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ABSTRACT

In model-driven development (MDD), UML-based
domain-specific modeling languages (DSMLs) are fre-
quently used for specifying software systems. The inte-
gration of corresponding DSMLs is an important part
of model-driven software evolution and maintenance.
However, due to a wide variety of DSML design op-
tions, integrating DSMLs is a non-trivial task. In this
paper, we discuss issues that may arise when integrat-
ing MOF/UML-based DSMLs and present a process
model for the systematic integration of DSMLs to ad-
dress some of these issues. In particular, we discuss
different composition techniques as well as challenges
that may occur in the different phases of DSML in-
tegration. In addition, we provide an example for
the integration of two DSMLs from the security do-
main. With our process model we aim to provide a
conceptual framework for the systematic integration
of MOF/UML-based DSMLs.
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1 Introduction

In recent years, model-driven software development
(MDD) emerged as a software engineering technique
for the specification of tailored domain-specific soft-
ware systems (see, e.g., [1, 2]). The modeling of com-
plex domain artifacts helps to understand these prob-
lems and potential solutions through abstraction [3].
In this sense, MDD raises the level of abstraction in the
software engineering process—as high-level program-
ming languages have done in the past [4]. Thereby,
MDD helps to enhance the understanding of a problem
and solution domain and benefits from a high degree
of automation (e.g., tool-supported code generation)
[3].

In the context of MDD, domain-specific (mod-
eling) languages (DSLs/DSMLs) are special-purpose
(modeling) languages tailored for a particular domain
(see, e.g., [5, 6, 7]). The development of DSMLs based

on the Meta Object Facility (MOF, [8]) and/or the
Unified Modeling Language (UML, [9]) are commonly
applied in MDD, for instance, for the specification
of security-related properties (see, e.g., [10, 11]). A
MOF/UML-based DSML is characterized by utilizing
the MOF/UML specifications where possible and by
extending their definitions where necessary. Thereby,
DSMLs that are based on the MOF/UML can directly
benefit from maintenance through the Object Man-
agement Group (OMG), standardized modeling exten-
sions, and a variety of corresponding software tools.

Software systems are frequently subject to chang-
ing requirements and evolve over time [12]. Thus,
the composition of DSMLs becomes an integral part
of model-driven software evolution and maintenance.
DSML composition refers to techniques to combine
two or more DSMLs which were not intended for inte-
gration at design time of each DSML. The integration
process does not change the initial DSMLs, but pro-
vides techniques to transform and to compose the dif-
ferent artifacts for the creation of a new DSML. There-
fore, reuse is facilitated in a way that all DSMLs can be
used in parallel. However, DSML integration is a non-
trivial task due to the variety of design options (even if
we focus on MOF/UML-based DSMLs) and a number
of composition issues (e.g., composition order).

The many facets of DSL/DSML development
(such as, development guidelines and patterns, devel-
opment processes, design decisions) are discussed by a
number of recent publications (see, e.g., [5, 7, 13, 14].
Fewer publications contribute to evolutionary aspects
of DSL development, such as, model versioning (see,
e.g., [15]), composition of metamodels (see, e.g., [16]),
composition of DSLs (see, e.g., [17, 18]), or composi-
tion of transformation rules (see, e.g., [19, 20]). Al-
though these publications discuss selected DSML in-
tegration techniques, (1) they do not take the overall
DSML development process into account and (2) they
do not target on MOF/UML-based DSML composi-
tion in particular.

In order to integrate DSMLs, the composition
process must ensure the correct integration of all as-
pects a DSML consists of (e.g., language model, behav-



ior, concrete syntax). In this paper, we adopt the lan-
guage model-driven process model from [14] to struc-
ture the integration of MOF/UML-based DSMLs. We
discuss composition decisions and techniques, inputs
and outputs, as well as challenges that may occur in
each DSML integration phase. We provide a process
model for DSML composition which can be used as a
template when integrating MOF/UML-based DSMLs.
An example shows the integration of two security-
related DSMLs.

The remainder of this paper is structured as fol-
lows. Section 2 discusses issues at the various stages of
DSML integration. Section 3 presents a process model
for the systematic integration of DSMLs. An example
DSML composition is sketched in Section 4. Related
work is reviewed in Section 5 and Section 6 concludes
the paper.

2 DSML Integration Issues

In the process of DSML integration a couple of is-
sues arise. In this section, we briefly review im-
portant challenges of integrating MOF/UML-based
DSMLs which we extracted from the literature (see,
e.g., [7, 13, 14, 16, 17, 20, 21, 22]).
Consolidated domain space. If the DSMLs do not
only need to reference each other, but aim at a tighter
integration (e.g., one DSML refining the other), their
concepts must be aligned. It must be assured that, for
instance, equally named metaclasses are representing
the same domain concepts. Thus, a transformation
into a consolidated solution domain space is essential
(e.g., via a composition of MOF-compliant metamod-
els).
Compatible formalization. The MOF/UML-based
language models of DSMLs can be formalized using
different modeling techniques (see, e.g., [13, 21]). A
common formalization style is a prerequisite for a con-
sistent composition (e.g., if both language models are
described as UML extensions or as profiles). This can
be achieved, for instance, with automatic model trans-
formations (see, e.g., [23, 24]); e.g., via transforma-
tion languages, such as, the Atlas Transformation Lan-
guage (ATL [25]) or the Epsilon Transformation Lan-
guage (ETL [26]). In this context, rule-based trans-
formation templates provide implicit trace links to the
original metamodels (which can be used, for example,
to adjust platform integration templates).
Constraint adaptation. According to the integra-
tion strategy and to the composition purpose, the con-
straint sets defined over the DSML models must be
adapted. For instance, refinements of a metaclass can
be further restricted using explicit constraint expres-
sions; e.g., via Object Constraint Language (OCL [27])
or Epsilon Validation Language (EVL [26]) expres-
sions.
Composition workflow. The composition process

for the elements of the language models can include
several composition techniques and a number of inter-
dependent composition tasks (e.g., selecting the ele-
ments, choosing the composition operation, and adapt-
ing the constraints). It is essential to apply suitable
means to define an executable composition workflow;
e.g., via build files, such as, Apache Ant scripts for the
Epsilon Merge Language (EML [26]).

Packaging. Composition-specific constructs (e.g.,
merge and import references, new metaclasses, OCL
constraints) should be defined in a way which pre-
serves the modeling artifacts of the integrated DSMLs.
With this, the DSMLs remain usable both in their un-
composed and in their composed forms. The UML
provides constructs for grouping and for qualifying
composition-only model elements (i.e., packages, pro-
files, the containment relationship).

Symbol composition. The integrated DSMLs might
come with symbol additions to the UML symbol set
[21]. Under composition, the symbol sets must be in-
tegrated. If two metaclasses were merged into a sin-
gle one, one of the diagram symbols would have to
be dropped. This symbol composition is non-trivial.
The combined symbol set must be consistent with the
original ones (e.g., unchanged concepts continue to
be represented by one icon) and the resulting sym-
bol set must not suffer from cognition-critical deficien-
cies (e.g., synographs [22]). This challenge is amplified
because the UML specification does not provide stan-
dardized means for extending the base UML symbol
set.

Composition order. The order in which the source
DSML models enter the composition operation is of
utmost importance. This order must avoid any contra-
dictory composition results in terms of the functional
properties of both integrated DSMLs. Constraints on
the composition ordering must also be addressed in the
behavioral formalization of the composed DSML (as
represented by, e.g., UML M1 behavioral models, such
as, state machines or sequence diagrams). The compo-
sition ordering must also be enforced at the platform
integration stage (e.g., by instrumenting an appropri-
ate language-level composition technique accordingly).

Host platform. The target platform of the composed
DSML is crucial. Both DSMLs are integrated either
into one of the two already targeted platforms or into
a new, third platform specific to the composed DSML.
Alternatively, pipelining [6] can be used to operate be-
tween different platforms.

Generator adaptation. In MDD, model-to-text
(M2T) transformations are commonly applied using
generator templates (see, e.g., [28]). A composition
of two DSMLs requires the adaption of these tem-
plates. Depending on the technology, this can be
achieved in various ways, for instance, with aspect ori-
entation, higher-order templates, or automatic evalu-
ation of trace links (see, e.g., [19]).



Modeling tool support. If two DSMLs serve mod-
eling purposes only, it is needed to integrate or pro-
vide a new tool which supports the composed DSML;
e.g., by creating a graphical editor for the composed
DSML based on the Eclipse Graphical Editing Frame-
work (GEF).

Composition times. The stages of DSML compo-
sition are performed at different times. Examples are
the generation time of an intermediate model (if an
indirect model transformation is applied), the direct
M2T transformation time (irrespective of the transfor-
mation technique used; e.g., API-based), and the run-
time (e.g., by using pipelining between DSML-derived
programs).

3 DSML Integration Process

In this section, we present a process model for the in-
tegration of MOF/UML-based DSMLs (see Figure 1).
The process model identifies the four core phases of
DSML composition. In the language model-driven en-
gineering process, “first the core language model is de-
fined to reflect all relevant domain abstractions, then
the concrete syntax is defined along with the DSL’s
behavior, and finally the DSL is mapped to the plat-
form/infrastructure on which the DSL runs” [14] (see
Figure 1). Below, we discuss how the issues docu-
mented in Section 2 are addressed in our integration
process.
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Figure 1. DSML integration process (based on [14]).

3.1 Language Model and Constraints

For UML-based DSMLs, the language model is speci-
fied via a MOF-compliant metamodel and, if needed,
via accompanying invariant constraints. In the context
of DSML integration, both language model specifica-
tions act as the inputs for the core language model
composition phase (see Figure 1). Composing the core
language model and its constraints is divided into sev-
eral sub-activities, as indicated with the rake in Figure
1. These include selecting the elements from the core
language models to be integrated, choosing a compo-
sition method, defining the composition workflow etc.
Outputs of this phase are, on the one hand, composed
language model specifications (i.e., the composed core
language model and its constraints), and, on the other
hand, composition specifications. The form of the
composed language model specifications relies on the
applied composition technique. The composition spec-
ifications can, for instance, have a rule-based format
(e.g., model-to-model (M2M) transformation rules) or
composition traces can be stored in a separate model
(e.g., as a weaving model). The subsequent integration
phases depend on all outputs from this first phase.

There are several techniques for integrating el-
ements from two different metamodels which can be
used exclusively or in combination. Elements from
both metamodels can be merged into a third (existing)
element or into a new one (created as an output ele-
ment of the composed language model specification).
This technique is favorable if both metamodels overlap
and partly provide the same functionality. A refine-
ment of a metaclass (to be preserved) using another
metaclass is implemented as a specialization. That is,
DSML 1 refines the functionality from DSML 2, for in-
stance, with platform-specific methods (e.g., modeled
as a generalization relationship). DSML 1 can also
extend features from DSML 2. Thereby, DSML 1 pro-
vides new functionality that does not exist in DSML
2. Another composition method extends DSML 1 by
referencing features from DSML 2 (e.g., via new as-
sociations or via a separate weaving model). Func-
tionality from DSML 1 can also act as an alternative
to features from DSML 2, with the modeler having to
choose between one of the two, finally. Furthermore,
language model constraints must be adapted accord-
ingly: Constraints can be rendered more restrictive,
they can be declared as refinements or as extensions
to existing constraints, or they can establish explicit
and navigable links between metamodels.

3.2 Concrete Syntax

The concrete syntax of the DSML acts as the interface
presented to the user. Therefore, the symbols must re-
flect their underlying concepts (from the core language
model; see Section 3.1) as clearly as possible. Inputs



to the phase of the DSML concrete syntax composi-
tion are the individual syntax specifications coming
from the two DSMLs, the composed language model,
and the composition specifications resulting from the
core language model composition phase (see Figure 1).
The composed DSML’s syntax is developed in paral-
lel with the DSML behavior specification (see Section
3.3). This is because details of the behavior specifica-
tion can be reflected in the concrete syntax (e.g., states
of a language model element become cues in the sym-
bol design). Output of this phase is a composed syn-
tax specification, comprising symbolic elements (in any
form, e.g., diagrammatic or textual) and their mapping
to elements of the core language model.

For composing different graphical elements there
are basically two options: syntax extension and syntax
integration1. The graphical syntax of DSML 1 can be
extended by elements of DSML 2 (e.g., when language
model elements were composed using reference or ex-
tend techniques). Elements from DSML 1 can also
be fully integrated into DSML 2. This means that
new graphical elements are created which combine the
syntactical styles of both DSMLs (e.g., when language
model elements were composed using merge or refine
techniques).

3.3 Behavior Specification

The behavior specification of the composed DSML
must conform to the integration purpose and is critical
for defining a composition order. The composition or-
der dictates the enforcement of properties provided by
each DSML and so contributes to a sound composition
by, e.g., respecting functional dependencies between
the concerns covered by the DSMLs. The composed
language model and composition specifications as well
as the two behavior specifications from the integrated
DSMLs are input to the phase of behavior composition
(see Figure 1). The phase of composing the DSMLs’
behaviors is performed in parallel with the composition
of the concrete syntaxes (see Section 3.2). Output is
the behavior specification of the composed DSML.

Behavior definitions can be created, for instance,
informally using text artifacts, formal or informal
(control-flow) models (e.g., petri nets or UML state
machines), examples (e.g., usage or model examples),
and executable code specifications (e.g., algorithms).
Depending on the specification of the composed lan-
guage model, the behavior definition represents a re-
finement, an extension, a restriction, or an execution
order on the integrated DSMLs.

1For this paper, we do not elaborate on further concrete syn-
tax options, such as, non-diagrammatic, tree-based, tabular, or
hybrid forms (see, e.g., [21]).

3.4 Platform Integration

Platform integration is not only determined by the in-
tegration purpose, but also by the feasibility and by
the effort needed to compose the DSMLs at the sys-
tem level. Again, the language model and composi-
tion specifications as well as the two platform integra-
tion specifications serve as inputs to this composition
phase. Output is a specification for the composed plat-
form integration of the DSMLs (see Figure 1). This
specification can take the form of mere textual integra-
tion descriptions, M2T transformation specifications,
or code artifacts in the host language.

The composition techniques are loosely depen-
dent on the integration strategy applied in the phase
of composing the core language model. Approaches
for the platform implementation range from pipelin-
ing, piggybacking, language extension, to front-end
integration. A pipeline takes the output from one
DSML-derived program and feeds it into the second
DSML-derived program for further processing without
structurally integrating both code bases. The piggy-
back approach reuses the capabilities of two DSML-
derived programs for building a new DSML-derived
program. Using an extension, the DSML-derived pro-
grams are extended by means of the host language
(e.g., class hierarchy). Front-end integration provides
a common interface and facade for both DSMLs, with
instruction calls being forwarded to the freestanding
DSML-derived programs (see, e.g., [6, 7]).

4 Example DSML Integration

In this section, we apply the process model presented
in the former Section 3 for integrating two security-
related DSMLs (see [11, 29]). The first DSML [29]
models system audits (referred to as DSML A, here-
after). Therein, a domain-specific UML extension is
defined for the specification of audit events, audit
rules, and notifications that are triggered via audit
events. With this generic extension, audit require-
ments can be modeled from multiple views. The sec-
ond DSML project (DSML B, [11]) presents an ap-
proach for the specification and the enforcement of
secure object flows in process-driven service-oriented
architectures (SOAs). In this context, a secure ob-
ject flow (SOF) ensures the confidentiality and the in-
tegrity of important objects (e.g., business contracts)
that are passed between different participants in SOA-
based business processes. While DSML B provides
means for message security in SOAs, DSML A sup-
ports accountability of event data via audit trails.

Audit logging in distributed environments, such
as in Web-Service-based infrastructures, is a challenge
and is not sufficiently supported by current approaches
(only via limited specifications of context-insensitive
log levels of runtime engines). Moreover, many se-



curity standards for Web Services exist (e.g., WS-
Security, WS-Trust, SAML), but they all lack exten-
sions to audit logging [30]. Thus, integrating message-
level security and event-based audit log facilities at the
model and at the application level presents a benefit.

Table 1 summarizes the techniques applied for
both DSMLs at each development phase. At the
stage of defining the DSML core language model, both
DSMLs provide new packages at the level of the UML
metamodel. For DSML A, the package consists of
both, a UML stereotype specialization (contained in
a UML profile) and MOF-based extensions. Besides
the UML metamodel extension, DSML B provides also
a complete mapping to a UML profile. Both DSMLs
provide new diagrammatic elements (i.e., novel graph-
ical notations) and UML stereotypes as their con-
crete syntaxes. The stereotype definition of DSML
A is complementing the newly defined graphical ele-
ments; a textual notation is provided as an alternative
visualization option. In contrast, the UML stereo-
types of DSML B can be used as a replacement of
the novel diagrammatic elements. The behavior spec-
ifications of both DSMLs are provided as textual de-
scriptions with accompanying example models. For
the DSML platform integration, DSML A provides di-
rect M2T transformations into Java code using Epsilon
Generator Language (EGL [26]) templates. In con-
trast, API-based generators are defined in DSML B.
A first transformation generates an intermediate ob-
ject model, which is transformed into BPEL, WSDL,
and WS-SecurityPolicy documents in a second step.

Development
phase

DSML A [29] DSML B [11]

DSML core lan-
guage model and
constraints

UML metamodel
extension & UML
profile, OCL con-
straints

UML metamodel
extension, UML
profile, OCL con-
straints

DSML concrete
syntax

New diagram-
matic elements &
UML stereotype,
textual notation

New diagram-
matic elements,
UML stereotypes

DSML behavior Textual descrip-
tions, example
models

Textual descrip-
tions, example
models

DSML platform
integration

EGL generator
templates; direct
transformation;
Java code

API-based gen-
erator; indirect
transforma-
tion; BPEL,
WSDL, WS-
SecurityPolicy
specifications

Table 1. Applied techniques at each DSML develop-
ment phase.

4.1 Language Model and Constraints

The core language model for both DSMLs are de-
fined at the level of the UML metamodel (consoli-

dated domain space2; see Table 1). Additionally, for
DSML B, mappings to a UML profile exist. This is
to comply with the SoaML specification and to facili-
tate tool support (see [11, 31]). Thus, conceptual com-
position is performed via a metamodel-based integra-
tion; UML/SoaML compliance can be achieved at the
level of a profile integration (compatible formalization).
As there exists a consolidated domain space (MOF-
constructs), we provide mappings for all DSML A ele-
ments to UML stereotypes (see [11] and Figure 2). The
composition is done via a dedicated integration profile
named SOF::Services+SecurityAudit which merges
the corresponding profiles from both DSMLs (packag-
ing, see Figure 2). In addition to the integration of the
DSML language models, the profile merge also implies
the application of corresponding language model con-
straint specifications (as defined in [11, 29]). Moreover,
the integration profile provides the following OCL con-
straint as a composition refinement (constraint adapta-
tion): Every «secure» stereotyped ObjectNode must
also be tagged as an «AuditEventSource».

context SOF:: Services +SecurityAudit::secure inv:

self.base_ObjectNode.getAppliedStereotype(’SOF::
Services +SecurityAudit::AuditEventSource ’) <>

null

«profile»

SOF::Services

«metaclass»

Class
(from Kernel)

+ isStrict:Boolean = false

«stereotype»

SecureInterface

«stereotype»

ServiceInterface
(from SoaML)

«metaclass»

ObjectNode
(from BasicActivities, CompleteActivities)

/ confidentialityEnsured:Boolean
/ integrityEnsured:Boolean
+ confidentialityAlgorithm:Classifier
+ integrityAlgorithm:Classifier

«stereotype»

secure

«profile»

SOF

«merge»

«profile»

SecurityAudit

«metaclass»

Element

(from Kernel)

«metaclass»

Classifier

(from Kernel, ...)

«metaclass»

BehavioredClassifier
(from BasicBehaviors, ...)

«stereotype»

AuditEventSource
+ isNested:Boolean = false

«stereotype»

Condition
+ operator:OperatorKind

«stereotype»

AuditRule

«enumeration»

OperatorKind

equal

notEqual

greater

greaterEqual

less

lessEqual
*

1..*

«merge»

«merge»

«profile»

SOF::Services+SecurityAudit

Figure 2. Example language model composition via
UML profile merges.

4.2 Concrete Syntax

The concrete syntaxes are provided as UML stereo-
types with accompanying icons for the defined profiles
(Figure 2). The concrete syntax specifications for the
SOF and SOF::Servicesprofiles (i.e., DSML B) are de-
fined in [11]. Figure 3 specifies the corresponding icons
for the stereotypes of the SecurityAudit profile (i.e.,
DSML A; symbol composition). Icons can be used as
full replacements of stereotyped elements (see [9]). A

2Italic phrases indicate the DSML integration issues dis-
cussed in Section 2.



sample application of a stereotyped classifier is shown
in Figure 3. On the left hand side, textual stereotypes
are written inside guillemets, on the right hand side,
the same stereotypes are applied using corresponding
symbols. As several stereotypes (and icons) can be
applied to an element (see [9]), we do not need to de-
fine extra graphical specifications for the integration
profile SOF::Services+SecurityAudit.

«profile»

SOF

«profile»

SecurityAudit
Application

«secure»

name
AES«AuditEventSource»

«secure»

name«AuditEventSource» «AuditRule» «Condition»

AR CAES

Figure 3. Stereotype and icon definitions for the con-
crete syntax.

4.3 Behavior Specification

For the integration profile (see Section 4.1), we spec-
ify a UML state machine to define the composed be-
havior and the behavioral composition order of the
integrated security-related DSML aspects (Figure 4).
For each individual DSML, OCL constraints formally
specify their semantics (see [11, 29]). The integra-
tion profile SOF::Services+SecurityAudit merges
these constraints as well as the language mod-
els (see Section 4.1). We define that for the
SOF::Services+SecurityAudit profile, first, the con-
straints from the composed profiles are enforced; i.e.,
constraints from the «SOF», «SOF::Services», and
«SecurityAudit» profiles—in this order (see Figure
4). Then, the incoming/outgoing secure object flows
are processed, and, last, the audit is performed (details
are shown in Figure 4).

SOF::Services+SecurityAudit

«secure» tagged

«AuditEventSource»

tagged

enfore constraints

(from «SOF» and

«SOF::Services»)

enfore «SOF::Services»

constraints

enfore «SOF»

constraints

enfore constraints

(from «SecurityAudit»)

execute audit (from «SecurityAudit»)

audit

event

[«AuditRule» true]

invoke

notificationAction

enforce «AuditRule»

do / evaluate all «Condition»

process secure object flows (from «SOF»)

[incoming

object]

[outgoing

object]

receive object

encrypt data

decrypt data

send object

publish signal

Figure 4. Integrated DSML behavior specification as
a UML state machine.

4.4 Platform Integration

As can be seen in Figure 5, we use a pipeline approach
by calling audit features of a program derived from

DSML A within a program generated by DSML B
(host platform). Auditing is done via the facilities of
DSML A and respective calling routines are added to
DSML B. Therefore, we adapted the API-based gener-
ator of DSML B to issue a Web Service call every time
a secure object flow is instantiated (see Figure 53).
This meant changing the generator to include audit-
based service endpoints in the WSDL as well as the
pipeline audit logic in the BPEL process (generator
adaptation). Another approach would have been, for
instance, using tools such as Java2WSDL to migrate
the output of the M2T transformation from DSML A
to be Web Service compliant and to integrate it into
DSML B specifications (different composition times).
Native UML modeling tool support is provided for all
aspects of the composed DSML.

«receive»

submitApplication
«send&receive»

checkApplicationForm

bclerk

appId

content

bclerk

appId

content

statusId
«secure»

«AuditEventSource»
«secure»

«AuditEventSource»

«send»

performAudit

bclerk

appId

content

«secure»

«AuditEventSource»
«secure»

«AuditEventSource»

...

Figure 5. Example of a pipeline call to the audit DSML
A within the DSML B workflow.

5 Related Work

In [14], we present an approach for developing DSLs
systematically. In particular, we propose a process
model for DSL development. The different phases can
be tailored to the respective DSL engineering project.
This process model forms the basis of the flow of
DSML integration tasks presented in this paper. The
reusable architectural decisions on designing DSLs in
[7] influenced the discussion of the integration issues as
well as the process model for DSML integration. How-
ever, the reflection on DSL design decisions in [7] re-
lates primarily to programmatic DSLs (and so, e.g., to
concrete textual syntaxes) and we extend their reach to
MOF/UML-based embedded DSMLs (e.g., their con-
crete graphical syntaxes).

The composition of DSML models (i.e., of meta-
models) has been frequently addressed. Emerson and
Sztipanovits [16] review current metamodel compo-
sition methods (e.g., merge, refinement, interfacing).
This research strand is limited to the phase of integrat-
ing the language model, the remaining phases (e.g.,
DSML behavior specification or platform integration)
and their interdependence are not covered.

Another group of researchers (see, e.g.,
[20]) investigates composing model transformation

3The other stereotypes are coming from the SoaML and
UML4SOA profiles and are not of interest in this context (for
details see [11]).



templates—an important instrument for DSML inte-
gration at the platform integration stage. Tisi et al.
[19], to name just one, present transformation tem-
plates as first-class models themselves. These models
can then be used as inputs for templates defined using
the same transformation language (i.e., higher-order
model transformation). While mostly applied to M2M
transformations (i.e., at the level of the DSML lan-
guage model), higher-order transformations can be
adopted for M2T, as well.

Reuse strategies for DSLs/DSMLs are discussed
by a number of contributions (for instance, through
software product-line techniques; see, e.g., [17, 18]).
Taentzer et al. [15] present an approach for model
versioning based on graph transformations. Al-
though composition techniques are the key factor,
each of these contributions either discusses a specific
DSL/DSML development phase (i.e., the core lan-
guage model) or system-level, textual DSLs only.

6 Concluding Remarks

In this paper, we discussed composition aspects for
MOF/UML-based DSMLs in the context of MDD. We
reflected on the issues arising during DSML composi-
tion and presented a process model for the systematic
integration of DSMLs. Moreover, we discussed an in-
tegration of two security-related DSMLs to provide a
practical example.

Our approach explicitly focuses on MOF/UML-
based DSMLs, although the overall integration pro-
cess and its composition aspects may be applicable to
other DSML formats, as well. For instance, the core
composition phases with their inputs and outputs (see
Section 3) are most likely the same for every DSML
and are not MOF/UML-specific. Furthermore, several
composition decisions and techniques as well as inte-
gration challenges can be applied to non-MOF/UML-
based DSMLs or—when not directly applicable—can
be transferred to other modeling languages.

Both DSMLs used for the composition examples
were developed by the authors of this paper. Although
they were not built for integration, a methodical and
technological bias may exist. This bias may also had
an influence on the critical discussion of the compo-
sition aspects. Due to the page limitations, we were
restricted to one integration example for every phase
of the process model. In our future work, we will con-
sider more composition options.

This contribution is a first step towards the def-
inition of a systematic DSML integration approach.
Still, there is need for abstracting and expanding the
findings presented in this paper. Hence, as an out-
look, we will extend our work, collect more evidence,
and provide for an evaluation.
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