
A UML Extension for the Model-driven

Specification of Audit Rules

Bernhard Hoisl1,2 and Mark Strembeck1,2

1 Institute for Information Systems and New Media,
Vienna University of Economics and Business (WU Vienna),

Augasse 2-6, 1090 Vienna, Austria
2 Secure Business Austria Research (SBA Research),

Favoritenstrasse 16, 1040 Vienna, Austria
{bernhard.hoisl,mark.strembeck}@wu.ac.at

Abstract. In recent years, a number of laws and regulations (such as
the Basel II accord or SOX) demand that organizations record certain
activities or decisions to fulfill legally enforced reporting duties. Most of
these regulations have a direct impact on the information systems that
support an organization’s business processes. Therefore, the definition of
audit requirements at the modeling-level is an important prerequisite for
the thorough implementation and enforcement of corresponding policies
in a software system. In this paper, we present a UML extension for the
specification of audit properties. The extension is generic and can be ap-
plied to a wide variety of UML elements. In a model-driven development
(MDD) approach, our extension can be used to generate corresponding
audit rules via model transformations.

Key words: Audit, Model-driven Development, UML

1 Introduction

In information system security, an audit process records and analyzes data about
the activities in a software system in order to detect security violations or to
identify the cause of such violations (see, e.g., [1, 2, 3, 4, 5]). In this paper,
we use the term audit for an “independent review and examination of records
and activities to assess the adequacy of system controls and ensure compliance
with established policies and operational procedures” [6]. Audit requirements not
only stem from organization-specific management decisions or cost controlling
policies, but also from corresponding laws and regulations, such as the Basel II
Accord or the Sarbanes-Oxly Act (SOX) (see [7, 8]).

An audit process may involve different departments or divisions and focus on
different assets of an organization, for example, financial records, customer pri-
vacy regulations, or access control policies. Nevertheless, all audit processes have
in common that they are more and more based on and supported through infor-
mation systems. For this reason, the software systems of an organization must
be able to keep an audit trail of all audit-relevant business processes and activ-
ities. However, process modeling languages such as BPMN [9] or UML activity

2 UML Extension for Audit Modeling

diagrams [10] do not provide native language elements to model such security
properties. Thus, in order to properly enforce business-level security concerns
in the corresponding software systems we need to integrate these concepts in a
modeling language.

In recent years, model-driven development (MDD; see, e.g., [11, 12]) emerged
as an approach for the specification of tailored domain-specific software systems.
Due to its versatility, MDD can be applied as an approach for the systematic
specification of information system security properties (see, e.g., [13, 14, 15,
16]). In the context of MDD, domain-specific languages (DSLs) are tailor-made
(computer) languages for a specific problem domain (see, e.g., [17, 18, 19]). In
general, a DSL can be defined as a standalone language or as a domain-specific
extension to a pre-existing (modeling or programming) language. Such domain-
specific extensions are also called “embedded DSLs”.

In this paper, we present an approach for modeling system audits. In partic-
ular, we present a domain-specific UML extension that provides new language
elements for the specification of audit events, audit rules, and notifications (or
actions) that are triggered via audit events. The remainder of this paper is struc-
tured as follows: in Section 2 we give an overview of our audit modeling approach.
Section 3 describes the metamodel, syntax, and semantics of our UML exten-
sion. Subsequently, Section 4 gives an example how our extension can be used
to describe different audit modeling perspectives. After that, Section 5 summa-
rizes related work and Section 6 concludes the paper. In addition, Appendix A
provides a textual concrete syntax for our UML extension.

2 Motivation and Approach Synopsis

For each organization, a number of laws, regulations, and internal rules demand
that the organization records certain activities or decisions which have a direct
impact on the corresponding information systems (see, e.g., [20, 21, 22]). In
particular, audit trails are needed to discharge an organization’s reporting duties,
for example, to prove the correctness of certain financial transactions (such as
the enforcement of the four-eyes-principle for procurement operations). However,
software engineers are usually not aware of all legal requirements that must be
fulfilled by a software system. Therefore, we need a means to incorporate audit
requirements in the respective software models. On the one hand, such a means
should support the software engineer to model corresponding audit properties in
a standard modeling language (such as the UML), on the other hand it should
facilitate the communication between software engineers and domain experts
(such as lawyers or experts from a certain business domain).

Moreover, because software systems as well as laws and regulations change
over time, an extension for audit modeling should support the integration of au-
dit properties with many different types of (heterogeneous) systems. Synchronous
request/reply communication typically results in a strong coupling of interacting
components. In contrast to that, a loose coupling of software services helps to
integrate many different types of heterogeneous (legacy) systems (see, e.g., [23]).

UML Extension for Audit Modeling 3

Event-based communication is an important paradigm to model and implement
such loosely-coupled systems—it is asynchronous and inherently decouples inter-
acting system components (see, e.g., [24]). Event-based communication follows
a publish/subscribe scheme where software components can produce and con-
sume events. This means, an event producer does neither know the consumers
of its events, nor does the producer publish events with the intention to trigger
some action in an other component. Therefore, event-based components only
have to know how to react on a particular notification and then publish events
to “whom it may concern”. This allows for a straightforward integration of new
components and, thus, directly supports the evolution of event-based systems.
Moreover, because event producers and event consumers are almost completely
decoupled, event-based components are widely independent of each other which,
again, makes these components more easy to adapt and extend.

In this paper, we, therefore, present an approach for the event-based modeling
of audit properties. Fig. 1 shows an informal overview for the main conceptual
elements of our approach. In essence, we provide a UML extension to model
audit properties of software artifacts that can be applied to different types of
UML models. We have chosen the UML because it is the de-facto standard
for modeling information systems and provides native support for all types of
software models as well as for event-based modeling. The audit properties defined
via this modeling extension can then be used to generate corresponding audit
rules that can be enforced in a software system.

use

extends

generated from

generated
from

applied to

UML

UML Models Audit Rules

Audit Extension

Fig. 1. Audit extension for UML models

Our extension supports the definition of different perspectives, each of which
models a particular aspect of system audits (see Fig. 2). Subsequently, model
transformations (see, e.g., [25, 26, 27]) can be used to generate different types of
software artifacts and audit rules from these models. The generated artifacts then
enforce the behavior that was defined on the modeling level. Thereby, our UML
extension allows to map audit requirements from the modeling- to the system-
level. Because the UML provides an integrated family of modeling notations, a
UML extension helps to avoid the semantic gap that could occur if we integrate
models that are defined in different modeling languages (see, e.g., [28, 29]).

Our extension is generic and allows to define audit requirements for arbitrary
elements in arbitrary UML models. Moreover, it is event-based and thereby

4 UML Extension for Audit Modeling

Model
Transformations

Modeling
Level

System
Level

Modeling
Perspectives

Software Artifacts Audit Rules

applied to

Fig. 2. Modeling-level audit properties are transformed into system artifacts

enables a loose-coupling and a straightforward integration with different types
of (heterogeneous) software components.

3 UML Audit Extension

3.1 Metamodel Overview

In this section, we specify a UML extension (see Fig. 3) for modeling event-based
audit requirements. In particular, we introduce a new package called SecurityAu-

dit as a UML metamodel extension [10]. The package consists of both, a UML
stereotype specialization and MOF-based (Meta Object Facility, [30]) extensions.

In general, the UML can be extended in two ways: (1) by using UML pro-
files [10] or (2) by introducing new modeling concepts on the metamodel level.
UML profiles provide a mechanism for the extension of existing UML meta-
classes to adapt them for non-standard purposes. However, UML profiles are
not a first-class extension mechanism (see [10, page 660]). They extend existing
metaclasses of the UML metamodel and the extension defined through a profile
must be consistent with the semantics of the extended (original) UML meta-
classes. For this reason, more complex extensions are defined on the level of the
UML metamodel (see [10, 30]). An extension of the UML metamodel allows to
define new and specifically tailored UML elements (defined via new metaclasses),
and allows to define a customized notation, syntax, and semantics for the new
modeling elements. In our extension, we employ a combination of both methods
to take advantage of each mechanism.

In our extension, the «stereotype» AuditEventSource extends the UML
Element metaclass (see Fig. 3). As a specialized Element stereotype, it is possible

UML Extension for Audit Modeling 5

notificationAction 0..11..2 constant

Package SecurityAudit

«enumeration»
OperatorKind

equal
notEqual
greater
greaterEqual
less
lessEqual

Element
(from Kernel)

1

*

1..**

LiteralSpecification
(from Kernel)

BehavioredClassifier
(from BasicBehaviors, ...)

Trigger
(from Communications)

Reception
(from Communications)

Event
(from Communications)

MessageEvent
(from Communications)

SignalEvent
(from Communications)

*

1

1

BroadcastSignalAction
(from IntermediateActions)

BehavioralFeature
(from Kernel)

1..*

*

AuditRule

*

InvocationAction
(from BasicActions)

*

Classifier
(from Kernel, ...)

«stereotype»
AuditEventSource* *

*

1

1

**

Property
(from Kernel, ...)

Signal
(from Communications)

*

1

operator : OperatorKind [1]

Condition

isNested : Boolean [1] = false

publishsubscribe

conditionProperty

Fig. 3. UML extension for modeling event-based audit requirements

to define any UML element as being the source for an event that may trigger
an audit-related behavior execution. In this way, an integration with arbitrary
(pre-existing) UML models is possible. The isNested attribute defines whether
the AuditEventSource stereotype is applied to the owned elements of a stereo-
typed element (e.g. to all nodes in an UML activity). Hence, it is possible to tag
the owner element only and recursively apply the AuditEventSource stereotype
and its properties to all nested elements.

A Trigger relates an Event to a certain type of Signal that is published each
time this particular event occurs. A UML Signal is a specialized Classifier and
can carry data which is passed via the corresponding send invocation occurrence.
Events are published through a corresponding BroadcastSignalAction which
transmits a Signal instance to all potential target objects in a system (see also
Fig. 3 and [10]). We use a BroadcastSignalAction in favor of a SendSignalAction

because events are published independent of the entities (software components)
consuming the events (see, e.g., [24]).

Modeling the receipt of a Signal instance is done via an AcceptEventAction (in
behavior diagrams) or via the Reception element (in structure diagrams). Either
way, a SignalEvent represents the receiving of an asynchronous Signal instance.
The elements modeling the transmission and receipt of Signal instances act as
the underlying event notification service, which mediates between notification
producers and consumers (according to the publish/subscribe pattern; see, e.g.,
[24, 31]).

An AuditRule is defined as a specialized BehavioredClassifier and is sub-
scribed to a specific Signal (see Fig. 3). Each AuditRule consists of one or
more Condition elements. A Condition evaluates a certain attribute of a Signal

and checks the corresponding attribute value (e.g. by using binary infix op-
erators, as in: “price < 63.50” or “currency = EUR”). In our extension, a

6 UML Extension for Audit Modeling

Condition can test either two Properties against each other, or it can check a
Property against a pre-defined constant value (a LiteralSpecification). A UML
LiteralSpecification references an instance of a primitive data type1. For basic
condition matching, the «enumeration» OperatorKind specifies an exemplary list
of valid self-explanatory operator alternatives. Note, however, that these infix
comparison operators can easily be extended to represent other types of op-
erators, for instance, n-ary prefix operators (such as isInAscendingOrder(...),

isInDescendingOrder(...), or includes(...)).
An AuditRule matches an event (resp. the corresponding Signal) if all

Conditions that are associated with this AuditRule are fulfilled. In case all
Conditions of an AuditRule are fulfilled, the respective AuditRule triggers the
execution of a certain BehavioralFeature (see Fig. 3). This BehavioralFeature

implements a notification action that informs another system entity that one of
the audit rules was activated and causes a certain behavior (e.g., generating a
new log entry in the audit trail).

In general, every stereotype must be included (directly or indirectly) in a pro-
file [10]. For our extension, we define that the «stereotype» AuditEventSource is
contained in the AuditEventSourceProfile. We use the Object Constraint Lan-
guage (OCL, [32]) to formally specify constraints for our modeling extension:

context AuditEventSource inv:

self .profile .name = ’AuditEventSourceProfile ’

As this profile is an integral part of our extension, we define that it must be
applied to the package SecurityAudit:

context SecurityAudit inv:

self . profileApplication ->exists(

appliedProfile .name = ’AuditEventSourceProfile ’)

The relationship of the SecurityAudit package, its profile application, and
their referenced metamodels are shown in Fig. 4. The profile AuditEventSource-

Profile references the UML metamodel and is applied to the package Security-

Audit. As we define the package SecurityAudit via a UML metamodel extension,
it uses elements from the UML. The MOF is self-describing (through reflection;
see [30]) and, therefore, does not need another metamodel for its specification.
Furthermore, the MOF specification reuses modeling constructs from the UML
infrastructure library (through package imports; see [33]).

3.2 Metamodel Elements’ Syntax and Semantics

Table 1 shows the notation elements of the SecurityAudit package (see also
Section 4). The other UML elements used in our examples correspond to the
UML specification (see [10]).

1 The UML defines six LiteralSpecification subtypes: LiteralNull,
LiteralBoolean, LiteralInteger, LiteralReal, LiteralString, and
LiteralUnlimitedNatural [10]. Due to space limitations these six specializ-
ing LiteralSpecifications are omitted in Fig. 3.

UML Extension for Audit Modeling 7

«apply»

MOF

SecurityAudit

UML

«profile»
AuditEventSourceProfile

«reference»

«instanceOf»

«use»

«use»

Fig. 4. Dependencies of the SecurityAudit package

Node type Notation Explanation

AuditRule
Name AR

subscribe : Signal

An AuditRule is shown as a rectangle with
the encircled characters AR in the upper
right corner. The lower compartment states
that the AuditRule is subscribed to the re-
ceipt of a certain Signal type (see [10]).

Condition

Name

PropertyName
OperatorKind::Name
PropertyName | ConstantName

C

A Condition is shown as a rectangle with
the encircled character C in the upper
right corner. The lower compartment in-
cludes the attributes and the operator that
constitute the respective condition. The
first attribute is the name of a Property

which references a certain Signal attribute,
the second attribute may either be an-
other Property or a constant value (i.e.
a LiteralSpecification), and the opera-
tor is of type OperatorKind (see Fig. 3).
Thereby, a condition consists of an opera-
tor that compares two operands (for exam-
ple “price < 63.50” or “currency = EUR”).

Table 1. Modeling elements of the SecurityAudit package

In addition to the graphical modeling elements, Appendix A provides a tex-
tual syntax for event-based audits that is specified via a variant of the Backus-
Naur-Form (BNF). We have chosen this BNF variant as a notation because it is
also applied in OMG specifications (e.g., [10, 32]), it is commonly used to for-
mally specify the syntax of computer languages, and it is widely tool-supported
(e.g., the Eclipse Xtext notation is very similar to an extended BNF). To model
event-based audits, the graphical or the textual syntax can be used separately
and equivalently. Moreover, it is also possible to combine the textual and graph-
ical syntaxes (see the example in Section 4).

In addition, to the syntax definitions we specify OCL invariants that ensure
the correct semantics of models defined with our UML extension (see Fig. 3). The

8 UML Extension for Audit Modeling

AuditEventSource stereotype can be applied recursively to all owned elements of a
tagged element (if the isNested attribute is set to true). All stereotype properties
of the tagged owner element are inherited, except if a nested element explicitly
defines its own Trigger and Signal. In this case, the properties of the tagged
owner element are overwritten2:

context AuditEventSource inv:

self .isNested implies

self. base_Element .ownedElement ->forAll(oe |

oe. getAppliedStereotype (’AuditEventSourceProfile::

AuditEventSource ’) <> null)

To be able to evaluate a Condition of an AuditRule, exactly one Property

must be a referenced attribute of the subscribed Signal instance:

context AuditRule inv:

self .condition ->forAll(c |

self. subscribe .ownedAttribute ->intersection (

c. conditionProperty)->size () =

c.ownedAttribute ->select(oa |

oa.name = ’conditionProperty ’) ->first().lowerBound ())

We define that a Condition can test either two Properties against each other
or one Property against a constant (as specified in the metamodel), but not both.
Specifying a Condition without matching operands is also not allowed:

context Condition inv:

self .conditionProperty ->size () + self .constant ->size () =

self .ownedAttribute ->select(oa |

oa.name = ’conditionProperty ’) ->first().upperBound ().

oclAsType (Integer)

Matching Properties against each other or against a LiteralSpecification

constant implies that they conform to the same type (e.g., both are of type
<Primitive Type> Integer):

context Condition inv:

if self .constant ->notEmpty () then

self. conditionProperty ->forAll(p |

p.type .conformsTo (self .constant .type))

else

self. conditionProperty ->forAll(p1 ,p2 |

p1.type .conformsTo (p2.type))

endif

4 Audit Modeling Perspectives

In this section, we describe an example for audit modeling of a simple event-based
system. In order to thoroughly describe a software system, different modeling

2 Please note that the getAppliedStereotype method is provided by the Eclipse
MDT/OCL engine.

UML Extension for Audit Modeling 9

perspectives have to be defined. Therefore, we take different viewpoints into
account to explain the application of our UML extension to different structural
and behavioral models. The perspectives in Fig. 5 are exemplary and can be
used interchangeable.

Fig. 5a shows a process-based perspective modeled via a UML activ-
ity diagram. Here, the «AuditEventSource» stereotype is applied to two
BroadcastSignalActions. The example models a basic login process to an ERP
system that should include audit trails for successful as well as for failed lo-
gin attempts (indicated via the «AuditEventSource» stereotype). Two notes are
attached to the actions including the Trigger for the audit event and the cor-
responding Signal classifier. However, using this perspective alone, information
about the Signals, the AuditRules, their Conditions and Actions can not be
modeled sufficiently.

(a) Process-based AuditEventSource perspective (b) AuditRule perspective

(c) Textual perspective

Login to
ERP system

«AuditEventSource»
Login successful

«AuditEventSource»
Login failure

...

{ trigger = loginFailure(),
publish = LoginInfo }

{ trigger = loginSuccessful(),
publish = LoginInfo2 }

[failure]

[success]

userID : Integer
timestamp : TimeExpression

«signal»
LoginInfo

publish

publish

userID : Integer
time : TimeExpression
privilege : Integer

«signal»
LoginInfo2

«AuditEventSource» loginFailure()
«AuditEventSource» loginSuccessful()

ERP-System

AuditSystem

<AR> LoginSuccessful -> LoginInfo2 :
 { AuditTrail::log() }
 <C> [time, OperatorKind::greater, 08:00]
 <C> [time, OperatorKind::less, 17:00]

«AuditEventSource» Login successful :
 loginSuccessful() -> LoginInfo2
 { userID, time, privilege }
 <AR> LoginSuccessful

«AuditEventSource» Login failure :
 loginFailure() -> LoginInfo
 { userID, timestamp }
 <AR> LoginError -> LoginInfo :
 { AuditTrail::log() }
 <C> [userID, OperatorKind::equal, 1]

(d) State-based audit system perspective

AuditSystem

(e) Sequence-based interaction perspective

LoginError AR

subscribe : LoginInfo

IfAdmin

userID
OperatorKind::equal
1

C

condition

AuditTrail

log()

LoginSuccessful AR

subscribe : LoginInfo2

NotTooEarly

time
OperatorKind::greater
08:00

C

condition

time
OperatorKind::less
17:00

NotTooLate C

condition

AuditSystemERP-System

LoginInfo (userID, timestamp)«AuditEventSource»
loginFailure()

AuditTrail::log()

LoginInfo2 (userID, time, privilege)«AuditEventSource»
loginSuccessful()

AuditTrail::log()

par
[userID, OperatorKind::equal, 1]

[time, OperatorKind::greater, 08:00 and
time, OperatorKind::less, 17:00]

idle

start

do / observing

[shutdown]

LoginInfo2
[time, OperatorKind::greater, 08:00 and
time, OperatorKind::less, 17:00]
/ AuditTrail::log()

LoginInfo
[userID, OperatorKind::equal, 1]

/ AuditTrail::log()

[audit finished]

audit

Fig. 5. Modeling event-based audit requirements from different perspectives

Therefore, Fig. 5b presents the AuditRule perspective. It shows an ERP-System

classifier that implements two methods which match the execution operations of

10 UML Extension for Audit Modeling

the corresponding BroadcastSignalActions shown in Fig. 5a. The «AuditEvent-

Source» stereotypes bind both, the «signal» LoginInfo to the loginFailure()

method and the «signal» LoginInfo2 to the loginSuccessful() method. Further-
more, Fig. 5b shows two simple AuditRules LoginError and LoginSuccessful with
each having a compartment defining the corresponding subscribed Signal. The
AuditRule LoginError consists of one Condition (IfAdmin) which checks for failed
administrator logins (i.e., if the userID included in the corresponding Signal

instance equals 13). The second AuditRule LoginSuccessful consists of two con-
ditions which check if a login happened outside of normal business hours. If
these Conditions evaluate to true, the log() method of the AuditTrail classi-
fier is invoked (as both AuditRules reference the same notification action). This
perspective, of course, omits all process information.

Fig. 5c shows an example of the textual perspective. The syntax conforms
to the grammar defined in Appendix A. The textual syntax is equivalent to the
graphical AuditRule perspective (see Fig. 5b); i.e. all AuditRules and Conditions

are equally defined. The textual syntax can be used complementary to the graph-
ical representation.

Fig. 5d shows a perspective of the audit system as a UML state machine. The
state machine is used to model the receiving Signal instances, their Conditions,
and corresponding actions. As can be seen from the AuditRule and the textual
perspective, the second Signal named LoginInfo2 serves as the notification mes-
sage of action Login successful in the process-based view. The state machine, for
instance, shows the same Signal, Condition, and action information associated
with the corresponding transition. In this perspective, the modeled states and
their transitions of an audit system reveal neither process- nor object-specific
information.

Finally, Fig. 5e shows a simplified message interaction perspective as a UML
sequence diagram. Therein, the sending and receiving events of the two in-
volved systems, together with the interchanged signal messages are shown. Both
«AuditEventSource» events are defined for parallel execution, i.e. there is no se-
quential order between these events. The corresponding messages are defined via
the respective Signal names including their owned attributes. The Conditions

for invoking audit actions are defined as guards on the lifeline of the AuditSystem.
This perspective neither shows the process flow nor the detailed structure of the
audit rules.

All perspectives presented here are complementary and can be used inter-
changeable. The combination of perspectives are dependent on the modeled
software system (e.g., state-based).

5 Related Work

In [34], Jürjens describes how to model audit security for smart-card payment
schemes with UMLSec. The UMLSec extension is defined as a UML profile. Our

3 For the sake of simplicity, we assume that the administrator of the ERP system has
the value 1 for the attribute userID.

UML Extension for Audit Modeling 11

extension for audit modeling supports the definition of different audit perspec-
tives and complements the UMLSec approach. In general, we extend the UML
Element metaclass and, thereby, allow to extend a wide variety of UML ele-
ments with audit properties. Furthermore, our extension supports event-based
modeling and, thus, aims to facilitate the integration of audit properties into
pre-existing models for heterogeneous (or legacy) systems.

Rodríguez et al. [35] present a UML profile extension for activity diagrams
which aims to support the specification of certain security properties (e.g., access
control, integrity, non-repudiation, and privacy). In [35], audits are specified as
an additional characteristic for another security property. The audit process is
treated as a logging of data, and the logged data must be defined via attributes
of the corresponding audited entity. In contrast, our extension is more generic
and can be used to model audit rules for arbitrary UML elements. Moreover, our
audit extension is integrated with other UML extensions for security modeling
(see, e.g., [15, 36, 37, 38, 39])

In [40], Fernández-Medina et al. provide support for modeling access control
and audit properties for multidimensional data warehouses with a UML profile
definition. Audit requirements are considered by defining audit rules for logging
user requests and activities. Audit rules are defined via a custom-made gram-
mar specified in Extended Backus-Naur-Form (EBNF). These audit rules are
represented in the form of constraints for a UML class diagram. In contrast, our
approach is not specific to a particular application domain and can be integrated
with other UML-based approaches.

In [41], an approach for the modeling of security-critical, service-oriented sys-
tems is presented. The authors provide a UML profile that defines stereotypes
for the extension of class diagrams. Security patterns and protocols are applied
to identified security critical use cases. Service composition rules can be defined
as post-obligations to be taken into account while (or after) executing a protocol
(e.g., auditing). In [41], audit requirements are not defined as specialized mod-
eling elements, but via OCL constraints. Thus, the modeling approach is rather
specialized and has a limited expressiveness (for both, syntax and semantics).

6 Conclusion

In this paper we presented a UML extension for modeling system audits. Our
extension supports an event-based modeling style and thereby aims to enable
the integration of audit properties in a wide variety of different types of UML
models. We support the definition of structural and behavioral perspectives to
model different aspects of system audits. In addition to graphical model elements,
we also provide a fully equivalent textual syntax.

With our extension, each UML element can be defined as an audit event
source. Thus, the extension is not limited to a specific type of UML dia-
gram. Moreover, it can be customized to different types of system audits. How-
ever, in this paper we do not elaborate on the modeling of an event notifica-
tion service (i.e., we omit an explicit discussion of BroadcastSignalActions and

12 UML Extension for Audit Modeling

AcceptEventActions in our examples). Furthermore, we neither show an exam-
ple of nested audit models nor discuss wildcard triggers which invoke a spec-
ified audit rule on every event occurrence of an element or nested elements.
Application-specific OCL constraints can be used to further refine, for instance,
event triggers or audit rules (e.g., pre- and postconditions). The textual syntax
of our extension is fully integrated with the graphical perspectives and can be
applied either interchangeable or in addition to the graphical models.

In our future work, we will integrate support for the explicit modeling of
composite as well as hierarchical audit event types. Moreover, we are working
on a tool integration of our extension which will implement both, the graphical
and textual syntax.

Acknowledgments

This work has partly been funded by the Austrian Research Promotion Agency
(FFG) of the Austrian Federal Ministry for Transport, Innovation and Tech-
nology (BMVIT) through the Competence Centers for Excellent Technologies
(COMET K1) initiative and the FIT-IT program.

References

1. Garera, S., Rubin, A.: An Independent Audit Framework for Software Depen-
dent Voting Systems. In: Proc. of the 14th ACM Conference on Computer and
Communications Security (CCS). (2007) 256–265

2. Hasan, R., Winslett, M.: Efficient Audit-based Compliance for Relational Data
Retention. In: Proc. of the 6th ACM Symposium on Information, Computer and
Communications Security. (2011) 238–248

3. King, J., Smith, B., Williams, L.: Modifying Without a Trace: General Audit
Guidelines are Inadequate for Open-source Electronic Health Record Audit Mech-
anisms. In: Proc. of the 2nd ACM SIGHIT International Health Informatics Sym-
posium. (2012) 305–314

4. Sandhu, R., Samarati, P.: Authentication, Access Control, and Audit. ACM Com-
puting Surveys 28(1) (March 1996) 241–243

5. Schneier, B., Kelsey, J.: Secure Audit Logs to Support Computer Forensics. ACM
Transaction on Information and System Security 2(2) (May 1999) 159–176

6. Committee on National Security Systems: National Information Assurance (IA) –
Glossary. Available at: http://www.cnss.gov/Assets/pdf/cnssi_4009.pdf (2010)

7. Basel Committee on Banking Supervision: Basel II: International Con-
vergence of Capital Measurement and Capital Standards. Available at:
http://www.bis.org/publ/bcbs107.pdf (2004)

8. United States Congress: Sarbanes-Oxley Act of 2002. Available at:
http://www.sec.gov/about/laws/soa2002.pdf (2002)

9. Object Management Group: Business Process Model and Notation (BPMN) –
Version 2.0. Available at: http://www.omg.org/spec/BPMN/2.0/PDF (2011)

10. Object Management Group: OMG Unified Modeling Language
(OMG UML), Superstructure – Version 2.4.1. Available at:
http://www.omg.org/spec/UML/2.4.1/Superstructure/PDF/ (2011)

UML Extension for Audit Modeling 13

11. Selic, B.: The Pragmatics of Model-driven Development. IEEE Software 20(5)
(September 2003) 19–25

12. Stahl, T., Völter, M.: Model-Driven Software Development. John Wiley & Sons
(2006)

13. Basin, D., Doser, J., Lodderstedt, T.: Model Driven Security: From UML Models
to Access Control Infrastructures. ACM Transactions on Software Engineering and
Methodology (TOSEM) 15(1) (January 2006)

14. Hoisl, B., Sobernig, S.: Integrity and Confidentiality Annotations for Service Inter-
faces in SoaML Models. In: Proceedings of the International Workshop on Security
Aspects of Process-aware Information Systems (SAPAIS), Vienna, IEEE (2011)

15. Strembeck, M., Mendling, J.: Modeling Process-related RBAC Models with Ex-
tended UML Activity Models. Information and Software Technology (IST) 53(5)
(2010) 456–483

16. Wolter, C., Menzel, M., Schaad, A., Miseldine, P., Meinel, C.: Model-driven busi-
ness process security requirement specification. Journal of Systems Architecture
55(4) (April 2009)

17. Deursen, A.V., Klint, P.: Little Languages: little Maintenance? Journal of Software
Maintenance: Research and Practice 10(2) (March 1998) 75–92

18. Mernik, M., Heering, J., Sloane, A.: When and How to Develop Domain-specific
Languages. ACM Computing Surveys (CSUR) 37(4) (December 2005) 316–344

19. Strembeck, M., Zdun, U.: An Approach for the Systematic Development of
Domain-Specific Languages. Software: Practice and Experience (SP&E) 39(15)
(October 2009)

20. Cannon, J.C., Byers, M.: Compliance Deconstructed. ACM Queue 4(7) (September
2006)

21. Damianides, M.: How does SOX change IT? Journal of Corporate Accounting &
Finance 15(6) (2004)

22. Mishra, S., Weistroffer, H.R.: A Framework for Integrating Sarbanes-Oxley Com-
pliance into the Systems Development Process. Communications of the Association
for Information Systems (CAIS) 20(1) (2007)

23. Hohpe, G., Woolf, B.: Enterprise Integration Patterns: Designing, Building, and
Deploying Messaging Solutions. Addison-Wesley, Boston, Massachusetts, USA
(2004)

24. Mühl, G., Fiege, L., Pietzuch, P.: Distributed Event-Based Systems. Springer,
Berlin Heidelberg (2006)

25. Mens, T., Gorp, P.V.: A Taxonomy of Model Transformation. Electronic Notes in
Theoretical Computer Science 152 (2006) 125–142

26. Sendall, S., Kozaczynski, W.: Model Transformation: The Heart and Soul of Model-
Driven Software Development. IEEE Software 20(5) (2003)

27. Zdun, U., Strembeck, M.: Modeling Composition in Dynamic Programming Envi-
ronments with Model Transformations. In: Proc. of the 5th International Sympo-
sium on Software Composition, Lecture Notes in Computer Science (LNCS), Vol.
4089, Springer-Verlag (March 2006)

28. Axenath, B., Kindler, E., Rubin, V.: AMFIBIA: A Meta-Model for the Integra-
tion of Business Process Modelling Aspects. In Leymann, F., Reisig, W., Thatte,
S.R., van der Aalst, W., eds.: The Role of Business Processes in Service Oriented
Architectures. Number 06291 in Dagstuhl Seminar Proceedings (2006)

29. Zdun, U.: Patterns of Component and Language Integration. In: D. Manolescu,
M. Voelter, J. Noble (editors): Pattern Languages of Program Design 5. (2006)

30. Object Management Group: OMG Meta Object Facility (MOF) Core Specification
– Version 2.4.1. Available at: http://www.omg.org/spec/MOF/2.4.1/PDF/ (2011)

14 UML Extension for Audit Modeling

31. Gamma, E., Helm, R., Johnson, R., Vlissides, J.: Design Patterns: Elements
of Reusable Object-Oriented Software. Addison-Wesley, Reading, Massachusetts,
USA (1995)

32. Object Management Group: OMG Object Constraint Language (OCL) – Version
2.3.1. Available at: http://www.omg.org/spec/OCL/2.3.1/PDF (2012)

33. Object Management Group: OMG Unified Modeling Language
(OMG UML), Infrastructure – Version 2.4.1. Available at:
http://www.omg.org/spec/UML/2.4.1/Infrastructure/PDF/ (2011)

34. Jürjens, J.: Modelling Audit Security for Smart-Card Payment Schemes with UML-
SEC. In: Proceedings of the 16th International Conference on Information Security,
Paris, France (2001)

35. Rodríguez, A., Fernández-Medina, E., Trujillo, J., Piattini, M.: Secure Business
Process Model Specification through a UML 2.0 Activity Diagram Profile. Decision
Support Systems 51(3) (June 2011) 446–465

36. Hoisl, B., Strembeck, M.: Modeling Support for Confidentiality and Integrity of
Object Flows in Activity Models. In: Proc. of the 14th International Conference on
Business Information Systems (BIS), Berlin, Springer – Lecture Notes in Business
Information Processing (LNBIP), Vol. 87 (June 2011) 278–289

37. Schefer, S., Strembeck, M.: Modeling Process-Related Duties with Extended UML
Activity and Interaction Diagrams. In: Proc. of the International Workshop on
Flexible Workflows in Distributed Systems, Electronic Communications of the
EASST. (March 2011)

38. Schefer, S., Strembeck, M.: Modeling Support for Delegating Roles, Tasks, and
Duties in a Process-Related RBAC Context. In: Proc. of the International Work-
shop on Information Systems Security Engineering (WISSE), Springer – Lecture
Notes in Business Information Processing (LNBIP), Vol. 83 (June 2011)

39. Schefer-Wenzl, S., Strembeck, M.: Modeling Context-Aware RBAC Models for
Business Processes in Ubiquitous Computing Environments. In: Proc. of the 3rd
International Conference on Mobile, Ubiquitous and Intelligent Computing (MU-
SIC). (June 2012)

40. Fernández-Medina, E., Trujillo, J., Villarroel, R., Piattini, M.: Access Control and
Audit Model for the Multidimensional Modeling of Data Warehouses. Decision
Support Systems 42(3) (December 2006) 1270–1289

41. Memon, M., Hafner, M., Breu, R.: SECTISSIMO: A Platform-independent Frame-
work for Security Services. In: Proceedings of the Modeling Security Workshop in
Association with MODELS 2008, Toulouse, France (2008)

U
M

L
E

x
te

n
si
o
n

fo
r

A
u
d
it

M
o
d
el

in
g

1
5

A
T
e
x
tu

a
l
S
y
n
ta

x
fo

r
th

e
S
e
c
u
r
i
t
y
A
u
d
i
t

P
a
c
k
a
g
e

<SecurityAudit> ::= (<AuditEventSource> | <AuditRule>)*
<AuditEventSource> ::= ’<<AuditEventSource>>’ UML::Element.name ’:’ <Trigger> ’->’ <Publication> <AuditRule>
<Trigger> ::= UML::Trigger.name
<Publication> ::= UML::Signal.name | <Signal>
<Signal> ::= UML::Signal.name ’{’ UML::Signal.attribute.name [’,’ UML::Signal.attribute.name]* ’}’
<AuditRule> ::= ’<AR>’ UML::AuditRule.name (’->’ <Subscription> ’: {’ <Action> [’,’ <Action>]* ’}’ <Condition>+)?
<Subscription> ::= <Publication>
<Action> ::= UML::BehavioralFeature.name
<Condition> ::= ’<C>’ (UML::Condition.name | ’[’ <Operand> ’,’ <Operator> ’,’ <Operand> ’]’)
<Operand> ::= <Property> | <Constant>
<Property> ::= UML::Property.name
<Constant> ::= UML::LiteralSpecification
<Operator> ::= UML::OperatorKind::EnumerationLiteral

	A UML Extension for the Model-driven Specification of Audit Rules
	Bernhard Hoisl and Mark Strembeck
	Introduction
	Motivation and Approach Synopsis
	UML Audit Extension
	Metamodel Overview
	Metamodel Elements' Syntax and Semantics

	Audit Modeling Perspectives
	Related Work
	Conclusion
	References
	Textual Syntax for the SecurityAudit Package

