
Deriving UML-based Specifications of
Inter-Component Interactions from Runtime Tests

Thorsten Haendler, Stefan Sobernig and Mark Strembeck
Institute for Information Systems and New Media

Vienna University of Economics and Business (WU Vienna), Austria
{firstname.lastname}@wu.ac.at

ABSTRACT
In this paper, we present a model-driven approach for the de-
rivation of inter-component-interaction specifications from
runtime tests. In particular, we use test-execution traces to
record interactions between architectural components based
on testing object-oriented systems. The resulting models are
specified via UML diagrams. In order to transform test exe-
cutions to corresponding component and interaction models,
we define conceptual mappings (transformation rules) bet-
ween a test-execution metamodel and the UML2 metamodel.
As a proof of concept, we integrated the approach into our
tool KaleidoScope.

CCS Concepts
•Software and its engineering → Object oriented ar-
chitectures; Unified Modeling Language (UML); Soft-
ware testing and debugging; Model-driven software en-
gineering; Dynamic analysis; Documentation;

Keywords
Component Interaction; Test-Execution Viewpoint; Scenario-
based Runtime Tests; UML; Component-based Architecture

1. INTRODUCTION
A component-based architecture structures a software sy-
stem in terms of components and connections between them
[15]. (Re-)Structuring a system into components provides
multiple advantages regarding system maintainability and
code reusability at the large, e.g., by abstracting from de-
tails of object-oriented code structures [13]. Graphical mo-
dels support a software system’s stakeholders in understan-

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies
are not made or distributed for profit or commercial advantage and that
copies bear this notice and the full citation on the first page. Copyrights
for components of this work owned by others than the author(s) must
be honored. Abstracting with credit is permitted. To copy otherwise,
or republish, to post on servers or to redistribute to lists, requires prior
specific permission and/or a fee. Request permissions from Permissi-
ons@acm.org.
SAC 2016,April 04 - 08, 2016, Pisa, Italy
Copyright is held by the owner/author(s). Publication rights licensed to
ACM.
ACM 978-1-4503-3739-7/16/04. . . $15.00
DOI: http://dx.doi.org/10.1145/2851613.2851981

ding and communicating a specific software architecture [5].
Today, UML models are a de facto standard for graphical-
ly documenting software structures and processes. In recent
years, researchers have found disadvantages resulting from
a purely manual creation and maintenance of software ar-
chitectures. For instance, given the need for having an up-
to-date documentation of (possibly) large component-ba-
sed architectures, manual documentation maintenance be-
comes time consuming and error-prone. In response, ap-
proaches have been proposed for recovering a component-
based architecture (and architecture documentation) semi-
automatically from implementation artifacts of object-orien-
ted systems (see, e.g., [1, 14]). Architectural components are
connected by provided and required component interfaces
(e.g., specified via interface contracts [11]) which define how
a component can be used by other components. Component
interfaces provide important information for multiple system
stakeholders: e.g., for system integrators or architects (de-
sign by reuse) or for developers of components (design for
reuse; [5]). A critical facet of component interfaces is the do-
cumentation of intended inter-component interactions (e.g.,
specified via synchronization contracts [3] such as Service-
Interfaces in SoaML).

In this paper1, we propose a technique for semi-automati-
cally deriving UML-based specifications of interactions bet-
ween architectural components from testing object-oriented
systems. Deriving such component interactions involves clu-
stering component interfaces and setting up filters for inter-
actions between these interfaces. The resulting test-based in-
teractions are expressed via respective UML diagrams. Our
approach builds on conceptual mappings (transformation ru-
les) between a test-execution metamodel, on the one hand,
and the UML2 metamodel, on the other hand. As a proof
of concept, we extended our tool KaleidoScope2 to support
the proposed approach.

Conceptual Overview. Fig. 1 illustrates the suggested proce-
dure. A software engineer (in the roles of a software devel-
oper or a test developer respectively) implements the system
under test (SUT) and specifies the test script (step 1⃝). Our
approach requires the clustering of SUT classes to architec-
tural components (step 2⃝). This task can be performed
manually by software architects (e.g., by structuring/anno-
tating the source code using name spaces or packages, or

1An extended paper version is available for download from
our website [7].
2Available for download from our website [7].

http://dx.doi.org/10.1145/2851613.2851981

Software

Engineer

System

under Test

Test

Script

Test Run

tests

speci�es

1

Model-to-Model

Transformation

de�nes

extraction extraction

selects a

analyses

2

3

source

conforms to

4
5

6

7

optionally

test scenario

Inter-Comp.-Interaction

Speci�cation

Model

Builder

Class-to-

Comp. Allocation

Test-Execution

Traces

Test-Execution Model

Test-Execution

Metamodel

Conceptual

Mappings

UML 2

Metamodel

target

conforms to

implements

Automated Activity
Manual Activity
Dependency

develops

Metamodel

Mapping

source

target

Figure 1: Conceptual overview of deriving test-based
inter-component-interaction specifications.

by using a DSL) or automatically (e.g., based on extrac-
ted traits of cohesion and coupling of classes [10]). Next,
based on instrumenting the test run (e.g., using dynamic
analysis), a test-execution trace model is extracted auto-
matically (step 3⃝). Then, by default, the specifications of
all relevant test scenarios are derived. Therefore, the test-
execution model (including the class-to-component alloca-
tion and the test-execution traces; source model, step 5⃝)
is transformed automatically to inter-component-interaction
specifications (target model, step 6⃝). This transformation is
executed by a model-builder engine which implements (e.g.,
in QVT operational) the conceptual mappings (transforma-
tion rules) between the test-execution metamodel and the
UML2 metamodel. The concrete source and target models
are instances of the corresponding metamodels. Optionally,
a specific test scenario can be selected by the software en-
gineer (step 4⃝). In any case, the resulting UML model can
be used for analysis of the system behavior by the software
engineer (see step 7⃝).3

2. A TEST-EXECUTION VIEWPOINT
To capture interactions between architectural components,
we define and apply a test-execution viewpoint with the fol-
lowing three characteristics. First, the views document the
intended behavior in terms of feature-call protocols (see C⃝
in Fig. 2) of the system under test (SUT; see process view
of the “4+1 view model” [9]); i.e. intended reactions of the
SUT triggered by stimuli specified in the test script. Second,
the views provide contextual information on the test script
and the test environment (see allocation viewtype [5]). This
context allows for bi-directional mappings between test (or
test parts) and (architectural) elements of the SUT; similar
to a functional mapping [2]:

• Links from a selected test part to covered SUT ele-
ments (A⃝ in Fig. 2) and their behavior (see C⃝ in Fig.
2; test-based slicing, e.g., for use-case-driven documen-
tation [4])

• Links from a selected SUT element to covering test

3The proposed procedure is fully supported by our tool Ka-
leidoScope [7].

<<Interface>>

InterfaceBx

+operationB1a()

+operationB1b()
<<Interface>>

InterfaceAx

+operationA2a()

<<Interface>>

InterfaceCx

+operationC3a()

TestScenarioX

<<Component>>

ComponentA

<<Component>>

ComponentB
<<Component>>

ComponentC

<<Speci�cation>>

portAx

portBx

portCx

:ComponentA
:ComponentB

:ComponentC

portAx

portCx
portBx

Dependency (use/required)

portCy

portAy

portAz

portBzportBy

:InterfaceAx :InterfaceBx :InterfaceCx

sd TestScenarioX

A

C

operationB1a() operationC3a()

operationA2a()

operationB1b()

true

true

true

false

B

Figure 2: Example of a derived inter-component-
interaction specification with SUT components and
involved interfaces A⃝, the specification class B⃝,
and owned interactions between interfaces C⃝.

parts. For instance, by selecting a component, the ow-
ned ports indicate the covering test scenarios (see, e.g.,
ComponentB in A⃝ in Fig. 2).

Third, the views combine with those conforming to other
viewpoints as additional slicing criteria, such as the compo-
nent & connector viewpoint (e.g., represented by UML com-
ponent models, A⃝ in Fig. 2). This way, specifically tailored
documentation can be obtained (model slicing).

Application Example. An exemplary object-oriented system
consists of six classes allocated to three components (see
Fig. 3). The owned class features are connected by multi-
ple call dependencies (i.e. inter- vs. intra-component calls).
A minimal test scenario for this SUT (testScenarioX)
is depicted in Listing 1. Consider now, for instance, a soft-
ware developer who intends to modify or to reuse Compo-
nentA. She wants to identify the component’s behavioral
inter-dependencies to other components. Based on the deri-
ved specifications in Fig. 2, the participation of Componen-
tA in three test scenarios can be established; as indicated
by the owned ports portAx-z (see A⃝). The developer can
then decide to investigate one test scenario to review the
corresponding inter-component interactions therein, such as
called and calling features (e.g. operationA2a in fragment
C⃝ of Fig. 2).

inter-component call

intra-component call

ClassA1

+operationA1a()

+operationA1b()

ClassA2

+operationA2a()

+operationA2b()

ComponentA

ClassC1

+operationC1a()

+operationC1b()

ClassC2

+operationC2a()

+operationC2b()

ClassC3

+operationC3a()

+operationC3b()

ComponentC

ClassB1

+operationB1a()

+operationB1b()

ComponentB

Figure 3: Classes of
an exemplary SUT
allocated to compon-
ents.

Listing 1: Excerpt from an
exemplary test script.
set sX [::STORM::TestScenario

new -name testScenarioX
-testcase cX]

$sX setup_script set {
set a1 [::CompA::ClassA1 new]
$a1 operationA1b

}
$sX test_body set {

set b1 [::CompB::ClassB1 new]
set c3 [::CompC::ClassC3 new]
$b1 operationB1b
$b1 operationB1a

}
$sX postconditions set {

{expr {[[::CompC::ClassC3
info instances]
operationC3a] == true}}

}

3. DERIVING SPECIFICATIONS OF
INTER-COMPONENT INTERACTIONS

Our approach applies scenario-based testing [12] to docu-
ment the interplay between objects in the SUT. The SUT’s
runtime behavior (in terms of execution traces triggered
by scenario tests) is constituted by the mutual interchan-
ge of messages between SUT objects. For specifying compo-
nent interactions, we abstract from the concrete SUT ele-
ments (e.g., objects and class features) and their message
exchanges by considering calls between components only.
To transform test-execution trace models into UML inter-
actions between components automatically, we define a set
of conceptual mappings (transformation rules) between the
test-execution metamodel, on the one hand, and the UML2
metamodel, on the other hand. These mappings are specified
in transML [6] and refined by OCL mapping and consistency
constraints. See the extended paper version for details [7].

4. CONCLUSION
This paper presents an approach for deriving UML-based
specifications of interactions between architectural compon-
ents from scenario-based runtime tests. The proposed view-
point provides process documentation [9] in terms of sequen-
ces of (mutual) object-feature calls. The underlying execu-
tion traces are automatically extracted from test runs on
object-oriented systems. Conceptual metamodel mappings
between a test-execution metamodel and the UML meta-
model render the approach generic.

We extended our tool KaleidoScope4 [8] with support for
the approach described above. In particular, KaleidoScope
builds on the testing framework STORM [16] and model
transformations (Eclipse M2M/QVTo). SUT classes can be
allocated to components by defining packages in the system’s
source code. KaleidoScope then automatically derives the
specifications by instrumenting the STORM test execution
using message interceptors and callstack introspection.

Future work will seek to evaluate the approach in a larger
project setting regarding its scalability and its benefits over

4Available for download from our website [7].

manually creating and maintaining software-architecture do-
cumentation.

5. REFERENCES
[1] S. Allier, S. Sadou, H. Sahraoui, and R. Fleurquin.

From object-oriented applications to
component-oriented applications via
component-oriented architecture. In Proc. WICSA’11,
pages 214–223. IEEE, 2011.

[2] T. B. C. Arias, P. America, and P. Avgeriou. Defining
execution viewpoints for a large and complex
software-intensive system. In Proc. WICSA/ECSA’09,
pages 1–10. IEEE, 2009.

[3] A. Beugnard, J.-M. Jézéquel, N. Plouzeau, and
D. Watkins. Making components contract aware.
Computer, 32(7):38–45, 1999.

[4] D. Bojic and D. Velasevic. A use-case driven method
of architecture recovery for program understanding
and reuse reengineering. In Proc. CSMR’00, pages
23–23. IEEE CS, 2000.

[5] P. Clements, D. Garlan, L. Bass, J. Stafford, R. Nord,
J. Ivers, and R. Little. Documenting software
architectures: views and beyond. Pearson Education,
2002.

[6] E. Guerra, J. Lara, D. S. Kolovos, R. F. Paige, and
O. M. Santos. Engineering model transformations with
transML. Softw. Syst. Model., 12(3):555–577, 2013.

[7] T. Haendler. KaleidoScope. Institute for Information
Systems and New Media. WU Vienna.
http://nm.wu.ac.at/nm/haendler, 2015. Last accessed:
7 December 2015.

[8] T. Haendler, S. Sobernig, and M. Strembeck. An
approach for the semi-automated derivation of UML
interaction models from scenario-based runtime tests.
In Proc. ICSOFT-EA’15, pages 229–240. SciTePress,
2015.

[9] P. B. Kruchten. The 4+ 1 view model of architecture.
Software, IEEE, 12(6):42–50, 1995.

[10] S. Mancoridis, B. S. Mitchell, C. Rorres, Y.-F. Chen,
and E. R. Gansner. Using automatic clustering to
produce high-level system organizations of source
code. In IWPC’98, pages 45–52, 1998.

[11] B. Meyer. Applying ’Design by Contract’. Computer,
25(10):40–51, 1992.

[12] C. Nebut, F. Fleurey, Y. Le Traon, and J. Jezequel.
Automatic test generation: A use case driven
approach. IEEE Trans. Softw. Eng., 32(3):140–155,
2006.

[13] T. Ravichandran and M. A. Rothenberger. Software
reuse strategies and component markets. Commun.
ACM, 46(8):109–114, 2003.

[14] A. Seriai, S. Sadou, H. Sahraoui, and S. Hamza.
Deriving component interfaces after a restructuring of
a legacy system. In Proc. WICSA’14, pages 31–40.
IEEE, 2014.

[15] M. Shaw and D. Garlan. Software architecture:
perspectives on an emerging discipline, volume 1.
Prentice Hall Englewood Cliffs, 1996.

[16] M. Strembeck. Testing policy-based systems with
scenarios. In Proc. IASTED’11, pages 64–71. ACTA
Press, 2011.

http://nm.wu.ac.at/nm/haendler

	Introduction
	A Test-Execution Viewpoint
	Deriving Specifications of Inter-Component Interactions
	Conclusion
	References

