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In order to make good decisions about the design of information systems, an essential skill is to understand
process models of the business domain the system is intended to support. Yet, little knowledge to date has
been established about the factors that affect how model users comprehend the content of process models.
In this study, we use theories of semiotics and cognitive load to theorize how model and personal factors in-
fluence how model viewers comprehend the syntactical information of process models. We then report on a
four-part series of experiments, in which we examined these factors. Our results show that additional seman-
tical information impedes syntax comprehension, and that theoretical knowledge eases syntax comprehen-
sion. Modeling experience further contributes positively to comprehension efficiency, measured as the
ratio of correct answers to the time taken to provide answers. We discuss implications for practice and
research.

© 2012 Elsevier B.V. All rights reserved.
1. Introduction

In recent years, the documentation of business processes and the
analysis and design of process-aware information systems has gained
attention as a primary focus of modeling in information systems prac-
tice [10]. The so-called practice of process modeling has emerged as a
key instrument to enable decision making in the context of the analysis
and design of process-aware enterprise systems [11], service-oriented
architectures [13], workflow operation [26] andweb services [14] alike.

Process models typically capture in some graphical notation the
tasks, events, states, and control flow logic that constitute a business
process. Process models may also contain information regarding the
data that is processed by the execution of tasks, which organizational
and IT resources are involved, and potentially capture other artifacts
such as external stakeholders and performance metrics, see e.g. Ref.
[49].

Many benefits are associated with business process modeling. For
instance, practitioners have identified process improvement, commu-
nication and shared understanding as the most important process
modeling benefits [17]. A prerequisite for realizing these benefits,
however, is that the quality of process models are perceived as good
by their audience, making the understandability of process models an
important topic for research relevant to all potential uses of process
models [2]. Several studies support this view. For instance, the per-
ceived quality of a process model is a key factor contributing to orga-
nizational re-design project success [21]. Accordingly, our interest in
g), mark.strembeck@wu.ac.at
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this paper is to examine how analysts develop an understanding of
process models.

More specifically, we study (a) factors characterizing the process
model in terms of the activity labels used in the models, (b) factors
characterizing the person interpreting the models in terms of rele-
vant modeling expertise, and (c) how these factors affect process
model comprehension. The relevance of this research stems from
companies making significant investments in process modeling train-
ing, with the view of developing a body of process modeling expertise.
Indeed,modeler expertise has been established by surveys as an impor-
tant factor for process modeling success [3] and modeling grammar
usage [40]. Furthermore, prior experiments demonstrate that model
factors (e.g., an increase in model complexity) affect understanding
[45,47]. Notably, these experiments use abstract activity labels (A, B,
C, etc.) in their process models, which, in turn, raises the question
whether the usage of activity labels that carry real domain semantics le-
verages or impedes understanding.

The aim of the research reported here is to combine these prelimi-
nary insights in the definition of a series of experiments. Accordingly,
the contributions of this paper are threefold. First, we build on the cog-
nitive load theory to conjecture that real activity labels should decrease
syntactical process model understanding. This hypothesis is confirmed
in our experiments. Second, we argue in line with prior research that
highermodeling expertise results in better understanding performance.
This hypothesis is generally confirmed, too. Third, we define different
measures of expertise including theoretical knowledge, prior modeling
experience, and intensity of modeling. The experiments show that
theoretical knowledge is most significant with its impact on perfor-
mance. Our findings have implications for research on model under-
standing, in particular regarding cognitive load considerations, and for
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practice by demonstrating the relevance of theoretical knowledge of
process modeling to understanding these models. This insight, in turn,
is relevant to informing a staged teaching strategy that educates practi-
tioners about how to read process models.

The rest of this paper is structured as follows. Section 2 introduces
the theoretical foundations of process model comprehension. We
identify matters of process model understanding and respective chal-
lenges. This leads us to factors of understanding. Section 3 describes
the research design and Section 4 the results along with a discussion
of threats to validity. Section 5 highlights implications for research
and practice. Section 6 concludes the article.
A Y
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2. Background

In this section, we discuss the background of our research.
Section 2.1 summarizes which formal conclusions can be drawn
from a process model and how understanding performance can be
measured. Section 2.2 formalizes our hypotheses.
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Fig. 1. Model 4 with letters.
2.1. Process model comprehension

Process modeling has emerged as an important practice to guide
decisions in systems analysis and design. In fact, process modeling
is the number one reason to engage in conceptual modeling altogether
[10], and also considered the number one skill demanded from IT
graduates.1 Analysts develop process models to capture relevant infor-
mation about a business process they seek to re-design, analyze, or sup-
port with an appropriate information system. A business process that is
in place to deal with a book order may, for example, contain a task to re-
ceive the order, which is followed by another one specifying that the
book is to be sent to the customerwhoordered it. Amodel of this process
would, therefore, include sequences of graphical elements to describe
these tasks and the order in which they have to be performed. Process
models can be elicited through interviews with relevant stakeholders,
or derived from organizational documents such as business policies
[54]. Figs. 1 and 2 show two variants of a typical process model, convey-
ing information about important tasks and the control flow that specifies
the execution of these tasks.

In reaching an understanding about how individuals comprehend
the content of process models, we realize that there is a broad spec-
trum of matters that can be understood from a process model. The
SEQUAL model by Lindland et al. [24], for instance, distinguishes syn-
tactic, semantic, and pragmatic dimensions of model quality. Consider
Figs. 1 and 2, which show two structurally equivalent process models.
The model of Fig. 1 contains activities that are labeled with capital let-
ters. Therefore, this model can only be analyzed from a syntactical
point of view. On the other hand, the model of Fig. 2 includes German
language activity labels. As these labels point to a specific real-world
application domain (i.e., they describe which activities in the real-
world domain specifically are to be executed), they enable the discus-
sion of the model from a semantic point of view. If now this model is
communicated in a particular context, e.g. it is communicated as a
normative model, then we can also investigate its pragmatics. In this
way, a process model can represent knowledge for action [22].

Semiotic theory postulates that comprehension, and consequently,
communication, can be understood as a ladder: syntax (how do I faith-
fully combine grammatical elements in a process model? [7]) must be
clear before semantics can be discussed, and semantics (what do the
grammatical elements in a process model mean? [7]) must be clear
before pragmatics can be considered. In this regard, it is a primary in-
terest to analyze in how far stakeholders are able to understand process
models on a syntactical level. Other interpretations are flawed if syntax
1 http://www.networkworld.com/news/2009/040609-10-tech-skills.html
is not correctly understood. This is also acknowledged by prior studies
that focus on formal and syntactical aspects of process models [44,45].

Looking at which factors influence the comprehension of the syn-
tactical content of process models, prior research has discussed several
factors of process model understanding including model purpose [45],
problem domain [23], modeling notation [1,15,48], visual presentation
[34,39,46], and process model complexity [8,27]. Personal factors, on
the other hand, have been less intensively researched to date. This is
not to say that no research has been conducted. The experiment by
Recker and Dreiling, for instance, operationalized the notion of process
modeling expertise through a measure of familiarity with a particular
modeling notation [41]. In an experiment byMendling, Reijers, and Car-
doso, participants were characterized based on the number of process
models they created and the years of modeling experience they had

http://www.networkworld.com/news/2009/040609-10-tech-skills.html
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achieved [30]. This study, furthermore, also indicated the specific im-
portance of theoretical process modeling knowledge. In the latter ex-
periment the participants from TU Eindhoven with strong Petri net
education scored better than other participants with less theoretical
education in process modeling.

These studies emphasize the value of looking into more details for
the impact of expertise, in a sense of previous experience with modeling,
and in a sense of knowledge of fundamental process modeling concepts,
which is the intent of our study.

Aside from these important personal factors,we also aim to examine
model factors that have not received much attention in prior studies.
Specifically, we aim to investigate the effect of semantical information
on formal syntactical process model understanding. Therefore, we con-
sidermodel semantics as expressed in the textual labels,which are used
to annotate the graphical activity constructs in a process model (see
Fig. 2), and which are important to the usefulness of the models [32].
While one may expect that people might be able to better recall a
model with textual information due to a broader activation of different
concepts [25], there is an opposite effect to be expected when only
questions about syntax are asked. The theoretical rationale for this ex-
pectation stems from the cognitive load theory [51]. The main assump-
tions of the cognitive load theory are limited working memory and its
interaction with a practically unlimited long-term memory [51].
When individuals study new material (e.g., information about a busi-
ness process from a process model) they increase their cognitive load,
i.e., the burden on their working memory. This is important because
working memory has the capacity to process approximately seven
items of information at any given time [33]. Clearly, a long text label
in comparison to a single letter implies a higher cognitive load. Textual
labels might accordingly distract persons from drawing correct conclu-
sions about formal and syntactical aspects of a process model because a
larger share of the working memory is required to process the textual
information and the domain information they represent. In this way, a
variation of activity labels is an interesting treatment as it should be
more detrimental to inexperienced model readers due to the implied
cognitive load [52].

On the basis of these theoretical arguments, we define the follow-
ing research objective: analyze business process models for the pur-
pose of understanding with respect to their syntactical and
semantic content from the point of view of model readers in the con-
text of varying prior experience with modeling. Now we formalize
our expectations in a set of testable hypotheses.

2.2. Hypotheses

In theorizing anticipated effects of the factors discussed above on
process model understanding, we first define our operationalization
of process model understanding. Similar to [38], we investigate syn-
tactic understanding from two angles, these being comprehension
task performance (how faithfully does the interpretation of the pro-
cess model allow the reader to comprehend the formal content of
the model?) and comprehension task efficiency (what resources are
used by the reader to comprehend the process model?). Both factors
are important elements in Norman's theory of action [36], and relate
to what Norman calls “the gulf of interpretation” (a difference be-
tween what the model tries to convey and what is interpreted by
the model reader). The gulf of interpretation is an important measure
of the performance of modeling efforts, because model comprehen-
sion by relevant stakeholders is a necessary prerequisite for various
model application tasks, such as systems analysis, communication,
design, organizational re-engineering, project management, end
user querying and others [43]. In other words, for a model to be useful
for any modeling-related task, it is imperative that the stakeholders
doing these tasks are able to comprehend the model well (perfor-
mance) and timely (efficiency).

We now draw hypotheses regarding the effects of personal and
model factors on model readers’ comprehension task performance
and efficiency. Fig. 3 shows our research model. The model proposes
that process model understanding (in terms of comprehension accu-
racy and comprehension efficiency) is a function of the characteristics
of the model of the process, and of the characteristics of the user
interpreting the model.

Our first hypothesis addresses model factors. While prior studies
have examined model characteristics such as model structure and
complexity [31], our interest is in the textual labels that are used in
process models to annotate the graphical constructs. Graphical con-
structs, and their relationships, are used to convey information
about the structure of a process and its formal behavior. Textual labels
used to annotate the graphical constructs, on the other hand, convey
important information about the domain (e.g., what activity has to be
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performed, what is an important document, who within an organiza-
tion is responsible for execution, and so forth). Based on this distinc-
tion, we expect that model readers will be able to more easily
understand the formal, syntactical aspects of a process model, as
expressed in the grammatical constructs and their relationships,
when they are not presented with additional, semantic information
about the application domain (in the textual labels). This is because
the textual labels increase the cognitive burden on the model viewer
in that the textual labels are an additional set of information material
that needs to be processed by the working memory [52], but which is
largely irrelevant to the comprehension of the formal content of a
process model, which is the interest in our study.

We further expect that comprehension occurs quicker for people
working with process models featuring abstract textual labels, be-
cause they require less effort to retrieve and assemble pieces of infor-
mation in their working memory, when only having to consider
graphical constructs but not additional textual information. We for-
malize these observations in the first two hypotheses:

H0
1. The use of abstract labels will have no impact on comprehension

task performance.

Ha
1. The use of abstract labels will have a significant positive impact

on comprehension task performance.

H0
2. The use of abstract labels will have no impact on comprehension

task efficiency.

Ha
2. The use of abstract labels will have a significant positive impact

on comprehension task efficiency.

Next, we consider personal factors. First, we theorize that individuals
with higher levels of knowledge about formal process model concepts
such as deadlocks, soundness, concurrency and so forthwill achieve bet-
ter comprehension task performance and efficiency. This is because,
when interpreting a process model, these individuals can make use of
prior knowledge, i.e., relevant knowledge material stored in long-term
memory can be applied to reduce the cognitive load on their working
memory, whichwill ease, and improve their understanding of themate-
rial (the process model) presented to them. Accordingly, we have:

H0
3. Users with higher levels of process knowledge will not have

higher comprehension task performance.

Ha
3. Users with higher levels of process knowledge will have signifi-

cantly higher comprehension task performance.

H0
4. Users with higher levels of process knowledge will not have

higher comprehension task efficiency.

Ha
4. Users with higher levels of process knowledge will have signifi-

cantly better comprehension task efficiency.

Second, we realize that modeling expertise is an important factor
in process modeling [3,40]. Experienced modelers often possess a
repertoire of workarounds for challenging modeling situations, and
can often refer to their previous experiences and knowledge about
modeling when attempting to interpret complex models. Less expe-
riencedmodelers, on the other hand, often lack such knowledge,which,
in turn, can be expected to affect their comprehension accuracy and
efficiency.

The resource allocation theory [19] suggests that when users build
up experience in modeling, their demand for cognitive attentional ef-
fort required to perform the model-related tasks is reduced, thereby
freeing cognitive resources that can be allocated to improving task
performance and outcome production (i.e., better and faster under-
standing). This situation would suggest that experienced modelers
can read process models better and with less effort. We distinguish
between modelers that have modeled for a long time (i.e., that have
modeling experience) and those that model often (i.e., that have
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modeling intensity), to be able to examine modeling experience in a
more detailed manner. We state the following hypotheses:

H0
5. Users with higher levels of modeling experience will have equal

comprehension task performance.

Ha
5. Users with higher levels of modeling experience will have signifi-

cantly higher comprehension task performance.

H0
6. Users with higher levels of modeling experience will have equal

comprehension task efficiency.

Ha
6. Users with higher levels of modeling experience will have signifi-

cantly better comprehension task efficiency.

H0
7. Users with higher levels of modeling intensity will have equal

comprehension task performance.

Ha
7. Users with higher levels of modeling intensity will have signifi-

cantly higher comprehension task performance.

H0
8. Users with higher levels of modeling intensity will have signifi-

cantly better comprehension task efficiency.

Ha
8. Users with higher levels of modeling intensity will have signifi-

cantly better comprehension task efficiency.
In the following, we describe design and results of a series of

experiments we conducted to test these hypotheses.

3. Experiment description

For investigating the hypotheses, we define an experiment follow-
ing established guidelines for experimental software engineering
[4,18,55]. Because there is only limited research on cognitive load ef-
fects in the process modeling domain, we chose an experimental
method as it affords a higher internal validity than other methods
[9]. With this experiment definition, we aim to analyze process
models for the purpose of understanding with respect to comprehen-
sion task performance and comprehension task efficiency. In particu-
lar, the analyses are conducted from the perspective of a reader of the
model, and the experiment's context is given through persons with
process modeling skills answering questions about the meaning of a
process model.

3.1. Experiment design

To test our hypotheses, we selected a 2×(4×4×4) mixed balanced
experimental design that allowed us to focus on personal factors and
model characteristics while eliminating potentially confounding other
variables (e.g., domain knowledge). Our experimental design featured
one between-subjects factor and three within-subjects factors.

3.1.1. Experimental condition and tasks
The between-subjects factor, Label Type, had two levels. We pro-

vided participants with process models that contained either abstract
or concrete labels. To operationalize this factor, we gathered a set of
six process models from practice that capture business processes in
two different domains, order processing and price calculation. The
models were provided by a partner organization, which has these
models in real use for process documentation purposes. The models
were randomly selected from their collection of process models. The
models could all be displayed on an A4 page and ranged from nine
to twenty activities, and contained between six and fifteen connec-
tors. These characteristics are similar to those found in process
model collections in practice [37]. Therefore, we deemed these
models to be adequate experimental treatments given that the cases
reflect modeling scenarios typically encountered in real-life process
modeling practice. Based on the observation in Ref. [48] that EPCs
appear to be easier to understand than Petri nets, we chose an EPC-
like notation without events. The participants received a short infor-
mal description of the semantics similar to ([29], p. 25). Finally, we
drew all models in the same top-to-bottom style with the start ele-
ment at the top and end element at the bottom. Altogether, each par-
ticipant was challenged with four tasks (see Appendix A):

(1) self-assess process modeling intensity,
(2) self-assess process modeling experience,
(3) answer theoretical knowledge test, and
(4) answer process model comprehension questions.

3.1.2. Independent variables
To operationalize the between-subjects factor Label Type as an in-

dependent variable, for each of the process models used we con-
structed a variant where the activity labels were replaced by
abstract capital letters as identifiers. Figs. 1 and 2 depict model num-
ber 4 of the models we used in our experiment. For the 6 models we
identified 6 yes/no questions related to the structure and the process
flow specified by the model. These questions together with questions
on personal experience and knowledge of process modeling were
packed into two variants of the questionnaire, one for models with
original activity labels (textual labels), one for models with letters
(abstract labels).

Aside from the between-subjects factor Label Type, we also de-
fined three within-subject factors. The first within-subjects factor
Knowledge had four levels. The participants had to answer twelve
theoretical yes/no questions before seeing the models about selected
topics related to process modeling such as choices, concurrency, loops,
and deadlocks (see Appendix A). These questions concern grammatical
rules of process model logic, derived from fundamental work in this
area [20] and as previously used in Ref. [28].We transformed the knowl-
edge score into an ordinal knowledge scale with four levels: very low
(0–3 correct answers), somewhat low (4–6 correct answers), some-
what high (7–9 correct answers) and very high (10–12 correct an-
swers). This ordinal measure served as a second independent variable.
The second within-subjects factor Experience had four levels. The partici-
pants were asked for how long they have been involved with business
process modeling. The variable was measured on an ordinal scale with
four levels: less than one month, less than a year, less than three
years, and longer than three years. This measure served as a third inde-
pendent variable. Finally, the third within-subjects factor Intensity also
had four levels. The participants had to indicate how often they work
with process models. We used an ordinal scale with four options to
answer: daily, monthly, less frequent than monthly, never. This mea-
sure served as a fourth independent variable.

3.1.3. Dependent variables
We use two dependent variables, comprehension task performance

and comprehension task efficiency. Comprehension Task Performance is
calculated based on the answers given by the participant to the model
comprehension questions. It captures the number of correct answers
by the person. Themaximumvalue is 36 for six questions on sixmodels.
This measure serves as an operationalization of formal process model
understanding of a person.

Comprehension Task Efficiency is based on the task completion time
that the participants invested in answering the different questions in
the questionnaire. The measure is calculated by dividing the number
of correct answers (Comprehension Task Performance) by the time it
takes to complete the respective questions, and served as a second
dependent variable in our study.

3.2. Experiment execution

We implemented the experiment in two ways. First, we defined
an online experiment in order to make access to practitioners with



Table 1
Test results regarding experiment replication.

Dependent
variable

Dummy variable Levels N Mean Std. dev. Sig.

Comprehension Affiliation Original study 42 26.26 4.94 0.17
Task Replication 1 23 25.44 4.02
Performance Replication 2 22 26.36 4.28

Replication 3 32 25.78 4.90
ExperimentMode Online 42 26.60 4.49 0.23

Paper 77 25.58 4.25
Comprehension Affiliation Original study 42 1.31 0.66 0.27
Task Replication 1 23 1.22 0.29
Efficiency Replication 2 22 1.14 0.25

ExperimentMode Online 42 1.31 0.66 0.41
Paper 45 1.18 0.28

Table 2
Descriptive statistics.

Type of variable Variable N Mean Std.
dev.

Scale

Independent
variables

Knowledge 119 2.66 0.84 1–4

Label type 119 1.47 0.50 1/2
Experience 119 2.75 1.21 1–4
Intensity 119 2.30 0.95 1–4

Dependent Comprehension task 119 25.94 4.34 0–36
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modeling experience more easy. The automated system further
allowed us to record the answer times, randomly assign the subject
to a label type, and randomly define the presentation order of the
sixmodels in the corresponding label type, thereby ensuring a balanced
treatment. Participation was voluntary. As an incentive the participants
received feedback about their test performance.

In 2007, we distributed the link to the experiment via the German
mailing lists EMISA and WI as well as among students that followed
courses on process modeling at the Vienna University of Economics
and Business. Typically, both academics and practitioners with an in-
terest in conceptual modeling and information systems development
are registered with these lists. The questionnaire was started by 200
persons and completed by 46. From these 46 we excluded 4 people
who spent less than 10 minutes time on the questionnaire since we
assumed that to be the minimum time to provide meaningful answers.
The remaining 42 persons and their answers to the 36questions establish
the first part of the sample for our statistical analysis below. Altogether,
1512 answers are recorded in the sample. 65% of the participants had
more than three years experience in process modeling.

To increase confidence in the conclusion validity of our study, we
collected further data with paper-based replications of the experiment.
The first replication in April 2009 involved 23 graduate students from
Vienna University of Economics and Business who followed a course
on modeling. The second sample includes 22 graduate students who
followed the same course in June 2009.2 The third replication was con-
ducted with 32 graduate students who followed the system analysis
and design course at Humboldt-Universität zu Berlin. From all four ex-
periments we collected data from altogether 119 persons. With each
answering 36 questions, we get 4284 answers to model understanding
questions.

These four experiments correspond to a strict replication accord-
ing to Ref. [4], with the variation between the experiments being
only in the institution of the participants and the mode of presenta-
tion (web versus paper). Because neither institutional affiliation nor
mode of presentation is a relevant factor in our study, our replication
can be considered strict and therefore allows not only combination of
experimental results but also pooling of data. To be able to examine
any potential threats to validity stemming from the replication, we
created two dummy variables, affiliation, and experimentMode, to ex-
amine whether experimental results differed significantly across the
replications. Table 1 gives the results. All test results were insignifi-
cant, with p values ranging from 0.17 to 0.41, suggesting that none
of the relevant data differed significantly for the dummy variables,
thereby justifying to our pooling of the data.

Each of the experiments used feedback about the performance as
an inducement. While this feedback was meant to be informative to
practitioners, it served the students for the preparation towards
their exams.

4. Data analysis and interpretation

In this section, we first discuss distribution and correlation before
we turn to hypothesis testing. Last, we discuss threats to validity.

4.1. Distribution and correlation analysis

Table 2 shows descriptive statistics for our measures. All results
are in line with expectations. Table 3 gives the correlation matrix.
First, we check for potential interactions between our between-
subject factor (label type) and our within-subject factors (experience,
intensity, knowledge). The data in Table 3 clearly shows that no sig-
nificant interaction terms are present between these factors, thereby
suggesting independence of the experimental conditions used in our
2 Vienna University of Economics and Business runs the modeling course on a half-
semester turn.
study. The insignificant correlations of the between-subjects factor
and the within-subject factors allow to run the hypothesis tests inde-
pendently. Further inspection of Table 3 suggests that Label type and
formal process knowledge (knowledge) are meaningful independent
factors as they correlate significantly with the dependent measures.
By contrast, experience and intensity do not correlate largely with
the dependent measures but with each other. This correlation be-
tween intensity and experience, however, behaves in accordance
with general expectations (in the sense that people that model longer
often model more frequently, too). Next, the correlation between in-
tensity and experience to knowledge is expected, as people with
more intensive or overall longer process modeling experiences build
up higher levels of knowledge about process modeling. The correla-
tions between comprehension score and efficiency, likewise, were
expected. Overall, we do not find counter-intuitive correlations in
Table 3. Note that in Table 2 we see that the sample size for the effi-
ciency measure is 87, which is because we failed to accurately record
task completion times in our experiment replication with the students
in Berlin.

4.2. Testing hypotheses on comprehension task performance

After screening the data, we now discuss the test of our predic-
tions. We argued in our Hypotheses Ha

1, Ha
3, Ha

5 and Ha
7 that process

model comprehension task performance would be positively impacted
by

• the use of abstract labels,
• higher levels of formal process knowledge,
• higher levels of process modeling experience, and
• higher levels of process modeling intensity.

As a dependent measure, we used the process model comprehen-
sion task performance scores (0–36). We first checked whether the
data met the assumption of equal variances in the dependent mea-
sures across the levels of each independent variable. Levene's test
was insignificant (F=1.45, p=0.19), indicating that the data met
this assumption. Hypothesis testing was completed individually for
variables performance
Comprehension task
efficiency

87 1.22 0.52 0–inf.



Table 4
Descriptive results of model comprehension task performance scores.

Differences among
groups

Treatment group N Mean Std. dev. Mean rank

Label type Abstract labels 62 26.35 4.06 N/A
Textual labels 56 25.48 4.67 N/A

Knowledge Very low 9 24.78 2.44 43.78
Somewhat low 41 23.80 4.66 45.42
Somewhat high 49 26.57 3.77 63.93
Very high 19 29.47 3.10 89.79

Experience Less than one month 28 24.39 4.65 48.58
Less than a year 20 26.25 4.27 58.54
Less than three years 23 26.78 3.87 71.22
Longer than three years 47 26.32 4.36 60.33

Intensity Never 26 24.81 3.38 46.09
Less than monthly 45 25.56 4.47 62.85
Monthly 32 27.56 4.23 63.67
Daily 15 25.60 5.24 64.02

Table 5
Test results of model comprehension task performance scores.

Independent factor df Statistic Sig.

Label type 1 5.05 0.03
Theory 3 24.48 0.00

Table 3
Correlation matrix.

Label
type

Knowledge Intensity Experience Comprehension
task performance

Knowledge −0.01
Intensity 0.08 0.31⁎⁎
Experience 0.04 0.28⁎⁎ 0.24⁎
Comprehension
Task
performance

−0.08 0.42⁎⁎ 0.15 0.15

Comprehension
Task efficiency −0.35⁎⁎ 0.16 0.13 −0.11 −0.31⁎⁎

⁎ Correlation is significant at the 0.05 level (2-tailed).
⁎⁎ Correlation is significant at the 0.01 level (2-tailed).
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each of the four independent factors above, using SPSS Version 16.0.
First, we performed an Analysis of Variance (ANOVA) for our
between-subjects factor Label Type. Then, for each of the three factors
formal process knowledge, process modeling experience, and process
modeling intensity, we used a non-parametric Kruskal–Wallis test to
examine our hypotheses, because a Kolmogorov–Smirnov test con-
firmed that the normality assumption did not hold for these mea-
sures, i.e. Z=2.51 (knowledge), 2.68 (experience), 2.52 (intensity), all
pb0.01. Therefore, we used the Kruskal–Wallis test, which is accept-
ed as an alternative to ANOVA in case the considered variables are not
normally distributed [50]. We examined the hypotheses individually
because our correlation analysis suggested independence of the
between-subjects and within-subjects factors. Also, our experimental
design features three ordinal variables, for which we required non-
parametric tests, and the Kruskal–Wallis test we selected considers
one independent variable at a time. We chose this test over others
(e.g., ANOVA, Mann–Whitney) because, first, the Kruskal–Wallis test
is the generalization of the Mann–Whitney test when there are
more than two independent groups, like in our study (four levels)
[16]. Second, even though we replicated the experiment to gather
more data, the number of respondents overall is rather small, and
the subgroups for each ordinal scale level are smaller. The
distribution-free nature of non-parametric tests places few restric-
tions on the sample size in contrast with parametric tests, which
rely on asymptotic properties or normality of the sample distribution
[50]. Third, the ordinal measures used in our study called for the use
of non-parametric methods, which yield higher power than corre-
sponding parametric tests (e.g., ANOVA) [35]. Finally, rank-based
non-parametric tests are not affected by outliers [16], which allows
us to also consider those data where respondents took unusually
long (or short) for answering the experimental questions. Table 4
gives the descriptive results and Table 5 gives the results from the
statistical tests.

Perusal of the data in Tables 4 and 5 leads to the following
observations.

Ha
1 hypothesized higher comprehension task performance scores

for the group of users working with models with abstract labels.
Table 4 shows that the average comprehension task performance
scores indeed were higher (mean score=26.45 vs. 25.48), and
Table 5 confirms that the differences are significant (F=5.05,
p=0.03). These results lead to the rejection of null hypothesis H0

1 and
suggest people viewing models with no textual labels achieve a higher
level of comprehension of formal syntactic aspects of process models.

Ha
3 hypothesized higher comprehension task performance scores

for users with higher levels of formal process knowledge. And indeed,
we observe that comprehension task performance scores were
higher, relatively, for users with very high knowledge levels, over
those with somewhat high, and somewhat low knowledge
(means=29.47, 26.57 and 23.80).3 Table 5 suggests that the compre-
hension task performance across the four groups is significantly
3 Note that higher rank scores indicate higher comprehension task performance.
different (Chi−2=24.48, p=0.00). We note, interestingly, that the
group of users with very low knowledge performed somewhat better
than the group with somewhat low knowledge (mean=24.78). A
follow-up ANOVA analysis of these two groups, however, showed
these differences to be insignificant. A second-follow up ANOVA analy-
sis of comprehension task performance based on the actual comprehen-
sion task performance scores (0–12) also yielded significant results
(df=11, F=2.05, p=0.03). Therefore, we suggest to reject the null hy-
pothesis and tentatively accept hypothesis Ha

3.
Ha
5 and Ha

7 hypothesized higher comprehension task performance
scores for users with higher levels of modeling expertise (in the
sense of modeling experience and intensity). Table 4 shows that the
comprehension task performance scores for the four groups of users
(for both experience and intensity) follow an inverse U-shaped
curve in that task scores increase for the users with very low, some-
what low, and somewhat high expertise (both for experience and in-
tensity) but drop for the groups of users classified as very
experienced/very intensive. The results from the Kruskal–Wallis test
in Table 5 show, furthermore, that group differences for both factors
experience and intensity are insignificant (Chi−2=6.37, p=0.10
and Chi−2=5.70, p=0.13). In light of these results, we cannot re-
ject the null hypotheses H0

5 and H0
7, suggesting that modeling exper-

tise is not an important factor in explaining process model
comprehension task performance.

4.3. Testing hypotheses on comprehension task efficiency

Next, we argued in our Hypotheses Ha
2, Ha

4, Ha
6 and Ha

8 that process
model comprehension task efficiency (measured by the normalized
ratio between comprehension task performance and comprehension
task completion times) would be positively impacted by

• the use of abstract labels,
• higher levels of formal process knowledge,
• higher levels of process modeling experience, and
• higher levels of process modeling intensity.

Because during our conduct of the experiment at Humboldt-
Universität zu Berlin we were unable to accurately record time mea-
sures for comprehension tasks, for this second analysis we had to
Experience 3 6.37 0.10
Intensity 3 5.70 0.13



Table 7
Test results of model comprehension task efficiency scores.

Independent factor df Statistic Sig.

Type 1 3.90 0.05
Theory 3 8.38 0.04
Experience 3 4.29 0.23
Intensity 3 9.09 0.03
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exclude 32 entries from our data set, resulting in an effective sample
size of 87. Again, we first checked whether the data met the assump-
tion of equal variances in the dependent measures across groups.
Levene's test was insignificant (F=1.30, p=0.08), indicating that
the data met this assumption. Hypothesis testing was completed in
the same manner as above, using the same four measures as indepen-
dent factors. As a dependent measure, we used the process model
comprehension task efficiency scores. The descriptive analysis re-
sults are displayed in Table 6 and Table 7.

Perusal of the data in Tables 6 and 7 leads to the following
observations.

Ha
2 hypothesized better comprehension task efficiency scores for

the group of users working with models with abstract labels.
Table 6 shows that the average comprehension task efficiency score,
i.e., the ratio between correct answers and time taken to complete
the answers, indeed were lower for this group (mean score=1.39
vs. 1.03). Table 7 shows that the group differences are significant
(F=3.90, p=0.05). Therefore, the results suggest rejecting null hy-
pothesis H0

2, which means that textual semantics, being a significant
factor for how well people understand the formal content of process
models, also significantly affects the effort that is required to reach
this understanding.

Ha
4 hypothesized better comprehension task efficiency scores for

the group of users working with higher levels of formal process
knowledge. We note from Table 7 that the differences in comprehen-
sion task efficiency across the groups of users with different levels of
knowledge are significant (Chi−2=8.38, p=0.04), and from Table 6
that the efficiency scores are better for users with higher levels of
knowledge. We note, however, that Table 6 also shows a somewhat
unexpected exception. The group of users with low levels of knowl-
edge completed their tasks the with the second-best efficiency score
(mean=1.34), superseded only by those with high levels of knowl-
edge (mean=1.51). We note that these results may have been
over-compensated through quick task completion, independent
from correct results (as shown in Table 4). Indeed, it seems plausible
that users with low knowledge levels just quickly selected answers
without engaging in a thorough consideration of the content pre-
sented to them. Overall, the results are in line with our expectations,
the null hypothesis H0

4 is rejected.
Ha
6 and Ha

8 hypothesized better comprehension task efficiency
scores for users with higher levels of modeling expertise (in the
sense of modeling experience and intensity). We note from Table 7
that the differences in task completion efficiency across the user
groups with different levels of modeling intensity are significant
(Chi−2=9.09, p=0.03), and provide the correct directionality
(means=1.09, 1.19, 1.28 and 1.30). The results support hypothesis
H8a. For modeling experience, however, the results are not in line
with hypothesis H6a. There are fluctuations in comprehension task
Table 6
Descriptive results of model comprehension task efficiency scores.

Differences among
groups

Treatment group N Mean Std. dev. Mean rank

Label type Abstract labels 44 1.39 0.60 N/A
Textual labels 42 1.03 0.32 N/A

Formal knowledge Very low 9 1.34 0.39 54.50
Somewhat low 33 1.08 0.40 48.92
Somewhat high 33 1.24 0.42 65.98
Very high 11 1.51 0.85 71.68

Modeling experience Less than one month 16 1.36 0.49 69.81
Less than a year 13 1.29 0.64 53.10
Less than three years 16 1.01 0.60 62.83
Longer than three years 41 1.21 0.44 58.13

Modeling intensity Never 14 1.09 0.30 74.41
Less than monthly 37 1.19 0.58 64.22
Monthly 23 1.28 0.49 52.74
Daily 12 1.30 0.58 51.91
efficiency scores noted in Table 6 (means=1.36, 1.29, 1.01 and
1.21), and the Kruskal–Wallis tests suggests that the differences
across the groups are insignificant (Chi−2=4.29, p=0.23). There-
fore, we cannot reject null hypothesis H0

6.

4.4. Discussion of results

Our experimental study provides support for five out of eight hy-
pothesized factors of process model comprehension task performance
and efficiency (see Table 8). The results for hypothesesHa

1 and Ha
2 sug-

gest that a plus in semantical information in terms of text labels
seems to be a burden when analyzing the syntactical content of a pro-
cess. These findings are in line with arguments that are founded on
the grounds of cognitive load theory as well as the premise of the semi-
otic ladder. Hypotheses Ha

3 toHa
8 are interesting to be discussed relative

to each other. Theoretical knowledge turned out to be a strong indicator
for both comprehension task performance and efficiency on syntax-
related comprehension of process models (Ha

3 and Ha
4). In contrast,

modeling experience and intensity were found not to contribute signif-
icantly to either comprehension task performance or efficiency, set
aside the result obtained in relation to hypothesis Ha

8. We interpret
this result as an indication that theoretical knowledge is of paramount
importance to understanding syntactical aspects of a process model,
over and above any practical experience with the exercise of process
modeling. Indeed, the non-significance of experience and intensity
here might suggest that these factors are more important for the se-
mantical interpretation of process models and that theory is the pre-
requisite for understanding syntax.

4.5. Threats to validity

The results of this experiment have to be discussed against differ-
ent threats to validity. We focus on those threats of ([55], p. 67) that
are most relevant for our experiment.

Conclusion validity is concerned with the relationship between
treatment and outcome, and the conclusions drawn from it. Two as-
pects have to be considered: The first aspect concerns the appropriate-
ness of the statistical tests. As reported above, we have screened our
data for conformance with the assumptions of the statistical tests we
used (ANOVA, Kruskal–Wallis test). We used Levene's test to show that
the dependent variables across the treatment groups shared approxi-
mately equal variance. We used the non-parametric Kruskal–Wallis
test for our ordinal measures because the independent data was not
normally distributed. A Kolmogorov–Smirnov test confirmed that the
normality assumption did not hold for the measures knowledge,
Table 8
Summary of hypotheses tests.

Hypothesis Result

Ha
1: Label type→Comprehension task performance Supported

Ha
2: Label type→Comprehension task efficiency Supported

Ha
3: Knowledge→Comprehension task performance Supported

Ha
4: Knowledge→Comprehension task efficiency Supported

Ha
5: Experience→Comprehension task performance Not supported

Ha
6: Experience→Comprehension task efficiency Not supported

Ha
7: Intensity→Comprehension task performance Not supported

Ha
8: Intensity→Comprehension task efficiency Supported
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experience, or intensity (Z=2.51, 2.68, 2.52, all p=0.00). Therefore, we
used the Kruskal–Wallis test, which is accepted as an alternative to
ANOVA in case the considered variables are not normally distributed
[50]. The second aspect concerns the effect sizes of the results. In
order to reach a sample size sufficient to solve potential issues regarding
the statistical significance, we conducted strict replications [4] of our
experiment. In order to show that our replications did not induce bias
into our analysis, we created two dummy variables, affiliation and
experimentMode, to examinewhether experimental results differed sig-
nificantly across the replications. Affiliation with one of the universities
partaking in our study did not affect results for comprehension task per-
formance or task completion time—the Kruskal–Wallis test was insig-
nificant (p=0.16 and p=0.09). The mode of experiment (paper
versus online), likewise, was an insignificant factor, as shown in an in-
dependent samples t-test (p=0.20 and p=0.80 for comprehension
task performance and task completion time).

Internal validity demands that the treatment causes the effect. In
order to avoid maturation and learning effects, we used a random
sampling of the questions. Other threats relate to resentful demorali-
zation and mortality. In general, we can assume that those who per-
form better would be less likely to interrupt or stop answering the
questionnaire. This is presumably not a problem when this dropout
is equally relevant for both treatments. As we observe in the results,
it appears to require a higher cognitive load to inspect the models
with text labels. Participants receiving this treatment might be more
likely to give up due to higher mental effort. While we did not have
drop outs in the student replications, we noticed some instances in
which online participants failed to answer all questions. For the on-
line participants (N=42), cases for the comprehension questions
ranged from 0 missing answers to a maximum of 8 missing answers
(out of 36 questions), with the mean being 1.69. We then performed
a linear regression analysis to examine whether the number of miss-
ing answers has a significant effect on the number of correct answers.
The regression model showed that number of missing answers was
an insignificant predictor (t=−1.64, p=0.11), thereby alleviating
concerns about internal validity of our results.

Construct validity can be related to potential interactions between
the measures. To that end, first, we inspected the measure correla-
tions as reported above. We did not find any unexpected correlations,
but only those that establish confidence in the convergent validity of
our comprehension measures (task performance and task efficiency:
r=−0.31, pb0.01) and expertise measures (experience and intensi-
ty: r=0.24, pb0.05), and the discriminant validity of our model and
personal factors (e.g., label type and knowledge: r=−0.01, p>0.05).

As reported above,we also cared to eliminate potential bias stemming
fromnon-equivalency between the treatment groups, by conductingma-
nipulation checks to assess differences between the groups of participants
across treatments. We noted above that there were no significant differ-
ences in the independent and dependent variables used, based on inde-
pendent samples t-tests using the experimental medium used (paper
versus online), student cohort (two fromVienna University of Economics
and Business versus one fromHumboldt-Universität zu Berlin), or time of
experiment (2007, April 2009, June 2009). These results indicate that the
participants were effectively randomized across treatments. We can
also assume that there was no hypothesis guessing by the participants
as we did not even reveal that two different treatments were used. The
students participated as a preparation for the exam while the practi-
tioners expected to receive feedback on their performance.

External validity is concerned with how generalizable the results
are to the wider population of process modelers. Our set of replica-
tions was particularly motivated by external validity considerations,
since we aim to generalize to the population of professionals involved
in process modeling initiatives. Our manipulation checks confirmed
that our replications can be considered strict, thereby increasing the
external validity of our findings. One particular aspect of the external
validity of the presented research relates to the extent to which the
used models are representative for real-world models. As explained,
we countered this threat by our choice of real process models from a
partnering organization. A third important aspect that refers to a poten-
tially limited external validity, relates to the involvement of students.
We note that some of the students possessed prior practical experience
with process modeling. Also, prior research found that students tend to
have higher theoretical knowledge [45]. While we explicitly built both
these factors into our research model, this could be seen as a limitation
of this research, as the population in our study is potentially more
knowledgeable of formal aspects of process modeling theory than the
wider population. And indeed, our results confirm that theoretical
knowledge is a key factor in explaining process model comprehension.
One may argue, however, that process modeling students will form the
next generation of junior analysts, and therefore our resultsmay be pre-
dictive of the future generations of process analysts.

Last, we consider the effect of setting as a potential threat to exter-
nal (as well as internal) validity: We used an online and a paper-
based system. Therefore, participants either viewed process models
on screen or as a printout. Both these practices are widespread in in-
dustry practice, where models are either provided through an intra-
net web page linked to a modeling tool (e.g., ARIS Web Publisher),
or provided in print out format as part of process handbooks ormanuals
of procedures. Our study used both options, thereby increasing the ex-
ternal validity of the study. As noted above, we observed no statistical
differences in relation to the experimentMode, thereby alleviating con-
cerns about the internal validity of this treatment.

5. Implications

In this section, we discuss implications for research (Section 5.1)
and for practice (Section 5.2).

5.1. Implications for research

The findings presented in this paper have three major implications
for research. First, we have shown that textual labels hamper syntax
comprehension of process models. This finding emphasizes the rele-
vance of cognitive load theory for interpreting comprehension phe-
nomena in this context. This is in line with prior research that
identified size and complexity as factors having a negative impact
on process model comprehension [27], although a direct reference
to cognitive load theory is missing in these works. Cognitive load the-
ory might offer a useful perspective to study the impact of process
model complexity on comprehension in a more detailed way in future
research.We further identify research on textual labels, e.g., [32] to be
an important extension of our work, given that we identified textual
labels to be a potential barrier to syntactical process model compre-
hension. Indeed, future work may examine how textual labels could
be specified in order to decrease the additional cognitive burden on
the model viewer.

Second, research on expert performance has established a close
link between expertise and the duration and extent of training
[12,25]. Our findings point to the fact that expertise is a task-
specific phenomenon, as emphasized in Ref. [5]. Knowledge in theo-
retical aspects of process model syntax have been found as a signifi-
cant factor of comprehension while general modeling intensity and
general modeling experience were not significant. We speculated
that semantic comprehension might be much more dependent on
these factors than syntactical comprehension appeared to be. This
speculation suggests that experience might have a different impact
on comprehension of syntax, semantics, and pragmatics of a process
model. These levels of comprehension might even be in conflict
with each other. This aspect requires a deeper investigation in future
research, both from a theoretical and from a behavioral perspective.

Third, our research showed that there is a trade-off in understanding
the formal, syntactical structure of a model and its semantical content
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(as conveyed through textual labels). In this paper, therefore, we chose
to examine process model understanding in terms of comprehension of
syntactical content. Other research, by contrast, has examined semantic
understanding, e.g., [41] while neglecting the syntactical comprehen-
sion. Future research should now combine these streams of study to
be able to assert the relevant factors important to syntactic and semantic
understanding, as well as the interactions between understanding of
syntax and semantics. Ultimately, this vein of research can then arrive
at a body of knowledge informing pragmatic understanding of process
models as representations of knowledge for action [22], and study the
factors the influence how individuals use process models to solve
tasks such as organizational re-design, software specification, certifi-
cation and others.

5.2. Implications for practice

Our research has at least two relevant implications for practice.
First, we note that the importance of theoretical knowledge for syn-
tactical process model comprehension was supported by our tests.
In contrast, practical experience does not seem to have a significant
impact. These facts suggest that it is essential to provide formal pro-
cess modeling education to staff members before letting them take
part in a project. Such a training program should proceed in two stages.
Initially, it should develop sufficient expertise in the syntactical rules of
processmodeling to ensure that practitioners appropriately understand
the syntax of process models. Subsequently, the training program could
proceed to more realistic process models that carry domain semantics,
to teach practitioners how to reason about the processes being
modeled. The recommendations in Ref. [42] could guide the devel-
opment of a staged training program.

Second, we note that there are several situations in practice when
syntactical aspects have to be investigated for a process model. This is,
for instance, the case when a process model needs to be verified for
soundness [53] before it is deployed in a workflow system. Our findings
suggest that a tool option to hide, or to abbreviate the activity labels,
could help analysts when correcting a syntactically unsound model.
The abbreviation would reduce the cognitive load of the modeler,
which would permit her to focus her attention on control flow.
Corresponding features are not yet part of nowadays modeling tools.

6. Conclusions

Using process modeling for the analysis and design of process-
aware information systems is an emerging, highly relevant domain
of Information Systems practice. In this paper, we have described
the formulation and execution of an experimental study to examine
factors of process model comprehension.

We identify two key limitations to the work carried out. First, con-
gruent to other studies, e.g. [6,32], we used post-graduate students as
proxies for novice business analysts. Second, our operationalization of
model comprehensionwas focused on the syntactical structure of a pro-
cess model. Future work could investigate other aspects of understand-
ing, for instance, through problem-solving tasks, e.g. [41]. In spite of the
boundaries set by these limitations, we believe ourwork offers two cen-
tral contributions. First, we provided a theoretical framework to define
levels of process model comprehension task performance and efficien-
cy, and the set of factors relevant to reaching comprehension on basis
of cognitive load theory and semiotic considerations. Second, our series
of experiments examined two sets of relevant factors—model factors
and personal factors. We found that theoretical knowledge and, to a
small extent, processmodeling expertise, are important personal factors,
and also found a negative effect of textual domain semantics—a model
factor—on the comprehension of the formal content of process models.

Our work extends the body of knowledge in the field of process
modeling, and thereby paves the way to more effective and efficient
process modeling—which will significantly increase the benefits of
process modeling in organizations [17], and also reduce associated di-
rect and indirect costs. In moving forward, we discussed a number of
speculations and possible directions for future research in our implica-
tions section. Most notably, it will be an important objective for future
research to study the joint impact of various factors on different levels
of comprehension, from syntactical to semantical to pragmatic.
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Appendix A. Experimental material

A complete sample workbook of the questionnaire used in the
printout experiment is available with abstract models (http://www.
mendling.com/2009-Fragebogen-Rahmen-ABCDEF-abstrakt.pdf) and
with textual models (http://www.mendling.com/2009-Fragebogen-
Rahmen-ABCDEF-konkret.pdf).

Task 1: process modeling intensity

• How often do you encounter process models in practice? (never,
less than once a month, more than once a month, daily)

Task 2: process modeling experience

• When did you first work with process models in practice? (less than
a month ago, less than a year ago, less than three years ago, more
than three years ago)

Task 3: theoretical knowledge

• After exclusive choices, at most one alternative path is executed
(yes/no).

• Exclusive choices can be used to model repetition (yes/no).
• Synchronization is modeled in a Petri net by a place with two tran-
sitions in its preset (yes/no).

• Synchronization means that two activities are executed at the same
time (yes/no).

• An inclusive OR can activate concurrent paths (yes/no).
• If two activities are concurrent, they have to be executed at the
same time (yes/no).

• If an activity is modeled to be part of a loop, it has to be executed at
least once (yes/no).

• Having an AND-split at the exit of a loop can lead to non-termination
(yes/no).

• A deadlock is the result of an inappropriate combination of splits
and joins (yes/no).

• Processes without loops cannot deadlock (yes/no).
• Both an AND-join or an XOR-join can be used as a correct counterpart
of an OR-split (yes/no).

• Amultiple choice activates either one or all subsequent paths (yes/no).

Task 4: comprehension questions for model 4 of Fig. 1

(1) Is U always executed, when T has been executed? (yes/no)
(2) If F is executed, has Z or E been executed? (yes/no)
(3) Is it possible to execute U as well as I after F? (yes/no)
(4) Can this process be completed by executing less than five activi-

ties? (yes/no)
(5) When R is executed, is it possible that M has been executed be-

fore? (yes/no)
(6) Is it guaranteed that the process has neither deadlocks nor lack

of synchronization? (yes/no)

http://www.mendling.com/2009-Fragebogen-Rahmen-ABCDEF-abstrakt.pdf
http://www.mendling.com/2009-Fragebogen-Rahmen-ABCDEF-abstrakt.pdf
http://www.mendling.com/2009-Fragebogen-Rahmen-ABCDEF-konkret.pdf
http://www.mendling.com/2009-Fragebogen-Rahmen-ABCDEF-konkret.pdf
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