
Role-Based Access Control

28	 COPUBLISHED BY THE IEEE COMPUTER AND RELIABILITY SOCIETIES ■ 1540-7993/10/$26.00 © 2010 IEEE ■ JANUARY/FEBRUARY 2010

I n role-based access control (RBAC),1–3 roles
model different job positions and scopes of duty
within a particular organization or information
system. Organizations assign human users and

other “active” entities (or subjects) to roles according to
their duties, and roles are equipped with the permis-
sions those subjects need to perform their respective
tasks. Thoroughly engineered roles tend to change
more slowly than do the assignments of individuals
to these roles. Thus, establishing roles as an abstrac-
tion mechanism for subjects significantly facilitates
permissions administration.

With respect to access control, we can differentiate
between functional roles and organizational roles. Func-
tional roles reflect the essential business functions that
must be performed within a certain company. Orga-
nizational roles, on the other hand, correspond to a
company’s hierarchical organization in terms of in-
ternal structures. Functional roles, in contrast to or-
ganizational roles, are robust against organizational
restructuring because business tasks often aren’t re-
flected in organizational structures.

Scenario-driven role engineering focuses on de-
fining functional RBAC roles.4 It provides process
guidance for eliciting, specifying, and maintaining
the different RBAC-related artifacts. The approach
is adaptable and can be tailored for arbitrary organi-
zations and information systems. In recent years, my
colleagues and I have gained many experiences and
obtained a deeper understanding of scenario-driven
role engineering. Here, I examine the relationships
among different role-engineering artifacts, the need
to tailor the role-engineering process, and how preex-

isting documents
can be used in
role-engineering activities.

Role-Engineering Core Artifacts
As its name indicates, scenario-driven role engineer-
ing is based on the scenario concept. In general, a sce-
nario describes a possible or actual action and event
sequence. The idea of scenarios has been used since
ancient history—for example, to describe and assess
alternative business, politics, or war strategies. In the
software engineering domain, scenarios model soft-
ware systems usage and facilitate communication
among engineers as well as that between engineers
and nontechnical stakeholders.5,6 So, scenarios are
practical means that let us consider the strong human
factor in role engineering. We can describe scenarios
in various ways. Commonly, they’re specified with
(structured) text descriptions and different types of
diagrams, such as activity diagrams, sequence dia-
grams, or Petri nets.

Figure 1 shows the main relationships between
role-engineering artifacts and corresponding RBAC
model artifacts. A permission grants a subject the right
to perform a specific operation (or operation type) on
a specific object (or object type). An object can be a
file, a row in a database table, a printer, a network in-
terface, and so on. In access control terminology, we
thus define a permission through an 〈operation, object〉
pair. At the modeling level, we can define both opera-
tions and objects on any suitable abstraction level.

We can view each action and event within a sce-
nario as a step; each step is typically associated with a

Scenario-driven role engineering is a systematic approach

for defining customized role-based access control models.

Based on his role-engineering experiences, the author

discusses the relations between different role-engineering

artifacts, the need for process tailoring, and the use of

preexisting documents in role-engineering activities.

Mark
Strembeck

Vienna
University of
Economics
and Business

Scenario-Driven 	
Role Engineering

Role-Based Access Control

	 www.computer.org/security� 29

particular access operation.4 Therefore, scenarios are a
good source for deriving permissions. This means that
a subject performing a scenario must own all permis-
sions needed to complete each step of this scenario.
Thus, each 〈operation, object〉 pair that we can derive
from a scenario step is a candidate permission of the
corresponding RBAC model.

Every task definition consists of one or more scenar-
ios—for instance, for the task of processing a damage
event at an insurance company. Subjects perform the
scenarios that a task includes in succession or in par-
allel to reach a particular goal. A work profile contains
all tasks that a certain type of employee (or subject in
general) can or must perform. Because each scenario is
transitively linked to a set of permissions (via the steps
included in the scenario), we can derive the permissions
for a particular work profile from the corresponding
tasks and scenarios (see Figure 1). Thus, we don’t as-
sign permissions directly to work profiles, which is an
essential difference between work profiles and RBAC
roles. Furthermore, because a task might be associated
with multiple work profiles, and because each scenario
might be associated with multiple tasks, many redun-
dancies might exist in the work profile definitions. This
is another important difference between work profiles
and RBAC roles, which we can arrange in inheritance
hierarchies to potentially minimize redundancies:
work profiles serve as the primary source for defining
preliminary RBAC roles. Our experiences show that
agreed-upon work profiles are a significant and impor-
tant step toward defining RBAC roles.

Furthermore, because the role-engineering pro-
cess precisely associates each task definition with the
scenarios that subjects must perform to fulfill a spe-
cific goal (for example, a certain business function),
the corresponding RBAC role can be equipped with
the exact number of permissions necessary to perform
those tasks. So, scenario-driven role engineering di-
rectly supports the principle of least privilege.

In actual role-engineering projects, we store the
different artifacts via special-purpose catalogs. The
scenario catalog comprises all usage scenarios for the
system under consideration; the permission catalog con-
sists of all permissions identified for a system; the task
catalog includes the tasks that human users or other
subjects perform; and the work-profile catalog consists of
different work profiles. Each work profile is intended
to be a complete description of all tasks that a specific
type of subject (for example, a specific type of em-
ployee) must or can perform.

The Scenario-Driven Role-
Engineering Process
Figure 2 depicts the control flow for the main ac-
tivities in scenario-driven role engineering, modeled
via a UML activity diagram. Moreover, it shows the
different artifacts required as input and produced as
output for each corresponding activity. Each main ac-
tivity defines its own subprocess.4,7

First, the identify and model scenarios activity explic-
itly models sensible system usages via scenarios, there-
by producing the scenario catalog. Subsequently, the

*

*

** *

* 1..* *

juniorRoleseniorRole

RoleSubject
owner role permissionowner

mutualExclusive

1..*

0..* *

mutualExclusive
0..*

Scenario

Work pro�le

1..*

1..*

1

0..1source

1..*

source 1..*

0..*performs performs

Role-based access control
model artifacts

Role-engineering artifacts

** derived from derived from

*

*

*

Step

Permission

Task

Figure 1. Role-engineering artifacts and role-based access control model artifacts. Role-engineering artifacts are used

to define tailored RBAC artifacts for a particular organization or information system.

Role-Based Access Control

30	 IEEE SECURITY & PRIVACY

derive permissions from scenarios activity uses the scenario
catalog to produce a version of the permission cata-
log. Next, we elicit permission constraints and store all
constraints in the constraint catalog, which includes con-
straints that must be enforced on permissions, roles, or
assignment relations. However, defining constraints
isn’t mandatory in scenario-driven role engineering.

In the fourth activity, we refine the scenario catalog—
specifically, role engineers and domain experts review
the current version. Here, a domain expert is a human
user who is a professional in a particular domain, such
as a stock analyst in the investment banking domain,
a physician in the healthcare domain, or a network
administrator in the computer networking domain.
For similar scenarios, we can define a common gen-
eralization, if necessary. In addition, we examine each
scenario to determine whether we can further con-
cretize its steps via a subscenario.

After the scenario catalog is complete, we define tasks
and work profiles (see Figure 2). In this activity, the role
engineers compose different scenarios to form task def-
initions in accordance with the constraint catalog. Sub-
sequently, these tasks serve as building blocks for work
profiles. The derive preliminary roles activity then uses the
work profiles and permission catalog to semiautomati-
cally create preliminary roles. In this activity, we also

identify obvious junior and senior roles and define a
preliminary role hierarchy. Moreover, we identify po-
tentially redundant roles and mark them for review.4

In the seventh activity, the preliminary roles, the
permission catalog, and the constraint catalog serve as
input to define a customized RBAC model for the cor-
responding organization or information system. In
particular, role engineers remove redundant roles, de-
fine new roles and role constraints, and merge or sepa-
rate role hierarchies. We repeat these steps until the
customized RBAC model is complete—that is, until
engineers and domain experts define the customized
RBAC model as adequate.

The resulting system- or organization-specific
RBAC model is thus a composite comprising the role
catalog, the permission catalog, the constraint cata-
log, and assignment relations between the different
artifacts. The role catalog includes all roles and inter-
role relations, as defined through role hierarchies, for
example. Here, role hierarchies are inheritance hier-
archies in which senior roles inherit permissions and
constraints (transitively) from all of their junior roles.1–3

As Figure 2 shows, activities 1 to 4 form a cycle
that’s repeated until the scenario catalog is complete.
This is a prerequisite for activities 5 to 7. Moreover,
the whole process (activities 1 to 7) should be executed

[scenario catalog
incomplete]

[change case]

Derive permissions
from scenarios

Identify and model
(new) scenarios

Scenario catalog

Scenario catalog

Scenario catalog

Scenario catalog

Permission catalog

Permission catalog

Re�ne scenario
catalog

Scenario catalog

Scenario catalog

Constraint catalog

[else]

Elicit permission
constraints

Constraint
catalog

Work pro�les

Work pro�lesTask catalog

Preliminary roles

Preliminary roles

Assignment
relations

Permission
catalog

Permission
catalog

Constraint
catalog

Constraint
catalog

Role
catalog

Scenario catalog

Permission catalog

De�ne tasks
and work pro�les

Derive preliminary
roles

De�ne customized
RBAC model

Figure 2. The scenario-driven role-engineering process: main control and object flows. The process can be tailored to fit

the needs of a particular role-engineering project. For demonstration purposes, this figure shows a specific process variant.

Role-Based Access Control

	 www.computer.org/security� 31

in an iterative and incremental manner, whereby each
iteration results in a new evolutionary stage of the dif-
ferent models. For this reason, we develop scenarios,
tasks, work profiles, and constraints in close coopera-
tion with domain experts and check and refine them
in an evolutionary fashion. From our experiences, co-
operating with domain experts significantly increases
the respective models’ quality.

After building a version of the scenario catalog (that
is, after the first iteration of activities 1 to 4), we can
incorporate changes in the modeled information sys-
tem’s functionality straightforwardly. Scenario-driven
role engineering typically initiates such a change case
by modifying an existing scenario or defining a new
one. This usually takes place in activity 4 (refinement
of the scenario catalog) or after an organization releases
a version of the customized RBAC model in activity 7
(see Figure 2). Role engineers can integrate new sce-
narios with the existing scenario catalog and afterward
derive the new permissions (if any) from this scenario.
We then assign the scenario to one or more task defini-
tions and work profiles and update the corresponding
RBAC model accordingly. We apply these steps analo-
gously in case existing scenarios are modified or delet-
ed. However, as I describe in a later section, you must
make preparations to facilitate the correct and efficient
propagation of changes into the different models.

Using Preexisting Documents
and Process Descriptions
Because role engineering is a complex and time-
consuming task, preexisting documents and
process descriptions might significantly ease the role-
engineering process. Such documents might exist on
different abstraction levels and range from business
process models and job descriptions, over (techni-
cal) documentation of the corresponding information
systems, to a preexisting role or permission catalog.
Even if such preexisting models and documents are
incomplete—in that they aren’t sufficient for role en-
gineering—they’re still a valuable input for the role-
engineering process. The preexisting documents then
serve as a starting point, and we can further refine and
complement them as the process proceeds.

For example, in previous work, my colleagues and
I introduced an approach to derive RBAC models
from Business Process Execution Language (BPEL)
processes.8 By extracting information from preexist-
ing BPEL processes (or other machine-readable for-
mats), we can make role engineering more efficient
by automating several steps. Furthermore, because
RBAC artifacts and process models are highly in-
terrelated, automation in role engineering facilitates
consistency between deployed business processes and
their corresponding RBAC artifacts.

Similar to BPEL processes, we could use other types

of preexisting models in role engineering. However,
most preexisting models and documents aren’t suited to
directly automating some steps of the role-engineering
process. Nevertheless, even if such models are available
only as text descriptions or in other formats we can’t
use for automation, they’re still an important input
for different role-engineering activities. For example,
event-driven process chains (EPCs) or UML activity
diagrams can serve as a starting point for scenario re-
finement and for deriving permissions. Other types of
scenarios that we often find in organizations are nar-
rative text instructions describing certain tasks. Engi-
neers can then translate such narrative scenarios into
more formal scenario or process descriptions—for ex-
ample, using UML activity and interaction diagrams.

Tailoring the Role-Engineering Process
Various factors affect role-engineering projects, so
it’s sensible to tailor the role-engineering process to
its environment rather than apply a “one size fits all”
process for each organization and information system.
Here, tailoring typically includes adding or remov-
ing (sub)activities and adapting the process’s control
flow. For example, we can tailor this control flow so
that we first identify preliminary tasks and define the
scenarios in a subsequent activity. Thus, we can adapt
the role-engineering process to a certain project’s or
organization’s characteristics.

We determine the project’s characteristics via sev-
eral factors:

•	The preexisting artifacts consist of the models, job de-
scriptions, and documentation artifacts that serve as
input for the role-engineering process.

•	The IT system properties determine the correspond-
ing information system’s characteristics as well as
those of the respective access control subsystem. We
need this information to ensure that the customized
RBAC model can actually be mapped to and en-
forced by the corresponding software system.

•	The factor involved people determines which people
(for example, security experts, software engineers,
or experts from the system’s application domain)
are needed for a project and which will actually be
available during the project.

•	The budget determines the monetary budget for the
role-engineering project (including costs for hu-
man resources).

•	The project deadlines determine the project’s time
frame. At a project’s start, we typically have only a
few predetermined deadlines—for example, a (ten-
tative) deadline for the customized RBAC model’s
release date. Depending on the project, such pre-
determined deadlines are complemented via other
deadlines—for instance, for the release cycles of al-
pha and beta versions of the RBAC model.

Role-Based Access Control

32	 IEEE SECURITY & PRIVACY

Figure 3 shows the general activity flow that we
use to tailor the role-engineering process or to dy-
namically adapt that tailored process. In particular, we
can adapt a tailored process if we encounter significant
changes in the project characteristics (for example, if a
domain expert believed to be available daily is in fact
available only every two weeks) or if the engineers
decide that adapting the control flow better suits the
respective project’s needs.

Typical examples of role-engineering activities
we might remove during process tailoring are the
definition of constraints or role hierarchies. One rea-
son for this is that access control subsystems don’t
always support the definition of role hierarchies or
can’t (yet) enforce constraints. Another reason is that
engineering constraints is very time-consuming and
requires a specifically tailored subprocess for each
constraint type.

However, from our experiences, good reasons ex-
ist to model constraints even if we can’t yet enforce
them on a technical level. The aim to specify and
maintain a comprehensive, and preferably complete,
customized RBAC model is probably the most im-
portant reason. Such a “complete” model provides
valuable information for the corresponding security
engineers. For example, those engineers can then
identify which subset of an organization’s customized
RBAC model can be enforced by the runtime system
and which control objectives aren’t yet achievable. We
can apply this information to thoroughly configure
the respective system and avoid security breaches that
could result from unavailable information. Further-
more, a complete description of an RBAC model on
the requirements and design levels can drive RBAC
services’ technical evolution to close the gap between
a customized RBAC model and its enforceable subset.

An option that, from our experience, works well in
role-engineering projects is to define a basic custom-
ized RBAC model in a first project and refine this
model in one or more follow-up projects. For exam-
ple, in an initial project, we could define an RBAC

model that includes roles and permissions only and
add different constraint types in a second project.

Definition of Constraints
In scenario-driven role engineering, defining con-
straints is an optional activity that you can skip when
tailoring the engineering process. However, if con-
straints are modeled, we recommend defining them
on the lowest possible abstraction level. This means
that you should first try to define constraints on the
permission level and specify them on the role level
only if you can’t sensibly define them on the former.
In our experience, this measure eases constraint man-
agement because constraints significantly raise the
complexity of the assets they’re assigned to (on a logi-
cal and on the implementation level).

We basically distinguish two categories of con-
straints: endogenous constraints are those that completely
relate to an RBAC model’s intrinsic properties (such
as roles or permissions) and inherently affect a custom-
ized RBAC model’s structure and construction (such as
separation of duty constraints). Exogenous constraints are
those that either exclusively involve attributes that don’t
belong to a model’s core elements (for example, time
constraints) or that refer to a specific model element’s
external attributes or properties (such as a subject’s geo-
graphical location or current project assignment).4,7

As mentioned, constraint definition is a time-
consuming activity, and each constraint type requires
a specifically tailored engineering subprocess. We can
often identify separation of duty constraints, for ex-
ample, on the level of task definitions; we then derive
corresponding permission-level constraints from the
corresponding task-level exclusions.

In prior work, we presented a subprocess for en-
gineering context constraints.7 Such contraints are an
RBAC extension to model and enforce context-
dependent access control policies. Thus, context con-
straints are exogenous constraints that we define to
consider contextual information (such as time, loca-
tion, or access history) in authorization decisions. A

Involved
people

Budget Deadlines Involved
people

Budget Deadlines

Tailored process

Tailored process

[Project
completed]

[Project characteristics changed]
[Control �ow change request]

Preexisting
artifacts

IT system
properties

Tailor the
role-engineering process

Execute
role-engineering project

Determine characteristics
of role-engineering project

IT system
properties

Preexisting
artifacts

Figure 3. Tailoring the role-engineering process. We can adapt a tailored process if we encounter significant changes in the project

characteristics or if the engineers decide that adapting the control flow better suits the respective project’s needs.

Role-Based Access Control

	 www.computer.org/security� 33

conditional permission is one that’s associated with one
or more context constraints (see Figure 4) and grants
access if each associated context constraint is fulfilled.

Like the role-engineering process as a whole, con-
text-constraint engineering is based on requirements-
engineering techniques. In particular, we use goals
and obstacles to elicit context constraints. The goal
catalog thus contains the control objectives and ob-
stacles that we derive from or associate with the cor-
responding scenarios (see Figure 4). Here, a control
objective is a goal specified by the authority that man-
ages a particular information system.

Thus, control objectives define acceptable system
behavior that the system authority intends. In con-
trast, we define an individual goal as a goal represent-
ing a subject’s intentions when using an information
system. However, individual goals don’t necessarily
conform to the control objectives defined for a system
and might even be contrary to them.9 This is especial-
ly true for malicious individual goals, such as attempts
to hack or crack a system, deliberately circumvent
protection measures, or use system functions in an
unintended manner—for example, spy on another
subject’s behavior. So, (malicious) individual goals can
be obstacles impeding the control objectives defined
for a system and thereby impeding the whole system’s
correct operation (see Figure 4).

Traceability, Maintenance,
and Tool Support
To efficiently deal with change and maintenance re-
quests for role-engineering artifacts, we record spe-

cific trace information. We define traceability as the
ability to describe and follow the life of an artifact
used or produced in engineering projects (for exam-
ple, scenarios, permissions, or work profiles) in both
a forward and backward direction.10 This definition
implies that we can understand each artifact’s life from
its origin, through its evolutionary refinement and
specification, to its subsequent deployment and use.
Trace management is very important for efficiently
handling evolving complex models of all kinds.10,11

The interrelations that Figures 1 and 4 depict indi-
cate the trace relations that are implicitly defined and
maintained when conducting the scenario-driven
role-engineering process. We can use these traces,
for example, to easily review which permissions are
needed in a particular scenario as well as to find all
scenarios—and therefore all tasks and work profiles—
in which a specific permission is used. However, tool
support is necessary to cope with the role-engineer-
ing process’s complexity and to efficiently handle the
different interrelated artifacts used and produced dur-
ing the process. In previous work, I described the de-
sign and implementation of the xoRET software tool,
which directly supports the scenario-driven role-
engineering process.12 xoRET is a graphical software
tool that facilitates the specification and inspection
of trace relations to ease change-management activi-
ties. Moreover, it implicitly records traces between
role-engineering artifacts and provides functions for
explicitly defining and inspecting (additional) traces
between the different artifacts. Thus, it supports en-
gineering adaptable models that facilitate the incor-

*

0..*

1..*

associated with

0..*

1..*

impedes

owner

1..*

*

*
mutualExclusive

0..*

Scenario
1..*

source 1..*

Role-based access control
model artifacts

Role-engineering artifacts

Control
objective Obstacle

Context
constraint

0..*

*derived fromderived from

linked tolinked to

0..*

*

*

*
Role

permission

Step

Permission

Figure 4. Context constraints and related artifacts. We use context contraints to define conditional permissions that consider contextual

information in authorization decisions.

Role-Based Access Control

34	 IEEE SECURITY & PRIVACY

poration of changes into a configuration of several
related models.

Scenario-Driven
Role Engineering in Practice
Since its first publication in June 2002,4 numerous
consulting firms and international projects have ad-
opted the scenario-driven role-engineering process.
The most visible of these is probably the Health Level
7 (HL7) role-engineering process defined by the US
National Healthcare RBAC Task Force.13,14 Among
other things, the task force applied this process to pro-
duce HL7 RBAC healthcare scenarios and an HL7
RBAC healthcare permission catalog.

The permission catalog, scenarios, and other docu-
ments are publicly available on the task force’s Web
page (www.va.gov/RBAC/). I recently conducted an
assessment project together with a subdivision of the
Austrian Federal Ministry of Finance (http://english.
bmf.gv.at/) to build a preliminary role catalog for this
subdivision and to estimate the costs and timeframe
for a role-engineering project for other subdivisions.
In the course of this project, we also assessed which ex-
isting documents and process descriptions the ministry
can use as an input for the role-engineering process.

In addition to such projects and our previous case
studies, other researchers and I have conducted several
smaller case studies with a research focus in recent years.
Our main goal was to gain further experience with
the role-engineering process, verify previous findings,
and evolutionarily enhance the process. We conducted
two of our case studies in the context of EducaNext, a
brokerage platform for the collaborative development
and exchange of learning resources among European
universities. Researchers conducted R&D activities

for this platform in a project funded within the Euro-
pean Commission’s Infomation Society Technologies
(IST) program. We conducted another case study on a
subsystem of the Learn@WU Web-based learning en-
vironment at the Vienna University of Economics and
Business Administration (WU Vienna). With 27,000+
registered users, 4,600+ courses, and 60,000+ learning
resources, it’s probably one of the most intensely used
e-learning environments worldwide.

Three different teams conducted the case stud-
ies, each consisting of three graduate students with
no previous role-engineering experience. We chose
this setup to study how different teams learn the role-
engineering process and to complement the process
based on our observations. A senior role engineer
trained and guided each team throughout the case
studies. At the beginning of each study, the teams re-
ceived basic training for the different role-engineering
activities I described previously. During the project,
the teams could request additional on-demand train-
ing for specific techniques (such as scenario modeling)
or process guidance for role-engineering activities
(such as permission derivation). However, aside from
such on-demand training and process guidance, the
senior role engineer’s main task was to monitor the
project and act as an external observer.

In particular, these case studies further improved
our knowledge of process tailoring and the iterative
refinement of role-engineering models as well as how
to use preexisting documents in role-engineering
tasks. Moreover, we verified our previous finding
that it’s sensible to use three basic scenario-modeling
techniques in role engineering. Given that scenario
descriptions might differ because of different model-
ing notations, we use narrative text, activity diagrams,

Story boards (narrative text) Activity models Interaction models (sequence diagrams)

Figure 5. Scenario refinement and concretion. We first define storyboards consisting of narrative text; then, we model

these storyboards via UML activity models and use UML sequence diagrams to describe interactions in detail.

Role-Based Access Control

	 www.computer.org/security� 35

and sequence diagrams as standard means for scenario
modeling and refinement, which minimizes variations
that might result from these differences. In particular,
we first define storyboards consisting of narrative text;
then, we model these storyboards via UML activity
models, and, finally, we use UML sequence diagrams
to describe interactions in detail (see Figure 5).

Activity models are especially well suited to model
various scenario alternatives (for example, branches
resulting from different choices) in the same model,
whereas the sequence diagrams each model a particu-
lar path through the activity model or define a certain
subactivity in detail. Storyboards, activity models,
and sequence diagrams thereby represent different ab-
straction levels, supporting an iterative and incremen-
tal refinement and understanding of scenario models.
Moreover, if preexisting models or process descrip-
tions are available, we can review and use them as in-
put to role-engineering activities.

An observation from our projects and case studies
is that standard operating procedures, processes, work
profiles, roles, and permission assignments often aren’t
documented, and existing documents are sometimes
incomplete or out of date. Moreover, sometimes such
information is buried deep in the current software
system’s configuration, or only specific individuals are
aware of certain procedural details. Thus, the first ac-
tivity at the beginning of a role-engineering project
is to assess and consolidate existing documents before
we define additional scenario and process models to
build a consistent scenario catalog.

C ommunication between domain experts and
role engineers is a key factor for the success of

role-engineering projects. Inexperienced teams often
underestimate the level of effort and the timeframe for
a project. In particular, we learned through our expe-
riences that such false estimations result from a false
perception of role-engineering activities because the
process appears straightforward at first glance. Howev-
er, although scenario and process modeling might seem
to be a simple task, it’s complex to elicit and define an
actual system or organization’s scenarios and define a
customized RBAC model from this information.

Nevertheless, scenarios are a natural means non-
technical stakeholders can easily learn. Throughout our
projects and case studies, we received positive feedback
concerning the “dual use” of scenarios as communica-
tion and primary engineering vehicles. Thus, from our
experiences, we can say that scenarios are well suited
to enable close cooperation with domain experts and
incorporate them into the engineering process.

References
1.	 D.F. Ferraiolo and D.R. Kuhn, “Role-Based Access

Controls,” Proc. 15th Nat’l Computer Security Conf.,
NIST, 1992, pp. 554–563; http://csrc.nist.gov/groups/
SNS/rbac/documents/ferraiolo-kuhn-92.pdf.

2.	 R.S. Sandhu et al., “Role-Based Access Control Mod-
els,” Computer, vol. 29, no. 2, 1996, pp. 38–47.

3.	 D.F. Ferraiolo, D.R. Kuhn, and R. Chandramouli,
Role-Based Access Control, 2nd ed., Artech House, 2007.

4.	 G. Neumann and M. Strembeck, “A Scenario-Driven
Role-Engineering Process for Functional RBAC
Roles,” Proc. 7th ACM Symp. Access Control Models
and Technologies (SACMAT 02), ACM Press, 2002, pp.
33–42.

5.	 J.M. Carroll, ed., Scenario-Based Design: Envisioning
Work and Technology in System Development, John Wiley
& Sons, 1995.

6.	 M. Jarke, X.T. Bui, and J.M. Carroll, “Scenario Man-
agement: An Interdisciplinary Approach,” Requirements
Eng. J., vol. 3, nos. 3–4, 1998, pp. 155–173.

7.	 M. Strembeck and G. Neumann, “An Integrated Ap-
proach to Engineer and Enforce Context Constraints
in RBAC Environments,” ACM Trans. Information and
System Security, vol. 7, no. 3, 2004, pp. 392–427.

8.	 J. Mendling et al., “An Approach to Extract RBAC
Models from BPEL4WS Processes,” Proc. 13th IEEE
Int’l Workshop Enabling Technologies: Infrastructures for
Collaborative Enterprises (WETICE 04), IEEE CS Press,
2004, pp. 81–86.

9.	 M. Strembeck, “Embedding Policy Rules for Software-
Based Systems in a Requirements Context,” Proc. 6th
IEEE Int’l Workshop Policies for Distributed Systems and Net-
works (POLICY 05), IEEE CS Press, 2005, pp. 235–238.

10.	O. Gotel and A. Finkelstein, “An Analysis of the Re-
quirements Traceability Problem,” Proc. IEEE Int’l
Conf. Requirements Eng. (ICRE 94), IEEE CS Press,
1994, pp. 94–101.

11.	 B. Ramesh and M. Jarke, “Toward Reference Models
for Requirements Traceability,” IEEE Trans. Software
Eng., vol. 27, no. 1, 2001, pp. 58–93.

12.	M. Strembeck, “A Role Engineering Tool for Role-
Based Access Control,” Proc. 3rd Symp. Requirements
Eng. for Information Security (SREIS 05), 2005; www.
sreis.org/SREIS_05_Program/full7_strembeck.pdf.

13.	E.J. Coyne et al., “Role Engineering in Healthcare:
Process, Results, and Lessons Learned,” Dec. 2004,
www.va.gov/rbac/.

14.	 E.J. Coyne and J.M. Davis, Role Engineering for Enterprise
Security Management, Artech House, 2008.

Mark Strembeck is an associate professor of information

systems at the Vienna University of Economics and Business

(WU Vienna). His research interests include access control,

role engineering, secure business systems, model-driven de-

velopment, and the modeling and management of dynamic

software systems. Strembeck has a PhD and a Habilitation

degree (venia docendi) from WU Vienna. Contact him at

mark.strembeck@wu.ac.at.

