
A Role Engineering Tool for Role-Based Access Control

Mark Strembeck
Institute of Information Systems, New Media Lab
Vienna University of Economics and BA, Austria

mark.strembeck@wu-wien.ac.at

Abstract

Like every requirements engineering process, the process of
role engineering for role-based access control depends signifi-
cantly on human factors. For this reason, many elements of the
process cannot be automated (or at most partially). Neverthe-
less, tool support is necessary to cope with the complexity of
the process and to efficiently handle the different interrelated
artifacts used and produced during the role engineering pro-
cess. In this paper, we present the design and implementation
of the XORET software tool which provides tool support for
the scenario-driven role-engineering process. Furthermore,
XORET is capable to produce a policy rule set that can be im-
ported by the XORBAC access control service.

1 Introduction and Motivation

Role engineering for role-based access control (RBAC, cf.
[4]) is focused on the elicitation, specification, and mainte-
nance of a policy rule set for RBAC. In other words, role engi-
neering for role-based access control is the process of defining
roles, permissions, constraints, and role-hierarchies (see [2]).

The scenario-driven role engineering process presented in
[8, 13] is based on the scenario and goal concepts (see e.g.
[1, 14]). With our work we essentially aim at a systematic role
engineering methodology that is flexible enough to be appli-
cable for arbitrary organizations and information systems. An
important requirement for a role engineering methodology is
the support of change management activities to ease the prop-
agation of changes that occur within the information system
or its environment into all security relevant models and finally
into the policy rule set enforced by a concrete policy moni-
tor. However, the intricacy of real world information systems
and the respective models that are used and produced during
role engineering activities cannot be conveniently handled via
a “manually operated” paper-based process. Therefore, we
need special purpose software tools that support role engineer-
ing activities and facilitate the incorporation of changes into a
configuration consisting of several RBAC related models.

In this paper, we present the design and implementation
of the XORET software tool which provides tool support for
the scenario-driven role-engineering process. It facilitates the

specification and inspection of trace-relations to ease change
management activities, and it is capable to propose a (prelim-
inary) policy rule set. Moreover, policy rule sets produced
with XORET can be directly imported by the XORBAC access
control service (see [7, 13]). The XORET role engineering
tool consists of the XORET core component and the XORET
graphical user interface. XORET allows to create and main-
tain the different objects that are used and produced during
the scenario-driven role engineering process. Figure 1 shows
the main window of the XORET tool. The foreground of this
figure depicts and describes the toolbar located at the top of
the XORET main window. The XORET tool is implemented in
XOTcl [9] and Tcl/Tk [11].

Import
Dialog

Export
Dialog

Redraw
Tree/List

Expand
Tree

Collapse
Tree

Create
Objective

Create
Obstacle

Create
Condition

Create
Context
Constraint

Create
Scenario

Create
Permission

Create
Task

Create
Work Profile

Create
Role

Define
Trace-Links

View
Trace-Model

Derive
Permissions

Derive
Context
Constraints

Derive
Roles

Figure 1. The XORET GUI main window

The paper is organized as follows. In Section 2 we give an
overview of the scenario-driven role engineering process. Sec-
tion 3 then goes into detail about the static design-time struc-
tures of the XORET core component. The subsequent sections
give a description of the XORET graphical role engineering
tool. However, due to the page limitation we can only describe
a fraction of the functionality provided by XORET. Thus, we
focus on the definition of processes/scenarios (Section 4), the
specification of trace-relations between XORET objects and the
inspection of the resulting trace model (Section 5). Further-
more, in Section 6 we go into detail about the (automatic)
derivation of a (preliminary) policy rule set for RBAC.

*

1.. *

1.. *

*
*

*

0..1

1.. *

1.. * impedes

contains
derived from

*

linked to

*
*

Scenario

Step Objective Obstacle

Permission

Role

ContextConstraint Condition
1.. *

*

*
linked to

WorkProfile 1.. * 1.. *

contains

Task

1

contains

derived from

1.. *linked to1.. * *

assigned to derived from

1.. *

1.. *

0..1

*
*

0.. *

*

*

contains

0..1

derived from

*

0.. *

Figure 2. xoRET: main class relations

2 Scenario-driven Role Engineering

This section gives an overview of the scenario-driven role
engineering process (for a more detailed description see [8,
13]). We model usage scenarios of an information system and
use these scenarios/processes to derive permissions. Each sce-
nario is in essence an action and event sequence consisting of
several steps, for example to describe the processing of a dam-
age event in an insurance company. Thus, to perform a certain
scenario, a subject needs to be equipped with the exact num-
ber of permissions that are needed to complete each step of the
respective scenario. A task consists of several scenarios and
a work profile contains all tasks that a certain type of subject
(e.g. a certain type of employee) is allowed to perform. In the
further course of the role engineering process, work profiles
are used to derive roles (see Section 6). Moreover, we apply
goals and obstacles to define context constraints (see [13]). In
our approach, a control objective is a goal specified by the au-
thority which is responsible for the operation of a particular
system. Thereby, control objectives define acceptable system
behavior as intended by the system authority (see also [12]).
Like other goals, control objectives can be defined on different
levels of abstraction. The permission catalog, the constraint
catalog, and the work profiles are used to define a concrete pol-
icy rule set for RBAC that is tailored to the needs of the corre-
sponding information system (see also [12]). Furthermore, the
role engineering process directly supports change management
activities to allow for the correct and efficient propagation of
changes into all (possibly) affected models (see also [8]).

3 xoRET: Static Design-time Structures

Figure 3 shows the classes of the XORET core component.
In particular, it contains ten “core classes” that represent the
different artifacts which are needed to conduct the scenario-
driven role engineering process (control objectives, obstacles,
scenarios etc. - see also Section 2). Each core class is a sub-

class of the xoRETObject class. The xoRETObject class spec-
ifies common methods for all of its sub-classes, e.g. for the
definition of traceability links (see Section 5).

Facade, Factory, Manager

xoRETObject

1

*

*

*

* *

Role Permission ContextConstraint ConditionWorkProfile

Step Objective ObstacleScenarioTask

xoRETManager

*

*

* *

xoRET Core Component

*

Figure 3. Classes of the XORET core component

At runtime, each object that is instantiated from one of the
ten core classes is aggregated within an xoRETManager object
(see Figure 3). The xoRETManager class serves as Facade (see
[5]) for the XORET component. It hides internal XORET struc-
tures and provides the external API of XORET to other software
components. Moreover, the xoRETManager class is a Factory
(see [5]) and is responsible for the creation and management
of its aggregated objects. For example, it controls the instan-
tiation of new objects, writes status messages to log-files (if
logging is activated), and observes the definition of traceabil-
ity links between different XORET objects.

Figure 2 depicts the main relations among the ten XORET
core classes in more detail. Scenario steps serve as a cen-
tral means to derive Permission objects (see [8]). However,
steps describing system internal actions sometimes do not need
to be mapped to explicit user-level permissions. Neverthe-
less, depending on the intended abstraction level of the result-
ing policy rule set, it may be sensible to also model permis-

Step graphRadiobuttons:
Edit, Select, Zoom

List of all available
Step objects

Figure 4. The XORET scenario creation dialog

sions pertaining to internal actions. Furthermore, to provide a
flexible modeling environment, XORET allows to define addi-
tional Permission objects independent from scenario steps -
resulting in a 0..1 relation between the Permission and Step

classes (see Figure 2). Similarly, work profiles are the primary
means to derive (preliminary) roles. However, in the course of
the role engineering process derived roles are adapted, redun-
dant roles can be deleted, and additional roles may be defined
independently from the work profiles (see [8]). In other words,
not every role resulting from the role engineering process nec-
essarily originates (directly) from a work profile.

Condition objects are associated with Objective or
Obstacle objects (see also [12, 13]). In particular, each
Objective and Obstacle object contains a list of abstract con-
ditions that are represented by a short, descriptive, and infor-
mal sentence respectively (e.g. “students may only edit their
own exam”, or “date greater than 2006/01/01”). In a later
step, these abstract conditions are used to derive placeholder
Condition objects (see Section 6). Each ContextConstraint

object is linked to one or more Condition objects, and to one
or more Permission objects (see Figure 2). Beside the (au-
tomatically recorded) implicit trace relations between XORET
objects, it is possible to define explicit traces (see Section 5).

4 Definition of Scenarios

The scenario creation dialog shown in Figure 4 enables
the definition of XORET scenarios. The primary element of a
XORET scenario/process is a directed graph of steps. Although
not depicted in Figure 4, it is possible to define labels for the
edges in a step graph (e.g. to specify guard conditions). The
left hand side of Figure 4 shows a (scrollable) list of all Step

objects that are currently available. The right hand side shows
the step graph of the current scenario/process. The step graph
can be accessed via three different functions, each of which is
activated through a respective radiobutton (see Figure 4):

• The pencil-button activates the edit mode which allows to
add or remove steps or edges.

• The pointer-button activates the select mode. The select
mode, again, offers two distinct functions:

– First, one can choose a start node and an end
node (by drawing a “virtual” edge between the two
nodes) to find the shortest path between two nodes
(i.e. between two steps). In particular, XORET per-
forms a breadth-first-search to find the shortest path
and colors the affected nodes as follows: the start
node is colored green, the end node is colored blue,
and all intermediate steps and edges are colored yel-
low. The example in Figure 4 shows the shortest
path starting from the step “User, fetch list of new
resources, from System” to the step “System, dis-
patch resource, to User” (note that each XORET step
consists of triplet including an actor, performing an
action directed at a specific target).

– Second, one can compute the spanning tree for
one particular node in the step graph. The span-
ning tree is computed, if, in select mode, a node is
clicked without drawing an edge to another node.
The spanning tree visualizes the reachability of
other steps/nodes (i.e. it shows which nodes can be
reached starting from a specific node).

• The magnify-button offers a zoom function for the graph.

As mentioned above, each XORET Scenario object con-
tains a graph structure. The nodes of this graph are steps which
are connected via labeled edges. Labeled edges can be used to
model guard conditions (conditional branches) for step transi-
tions. Thus, we can specify simple linear step sequences as
well as complex scenarios/processes with an arbitrary num-
ber of fork and join points, and/or conditional branches be-
tween steps. Therefore, XORET scenarios can model scenar-
ios/processes on an arbitrary level of abstraction.

5 Trace Definition and Inspection

The trace-management dialog allows for the specification
and deletion of explicit trace relations between XORET objects
(see Figure 5). The left hand side of the dialog offers five drop-
down lists (comboboxes) allowing to define a specific trace re-
lation. The Start type combobox chooses the object-type a spe-
cific trace starts from. Depending on the selected start-type,
the Start object combobox is filled with the names of all in-
stances of the corresponding start-type. The same procedure is
applied for the Destination type and Destination object boxes.
The Trace type box offers a (extensible) list of trace-relations
that can be established between XORET objects.

List of all traces
starting from the
"start object"

Figure 5. The XORET trace management dialog

The addTraceRelation method shown in Figure 6 de-
fines bidirectional trace relations between XORET objects.
In XORET each trace-type is associated with a counterpart
which defines the name of the corresponding opposite trace-
direction. Examples for such trace-type pairs are: [sub-goal,
super-goal], [contains, part-of], or [refines, refined-by]. The
tracetype counterparts instance variable is an array that
stores all valid XORET trace-type pairs. At any time, arbitrary
new trace-type pairs can be defined via the addTraceTypePair

method. To establish a bidirectional trace between two ob-
jects the addTraceRelation method establishes two directly
opposed unidirectional traces.

xoRETManager instproc addTraceRelation {sourcetype source
 tracetype targettype target} {
 if {[my isValidTraceType $tracetype]} {
 if {[$source addTrace $tracetype $targettype $target]} {
 return [$target addTrace \
 [my set tracetype_counterparts($tracetype)] $sourcetype $source]
 }
 }
 return 0
}

Figure 6. The addTraceRelation method

Each xoRETObject uses a number of internal arrays to store
trace relations. The name of a particular trace-array corre-

sponds to the object-type (i.e. the class-name) of the target-
objects that are referenced via this array (see Figure 7). Each
array index represents a particular trace-type (e.g. contains,
refines, part-of, owns), and the value stored at a specific in-
dex position is a list consisting of one or more object-names.
For example, a Scenario object Scenarioa may have sev-
eral traces to other Scenario objects. Thus, the corresponding
trace-links are stored in an array named “Scenario” (cf. Figure
7). The traces depicted in Figure 7 define that Scenarioa re-
fines Scenariox and is refined by Scenarioy and Scenarioz.

xoRETObject instproc addTrace {tracetype targettype target} {
 my instvar $targettype
 if {![my existTrace $tracetype $targettype $target]} {
 if {[info exists [set targettype]($tracetype)]} {
 set current [set [set targettype]($tracetype)]
 set new [lappend current $target]
 set [set targettype]($tracetype) $new
 return 1
 } else {
 lappend [set targettype]($tracetype) $target
 return 1
 }
 }
 return 0
}

Objective ObstacleTargettype

Trace-arrays (defined as instance variables)

xoRETObject (e.g. a Scenario object: Scenario_a)

Scenario

Example entries for a scenario-trace-arrayA Tcl-Array for each target-type

Index: refines Value: Scenario_x
Index: refined-by Value: Scenario_y, Scenario_ztargettype(tracetype) target

Figure 7. The addTrace method

The lower part of Figure 7 shows the addTrace method de-
fined in the xoRETObject class. It receives three mandatory
input parameters - tracetype, targettype, and target. If the
respective trace does not already exist, the method adds the
corresponding trace relation as discussed above.

An alternative option to specify trace relations between dif-
ferent programming objects would be the definition of explicit
trace-objects. However, in our experiences the above men-
tioned procedure to store traces as array variables of XORET
objects has several advantages compared to explicit trace-
objects. The array-based approach offers a straightforward
way to query trace relations in many different ways, e.g. to
fetch all traces associated with a particular XORET object, or to
fetch all traces of a particular trace-type pointing from a given
object to other XORET objects of a certain object-type; for ex-
ample, all fulfills traces pointing from Scenarioa to instances
of the Objective class. In contrast to that, it is, in the gen-
eral case, by far more complicated to perform similar queries
in a set of explicit trace-objects (in general, one may either
perform a brute force search traversing all trace-objects or de-
fine a respective query-language). An advantage of individual
trace-objects could be the definition of additional information
attached to a trace-relation itself. Nevertheless, if required, this
could also be integrated with the array-based approach.

All trace relations together form the XORET trace model
which can be visualized and inspected to analyze the depen-
dencies between XORET objects. The respective dialog allows

Radiobuttons:
Select, Zoom

Graph of selected
trace model

Checkboxes to select the
trace- and object-types
that should be displayed

Figure 8. The XORET trace model inspection dialog

to selectively display certain trace relations (see Figure 8). In
particular, it allows to select the object types and the trace types
to be visualized. Similar to the scenario definition dialog (see
Section 4), the trace model dialog allows to zoom the corre-
sponding model, to compute the spanning tree of a particular
node, or to compute the shortest path between two nodes. The
example depicted in Figure 8 shows the spanning tree for the
control objective “Secure online exams”. In XORET the span-
ning tree is colored as follows: the start node is colored green
and all reachable nodes, as well as the edges required for the
spanning tree, are colored yellow.

6 Derivation of a Preliminary Policy Rule Set

Once the control objectives, obstacles, scenarios, tasks, and
work profiles are defined, we can automatically derive a (pre-
liminary) RBAC policy rule set (see also [8, 13]). In our
approach an RBAC policy rule set consists of roles, permis-
sions, context constraints, conditions, and the corresponding
assignment relations. We now describe the XORET meth-
ods that are applied to derive a preliminary policy rule set.
The derivePermissionFromStep method (see Figure 9) re-
ceives three mandatory parameters to identify the respective
step (actor, action, target). It uses the lookup method (de-
scribed below) to determine the fully qualified name of the cor-
responding Step object and to create a new Permission object,
if necessary. Subsequently, a [derived-from Step] trace is estab-
lished between the two Permission and Step objects.

xoRETManager instproc derivePermissionFromStep {actor action target} {
 set step [Step lookup 0 [self] $actor $action $target]
 if {$step != "FAILED"} {
 set perm [Permission lookup 1 [self] $action $target]
 # establish trace-link if necessary
 if {![$perm existTrace derived-from Step $step]} {
 [self] addTraceRelation \
 Permission [$perm name] derived-from Step [$step name]
 }
 return 1
 }
 return 0
}
Permission proc lookup {create parent args} {
 set permname [eval join $args _]
 set permission ${parent}::permissions::$permname
 if {[$parent existPermission $permission]} {
 return $permission
 }
 if {$create} {
 return [Permission $permission -name $permname \
 -operation [lindex $args 0] \
 -object [lindex $args 1]]
 }
 return FAILED
 }
}

Figure 9. Derive permissions from steps

The lookup method is defined as an object-specific proc

on each of the ten core classes (see Section 3). This method
provides two functions depending on the value of the create

parameter. Figure 9 shows the lookup method defined for the
Permission class. If the create parameter is set to 0 (false) the
lookup method checks if a respective object exists and either
returns the fully qualified object name or the value “FAILED”
(see Figure 9). In case the create parameter is set to 1 (true),
the lookup method creates a respective object, if necessary.

The deriveRoleFromWorkProfile method is applied to au-
tomatically generate a Role object for each work profile (see

xoRETManager instproc deriveRoleFromWorkProfile {profile} {
 set profile [WorkProfile lookup 0 [self] $profile]
 if {$profile != "FAILED"} {
 set role [Role lookup 1 [self] "Role [$profile name]"]
 # establish trace-link if necessary
 if {![$role existTrace derived-from WorkProfile $profile]} {
 [self] addTraceRelation \
 Role [$role name] derived-from WorkProfile [$profile name]
 }
 # assign permissions if necessary
 foreach p [my getPermissionsLinkedToWorkProfile [$profile name]] {
 if {![$role ownsPerm $p]} {
 [self] permRoleAssign [$p name] [$role name]
 }
 }
 return 1
 }
 return 0
}

Figure 10. Derive roles from work profiles

Figure 10). The name of the new Role object consists of the
respective work profile name with the prefix “Role”; so the
name of a role derived from the “Teacher” work profile would
be “Role Teacher” for instance. If necessary, a corresponding
Role object is created (via the lookup method), and a [derived-
from WorkProfile] trace-link is established. Subsequently, the
getPermissionsLinkedToWorkProfile method determines
the permissions linked to the respective WorkProfile object
(see Figure 10). To find the corresponding permissions the
method follows the traceability links established between work
profiles and tasks, tasks and scenarios, scenarios and steps, and
steps and derived permissions (see also [8]). Finally, the re-
spective Permission objects are assigned to the (new) role.

xoRETManager instproc derivePreliminaryRoleHierarchy {} {
 # check for redundancies and add junior-role relations
 foreach r1 [my getRoleList] {
 foreach r2 [my getRoleList] {
 if {$r1 != $r2} {
 if {[[self] equalPermissions [$r1 name] [$r2 name]]} {
 $r1 roleswithequalpermissions [concat [$r1 roleswithequalpermissions] $r2]
 $r2 roleswithequalpermissions [concat [$r2 roleswithequalpermissions] $r1]
 }
 if {[[self] role1PermsSupersetOfRole2Perms [$r1 name] [$r2 name]]} {
 if {![$r1 hasJuniorRole $r2]} {
 [self] addJuniorRoleRelation [$r1 name] [$r2 name]
 }
 }
 }
 }
 }
 # remove redundant junior-role relations
 [self] updateRoleHierarchy
 # remove redundant permissions
 [self] removeRedundantPermissionsFromRoles
}

Figure 11. Derive a preliminary role hierarchy

The derivePreliminaryRoleHierarchy method (cf. Fig-
ure 11) automatically derives a (preliminary) role-hierarchy
(or hierarchies). Two roles owning an identical set of per-
missions may be redundant and are thus candidates for later
refinement or deletion. In particular, each Role object has a
roleswithequalpermissions instance variable to store links
to “identical” roles (see Figure 11). For two distinct roles
r1 and r2, the role1PermsSupersetOfRole2Perms method
checks if the permissions of r2 constitute a subset of the per-
missions of r1. In such a case, we say that r1 is greater than
r2 (r1 > r2). If the method finds a respective pair of roles, r2

is defined as junior-role for r1. After the junior-role derivation
procedure is finished, we remove redundant junior-role rela-
tions and redundant permissions from each role.

To remove redundant junior-role relations
the updateRoleHierarchy method invokes the
removeRedundantSuperclasses method for each Role object

xoRETManager instproc updateRoleHierarchy {} {
 foreach role [my getRoleList] {
 $role removeRedundantSuperclasses
 }
}
Role instproc removeRedundantSuperclasses {} {
 set new [my info superclass]
 foreach supercl [my info superclass] {
 foreach class [$supercl info heritage] {
 set index [lsearch -exact $new $class]
 #if class is in "my superclass"
 #and "my superclass heritage"
 if {$index != -1} {
 #remove class from the superclass list of self
 set new [lreplace $new $index $index]
 }
 }
 }
 #set new superclass list
 [self] superclass $new
}

Figure 12. Removing redundant role relations

aggregated by the corresponding XORET instance (see Figure
12). In XORET and XORBAC roles are defined as classes
which can be arranged in a class hierarchy to form a directed
acyclic graph. The superclass relation between XOTcl classes
is thus applied to straightforwardly define a role-hierarchy (for
further details see [7]). The removeRedundantSuperclasses

method uses the XOTcl introspection mechanism (see also
[9, 15]) to gain knowledge about the superclasses of the
corresponding Role object. It then removes all roles from the
superclass list which are direct and indirect superclasses of
the corresponding Role object at the same time (see Figure
12). Finally, it registers the new (redundance-free) superclass
list for the respective Role object.

b)

R1

R4

R2

R3

R7R6

R5

R1

R4

R2

R3

R7R6

R5

a)

Figure 13. Redundant inheritance relations

Figure 13a) depicts a hierarchy with redundant inheritance
relations. In particular, the relations between the following role
pairs are redundant [R1, R4], [R1, R7], [R2, R5], and [R3, R6].
For the example in Figure 13a) the updateRoleHierarchy

method removes all redundant inheritance relations resulting
in the hierarchy depicted in Figure 13b).

The removeRedundantPermissionsFromRoles method
shown in Figure 14 identifies and revokes all permissions
which are, at the same time, directly and indirectly (through
the role-hierarchy) assigned to a XORET Role object. In other
words, we revoke all permissions that are directly assigned to
a role and are also inherited from its junior-roles. When this
step is finished we have defined a preliminary role-hierarchy
(see also Figure 11).

Figure 15 shows the deriveCCFromObstaclemethod which
defines how XORET derives (preliminary) ContextConstraint

objects from Obstacle objects (see also [12]). The corre-
sponding XORET method to derive context constraints from
Objective objects (deriveCCFromObjective) is similar to the
derivation procedure for obstacles.

xoRETManager instproc removeRedundantPermissionsFromRoles {} {
 foreach role [my getRoleList] {
 foreach perm [$role getAllDirectlyAssignedPerms] {
 if {[$role ownsPermThroughInheritance $perm]} {
 $role revokePerm $perm
 }
 }
 }
}

Figure 14. Remove redundant permission-to-
role assignment relations

The deriveCCFromObstacle method (cf. Figure 15) re-
ceives a mandatory parameter obstacle which identifies the
corresponding Obstacle object. In XORET each Obstacle

and each Objective object possess an instance variable to
store the abstract conditions that are associated with the re-
spective Obstacle (or Objective). In essence, this instance
variable is a Tcl list, and each list entry represents an ab-
stract condition (see also [13]). For each abstract condition
the deriveCCFromObstacle method creates a corresponding
Condition object and establishes a [derived-from Obstacle]
trace-link, if necessary.

The deriveCCFromObstacle method then creates a
ContextConstraint object (see Figure 15). The name
of the ContextConstraint object is determined from
the type and the name of the corresponding obsta-
cle (an example of a respective ContextConstraint

name is “Avoid Access Before 2006 01 01”). In the
next step, the Condition objects are linked to the (new)
ContextConstraint (see Figure 15). Note that the aforemen-
tioned procedure specifies exactly one ContextConstraint

object which is linked to all Condition objects de-
rived from the corresponding obstacle. Afterwards, the
getAllPermissionsInfluencedByObstacle method uses the
trace-links between XORET objects to detect all permissions
that are influenced by the respective obstacle (see Figure 16).
Finally, the (new) ContextConstraint is linked to each of
these permissions (see Figure 15).

To find all permissions that are influenced by a certain
obstacle, the getAllPermissionsInfluencedByObstacle

method first determines all Objective objects that are
linked to the corresponding Obstacle object via an
[impedes Objective] trace-link (cf. Figure 16). Then, the
getAllPermissionsPotentiallyNeededForObjective

method is called to determine the permissions that are
needed to perform the scenarios/processes which are as-
sociated with the respective objectives. In particular, the
getAllPermissionsNeededForScenario method traverses all
Step objects linked to a Scenario and assembles a list of the
Permisssion objects linked to these steps via an [origin-of
Permission] trace-link (see Figure 16). To assure that all
permissions needed for a particular scenario are found, the
getAllPermissionsNeededForScenario method recursively

xoRETManager instproc deriveCCFromObstacle {obstacle} {
 set obstacle [Obstacle lookup 0 [self] $obstacle]
 set conditions [$obstacle getAbstractConditionList]
 if {$conditions != ""} {
 foreach cond $conditions {
 set condition [Condition lookup 1 [self] $cond]
 # establish trace-link if necessary
 if {![$condition existTrace derived-from Obstacle $obstacle]} {
 [self] addTraceRelation \
 Condition [$condition name] \
 derived-from Obstacle [$obstacle name]
 }
 lappend clist $condition
 }
 set constraint [ContextConstraint lookup 1 [self] \
 "[$obstacle type] [$obstacle name]"]
 # establish trace-link if necessary
 if {![$constraint existTrace derived-from Obstacle $obstacle]} {
 [self] addTraceRelation \
 ContextConstraint [$constraint name] \
 derived-from Obstacle [$obstacle name]
 }
 # link conditions to constraint if necessary
 foreach cond $clist {
 if {![$constraint hasCondition $cond]} {
 [self] linkConditionToContextConstraint [$cond name] [$constraint name]
 }
 }
 # link constraint to permissions if necessary
 foreach perm [my getAllPermissionsInfluencedByObstacle $obstacle] {
 if {![$perm hasContextConstraint $constraint]} {
 [self] linkContextConstraintToPerm [$constraint name] [$perm name]
 }
 }
 }
}

Figure 15. Derive ContextConstraint objects

seeks through the scenarios that are connected via a [refined-
by Scenario] trace. A similar procedure is performed in
the getAllPermissionsPotentiallyNeededForObjective

method which recursively visits all Objective objects
connected via a [sub-goal Objective] trace (see Figure 16).

xoRETManager instproc getAllPermissionsInfluencedByObstacle {obstacle} {
 set perms ""
 foreach obj [$obstacle getAllTraceTargets impedes Objective] {
 set perms [concat $perms \
 [my getAllPermissionsPotentiallyNeededForObjective $obj]]
 }
 return [lsort -dictionary -unique $perms]
}
xoRETManager instproc getAllPermissionsPotentiallyNeededForObjective {objective} {
 set perms ""
 foreach scenario [$objective getAllTraceTargets fulfilled-by Scenario] {
 set perms [concat $perms [my getAllPermissionsNeededForScenario $scenario]]
 }
 foreach obj [$objective getAllTraceTargets sub-goal Objective] {
 # recursively seek in sub-goals
 set perms [concat $perms \
 [my getAllPermissionsPotentiallyNeededForObjective $obj]]
 }
 return [lsort -dictionary -unique $perms]
}
xoRETManager instproc getAllPermissionsNeededForScenario {scenario} {
 set perms ""
 foreach step [$scenario getSteps] {
 set perms [concat $perms [$step getAllTraceTargets origin-of Permission]]
 }
 foreach rs [$scenario getAllTraceTargets refined-by Scenario] {
 # recursively seek in refinement scenarios
 set perms [concat $perms [my getAllPermissionsNeededForScenario $rs]]
 }
 return [lsort -dictionary -unique $perms]
}

Figure 16. Obstacles influence Permissions

The RBAC policy rule set that results from the derivation
procedures described in this section serves as a basis for the
specification of a refined and adapted policy rule set that can
be applied to the corresponding information system. Further
refinement procedures may include the definition of additional
roles, the deletion of redundant roles, or the specification of
additional context constraints for example. Moreover, the
scenario-driven approach inherently supports change manage-
ment activities. Thereby, it supports the management of RBAC
policies and allows to tailor the policy rule set to changes on
each relevant abstraction level (see also [8, 12]).

7 Related Work

In [10], Osborn et al. present the Role Graph Tool which
supports the definition and administration of general RBAC
role-hierarchies (directed acyclic graphs). The paper describes
how they applied the tool to simulate RBAC policies in ACL-
based Unix systems.

Kern et al. describe a commercial software tool (SAM
Jupiter) that supports an RBAC variant called enterprise role-
based access control model (ERBAC) [6]. An “enterprise role”
is a role which subsumes access rights of several underlying
software systems. For example, an enterprise role could pro-
vide simultaneous membership in a certain Unix group, in a
database-specific role (e.g. of DB2 or Oracle), and in a group
defined in a groupware system. A subject assigned to an enter-
prise role may thus receive several accounts in different soft-
ware systems simultaneously. Thereby, enterprise roles allow
for a centralized management of authorizations for resources
located in several heterogeneous systems. Analogous features
can also be integrated with existing standalone RBAC services,
as XORBAC for example. For such an integration we espe-
cially need an implementation level interface to map ERBAC-
level assignments of system-specific permissions or grouping
mechanisms to the corresponding target systems. Kern et al.
especially describe an administrative concept for ERBAC.

Another software tool supporting an ERBAC model is the
Role Control Center (RCC) presented by Ferraiolo et al. [3].
The RCC tool supports general role hierarchies, static separa-
tion of duty constraints, and functions for permission review.
It provides a feature called “role graph navigation”. The cor-
responding navigation scheme demands that, at any time, one
of the graph nodes is selected as “anchor”, RCC then displays
the n-tiered upward and downward projections of this anchor.
With respect to role-hierarchies, Ferraiolo et al. distinguish
“containment” and “inheritance” relations between roles. The
inheritance relation defines that a senior-role inherits permis-
sions from its junior-role(s), while containment refers to mem-
bership, i.e. all users of the senior-role are also users of the
corresponding junior-role(s).

8 Conclusion

The scenario-driven role engineering process (see [8, 13])
supports the definition of a policy rule set for RBAC. In the
course of the process, a permission catalog, a constraint cata-
log, and definitions of work profiles are produced. These mod-
els/documents serve as the foundation for the definition of a
tailored policy rule set which consists of permissions, roles,
and constraints. The XORET tool presented in this paper, was
explicitly developed to provide tool support for the scenario-
driven role-engineering process. To support change manage-
ment activities, XORET facilitates the specification and inspec-
tion of trace-relations. Furthermore, XORET is capable to pro-
duce a (preliminary) policy rule set that can be further refined
and directly imported by the XORBAC [7, 13] component.

With our work we aim to provide an integrated and tool-

supported methodology to engineer, enforce, and maintain
role-based access control policies. So far we described a sys-
tematic role engineering approach (see [8]), and an approach
to model access control relevant context information and to
use requirements engineering techniques to engineer (and en-
force) context-dependent access control policies based on con-
text constraints (see [13]). Moreover, we implemented the
XORBAC access control service that can be used to enforce
RBAC policies including context constraints (see [7, 13]). The
XORET tool presented in this paper now provides tool support
for the engineering and maintenance of role-based access con-
trol policies including context constraints.

References

[1] J. Carroll, editor. Scenario-Based Design: Envisioning Work
and Technology in System Development. John Wiley & Sons,
1995.

[2] E. Coyne. Role engineering. In Proc. of the ACM Workshop on
Role-Based Access Control, November 1995.

[3] D. Ferraiolo, G. Ahn, R. Chandramouli, and S. Gavrila. The
Role Control Center: Features and Case Studies. In Proc. of the
ACM Symposium on Access Control Models and Technologies
(SACMAT), June 2003.

[4] D. Ferraiolo, R. Sandhu, S. Gavrila, D. Kuhn, and R. Chan-
dramouli. Proposed NIST Standard for Role-Based Access
Control. ACM Transactions on Information and System Secu-
rity (TISSEC), 4(3), August 2001.

[5] E. Gamma, R. Helm, R. Johnson, and J. Vlissides. De-
sign Patterns: Elements of Reusable Object-Oriented Software.
Addison-Wesley, 1995.

[6] A. Kern, A. Schaad, and J. Moffett. An Administration Con-
cept for the Enterprise Role-Based Access Control Model. In
Proc. of the ACM Symposium on Access Control Models and
Technologies (SACMAT), June 2003.

[7] G. Neumann and M. Strembeck. Design and Implementation
of a Flexible RBAC-Service in an Object-Oriented Scripting
Language. In Proc. of the 8th ACM Conference on Computer
and Communications Security (CCS), November 2001.

[8] G. Neumann and M. Strembeck. A Scenario-driven Role En-
gineering Process for Functional RBAC Roles. In Proc. of 7th
ACM Symposium on Access Control Models and Technologies
(SACMAT), June 2002.

[9] G. Neumann and U. Zdun. XOTcl, an Object-Oriented Script-
ing Language. In Proc. of Tcl2k: 7th USENIX Tcl/Tk Confer-
ence, February 2000.

[10] S. Osborn, Y. Han, and J. Liu. A Methodology for Managing
Roles in Legacy Systems. In Proc. of ACM Symposium on Ac-
cess Control Models and Technologies (SACMAT), June 2003.

[11] J. Ousterhout. Tcl and the Tk Toolkit. Addison-Wesley, 1994.
[12] M. Strembeck. Embedding Policy Rules for Software-Based

Systems in a Requirements Context. In Proc. of the IEEE In-
ternational Workshop on Policies for Distributed Systems and
Networks (POLICY), June 2005.

[13] M. Strembeck and G. Neumann. An Integrated Approach to
Engineer and Enforce Context Constraints in RBAC Environ-
ments. ACM Transactions on Information and System Security
(TISSEC), 7(3), August 2004.

[14] A. van Lamsweerde. Goal-Oriented Requirements Engineer-
ing: A Guided Tour. In Proc. of the 5th IEEE International
Symposium on Requirements Engineering (RE), August 2001.

[15] XOTcl Homepage. http://www.xotcl.org, 2005.

