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a b s t r a c t

When developing domain-specific modeling languages (DSMLs), software engineers have to make a number

of important design decisions on the DSML itself, or on the software-development process that is applied

to develop the DSML. Thus, making well-informed design decisions is a critical factor in developing DSMLs.

To support this decision-making process, the model-driven development community has started to collect

established design practices in terms of patterns, guidelines, story-telling, and procedural models. However,

most of these documentation practices do not capture the details necessary to reuse the rationale behind

these decisions in other DSML projects. In this paper, we report on a three-year research effort to compile and

to empirically validate a catalog of structured decision descriptions (decision records) for UML-based DSMLs.

This catalog is based on design decisions extracted from 90 DSML projects. These projects were identified—

among others—via an extensive systematic literature review (SLR) for the years 2005–2012. Based on more

than 8,000 candidate publications, we finally selected 84 publications for extracting design-decision data.

The extracted data were evaluated quantitatively using a frequent-item-set analysis to obtain characteristic

combinations of design decisions and qualitatively to document recurring documentation issues for UML-

based DSMLs. We revised the collected decision records based on this evidence and made the decision-record

catalog for developing UML-based DSMLs publicly available. Furthermore, our study offers insights into UML

usage (e.g. diagram types) and into the adoption of UML extension techniques (e.g. metamodel extensions,

profiles).

© 2015 Elsevier Inc. All rights reserved.
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1. Introduction

In model-driven development (MDD), a domain-specific model-

ing language (DSML) is a specialized modeling language tailored for

graphical modeling tasks in a particular application domain, e.g. for

business domains such as health-care and banking, or technical do-

mains such as access control and system backup (Spinellis, 2001;

Mernik et al., 2005; Kelly and Tolvanen, 2008; Zdun and Strembeck,

2009). MDD uses models at different abstraction levels as central de-

velopment artifacts. Executable models are then derived from higher-

level models through model transformations (Selic, 2003; Sendall

and Kozaczynski, 2003; Mens and Gorp, 2006). By raising the ab-

straction level in the software-development process, DSMLs aim at

increasing the productivity of developers and at reducing mainte-

nance costs (Langlois et al., 2007; Mernik et al., 2005; Stahl and Völ-

ter, 2006).
∗ Corresponding author. Tel.: +43 1313364878.
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Developing DSMLs based on the Unified Modeling Language (UML

bject Management Group, 2015b) and/or on the Meta Object Facility

MOF Object Management Group, 2015a) has become a popular op-

ion in the MDD context (Hutchinson et al., 2014; Nascimento et al.,

012; Hutchinson et al., 2011; Pardillo and Cachero, 2010; Staron

nd Wohlin, 2006). This is because the UML/MOF infrastructure pro-

ides built-in implementation techniques for DSMLs, which allow for

eusing and for extending the UML directly. As another advantage,

he UML can leverage industry-grade tool support (e.g. Sparx Systems

nterprise Architect, IBM Rational Software Architect, Eclipse Model

evelopment Tools). UML has been subjected to scientific evalua-

ions of its semantic foundations (see, e.g., Mallet and Andre, 2009;

elic, 2004; Broy and Cengarle, 2011) and comes with standardized

odeling extensions (see, e.g., Object Management Group, 2012a;

012b). Moreover, the UML benefits from the systematic and contin-

ous maintenance through the Object Management Group (OMG).

hereby, the UML and the MOF provide a rich DSML development

oolkit for DSML design and implementation.

As in most software-development activities, experiences and

essons learned from developing DSMLs based on MOF/UML in a

http://dx.doi.org/10.1016/j.jss.2015.11.037
http://www.ScienceDirect.com
http://www.elsevier.com/locate/jss
http://crossmark.crossref.org/dialog/?doi=10.1016/j.jss.2015.11.037&domain=pdf
mailto:stefan.sobernig@wu.ac.at
http://dx.doi.org/10.1016/j.jss.2015.11.037


S. Sobernig et al. / The Journal of Systems and Software 113 (2016) 140–172 141

Fig. 1. High-level overview of design-decision making for developing domain-specific modeling languages (DSMLs) using the Unified Modeling Language (UML).
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1 The design-decision catalog is available at http://epub.wu.ac.at/4466/.
isciplined manner are particularly valuable, yet barely documented

Strembeck and Zdun, 2009; Zdun and Strembeck, 2009). Design-

ecision making in and on DSML development usually includes de-

ign decisions on language-model definition, constraint specifica-

ion, concrete-syntax design, and platform integration (Strembeck

nd Zdun, 2009). Each of these concerns potentially involves multi-

le, interrelated design decisions.

Critical details of design decisions are rarely documented

xplicitly—a fact also referred to as the capture problem of design-

ationale documentation (Burge et al., 2008; Dutoit et al., 2006). De-

ision details include different solutions considered before arriving

t a final design decision (i.e. decision options), the decision-makers’

ositive and negative assessments of the considered options given a

et of requirements on the DSML’s design (decision drivers), and the

ositive and negative effects on subsequent design-decision making

bserved when having adopted one or several options (decision con-

equences).

An important barrier to documenting design rationale in neces-

ary detail, in DSML development and in software development in

ore general, is the considerable overhead that results from creat-

ng and maintaining design-rationale documentation. Other prob-

ems explored in the research on documenting design-rationale in-

lude the intrusiveness of documentation techniques, lack of incen-

ives, and cognitive barriers in software-design processes (see, e.g.,

utoit et al., 2006; Falessi et al., 2013; Horner and Atwood, 2006). As

consequence, new DSML development projects cannot profit from

xperiences gained in prior DSML projects. Moreover, without such

body of knowledge on DSML development and evolution, existing

SMLs can become difficult to maintain.

Important goals in many fields of software-engineering (SE) re-

earch have been to limit the effort for documenting design deci-

ions for DSML projects and to increase the quality of the documented

ationale. This research has explored ways of gathering, validating,

nd referencing collections of reusable generic design rationale—such

s software patterns (Harrison et al., 2007)—to achieve these two

oals. In our work, we build on the software-pattern tradition for

apturing and for reusing SE knowledge. A software pattern docu-

ents a proven solution to a recurring engineering problem in or

cross different application domains, including e.g. software archi-

ecture, distributed systems, and application integration (see, e.g.,

uschmann et al., 2000; Völter et al., 2005; Hohpe and Woolf, 2004).

hile patterns are already useful when used in isolation, they un-

old their whole potential as part of pattern languages (Coplien, 1996;

uschmann et al., 2007). A pattern language documents the relations

etween different patterns and describes how interrelated SE prob-

ems can be solved in a proven way. In particular, a pattern language

ives structure to a pattern catalog and guides the software devel-

per in choosing a suitable selection of patterns to address a given

roblem.
In this spirit, in a three-year research effort, we documented re-

urring design decisions extracted from 90 UML-based DSMLs in

erms of a decision-record catalog (Hoisl et al., 2014a). Similar to pat-

ern descriptions, we document reusable DSML design decisions via

structured text format (decision record). Each decision record docu-

ents detailed information about a given decision-making situation

decision point). The catalog of decision records also describes typi-

al combinations of decisions on developing a DSML. This way, the

atalog serves as a source of reusable generic design rationale when

eveloping DSMLs using UML.

Fig. 1 shows a high-level overview of design-decision making for

eveloping a UML-based DSML. In a decision-making situation, a de-

ision is triggered by a decision problem. An exemplary problem is

bout how to express design constraints of a DSML. Each problem oc-

urs in a particular context. For instance, one must define constraints

n the DSML’s language elements which cannot be expressed via

raphical symbols. Decision making is affected by different drivers

hat influence the choice of a particular solution to the problem:

hen and where do constraints have to be checked? Are model-

evel checks via some graphical DSML editor needed, or instance-

evel checks in a particular target platform? For each problem, typ-

cally different solutions (options) are available; for example, defining

onstraints via a formal constraint language or using informal tex-

ual annotations. Each option comes with characteristic consequences.

consequence of formal constraints, for instance, is that they can

e checked via corresponding software tools. At the same time, for-

al constraints are harder to change and to maintain than informal

nnotations.

A decision record in our catalog reflects this structure of decision-

aking situations by describing a recurring problem in a given con-

ext, common solution options as well as characteristic drivers and

onsequences. The decision-record catalog and the results of a do-

ain analysis (see, e.g., Evans, 2004) for the DSML’s application do-

ain are then used by DSML developers to make the actual design

ecisions for a particular DSML. Finally, the design decisions guide

he actual implementation of the DSML using UML (see Fig. 1).

In this paper, we report on applying a systematic literature re-

iew (SLR) and a content analysis as methods to rigorously collect,

ocument, and validate design decisions on UML-based DSMLs. We

rovide examples on how the respective design decisions are doc-

mented and how they can be applied when defining a new UML-

ased DSML. We do not, however, discuss all design decisions and

orresponding decision options identified through this study. They

re documented in a companion catalog in full detail (Hoisl et al.,

014a).1 In other words, this paper emphasizes the research method

http://epub.wu.ac.at/4466/
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and documents how design decisions were identified, extracted, and

validated. The key contributions of this paper are:

• Research design: Our multi-stage and multi-method research ef-

fort took place over three years. The stages of our work include

preparatory design reviews, early manual literature searches

(Hoisl et al., 2012b), a pilot study (Filtz, 2013), construction of a

quasi-gold-standard (QGS) paper corpus, an extensive automated

search, and a citation-driven manual search (snowballing; Jalali

and Wohlin, 2012; Webster and Watson, 2002). In a sequential

multi-method (qualitative-quantitative) research design, we con-

ducted an extensive systematic literature review (SLR), as well as

content analysis and data mining to extract details on reusable,

generic design decisions from the SLR.
• Literature review: The SLR was performed by adopting established

guidelines (Jalali and Wohlin, 2012; Kitchenham, 2004; Zhang

et al., 2011). Starting from more than 8,000 publications retrieved

by automated and snowballing searches, in a two-extractor pro-

cess, we selected 84 publications representing 80 UML-based

DSMLs. A detailed SLR protocol is available (Sobernig et al., 2014).2

• Content analysis: Design decisions were extracted from these 84

publications using a deductive content analysis (Saldaña, 2013;

Schreier, 2013). This content analysis involved a coding schema

(including indicators and decision rules for coders), several inter-

subject iterations over the paper material (segmentation, coding),

and an inter-rater reliability analysis.
• Data mining: We performed a frequent-item-set analysis (Borgelt,

2012) to mine the design-decision data collected from the SLR for

recurring decision-making patterns.

This paper is accompanied by three companion documents. First,

and in line with established SLR practice, there is a detailed review

protocol (Sobernig et al., 2014) of all steps performed to make our SLR

transparent and reproducible. Second, there is a pre-study revision of

the decision-record catalog (Hoisl et al., 2012a) which served as input

for sub-steps of the SLR (e.g. construction of a quasi-gold standard)

and of the content analysis (e.g. construction of a coding schema).

Third, there is a post-study revision (Hoisl et al., 2014a) of this catalog

which incorporates the results of our SLR as an increment to the pre-

study revision.

The remainder is structured as follows: In Section 2, we jus-

tify the choice of capturing DSML design rationale via an SLR and

the choice of representing design rationale in terms of structured

decision records. We also motivate our research by giving two

illustrative, concrete examples of using the decision-record catalog

in DSML development: design-space analyses and design-process

documentation. Section 3 enumerates the research questions driving

the SLR study. In Section 4, we present the details of conducting

and the intermediate results of the various stages of our study. The

design-decision data gathered from the corresponding identified

DSML designs, as well as study limitations, are described in Section 5.

Important implications are discussed in Section 6. Related work

on DSL development and empirical research on UML is reviewed

in Section 7. Section 8 concludes the paper by reiterating over key

contributions and by pointing to future work.

2. Design rationale on DSML development

A domain-specific language (DSL) is a software language which

is specialized for addressing a given class of engineering problems,

which are characteristic for an application domain. A DSL is based on

abstractions aligned to this domain and provides a concrete syntax

suitable for employing its abstractions effectively. A domain-specific
2 The SLR protocol is available at http://epub.wu.ac.at/4467/.

B

a

t

odeling language (DSML) is a DSL with a graphical concrete syn-

ax for the primary purpose of diagrammatic modeling in a partic-

lar application domain (Zdun and Strembeck, 2009; Strembeck and

dun, 2009). A DSML focuses on providing modeling abstractions for

he problem concerns in the application domain which are indepen-

ent from a given software platform, rather than on issues of im-

lementing the domain (see, e.g., Atkinson and Kühne, 2007). The

ollection of specification artifacts, which contribute to defining a

SML, is referred to as the DSML’s language model in the broader

ense (Strembeck and Zdun, 2009). This language model contains

core language-model which describes the structural elements and

heir relationships using metamodeling techniques (e.g. metamodels

nd/or profiles in the MOF/UML). This core language-model is also

nown as a DSML’s abstract syntax, especially when specified us-

ng grammars. Hereafter, for brevity, we refer to a DSML’s language

odel to denote its core language-model (abstract syntax) only. As

nother characteristic, formal specification techniques are used in

SML development to express the structural and behavioral seman-

ics of the DSML and its instance models (Jackson and Sztipanovits,

009). A DSML is then commonly deployed as part of a model-

riven development toolkit (e.g. as part of the Eclipse Modeling

ramework).

For the scope of our study, we look at DSMLs which are inter-

al to or embedded into the Unified Modeling Language version 2.x

UML 2.x; Pardillo and Cachero, 2010; Giachetti et al., 2009; Lagarde

t al., 2008). The language models of embedded DSMLs are defined

n top of the UML 2.x or by extending the UML 2.x language model

Object Management Group, 2015b). UML 2.x was rapidly adopted by

SML developers as the host modeling-language for their UML-based

SMLs. For one, this was facilitated by important modeling toolk-

ts already providing UML 2.x support even before its final release

n 2005 (e.g. Sparx Systems Enterprise Architect, Eclipse Modeling

ools). In some cases, this went hand in hand with dropping support

or UML 1.x entirely. Besides, UML 2.x provides a larger base of prede-

ned structural and behavioral diagram types (14 vs. 8 in UML 1.x), on

hich a DSML can be built. In addition, UML 2.x and its language ar-

hitecture (Cook, 2012) provide for three implementation techniques

or embedded DSMLs: language-model extension, language-model

iggybacking, and language-model specialization. Note that a DSML

evelopment project might require a combination of these three im-

lementation techniques.

To begin with, a DSML can be defined as a language-model exten-

ion (Spinellis, 2001) of UML 2.x. In this scenario, the UML 2.x meta-

odel is extended and modified in an additive manner. This can be

chieved by first introducing new metamodel packages, which con-

ain new or redefining metaclass definitions. These metamodel pack-

ges are defined using the Meta Object Facility (MOF) and they may

eference predefined UML 2.x metamodel packages. To create an ac-

ual UML 2.x metamodel derivative, they are then merged into the

ML 2.x metamodel packages (Dingel et al., 2008; Burgués et al.,

008).

A second option is to have a DSML use UML 2.x as its base and

dd DSML-specific elements without changing the underlying struc-

ural and behavioral UML 2.x semantics (language-model piggyback-

ng; Spinellis, 2001). This can be achieved using UML 2.x profiles

Pardillo and Cachero, 2010; Giachetti et al., 2009), which decorate

odels defined using the UML 2.x metamodel or a UML 2.x meta-

odel derivative.

A third DSML implementation technique applicable to UML 2.x

s a variant of language-model specialization (Spinellis, 2001): meta-

odel pruning. In metamodel pruning, an effective metamodel (i.e.

he DSML language model) is extracted from an original metamodel

e.g. UML 2.x metamodel) in an automated manner (Sen et al., 2009;

louin et al., 2015). The extraction procedure establishes a gener-

lization relationship between the effective (super-)metamodel and

he original (sub-)metamodel. This way, DSML models defined over

http://epub.wu.ac.at/4467/
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3 Throughout the paper, we apply some notation conventions to refer to decision

records and their content items such as decision options. Di denotes a decision record

corresponding to decision point i; Oi.j refers to decision option j at decision point i. In

set notation, the O-prefix for decision options as set elements is omitted for brevity.
he smaller, effective metamodel also conform to the larger, original

etamodel.

The above DSML implementation techniques for UML-based

SMLs go beyond the ones available in UML 1.x. Moreover, UML 2.x

voids known semantics pitfalls relating to these implementation

echniques in UML 1.x (e.g. profiles; Cook, 2012; Henderson-Sellers

nd Gonzalez-Perez, 2006). This also determined our choice of UML

.x.

Design rationale (DR; Burge et al., 2008; Dutoit et al., 2006) on

SML development is the reasoning and justification of decisions

ade when designing, creating, and using the core artifacts of a DSML

e.g. abstract and concrete syntax, behavior specification, metamod-

ling infrastructure, MDD tool chain). Documenting design rationale

xplicitly aims at helping design-decision makers by providing and

xplaining past decisions (e.g. in a design-space analysis) and by im-

roving the understanding of a DSML design during development and

aintenance (e.g. as a kind of design-process documentation). Most

mportantly, documenting design rationale on UML-based DSML de-

elopment must go beyond a mere enumeration of advantages and

isadvantages specific to the three DSML implementation techniques

n UML 2.x (see above). On the one hand, the choice of implementa-

ion techniques is only one decision dimension. On the other hand,

he rationale behind such a choice can be specific to every DSML de-

elopment project.

We distinguish between two kinds of DSML design rationale

Harrison et al., 2007): DSML-specific design rationale reflects rea-

oning required and collected explicitly during a particular design

rocess for a single DSML. Examples of explicitly documented, spe-

ific design rationale in software-language engineering may be found

n artifacts created in source-configuration management tools and

evelopment-issue trackers and open-standards artifacts. Examples

nclude Java Community Process documents and the recorded is-

ue votes during the ANSI/CLISP X3J13 specification process as col-

ected in Steele (1990). DSML-generic design rationale is reasoning

nowledge obtained through developing multiple DSMLs, for one or

everal application domains. Generic design rationale is commonly

ound only as the implicit knowledge of experienced DSML engineers.

oftware patterns have been used in software-language engineering

o document generic design rationale explicitly (see, e.g., Spinellis,

001; Günther, 2011).

An approach for managing design rationale in UML-based DSML

evelopment involves a procedure to represent design rationale, to

apture it, and to put the documented design rationale to use in other

SML development projects. Representing and organizing a body of

esign rationale chunks deals with structuring and creating docu-

entation items. In this paper, our emphasis is on creating documen-

ation items on generic DSML design rationale (decision records) as

xplained in Section 2.1. Two intended scenarios for using the doc-

mented generic DSML design rationale (i.e. design-space analysis,

rocess documentation) are presented in Section 2.2. Our approach

f capturing and of transforming specific DSML rationale into generic

esign rationale is elaborated on in Section 4.

.1. Representing design rationale

The process of developing a DSML involves different, characteris-

ic development activities (Strembeck and Zdun, 2009; Clark et al.,

008). From a decision-making perspective, each development activ-

ty also marks a decision point, i.e. a point in time at which particu-

ar design-decision problems must be addressed. In doing so, differ-

nt design solutions based on their assumed or known properties for

he DSML design as well as their effects on any subsequent design

ecisions are assessed. From the angle of design-rationale documen-

ation, a decision point is a point in time for recording an on-going

ecision-making process.
In our approach, design rationale on a given decision point is cap-

ured from multiple DSML projects and represented as a reusable

esource for decision making at this decision point in develop-

ng a new DSML. We refer to this reusable resource as a decision

ecord (see Fig. 3).3 In particular, we consider six decision points in

ML-based DSML development and, therefore, six decision records

D1–D6, hereafter).

Language-model definition (D1) involves identifying the respective

omain abstractions that must be represented in our DSML, after a

ystematic analysis and a structuring of the respective application

omain. The main challenge at this decision point is how to iden-

ify and to describe these domain abstractions in order to arrive at a

omprehensive and comprehensible basis for developing the DSML.

anguage-model formalization (D2) is about how the domain defini-

ion created in D1 can be turned into a formal model. By formal

odel, we refer to a description that can be checked for conformance

gainst previously defined well-formedness rules. Moreover, a for-

al model is amenable to processing and to manipulating by auto-

ated tools (Paige et al., 2014). For the DSMLs studied in this paper,

formal language model is realized using well-defined metamodel-

ng languages (MOF/UML). A metamodeling language is itself based

n a well-defined and well-documented language model. The lat-

er is referred to as the meta-metamodel, such as the CMOF for the

ML metamodel. In addition, a metamodeling language provides at

east one well-defined and well-documented concrete syntax to de-

ne the DSML’s language model. The DSMLs of interest in this paper

an, for example, employ the CMOF diagram syntax to specify a UML

etamodel extension. To remove ambiguity from a formal language

odel, a language model is extended to include additional language-

odel constraints (D3) to express constraints on domain abstractions,

uch as invariants for domain concepts, pre- and post-conditions, as

ell as guards. Concrete-syntax definition (D4) is about deciding on

he “user interface” of UML-based DSMLs, looking at several options

e.g. model annotations, reuse or extend a diagrammatic syntax, mix

oreign syntaxes with the UML syntax). The behavior specification (D5)

f a DSML defines behaviors of one or more DSML language ele-

ent(s). It determines how the language elements of the DSML in-

eract to produce the behavior intended by the DSML engineers us-

ng, e.g., UML M1 behavior models or formal textual specifications.

o produce executable, platform-specific model artifacts from DSML

odels, all DSML artifacts need to be mapped to a software platform

sing techniques of platform integration (D6; e.g. model transforma-

ions, code generators).

The order in which these development activities, and the corre-

ponding decision points, are considered can characterize different

SML development styles (Strembeck and Zdun, 2009). Depending

n the DSML development scenario some decision points may also

e skipped (depending on, e.g., application domain, usage intention,

nd development style).

.1.1. Decision records

A decision record provides two or more descriptions of proven

olutions to a generic and recurring problem in developing a DSML.

he problem described by a decision record must not only recur, that

s, be observable for many DSML development projects, but it must

lso have the quality of requiring an act of design-decision making.

or structuring and presenting the recurring DSML design decisions

s decision records, we developed and refined a document template

Hoisl et al., 2014a; 2012b; 2012a). Each decision record is structured

nto seven sections. The most important sections are identified in
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Fig. 2. Excerpt from the actual decision record on concrete-syntax definition (D4) in Hoisl et al. (2014a), highlighting the document sections corresponding to the key concepts in

Fig. 3.
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Fig. 3, an excerpt from the actual decision record on concrete-syntax

definition (D4) is depicted in Fig. 2.

A decision record first describes a recurring design-decision

problem that has been repeatedly observed for several DSML de-

velopment projects. The exemplary decision record in Fig. 2 gives

a problem statement frequently observed when deciding on the

concrete-syntax style for a DSML: “In which representation should

the domain modeler create models using the DSML?”. This prob-

lem applies to a specific decision context. The decision context is

primarily set by one of the decision points characteristic for DSML

development (D1–D6, above). In addition, a particular metamodeling

toolkit (e.g. MOF/UML), the application domain modeled by a DSML,

and the target software platform can contribute to establishing the

decision context. To give an example: The problem statement in Fig. 2

would not apply for a DSML project which is not about providing a

particularly tailored or any concrete syntax to modelers. This could
e because modelers are expected to work on an abstract-syntax

epresentation only.

As its core content, a decision record lists decision options which

escribe solutions to the initial stated decision problem. The excerpt

n Fig. 2 shows the option model annotation (O4.1) which is about

ealizing a tailored concrete syntax by means of model annotations.

ext, a decision record documents means to select an option (or a

ombination of options) in terms of decision drivers. An exemplary

river in Fig. 2 is the cognitive expressiveness of concrete-syntax

tyles. These drivers are likely to steer the DSML designer towards

particular option or option combination. This selection decision af-

ects the solution spaces of subsequent decisions. For example, they

an set a new decision context. To scaffold follow-up decision mak-

ng, a decision record makes the DSML designer aware of known de-

ision consequences. Consequences can include the need to evaluate

ther decision options within the same decision record or in related
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Fig. 3. An overview of the 9 key concepts and their relationships: decision point, de-

cision context, decision problem, decision record, decision option, decision driver, de-

cision consequence, decision application, and decision sketch.
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ecision records. However, consequences can also point to follow-up

ecision problems not covered by the decision-record catalog alone.

uch a consequence is the need for usability evaluations in Fig. 2.

To provide evidence that the listed decision options are taken from

bserved practice, a decision record comprises DSML projects as ex-

mples of application of the individual options or option combina-

ions. In Fig. 2, one can see that a number of DSML projects also

ecorded as part of our decision-record catalog are referenced as ap-

lications. A decision record is then closed by replicating one con-

rete realization sketch of one decision option, taken from one DSML

pplication. In Fig. 2, an example of providing a combined graphical

nd textual concrete-syntax is given.

This document template has been derived—over multiple research

tages (see Section 4)—from prior work on documenting design ratio-

ale in software engineering. In particular, it is inspired by software-

attern descriptions (Buschmann et al., 2007) and architectural de-

ign decisions (Shahin et al., 2009). For the content of a decision

ecord, in particular the decision options, to qualify as generic de-

ign rationale, it must reflect recurring practice. To have recurrence,

e require a decision option to be encountered in a certain number of

SML applications. To become included into the draft, pre-study revi-

ion of the decision records, decision options had to be accounted for

y two distinct sources. For example, an option could be supported

y one primary study documenting a DSML and one secondary study

n designing UML-based DSMLs. Based on the study’s results, in the

ost-study revision, we verified which design option has at least ap-

lications in three different third-party DSMLs, that is, DSMLs not de-

eloped by the authors. This way, we adopt a commonly followed

ule of thumb in the software-pattern community. This rule of thumb

andates that a software-pattern description must provide at least

hree known uses of the pattern in existing software systems (see,

.g., Coplien, 1996; Buschmann et al., 2007).4

The catalog revised based on the study results provides six deci-

ion records—one for each decision point (D1–D6)—containing 27 de-

ision options to describe a DSML (Hoisl et al., 2014a).5 Tables 1 and 2

rovide a preview of the study results, including thumbnail descrip-
4 Note, however, that the number of occurrences observed for important decision

ptions (and decision-option sets) turned out much higher than three (see Sections 5

nd 6).
5 Note that there are actually 31 decision codes/numbers. Four of those

odes/numbers serve for coding pseudo-decision options; e.g., not taking any deci-

ion. Depending on the analysis requirements, they are either ignored or included as

edicated no-option codes.

c

w

a

s

f

ions of nine frequently adopted decision options which help charac-

erize a majority of the DSML designs identified in our study (see also

ection 6).

.1.2. Decision-option sets

Making a decision when developing a specific UML-based DSML

s about evaluating and finally adopting one or several decision op-

ions listed by a decision record in our decision-record catalog (Hoisl

t al., 2014a). This way, a decision links to and conforms with a deci-

ion record (see also Fig. 3). Design-decision making on a given DSML

nvolves decisions at several, but not necessarily all decision points

D1–D6). Adding up all decisions results in a set of adopted decision

ptions (an option set, hereafter) which represents the DSML design

s product of this decision making.6

Consider the example of UML4SOA (Mayer et al., 2008), one of

he 80 third-party UML-based DSMLs reviewed in our study (see

ection 5 and also the Appendix). UML4SOA refines the UML activity,

lass, and component diagrams to model service-oriented architec-

ures (SOA). The language model of UML4SOA is defined textually

O1.1) and integrates with the UML via a UML metamodel extension

O2.3) as well as equivalent UML profile definitions for tool adoption

O2.2; see Table 1). In addition, the metamodel extension and profile

efinitions are accompanied by OCL constraint definitions (O3.1).

he metamodel extension comes with new and resampled diagram

ymbols (O4.2), the profiles imply model annotations (e.g. comments

ontaining tags; O4.1) and symbol reuse (O4.6; see Table 2). As for

latform integration, UML4SOA employs intermediate model rep-

esentations (O6.1) to transform extended UML activities in several

teps (O6.5) into web-service orchestration specifications (BPEL)

sing API-based generators (e.g. the Eclipse/EMF Java API; O6.3).

ased on our catalog of decision records, UML4SOA can be described

s an option set containing ten options from our decision-record

atalog (Hoisl et al., 2014a): {1.1, 2.2, 2.3, 3.1, 4.1, 4.2, 4.6, 6.1, 6.3, 6.5}.

In addition, option subsets are eligible to represent decision-option

ssociations. An association between two or multiple decision options

epresent a possible, intentional co-occurrence of two (or more) cor-

esponding decision options. An association denotes that two or more

ecision options must be considered together, without implying any

articular (e.g. temporal) order of adoption. Decision-option asso-

iations can represent decision drivers and decision consequences

hich directly relate to decision options. Consider the proper subset

2.2, 4.1, 4.6} contained by UML4SOA’s option set above. It denotes

hat—as a consequence of adopting UML profiles (O2.2)—UML4SOA

euses diagram symbols of the activity diagram notation (O4.6) which

ecome extended by model annotations (O4.1; e.g. stereotype tags,

agged values). As we will learn in Sections 5 & 6, this option sub-

et can be frequently observed in DSMLs. Our catalog currently docu-

ents 21 such decision-option associations (Hoisl et al., 2014a).

.2. DR reuse: design-space analysis

In this section, we exemplify the use of our decision-record cata-

og. The decision records facilitate re-constructing the decision space

f an existing DSML using Questions-Options-Criteria (QOC) dia-

rams. Note that we do not consider our catalog to be the only and

uthoritative source of input in this usage scenario. Rather, they com-

lement existing material, such as pattern collections on software-

anguage development (see, e.g., Spinellis, 2001).

An important area for using documented design rationale is to fa-

ilitate the creation of a systematic description of an existing design

hich reflects the reasoning of the designers. Here, the objective is

n explicit description which is sufficiently detailed to assist in deci-

ion making and stakeholder communication during ongoing phases
6 Option sets are also an outcome of the coding step during content analysis (coding

orm; see Section 5.1) and a prerequisite for later data mining (see Section 3).
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Table 1

Thumbnail descriptions of 12 (out of 27 total) decision options specific to the decision points 1–3 (D1–D3). 6 decision options (O1.1, O1.4, O2.2, O2.3, O3.1, O3.4; in bold font face)

characterize a critical number of DSML designs, a key finding of our SLR study (see Section 6).

Problem statement Options Drivers

D1 How should the domain (or

domain fragment) be described?

O1.1 INFORMAL TEXTUAL DESCRIPTION Availability of existing diagrammatic domain

descriptions, intended target audience,

correspondence mismatches with UML

semantics, consistency preservation effort,

cognitive effectiveness of a representational

format

Use informal text to identify and to describe domain abstractions and their

relationships (e.g. domain-vision statements, domain-distillation lists).

O1.2 formal textual description

Use formal text to identify and to describe domain abstractions and their

relationships (e.g. a grammar, a universal algebra).

O1.3 informal diagrammatic model

Use ad hoc diagrams to identify and to describe domain abstractions and their

relationships (e.g. early feature diagrams, pseudo class diagrams).

O1.4 FORMAL DIAGRAMMATIC MODEL

Use formally defined diagrams to identify and to describe domain abstractions

and their relationships (e.g. MOF and UML class diagrams, STATEMATE

statecharts).

D2 In which MOF/UML-compliant

way should the domain

concepts be formalized?

O2.1 m1 structural model Overlap of DSML and UML domain spaces,

degree of DSML expressiveness, portability

and evolution requirements, compatibility

with existing artifacts

Implement the language model using structural UML models at level M1 (e.g.

class or composite-structure diagrams).

O2.2 PROFILE RE-/DEFINITION

Implement the language model by creating (or by adapting existing) UML

profiles (i.e. <<profile>> packages containing stereotype definitions).

O2.3 METAMODEL EXTENSION

Implement the language model by creating one or several metamodel

extensions (i.e. <<metamodel>> packages containing new metaclasses and

associations).

O2.4 metamodel modification

Implement the language model by creating one or several metamodel

extensions (i.e. <<metamodel>> packages containing redefining metaclasses

and associations).

D3 Do we have to define constraints

over the language model(s)? If

so, how should these constraints

be expressed?

O3.1 CONSTRAINT-LANGUAGE EXPRESSION Constraint formalization requirements,

language-model checking time, integrated

language-model constraint requirements,

maintainability effort, portability

requirements, language model and

constraints conformance

Make language-model constraints explicit using a constraint-expression

language (e.g. OCL, EVL).

O3.2 code annotation

Make language-model constraints explicit using expressions in (or a specialized

sub-language embedded within) a general-purpose programming language

(GPL; e.g. Java).

O3.3 constraining model transformation

Express language-model constraints as part of existing model

(model-to-text/model-to-model; M2T/M2M) transformations, or through

dedicated ones (e.g. OCL model-navigation expressions or conditional

statements in ETL/EOL templates).

O3.4 INFORMAL TEXTUAL ANNOTATION

Use informal and unstructured text annotations to capture constraint

descriptions in the language model (e.g. prose text in UML comments).

Fig. 4. A partial QOC representation of a selected design-space fragment for the DSML SecurityAudit. The boxed options are the decisions made in the design of the DSML. This

example follows the original QOC notation introduced in MacLean et al. (1996); advanced QOC notation elements such as arguments are omitted for brevity.
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of an artifact’s lifecycle. Relevant phases include test creation, cor-

rective maintenance, and authoring documentation. An established

semi-formal, diagrammatic approach for describing a space of de-

sign arguments is the Questions, Options, and Criteria (QOC) notation

(Dutoit et al., 2006; MacLean et al., 1996).

Questions deal with features of the designed artifact. In the exam-

ple from Fig. 4, such a feature is the representation of audit rules in

the technical domain of system auditing. An audit rule determines

which system events should be audited by an auditor component or
ubsystem. Consider file-access events by selected system users as

n example. The DSML SecurityAudit provides UML-based support

o model such audit rules as part of an auditing system. The DSML

epresentation should allow domain modelers (a security auditor)

o author audit rules. In QOC, options model possible answers to

he questions. The exemplary design space shown in Fig. 4 of the

ecurityAudit DSML consist of three options. Clearly, the actual

esign space of the SecurityAudit DSML was larger. Two QOC options

ave correspondences to decision options from our catalog (D4:
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Table 2

Thumbnail descriptions of 15 (out of 27 total) decision options specific to the decision points 4–6 (D4–D6). 3 decision options (O4.1, O4.6, O6.2; in bold font face) characterize a

critical number of DSML designs, a key finding of our SLR study (see Section 6).

Problem statement Options Drivers

D4 In which representation should

the domain modeler create

models using the DSML?

O4.1 MODEL ANNOTATION Non-diagrammatic UML notation

requirements, degree of cognitive

expressiveness, disruptiveness, degree of

required modeling-tool support

Attach UML comments as concrete-syntax cues to a UML model, containing

complementary domain information such as keywords and narrative

statements.

O4.2 diagrammatic syntax extension

Extend one or multiple UML diagram types by creating novel symbols adding to

the basic UML symbol set.

O4.3 mixed syntax

Create your DSML’s concrete syntax either as a non-diagrammatic syntax

(textual or tabular) or as a diagrammatic syntax not integrated with the UML’s.

O4.4 frontend-syntax extension

Create your DSML’s concrete syntax as a non-diagrammatic (textual or tabular)

one which extends a non-diagrammatic frontend syntax to the UML (e.g.

HUTN).

O4.5 alternative syntax

Create a diagrammatic syntax extension to the UML (O4.2) and provide one or

more alternative syntaxes (see O4.3 and O4.4).

O4.6 DIAGRAM SYMBOL REUSE

Reuse built-in UML diagram symbols without modification.

D5 Do we have to define

(additional) behavioral

semantics for the DSML? If so,

how should the additional

behavior of DSML elements be

defined?

O5.1 m1 behavioral model Model-consistency preservation, domain

characteristics, limited expressiveness,

behavior verification, visualization

preferences

Specify additional behavior of language-model elements using UML behavioral

models at level M1 (e.g. state machine or activity diagram).

O5.2 formal textual specification

Specify the additional DSML behavior using a textual formalism (e.g. algebraic

expressions or Z notation).

O5.3 informal textual specification

Specify the additional DSML behavior using an informal textual description.

O5.4 constraining model execution

Implement behavioral constraints in a (partial) execution engine for DSML

models (e.g. xMOF).

D6 How should the DSML artifacts

be mapped to (and/or integrated

with) a software platform?

O6.1 intermediate model representation Targeting multiple platforms,

maintainability effort of static code

fragments, non-executable models

Provide for generating a second and intermediate model based on a DSML

model using M2M transformations.

O6.2 GENERATOR TEMPLATE

Create transformation templates, defined in a M2T transformation language,

which turn DSML models into platform-specific textual specifications.

O6.3 api-based generator

Realize the platform-specific model transformation (e.g. code generation) by

instrumenting a programmatic representation of DSML models.

O6.4 (direct) model execution

Use a (partial) model-execution engine to generate platform-specific

instructions directly from DSML models.

O6.5 m2m transformation

Perform platform integration via (multiple) endogenous M2M transformations

specified via M2M transformation languages (e.g. ATL, ETL).

Table 3

Exemplary overview of positive and negative links between criteria (or drivers as found

in our catalog) and available options depicted as a rationale table. They form the basis

of the assessments shown in the QOC representation in Fig. 4. (+)+: (very) positive

influence; o: no influence; (−)−: (very) negative influence. An option having either a

(very) positive or a (very) negative influence—depending on the intended DSML’s ap-

plication domain, professional background as well as prior knowledge and experience

of users etc.—is denoted by (+)+/(−)−.

Driver/Option O4.2 O4.3 O4.5

Disruptiveness + + ++
Modeling-tool support − +/− −−
Cognitive expressiveness + +/− +/−
Non-diagrammatic UML notation o − −
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4.2, O4.3, O4.5; see Fig. 4). Depending on the design context, a QOC

ption might map to several decision options in our catalog or vice

ersa. Criteria indicate properties or effects of adopting given options,

.g., to satisfy certain requirements. Our catalog describes decision

rivers for adopting or discarding certain decision options. The three

elevant decision options (O4.2, O4.3, O4.5) describe, for example,

our drivers which are reproduced in Table 3 (see also decision record

4 in Hoisl et al., 2014a). The decision records enumerate positive

nd negative links between drivers and options. As such, our catalog
ffers candidate criteria to be adopted in a QOC analysis. In Fig. 4, two

rivers are referenced as QOC criteria (disruptiveness, modeling-tool

upport). The positive and negative links form the basis for the

ssessment of the QOC options to answer the QOC question. Finally,

QOC decision denotes the act of marking QOC options as adopted

see the solid rectangles in Fig. 4). Each decision may be followed

y another QOC question. In our example, the choice of providing

structured, textual notation is succeeded by a question on the

oncrete-syntax style to be used.

Systematically linking QOC diagrams and structured documenta-

ion of design decisions to perform design-space analyses has already

een proposed. Zdun (2007) integrates QOC diagrams and software

atterns for systematic pattern selection.

. Research questions

By describing and documenting DSML designs through the lenses

f decision points and decision records, we take a decision-makers’

erspective on a DSML design. On the one hand, a decision-making

erspective targets the stakeholder roles relevant for DSML design-

ecision making (e.g. business designer, software architect, domain

ngineer, DSML implementer, domain modeler). On the other hand,

uch a perspective facilitates recording the results of decision making.
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A decision-making perspective complements development-

process perspectives on DSML development, such as the one

proposed by Strembeck and Zdun (2009). A process perspective

puts emphasis on the actual development activities and develop-

ment artifacts in DSML development. However, a decision-making

perspective and the resulting design-decision documentation shifts

focus on DSML development at a finer grained level of abstraction

and makes decision interdependencies explicit—independent of the

actual development-process style (Strembeck and Zdun, 2009).

Recording and presenting repeatedly observed design decisions

has the potential of facilitating the documentation of design deci-

sions in other development contexts. Such contexts can be set by a

new DSML project or by a maintenance task on an existing DSML. In

Section 2.2, we make the case for a systematic reuse of previously

gained process and decision knowledge (e.g. options, drivers, conse-

quences) in design-space analyses. To this end, our study was guided

by the following research question:

Research question 1: What are the design-decision options for

UML-based DSML designs reported in scientific literature?

To answer this question, we conducted a systematic literature re-

view (SLR) and a systematic content analysis. In its preparation, ex-

ecution, and reporting, we apply established guidelines (Jalali and

Wohlin, 2012; Webster and Watson, 2002; Kitchenham, 2004; Zhang

et al., 2011). Section 4 summarizes the SLR procedure and its results.

An overview of the content analysis of the SLR paper corpus is given

in Section 5. The combined SLR and content-analysis protocol can be

found in Sobernig et al. (2014).

Each UML-based DSML design can be described by an option set

that contains a particular combination of the options described by the

decision-record catalog.7 Therefore, at first glance, our catalog of 27

decision options defines an extensive design space of decision-option

sets (see Tables 1 and 2): In a convenience view, one can generate

227 − 1 unique combinations of these 27 decision options to charac-

terize DSML designs. This convenience view neglects any combina-

torial constraints, such as the ones imposed by documented associa-

tions between decision options.

We require that a DSML design must at least report one option on

language-model definition (D1) and another one on language-model

formalization (D2). This requirement follows from the following three

assumptions: First, we only consider DSMLs that were designed in

a language-model-driven development style (Strembeck and Zdun,

2009), which implies at least one decision on D1. Second, at least one

of the corresponding options for the extension of the UML must be

chosen (D2) in order to qualify as a UML-based DSML. Third, backed

by a documentation analysis based on scientific publications, we ex-

pect that these two design dimensions are mandatory in scientific re-

ports on DSML projects. This might even be the case when they were

not explicitly addressed in the actual design-decision making of the

DSML designers.

Even when considering the above presence conditions on D1 and

D2, our catalog still allows for expressing a vast space of distinct op-

tions sets for DSMLs: 117,964,800 unique option combinations! This

number computes as follows starting from the 27 options in our cat-

alog: 24 − 1 (D1) times 24 − 1 times (D2) times 227−4−4 (D3–D6). In

practice, however, we expect a reduced observable design-decision

space across existing DSMLs. In particular, there is partial evidence

suggesting that certain UML extension techniques are more com-

monly adopted than others (e.g. profiles; Nascimento et al., 2012; Par-

dillo, 2010). This leads to our second research question:
7 Option sets are also an outcome of the coding step during content analysis (coding

form; see Section 5.1) and a prerequisite for data mining (see RQ2).
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Research question 2: What are frequently observed decision op-

tions and frequently observed combinations of decision options (op-

tion sets) in and across existing UML-based DSML designs?

Collecting option sets that represent existing DSML designs allows

or important insights beyond their mere observability. If several ex-

sting DSML designs exhibit identical option sets, then such recurring

ption sets indicate repeated decision-making practice in designing

SMLs. At the same time, repeatedly observed option sets can serve

or grouping different DSML designs into families that share charac-

eristic combinations of design options.

To address our second research question, we are thus interested

n frequency patterns that occur for the collected option sets. Such

requency patterns can help in characterizing an empirically observ-

ble subset of the theoretically possible design space that is described

y our catalog. Detecting and interpreting such decision patterns (e.g.

ub decisions) has been reported as an important use case for design-

ationale documentation (Kruchten et al., 2006).

In order to characterize the observable design-decision space for

ML-based DSMLs, we mine for frequent option (sub-)sets using an

nalysis that is based on frequent item sets (Borgelt, 2012; Hahsler

t al., 2005). We are interested in commonly recurring combinations

f decision options which are (proper) subsets of observed option

ets. Technically, we want to extract option (sub-)sets that adhere to

ertain constraints (i.e. minimum support, closedness, freeness, max-

mality; see Borgelt, 2012; Hahsler et al., 2005). Sobernig et al. (2014)

provide a technical background on those concepts in the context of

our study.

Such frequent option (sub-)sets can express characteristic frag-

ments of a DSML design as well as complete DSML designs (also

called “prototype option-sets”). These option sets can differ in terms

of the number of options (or, proper option subsets) that they con-

tain (size), in terms of their relatively higher or lower levels of sup-

port, and whether they are contained as-is in the base of observed op-

tion sets or not; i.e., whether they totally describe at least one DSML

design alone, rather than a fragment of it. Table 4 summarizes the

hree kinds of characteristic option (sub-)sets that we consider in an-

wering our second research question. Section 5 elaborates on our

ndings.

. A review-driven approach to capturing generic DSML design

ationale

To answer our research questions, we set out to distill generic

SML design rationale from a maximal number of DSML design doc-

ments. This way, the extracted design rationale is more likely valid

eyond single DSML designs. To the best of our knowledge, no such

ource of generic rationale on UML-based DSML designs existed prior

o our decision-record catalog. The secondary studies on DSML de-

elopment, which we identified as related work, do not reflect actual

esign-decision making in DSML development projects; specifically

ot for UML-based DSMLs (see Section 7). Therefore, our emphasis

as on gathering primary studies on UML-based DSMLs. A primary

tudy is a piece of design documentation authored by the respective

SML developers themselves. In scientific literature, primary studies

ome as DSML solution proposals and/or personal experience reports

Wieringa et al., 2005).

Capturing design rationale (DR) behind a UML-based DSML

esign can be achieved in different, systematic ways (Dutoit et al.,

006). First, one can recover design decisions by reviewing DSML

rtifacts after the fact (e.g. abstract-syntax or concrete-syntax specifi-

ations). This can either be done by the DSML developers themselves

r by third-party experts in DSML development and in DR docu-

entation (see also Section 2.2). Second, DSML designers might

ecord their rationale themselves as a byproduct of the decision-

aking process. A third source are records of communication



S. Sobernig et al. / The Journal of Systems and Software 113 (2016) 140–172 149

Table 4

Overview of the option-set constructs considered for analyzing frequency patterns in the selected DSMLs. Each construct is defined as a set of

data-mining restrictions (e.g. closedness, maximality, freeness; Borgelt, 2012) over the space of (frequent) option sets representing the reviewed

DSMLs. Details on these underlying data-mining restrictions are provided in Sobernig et al. (2014).

Kind of option (sub-)set Description

Smallest common option subset A frequent option subset which is also a smallest (i.e. of minimal size) recurring proper option subset

contained by observed DSML designs and/or by observed design fragments. We distinguish between

two kinds of smallest common option subset: (1) option subsets specific to one decision record

(D1–D6); (2) option subsets specific to two or more decision records (D1–D6).

Prototype option-set with

frequent extensions

A frequent option set which represents a largest option subset (design fragment) which was also

frequently found to represent complete DSML designs. This prototype option-set is frequently found

extended by adding other (frequently observed) options. In this sense, it represents an evolutionary

prototype to derive extended DSML designs.

Prototype option-set with

infrequent extensions

A frequent option set which represents a largest option subset (design fragment) which was also

frequently found to represent complete DSML designs. Extensions that add options to this

(evolutionary) prototype for deriving other option sets (DSML designs) are infrequent.
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reated by DSML designers, for example, language-user docu-

entation, change/maintenance documentation, and scientific

ublications. Finally, if available, design-support software can be

sed for documenting design-decisions (e.g. IDEs including support

or design-knowledge management; Tang et al., 2010). To the best of

ur knowledge, however, contemporary design-support software for

SMLs does not provide DR capturing facilities.

As in other fields of software development, the capture prob-

em (Burge et al., 2008; Dutoit et al., 2006) often prevents DSML

esign rationale from becoming documented explicitly by DSML

evelopers. In earlier, preparatory studies including manual design

eviews, a snowballing study, and a pilot SLR, we found, however,

hat scientific publications of DSML developers are important primary

tudies for documented DSML design rationale (Hoisl et al., 2012b;

iltz, 2013). Scientific publications must not necessarily document

he rationale for design decisions directly. Often, they provide a

ystematic overview of DSML design artifacts and references to

hem (e.g. abstract-syntax or concrete-syntax definitions). Moreover,

SML developers submitting to relevant scientific publication venues

e.g. SoSyM journal, MoDELS conference) are more likely to report

ML-specific design decisions explicitly. They adopt best-practice

xamples for design documentation from OMG standard documents

irectly, from already published papers in the respective venues,

nd from secondary studies on UML-based DSML development (e.g.

aige et al., 2000; Grant et al., 2004; Robert et al., 2009; Selic, 2007).

inally, for some DSMLs being research prototypes only, scientific

eports are often the only source of documented design decisions.

For these reasons, we opted for a systematic literature review

SLR). The main goal of this SLR was to identify a maximum number

f scientific publications which document design rationale on UML-

ased DSMLs as primary studies. The targeted scientific publications

ere required to be marked by a sufficient documentation quality. By

ocumentation quality, we refer to the correctness and the complete-

ess of the design documentation.

.1. Planning & conducting the review

The SLR was performed in three steps (see Fig. 5). First, to pro-

ide a basis for evaluation of the search procedure, we established

corpus of reference publications (viz., a quasi-gold standard, QGS;

ee Section 4.1.1). Based on this reference corpus, we identified the

earch engines for an automated publication search. We refined the

orresponding search terms and the queries in several iterations. Sec-

nd, we performed the actual engine-based publication search (see

ection 4.1.2). Based on the bibliographical records extracted publi-

ations selected up to this point, we then performed a backward-

nowballing search (see Section 4.1.3). Backward snowballing is the

ractice of manually identifying additional publications for selection

rom the reference lists (citations) of a given set of publications (Jalali

nd Wohlin, 2012; Webster and Watson, 2002).
We selected publications for inclusion and assessed their qual-

ty based on predefined criteria at each stage. The selection and

uality-assessment decisions involved multiple raters per publica-

ion (i.e. the authors). Therefore, we report the inter-rater reliability

IRR) for the data extracted from the selected publications. IRR mea-

ures document patterns of agreement and disagreement between

wo and more raters in their assessments of details extracted from

he selected publications (Gwet, 2012). This section summarizes the

dopted procedures at each stage (working tasks, criteria selection),

he intermediate results (QGS, review, and snowballing corpora), and

he intermediate evaluations (validity, reliability measurement).

.1.1. Quasi-gold standard

To guide publication search, and to report the search validity, we

eveloped a quasi-gold standard (QGS; Zhang et al., 2011; Kitchen-

am and Brereton, 2013). A quasi-gold standard is a collection of

anually selected papers from a number of venues and outlets (e.g.

ournals, conference series), which are known and recognized for

ublishing work on the topic areas under review by a relevant com-

unity; in our case: model-driven development, UML, and DSMLs.

he results of the automated literature search must include the quasi-

old standard. Otherwise, the search strategy must be adapted.

As opposed to a “gold standard” collection of papers for evaluat-

ng literature searches, a quasi-gold standard is specific to a set of

enues/outlets over a specified time span (Zhang et al., 2011). We

sed the QGS to guide the main, semi-automated literature search

i.e., to select the search engines and to guide the selection of search

erms) and, finally, to validate its quality attributes (i.e. sensitivity and

recision).

Constructing our own QGS corpus became necessary because, at

he time of designing the SLR, there was no adequate third-party pub-

ication corpus available. In 2013, the only candidate was a prior map-

ing study by Nascimento et al. (2012) on application domains of

SLs, DSL development tooling, and research agendas on DSL engi-

eering. However, our study aimed at a specific subset of DSLs (viz.

ML-based DSMLs). Nascimento et al. (2012) reviewed 170 publica-

ions on DSMLs and only 21 of these were specific to the UML. Fi-

ally, while covering an extensive publication period (1966–2011),

he mapping study by Nascimento et al. (2012) does not extend to

012 as required by our study. To the best of our knowledge, there is

till no adequate third-party corpus available.

The publication collections obtained from our earlier research

teps (Hoisl et al., 2012b; Filtz, 2013) did not qualify as a reference

orpus either. This was because of their strong bias towards our re-

earch projects and our own experiences. Furthermore, the publica-

ions from our prior research (Hoisl et al., 2012b) were also limited

o DSMLs for security-related application domains. The third-party

ublications collected during our pilot study were not considered as

GS candidates because of flaws in our pilot SLR design (Filtz, 2013).



150 S. Sobernig et al. / The Journal of Systems and Software 113 (2016) 140–172

Fig. 5. A timeline overview of the research stages and the corresponding sections in this paper.

Fig. 6. Sub-steps of establishing a QGS corpus and eliciting search strings for the main search.

Fig. 7. Overview of the stepwise selection of publication venues for establishing the

quasi-gold standard (QGS) corpus.
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Fig. 6 visualizes the five sub-steps of QGS construction. As a start-

ing point, we considered all publications collected from the three

sources above. These included our own DSML publications (Hoisl

et al., 2012b), the third-party publications from our pilot review (Filtz,

2013), and the third-party publications returned by the mapping

study (Nascimento et al., 2012). The three sources accounted for 159

papers and 119 publication venues in total. The publication venues in-

cluded 86 presence venues (conferences, symposia, and workshops)

and 33 archival venues (journals, monographs; see also Fig. 7).

Selection criteria. In a pair session, the 119 publication venues were

filtered by two authors (Hoisl, Sobernig). Fig. 7 summarizes the in-

termediate results of filtering. Finally, 17 venues were selected. The

seven journals included top-tier SE venues such as IEEE TSE, ACM

TOSEM, and SoSyM. The ten selected conference venues comprised

i.a. ICSE, OOPSLA, MoDELS, and ASE.8 The selected venues complied

with four criteria:

1. Time coverage: A publication venue covers the years between and

including 2005 and 2012. In 2005, the UML 2.0 specification was
8 See Appendix A in Sobernig et al. (2014) for the venues’ full names.
published. 2012 marks the year before performing the engine

searches in January and February 2013.

2. Community relevance: An archival venue is deemed relevant by

a scientific audience if it is listed with the ERA 2012 journal list

(Australian Research Council, 2012). The ERA list resulted from a

public and international consultation process among scientists. 23

of the 31 journals were listed with ERA 2012. For a presence venue,

we examined whether the venue has a regular publication history

depending on the venue format (e.g. yearly, bi-yearly) during the

review period. This was the case for 28 of the 75 conferences.

3. SE focus: The venue has a dedicated software-engineering (SE)

focus. The two authors judged a venue based on publicly avail-

able SE venue lists, including SCImago Journal Rank (Scimago

Lab, 2013) and Microsoft Academic Search (Microsoft Corporation,

2013). 17 out of the remaining 51 venues fulfilled this condition.

4. Content maturity: The venue is committed to publishing ma-

ture and scientifically rigorous content. In general, we verified

whether there was a peer-review procedure in place. As for pres-

ence venues, 11 workshops were excluded. Two archival venues

other than journals were discarded (i.e. a festschrift and a project-

report monograph).

Quasi-gold standard corpus. Two authors manually screened the

selected 17 venues. This involved 418 journal volumes and 80 pro-

ceeding issues published between 2005–2012. In this initial iteration,

candidate papers were selected by reviewing title, author-provided

keywords, and abstracts (in this order). The reviewers used centrally

maintained publication-history records of each venue (e.g. DBLP9)

nd the publication bases of the venue publishers (i.e. IEEE, ACM,

pringer, Elsevier) to additional important metadata (e.g. abstracts).

The screening result was a collection of 83 articles (52 journal and

1 proceedings articles). Each article was rated for inclusion into the

GS corpus independently by two authors. 37 publications were posi-

ively rated by both authors and formed the final QGS corpus (24 jour-

al and 13 proceedings articles). The two independently rating au-

hors arrived at the same selection decision (inclusion or exclusion)
9 See http://dblp.uni-trier.de/ , last accessed: Feb 2, 2015.

http://dblp.uni-trier.de/
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Fig. 8. Publications found during manual screening of the 17 QGS venues and pub-

lications finally included into the QGS corpus (per venue; ordered by the decreasing

number of found papers). See Appendix A in Sobernig et al. (2014) for the venues’ full

names.

f

s

t

a

i

i

c

t

s

c

p

0

t

l

m

c

u

fl

j

A

c

b

S

Q

c

s

p

2

f

m

t

S

d

S

F

I

d

s

g

Fig. 9. The numbers of publications found (dashed line) and included (solid line) into

the QGS corpus, per publication year (2005–2012).

g

2

S

t

T

s

“

m

w

d

v

s

g

i

p

t

e

m

t

fi

p

m

g

p

a

(

c

4

i

l

S

t

E

t

p

s

s

h

or 75.9% of the 83 publications without negotiation. The conflicting

election decisions were first revisited in a joint session between the

wo rating authors. Then, if necessary, the third, non-involved author

djudicated on an article at issue.

Any inter-subjective rating process bears the risk of random rat-

ngs and personal bias, so that the percent agreement of 75.9%

s likely to be overstated (Gwet, 2012). Applying standard chance-

orrection (Cohen’s Kappa), we established that the two rating au-

hors achieved actual decision agreement beyond chance (inclu-

ion/exclusion) in approx. 51% of the total expect cases beyond

hance. In technical terms, Cohen’s Kappa coefficient κ̂C on the 83

ublications and the corresponding 166 ratings amounted to 0.51 ±
.009.10 Kappa’s chance correction results from a worst-case assump-

ion (random assignment), the “true”, but unknown agreement level

ies between 0.51 and 0.759. According to standard Kappa bench-

arks (Fleiss, 1981), this indicates an intermediate to good chance-

orrected (worst-case) reliability level. Therefore, we considered the

nderlying selection procedure (criteria) reliable. Any decision con-

icts were resolved as outlined above.

Comparatively equal shares of candidate articles published in

ournals and conferences, respectively, made it into the QGS corpus.

pproximately 46% of the journal articles (24/52) and 42% of the pro-

eedings articles (13/31) entered the corpus. Fig. 8 depicts the num-

er of finally included publications per venue. JOT, JSS, SoSyM, and

AFECOMP were the top four venues contributing publications to the

GS corpus. These top four accounted for ≈60% (22/37) of the in-

luded publications. From six venues, not a single publication was

elected. The distribution over time shows that ≈49% of the included

ublications (18/37) were published in two peak years: 2007 and

011 (see Fig. 9).

Based on the 37 QGS publications, two subsequent steps were per-

ormed. On the one hand, the relevant search engines for the auto-

ated search were identified. On the other hand, a search string for

he automated search was constructed from the QGS corpus.

earch engines. The 37 QGS publications were published in eleven

istinct venues, which are issued by five different publishers:

pringer (15 papers), AITO (7), IEEE (7), Elsevier (6), and ACM (2).

or these publishers, we identified four search engines: SpringerLink,

EEE Xplore, Scopus, and ACM Digital Library. These met previously

efined requirements, such as full time-coverage, access to biblio-
10 ± signals the leave-one-out Jackknife variance estimate Var(κ̂C ) of Cohen’s Kappa

tatistic κ̂C to quantify the degree of statistical insecurity inherent in the data-

enerating process.

r

a

S

a

raphical metadata, and minimal content overlap (Sobernig et al.,

014).

earch string. We extracted the search string from the QGS publica-

ion corpus in a systematic and subjective manner (Zhang et al., 2011).

he extracted 49 search terms were grouped into two term sets: 17

earch terms specific to a (meta-)modeling technology (e.g. “uml”,

mof”) as well as 32 search terms specific to DSL and DSML develop-

ent (e.g. “profile”, “metamodel”). The resulting search string, from

hich the four engine-specific search expressions were derived, is

ocumented in Sobernig et al. (2014). This final search string was de-

eloped in several iterations to maximize search sensitivity. Search

ensitivity reflects the number of QGS publications retrieved by a

iven search string (Zhang et al., 2011). The iterations are reported

n full detail in Sobernig et al. (2014).

The final search string represents pairs of search terms, with each

air drawing one search term from each term set. More precisely,

he terms within each set were considered alternatives (exclusive-or;

.g. “uml” xor “mof”). Then, to arrive at term pairs, the two sets were

erged element-wise using conjunction. The final query expression,

herefore, represented 544 unique term pairs (e.g. “uml” and “pro-

le”). This tactic met a triple objective: First, we arrived at more

recise search terms regarding our study context. Second, this tactic

inimized any semantic overlap between terms related to technolo-

ies and DSML engineering, respectively. Third, all four engines sup-

orted this structured search string. We could enter the search string

s one concatenated boolean expression in a disjunctive-normal form

leaving aside minor concrete-syntax differences), rather than in its

omplex expansion into unique term pairs.

.1.2. Main search

In this step, we conducted the automated publication search us-

ng the search string developed in the previous step on the four se-

ected search engines: ACM Digital Library, IEEE Xplore, Scopus, and

pringerLink. Fig. 10 provides an overview of the sub-steps of this au-

omated search.

ngine-based search. This step involved four activities: search execu-

ion, duplicate cleansing, validity computation, and QGS-based cap-

ing. Search execution yielded 5,778 search hits split into four result

ets, one for each of the four search engines. When extracting the re-

ults, we applied and preserved the relevance-based sorting of search

its (as provided by each engine).

From the ACM Digital Library, 933 hits were retrieved. IEEE Xplore

eturned 1,845 hits. Searching Scopus and SpringerLink yielded 2,000

nd 1,000 hits, respectively (see Fig. 11). IEEE Xplore, Scopus, and

pringerLink cap the result sets when exporting them into a process-

ble format. For IEEE Xplore, which enforces a capping at 2,000 hits,
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Fig. 10. Sub-steps of conducting the main search.

Fig. 11. Overview of cleansing (duplicate detection) and reduction steps (sensitivity cutoff) for each result set, yielding in total 2,678 papers entering the selection procedure.
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the restriction did not apply given a smaller number of actual hits.

As for Scopus and SpringerLink, the numbers reported above corre-

spond to the capped result sets. The actual result sets of Scopus and

SpringerLink amounted to more than 16,500 and more than 8,500

hits, respectively.

The four engines demanded their own variants of the complex

search string (see Section 4.1.1). This was mainly due to different con-

crete syntaxes of the query processors. In addition, all provided differ-

ent means to limit the searches to our required range of publication

years (2005–2012) and to publications having a full-text body written

in English language. The resulting four search strings are documented

in the SLR protocol (Sobernig et al., 2014).

Duplicate detection was performed for each result set and across

the four result sets. In total, we removed 1,083 hits as unwanted

duplicates (see Fig. 11). These duplicated hits were almost entirely

caused by redundant hits between two and more result sets, rather

than replicated entries within one result set alone. As a minor ex-

ception, however, Scopus contained ten duplicated hits within its re-

sult set. Duplicate detection was performed in three passes: First, we

used the Document Object Identifiers (DOI) provided by the searched

publication data bases for their hits. 5,232 of the 5,778 hits were

equipped with a DOI. Second, for the publications lacking a DOI,

we matched their publication titles character-wise and in a case-

insensitive manner. Third, to overcome possible barriers of the con-

servative, exact matching strategy, we matched hits based on their

tokenized titles and a Jaccard similarity function (Naumann and Her-

schel, 2010). Barriers included the heterogeneity in the titles in the

presence of punctuation, encoding artifacts, and typos. Duplicate re-

moval was performed in a manner preserving the relevance sorting

of the four result sets.

Validity computation was performed on the remaining, unique

4,695 hits (see Fig. 11). For this, we computed the quasi-sensitivity of

the engine-based search with respect to our QGS corpus. The overall

objective was to obtain a search sensitivity at a level between 70 and

80% (Zhang et al., 2011). In other words, between 70 and 80% of the

QGS publications should be contained in the collated result set. We

arrived at an overall quasi-sensitivity of ≈75.7% for the main search:

28 of 37 QGS publications were successfully retrieved across all four

search engines. Scopus contributed 14, SpringerLink seven, ACM Dig-
tal Library four, and IEEE Xplore three QGS publications. Note that

his validity computation was repeatedly performed, actually, over

everal search iterations to maximize the sensitivity.

Finally, we applied a capping of the search hits based on the re-

rieved QGS publications. We defined a cutoff at the position of the

ast QGS publication found in each result set. For example, the last

GS publication in the set of 853 unique ACM Digital Library hits was

isted at position 781. Thus, position 781 became the cutoff position

or result set of ACM Digital Library (see Fig. 11). This capping strat-

gy was justified because of the substantial quasi-sensitivity level

chieved with the engine searches (see above). After capping, 2,678

its or 46.4% of the total search hits entered the manual selection

rocedure.

election criteria. The 2,678 papers in the cleansed, reduced, and

ollated result set were evaluated by two authors according to the

ine selection criteria (i.e. four venue-specific and five publication-

pecific ones), yielding a total of 5,709 inclusion and exclusion deci-

ions, respectively. After this selection step, 106 of the 2,678 papers

≈4%) were included. The nine selection criteria accurately reflect the

tudy’s objective. To give one example, the fact that we were inter-

sted in DSML designs based on the UML 2.0 led us to impose 2005

s the starting year, given that the UML 2.0 specification was formally

eleased in July 2005.

The first four criteria were specific to the publication venue of

given search hit. These four criteria corresponded to the ones al-

eady applied for selecting the QGS venues: time coverage (2005–

012), community relevance, SE focus, and content maturity (see

ection 4.1.1). Testing the venue-specific criteria first allowed us to

ake a selection decision on papers sharing a venue at once. This

elped us considerably to cope with the extensive result set.

Once satisfying all venue-specific criteria, a paper was checked for

ve publication-specific criteria. Most importantly, it was established

hether the paper’s full-text was accessible to us, e.g. whether our

nstitutional subscriptions to the publisher’s digital libraries covered

hese items, or whether an author copy could be retrieved otherwise.

nly 47 papers could not be accessed at all. Based on the full-text,

t was then decided whether a paper reports an actual DSML design.

his decision involved several checks regarding the paper type (e.g.
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Fig. 12. Overview of important selection decisions on the 2,678 papers entering the

selection procedure, with 106 entering quality assessment, and 73 finally becoming

included.
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xcluding editorial introductions or position papers) as well as the

aper’s scope as either primary or secondary studies on DSMLs.

To determine whether a candidate paper and the corresponding

SML design were based on the UML 2.x, we first checked the paper’s

eferences list for citations of the corresponding OMG UML specifica-

ion documents. If missing, we reviewed the full-text for clarifying

tatements and the various design artifacts. If available, we also at-

empted to infer the UML version dependencies from the concrete-

yntax elements used in diagrams. In parallel, we verified whether

ll necessary details of the DSML design are reported by the candi-

ate paper. For example, we verified whether a valid specification of

UML profile and its elements is provided.

In total, approximately a quarter of the papers (i.e. 704 out of

,678) were excluded because they did not comply with the report-

ype criterion. Papers not reporting on UML-based DSML designs or

secondary study on DSMLs fell into this group. 152 of the excluded

ublications were checked and agreed on by two authors indepen-

ently from each other.11 Approximately, 70% of the papers (1,868/

,678) did not satisfy all of the eight remaining venue- or publication-

pecific criteria.

uality assessment. The 106 papers that were included at this point

ere then further assessed for two quality properties: (1) duplicates

nd (2) erroneous DSML designs or design reports. In total, 33 papers

id not pass this assessment step. Given the inherent limitations of

he semi-automated duplicate detection (see above), quality assess-

ent involved manual checking for duplicates when working on the

ull-text bodies and the design details. This way, we found another

ight duplicates (see duplicated in Fig. 12). For example, one hit

urned out having two replicated entries between two or more result

ets which did not share the same DOI. This way, they had escaped

he semi-automated duplicate detection before.

The extent, to which we could extract design rationale from the

ncluded papers, was directly dependent on the completeness, the ex-

ressiveness, and the correctness of the design documentation by the

ublication authors. This challenge is a concrete instance of inappro-

riate rationale representation in design-rationale capturing in more

eneral (Dutoit et al., 2006). We checked the documented DSML de-

igns for a number of well-discussed, primarily syntactic issues when

t comes to designing UML-based DSMLs (see, e.g., Henderson-Sellers

nd Gonzalez-Perez, 2006; Pardillo, 2010; Atkinson et al., 2003). To

he extent concrete-syntax issues also signal semantics violations,

e also considered certain classes of semantics defects. This way, we

dentified 25 papers whose DSML designs were reported in an inap-

ropriate, non-extractable manner and were therefore excluded from

ata extraction. The quality issues are reported in full detail in the SLR

rotocol (Sobernig et al., 2014).

xtraction of publication data. After having completed the quality as-

essment, 73 papers representing 2.7% of the original search hits re-

ained (see Fig. 12). For this final publication set, we extracted or

ompleted the publication-specific data. Besides, we coded the DSML

esign decision data according to our decision-record catalog (see

ection 5.3).
11 Validation by the second extractor for false negatives was based on a 20% sample

f all 704 papers processed by the first extractor and considered as either wrong report

ype or as containing erroneous DSML documentation artifacts. Due to this sampling,

n a probabilistic projection, we risking having missed out between 0 and up to 23 pub-

ications. With one false negative found in this sample, in the worst case, we risk having

issed up to 33 false negatives in the total set of 704 publications (binominal confi-

ence interval (0, 34]; 99% confidence level). Note, however, that any false negative at

his point might still have been ruled out as a true negative due to four subsequently

valuated criteria (e.g. a wrong UML version) and during quality assessment (i.e. du-

licate removal). With only 73 out of 106 publications (i.e. ≈68.9%) having entered the

nal publication corpus (see Fig. 10), we arrive at the number of up to 23 potentially

issed publications in the paper corpus as false negatives under the above empirical

robability: 33∗0.689 ≈22.7
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Overall, we recorded 15 metadata items for each included paper.

hese items included bibliographical entries such as the publication

ear, paper-specific keywords, and the venue. In addition, the selec-

ion decision was noted for each hit. The included papers were further

escribed by eight decision-mining entries: Beyond the DSML project

ame (if available), the DSML projects were classified according to

heir application domain(s) and the relevant UML diagram types.

ext, the respective decision options identified for a given DSML de-

ign were recorded with respect to each of the six decision points

rom our decision-record catalog. Each DSML design became repre-

ented as one decision-option set (see Section 2.1.2). The final pa-

er corpus including the 73 papers identified via the engine-based

earch is characterized according to the extracted publication data in

ection 4.2. In Section 5.3, we report on the extracted design-decision

ata in more detail.

nter-rater reliability. 2,400 of the 2,678 search hits, which remained

fter applying the cutoff points, were reviewed by one author. 278

ere rated and assessed for inclusion or for exclusion by two authors.

his co-rated subset comprised all publications included by one au-

hor, all publications considered erroneous, and a randomized 20%

ample of the papers excluded by one author.

For this co-rated subset, the respective rating authors achieved

percent agreement of 88.5%. That is, for more than 245 of the

78 publications two authors arrived at the same selection decision

i.e. included or excluded) independently from each other and with-

ut negotiations. Chance-corrected (worst-case) inter-rater agree-

ent κ̂C amounted to ≈0.875 ± 0.0004.12 This represents a very

ood (worst-case) agreement level according to standard benchmarks

Gwet, 2012; Fleiss, 1981). Therefore, we considered the underlying

election procedure (criteria) reliable. Any conflicting selection deci-

ions were first revisited in a joint session between the two rating au-

hors. Then, if necessary, the third, non-involved author adjudicated

n a search hit at issue.

.1.3. Backward snowballing

To incorporate prior work considered relevant by the authors

f the 73 included papers, we performed a manual, citation-based

earch using the bibliographical references taken from the 73 in-

luded papers. We followed a backward-snowballing procedure as

ocumented in Jalali and Wohlin (2012) and Webster and Watson

2002). The procedural steps are summarized in Fig. 13.

anual search. The snowballing procedure ended after having com-

leted three search iterations. The initial iteration used the 73 papers

ncluded from the main search hits as a start set (see Section 4.1.2).
12 Missing data in terms of hits only rated by one author have been considered for

omputing the marginal probabilities in deriving κ̂C . ± signals the leave-one-out Jack-

nife variance estimate Var(κ̂C ) of Cohen’s Kappa statistic.
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Fig. 13. Sub-steps of conducting the citation-based search (backward snowballing).
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The subsequent two iterations were triggered by newly included pa-

pers from a previous iteration. After having completed the third it-

eration, no new candidate papers were found. In each iteration, we

first extracted the references lists from the start-set publications. In

the initial iteration, we obtained 2,116 references from 73 papers. In

the second iteration, we worked on 200 references taken from seven

papers included during the first iteration. The third and last iteration

used 21 references from one additional paper that was found during

the second iteration. Across the three iterations, we reviewed a total

of 2,337 references.

All 2,337 extracted references were checked by at least one re-

viewer, duplicate detection was performed manually. This was a con-

sequence of the unavailability of structured and processable refer-

ence lists from all four data sources (ACM Digital Library, IEEE Xplore,

Scopus, and SpringerLink). On top, the bibliographical reference data

was widely heterogeneous (mixed bibliography styles, missing bibli-

ographical entries such as DOIs).

Selection criteria. We made the selection decision on the snowballing

hits by applying the nine venue- and publication-specific criteria as

for the main, engine-based search (see Section 4.1.2). This way, we

selected another 39 publications as inclusion candidates. In addition,

snowballing yielded one more QGS publication adding to the 28 QGS

publications from the main search (see Section 4.1.2). We, thus, ar-

rived at a final quasi-sensitivity of ≈78.4% (29/37) for our review.

Approximately 7.3% of the extracted references (170/2,337) did not

relate to reports on UML-based DSML designs as primary studies, but

rather to other (non-UML) DSMLs, to secondary studies on DSML de-

signs, or they were not related to DSMLs at all. 37 of these off-topic

references were verified by two authors independently from each

other.13 The majority of 91% (2,128/2,337) did not satisfy the eight

remaining venue- and publication-specific criteria.

Quality assessment. The 39 candidate publications were then as-

sessed for duplicates and issues of design-documentation quality. In

total, by comparing the snowballing hits to the cleaned automated

search hits, we identified and removed 25 unwanted duplicates. For

six of the remaining 14 publications, the documentation-quality as-

sessment revealed quality issues similar to the ones during the main

search. The issues included ambiguous UML metamodel extensions,

faults in defining and applying the UML profiles, and syntax errors
13 Validation by the second extractor for false negatives was based on a 20% sample

of all 170 papers processed by the first extractor and considered as wrong report type.

Due to this sampling, in a probabilistic projection, we risk having missed out between

zero and up to seven publications. With one false negative found in this sample, in

the worst case, we risk having missed up to 31 false negatives in the total set of 170

publications (binominal confidence interval (0, 32]; 99% confidence level). Any false

negative found at this point might still have been ruled out as a true negative due

to four subsequently evaluated criteria (e.g. a wrong UML version) and during quality

assessment (i.e. duplicate removal). With only eight out of 39 publications (i.e. ≈20.5%)

having entered the final publication corpus (see Fig. 13), we arrive at the number of up

to seven potentially missed publications in the paper corpus as false negatives under

the above empirical probability: 31∗0.205 ≈6.4.
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see the SLR protocol; Sobernig et al., 2014). Eight publications en-

ered the paper corpus (see Fig. 13).

xtraction of publication data. From the eight additional publica-

ions, we extracted bibliographical metadata and coded their design-

ecision data (see Sections 4.1.2 and 5.3, respectively). Missing (e.g.

ublication years) and inconsistent metadata (e.g. title formats) pre-

ented us from extracting descriptive statistics over all backward

nowballing items.

nter-rater reliability. During selection and quality assessment, 2,268

f the 2,337 snowballing hits were reviewed by exactly one au-

hor. 69 hits were assessed for inclusion and for exclusion by two

uthors. The co-rating authors agreed on more than 80% of the

ated references in each of the iterations. The corresponding chance-

orrected (worst-case) agreement levels κ̂C for the each iteration

ere ≈0.967 ± 0.0005, ≈0.833 ± 0.0345, and 1, respectively.14 There-

ore, we achieved a very good to almost perfect level according to stan-

ard Kappa benchmarks (Gwet, 2012; Fleiss, 1981) for each iteration.

herefore, we considered the underlying selection procedure (crite-

ia) reliable. Any conflicting selection decisions were first revisited in

joint session between the two rating authors. Then, if necessary, the

hird, non-involved author adjudicated on a search hit at issue.

.2. Paper corpus

To summarize, the main engine-based search and the snowballing

earches resulted in retrieving and reviewing 5,015 publications. The

ain search accounted for 2,678 (53.4%), snowballing for another

,337 publications (46.6%). From these 5,015 publications, we con-

idered a total of 81 articles as relevant: 73 from main search plus 8

rom snowballing. Recall that from 37 QGS publications, 29 had been

eturned by the main and snowballing searches. To complete the pa-

er corpus, we re-considered the missing eight QGS publications for

nclusion based on all 9 selection criteria. This way, we classified two

GS journal articles and one QGS conference article as relevant. We

o arrived at a paper corpus of 84 publications out of a total of 5,023

eviewed publications (the complete list of all 84 publications can be

ound in the Appendix). The corpus was composed of 54 conference

rticles (64%) and 30 journal articles (36%).

Fig. 14 shows the timeline distribution of the 84 included arti-

les, discriminating between archival and presence venues. The re-

ease years of important UML revisions (2.0, 2.1.2, 2.2, 2.3, and 2.4.1)

n this time window are plotted as vertical lines. In general, the total

umber of publications on UML-based DSMLs, which are considered

elevant for the scope of our study, appears to be in decline. Confer-

nce articles show a clear decrease and journal articles stagnate. 2006

nd 2011 represent intermittent peaks. This general observation of a
14 Missing data in terms of hits only rated by one author have been considered for

omputing the marginal probabilities in deriving κ̂C . ± signals the leave-one-out Jack-

nife variance estimate Var(κ̂C ) of Cohen’s Kappa statistic.
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Fig. 14. Finally selected articles per venue type (journal, conference, total) and per publication year (2005–2012). The release years of important UML revisions are plotted as

vertical lines. Note that the paper corpus extends to 2013. This is due to running the search in Spring 2013 permitting results from 2013 to handle the ambiguity of “publication

year” as either venue or paper-publishing year.

Table 5

Included articles per publication venue. Journals are flagged with an asterisk (∗). See

Appendix A in Sobernig et al. (2014) for the venues’ full names.

Frequency Publication venue

10 MoDELS, SoSyM∗
9 ECMFA

4 IST∗, JOT∗, SAC

3 SAFECOMP

2 COMPSAC, CSI∗, EDOC, ICWE, IETSoftw∗
1 CSMR, EMSOFT, ER, ESEC, FASE, HASE, ICSEA, ICSOC, ICWS,

IJICIC∗, IJSEKE∗, Informatica∗, ISeB∗, ISSRE, JRPIT∗, JSW∗,

OOPSLA, OTM, QSIC, SAM, SCC, SCCC, SEAA, SEFM, SEKE,

SFM, SOCA∗, SoMeT, SP&E∗, SPLC
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Table 6

Frequency of occurrence of ACM 2012 CCS categories for the corpus of 84 selected ar-

ticles.

Frequency ACM 2012 CCS categories

11 Service-oriented architectures

10 Web services

7 Embedded systems, Model verification and validation,

Software development techniques

6 Security requirements

5 Model checking, Requirements analysis, Web applications

4 Data warehouses, Graphical user interfaces, Real-time

systems, Software development process management,

Software testing and debugging

3 Avionics, Business process modeling, Safety critical systems,

Software architectures, Software evolution, Software

security engineering, System on a chip, Web interfaces

2 Design patterns, Fault tree analysis, Measurement, Metrics,

Orchestration languages, Reusability, Software product

lines, Software safety, Transportation

1 Access control, Architecture description languages,

Availability, Collaborative and social computing, Database

design and models, Data mining, Distributed architectures,

Electronic commerce, Engineering, Enterprise data

management, Enterprise information systems, Error

detection and error correction, Estimation, Hardware

description languages and compilation, Hypertext

languages, Operating systems security, Performance,

Robustness, Scenario-based design, Semantic web

description languages, Software design engineering,

Software fault tolerance, Software performance, Software

reliability, Systems analysis and design,

Telecommunications, Trust frameworks, Ubiquitous and

mobile computing, Use cases, Version control

t

p

m

i

5

u

p

aper drop is in line with findings on UML profiles prior to 2010 by

ardillo (2010).

In total, the 84 included articles were published in 29 different

onference proceedings and in 13 different journals (see Table 5). The

op four conference venues (MoDELS, ECMFA, SAC, and SAFECOMP;

4% of all conference venues) account for 26 publications (48% of

he total 54 conference publications). The top four journal venues

SoSyM, IST, JOT, and CSI; 31% of all journal venues) account for 20

rticles (67% of the total 30 journal articles). In total, more than half

f all included publications (46 publications, 55%) were published

n eight different venues. There are two conference outliers (MoD-

LS and ECMFA; 10 and 9 publications, respectively) and one journal

utlier (SoSyM; 10 articles) contributing an over-proportionally high

umber of included articles.

To map the domain coverage of the selected DSMLs, we classi-

ed every DSML project of the included publications according to

he 2012 ACM Computing Classification System (CCS)15. For example,

WfM-Sec is a UML-based DSML for the modeling of security-critical,

nter-organizational workflows and provide a mapping to the Web

ervices Choreography Description Language (WS-CDL). We assigned

his article the following CCS categories: software security engineering,

eb services, orchestration languages.

In total, we applied 155 category assignments for all 84 publica-

ions (the assignments per publication can be found in the Appendix).

his corresponds to a mean of 1.85 categories per publication. The

55 assignments were specific to 61 unique CCS categories. Table 6

eports the resulting frequency distribution of assigned categories.

notable number of DSMLs fall into the areas of service-oriented

nd embedded software systems, model verification and validation,

s well as requirements analysis and security requirements. However,
15 See http://www.acm.org/about/class ; last accessed: Sep 9, 2015.

t

8

d

he frequency distribution clearly demonstrates that the paper cor-

us covers a very broad and diverse range of DSML application do-

ains. This is an important achievement and prerequisite for answer-

ng our first research question (see Section 6).

. Results: Captured design decisions

The paper corpus of 84 publications described the designs of 80

nique DSMLs. This is because, at closer inspection, eight of the 84

ublications turned out to cover complementary details of four dis-

inct DSML designs. In the following, we shift perspective from the

4 publications to these 80 unique DSMLs to report on the extracted

esign-decision data. A list of all DSMLs is provided in the Appendix.

http://www.acm.org/about/class


156 S. Sobernig et al. / The Journal of Systems and Software 113 (2016) 140–172

Table 7

Correspondences between content items of the decision-record catalog and the CA

coding schema, which was built according to the guidelines in Schreier (2013).

Decision-record catalog Coding schema

Decision record Main category

Decision option Subcategory

Record name, option name Category name

Record description, option description Category description

Applications, sketch, option descriptions Indicators, positive examples

Option descriptions, decision consequences Decision rules
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5.1. Content analysis

We performed a content analysis (CA) on all corpus papers us-

ing the 80 DSMLs as units of analysis. The content analysis involved

human coding of the papers’ full-text according to a previously de-

fined coding schema. This coding schema was systematically derived

from the decision-record catalog by the authors. The CA purpose was

a threefold test for this coding schema:

1. Test for saturation: Is each decision category reflected at least

once in the corpus?

2. Test for exhaustiveness: Can each unit of coding (e.g., text frag-

ment, specification artifact) be assigned to an already defined cat-

egory?

3. Test for generalizability: Are the decision categories general in

terms of being found for at least three units of analysis (DSMLs)?16

Hence, we applied a directed (deductive) content analysis using

hypothesis coding (Saldaña, 2013). Note that these three tests are spe-

cific to the content-analysis step of our multi-method study. Our two

main research questions are exploratory (see Section 3). Running the

three tests sets the context for systematically answering the research

questions (esp. RQ2; see Section 6).

Coding schema. The coding schema comprised category definitions,

category indicators, category examples, and decision rules. The struc-

ture and content of the (pre-study) decision-record catalog provided

a framework for building the coding schema as a two-level category

hierarchy. At the top level, the decision records formed main cate-

gories (D1–Dm). Decision options became subcategories. The subcat-

egory codes (O1.1–Om.n) were then used for material coding and cod-

ing analysis (see below). The decision records already provided all

description items for the coding categories and instruction items for

coders (see Table 7).

Indicators complement category descriptions and can signal the

presence of a category of interest (decision option) in the material

to the coder. Important indicators in our coding schema were ar-

tifact types characteristic for DSMLs and technology projections. The

decision record on “language-model constraints” (D3; Hoisl et al.,

2014a), for instance, identifies kinds (and examples) of code listings.

As for technology projections, this decision-record description refers

to constraint-expression languages such as OCL and EVL as examples.

To illustrate the categories during coding, we included positive

examples of what the category is meant to cover. Positive examples

included concrete instances of artifact types (e.g. concrete code list-

ings) and technology projections provided by the catalog (sketches).

Sketches were extracted from DSMLs or secondary studies on extend-

ing the UML and on building UML-based DSMLs. The following is an

exemplary sketch taken from the decision record on “language-model

constraints” (D3; Hoisl et al., 2014a):

“Sketch. Consider the following excerpt from P8: For a UML activ-

ity, each action can be guarded by a constraint whose conditions
16 The indicative threshold of three is borrowed from the software-pattern commu-

nity, see Section 2.1.1 for a justification.

(

a

r

refer to a set of operands and checking operations. At runtime

(level M0), the operations are called to evaluate whether an action

should be entered, depending upon some contextual state. Con-

straint 1 shows a constraint-language expression (OCL) accompa-

nied by a complementary textual annotation. […]

Constraint1 : The operands specified in a ContextCondition are
either ContextAttributes or ConstantValues :

context ContextCondition inv :
self.expression.operand.oclAsType(OperandType)− >

forAll(o|
o.oclIsKindOf(ContextAttribute)or
o.oclIsKindOf(ConstantValue))

”

(Hoisl et al., 2014a, pp. 22–23)

Some categories exhibited an overlap between concepts and be-

ween indicators (examples). Consider, for example, the subtle dif-

erences between the concrete-syntax decision options (categories)

iagrammatic syntax extension (O4.2) versus mixed syntax (O4.3).

o guide coding under ambiguity, the coding schema included deci-

ion helpers (“decision rules”) taken from the decision-record cata-

og. To draw a definitional line between the two, the decision-record

escription contains guidelines such as “[…] in contrast to O4.2, this

ption [O4.3] would define a new and domain-specific diagram type”

Hoisl et al., 2014a, p. 24).

Another set of decision rules was derived from the description

f decision associations (see Section 2.1.2). Given a unit of coding,

oders are so pointed to related categories in other main categories

or further consideration. For instance, once having assigned a cate-

ory profile re-/definition (O2.2) to a given unit of coding, the same

nit of coding is likely to contain details on specific concrete-syntax

hoices. Therefore, a decision rule points the coder to potentially rel-

vant concrete-syntax categories (e.g., diagram symbol reuse; O4.6).

he decision association “native stereotype definition” exemplifies

uch a decision rule:

“A UML profile definition (O2.2) for the language-model formal-

ization was observed in combination with a concrete syntax spec-

ification via annotating model elements (O4.1) and reusing dia-

gram symbols (O4.6; see, e.g., P22 or P54). […] A stereotype inher-

its all semantics (abstract syntax) and the notation (concrete syn-

tax) from its extended UML base class.” (Hoisl et al., 2014a, p. 38)

Segmentation and coding were all performed using PDF copies

f the selected materials, PDF reader software, and portable PDF

nnotations.

egmentation. In this step, we marked relevant parts (themes) and

nits of coding. From preparatory work, we were aware that state-

ents and content fragments documenting design decision do not

ollow the internal structure of the scientific publication (e.g., dedi-

ated sections per design aspect). Rather, we had found them spread

cross the document, including appendix material and externally ref-

renced companion material. In addition, we had decided to con-

ider all auxiliary design-documentation artifacts contained (e.g. di-

grams) or referenced by the publication at hand, if fully accessible.

mportant artifacts included package diagrams as well as implemen-

ation artifacts such as metamodel, profile, and concrete-syntax spec-

fications. Therefore, we first marked statements and content items

e.g. tables, figures, listings) having a common point of reference

themes).

We used color highlighting to identify six themes in a document

“domain analysis”, “UML2”, etc.; see Fig. 15). The available themes

re defined by the decision-context descriptions of the decision

ecords. For example, the theme “domain analysis” results from the
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Fig. 15. Thumbnail overview of the corpus paper on the DSML BusinessActivities after

segmentation. Five (out of six possible) themes are identified as colored segments. The

ninth and tenth pages (465, 466) are highlighted for the coding details in Fig. 16.
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Table 8

Coding consistency per main coding category (D1–D6); Kupper–Hafner (KH) Index;

π̂ ∗: Percent agreement (incl. missing ratings); Ĉ∗: Chance-corrected KH indices (incl.

missing ratings); Var( . . .): leave-one-out Jackknife variance estimates.

D1 D2 D3 D4 D5 D6

π̂ ∗ 0.85 0.96 0.84 0.94 0.98 0.87

Var(π̂ ∗) 0.0004 0.0002 0.0005 0.0002 0.0001 0.0004

Ĉ∗ 0.77 0.95 0.80 0.92 0.98 0.84

Var(Ĉ∗) 0.0012 0.0003 0.0008 0.0003 0.0002 0.0007
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ecision record on “language-model definition” (D1) which describes

he broader decision context as part of a domain-analysis step:

“Decision context. A prerequisite for DSML design is a systematic

analysis and the structuring of the language domain. By applying

a domain analysis method, such as domain-driven design […], in-

formation about the selected domain is collected and evaluated

(e.g. based on literature reviews, scenario analyzes, and collected

expert knowledge). […]” (Hoisl et al., 2014a, p. 12)

Those parts of a document containing details on domain-analysis

rocedures, techniques, and analysis findings were marked using the

heme’s color code (see the color legend in Fig. 15). In Fig. 15, five

heme segments are shown color-highlighted (out of six possible

nes) for the paper on the DSML BusinessActivities. As an example,

he “domain analysis” segment in the themed document groups those

ocument items which deal with analyzing the application domain

RBAC for business processes) and which define key domain abstrac-

ions and their relationships (e.g. separation and binding of duty).

his way, all corpus material was split up into up to six different the-

atic segments (per DSML).

Within each thematic block, we then identified smaller parts

units of coding) to be assigned codes in a separate step (see para-

raph on “Main coding”). Units of coding were complete phrases,

hrase blocks, and content items such as tables, figures, listings, and

ormula blocks. Relevant phrases were identified using underline

arks, other content items were marked using margin bars. See

ig. 16 for various examples of marks and units of coding. For in-

tance, on p. 465 of the excerpt, three listings depicting constraint

xpressions (OCL) were marked using vertical margin bars. Each of

hese listings formed a separate unit to be later assigned a code.

ote that the identified segments were not broken up into units of

oding exhaustively. Phrases and content items deemed irrelevant

or the three above tests were not considered as units of coding.

he two paragraphs discussing rationale for making or limitations of

iven formal propositions on p. 464 in Fig. 16 are examples of such

xcluded content.

Segmentation as a separate working step reduced the risk of acci-

entally skipping relevant content during actual coding, yet it helped

reak down the large paper corpus into a manageable material col-

ection for main coding. Note that segmentation step was carried as

n integrated part of SLR data extraction (see Section 4.1). During

ata extraction, the corpus papers were divided up between the au-

hors for extraction and segmentation. This helped avoid excessive

nd time-consuming iterations over the entire corpus. To establish

hat all authors perform segmentation in a consistent manner, seg-

entation was performed collaboratively in a joint coding session for

apers collected during preparatory studies (Hoisl et al., 2012b; Filtz,

013).
ain coding. In the main coding phase, each unit of coding became

ssigned to one of the categories (decision options) of the coding

chema. Category assignment was performed in line with the over-

ll SLR extraction procedure (see Section 5). For the majority of the

orpus papers, coding was conducted independently by two authors,

ach author being “blinded” for the assignments of his alter. A smaller

hare was coded/recoded by a single author. This was due to one

uthor having initially excluded a DSML or the underlying publica-

ion(s), for example. As a result, the overall paper corpus was effec-

ively split into two parts: For 62 of the 80 DSMLs, coding was per-

ormed twice and independently by two authors. This part was also

hecked for coding consistency (see below). For the remaining 18 pa-

ers, there were assignments by a single author.

The choice of a particular category assignment was first recorded

y each author for each unit of coding as a text mark. The mark’s

ext identified the category assigned to a given unit of coding. For

xample, “Fig. 7” on page 465 in Fig. 16 was handled as a sin-

le unit of coding and text-marked by “O2.3”. This text mark indi-

ates that the package diagram documents a UML metamodel ex-

ension in a formal and diagrammatic way (metamodel extension).

he UML metamodel is extended by adding six sub-metaclasses

BusinessAction, Subject etc.). Note that this coding step re-

ulted in repeatedly assigning categories to several different coding

nits per unit of analysis (DSML): Consider the three OCL listings in

ig. 16, each of them being marked “O3.1” (constraint-language ex-

ression). Each unit of coding could also be assigned to two or more

ategories. Each text mark could be accompanied with text com-

ents, e.g., for providing some rationale for the assignment.

In a second step, the category assignments were prepared for fur-

her analysis using a summarizing coding form. The coding form is

ocumented in the SLR protocol (Sobernig et al., 2014). For every

SML, each coding author recorded whether a given category has

een assigned at least once, i.e. there is at least one unit of coding

aving assigned a certain category (decision option). Recording and

urther analyzing the state of presence (absence) of one category per

SML was sufficient to answer the three tests and the overall research

uestions. Each row in these coding forms translates directly into the

ecision-option sets used for further analysis (see Section 2.1.2).

oding consistency. To compare the coding performed by the pairs of

uthors, we used summary measures of inter-rater agreement. Inter-

ater agreement signals how consistent the different coders were in

ssigning categories (codes) of the coding schema to units of analysis

DSMLs) in the material. That is, to which extent they are in agree-

ent on codes to assign and/or on codes to discard independently

rom each other, based on the coding schema, and without negoti-

ting a joint decision. Any conflicting coding was first revisited in a

oint session between the two coding authors. Then, if necessary, the

hird, non-involved author adjudicated on a DSML at issue.

Table 8 summarizes the percent agreement (upper bound) and

he extended chance-corrected Kupper–Hafner indices (lower bound,

orst case) for the six main coding categories. The two independently

oding authors arrived at the same assignment of categories to units

f analysis (DSMLs) for 84% (D3) through 98% (D5) of the 62 co-rated

SML designs. Applying chance correction (extended KH index Ĉ∗)

nder worst-case assumptions (random assignment), we established
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Fig. 16. Excerpt (two pages) from the segmented and coded corpus article on DSML BusinessActivities.

c

F
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a

T

that the two rating authors achieved actual coding agreement be-

yond chance in approx. 77% (D1) through 98% (D5) of the total ex-

pected cases beyond chance. In technical terms, coding consistency

amounted to an extended KH index Ĉ∗ equal to and greater than 0.77

± 0.001217 for all six main coding categories (see Table 8). This in-

cludes agreement in terms of categories not assigned to DSMLs by

both coders. Therefore, for the 62 co-rated DSML designs, the co-

rating authors were in medium to good chance-corrected (worst-
17 ± signals the leave-one-out Jackknife variance estimate Var(Ĉ∗) of the extended

chance-corrected Kupper–Hafner Index Ĉ∗ .

c

ase) agreement according to standard benchmarks (Gwet, 2012;

leiss, 1981). Hence, we considered the coding guided by the cod-

ng schema consistent. Any coding conflicts were resolved as outlined

bove.

est results. Based on the coded decision data, the three tests guiding

ontent analysis were answered as follows:

1. Saturation: Is each decision category reflected at least once in the

corpus?
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Table 9

Overview of the structural and behavioral UML diagram-types according to Appendix

A in Object Management Group (2015b), as adopted and/or tailored by 77 out of 80

DSMLs identified using the SLR. Three DSMLs, which target all or are unspecific about

the UML diagram types, are omitted.

DSMLs (cnt.) Diagram type (ranked by decreasing cnt.)

59 Structure diagrams

50 Class

14 Component

14 Package

7 Composite structure

5 Object

3 Deployment

0 Profile

39 Behavior diagrams

20 Activity

11 State machine

8 Use case

4 Sequence

1 Interaction overview

0 Communication

0 Timing
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18 We report the variance in terms of the median absolute deviation from the median

(MADM) using the ± notation along with the median value.
No: Three categories out of the 31 available categories were not

assigned to any unit of coding, and therefore, not reflected in any

DSML.

Therefore: We annotated the corresponding decision options in

the decision-record catalog to reflect this missing evidence from

our content analysis. See Sections 5.5 and 6 for a discussion.

2. Exhaustiveness: Can each unit of coding (text fragment, specifica-

tion artifact) be assigned to an already defined category?

No: The paper corpus revealed units of coding which could not be

assigned to any of 26 categories of the initial coding schema.

Therefore: The coding schema was extended accordingly, by intro-

ducing five new categories on options for behavior specification

and platform integration. See Sections 5.5 and 6 for a discussion.

3. Generalizability: Are the decision categories general in terms of

being found for at least three units of analysis (DSMLs)?

No: Seven of the finally available 31 available categories were not

assigned to at least three DSMLs.

Therefore: We proceeded with a frequency-pattern analysis for

the 24 generalizable categories (see Section 5). The presenta-

tion of the decision options corresponding to the seven non-

generalizable categories was revised, for example, by marking

them as candidate options. See Sections 5.5 and 6 for a discussion.

The detailed numbers (frequencies) underlying these tests are re-

orted in Section 5.3.

.2. Descriptive data

Before reviewing the design-decision data, we characterize the 80

SMLs regarding the adopted UML diagram types and their specifi-

ation size.

iagram types. The majority of the 59 DSMLs tailor a structural UML

iagram type; 38 DSMLs adopted and tailored one or more structural

nd no behavioral diagram types (see Table 9; the diagram types tai-

ored by each DSML are listed in the Appendix). Class diagrams are

dopted by 50 DSMLs, followed by component and package diagrams

14 DSMLs each). This observation completes the empirical picture of

preponderance of class diagrams in broader UML usage (see, e.g.,

utchinson et al., 2014; Budgen et al., 2011). Profile diagrams have

ot been found adopted by any of the DSMLs.

With respect to behavioral diagrams, 39 DSMLs tailor at least

ne behavioral diagram type; 18 build on behavioral diagrams only,
ithout building on any UML structural diagram type. Activity (20),

tate machine (11), and use case diagrams (8) are most frequently

sed, while communication and timing diagrams are not used by any

SML.

21 DSMLs provide both tailored structural and behavioral dia-

rams. Similar distributions between structural and behavioral dia-

ram types were found in an earlier secondary study on UML profile

sage (Pardillo, 2010).

pecification size. We quantified the core language-model sizes of the

0 DSMLs. Our findings below indicate that, on the one hand, our pool

f DSMLs compares with prior reports on UML extension sizes. On the

ther hand, our DSML pool covers a greater size variety than prior

ork (Staron and Wohlin, 2006; Pardillo, 2010). Depending on the

ifferent, underlying UML implementation techniques (O2.1–O2.4),

he specification size was established differently.

For 61 DSMLs defining their language models using UML profiles

O2.2), we counted the stereotype definitions and the correspond-

ng, distinct base UML metaclasses. In this group, we find a me-

ian of 13 ± 8.918 stereotype definitions per DSML. A typical pro-

le extends a median of 5 ± 3 distinct base metaclasses per DSML.

s outliers, three DSMLs defined 40 (AspectSM), 48 (WebML), and

16 stereotypes (IEC61508), respectively. Two DSMLs extend 14 base

etaclasses (UML4SOA, SafeUML). The specification sizes of these 61

SMLs slightly differ from those reported by related work on UML

rofiles, but fall into a closely comparable size range. Pardillo (2010)

tudied 39 UML profiles, with a median of 9 ± 5.9 stereotypes per

rofile and a median of 4 ± 1.5 extended base metaclasses per pro-

le. Staron and Wohlin (2006) cover three UML profiles containing

etween seven and 13 stereotype definitions.

17 DSMLs used a UML metamodel extension and/or modifica-

ion (O2.3, O2.4). For these, we collected the number of newly in-

roduced and redefined UML metaclasses. A typical DSML adds and

edefines a median of 12 ± 11.9 UML metaclasses (O2.3, O2.4). One

utlier includes 51 UML metaclasses (DMM/UCMM). Existing empir-

cal work reports on UML metamodels of between 20 and 30 meta-

lasses (Staron and Wohlin, 2006).

For three DSMLs defining their language model using a UML class

odel at level M1 (O2.1), we attempted to count the number of UML

lasses. Given their incomplete design documentation, we failed in

his attempt for two DSMLs (EM, UML-GUI). For the one remaining

SML (SECTET), we counted 20 UML classes.

.3. Extracted decision data

Content analysis yielded one decision-option set per DSML (see

ection 2.1.2). For brevity, we refer to decisions option by their option

ode (e.g. O1.4, O3.1) in the following, rather than by name (e.g. for-

al diagrammatic model, constraint-language expression). For a

omplete reference on the relevant decision options, see Tables 1 and

in Section 2.1.

ecision points. Each of the 80 DSMLs covered the points of

anguage-model definition (D1) and language-model formalization

D2), respectively. This was also a minimum requirement for a DSML

esign to become included in our study (see Section 4.1.2). For the re-

aining four decision points (D3–D6), we also recorded whether or

ot any decision could be recovered.

Table 10 shows the frequencies per decision-option code observed

or the 80 coded DSMLs. The majority of DSMLs adopted one or sev-

ral decision options for D3 (language-model constraints) and D4

concrete syntax): 48 DSMLs explicitly documented language-model
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Table 10

The number of occurrences (abs. frequency nopt , rel. frequency fopt) of each of the 27 (31) decision-option codes available from the decision-record catalog (Hoisl et al., 2014a)

in the 80 reviewed DSML designs. The 27 actual decision options are described in Tables 1 and 2. Four decision-option codes represent the absence of a decision (i.e. no-option

codes: O3.5, O4.7, O5.5, and O6.6).

Decision option (code) nopt (fopt , %) Decision option (code) nopt (fopt , %)

Language-model definition (D1) Concrete-syntax definition (D4)

informal textual description (O1.1) 80 (100) diagram symbol reuse (O4.6) 69 (86.3)

formal diagrammatic model (O1.4) 23 (29.8) model annotation (O4.1) 62 (77.5)

formal textual description (O1.2) 5 (7.3) diagrammatic syntax extension (O4.2) 14 (17.5)

informal diagrammatic model (O1.3) 3 (3.8) No decision (O4.7) 7 (8.8)

Language-model formalization (D2) mixed syntax (O4.3) 3 (3.8)

profile re-/definition (O2.2) 62 (77.5) frontend-syntax extension (O4.4) 1 (1.3)

metamodel extension (O2.3) 17 (21.3) alternative syntax (O4.5) 1 (1.3)

m1 structural model (O2.1) 4 (5) Behavior specification (D5)

metamodel modification (O2.4) 2 (2.5) No decision (O5.5) 77 (96.3)

Language-model constraints (D3) informal textual specification (O5.3) 2 (2.5)

informal textual annotation (O3.4) 35 (43.8) m1 behavioral model (O5.1) 1 (1.3)

No decision (O3.5) 32 (40) formal textual specification (O5.2) 1 (1.3)

constraint-language expression (O3.1) 31 (38.8) constraining model execution (O5.4) 0 (0)

code annotation (O3.2) 0 (0) Platform integration (D6)

constraining model transformation (O3.3) 0 (0) No decision (O6.6) 54 (67.5)

generator template (O6.2) 16 (20)

m2m transformation (O6.5) 9 (11.3)

api-based generator (O6.3) 7 (8.8)

intermediate model representation (O6.1) 4 (5)

(direct) model execution (O6.4) 1 (1.3)
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constraints (D3; e.g. OCL expressions) beyond the constraints ex-

pressed directly via their formalized language models. 73 DSMLs in-

cluded at least one decision on the concrete syntax (D4) of the DSML.

On the contrary, only three DSMLs reported on decisions related to

additional behavioral specifications (D5), and only 26 DSML designs

comprised decisions related to platform integration (D6). The latter

is reflected by the comparatively large numbers of no-option codes

displayed in Table 10 (O5.5 and O6.6, respectively).

Language-model definition (D1). For identifying and describing rele-

vant domain abstractions and their relationships, the decision-record

catalog documents four decision options (O1.1–1.4). Each of the four

available option codes was identified at least once. 52 DSMLs applied

a single option only (see Table 10). This decision was to use a textual,

natural-language representation (O1.1). The 28 remaining DSMLs are

characterized by a combination of two or three D1 options. Not a sin-

gle design used all four options. 23 of 28 DSMLs provide a formal dia-

grammatic definition (O1.4) of their language model, prior to actually

formalizing (implementing) the language model on top of UML. In all

23 cases, this decision option is accompanied by a textual, natural-

language definition of the language model (O1.1).

Language-model formalization (D2). To realize the DSML by reusing

the UML, concrete UML techniques for implementing the language

DSML as a UML extension, as a UML specialization, and/or by pig-

gybacking on UML must be considered. The decision-record catalog

describes four combinable options (O2.1–O2.4). Each available option

code was marked at least for one DSML design (see Table 10). 75 of

the 80 DSMLs applied exactly one option, the remaining five projects

adopted two options. 62 of the DSML projects (≈78%) involved UML

profiles (O2.2) to realize the language model, and ≈21% of the DSMLs

(17/80) extend the UML metamodel without modifying it (O2.3). Only

three DSMLs applied both, UML metamodel extensions (O2.3) and

UML profiles (O2.2), 14 DSMLs used UML metamodel extensions only.

Just two DSMLs explicitly modify the UML metamodel (O2.4) when

extending it (O2.3).

Language-model constraints (D3). Once a language model has been

formalized (D2), additional structural conditions can be placed on

DSML models at the level of the language model (e.g. consistency

conditions on model elements). The decision-record catalog lists four
ptions of defining language-model constraints (O3.1–O3.4). Two out

f the four available options (see also Table 10) were applied in the

0 DSMLs: constraint-language expressions (O3.1 in 31 DSMLs) and

extual annotations (O3.4 in 35 DSMLs). We did not find evidence for

ode annotations (O3.2) and translational constraining (O3.3). In 30

SMLs, only one of these options was adopted: O3.1 13 times and

3.4 17 times. In 18 DSMLs, O3.1 and O3.4 are adopted both.

oncrete-syntax definition (D4). Defining the DSML’s concrete syn-

ax requires deciding on the style of the primary modeling interface

resented to the domain modeler. In addition, it must be decided

hether or not, and, if yes, how to integrate the DSML concrete syntax

ith the diagrammatic one of UML. Our decision-record catalog doc-

ments six options (O4.1–O4.6). All six options have been found ap-

lied at least once (see also Table 10). 73 of the 80 DSMLs contained at

east one decision on their concrete syntax. Many DSML projects (49)

ook a combination of two decision options on their concrete-syntax

tyle; 17 DSMLs applied one and 14 DSMLs three options. The two

ost frequently found decision options are model annotations (O4.1:

2 DSMLs) and the unmodified reuse of existing UML diagram sym-

ols (O4.6: 69). 48 of the 49 DSML designs, which adopt exactly two

ptions, reflect these two options (O4.1 and O4.6). A UML diagram-

yntax extension is adopted in 14 DSMLs (O4.2; e.g. by introducing

ew symbols or modifying existing ones).

ehavior specification (D5). Behavior specifications stipulate how

anguage elements of the DSML interact to produce the intended

ystem behavior in a platform-independent manner. Only three of

he 80 DSML design involve dedicated behavioral specification arti-

acts. These three DSMLs document these refinements of behavioral-

emantics by adopting a UML M1 model representation (O5.1), a for-

al textual specification (O5.2), or in an informal textual way (O5.3).

nly one of these three DSMLs applies two options in a complimen-

ary manner (O5.1 and O5.3). The remaining two picked a single op-

ion only (O5.2, O5.3). Constraining model execution (O5.4) was not

ound applied in any DSML.

latform integration (D6). Platform integration comprises support for

apping DSML models into specification artifacts, which are pro-

essable and possibly executable by a targeted software platform, in
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Table 11

Overview of the seven prototype option-sets (ordered by decreasing absolute support). See Tables 1 and 2 in Section 2.1 for descriptions of the option codes. Details on the

exemplary DSMLs including citations are documented in the Appendix and in Hoisl et al. (2014a).

Prototype Option set Support (abs.) Frequency (abs.) DSMLs (ex.)

UML piggybacking plus informal constraints {1.1, 2.2, 3.4, 4.1, 4.6} 30 5 UML-AOF, PredefinedConstraints, UML-PMS

UML piggybacking plus formal constraints {1.1, 2.2, 3.1, 4.1, 4.6} 26 4 REMP, CUP, UML4PF

Two-level UML piggybacking {1.1, 1.4, 2.2, 4.1, 4.6} 22 5 SPArch, MoDePeMART, RichService

UML piggybacking for domain-specific M2T system {1.1, 2.2, 4.1, 4.6, 6.2} 15 3 DPL, WCAAUML, WS-CM

UML piggybacking plus mixed constraints {1.1, 2.2, 3.1, 3.4, 4.1, 4.6} 13 3 ArchitecturalPrimitives, SHP, C2style

UML metamodel (“middleweight”) extension {1.1, 2.3, 4.6} 10 4 UML2Ext, UML4SPM, MDATC

Two-level UML piggybacking plus mixed constraints {1.1, 1.4, 2.2, 3.1, 3.4, 4.1, 4.6} 5 3 UACL, SafeUML, and IEC61508
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fully or semi-automated manner. Our decision-record catalog de-

cribes five support techniques for platform integration (O6.1–O6.5).

6 DSMLs applied at least one of these five techniques and each

latform-integration technique was applied at least once (see also

able 10). From the 26 DSMLs, 19 DSMLs applied a single platform-

ntegration option only rather than a combination of two or more op-

ions. The most frequently adopted option is O6.2 (generator tem-

lates) in 20% of the DSMLs (16/80). Generator templates are also

he option, which is most frequently used in isolation (with 12 of

he 19 single-option DSMLs). Generation templates are followed by

odel-to-model (M2M) transformations (O6.5: 9 DSMLs) and API-

ased generators for platform-specific models (O6.3: 7 DSMLs). M2M

ransformations (O6.5) are found mostly in combination with at least

ne other D6 option (in six out of nine DSMLs). The remaining 68% of

he DSMLs do not consider or at least did not document any platform-

ntegration techniques (O6.6: 54 DSMLs).

ecision-option sets. A decision-option set adds up all decisions

ecorded for a given DSML as a set of option codes corresponding

o the decision options compiled by the catalog (see Section 2.1.2).

herefore, we obtained a base of 80 decision-option sets from the 80

SMLs (see also the Appendix). By running a frequent-item-set analy-

is on these 80 observed decision-option sets, one for each DSML, 53

f the 80 observed option sets were unique (non-duplicated). From

hese 53, 14 unique option sets represent two or more DSMLs. In our

tudy, none of the option sets were shared by more than five DSMLs.

he maximum number of decision options included in an option set

s ten for the unique option sets (i.e. for option sets that were applied

or exactly one DSML) and seven options for the 14 shared ones (i.e.

or option sets describing two or more DSMLs).

Remember that we consider an option subset to be frequent when

t is used by three or more DSMLs. This is also referred to as a mini-

um support of three for an option subset. This follows from a thresh-

ld on backing up a software-pattern description with at least three

nown uses of a given pattern in existing software systems; a thresh-

ld which is commonly applied in the software-pattern community

see, e.g., Coplien, 1996; Buschmann et al., 2007). We found 188 of

uch frequent options sets; that is, option sets which are contained

artly or fully in more than three observed option sets.

mallest common option subsets. In our pool of 80 DSMLs, we found

wo smallest common option subsets specific to one decision point.

or language-model constraints (D3), the proper option subset {3.1,

.4} reflects that 18 DSMLs (i.e. the option subset is said of hav-

ng a support of 18) define language-model constraints using both,

constraint-expression language as well as auxiliary or complimen-

ary textual constraint definitions in natural language. As for platform

ntegration (D6), a second proper option subset {6.2, 6.5} (support: 3)

ndicates that the respective 3 DSMLs use a two-level model trans-

ormation chain (PIM-PIM-PSM): First, platform-independent mod-

ls (PIM) are transformed into another PIM representation which is

hen transformed into a structured textual, platform-specific (PSM)

epresentation. For example, in UML2Alloy extended UML class mod-

ls (PIM) are transformed into models of an Alloy metamodel (PIM)
hich are finally transformed into textual Alloy definitions accepted

y an Alloy model checker (PSM).

Seven smallest common option subsets contain options through

wo and more decision points (D1–D6). Four out of seven option sub-

ets specific to two or more decision points relate language-model for-

alization (D2) and language-model constraining (D3). These three

ubsets {2.2, 3.4}, {2.2, 3.1}, and {2.2, 3.1, 3.4} show that applying one

r several UML profiles is often associated with defining language-

odel constraints either only textually (30 DSMLs), or by using a

pecial purpose constraint-expression language (26 DSMLs), or both

13 DSMLs). In contrast, metamodel extensions (O2.3) are found fre-

uently combined with both constraint-definition strategies, rather

han either of the two exclusively: {2.3, 3.1, 3.4}. Metamodel exten-

ions (O2.3) are also commonly applied together with diagrammatic

yntax extensions (O4.2) and M2M transformation (O6.5). Finally, 22

f the 80 DSMLs adopt UML profiles (O2.2) for realizing a language

odel (O1.4).

rototype option-sets. For the 80 DSMLs, we extracted seven distinct

rototype option-sets (see Table 11). A prototype option-set describes

omplete DSML designs, on the one hand. On the other hand, it is

lso (frequently) extended to DSML designs to include additional de-

ision options (see Table 4). These option sets are characterized based

n the underlying UML implementation techniques: UML extension,

ML piggybacking, and UML specialization (see Section 2 for defini-

ions based on Spinellis, 2001).

Six prototype option-sets come with frequent extensions. For ex-

mple, the option set describing UML-PMS, a DSML for performance

odeling of mobile systems building on UML activities, denotes four

dditional DSML designs (total frequency: 5). Besides, this option set

s found as a large subset in the option sets of 25 additional DSMLs

support: 30). The majority of prototype option-sets (5) involve UML

rofiles only (O2.2) and therefore realize UML piggybacking. Just one

rototype option-set—UML4SPM, an extension of UML activities and

lasses to model software-development processes—builds on meta-

odel extensions (O2.3) only and, therefore, represents a UML ex-

ension (a.k.a. middleweight extension; Bruck and Hussey, 2008). All

ix prototype option-sets, that come with frequent extensions, in-

olve at least one concrete-syntax decision option. The only platform-

ntegration option adopted in three prototype option-sets are M2T

enerator templates (O6.2). These prototypes, therefore, represent

he important group of domain-specific model-to-text transforma-

ion systems using UML piggybacking.

In addition, we found a seventh prototype option-set labeled

two-level UML piggybacking plus mixed constraints” which comes

ith infrequent extensions (cf. Table 4). These DSMLs are realized at

wo model levels: a diagrammatic language model independent from

he UML and a UML profile implementing the language in the UML.

he three DSMLs for this prototype are UACL, SafeUML, and IEC61508

see Table 11). SafeUML is a domain-specific adaptation of component

nd class diagrams for modeling in the avionics safety domain, to

ive an example. This prototype option-set is, however, only extended

y less than three additional DSMLs (2). Therefore, it is considered
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19 Note that the two intervals cannot be simply summed up because of the backward

dependency between snowballing on automated search.
extended infrequently. These DSMLs provide for constraints ex-

pressed both via constraint-language expression (O3.1) and infor-

mal textual annotation (O3.4) (hence: “plus mixed constraints”).

5.4. Study limitations

We deliberately narrowed the applicability of our findings to

DSMLs embedded into UML 2.x (see Section 2). Therefore, we ex-

cluded DSMLs based on UML 1.x and other, non-UML metamodeling

infrastructures (e.g. Kermeta, Ecore, XMF).

While this appears, at first glance, as a barrier to generalizing the

recorded design decisions, the choice of UML 2.x was necessary be-

cause important design decisions taken for the UML 2.x are substan-

tially different from those for UML 1.x; not to mention from other

metamodeling infrastructures. Regarding UML 1.x, there are impor-

tant lines separating the UML 2.x and UML 1.x regarding their lan-

guage architectures and the foundational semantics of the available

extension techniques (e.g. profiles, package merge; see Cook, 2012;

Dingel et al., 2008; Henderson-Sellers and Gonzalez-Perez, 2006). By

focussing on UML 2.x, we aimed at increasing the internal validity

of our SLR-based study design at the expense of its external valid-

ity. Note, however, that many recorded decisions can be adopted in

a broader sense to be compatible with DSMLs based on other meta-

modeling infrastructures and DSLs generally (e.g. concrete-syntax de-

cisions).

Based on our SLR, we applied a documentation analysis to ex-

tract design decisions from scientific publications and their com-

panion material. We considered supporting material if reported by

and available from the publication authors. A documentation analysis

represents an indirect data-collection technique (Singer et al., 2008).

Therefore, information on ordering of design decisions over time (de-

cision sequences) often remained implicit and, therefore, unrecover-

able for us. Even if documented, any indirectly observed order of de-

cision options adopted by DSML engineers might have also followed

from the presentation requirements of a scientific publication (i.e. the

one reporting on a DSML); an order which does not necessarily cor-

respond to the original one during decision making. Therefore, in our

research setting, we can only study option sets in terms of decision

associations. For the same reason, we focused on one process style of

DSML development only (i.e. language-model-driven development;

see Section 3). We might have neglected design decisions character-

istic for other development styles (e.g. mockup-driven DSML devel-

opment; Strembeck and Zdun, 2009).

SLR studies such as this one have the major problem of finding a

representative set of relevant primary studies. In general, we closely

followed established guidelines on designing and conducting SLRs

available from research on evidence-based software engineering to

avoid any pitfalls (Jalali and Wohlin, 2012; Kitchenham, 2004; Zhang

et al., 2011). As for the search strategy, we used an extensive auto-

mated search based on four search engines by primary publishers in

the software-engineering field (ACM Digital Library, IEEE Xplore, Sco-

pus, and SpringerLink). This search yielded 5,778 hits which included

the majority of reference publications (28/37) previously collected

in a manual search. Backward snowballing added another reference

publication. Therefore, our automated search missed eight publica-

tions that should have been found. While the missing ones were con-

sidered for inclusion in a separate step, this still indicates that we risk

having missed other relevant primary studies on UML-based DSMLs,

in more general. Note that we addressed this threat right from the

beginning, by building our review procedure around the principle of

continuous search validation and search refinement driven by a QGS

as a recommended practice (Zhang et al., 2011; Kitchenham and Br-

ereton, 2013).

We applied a review and extraction process involving two inde-

pendently working data extractors on each item (search hit, publi-

cation, DSML). This was to avoid limitations of an extractor-checker
rocedure (Turner et al., 2008). On the flip side, this required us to

ontrol the workload per data extractor in the light of the excessive

esult sets when checking for false negatives. Recall that we were re-

uired to process 5,778 hits from automated search and 2,337 from

nowballing. A false negative is a hit which is deemed excluded by

ne data extractor, in the first iteration during selection, and which

ecomes included after a negotiated agreement between the two

xtractors. This negotiated agreement is triggered by an indepen-

ent inclusion decision of the second extractor. In these cases, we

rew subsets of hits for the second, independent assessment (i.e.

0% random samples). As elaborated in Sections 4.1.2 and 4.1.3, due

o this sampling and in a probabilistic projection (99% confidence

evel), we risk having missed out between zero and 22 publications

s false negatives during automated search (from 704 negatives) and

etween zero and seven publications during snowballing (from 170

egatives), respectively.19 This threat cannot be neglected, however,

e mitigated for this risk in two ways. First, we applied sampling

or false-negative checking only for decisions which were based on

tructured and objectively evaluable decision criteria (e.g. publica-

ion year, venue names based on predefined venue lists). This way,

e hope to have minimized the risk of undisclosed disagreement

n negatives between the respective two data extractors. For the ac-

ual decision-data extraction, which involved more subjective assess-

ents, no sampling was applied. For example, to establish whether a

SML’s design documentation is of unacceptable quality, each DSML

esign was reviewed by two independent data extractors. Second, we

onsider the results reported (frequency counts, prototype designs)

obust against the risk of false negatives. Consider, for example, the

ubstantial support reported for the prototype designs. Each proto-

ype design is observed for between ten and 30 DSMLs (see Table 11).

t is unlikely that false negatives in the ranges above would reduce

he observed support of just one or of a few prototypes, so that they

ould not be observable anymore.

As a result of our quality-assessment procedure, we excluded an-

ther 31 DSML candidates due to their incomplete and/or incorrect

ocumentation of their designs. More precisely, we watched out for

ritical, UML-specific specification defects (Henderson-Sellers and

onzalez-Perez, 2006; Pardillo, 2010; Atkinson et al., 2003) which

ould prevent us from extracting the decision options unambigu-

usly, based on the design artifacts available to us via the correspond-

ng scientific publications (e.g. diagrams, structured and unstructured

ext on design rationale).

At the same time, however, by excluding the DSMLs, we risk

aving biased our quantitative results (e.g. frequency counts and

rototype designs). By making this exclusion decision, however, we

trengthened the qualitative validity of our results by extracting de-

ision options and option sets from DSMLs of acceptable documenta-

ion quality only. For the reasons put forth for potentially false nega-

ives (see previous paragraph), we are also confident that our quanti-

ative findings are robust against the exclusion of these DSML designs.

In our search design, we also omitted certain kinds of publications

xplicitly. On the one hand, we excluded publications appearing in

enues not considered SE venues. This was realized by filtering

enues according to publicly available third-party sources enu-

erating SE venues. The main objective was to put focus on DSML

ocumentation artifacts which are likely to reflect on DSML and UML

esign rationale; and to avoid large numbers of publications from

utside the SE domain. On the other hand, we excluded certain venue

ormats (e.g. workshops) and grey literature (i.e. technical reports,

orking papers) to increase the probability of building our analysis

n documentation artifacts having a certain maturity. In addition, we

argeted publications having been subjected to community-driven
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Table 12

Comparative overview of the numbers of content items (e.g., decision records, deci-

sion options) included in the decision-record catalog in its pre-study version (Hoisl

et al., 2012a) and in the post-study revision (Hoisl et al., 2014a). ∗: The numbers in

round brackets indicate that four decision options serve for coding pseudo-decisions

only (e.g. not choosing any option); ∗∗: These entries show the numbers for third-party

studies (DSMLs) compared to all studies (DSMLs), including our own.

Pre-study revision Post-study revision

Decision records 5 6

Decision options 22 (26)∗ 27 (31)∗

Decision drivers 22 27

Decision consequences 9 13

Decision associations 11 21

Underlying resources

Primary studies 6/ 19∗∗ 84/ 97∗∗

DSMLs 6/ 16∗∗ 80/ 90∗∗

Secondary studies 15 25
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uality assessment (e.g. peer reviews). A similar limitation is that we

estricted the search hits retrieved from the automated search based

n the QGS corpus publications (see Section 4.1): from 5,778 total

its, 2,678 containing all QGS publications found during the auto-

ated search were considered for selection. This was necessary to

educe the number of publications to manageable levels for reading

uring selection by two independent raters. While settling us at a

ufficient level of search validity (75.7%; Zhang et al., 2011), it means

hat we may have missed relevant publications. Note, however, that

e undertook backward snowballing to make sure that we did not

kip work considered relevant by the authors of the primary studies

btained as search hits.

There is a bias inherent to our SLR design in that by relying on

cientific publications only, the recorded design decisions on DSMLs

isk being specific to DSMLs as research-driven prototypes and proof-

f-concept implementations. Design decisions during DSML develop-

ent in industry might not necessarily be covered by our revised cat-

log and the findings in this study. The industrial case in Staron and

ohlin (2006) exemplifies this. This case is based on more balanced

umbers of metamodel extensions (2) and profiles (3). At a coarser-

rained level, our study reports a clear preponderance of UML pro-

les in 80% of the reviewed DSMLs. However, we find it difficult to

ssess the severity of this bias. To begin with, the primary studies

eviewed in this SLR did not disclose their industrial background, if

ny at all. Similarly, while related empirical studies on UML usage

ertainly document the existence of UML extensions and UML-based

SML designs (see, e.g., Hutchinson et al., 2014; Nascimento et al.,

012; see also Section 7), they do not discriminate between industry-

riven and research-driven projects.

For selection and data extraction, we used a process involving

wo independently working data extractors on each item (search hit,

ublication, DSML) to avoid pitfalls of an extractor-checker process

n complex extraction settings and to follow closely corresponding

ecommendations (Turner et al., 2008). The observed disagreement

bout publications and DSMLs between the extractors was rigorously

ocumented using established IRR statistics, adding to the detailed

ocumentation of the final extraction agreed by both extractors. To

educe some of the overhead of a two-extractor process, we had one

xtractor perform selection and extraction decisions on reduced data

ets. This involved a first extractor reviewing all included items, but

nly a sample of the excluded ones by the second extractor. A final

ssue with respect to extraction and selection was that due to a num-

er of constraints arising during the process, two of the three authors

erformed the majority of extractions. Constraints included person-

lized access to publisher databases and individual time constraints.

his might potentially have introduced bias.

An important motivation of this SLR study—besides validation—

as to remove personal bias from the decisions recorded in the initial

atalog (Hoisl et al., 2012a). This personal bias was most likely intro-

uced by looking at our own DSML projects at that time. However,

ven for the SLR study, we could not fully avoid personal bias because

e risked collecting data from our own publications, if retrieved at

he various SLR stages (QGS corpus construction, automated search,

nd backward snowballing). Therefore, we excluded our own DSML

rojects from the result set so that from the 80 DSMLs obtained from

his SLR none was developed by the authors themselves. Furthermore,

here was only one third-party DSML (i.e. UML4SOA in Mayer et al.,

008) which was more familiar to us than the others, because one

f our own DSMLs is built on top of it. Nevertheless, personal bias

annot be ruled out, simply because our understanding of DSML de-

elopment has entered our judgments during data extraction.

.5. Catalog revision

An important, secondary outcome of the SLR study is a revision

f the initial decision-record catalog (Hoisl et al., 2012b; 2012a). The
pdated and improved version included changes to the catalog’s con-

ent as well as to its presentation. Table 12 gives an overview of the

hanges resulting in the current decision-record catalog (Hoisl et al.,

014a). As a result of the SLR and our frequent-item-set analysis (see

ection 5), the content items in the decision-record catalog were re-

ised (decision points, options, and associations; see Section 6).

Important but comparatively few additions and modifications to

he catalog were necessary. As shown in Table 12, the main addi-

ion content-wise was the inclusion of decision record D5 on de-

isions relating to behavioral specification. While it was necessary

o cover this sub-space of decision options to fully characterize the

SMLs in our study, we also found that, except for very few DSMLs,

xplicitly documented behavioral specifications are widely missing

see Section 5.3). However, within the limits of our study, this can

e explained straightforwardly because the majority of the reviewed

SMLs focus on structural viewpoints (i.e. UML classes) and the cor-

esponding application domains did not require an additional behav-

or specification. In addition, some of the DSMLs reviewed for our

tudy directly reuse or slightly adopt UML built-in behavior (e.g. pro-

ided by UML activities). Thus, DSMLs providing a dedicated behav-

or specification were documented as known-usage examples in the

ewly added decision record D5.

Apart from D5, only one new decision option was added. O6.5

or D6 (platform integration) allows for characterizing DSMLs which

uild on endogenous M2M transformations for platform integra-

ion, i.e. transformations between models defined over the same

etamodel—rather than using M2M transformations only for creat-

ng different intermediate model representations within an MDD tool

hain (which is covered by O6.1). In addition, we refined the descrip-

ions of three decision options (O2.1, O2.2, O4.3) to cover aspects re-

ealed by the reviewed DSMLs and to better discriminate between

ecision options. For example, we revised decision option O2.2 (for-

alizing a language model via UML profiles) to include scenarios of

xtending and/or redefining existing UML profiles.

The resulting catalog lists 27 decision options and 21 associations

etween these options (e.g., dependencies; see also Table 12). In ad-

ition, the catalog provides seven prototypical solutions of existing

SMLs which represent commonly adopted combinations of deci-

ion options from 80 third-party DSMLs. Note that the catalog also

ecords ten self-developed DSMLs summing up to a total of 90 DSMLs

see also the Appendix). 40 decision drivers and corresponding de-

ision consequences (e.g., forward dependencies on follow-up deci-

ions) are available to assess the decision options (e.g., in terms of

ationale tables). In addition, the catalog offers application examples

nd implementation sketches taken from the 90 DSMLs that we ex-

mined in detail. Moreover, the decision catalog provides references

o 25 secondary studies on DSML development (e.g., Jackson and Szti-

anovits, 2009; Moody and van Hillegersberg, 2009).
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20 Note that the UML has these degrees of freedom, however, to avoid ambiguities,

association end ownership can always be made explicit using the dot-notation (Object

Management Group, 2015b).
21 See Section 3 for the rationale behind these combinatorial computations; pre-

study revision (all options; 3,686,400): 24 − 1 (D1) times 24 − 1 times (D2) times

222−4−4 (D3-D5); post-study revision (all options; 117,964,800): 24 − 1 (D1) times

24 − 1 times (D2) times 227−4−4 (D3-D6); post-study revision (excluding unobserved

options; 29,491,200): 24 − 1 (D1) times 24 − 1 times (D2) times 225−4−4(D3-D6).
6. Discussion

In this three-year research project, we started from our own ex-

periences gained from building ten UML-based DSMLs to define a

preliminary decision-record catalog for such DSMLs. To extend and

to validate this decision catalog, we performed this systematic liter-

ature review (SLR). Our multi-stage SLR initially returned 8,152 pub-

lications: 37 articles originated from a quasi-gold standard corpus,

5,778 from the automated and 2,337 from the backward-snowballing

searches. 7,069 papers were unique, 5,023 were considered for selec-

tion and quality assessment. Subsequently, we filtered these publica-

tions based on multiple quality criteria. As a result, we identified 84

publications on 80 UML-based DSML projects (see Section 4 and also

the Appendix). These 80 DSMLs are “third-party” artifacts, that is, we

did not participate in developing them.

Research question 1: What are the design-decision options for

UML-based DSML designs reported in scientific literature?

Based on the literature review and content analysis, we tested sci-

entific literature for the presence or absence of 27 decision options.

From these, 24 were reportedly adopted by at least one DSML project.

We found that three options are not contained by any of the 80 DSMLs

(see Section 5.3): code annotation, constraining model transfor-

mation, and constraining model execution (i.e. O3.2, O3.3, and

O5.4). This follows directly from the saturation test for the coding

schema reported in Section 5.1.

code annotation (O3.2) and constraining model transforma-

tion (O.3.3) describe practices to realize and to enforce language-

model constraints indirectly. On the one hand, this involves con-

straints defined as host-language expressions for a certain API (e.g.

Java expressions binding the Ecore Java API; O3.2). On the other hand,

such constraints could be realized in terms of assertions on a DSML

model that are defined as a part of corresponding model transforma-

tions on the respective DSML models (O3.3).

Similarly, enforcing behavioral constraints (D5) via partial or pro-

hibitive model-execution engines (constraining model execution;

O5.4) was not documented for any DSML. We did, however, find

these options documented in secondary studies (for O5.4 see, e.g.,

Mayerhofer et al., 2012) and applied them in our own DSML projects

(for O3.3 see DSML SOFServices). As a result, our decision-record

catalog lacks known-usage examples for the three decision options

mentioned above. Hence, we highlighted these decision options as

candidate options in the post-study revision of the catalog; that is,

candidates requiring further evidence.

Recall that there are three basic UML implementation approaches

for DSMLs: language-model extension, language-model piggyback-

ing, and language-model specialization (see Section 2). The first two

have been found employed frequently in the 80 DSMLs, most notably

language-model piggybacking (see discussion of RQ2). Language-

model specialization involves a metamodel derived from the vanilla

UML2 metamodel systematically, e.g., through metamodel cloning

and pruning (Sen et al., 2009; Blouin et al., 2015). This approach

has also been described as a “heavyweight” metamodel extension

(Bruck and Hussey, 2008). Language-model specialization is driven

by the need for performing a metamodel modification (O2.4), that

is, the need for redefining existing UML metaclasses, their features,

and their associations. The specialization approach comes at certain

maintenance and deployment costs (e.g., tracking changes in the UML

metamodel, low tool interoperability; Bruck and Hussey, 2008).

In total, we only found two DSMLs for which a metamodel mod-

ification is reported: eSPEM and DMM/UCMM. The former further

extends the UML2/SPEM metamodel (activities and state machines)

to model software-development processes and artifact states. The

latter provides a modeling frontend for automated GUI generation.

DMM/UCMM adds new properties to existing UML metaclasses (e.g.
lass and Property). Besides being comparatively infrequent, the

espective design reports fall short in two ways:

First, they do not clarify how they realized the language-model

pecialization technically, i.e., managing metamodel derivation. Sec-

nd, they also lack statements which document the intention and

ationale for performing a metamodel modification in the first

lace. Often, a metamodel modification appears merely acciden-

al. For instance, in a third DSML UCDM, existing UML metaclasses

e.g. UseCase) are associated with newly introduced metaclasses

e.g. UseCaseDescription). The metamodel definition for UCDM

s underspecified regarding the ownership of association ends and,

ence, regarding the choice of a metamodel extension (O2.3) or a

etamodel modification (O2.4):

(1) Both ends could be owned by the association, leaving the

ML2 metamodel unchanged (O2.3); (2) one end could be owned by

he association, the other one by a metaclass (O2.3 or O2.4, depending

n whether the owning class is coming from the UML metamodel);

r (3) both ends could be owned by their corresponding metaclasses

O2.4).20

For these three reasons (infrequency, specification ambiguity,

nknown metamodel management), we cannot conclude from our

tudy that language-model specialization has been adopted.

Even when omitting the decision options not observed in the

0 third-party DSMLs, the design space described by the 24 found

ptions amounts to a vast number of possible option combina-

ions.21 Therefore, the frequency patterns identified for answering

Q2 turned out to be key.

Research question 2: What are frequently observed decision op-

tions and frequently observed combinations of decision options (op-

tion sets) in and across existing UML-based DSML designs?

From a total of 24 options (RQ1), 16 options are frequently found in

hree or more projects. Among the most frequently adopted options,

he following are noteworthy (ordered by frequency): diagram sym-

ol reuse (O4.6), profile re-/definition (O2.2), model annotation

O4.1), informal textual annotation (O3.4), contraint-language

xpression (O3.1), formal diagrammatic model (O1.4), metamodel

xtension (O2.3), and generator template (O6.2) (see also Table 10).

e discuss their relevance below in their broader context, not neces-

arily in the above order.

A domain-analysis step in terms of domain engineering

Czarnecki and Eisenecker, 2000) and domain-driven design (Evans,

004) is contained by most process guidelines available for DSL

nd DSML development (see, e.g., Zdun and Strembeck, 2009;

trembeck and Zdun, 2009). One challenge is to identify and to

efine the domain abstractions and their relationships in a manner

hich allows for (1) a detailed specification independent from a

oncrete modeling language and for (2) having the abstractions enter

UML-based language-model implementation in a seamless (e.g.

nstantiation-based model layers) and/or guided way (e.g., through

ransformations). Another challenge is making domain variability

xplicit, for example, in terms of feature models (Czarnecki and

isenecker, 2000). Guidelines and the 84 primary studies reviewed

ut emphasis on (semi-)structured textual analysis techniques, such

s domain-vision (scoping) statements, domain-distillation lists,

nd feature tables. This is indicated by all 80 DSMLs adopting an
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nformal textual description (O1.1) to capture their application-

omain definition.

However, prior to our study, very little was known about using

formal diagrammatic model (O1.4) for a domain-analysis step.

formal diagrammatic model leans itself towards a seamless and

uided UML implementation of the resulting language model (e.g.,

n the sense of model chaining through transformations). It can also

erve as the definitional basis for an formal textual description

O1.2; e.g., as a type graph using set theory). We found that only 23

SMLs adopt such a formal diagrammatic model (O1.4). A closer

ook reveals that the dominant modeling formalism in this group

re E/MOF and/or UML class diagrams. Alternatives such as Ecore or

ntity-relationship models (while inter-changeable to some extent)

re not reported. Only a single DSML design (SOA) employed a type-

raph notation in the sense of a graph-transformation system.

Two follow-up observations are noteworthy: First, the usage of

/MOF and/or UML class diagrams most often prepares the definition

f UML profiles, rather than alternative UML language-model im-

lementations. This is confirmed by the two “two-level UML piggy-

acking” prototypes (out of 7) identified in Section 5. This is typically

ustified by referring to profile-specific guidelines such as Paige et al.,

000; Grant et al., 2004; Robert et al., 2009; Selic, 2007; Atkinson

nd Kühne, 2002. Second, although E/MOF and/or UML class dia-

rams are available, they are not formally linked to the corresponding

ML implementation model e.g. by using model transformations,

nter-model consistency constraints, and/or instantiation-based

odel chaining. This is despite the availability of suitable ap-

roaches (see, e.g., Lagarde et al., 2007). Rather, convention-based

pproaches dominate. A popular example is the 1:1 name mapping

f language-model elements into equally named stereotypes.

The importance as well as relative pros and cons of UML profiles

s implementation vehicles have been covered to some extent (Paige

t al., 2000; Grant et al., 2004; Robert et al., 2009; Selic, 2007; Atkin-

on and Kühne, 2002). Basic evidence on the actual adoption level,

owever, has been missing or has remained partial. 62 DSMLs im-

lement their language model using newly defined and/ or redefined

ML profiles (profile re-/definition, O2.2). As a consequence, “UML

iggybacking” characterizes 5 of the 7 prototype designs in Section 5.

his is partly a confirmatory finding for observations of prior, but in-

erently limited empirical studies. For example, both Pardillo (2010)

nd Nascimento et al. (2012) characterize publication-centric trends

n UML profile usage. However, they discuss UML profiles in isola-

ion. Our findings provide empirical insights on UML profile usage in

he context of implementation alternatives, which is entirely missing

rom previous studies: As a general observation, UML profile usage

n 62 DSMLs contrasts with 17 DSMLs using UML metamodel exten-

ions.

Furthermore, we reveal coupled design decisions such as on

oncrete syntax. The popularity of model annotation (e.g., UML

omments carrying domain-specific keywords or slot specifications;

4.1) directly follows from the UML profile preponderance: The 62

rofile-based DSMLs also adopted this option. The same coupling can

e found between UML profiles and the concrete-syntax option di-

gram symbol reuse (O4.6) in 69 DSMLs. The latter coupling partly

esults from the default that stereotyped elements carry on the no-

ation defined for the extended UML metaclass, if one is defined and

ot overruled explicitly.

Researchers have started systematizing the use and the role of

odel-level consistency constraints for the UML in general (Torre

t al., 2014). We complement these findings for UML-based DSMLs.

e established that 31 DSMLs adopted the constraint-language ex-

ression (O3.1) option. To be more precise, they all employ OCL ex-

ressions. This level of adoption puts new focus on the portability

ssues of such OCL consistency rules between different evaluation en-

ines. Portability remains limited due to the OCL/UML language spec-

fications leaving critical details to language and tool implementers
e.g., navigation semantics between extension and extended model

lements; see Langer et al., 2012 for an overview).

In addition, we found that constraint expressions are predomi-

antly defined for an intra-model scope (e.g. to resolve ambiguities

n the language model). Inter-model constraint expressions, includ-

ng vertical constraints between different model levels (e.g. platform-

ndependent vs. platform-specific), are the minority. Consider as an

xample a DSML language model defined at level M2 which must en-

orce consistency rules at level M0, i.e. the occurrence (instance) level

f DSML models. In fact, we found that for such scenarios, DSML de-

elopers resort to an informal textual annotation (O3.4). The use of

mplementation idioms (e.g., prototypical concept pattern; Atkinson

nd Kühne, 2001) and alternatives to metamodeling based on shal-

ow instantiation (e.g., potency and deep instantiation; Atkinson and

ühne, 2007) to work around or to overcome this limitation was not

bserved.

Generating textual artifacts (e.g. source code, documentation, de-

loyment descriptors) from models in software development via

odel-to-text (M2T) transformation is a common MDD activity

Ogunyomi et al., 2015). The importance for model-driven develop-

ent of M2T transformations, in general, and M2T transformation

ystems based on generator templates, in particular, has been re-

orted earlier (Generative Software, 2010). For UML-based DSMLs,

uch evidence has been missing so far. We found that the majority

f DSMLs (16) providing for platform integration (D6) adopt the gen-

rator template (O6.2) option. This is a mandate for DSML-specific

esearch on M2T transformation. Examples include scalable auto-

ated change propagation from domain-specific models to text ar-

ifacts (Ogunyomi et al., 2015) and coupled evolution of generator

emplates under metamodel composition for DSML integration (Hoisl

t al., 2013).

requency patterns. In total, our study identified and describes 16 fre-

uent combinations of decision options: 9 smallest common option

ubsets and 7 prototype option-sets (see Section 5). The latter are

ummarized below. To be considered frequent, an option subset was

equired to occur in at least three different DSMLs (see Section 3).

uring this pattern analysis, we learned that the reviewed DSMLs

ave a maximum of ten decision options per DSML (e.g. UML4SOA).

or recurring option subsets, i.e. option subsets found in more than

ne DSML, the maximum number of options in a particular option

ubset was seven (e.g. UML-PMS). At the level of individual decision

oints, these maxima translate into frequently recurring subsets con-

aining options from three decision records only: language-model

efinition (D1), language-model formalization (D2), and concrete-

yntax definition (D4).

As a key finding, we extracted seven option subsets which form

o called prototype option-sets. These prototype option-sets are a

articularly useful way for structuring the design space described

y the 24 observed decision options. First, they cover a critical share

f the observed DSMLs. Second, they stress commonalities and

ifferences in terms of decision options between these highly rep-

esentative option combinations. In particular, the seven prototype

ption-sets characterize 30% of the observed DSMLs (24/80) in their

ntirety. Furthermore, they are contained as large proper subsets

y 25 extended option sets; therefore reaching a total coverage of

pproximately 61% of the DSMLs included in our study (49/80). By

ooking at the common and varying decision options in the seven

rototype option-sets, we find that all seven are combinations of

ine decision options. These nine decision options correspond to

he leaf elements of the feature diagram in Fig. 17. As a result of this

bservation, these nine options were highlighted in our catalog. In

ddition, we extended the catalog to include additional reading aids

ased on the prototype option-sets. For example, we added a variant

f the feature diagram from Fig. 17 as well as thumbnail descriptions

f the nine key options (see also Tables 1 and 2 in Section 2.1). Adding
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Fig. 17. A feature diagram (Apel et al., 2013) representing the seven prototype option-

sets found in the pool of 80 third-party DSMLs. These seven prototype option-sets in-

clude nine different decision options. Each of the seven observed prototype option-sets

listed in Table 11 is one of the possible configuration of the feature space.

7

s

l

2

d

2

t

f

(

e

t

p

o

g

i

7

c

e

t

p

s

f

c

d

D

d

p

a

Z

I

r

a

r

T

m

a

I

r

r

e

r

S

g

c

s

a

d

2

d

t

b

o

t

22 Remember that each UML-based DSML is an embedded DSL and that UML-based

DSMLs usually have a graphical concrete syntax or a mixture of graphical and textual

concrete syntaxes (see also Section 2).
these content and navigation items is a concrete means to render the

catalog tailorable (Falessi et al., 2013; Kruchten et al., 2006).

Moreover, we were able to identify ten additional associations

between different decision options that are not yet included in the

prototype option-sets (see also Table 12). Associations were found

in terms of the two smallest common option subsets (e.g. model-

transformation chaining in D6; see Section 2.1) and in terms of as-

sociations derived from the prototype option-sets. From our analysis,

we also learned about the frequency at which certain associations

occur. This finding also allowed us to confirm already documented

associations, such as the association between UML profiles and cer-

tain concrete-syntax decisions. To reflect this evidence for the reader

of the catalog, we annotated the frequently observed associations ac-

cordingly (ten in total).

Revised catalog for DR reuse. As an important by-product of our study,

the revised decision-record catalog serves as an evidence-based and

empirically validated foundation for decision making in the context

of UML-based DSML projects (see Fig. 18). For the identification of key

decision problems, decision makers can consult our decision-record

catalog, which documents recurring decision contexts and decision

problems. The decision options and associations support the inven-

tory of suitable design decisions for deriving a selection of candidate

solutions. Finally, the evaluation of candidate solutions for their fit to

domain-specific and domain-generic requirements can be performed

using the documented decision drivers and decision consequences.

In addition, the decision options are aligned with different styles of

DSML development (abstract-syntax-first vs. concrete-syntax-first vs.

extraction-based; see, e.g., Zdun and Strembeck, 2009; Strembeck

and Zdun, 2009).

The importance of the frequency patterns summarized above

stems from the fact that the documented decision options provide

for a huge number of possible design option-sets. Thus, without

evidence-based guidance, making an informed choice from this

amount of combinations becomes impractical. Likewise, performing

design-space analyses or creating design-process documentation

based on the decision-record catalog can become a time-consuming

and tedious task (see Section 2.2). This is because of the sheer size

of the documented design-decision space. Creating and maintaining

design-rationale documentation for a DSML project, however, is

a substantial investment, and the effectiveness of this investment

is largely affected by the tailorability of the reusable documen-

tation of generic design rationale. A tailorable documentation of

generic design rationale (Falessi et al., 2013) provides means for

customization such that for each DSML project only relevant doc-

umentation items are provided to decision makers (e.g. domain

engineers, modelers, language engineers, and software architects).

Moreover, customization usually involves supporting visualizations

(e.g. decision-flow and activity diagrams) for particular use cases

(Kruchten et al., 2006).
. Related work

As explained in Section 2, the practice of documenting generic de-

ign decisions via collections of structured descriptions is an estab-

ished procedure in the domain of software engineering (Burge et al.,

008; Dutoit et al., 2006). In this paper, we also documented reusable

esign decisions in a structured and tailorable manner (Falessi et al.,

013). The way we documented the generic DSML rationale in

his paper is related to similar documentation techniques applied

or software-architecture design and architectural design decisions

Harrison et al., 2007; Shahin et al., 2009; Tang et al., 2010; Heesch

t al., 2012).

Moreover, we identified two additional areas of related work for

his paper. On the one hand, we have related work on DSL design

rocedures and DSL design-decision making (see Section 7.1). On the

ther hand, there are related contributions which have systematically

athered empirical evidence as well as generic design rationale on us-

ng the UML for domain-specific modeling (see Section 7.2).

.1. Systematic development of domain-specific languages

Several related contributions exist that describe systematic pro-

edures for developing DSLs. Each of these approaches is based on

xperiences drawn from actual DSL engineering projects, and each of

he related approaches provides insights into the DSL development

rocess, or into certain aspects of DSL design, or into DSL-related de-

ign decisions. For example, Strembeck and Zdun (2009) discuss dif-

erent DSL development activities and describe how these activities

an be combined to tailor a DSL engineering process.

In a complementary contribution, Zdun and Strembeck (2009)

ocument three main decisions to be made when applying the

SL development process from Strembeck and Zdun (2009). These

ecisions relate to the choices of a specific type of DSL development

rocess, of a concrete syntax style, and of developing an external vs.

n embedded DSL. To render these decision descriptions reusable,

dun and Strembeck (2009) document them in a pattern-like format.

n software engineering, a pattern is a time-proven solution to a

ecurring design problem. A pattern description includes (at least)

“problem description”, a description of the “context” in which the

espective problem occurs, and one or more (alternative) “solutions”.

ypically, pattern descriptions also include different “forces” that

ay influence the choice of a certain solution, “consequences” that

rise from a solution, as well as “known uses” of a particular solution.

n this way, the description format we chose for the decision records

esembles a pattern format to a certain degree. However, decision

ecords are not identical to or variants of software patterns, since, for

xample, they list multiple solution propositions (decision options)

ather than one.

While prior work on patterns for DSL development (Zdun and

trembeck, 2009; Strembeck and Zdun, 2009) aims at describing

eneric procedures and decisions for DSL development projects, our

ontribution in this paper provides detailed insights into design deci-

ions for UML-based DSMLs. In this way, our work complements Zdun

nd Strembeck, 2009; Strembeck and Zdun, 2009, as well as other DSL

evelopment approaches such as Stahl and Völter, 2006, and Völter,

013. This is because our work provides a systematic and in-depth

ocumentation of the follow-up decisions that DSL engineers face af-

er they decided to develop a UML-based DSML.22

A number of other patterns and pattern languages exist that can

e applied in DSL development and are thereby complementary to

ur work. This includes patterns for the design and implementa-

ion of DSLs (Spinellis, 2001), patterns for evolving frameworks into
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Fig. 18. Supporting decision making (identification, inventory, evaluation) on developing UML-based DSMLs via an evidence-based decision-record catalog providing reusable

design decisions (Hoisl et al., 2014a).
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SLs (Roberts and Johnson, 1996; 1997), and approaches for pattern-

ased DSL development (Schäfern et al., 2011). Often, DSL-related

atterns do not only describe how a DSL is developed, but also why

t is developed in a specific way. In addition, pattern languages also

escribe potential sequences in which the patterns can be applied

Buschmann et al., 2007). Pattern sequences compare with our no-

ion of option sets (see Section 2.1.2) in the sense that (ordered) op-

ion sets can represent sequences of adopted decision options. The

esearch design of this study, however, does not allow us to assume a

emporal ordering when extracting design decisions (see Section 5.4).

Mernik et al. (2005) used the patterns from Spinellis (2001) to

onduct a survey on decision factors affecting the analysis, design,

nd implementation phases of DSL development. These decision fac-

ors can be considered during DSL development. For example, the de-

ision factor Notation deals with the consideration whether the DSL

hould provide a new or an existing domain notation. For a few deci-

ion factors, Mernik et al. (2005) suggest implementation guidelines.

he work of Mernik et al. (2005) is complementary to ours as it fo-

uses on general issues of design-decision making and implementa-

ion, rather than on design decisions for a specific (host) language

nvironment such as the UML.

Another group of related work reports observations from devel-

ping DSLs in (industrial) practice. For example, Luoma et al. (2004)

onducted a study including 23 industrial projects for the definition

f DSMLs. Similar to our approach, a number of DSLs are systemati-

ally compared. However, in contrast to our paper Luoma et al. (2004)

rovide a high-level description only and do not describe specific DSL

esign decisions or decision-option sets in detail. Similar to patterns,

essons learned have been used as a vehicle to preserve best prac-

ices of DSL development. For example, Wile (2004) reports on twelve

essons learned from three DSL experiments. For each lesson, he in-

roduces a respective rule of thumb and gives an overview of the ex-

eriences that are the origin of the corresponding rule. Despite Wile’s

essons learned being described at a comparatively high level of ab-

traction, they can, in general, also be observed in our work and are

ence reflected in parts of our decision-record catalog. Kelly and Po-
jonen (2009) present a report on worst practices found by review-

ng 76 DSL development projects, and Karsai et al. (2009) propose

6 general guidelines for DSL development derived from their own

xperiences.

A UML-based DSML uses UML as its host language and extends the

ML with domain-specific language elements and, therefore, quali-

es as an embedded DSL (also: internal DSL). Related work on devel-

ping embedded DSLs includes the contributions by Günther et al.

hich describe a process and corresponding patterns for the devel-

pment of internal DSLs on top of dynamic programming languages,

uch as Ruby or Python (Günther, 2011; Günther et al., 2010; Günther

nd Cleenewerck, 2010). Other related contributions describe how to

uild DSLs from component building blocks that can be incremen-

ally designed and composed (see, e.g., Allen et al., 2005; Thibault

t al., 1999). This idea originates from approaches such as keyword-

ased programming (Cleenewerck, 2003), in which so called “key-

ords” serve as building blocks for DSLs. In particular, a number of

universal) keywords are suggested which are then glued together to

ompose DSLs. This approach was first envisioned in Landin (1966)

nd is akin to building embedded DSLs in dynamic languages (such

s Ruby, Perl, Python, or Tcl for example).

In the UML context, some authors propose approaches that de-

ne domain-specific UML extensions via UML profiles (see, e.g., Paige

t al., 2000; Grant et al., 2004; Robert et al., 2009; Selic, 2007). While

ach of these approaches is related to our work, none of them doc-

ment generic design decisions for UML-based DSMLs. Weisemöller

nd Schürr (2008) give an overview of standard compliant ways to

efine domain-specific UML extensions, while Atkinson and Kühne

2002) discuss potential issues with UML profiles and suggest a so-

ution to address these problems. Bruck and Hussey (2008) present

ifferent techniques for tailoring the UML (e.g. lightweight profile or

iddleweight metamodel extension). In particular, Bruck and Hussey

2008) define a catalog of options and characterize different ex-

ension mechanisms accordingly. They also discuss pros and cons

f using one approach or the other. However, Bruck and Hussey

2008) focus on UML customization techniques in general and do not
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integrate design decisions in the process of DSML development

(e.g. no development phases are distinguished, language-model con-

straints as well as platform integration are not considered).

In addition, knowledge on DSL design decisions can also be gained

from analyzing toolkits for DSL development. For example, Tolvanen

and Kelly (2009) present a tool for the definition and usage of in-

tegrated DSMLs. Similarly, Zdun (2010) presents a tool suite for tex-

tual DSL-based software and provides a discussion of architectural

decisions for DSL development. However, most existing contribu-

tions have a strong focus on textual domain-specific programming

languages. To the best of our knowledge, there is no report reflect-

ing on design decisions embodied in toolkits for UML-based DSML

development.

In summary, the related work on patterns, best practices, and

lessons learned in DSL development have in common with our

approach that all are based on experiences from actual DSL projects

and contain some information on DSL design decisions and design

rationale. Our work provides a systematic and detailed description

of decision options for building UML-based DSMLs. In this way, our

contribution is complementary to those other approaches and can be

combined with them.

7.2. Empirical evidence on UML and MDD usage

We identified a number of systematic UML-related empirical

studies closely related to our paper. The research methods employed

in these studies include systematic reviews (5), surveys (2), a con-

trolled experiment (1), and a case study (1). Our findings comple-

ment the empirical observations of a first group of related work (e.g.

descriptive statistics on UML usage).

Dobing and Parsons (2006) performed a web-based survey among

171 OMG members on the perceived importance of the use-case

viewpoint offered by the UML. They found that UML class and use-

case diagrams are the most widely and regularly adopted diagram

types (i.e. in more than two thirds of the respondents projects), with

state machine and collaboration diagrams ranking lowest. With re-

spect to UML-based DSMLs, our study shows a slightly different pic-

ture (see Section 5). While we can confirm the preponderance of class

diagrams, we found that use-case diagrams are rarely customized

by means of a DSML while state machine diagrams are frequently

adopted in DSMLs.

Pardillo (2010) conducted a SLR for the years from 1999 to 2009

to characterize trends on UML profile usage. Most notably. The SLR

documented publication trends, descriptive statistics (e.g. extended

metaclasses, profile-concept usage frequencies) and definition issues

of documented profile packages. The review was limited to a few

handpicked, but important presence venues (ER, MoDELS/UML) in-

cluding co-located workshops. An automated search in DBLP was

used, yielding 63 hits. 39 of those 63 were included in the study. Af-

ter a peak in 2002, Pardillo observes a decrease in publications that

present a UML profile. However, the SLR study of Pardillo (2010) is not

directly comparable to ours. This is because of a different review pe-

riod, our study’s reach beyond UML profiles, and because of our more

extensive pool of venues. We cover journals and conferences beyond

MoDELS/UML and ER. Yet, in our study, we also observed a falling

number of yearly publications on UML-based DSMLs including UML

profiles (with intermittent peaks in 2006 and 2011). Conference pub-

lications are on the decline and journal publications stagnate. We can

also confirm that the MoDELS conference continues to serve as the

top venue for relevant publications. It ranks first in terms of included

publications in our paper corpus, while the ER conference only con-

tributes one publication (see Section 4.2).

Nascimento et al. (2012) conducted a systematic mapping study

on DSLs in more general and for an unbounded time range (1966–

2011). They collected and reviewed 2,688 publications from 669

presence venues (i.e. conferences and workshops) and 180 archival
enues (i.e. journals). The number of papers relating to (UML-based)

SMLs amounted to 163, 69 of which report on DSML creation. The

ata extracted from these DSML publications is unfortunately not dis-

ussed in detail in the research reported by Nascimento et al. (2012).

nly the number of DSML publications (21) referring to the usage of

ML profiles is documented. To this end, we complement the broader

apping work of Nascimento et al. (2012) for the later years in our

eview period by detailing the usage characteristics of profiles ver-

us metamodel extensions in UML-based designs. The DSML-specific

ublications in their paper corpus served for establishing our QGS

orpus as a third-party data source (see Section 4).

Garousi (2012) performed a search-driven literature review by

ollecting bibliographical records on UML-related monographs from

he Google Books database for a time range between 2001–2009. As

major observation, the authors state a peak year in 2005, allegedly

aused by authors writing new books on the UML 2.0 specification.

rom 2005 onwards, however, the study finds a substantial and con-

inued reduction in new UML books being published, down to only

wo books in 2008. Our study draws a comparable timeline picture

or scientific publications on UML 2.0 (see Section 4.2).

Nugroho and Chaudron (2008) provide empirical findings from an

nline questionnaire survey on the use of UML amongst 80 profes-

ional software engineers. Part of the results targeted “imperfections”

n UML models; i.e. how often inconsistency, understandability, inac-

uracy, and incompleteness in models led to implementation prob-

ems. The study indicates that in each of the four categories approx-

mately 90% of the respondents reported the respective imperfection

ccurring sometimes, often, or very often during a project.

Hutchinson et al. (2014) and Whittle et al. (2014) report quan-

itative data on MDD practice in industry based on 449 responses

o an online questionnaire, supplemented by qualitative data from

2 semi-structured interviews with MDD practitioners. Their report

uggests that, in practice, the UML is the most commonly adopted

odeling language with 85.5% of the respondents having adopted

he UML. Another key finding, however, is that DSMLs have gained

n important share in adoption. 39.2% of the respondents indicated

hat they use a custom DSML developed in house, 21.5% make use of

SMLs bundled with their modeling tool chain. Unfortunately, their

eport remains silent about the share of co-adoption of the standard

ML and such DSMLs. Also, the authors do not discriminate between

SMLs based on the UML and those developed independently from

he UML. In an earlier study, Hutchinson et al. (2011) hint at the fact

hat such DSMLs could qualify as DSMLs embedded within the UML

e.g. using profiles). Therefore, these studies provide motivation for

ur work, because they stress the need for systematic empirical re-

earch on UML-based DSML development to fill the above gap. Re-

arding platform integration (D6), only ≈32% of the DSML projects

onsidered platform-integration techniques. This observation is con-

rmed by our study (see Section 5.3). Hutchinson et al. (2014) re-

ort a comparatively high number of projects using MDD for code

eneration (O6.2) as well as M2M transformation (O6.1, O6.5). Even

ewer respondents indicated to rely on executable models (O6.4)—

bservations which are supported by our results. In addition, the re-

orted frequency of UML diagram types matches our observations

f a dominance of structural and, in particular, class diagrams (see

able 9).

Recently, Gorschek et al. (2014) reported an inquiry concerning

he adoption of object-oriented design and implementation concepts

including object-oriented design models) using a web-based survey.

,823 developers finally responded, 78.5% of which completed the

urvey. The only selection criterion for participants was some pro-

ciency in an object-oriented programming language (e.g. C#, Java,

ython). The authors found that approximately 50% of the respon-

ents never (i.e. in less than 10% of the development activities) and

bout 70% rarely (in less than 25% of the development activities) use

ny diagrammatic design models. In contrast, only approximately 11%



S. Sobernig et al. / The Journal of Systems and Software 113 (2016) 140–172 169

e

t

c

g

n

b

a

t

o

g

i

o

p

p

r

s

t

c

(

a

fi

c

e

s

4

c

c

c

s

e

d

T

i

s

p

t

U

o

(

s

t

s

i

o

s

u

f

c

m

o

w

f

t

r

m

p

c

t

i

t

i

a

r

T

f

N

m

T

s

w

b

t

r

d

8

(

d

c

K

t

a

t

a

f

d

c

o

n

d

d

m

p

D

e

p

m

(

t

i

a

U

mploy models in more than 75% of their development activities. In

erms of demographics, this minority of software developers has re-

eived a higher level of formal education. When using a formal dia-

rammatic notation, the UML or a UML-inspired notation was promi-

ently mentioned by the respondents. This large-scale survey, while

eing widely unspecific of the concrete type of UML usage (e.g. di-

gram types), just stresses that there is only very little evidence on

he use of UML-based DSMLs in software-development practice and

n their design details. Our study cannot fully close this particular gap

iven a different intention (extraction of generic design rationale) and

ts data sources (i.e. mainly scientific publications by the DSML devel-

pers). However, we provide a data set of DSML projects as a starting

oint for follow-up work on DSML usage in industry practice.

A second group of related empirical studies also documented im-

ortant generic design rationale which was included in our decision-

ecord catalog. Below, we iterate over these secondary studies to

tress how we incorporated their findings on UML-specific design ra-

ionale into our catalog.

In a follow-up and partly replicated review of Pardillo (2010) fo-

using on the data warehouse domain only, Pardillo and Cachero

2010) make the case of the (unwanted) coupling of abstract-syntax

nd concrete-syntax decisions of a DSML when adopting UML pro-

les. This issue has been included into our revised decision-record

atalog via option associations between D2 and D4.

The SLR of Budgen et al. (2011) aims to collect and to reflect on

mpirical research on the UML, involving measurement, comprehen-

ion, quality, and maintenance of UML models. The review yielded

9 papers published up to 2008. The overview of papers on UML

omprehension provides an important auxiliary source for our de-

ision records on concrete-syntax design (D4). The included papers

over findings on the comprehensibility of stereotyped and non-

tereotyped models for different audiences, as well as the cognitive

ffectiveness of different diagram types (sequence diagrams). In ad-

ition, the authors recorded the different research methods adopted.

hese methods included mainly small-scale controlled experiments

n laboratory settings. Budgen et al. (2011) also found two empirical

tudies on “notation extensions” in the UML, however, the respective

aper category was deliberately excluded from the analysis because

he authors were only concerned with contributions using standard

ML. To this end, we complement the SLR of Budgen et al. (2011) by

rganizing papers on UML extensions explicitly, including notation

concrete-syntax) extensions. At the same time, our SLR is a primary

tudy on mining UML-specific design rationale.

Staron and Wohlin (2006) report on a confirmatory case study

o test six alleged advantages and disadvantages of UML exten-

ion techniques (profiles and metamodel extensions) based on an

ndustrial case: the UML-driven modeling toolkit Tau G2 by Telel-

gic. The authors triangulated their observations from data sources

uch as profile definitions and metamodel extensions implemented

sing Tau G2, requirements documents of Telelogic’s customers, a

ault database, and interviews to reflect on decision-making pro-

esses. A key observation was that software products based on meta-

odel extensions exhibit more faults in terms of unfulfilled or vi-

lated customer requirements. In addition, metamodel extensions

ere found to incur substantially more development effort (three to

our weeks working time) than profiles (one week). We incorporated

hese evidence-based findings as arguments (drivers) into decision

ecord D2. The observations of Staron and Wohlin (2006) rest upon

etamodel-based extensions to activity diagrams as well as upon

rofile-based extensions to deployment, interaction overview, and

omponent diagrams.

Staron et al. (2006) conducted a series of four experiments on

he understandability of stereotyped UML class models, all replicat-

ng a single design but varying in terms of control levels and de-

ails of the treatment (e.g. order of artifact presentation). The exper-

ments were set in an academic environment (68 student subjects)
nd in an industrial environment (four professional subjects). The

eplicated design involved twelve tasks to be solved by the subjects.

he tasks comprised counting specific model elements and identi-

ying definition defects in stereotyped and non-stereotyped models.

on-stereotyped models contained the domain semantics of the class

odel as unstructured UML comments attached to model elements.

he authors recorded three data points per subject: total and per-task

olving time as well as the number of correctly solved tasks. In this

ay, the authors found that the subjects solved more tasks correctly

ased on stereotyped models. In addition, there was a decrease in the

otal and relative task-solving times for stereotyped class models. We

efer to the findings from Staron et al. (2006) as part of a decision

river on the understandability of concrete-syntax options (D4).

. Conclusion

Existing approaches towards systematizing DSML development

Strembeck and Zdun, 2009; Lagarde et al., 2008) put forth a

evelopment-process perspective, treating DSML development as a

omplex flow of exploratory and iterative development activities.

ey activities are language-model definition, constraint specifica-

ion, concrete-syntax design, and platform integration (Strembeck

nd Zdun, 2009). A process perspective has immediate benefits. It es-

ablishes a shared process vocabulary (e.g., of different development

rtifacts) and represents common DSML development styles via dif-

erent flows between development activities (e.g., language-model-

riven or mockup-driven DSML development). On the flip side, a pro-

ess perspective alone abstracts from DSML development as a result

f continuous decision-making by stakeholders (e.g., domain engi-

eers, modelers, language engineers, and software architects). Such

ecision making is always situated in a specific context shaped by

omain requirements and architecture requirements (e.g., a certain

odeling technology stack such as the UML).

Therefore, our work proposes a complementary decision-centric

erspective on DSML development. For the scope of UML-based

SMLs, our focus is on providing tailorable documentation (Falessi

t al., 2013) of generic design decisions (Harrison et al., 2007). This

aper puts emphasis on the scientific approach: A three-year, multi-

ethod empirical study based on a systematic literature review

SLR), a content analysis, and a frequent-item-set analysis was used

o collect and to validate generic, reusable design decisions. Key find-

ngs are:

• The study revealed 24 design-decision options in 80 UML-based

DSMLs reported between 2005 and 2012, covering design aspects

from language-model implementation in the UML to platform

integration (the complete list of DSMLs is provided in the Ap-

pendix).
• Language-model piggybacking (Spinellis, 2001) using UML pro-

files is the most frequently adopted DSML implementation tech-

nique (by 78% of the DSMLs).
• Approximately one third of the documented decision options

(9/24) can be combined to characterize more than 60% of the re-

viewed DSMLs (49/80).
• Based on these 9 critical decision options, 7 different prototype

DSML designs representing different variants of UML piggyback-

ing and UML extension (Spinellis, 2001) were identified.
• The most frequently tailored UML diagram types are class dia-

grams (≈63% of the DSMLs) and activity diagrams (25%), respec-

tively.
• The publication activity on UML-based DSMLs including premier

journal venues (e.g. SoSyM, IST) and conference venues (e.g. MoD-

ELS, ECMFA) is on a downward trend.

These findings were incorporated into an empirically validated

nd publicly available collection of reusable design decisions on

ML-based DSMLs. This decision-record catalog (Hoisl et al., 2014a)
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lists 27 decision options and their interdependencies for six dif-

ferent design-decision concerns (e.g. language-model formalization,

concrete-syntax definition). We used the data on frequency as well as

on commonalities and differences in DSML designs to highlight pro-

totype designs in the catalog. This way, we provide guidance for DSML

engineers and enable them to quickly find examples of decision-

option combinations that were successfully applied in other DSML

projects. Such guidance is particularly important because, in total,

hundreds of millions of possible decision-option sets can be derived

from our decision-record catalog. To the best of our knowledge, our

work is the first attempt to document design rationale on UML-based

DSML development driven by empirical evidence collected at a large

scale.

The decision-record catalog (Hoisl et al., 2014a) and the detailed

SLR protocol (Sobernig et al., 2014) are publicly available. Important

by-products of this research project were multiple UML-based DSMLs

(see, e.g., SOFServices), techniques for integrating (otherwise inde-

pendent) DSMLs (see, e.g., Hoisl et al., 2013), testing techniques for

DSML artifacts (see, e.g., Sobernig et al., 2013; Hoisl et al., 2014c), and

empirical studies to evaluate the resulting research artifacts (e.g. a

controlled experiment on testing notations; Hoisl et al., 2014b).

In future work, we will continue to extend and to evaluate

the decision-record catalog by incorporating additional third-party

DSMLs. We will replicate our SLR study for publication years starting

with 2013. This way, we will also seek the missing evidence for deci-

sion options deemed candidates after our SLR study (see Section 6).

In parallel, we plan to add design decisions on DSML tooling support as

a seventh decision record (D7) to cover DSML editors and generators.

Furthermore, to overcome certain study limitations (see Section 5.4),

we will try to engage outside DSML experts, including the authors

of the 80 DSMLs identified during our SLR study. We will employ

direct inquisitive (e.g. interviews) and observational research tech-

niques (e.g. participant observations) to collect more qualitative evi-

dence, such as on time ordering in design-decision making.
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