role P Y Role Transition

Process Initiator ‘ Potential Owner
Process
Stakeholder ‘ Actual Ouner
Proces§ Busmess Excluded Owner
Administrator

Task Initiator ‘

Task Stakeholder

Task Business
Administrator

Notification
Recipient

Fig. 1. Class diagram: BPEL4People

suspend and to resume, as well as to delegate and to forward a task. Both the
latter (forward and delegate) are interesting from a security perspective. When
a task is delegated, the delegatee becomes the actual owner of the task and is
added to the potential owners list if she was not before (see also Section 4). The
set of potential delegatees can be limited for each task to “anybody”, “nobody”,
“potential owners”, or to a list of predefined people (“others”). The forwarding
mechanism works similar with the only difference that it cannot be restricted and
that the forwardee replaces the forwarder in the potential owners list. Most of
these transitions are also allowed for members of the actual owner role. Beyond
that, an actual owner can stop, release, complete, signal failure, and skip a task.

The business administrator is the most powerful role since all state transitions
are accessible to it. The business administrator is important if the list of potential
owners is evaluated to the empty set. In this case, he nominates one person to
execute the task. Beyond that, BAP/HT allows to define that certain people may
not perform a particular task via the generic role excluded owners. Users being
assigned to the “excluded owners” role are thus excluded from the potential
owners list, and cannot progress the task in its lifecycle.

Furthermore, B4P/HT standardizes methods to access the assignment his-
tory of a particular workflow case. These methods can be used to query the mem-
bers of a generic role for a particular task. For instance, the getActualOwner(X)
function returns the actual owner of task X. This way, one can retrieve role
members for previously executed tasks, for instance, to exclude them from other
tasks. We will elaborate on this feature later when we discuss how B4P/HT can
be tailored to support task-based separation of duty constraints.

3 Role-Based and Task-Based Access Control

In order to allow for an (automated) enforcement of authorization policies, the
high-level control objectives specified for a system need to be mapped to the

Specifying Separation of Duty Constraints in BPEL4People Processes 5

structures provided by an access control model. An access control model provides
an abstract framework for the definition of authorization policy rules. It defines
how essential access control elements (like subjects, operations, objects) could
be interrelated. In addition, it may specify invariants which must be met by each
real-world implementation of this model (e.g. to enable control of information
flows) or predetermine administrative procedures.

In recent years, role-based access control (RBAC) [10] — together with di-
verse extensions and variants — has evolved into a de facto standard for access
control in both research and industry. One of the advantages of RBAC is being
a general access control model. This means that a sophisticated RBAC-service
may be configured to emulate many different access control models, including
discretionary and mandatory access control models (see [19]).

A central idea in RBAC is to support constraints on almost all parts of an
RBAC model (e.g. permissions, roles, or assignment relations) to achieve high
flexibility. Static and dynamic separation of duty constraints (see [8]) are two
of the most common types of RBAC constraints (see, e.g., [3]). Separation of
duty (SOD) constraints can be subdivided in static separation of duty (SSD)
constraints and dynamic separation of duty (DSD) constraints. Static separation
of duty constraints specify that two mutual exclusive roles (or permissions) must
never be assigned to the same subject simultaneously. Dynamic separation of
duties constraints define that two mutual exclusive roles (or permissions) must
never be activated by the same subject simultaneously. This means that two
dynamically mutual exclusive roles may be assigned to the same subject. The
corresponding subject, however, is only allowed to activate at most one of its
dynamically mutual exclusive roles (permissions) at the same time.

Various contributions concerning access control in collaborative environ-
ments exist, esp. for groupware and workflow systems. For example, Thomas
and Sandhu introduced TBAC [29], a family of models that support the specifi-
cation of active security models. In TBAC, permissions are actively (de)activated
according to the current task/process-state. In [6], Bertino et al. present a well-
elaborated language and algorithms to express and enforce constraints which en-
sure that all tasks within a workflow are performed by predefined users/roles. In
[12], Georgiadis et al. introduce the Context-based Team Access Control model
(C-TMAC) as an extension of the TMAC approach presented by Thomas [28].
Here, a team is defined as a group of users acting in different roles with the
objective of corporately completing a certain task, e.g. a group of physicians
and nurses attending a patient. Thus, in C-TMAC the team concept is used to
associate users with contexts, like roles are used to associate users with permis-
sions. One similarity for all of these approaches is that they facilitate the usage
of some context information, e.g. the execution history of individuals/roles and
the current task, to make assignment, activation, or authorization decisions.

In this paper, we are especially interested in the specification and enforce-
ment of task-based separation of duty constraints in the B4P/HT context. Here,
a task-based separation of duty constraint is a separation of duty constraint that
considers task order and task history in a particular process instance to decide

6 Jan Mendling, Karsten Ploesser, Mark Strembeck

if a certain subject or role is allowed to perform a certain task (see also [7, 30]).
Again, task-based SOD constraints can be static or dynamic. A static task-based
SOD constraint defines that two statically mutual exclusive tasks must never be
assigned to the same role and must never be performed by the same subject.
This constraint is global with respect to all process instances in the correspond-
ing information system. For example, a company may choose to define two tasks
“Order supplies” and “Approve payment” as statically mutual exclusive to pre-
vent fraud and abuse.

In contrast, a dynamic task-based SOD constraint refers to individual process
instances and defines that two dynamically mutual exclusive tasks must never
be performed by the same subject in the same process instance. In other words:
two dynamically mutual exclusive tasks can be assigned to the same role. How-
ever, to complete a process instance which includes two mutual exclusive tasks,
one needs at least two different subjects (i.e. two individuals owning the respec-
tive role). This means, although a subject might possess a role which includes
all permissions to perform two dynamically mutual exclusive tasks, a dynamic
task-based SOD constraint can enforce that the same subject does not perform
both tasks in the same process instance. For example, a bank may assign two
tasks “Check credit worthiness” and “Approve credit application” to the “Bank
clerk” role and define a dynamic task-based SOD constraint on these tasks. Each
subject owning the bank clerk role may then perform both tasks. Nevertheless,
because of the dynamic SOD constraint on these tasks, we always need at least
two bank clerks to complete a “Credit application” process.

dynamicSeparation staticSeparation
* : ,0.* * : s 0.*

. % 1.* 1.% % dynamicSeparation
1 Subject . . o
User) Role — Permission | *
(owner role owner permission
’ 1. * 0.* 1x "
staticSeparation requiredPermission
staticSeparation
* * : ,0..*
ProcessType TaskType
1.*

*
1 1 u\ 0.
dynamicSeparation

* *

L—>{ Processinstance TaskInstance
R

Fig. 2. Class diagram: task and role-based access control

Figure 2 shows the essential relationships of subjects (users), roles, permis-
sions, tasks, and processes that are important for the purposes of this paper.

Specifying Separation of Duty Constraints in BPEL4People Processes 7

In general, static as well as dynamic SOD constraints can be defined on the
level of roles, permissions, and tasks — resulting in a total of six different types of
SOD constraints. Moreover, SOD constraints are subject to inheritance (see, e.g.,
[9, 23]). For example, if one of two statically mutual exclusive tasks is assigned
to a certain role, the other task must be assigned to an other role. Subsequently,
the corresponding roles are statically mutual exclusive because they inherit the
corresponding SOD constraints from their assigned tasks. Moreover, two tasks
are mutual exclusive if one needs two mutual exclusive permissions to complete
both tasks. In this case, the SOD constraint between two tasks is inherited from
the permissions that are needed to perform these tasks (see also Figure 2).

4 BPEL4People Support for SOD Constraints

In this section, we discuss in how far the six types of separation of duty con-
straints (see Section 3) can be implemented in B4P/HT. First, Section 4.1
presents strategies for adding SOD support to a B4P/HT process. Subsequently,
Section 4.2 discusses access control enforcement issues in B4P/HT and proposes
solutions.

4.1 Strategies for Implementing SOD in B4P/HT

WS-B4P/HT does not advocate a specific mechanism to implement access con-
trol. More specifically, the specification states that a “mechanism determining
how an implementation evaluates people assignments” is out of scope. Given this
design choice there are basically two ways to implement access control within
B4P /HT: firstly, via the enforcement of access control policies in people queries,
and secondly, by enforcing access control policies in the people assignment sec-
tion of the respective tasks. At the time of writing, there is no standardized
people query language available to be used with WS-B4P/HT. Accordingly, no
assumptions can be made about access control mechanisms in such a language.
As a consequence of that, we focus on the second approach?.

Role-based constraints play an important part in the specification of access
control. However, even though B4P/HT utilizes people queries as a role-like
concept, it does not provide means to define direct relations between roles such
as inheritance relations or separation of duty relations. More precisely, B4P/HT
states that “the structure of the data in the people directory is [. ..] out of scope”
(see [1, 2]). Below, we now discuss if and how the different types of separation
of duty constraints can be supported based on the options provided through the
current B4P /HT specifications:

! Note that a third option is the extension of B4P/HT with explicit (implementa-
tion independent) concepts to enable the direct and explicit integration of access
control relevant information in B4P/HT task definitions. Our analysis provides the
foundation for considering suitable extensions.

8 Jan Mendling, Karsten Ploesser, Mark Strembeck

Permission-based SOD: Since B4P/HT does not support a notion of permission,
corresponding SOD constraints need to be captured in people queries or in
the organization model outside B4P/HT.

Static role-based SOD: In essence, static role-based separation of duty demands
that two mutually-exclusive roles must not be assigned to the same subject.
This requirement can be partially translated into the people query concept of
B4P/HT. When two people queries pg; and pge should be mutually exclusive,
this can be enforced via the generic role assignment of a task in the following
way: tasks whose potential owners are populated with pg; get pgs assigned
to the excluded owners (see Section 2). As a consequence, there will be no
task in the process for which pg; and pgo can yield the same subject.

Dynamic role-based SOD: Dynamic role-based SOD demands that two mutual
exclusive roles can never be activated by the same subject. We again consider
two people queries pq; and pgs for this case. This requirement can be enforced
by adding each actual owner ao; and aos of all tasks that use pg; and pgs
to get their potential owners as excluded owners. This means, if task ¢; has
the extension of pg; as its potential owners, then it must exclude all actual
owners of tasks that have pgs as potential owners. The actual owners can be
retrieved using the getActualOwner method of B4P/HT.

Static task-based SOD: Static task-based separation of duty demands that two
mutual exclusive tasks must not be assigned to the same role. While B4P/HT
does not directly offer a user-configurable role concept, this constraint can be
enforced using two people queries pg; and pgs which populate the potential
owner roles po; and pos of the mutual exclusive tasks ¢; and to. By cross-
assigning the people queries to the excluded owners of the respective other
tasks, the two sets of people who can actually execute these tasks are disjoint.

Dynamic task-based SOD: Dynamic task-based separation of duty demands
that mutual exclusive tasks must not be executed by the same subject in the
same process instance. This concept can be directly represented in B4P/HT
by using the get ActualOwner method, and assigning it to the excluded owner
role of the respective other task.

4.2 Access Control Enforcement Issues in B4P/HT

In the previous section, we discussed how role-based and task-based separation
of duty constraints can be captured in B4P/HT. Yet, one needs to be aware of
some limitations of this approach, in particular, regarding task delegation and
forwarding, the getActualOwner method, and the role of the business adminis-
trator:

— The proposal that we make in the previous section can only partially avoid
delegation and forwarding of B4P/HT tasks. While the delegation parame-
ters of a task can be explicitly set, it is, according to the current B4P/HT
specification, not possible to switch off the forwarding mechanism. Albeit the
specification states that ”excluded owners are implicitly removed from the set
of potential owners”, it is unclear when and how this requirement is enforced.

Specifying Separation of Duty Constraints in BPEL4People Processes 9

Thus, a potential owner, who is assigned to a task instance in accordance with
the SOD constraints, can potentially forward this task instance to an unautho-
rised user. In general, it is advisable to disallow forwarding in certain scenarios
to prevent forwarding operations which would violate the active set of SOD
constraints for a task. Therefore, we recommend clarifying the enforcement
mechanism or providing means to explicitly switch off forwarding in a future
version of B4P/HT.

— Moreover, we encountered an issue with evaluating the getActualOwner
method if dynamic task-based SOD constraints are defined for two concur-
rent tasks. In this case, a task can be started at a point in time when there is
not yet an actual owner determined for the other (mutual exclusive) task. Ac-
cordingly, the excluded owner lists of both (mutual exclusive) task instances
are populated with the empty set (see also Sections 2 and 4.1), and the corre-
sponding dynamic separation of duty constraint is not enforced. Furthermore,
at this stage the B4P/HT specification only allows determining the actual
owner when the task reaches a final state. From an access control perspective
both options — current owner as well as owner history of a task instance — are
important and are necessary to make certain access control decisions. More-
over, the current actual owner needs to be known, e.g. in case of escalation.
Therefore, it seems to be a good choice to include two different methods in a
future version of the specification which can provide these information.

— Finally, the user acting in the business administrator role can override almost
all restrictions of a B4P/HT process. While this is critical regarding the level
of trust that a subject fulfilling this role would deserve, there is another issue
regarding awareness of SOD constraints. A B4P/HT-compliant implementa-
tion should provide information about possible SOD violations to the business
administrator when he forwards, delegates, or nominates somebody for a task.
This way, he should be able to avoid assignments that contradict SOD rules.

Altogether, the result is that BAP /HT offers mechanisms to capture different as-
pects of SOD constraints. Still, there are some weaknesses regarding enforcement
that should be fixed in future versions of the specification.

5 Related Work

While this paper provides the first analysis of the B4P/HT specification from
a separation of duty perspective, several approaches exist to extend BPEL or
closely related workflow notations with access control means: In [17] we pre-
sented an approach to extract RBAC models from BPEL4WS processes. Bertino
et al. [5] introduce RBAC-WS-BPEL, a language for authorization policies for
business processes defined in BPEL. Furthermore, they introduce the business
process constraint language (BPCL) — BPCL is defined as an XML schema
and allows for the specification of authorization constraints for BPEL processes,
such as separation of duty or binding of duty constraints. Wolter and Schaad
[30] extend the business process modeling notation (BPMN) with a means to

10 Jan Mendling, Karsten Ploesser, Mark Strembeck

model task-based authorization constraints. In particular, they focus on separa-
tion of duty constraints to model conflicting roles and/or conflicting tasks. In
[27] Thomas et al. propose several BPEL extensions to support user tasks and
to define access control requirements of these tasks. They suggest a software
component called “people activity manager” (which is, however, unrelated to
the B4P/HT specifications [1, 2]) that makes access control decisions for user
tasks. We complement this work by analyzing the expressiveness and weaknesses
of B4P. In this regard we extend previous work on a workflow resource pattern
evaluation of B4P that only briefly touches access control issues [20, 21].

6 Conclusion

In this paper, we analyzed options how the current B4P/HT specifications can
support different types of separation of duty constraints. In particular, we dis-
cussed how people queries, in conjunction with generic B4P/HT roles, can be
used to enforce several aspects of SOD constraints. Moreover, we identified lim-
itations in the current B4P/HT specification and propose solutions to address
these limitations in future versions of B4P/HT.

In particular, we suggest providing either a clarification of the enforcement
mechanism for excluded owners or a mechanism to explicitly switch off task
forwarding in a future version of B4P/HT — this is to prevent users from cir-
cumventing SOD constraints via B4P/HT’s forward mechanism. Second, the
B4P /HT specification only allows to determine the actual owner of a task when
the task reaches its final state. However, from an access control perspective it
can be important to determine the current owner as well as the owner history
of a certain task instance. Thus, we propose to include two different methods
in a future version of the B4P/HT specification — one method that returns the
current task owner only, and an other method that returns the owner history of
a task. Third, because the B4P/HT business administrator role could override
almost all restrictions defined for a B4P/HT process, we suggest that B4P/HT-
compliant implementations make a user acting as business administrator aware
of potential SOD violations when he intends to forward, delegate, or nominate
somebody for a task. This way, a user acting in the business administrator role
can avoid assignments that contradict SOD rules. An other option could be a
restriction of the B4P/HT business administrator role, which, however, may be
an undesired option.

In addition to our suggestions summarized above, a native B4P/HT extension
would be beneficial to provide explicit (implementation independent) concepts
that enable the direct and explicit integration of access control relevant informa-
tion in B4P/HT task definitions. In our future work, we therefore aim to define
such native extensions. Furthermore, when using separation of duty constraints
in workflow environments, it is important to enable consistency checks on tasks
and corresponding constraint specifications, to guarantee that the constraints
properly control task execution and user-to-task assignment without preventing
the processes from being completed (see, e.g., [26, 30]) Thus, we also intend

Specifying Separation of Duty Constraints in BPEL4People Processes 11

to provide such features for B4P/HT environments in our future work. Finally,
there is a need for an efficient and consistent approach to specify access control
information in B4P/HT. In future research, we will investigate the suitability of
a model-driven approach to generate B4P/HT based on the rules we identify in
this paper to express separation of duty.

References

1.

10.

11.

12.

13.

14.

A. Agrawal, M. Amend, M. Das, C. Keller, M. Kloppmann, D. Koénig, F. Ley-
mann, R. Miiller, G. Pfau, K. Ploesser, R. Rangaswamy, A. Rickayzen, M. Rowley,
P. Schmidt, I. Trickovic, A. Yiu, and M. Zeller. Web services human task (WS-
HumanTask), version 1.0. 2007.

A. Agrawal, M. Amend, M. Das, C. Keller, M. Kloppmann, D. Kénig, F. Ley-
mann, R. Miiller, G. Pfau, K. Ploesser, R. Rangaswamy, A. Rickayzen, M. Rowley,
P. Schmidt, I. Trickovic, A. Yiu, and M. Zeller. WS-BPEL extension for people
(BPEL4People), version 1.0. 2007.

G.J. Ahn and R. Sandhu. Role-based Authorization Constraints Specification.
ACM Trans. on Information and System Security (TISSEC), 3(4), November 2000.
A. Alves, A. Arkin, S. Askary, C. Barreto, B. Bloch, F. Curbera, M. Ford,
Y. Goland, A. Guizar, N. Kartha, C.K. Liu, R. Khalaf, D. Koenig, M. Marin,
V. Mehta, S. Thatte, D. van der Rijn, P. Yendluri, and A. Yiu. Web Services
Business Process Execution Language - Version 2.0. OASIS, January 2007.

E. Bertino, J. Crampton, and F. Paci. Access Control and Authorization Con-
straints for WS-BPEL. In Proc. of the IEEE International Conference on Web
Services (ICWS), September 2006.

E. Bertino, E. Ferrari, and V. Atluri. The Specification and Enforcement of Au-
thorization Constraints in Workflow Management Systems. ACM Transactions on
Information and System Security (TISSEC), 2(1), February 1999.

R.A. Botha and J.H.P. Eloff. Separation of duties for access control enforcement
in workflow environments. IBM Systems Journal, 40(3), 2001.

D.D. Clark and D.R. Wilson. A Comparison of Commercial and Military Computer
Security Policies. In Proc. of the IEEE Symposium on Security and Privacy, 1987.
D.F. Ferraiolo, J.F. Barkley, and D.R. Kuhn. A Role-Based Access Control Model
and Reference Implementation within a Corporate Intranet. ACM Transactions
on Information and System Security (TISSEC), 2(1), February 1999.

D.F. Ferraiolo, R. Sandhu, S. Gavrila, D.R. Kuhn, and R. Chandramouli. Proposed
NIST Standard for Role-Based Access Control. ACM Transactions on Information
and System Security (TISSEC), 4(3), August 2001.

M.P. Gallaher, A.C. O’Connor, and B. Kropp. The Economic Impact of Role-Based
Access Control. National Institute of Standards & Technology (NIST), Planning
Report 02-1, March 2002.

C.K. Georgiadis, I. Mavridis, G. Pangalos, and R.K. Thomas. Flexible Team-Based
Access Control Using Contexts. In Proc. of the 6th ACM Symposium on Access
Control Models and Technologies (SACMAT), May 2001.

M.A. Harrison, W.L. Ruzzo, and J.D. Ullman. Protection in Operating Systems.
Communications of the ACM, 19(8), August 1976.

H. Koshutanski and F. Massacci. Interactive access control for web services. In Y.
Deswarte, F. Cuppens, S. Jajodia, and L. Wang, editors, IFIP 18th WorldComputer
Congress, TC11 19th Int. Information Security Conference, pages 151-166. 2004.

12

15.

16.

17.

18.

19.

20.

21.

22.

23.

24.

25.

26.

27.

28.

29.

30.

Jan Mendling, Karsten Ploesser, Mark Strembeck

C.E. Landwehr. Formal Models for Computer Security. ACM Computing Surveys,
13(3), September 1981.

J. Mendling, M. zur Muehlen, and A. Price. Process Aware Information Systems:
Bridging People and Software Through Process Technology, chapter Standards for
Workflow Definition and Execution, pages 281-316. Wiley Publishing, 2005.

J. Mendling, M. Strembeck, G. Stermsek, and G. Neumann. An Approach to
Extract RBAC Models from BPEL4WS Processes. In Proc. of the 13th IEEE In-
ternational Workshops on Enabling Technologies: Infrastructures for Collaborative
Enterprises (WETICE), June 2004.

G. Neumann and M. Strembeck. A Scenario-driven Role Engineering Process for
Functional RBAC Roles. In Proc. of Tth ACM Symposium on Access Control
Models and Technologies (SACMAT), June 2002.

S. Osborn, R. Sandhu, and Q. Munawer. Configuring Role-Based Access Control to
Enforce Mandatory and Discretionary Access Control Policies. ACM Transactions
on Information and System Security (TISSEC), 3(2), February 2000.

N. Russell and W.M.P. van der Aalst. Evaluation of the BPEL4People and WS-
HumanTask Extensions to WS-BPEL 2.0 using the Workflow Resource Patterns.
BPM Center Report BPM-07-10, BPMcenter.org, 2007.

N. Russell, W.M.P. van der Aalst, A.H.M. ter Hofstede, and D. Edmond. Workflow
resource patterns: Identification, representation and tool support. In O. Pastor and
J. Falcdo e Cunha, editors, 17th International Conference CAiSE 2005, Proceed-
ings, volume 3520 of Lecture Notes in Computer Science, pages 216-232. 2005.
R.S. Sandhu and P. Samarati. Access control: Principles and practice. [IEEE
Communications, 32(9), September 1994.

M. Strembeck. Conflict Checking of Separation of Duty Constraints in RBAC -
Implementation Experiences. In Proc. of the Conference on Software Engineering
(SE 2004), February 2004.

M. Strembeck. A Role Engineering Tool for Role-Based Access Control. In
Proc. of the 8rd Symposium on Requirements Engineering for Information Security
(SREIS), August 2005.

M. Strembeck. Embedding Policy Rules for Software-Based Systems in a Require-
ments Context. In Proc. of the IEEE International Workshop on Policies for
Distributed Systems and Networks (POLICY), June 2005.

K. Tan, J. Crampton, and C.A. Gunter. The Consistency of Task-Based Autho-
rization Constraints in Workflow Systems. In Proc. of the IEEE Workshop on
Computer Security Foundations (CSFW), June 2004.

J. Thomas, F. Paci, E. Bertino, and P. Eugster. User Tasks and Access Control
over Web Services. In Proc. of the IEEE International Conference on Web Services
(ICWS), July 2007.

R.K. Thomas. Team-based Access Control (TMAC): A Primitive for Applying
Role-based Access Controls in Collaborative Environments. In Proc. of the ACM
Workshop on Role Based Access Control, 1997.

R.K. Thomas and R.S. Sandhu. Task-based authorization controls (TBAC): A
family of models for active and enterprise-oriented authorization management. In
Proc. of the IFIP WG11.8 Conference on Database Security, August 1997.

C. Wolter and A. Schaad. Modeling of Task-Based Authorization Constraints in
BPMN. In G. Alonso, P. Dadam, M. Rosemann, editors, 5th Int. Conf. on Business
Process Management, Lecture Notes in Computer Science, pages 64-79. 2007.

