
Modeling Support for Delegating Roles, Tasks,

and Duties in a Process-Related RBAC Context

Sigrid Schefer and Mark Strembeck

Institute for Information Systems and New Media
Vienna University of Economics and Business (WU Vienna), Austria

{firstname.lastname}@wu.ac.at

Abstract. The definition of access control concepts at the modeling
level is an important prerequisite for the thorough implementation and
enforcement of corresponding policies and constraints in a software sys-
tem. In this paper, we present an approach to provide modeling support
for the delegation of roles, tasks, and duties in the context of process-
related RBAC models. The delegation model elements are integrated into
a software engineering and business process context by providing UML2
modeling support for role-, task, and duty-level delegation. The seman-
tics of our UML extension are formally specified via OCL constraints.

Key words: Access Control, Delegation, RBAC, UML

1 Introduction

In recent years, role-based access control (RBAC) [8, 12] has developed into a
de facto standard for access control. In the area of workflow modeling, roles are
also used as an abstract concept for delegation [6, 17] or for the assignment of
duties defined via obligations [13, 15, 21]. Delegation provides a mechanism to
increase flexibility in security management. In essence, one subject can delegate
its permissions and duties to another subject [13]. Subsequently, the subject re-
ceiving the delegation will act on behalf of the delegator. In order to model the
delegation of roles, tasks, and duties in a process-related context, we need an
approach that integrates the different concepts in a modeling language. However,
standard process modeling languages, such as BPMN or UML Activity diagrams
[11], do not provide native language constructs to model RBAC elements. Due to
missing modeling support for process-related delegation of roles, tasks, and du-
ties, organizations often try to specify delegation processes via informal textual
comments. However, such work-arounds easily result in significant problems re-
garding consistency between process descriptions and actual process executions
[18], and they make it difficult to translate the respective modeling-level concepts
to actual software systems.

In this paper, we present an approach for the integrated modeling of busi-
ness processes and the delegation of roles, tasks, and duties. For this purpose,
we present a UML metamodel extension to model the delegation of roles, tasks,
and duties via extended UML2 Activity diagrams. Moreover, we formally define

2 Sigrid Schefer, Mark Strembeck

the semantics of our newly introduced UML elements via OCL constraints. The
remainder of this paper is structured as follows. Section 2 introduces our exten-
sion for UML Activity diagrams which allows for the process-related modeling
of the proposed delegation model elements. Subsequently, Section 3 presents an
example business process model including delegation. Section 4 discusses our
approach in comparison to related work and Section 5 concludes the paper.

2 UML Extension for Modeling Delegation

An organization’s business processes and software systems are often modeled
via graphical modeling languages. The Unified Modeling Language (UML) [11]
offers a comprehensive and well-defined modeling framework and is the de facto
standard for modeling and specifying information systems. Providing modeling
support for delegation of roles, tasks, and duties in business processes via a
standard notation like UML can bridge the communication gap between software
engineers, security experts, and non-technical stakeholders (see, e.g., [9]).

Activity
(from FundamentalActivities)

BusinessActivity
(from BusinessActivities)

Classifier
(from Kernel)

ActivityNode
(from FundamentalActivities)

BusinessAction
(from BusinessActivities)

Action
(from BasicActions)

0..1 *

+activity +node

Subject
(from

BusinessActivities)

Role
(from

BusinessActivities)

transitiveTaskOwner

*

0..*

RoleToSubject

Assignment
(from BusinessActivities)

RoleToRole

Assignment
(from BusinessActivities)

DirectedRelationship
(from Kernel)

1..*

1

*

1

*

*

* *

1 1

*

* *

transitiveRoleOwner

inheritedRole

seniorRole

seniorAssignment

juniorRole

juniorAssignment

inheritedTask

transitiveJuniorRole

{subsets owner} {subsets ownedElement}

Duty
(from DutyNodes)

*

0..*

0..*

1

DutyTimeConstraint
(from DutyNodes)

0..1

*

0..**

delegatedDuty

DelegationRole

TimeConstraint
(from SimpleTime)

Classifier
(from Kernel)

Delegator

Relation

1

*

1

1

* 0..*

staticExclusion

0..*

*

dynamicExclusion

*

0..*

*

subjectBinding
0..**

roleBinding

Package BusinessActivityDelegations

Fig. 1: UML metamodel extension BusinessActivityDelegations for Activity diagrams

To achieve the above, we model the delegation of roles, tasks, and duties
via extended UML2 Activity diagrams. UML2 Activity models provide a process
modeling language that allows to model the control and object flows between
different actions (for details on UML2 Activity models, see [11]). We introduce a

Modeling Support for Delegating Roles, Tasks, and Duties 3

UML metamodel extension BusinessActivityDelegations for modeling delegation
of roles, tasks, and duties (see Figure 1). Moreover, we use OCL invariants [10]
to define the semantics by encoding delegation-specific constraints.

A BusinessActivity is a special UML Activity (see Figure 1). It can include
all elements available for ordinary UML Activities in addition to our newly
introduced elements. A BusinessAction corresponds to a task and comprises
all necessary permissions to perform the task (see [16] for further details on
BusinessActivities and BusinessActions). A Duty is a special UML Classifier (see
Figure 1) and is used to model that an action must be performed by a certain
Subject [14]. The link between Duties and BusinessActions assures that a Subject
being assigned to a Duty also receives all necessary permissions to perform these
Duties. Roles and Subjects are specialised UML Classifiers [16] which are linked
to BusinessActions and Duties (see Figure 1). Furthermore, a Duty may be
linked to a DutyTimeConstraint which is a specialised UML TimeConstraint
(from the SimpleTime package, see [11]). If a DutyTimeConstraint has expired,
a Compensation Action is triggered which is defined as stereotype of the Action
metaclass (see [14] for further details).

A DelegationRole is a special type of Role which is assigned to a set of dele-
gated Roles, BusinessActions, and/or Duties (see Figure 1). A DelegatorRelation

is a special UML DirectedRelationship (from the Kernel package, see [11]) and
indicates that a certain Subject acts as a delegator for a special DelegationRole.
Only delegators may delegate Roles, BusinessActions, or Duties to Delegation-
Roles (see OCL constraint 1). DelegationRoles are assigned to delegatees which
thereby are authorized to perform the respective BusinessActions and Duties
(see OCL constraint 2). A delegator can delegate a Role by defining this Role as
junior role of one of his or her DelegationRoles. All BusinessActions and Duties
assigned to this Role need to be delegatable (see below). Note, DelegationRoles
must not have senior regular Roles to avoid invalid permission inheritance (see
OCL constraint 3). For delegating a BusinessAction, the delegator assigns the
BusinessAction to the respective DelegationRole. Only if a BusinessAction is
delegatable, it can be delegated to a DelegationRole (see OCL constraints 4 and
6). To realize delegation of Duties in UML models, a Duty also needs to be
defined as being delegatable (see OCL constraints 5, 7, and 9). After assigning
a delegatee, the delegator loses his obligation to perform this Duty. Yet, a re-
view duty can be defined [13] which obliges the delegator to control the proper
enforcement of his delegated Duties (see OCL constraints 8 and 9).

OCL Constraint 1 The delegator of a Duty, a BusinessAction, or a Role needs to
be the Subject who is directly assigned to the respective delegation unit:

context Subject

inv: self.delegatorRelation.delegationRole.delegatedDuty.role->exists(r |

r.roleToSubjectAssignment->exists(rsa |

rsa.subject.name = self.name))

inv: self.delegatorRelation.delegationRole.businessaction.role->exists(r |

r.roleToSubjectAssignment->exists(rsa |

rsa.subject.name = self.name))

inv: self.delegatorRelation.delegationRole.juniorAssignment.role->exists((r |

r.roleToSubjectAssignment->exists(rsa |

rsa.subject.name = self.name))

4 Sigrid Schefer, Mark Strembeck

OCL Constraint 2 Each DelegationRole defines an attribute called ”delegatee”. The
delegatee is the responsibleSubject for the delegated BusinessActions and Duties:

context DelegationRole inv:

self.instanceSpecification->forAll(i |

self.businessAction.instanceSpecification->forall(b |

self.delegatedDuty.instanceSpecification->forall(d |

i.slot->select(s | s.definingFeature.name = delegatee

b.slot->select(rsb | rsb.definingFeature.name = responsibleSubject

d.slot->select(rsd | rsd.definingFeature.name = responsibleSubject

s.value = rsb.value and

s.value = rsd.value))))))

OCL Constraint 3 A DelegationRole is only allowed to have senior-assignments to
other DelegationRoles (see [20]):

context DelegationRole

inv: self.seniorAssignment->forAll(sa | sa.seniorrole.oclIsKindOf(DelegationRole))

OCL Constraint 4 Each BusinessAction defines an attribute called ”delegatable”
stating if a special BusinessAction may be delegated or not:

context BusinessAction inv:

self.instanceSpecification->forAll(i | i.slot->exists(s | s.definingFeature.name = delegatable)

OCL Constraint 5 Each Duty defines an attribute called ”delegatable”:

context Duty inv:

self.instanceSpecification->forAll(i | i.slot->exists(s | s.definingFeature.name = delegatable)

OCL Constraint 6 Each BusinessAction defines an attribute called ”isDelegated”
stating if a special BusinessAction has already been delegated or not. If it has already
been delegated, it cannot be delegated further (single-step delegation, see [3]):

context BusinessAction inv:

self.instanceSpecification->forAll(i |

i.slot->exists(s | s.definingFeature.name = isDelegated and

if s.value = true then

i.slot->exists(d | d.definingFeature.name = delegateable and

d.value = false)

else true endif))

OCL Constraint 7 Duties define an attribute ”isDelegated” (single-step delegation):

context Duty inv:

self.instanceSpecification->forAll(i |

i.slot->exists(s | s.definingFeature.name = isDelegated and

if s.value = true then

i.slot->exists(d | d.definingFeature.name = delegateable and

d.value = false)

else true endif))

OCL Constraint 8 Each Duty defines an attribute called ”isReviewDuty” [13]:

context Duty inv:

self.instanceSpecification->forAll(i |

i.slot->exists(s | s.definingFeature.name = isReviewDuty))

OCL Constraint 9 If a Duty is delegatable, it cannot be a reviewDuty. If a Duty is
a reviewDuty, it is not delegatable. Furthermore, if a Duty is a reviewDuty, it must
not have been delegated [13]:

context Duty inv:

self.instanceSpecification->forAll(i |

i.slot->select(d | d.definingFeature.name = delegatable

i.slot->select(r | r.definingFeature.name = isReviewDuty

i.slot->selelct(si |

si.definingFeature.name = isDelegated and

d.delegatable.value <> r.isReviewDuty.value and

r.isReviewDuty.value <> si.isDelegated.value))))

To consider the aspect of permanence in delegation [3], our DelegationRoles
can either be defined for temporary or for permanent delegation, i.e. for one or for
all instances of a business process (see OCL constraints 10 and 11). Furthermore,

Modeling Support for Delegating Roles, Tasks, and Duties 5

we support single- and multi-step delegation for BusinessActions and Duties.
Single-step delegation means that a delegated BusinessAction or Duty can not
be delegated further by the delegatee [3]. This is achieved by defining an attribute
called isDelegated for each BusinessAction and for each Duty. The isDelegated
attribute is set to true as soon as the respective BusinessAction or Duty has been
delegated. If a BusinessAction’s or a Duty’s isDelegated-attribute is set to true,
its delegatable-attribute is set to false (see OCL constraints 6 and 7). Multi-step
delegation can easily be activated by using OCL constraints 12 and 13.

OCL Constraint 10 Each DelegationRole defines an attribute called ”isTemporary”
indicating if a DelegationRole is intended for temporary or for permanent delegation:

context DelegationRole inv:

self.instanceSpecification->forAll(i |

i.slot->select(si | si.definingFeature.name = isTemporary))

OCL Constraint 11 If a DelegationRole is intended for temporary delegation only
(isTemporary=true), it defines an attribute called ”relatedProcessInstance” to en-
sure that the respective DelegationRole can only be used in the defined process instance:

context DelegationRole inv:

self.instanceSpecification->forAll(i |

self.businessAction.activity.instanceSpecification->exists(a |

i.slot->select(si | si.definingFeature.name = isTemporary

if si.value = true then

i.slot->select(so | so.definingFeature.name = relatedProcessInstance

a.slot->select(sa | sa.definingFeature.name = processID and

so.value = sa.value))

else true endif)))

OCL Constraint 12 To allow for multi-step delegation of BusinessActions, use the
following OCL constraint instead of OCL constraint 6:

context BusinessAction inv:

self.instanceSpecification->forAll(i | i.slot->exists(s | s.definingFeature.name = isDelegated)

OCL Constraint 13 To allow for multi-step delegation of Duties, use the following
OCL constraint instead of OCL constraint 7:

context Duty inv:

self.instanceSpecification->forAll(i | i.slot->exists(s | s.definingFeature.name = isDelegated)

3 Example Process with Delegation

In Figure 2, a standard UML2 credit application process is extended by including
the new modeling constructs introduced in Section 2. However, note, that the
visualization presented here primarily serves as a presentation option to graphi-
cally illustrate the relations between the modeling elements. As each UML model
needs to conform to its OCL constraints (see Section 2), the formally defined
relations exist independent of their actual graphical representation (see [10, 11]).

The process in Figure 2a) includes five actions, three of which are defined as
BusinessActions. The BusinessActions are associated with Duties. In addition,
the Compensation Action Reassign Duty is triggered if the Duty Check applicant

rating is not discharged in time. Figure 2b) presents the Duty Check applicant

rating which is connected to the BusinessAction Check credit worthiness. It is
associated with a DutyTimeConstraint and a Compensation Action. The Du-
tyTimeConstraint expresses that the Duty Check applicant rating needs to be

6 Sigrid Schefer, Mark Strembeck

Check
application form

Check credit
worthiness

B

Duty: Check applicant

rating

B

Duty: Fulfill precon-

tractual duties

Negotiate
contract

Reject
application

[else]

[else]

[else]

[approved]

credit
application

contract

contract

Credit
application

Credit application process

Reassign Duty

<<compensation>>

[Form
ok]

[Check
passed]

[Time constraint
expired]

Check
applicant rating

D
{t...t+3}

CA: Reassign Duty

c) Responsibility

and delegation
b) Detailed model

of a Duty

a) Process model including BusinessActions, Duties, and Compensation Actions

M. Meyer

BankClerk

Task: Check credit worthiness,
 Negotiate contract,
 Approve contract

Duty: Check applicant rating,
 Fulfill precontractual duties,
 Review final contract

<<rsAssign>>

J. Smith

SummerIntern

Task: Check credit worthiness

Duty: Check applicant rating

<<rsAssign>>

<<delegator>>

B

Duty: Review final

contract

Approve
contract

S

S

R

DR

Fig. 2: Extended credit application process

completed within three time units (e.g. days) after the corresponding Business-
Action has been started. Otherwise, the Compensation Action Reassign Duty is
executed.

The responsibility for the Duties is illustrated in Figure 2c) showing the Role
BankClerk which is assigned to the three BusinessActions and the associated Du-
ties defined in the credit application process. Thus, a Subject assigned to the
BankClerk role is responsible for performing these Duties and related Busines-
sActions. In this example, the Subject M. Meyer is assigned to the BankClerk
role and therefore also needs to discharge the associated Duties. M. Meyer de-
cides to delegate her Duty Check applicant rating to her summer intern J. Smith.
For this purpose, she creates a permanent DelegationRole SummerIntern and
assigns the Duty to the DelegationRole. Subsequently, she assigns the Subject
J. Smith to her DelegationRole SummerIntern. J. Smith is now authorized and
responsible for discharging the Duty Check applicant rating when performing the
BusinessAction Check credit worthiness, until either the Duty is revoked from
the DelegationRole or he loses his assignment to the DelegationRole.

4 Related Work

To the best of our knowledge, this work represents the first attempt to address
delegation of duties from a business process modeling context. Other approaches
usually concentrate on the modeling of authorization constraints. As each duty
holder also needs sufficient authority to perform the assigned duties [13, 15],
our approach complements existing approaches. In recent years, there has been
much work on various aspects of delegation (see, e.g., [2, 19, 20]), especially in

Modeling Support for Delegating Roles, Tasks, and Duties 7

a business process context. In [1], the notion of delegation is extended to allow
for conditional delegation. Different types of constraints, such as authorization
constraints, are addressed in the context of delegation. The effects of some dele-
gation operations on three workflow execution models are described in [7]. In [5],
the satisfiability problem of workflows while supporting user delegation mecha-
nisms is addressed. Moreover, duties/obligations may also be subject to delega-
tion. However, the delegation of duties has received little attention in literature
so far, although it has been identified as important phenomenon, e.g., in [4],
where different ways of delegating obligations are discussed. In [13], some issues
for delegation of obligations are considered, mainly addressing the reasons for
delegating obligations and the balance between authorizations and obligations.

5 Conclusion

Our UML2 extension can help organizations to integrate the specification of
processes and related access control, obligation, and delegation policies. An in-
tegrated modeling approach yields a number of advantages, such as supporting
a proper mapping of models to software systems, facilitating communication be-
tween different stakeholders, making responsibility for tasks and duties explicit,
and detecting task- or duty-related conflicts. Moreover, it allows for tracing pol-
icy rules to the (regulatory) reasons they exist and to trace them to the software
components that have to ensure their monitoring and enforcement. This facili-
tates the reporting on a company’s fulfillment of compliance requirements. We
chose to define an extension to the UML2 standard to enable a complete and
correct mapping between policies, models, and the respective software system.
This mapping assures consistency between modeling-level specifications and the
software system enforcing respective policies and process instances.

References

1. V. Atluri and J. Warner. Supporting conditional delegation in secure workflow
management systems. In Proceedings of the tenth ACM symposium on Access
control models and technologies (SACMAT), 2005.

2. E. Barka and R. Sandhu. A Role-Based Delegation Model and Some Extensions. In
Proceedings of the 23rd National Information Systems Security Conference (NIS-
SEC), 2000.

3. E. Barka and R. Sandhu. Framework for Role-Based Delegation Models. In Pro-
ceedings of the 16th Annual Computer Security Applications Conference, 2000.

4. J. Cole, J. Derrick, Z. Milosevic, and K. Raymond. Author Obliged to Submit
Paper before 4 July: Policies in an Enterprise Specification. In Proceedings of the
International Workshop on Policies for Distributed Systems and Networks (POL-
ICY), 2001.

5. J. Crampton and H. Khambhammettu. Delegation and Satisfiability in Workflow
Systems. In Proceedings of the 13th ACM symposium on Access control models and
technologies (SACMAT), 2008.

8 Sigrid Schefer, Mark Strembeck

6. J. Crampton and H. Khambhammettu. Delegation in role-based access control.
International Journal of Information Security, 7(2), 2008.

7. J. Crampton and H. Khambhammettu. On Delegation and Workflow Execution
Models. In Proceedings of the 2008 ACM symposium on Applied computing (SAC),
2008.

8. D. F. Ferraiolo, D. R. Kuhn, and R. Chandramouli. Role-Based Access Control.
Artech House, second edition, 2007.

9. H. Mouratidis and J. Jürjens. From Goal-Driven Security Requirements Engineer-
ing to Secure Design. International Journal of Intelligent Systems, 25(8), 2010.

10. OMG. Object Constraint Language Specification. available at:
http://www.omg.org/technology/documents/formal/ocl.htm, February 2010.
Version 2.2, formal/2010-02-01, The Object Management Group.

11. OMG. Unified Modeling Language (OMG UML): Superstructure. available at:
http://www.omg.org/technology/documents/formal/uml.htm, May 2010. Version
2.3, formal/2010-05-05, The Object Management Group.

12. R. Sandhu, E. Coyne, H. Feinstein, and C. Youman. Role-Based Access Control
Models. IEEE Computer, 29(2), 1996.

13. A. Schaad and J. D. Moffett. Delegation of Obligations. In Proceedings of the 3rd
International Workshop on Policies for Distributed Systems and Networks (POL-
ICY), 2002.

14. S. Schefer and M. Strembeck. Modeling Process-Related Duties with Extended
UML Activity and Interaction Diagrams. Proc. of the International Workshop
on Flexible Workflows in Distributed Systems, Workshops der wissenschaftlichen
Konferenz Kommunikationin verteilten Systemen (WowKiVS), Electronic Com-
munications of the EASST, 37, March 2011.

15. M. Strembeck. Embedding Policy Rules for Software-Based Systems in a Require-
ments Context. In Proceedings of the 6th IEEE International Workshop on Policies
for Distributed Systems and Networks (POLICY), 2005.

16. M. Strembeck and J. Mendling. Modeling Process-related RBAC Models with
Extended UML Activity Models. Information and Software Technology, 53(5),
2010. DOI: 10.1016/j.infsof.2010.11.015.

17. J. Wainer, A. Kumar, and P. Barthelmess. DW-RBAC: A formal security model of
delegation and revocation in workflow systems. Information Systems, 32(3), 2007.

18. C. Wolter, M. Menzel, A. Schaad, P. Miseldine, and C. Meinel. Model-driven busi-
ness process security requirement specification. Journal of Systems Architecture,
55(4), 2009.

19. L. Zhang, G.-J. Ahn, and B.-T. Chu. A Rule-Based Framework for Role-Based
Delegation and Revocation. ACM Transations on Information System Security
(TISSEC), 6(3), 2003.

20. X. Zhang, S. Oh, and R. Sandhu. PBDM: A Flexible Delegation Model in RBAC.
In Proceedings of the eighth ACM symposium on Access control models and tech-
nologies (SACMAT), 2003.

21. G. Zhao, D. Chadwick, and S. Otenko. Obligations for Role Based Access Con-
trol. In Proceedings of the 21st International Conference on Advanced Information
Networking and Applications Workshops - Volume 01, 2007.

