
Detecting and Resolving Conflicts of

Mutual-Exclusion and Binding Constraints

in a Business Process Context

Sigrid Schefer1, Mark Strembeck1, Jan Mendling2, and Anne Baumgrass1

1 Institute for Information Systems, New Media Lab
Vienna University of Economics and Business (WU Vienna), Austria

{firstname.lastname}@wu.ac.at
2 Institute for Information Business

Vienna University of Economics and Business (WU Vienna), Austria
jan.mendling@wu.ac.at

Abstract. Mutual exclusion and binding constraints are important means
to define which combinations of subjects and roles can be assigned to
the tasks that are included in a business process. Due to the combinato-
rial complexity of potential role-to-subject and task-to-role assignments,
there is a strong need to systematically check the consistency of a given
set of constraints. In this paper, we discuss the detection of consistency
conflicts and provide resolution strategies for the corresponding conflicts.

Keywords: business processes, information systems, mutual exclusion,
separation of duty, binding of duty

1 Introduction

In recent years, business processes are increasingly designed with security and
compliance considerations in mind (see, e.g., [3, 16, 19]). For example, the def-
inition of process-related security properties is important if the simultaneous
assignment of decision and control tasks to the same subject would result in a
conflict of interest. In this context, process-related access control mechanisms are
typically used to specify authorization constraints, such as Separation of duty
(SOD) and Binding of Duty (BOD), to regulate which subject is allowed (or
obliged) to execute a particular task (see, e.g., [4, 5, 14–17, 19]).

In a workflow environment, SOD constraints enforce conflict of interest poli-
cies by defining that two or more tasks must be performed by different indi-
viduals. Conflict of interest arises as a result of the simultaneous assignment of
two mutual exclusive entities (e.g. permissions or tasks) to the same subject.
Tasks can be defined as statically mutual exclusive (on the process type level)
or dynamically mutual exclusive (on the process instance level). Thus, a static
mutual exclusion (SME) constraint is global with respect to all process instances
in an information system. Therefore, two SME tasks can never be assigned to
the same subject or role. On the other hand, two dynamically mutual exclusive

ms
Textfeld
 This is an extended version of the paper published as: S. Schefer, M. Strembeck, J. Mendling, A. Baumgrass: Detecting and Resolving Conflicts of Mutual-Exclusion and Binding Constraints in a Business Process Context, In: Proc. of the 19th International Conference on Cooperative Information Systems (CoopIS), Lecture Notes in Computer Science (LNCS), Vol. xx, Springer Verlag, October 2011, Crete, Greece In the extended version, we reinserted the text that we had to cut from the paper due to the page restrictions for the conference version.

2 Sigrid Schefer, Mark Strembeck, Jan Mendling, and Anne Baumgrass

(DME) tasks can be assigned to the same subject but must not be executed by
the same subject in the same process instance.

In contrast, BOD constraints specify that bound tasks must always be per-
formed by the same subject or role (see, e.g., [14–17]). This may be reasonable,
for example, because of specific confidential knowledge the subject acquires while
performing the first of two or more bound tasks. BOD can be subdivided into
subject-based and role-based constraints (see, e.g., [14, 15]). A subject-based BOD
constraint defines that the same individual who performed the first task must
also perform the bound task(s). On the other hand, a role-based BOD constraint
defines that bound tasks must be performed by members of the same role, but
not necessarily by the same individual. Throughout the paper, we will use the
terms subject-binding (SB) and role-binding (RB) as synonyms for subject-based
BOD constraints and role-based BOD constraints, respectively.

In recent years, role-based access control (RBAC) [7, 11] has developed into
a de facto standard for access control. A specific problem in the area of process-
related RBAC is the immanent complexity of interrelated mutual-exclusion and
binding constraints. Thus, when defining process-related mutual-exclusion or
binding constraints, design-time and runtime checks need to ensure the consis-
tency of the corresponding RBAC model. In particular, at design-time conflicts
may result from inconsistent constraints or assignment relations. At runtime
conflicts may result from invalid task-to-subject allocations (see also [14]).

In this paper, we take the conflicts identified in [14] as a starting point.
We adapt the algorithms from [14] to detect and name corresponding conflicts,
and discuss resolution strategies for these conflicts1. In particular, we consider
conflicts at the level of design-time constraint definition, design-time assignment
relations, and runtime task allocation.

The remainder of this paper is structured as follows. Section 2 gives a mo-
tivating example for detecting conflicts that result from mutual-exclusion and
binding constraints in a business process context. It also gives an overview of
process-related RBAC models and the requirements for design-time and runtime
consistency of these models. Sections 3, 4, and 5 present algorithms to detect
potential conflicts of mutual-exclusion and binding constraints. Furthermore, we
provide resolution strategies that exemplary show how these conflicts can be re-
solved to ensure the consistency of a process-related RBAC model. Subsequently,
Section 6 discusses related work and Section 7 concludes the paper.

1 Most of the resolution strategies discussed in this paper have an impact on the con-
figuration of the respective process-related RBAC model. For example, a resolution
strategy may require a redefinition of the relations between certain model elements,
or it may even require the deletion of model elements. Therefore, only the corre-
sponding domain experts (such as the business process experts or security engineers
of the corresponding organization) can decide which resolution strategy is actually
applicable in a particular organizational context.

Resolving Conflicts of Mutual-Exclusion and Binding Constraints 3

2 Background

2.1 A Motivating Example

Figure 1 shows a process for reading radiological images modeled as a Business-
Activity. The BusinessActivities package provides a UML extension that enables
the definition of process-related RBAC models, including mutual-exclusion and
binding constraints (see [15]). The process from Figure 1 starts by conducting
the "Radiological examination" task (t1) to produce radiological images. Next,
the "Image reading" task (t2) is performed. If the image quality is appropriate,
the "Write report" task (t3) is executed to write a radiological report for the
images. Finally, the report has to be validated (t4). In case the report includes
errors or is incomplete, it must be revised before it is resubmitted for validation.

Radiological
examination (t1)

Image reading (t2)
B

SBind: Write report

[else] [else]

Images

Image reading process BA

B Images
[Images Ok]

Write report (t3)
B

DME: Report validation

SBind: Image reading

Report validation (t4)
B

DME: Write reportReport

Report

[Report Ok]

Fig. 1: Example image reading process including ME and binding constraints [15]

In the example, we define a subject-binding between the tasks t2 and t3 to
ensure that the same radiologist who assessed the images in the "Image reading"
task also writes the corresponding radiological report. This subject-binding is
indicated via SBind entries in the corresponding task symbols (see Figure 1).
Furthermore, we define a dynamic mutual exclusion (DME) constraint on the
tasks t3 and t4 to enforce the four-eyes-principle on radiological reports. DME
tasks can be assigned to the same subject but must not be allocated to the same
individual in the same process instance (see, e.g., [4, 14, 16]). Thus, for each
radiological report the "Write report" and the "Report validation" tasks must
always be conducted by two different individuals. This is an essential quality
and safety measure in hospitals to guard against mistakes and malpractice.

In the context of process-related mutual-exclusion and binding constraints,
conflicts may occur that would result in inconsistent RBAC configurations. Fig-
ure 2a shows the roles and subjects assigned to the tasks of the image reading
process from Figure 1. Members of the radiologist role rx are permitted to per-
form the tasks t1 ("Radiological examination"), t2 ("Image reading"), and t3

("Write report"). Task t4 ("Report validation") can be performed by subjects
being assigned to the senior radiologist role ry. In this example, a conflict arises
if we would try to define an additional static mutual exclusion (SME) constraint
on the subject-bound tasks t2 and t3 (see Figure 2b). The conflict arises be-
cause a SB constraint defines that two bound tasks must be performed by the
same individual, whereas a SME constraint defines that two SME tasks must
be performed by different individuals. Obviously, it is impossible to satisfy both

4 Sigrid Schefer, Mark Strembeck, Jan Mendling, and Anne Baumgrass

constraints at the same time. In Figure 2c, another conflict would occur if we
try to define a new SME constraint on t1 and t2. This conflict arises because
SME tasks must not be assigned to the same role or subject. Otherwise, each
member of rx would subsequently be permitted to perform two SME tasks.

SB

t1

t4ry

rx t2

t3
DME

s2

s1

No conflict Conflict

a) b)

SB,
SME

t1

t4ry

rx t2

t3

DME

s2

s1

Conflict

c)

SB

t1

t4ry

rx t2

t3
DME

s2

s1

SME

Fig. 2: Example conflicts resulting from mutual-exclusion and binding constraints

2.2 Process-Related RBAC Models

The algorithms and resolution strategies presented in Sections 3, 4, and 5 are
based on the formal definitions for process-related RBAC models from [14, 15].
In this paper, however, we do not repeat the complete list of definitions, but give
only a brief overview of the definitions we use in the subsequent sections – for
details see [14, 15].

Definition 1 (Process-related RBAC Model). A Process-related RBAC
Model P RM = (E, Q, D) where E = S ∪ R ∪ PT ∪ PI ∪ TT ∪ TI refers to
pairwise disjoint sets of the model, Q = rh ∪ rsa ∪ tra ∪ es ∪ er ∪ ar ∪ pi ∪ ti to
mappings that establish relationships, and D = sb ∪ rb ∪ sme ∪ dme to binding
and mutual-exclusion constraints.

An element of S is called Subject. An element of R is called Role. An element
of PT is called Process Type. An element of PI is called Process Instance. An
element of TT is called Task Type. An element of TI is called Task Instance.

We allow the definition of subject-binding (sb), role-binding (rb), static mu-
tual exclusion (sme), and dynamic mutual exclusion (dme) constraints on task
types. Roles can be arranged in a role-hierarchy (rh), where more powerful
senior-roles inherit the permissions from their junior-roles. The transitive clo-
sure rh∗ defines the inheritance in the role-hierarchy such that rh∗(r) returns
all direct and transitive junior-roles of a role r. The task-to-role assignment re-
lation (tra) defines which tasks can be performed by the members of a certain
role. Thereby, tra specifies the permissions of a role. The task-ownership map-
ping (town) allows to determine which tasks are assigned to a particular role –
including the tasks inherited from junior-roles. The inverse mapping (town−1)
returns the set of roles a task is assigned to. The role-to-subject assignment rela-
tion (rsa) defines which roles are assigned to particular users. The role-ownership

Resolving Conflicts of Mutual-Exclusion and Binding Constraints 5

mapping (rown) returns all roles assigned to a certain subject (including roles
that are inherited via a role-hierarchy). The inverse mapping (rown−1) allows
to determine all subjects assigned to a particular role. Each subject can acti-
vate the roles that are assigned to this subject, and the active-role mapping (ar)
returns the role that is currently activated. For each task instance we have an
executing-subject (es) and an executing-role (er).

Definition 2 provides rules for the static correctness of process-related RBAC
models to ensure the design-time consistency of the included elements and rela-
tionships.

Definition 2. Let P RM = (E, Q, D) be a Process-related RBAC Model. P RM
is said to be statically correct if the following requirements hold:

1. Tasks cannot be mutual exclusive to themselves:
∀t2 ∈ sme(t1) : t1 6= t2 and ∀t2 ∈ dme(t1) : t1 6= t2

2. Mutuality of mutual-exclusion constraints:
∀t2 ∈ sme(t1) : t1 ∈ sme(t2) and ∀t2 ∈ dme(t1) : t1 ∈ dme(t2)

3. Tasks cannot be bound to themselves:
∀t2 ∈ sb(t1) : t1 6= t2 and ∀t2 ∈ rb(t1) : t1 6= t2

4. Mutuality of binding constraints:
∀t2 ∈ sb(t1) : t1 ∈ sb(t2) and ∀t2 ∈ rb(t1) : t1 ∈ rb(t2)

5. Tasks are either statically or dynamically mutual exclusive:
∀t2 ∈ sme(t1) : t2 6∈ dme(t1)

6. Either SME constraint or binding constraint:
∀t2 ∈ sme(t1) : t2 6∈ sb(t1) ∧ t2 6∈ rb(t1)

7. Either DME constraint or subject-binding constraint:
∀t2 ∈ dme(t1) : t2 6∈ sb(t1)

8. Consistency of task-ownership and SME:
∀t2 ∈ sme(t1) : town−1(t2) ∩ town−1(t1) = ∅

9. Consistency of role-ownership and SME: ∀t2 ∈ sme(t1), r2 ∈ town−1(t2), r1 ∈
town−1(t1) : rown−1(r2) ∩ rown−1(r1) = ∅

Definition 3 provides the rules for dynamic correctness of a process-related
RBAC model, i.e. the rules that can only be checked in the context of runtime
process instances.

Definition 3. Let P RM = (E, Q, D) be a Process-related RBAC Model and
PI its set of process instances. P RM is said to be dynamically correct if the
following requirements hold:

1. In the same process instance, the executing subjects of SME tasks must be
different:
∀t2 ∈ sme(t1), pi ∈ PI : ∀tx ∈ ti(t2, pi), ty ∈ ti(t1, pi) : es(tx) ∩ es(ty) = ∅

2. In the same process instance, the executing subjects of DME tasks must be
different:
∀t2 ∈ dme(t1), pi ∈ PI : ∀tx ∈ ti(t2, pi), ty ∈ ti(t1, pi) : es(tx) ∩ es(ty) = ∅

3. In the same process instance, role-bound tasks must have the same executing-
role: ∀t2 ∈ rb(t1), pi ∈ PI : ∀tx ∈ ti(t2, pi), ty ∈ ti(t1, pi) : er(tx) = er(ty)

4. In the same process instance, subject-bound tasks must have the same executing-
subject: ∀t2 ∈ sb(t1), pi ∈ PI : ∀tx ∈ ti(t2, pi), ty ∈ ti(t1, pi) : es(tx) = es(ty)

6 Sigrid Schefer, Mark Strembeck, Jan Mendling, and Anne Baumgrass

3 Constraint Definition Conflicts

When defining SME, DME, RB, or SB constraints at design-time, a number
of conflicts may occur that could lead to inconsistencies in the corresponding
process-related RBAC model. Below, we first present algorithms to detect these
constraint definition conflicts. If a conflict is detected, the algorithms return
the name of the respective conflict. In the following subsections, we provide
descriptions for each conflict type and present different resolution strategies.

3.1 Algorithms for Detecting Constraint Definition Conflicts

Algorithm 1 Check if the definition of a new SME constraint is allowed.

Name: isSMEConstraintAllowed
Input: task1, task2 ∈ TT

1: if task1 == task2 then return selfConstraintConflict

2: if task1 ∈ dme(task2) then return directDMEConflict

3: if task1 ∈ allRoleBindings(task2) then return RBConflict

4: if task1 ∈ allSubjectBindings(task2) then return SBConflict

5: if ∃ r ∈ R | r ∈ town−1(task1) ∧ r ∈ town−1(task2)
6: then return taskOwnershipConflict

7: if ∃ s ∈ S | r1 ∈ rown(s) ∧ r2 ∈ rown(s) ∧
8: r1 ∈ town−1(task1) ∧ r2 ∈ town−1(task2)
9: then return roleOwnershipConflict

10: return true

Algorithm 2 Check if the definition of a new DME constraint is allowed.

Name: isDMEConstraintAllowed
Input: task1, task2 ∈ TT

1: if task1 == task2 then return selfConstraintConflict

2: if task1 ∈ sme(task2) then return directSMEConflict

3: if task1 ∈ allSubjectBindings(task2) then return SBConflict

4: return true

Algorithm 3 Check if the definition of a new RB constraint is allowed.

Name: isRBConstraintAllowed
Input: task1, task2 ∈ TT

1: if task1 == task2 then return selfConstraintConflict

2: if task1 ∈ sme(task2) then return directSMEConflict

3: if ∃taskx ∈ sme(task1) | taskx ∈ allRoleBindings(task2)
4: then return transitiveSMEConflict

5: if ∃taskx ∈ sme(task2) | taskx ∈ allRoleBindings(task1)
6: then return transitiveSMEConflict

7: return true

Resolving Conflicts of Mutual-Exclusion and Binding Constraints 7

Algorithm 4 Check if the definition of a new SB constraint is allowed.

Name: isSBConstraintAllowed
Input: task1, task2 ∈ TT

1: if task1 == task2 then return selfConstraintConflict

2: if task1 ∈ dme(task2) then return directDMEConflict

3: if task1 ∈ sme(task2) then return directSMEConflict

4: if ∃taskx ∈ sme(task1) | taskx ∈ allSubjectBindings(task2)
5: then return transitiveSMEConflict

6: if ∃taskx ∈ dme(task1) | taskx ∈ allSubjectBindings(task2)
7: then return transitiveDMEConflict

8: if ∃taskx ∈ sme(task2) | taskx ∈ allSubjectBindings(task1)
9: then return transitiveSMEConflict

10: if ∃taskx ∈ dme(task2) | taskx ∈ allSubjectBindings(task1)
11: then return transitiveDMEConflict

12: return true

3.2 Resolving Constraint Definition Conflicts

Self-constraint conflict: A self-constraint conflict occurs if we try to define
tasks as mutual exclusive or bound to themselves (see Figure 3a and Algo-
rithms 1-4). However, because mutual-exclusion as well as binding constraints
must be defined on two different task types, such a “self-exclusion” or “self-
binding” would violate the consistency requirements defined in Def. 2.1 and
Def 2.3.

Resolution to self-constraint conflicts: In order to prevent inconsisten-
cies resulting from a self-constraint conflict, mutual-exclusion and binding con-
straints need always be defined on two different task types (see Resolution 1 and
Figure 3a).

Resolution 1

t1 tx

Before After

SME / RB /

DME / SB

Self-constraint conflict

a)

Before

Direct SME conflict Resolution 2

t1 t2

After

DME / RB / SB

b)

t2t1
SME

DME / RB / SB

Resolution 3

After

t2t1
DME

RB

Before

Direct DME conflict Resolution 4

t1 t2

After

SME / SB

c)

t2t1
DME

SME / SB

t1

SME /

DME

RB / SB /

Fig. 3: Resolving self-constraint (a), SME (b), or DME (c) conflicts

Direct SME conflict: A direct SME conflict occurs if one tries to define a
new DME, RB, or SB constraint on two task types which are already defined as

8 Sigrid Schefer, Mark Strembeck, Jan Mendling, and Anne Baumgrass

being statically mutual exclusive (see Figure 3b). However, as defined in Def. 2.5,
two tasks can either be statically or dynamically mutual exclusive (see also [14,
15]). Furthermore, if two tasks are defined as statically mutual exclusive, it is not
possible to define a binding constraint between the same tasks (see Def. 2.6).
This is because a binding constraint defines that (in the context of the same
process instance) the instances of two bound task types must be performed by
the same subject, respectively the same role, whereas a SME constraint defines
that the instances of two SME task types must not be performed by the same
subject, respectively the same role. It is not possible to satisfy both constraints
at the same time.

Resolutions to direct SME conflicts: Figure 3b shows two resolutions to
prevent direct SME conflicts. In particular, this type of conflict can be avoided by
removing the conflicting SME constraint before defining the new DME or binding
constraint (see Resolution 2). If a direct SME conflict occurs when defining a RB
constraint, it can also be resolved by changing the SME into a DME constraint
(see Resolution 3), because DME constraints do not conflict with RB constraints
(see [14, 15]). This is because a DME constraint defines that in the context
of the same process instance a subject must not execute the instances of two
dynamically mutual exclusive task types. A RB constraint only defines that the
instances of two bound task types must be performed by the same role, not by
the same subject. This can be interpreted as a peer review - different subjects
owning the same role (see also Section 2.2).

Direct DME conflict: A direct DME conflict occurs if one tries to define a
new SME or SB constraint on two task types which are already defined as being
dynamically mutual exclusive (see Figure 3c). However, as defined in Def. 2.5,
two tasks can either be statically or dynamically mutual exclusive. Moreover,
DME and SB constraints conflict, because a SB constraint defines that in the
context of the same process instance the instances of two bound task types must
be performed by the same subject (see Def. 3.4). In contrast, a DME constraint
defines that in the same process instance, the instances of two DME task types
must not be performed by the same subject (see Def. 3.2). Obviously, it is not
possible to fulfill both constraints at the same time (see Def. 2.7).

Resolution to direct DME conflicts: A direct DME conflict can be pre-
vented by removing the conflicting DME constraint before defining the new SME
or SB constraint (see Resolution 4 and Figure 3c).

RB conflict: A RB conflict arises if one tries to define a new SME con-
straint on two role-bound task types (see Figure 4a). In particular, because one
cannot define a SME constraint and a RB constraint on the same task types (see
Def. 2.6), such a configuration would result in a RB conflict.

Resolution to RB conflicts: A RB conflict can be prevented by remov-
ing the conflicting RB constraint before defining the new SME constraint (see
Resolution 5 and Figure 4a).

SB conflict: A SB conflict arises if one tries to define a SME or a DME con-
straint between two subject-bound tasks (see Figure 4b). In particular, because
we cannot define a mutual-exclusion constraint and a SB constraint on the same

Resolving Conflicts of Mutual-Exclusion and Binding Constraints 9

Before

RB conflict Resolution 5

t1 t2

After

SME

a)

t2t1
RB

SME

Before

SB conflict Resolution 6

t1 t2

After

SME / DME

b)

t2t1
SB

SME / DME

Resolution 7

After

t2t1
RB

DME

Fig. 4: Resolving RB conflicts (a) or SB conflicts (b)

task types (see Def. 2.6 and Def. 2.7), such a configuration would result in a SB
conflict.

Resolutions to SB conflicts: A SB conflict can be prevented by removing
the conflicting SB constraint before defining the new mutual-exclusion constraint
(see Resolution 6 and Figure 4b). If a SB conflict occurs when defining a DME
constraint, it can also be avoided by changing the conflicting SB constraint into
a RB constraint (see Resolution 7), because DME and RB do not conflict (see
[14, 15]).

Resolution Strategies for Constraint Definition Conflicts

The following resolution strategies define the conflict resolutions described
above with respect to the formal definitions of process-related RBAC models
(see Section 2.2 and [14, 15]).

Resolution 1 Select two different tasks 2

Input: taski ∈ TT

1: select taskx ∈ T | taski 6= taskx ∧ taskx /∈ sme(taski) ∧ taskx /∈ dme(taski)∧
2: taskx /∈ allRoleBindings(taski) ∧ taskx /∈ allSubjectBindings(taski)

Resolution 2 Remove SME constraint

Input: task1, task2 ∈ TT

1: remove task1 from sme(task2) so that task1 /∈ sme(task2)

Resolution 3 Change SME constraint into DME constraint

Input: task1, task2 ∈ TT

1: remove task1 from sme(task2) so that task1 /∈ sme(task2)
2: and add task1 to dme(task2) so that task1 ∈ dme(task2)

2 Note that this resolution strategy is especially defined with a “self-constraint conflict”
in mind and therefore recommends to find a taskx that does not have a previous
constraint relation to taski. However, depending on the respective organizational
context, and depending on the desired RBAC configuration, it may well be possible
(and sensible) to define more than one constraint relation between two task types. In
principle, each configuration is allowed that does not violate the static and dynamic
consistency of process-related RBAC models (see Section 2.2).

10 Sigrid Schefer, Mark Strembeck, Jan Mendling, and Anne Baumgrass

Resolution 4 Remove DME constraint

Input: task1, task2 ∈ TT

1: remove task1 from dme(task2) so that task1 /∈ dme(task2)

Resolution 5 Remove RB constraint

Input: task1, task2 ∈ TT

1: remove task1 from rb(task2) so that task1 /∈ rb(task2)

Resolution 6 Remove SB constraint

Input: task1, task2 ∈ TT

1: remove task1 from sb(task2) so that task1 /∈ sb(task2)

Resolution 7 Change SB constraint into RB constraint

Input:task1, task2 ∈ TT

1: remove task1 from sb(task2) so that task1 /∈ sb(task2)
2: and add task1 to rb(task2) so that task1 ∈ rb(task2)

3.3 Resolving Ownership Conflicts

Task-ownership conflict: A task-ownership conflict occurs if one tries to define
a SME constraint between two task types that are already assigned to the same
role (see Figure 5a). Because two SME tasks must never be assigned to the same
role (neither directly nor transitively) such a configuration would result in a
task-ownership conflict (see Def. 2.8). Otherwise, each member of the respective
role would subsequently own two SME tasks.

Resolutions to task-ownership conflicts: Figure 5a shows two reso-
lutions to prevent task-ownership conflicts. A task-ownership conflict can be
avoided by revoking one of the tasks from the corresponding role before defining
the new SME constraint (see Resolution 8), or by deleting the conflicting role
before defining the new SME constraint (see Resolution 9). Note that Resolu-
tion 9 will rarely be applicable in real-world scenarios and is thus only presented
for the sake of completeness.

Role-ownership conflict: A role-ownership conflict occurs if one tries to
define a SME constraint on two task types which are (via the subject’s roles)
already assigned to the same subject (see Figure 5b). Because two SME tasks
must never be assigned to the same subject (see Def. 2.9) such a configuration
would result in a role-ownership conflict. Otherwise, the respective subject would
subsequently own two SME tasks.

Resolutions to role-ownership conflicts: A role-ownership conflict as
shown in Figure 5b can be prevented by revoking one of the conflicting task-
to-role assignments before defining the new SME constraint (see Resolution 8),
or by revoking one of the corresponding roles from the subject before defining
the new SME constraint (see Resolution 10). Alternatively, it can be avoided
by removing role r1 or r2 (see Resolution 9) or by removing the subject which

Resolving Conflicts of Mutual-Exclusion and Binding Constraints 11

t2

t1

Before

r
t2

t1

After

r
t2

t1

Resolution 8

SME

Resolution 9

After

SME
a)

t2

t1r1

r2
s

Resolution 10

Before After

t2

t1r1

r2

SME

After

Resolution 11

b)

SME

SME

t2

t1r1

r2
s

SME

Task-ownership conflict

Role-ownership conflict

Fig. 5: Resolving task-ownership (a) and role-ownership (b) conflicts

owns the conflicting roles (see Resolution 11). Again, Resolutions 9 and 11 will
rarely be applicable in real-world scenarios and are only presented for the sake
of completeness.

Resolution Strategies for Ownership Conflicts

The following resolution strategies define the conflict resolutions described
above with respect to the formal definitions of process-related RBAC models
(see Section 2.2 and [14, 15]).

Resolution 8 Remove task-to-role assignment

Input: role ∈ R, task ∈ TT

1: remove role from town−1(task) so that role /∈ town−1(task)

Resolution 9 Remove role

Input: role ∈ R
1: remove role from R so that role /∈ R

Resolution 10 Remove role-to-subject assignment

Input: subject ∈ S, role ∈ R
1: remove role from rown(subject) so that role /∈ rown(subject)

Resolution 11 Remove subject

Input: subject ∈ S
1: remove subject from S so that subject /∈ S

Resolution 12 Remove task

Input: task ∈ TT

1: remove task from TT so that task /∈ TT

12 Sigrid Schefer, Mark Strembeck, Jan Mendling, and Anne Baumgrass

3.4 Resolving Transitive Constraint Conflicts

Transitive SME or DME conflicts arise because of the transitivity of binding
constraints (see Def. 3.3, Def. 3.4, and [14, 15]). Therefore, a conflict may arise
when defining a RB or SB constraint on two tasks t1 and t2 because of pre-
existing mutual-exclusion constraints between one of the tasks t1 or t2 and some
third task t3.3

Transitive SME conflict: Figure 6a shows a transitive SME conflict that
occurs if one tries to define a new role- or subject-binding constraint between two
tasks (t1 and t2 in Figure 6a) that would result in a transitive binding of a third
task (tx in Figure 6a) which is already defined as statically mutual exclusive
to one of the other tasks (see SME constraint between t1 and tx in Figure 6a).
However, because binding constraints define that two task instances must be
executed by the same subject/role (see Def. 3.3 and Def. 3.4), while SME tasks
must not be executed by the same subject (see Def. 3.1) such a configuration
would result in a transitive SME conflict between t1 and tx (see also Def. 2.6).

Resolutions to transitive SME conflicts: Figure 6a shows conflict reso-
lutions for transitive SME conflicts. Such a conflict can be avoided by removing
the SME constraint before defining the new binding constraint (see Resolution
2). If the conflict arises when defining a RB constraint, it can also be prevented
by changing the SME into a DME constraint before defining the new RB con-
straint (see Resolution 3). Moreover, the conflict can be resolved by removing
the pre-existing binding constraint between t2 and tx before defining the new
binding constraint on t1 and t2 (see Resolution 5 for removing RB constraints
and Resolution 6 for removing SB constraints). Alternatively, a transitive SME
conflict can be avoided by removing the task that causes the transitive SME
conflict (see Resolution 12). However, Resolution 12 will rarely be applicable in
practice.

Transitive DME conflict: A transitive DME conflict arises because of the
transitivity of SB constraints. Figure 6b shows a transitive DME conflict that
occurs if one tries to define a new subject-binding between two tasks (t1 and t2

in Figure 6b) that would result in a transitive subject-binding of a third task (tx

in Figure 6b) which is already defined as dynamically mutual exclusive to one of
the other tasks (see DME constraint between t1 and tx in Figure 6b). However,
SB constraints define that two task instances must be executed by the same
subject (see Def. 3.4), while DME constraints define that the corresponding task
instance must not be executed by the same subject (see Def. 3.2). Therefore,
such a configuration would result in a transitive DME conflict between t1 and
tx (see also Def. 2.7).

Resolutions to transitive DME conflicts: Figure 6b shows resolutions
for transitive DME conflicts. Such a conflict can be prevented by removing the
DME constraint before defining the new SB constraint (see Resolution 4), or by

3 In the same way, a conflict may arise when defining a new mutual-exclusion con-
straint on two tasks tx and ty because of a pre-existing binding constraint between
one of the tasks tx or ty and a third task tz. Thus, the resolution strategies discussed
below apply analogously to all similar cases.

Resolving Conflicts of Mutual-Exclusion and Binding Constraints 13

t2t1

Before After

Resolution 2 Resolution 3

After

tx

SME RB/SB

t2t1 tx

RB / SB

t2t1 tx

SME

Resolution 5/6

t2t1 tx

DME

After

Resolution 12

t2t1

After

RB / SB

Transitive SME conflict

RB / SBRB

RB/SB
RB/SB

RB / SB

t2t1

Before After

Resolution 4 Resolution 6

After

tx

DME SB

t2t1 tx

SB

SB

t2t1 tx

DME

SB

Resolution 7

t2t1 tx

DME

SB

After

RB

Resolution 12

t2t1

SB

After

Transitive DME conflict

SB

a)

b)

Fig. 6: Resolving transitive SME (a) and DME (b) conflicts

removing the pre-existing SB constraint between t2 and tx before defining the
new SB constraint (see Resolution 6). It can also be avoided by changing the
existing SB constraint into a RB constraint before defining the new SB constraint
(see Resolution 7), or by removing the conflicting task tx (see Resolution 12).

4 Detecting and Resolving Assignment Conflicts

Assignment conflicts arise at design-time when defining new assignment rela-
tions between roles, subjects, and tasks. The algorithms defined below check
the design-time consistency of a process-related RBAC model when defining a
task-to-role, role-to-role, or role-to-subject assignment relation. If an assignment
conflict is detected, the algorithms return the name of the respective conflict
(see also [14]).

4.1 Algorithms for Detecting Assignment Conflicts

Algorithm 5 Check if it is allowed to assign a particular task type to a partic-
ular role (task-to-role assignment).

Name: isT2RAssignmentAllowed
Input: taskx ∈ TT , roley ∈ R
1: if ∃ tasky ∈ town(roley) | tasky ∈ sme(taskx) then return taskAssignmentConflict

2: if ∃ rolez ∈ allSeniorRoles(roley) | taskz ∈ town(rolez) ∧
3: taskz ∈ sme(taskx) then return taskAssignmentConflict

4: if ∃ s ∈ S | roley ∈ rown(s) ∧ rolez ∈ rown(s) ∧
5: taskz ∈ town(rolez) ∧ taskz ∈ sme(taskx) then return roleAssignmentConflict

6: return true

14 Sigrid Schefer, Mark Strembeck, Jan Mendling, and Anne Baumgrass

Algorithm 6 Check if it is allowed to define a (new) junior-role relation be-
tween two roles (role-to-role assignment).

Name: isR2RAssignmentAllowed
Input: junior, senior ∈ R
1: if junior == senior then return selfInheritanceConflict

2: if senior ∈ rh∗(junior) then return cyclicInheritanceConflict

3: if ∃ taskj ∈ town(junior) ∧ tasks ∈ town(senior) |
4: taskj ∈ sme(tasks) then return taskAssignmentConflict

5: if ∃ rolex ∈ allSeniorRoles(senior) | taskx ∈ town(rolex) ∧
6: taskj ∈ town(junior) ∧ taskx ∈ sme(taskj)
7: then return taskAssignmentConflict

8: if ∃ s ∈ S | senior ∈ rown(s) ∧ rolex ∈ rown(s) ∧
9: taskx ∈ town(rolex) ∧ taskj ∈ town(junior) ∧ taskx ∈ sme(taskj)
10: then return roleAssignmentConflict

11: return true

Algorithm 7 Check if it is allowed to assign a particular role to a particular
subject (role-to-subject assignment).

Name: isR2SAssignmentAllowed
Input: rolex ∈ R, subject ∈ S
1: if ∃ roley ∈ rown(subject) | tasky ∈ town(roley) ∧
2: taskx ∈ town(rolex) ∧ tasky ∈ sme(taskx) then return roleAssignmentConflict

3: return true

4.2 Resolving Assignment Conflicts

Self-inheritance conflict: A self-inheritance conflict may arise when defining
a new inheritance relation between roles. In particular, a role cannot be its own
junior-role (see Figure 7a and [14, 15]).

Resolution to self-inheritance conflicts: This conflict can be resolved
by changing one of the selected roles so that the inheritance relation is defined
between two different roles (see Figure 7a and Resolution 13).

Cyclic inheritance conflict: A cyclic inheritance conflict results from the
definition of a new inheritance relation in a role-hierarchy (also called role-to-role
assignment). In particular, a role-hierarchy must not include a cycle because all
roles within such a cyclic inheritance relation would own the same permissions
which would again render the respective part of the role-hierarchy redundant
(see Figure 7b and [14, 15]).

Resolutions to cyclic inheritance conflicts: This conflict can be resolved
by defining a new inheritance relation between roles which are not already part
of the same role-hierarchy (see Resolution 13). In Figure 7b, Resolution 13 is
applied by defining a new inheritance relation between rx and ry while keeping
the existing inheritance relation between ry and rz. Moreover, the existing in-
heritance relation between ry and rz can be removed before defining the inverse
inheritance relation with rz as junior role of ry (see Resolution 14).

Resolving Conflicts of Mutual-Exclusion and Binding Constraints 15

Task-assignment conflict: A task-assignment conflict may occur if the
definition of a new tra or junior-role relation would result in the assignment of
two SME tasks to the same role (see Def. 2.8). Figure 8a depicts an example
where a role ry owns a task ty which is defined as SME to another task tx. Thus,
assigning tx to ry would result in a task-assignment conflict.

Cyclic inheritance conflict

rz

ry

senior

junior

senior

junior

Resolution 13

rz

ry

senior

junior

rx
senior

junior

Resolution 14

rz

ry

junior

senior

Before After After

ry

Self inheritance conflict

junior

senior

Resolution 13

rz

ry

senior

junior

Before After

a)

b)

Fig. 7: Resolving self-inheritance (a) and cyclic inheritance (b) conflicts

Before

ty

tx

ry
SME

After

ty

tx

ry

Resolution 2

After

Resolution 3

After

ty

txry

Resolution 8

ty

tx

ry
DME

After

Resolution 12

txry

Task-assignment conflict

SME

ty

tzrz

ry

s1

SME

tx

Before

ty

tzrz

ry SME

tx

Resolution 10

ty

tzrz

ry SME

tx

After

Resolution 11

After

Role-assignment conflict

s1

a)

b)

Fig. 8: Resolving task- (a) and role-assignment (b) conflicts

Resolutions to task-assignment conflicts: To avoid the task-assignment
conflict in Figure 8a, the conflicting SME constraint between the two task types
can be removed or changed into a DME constraint (see Resolutions 2 and 3).

16 Sigrid Schefer, Mark Strembeck, Jan Mendling, and Anne Baumgrass

Alternatively, task ty can be revoked from ry, or the conflicting task ty can be
deleted (see Resolutions 8 and 12).

Role-assignment conflict: A role-assignment conflict arises if a new assign-
ment relation would authorize a subject to perform two SME tasks. Figure 8b
shows an example, where an assignment of role ry to subject s1 would result
in a role-assignment conflict because subject s1 would then be authorized to
perform the two SME tasks tz and tx. Thus, such an assignment would violate
the consistency requirement specified in Def. 2.9. Similarly, when defining a new
junior-role or tra relation, we need to check for role-assignment conflicts.

Resolutions to role-assignment conflicts: To avoid a role-assignment
conflict, the same resolutions as for task-assignment conflicts can be applied
(see Resolutions 2, 3, 8, and 12). In addition, Resolution 10 can be applied by
removing the conflicting assignment between rz and s1 (see Figure 8b). Moreover,
the conflict can (theoretically) be resolved by removing the conflicting subject
s1 which is assigned to the two SME tasks (see Resolution 11).

Resolution Strategies for Assignment Conflicts

The following resolution strategies define the conflict resolutions described
above with respect to the formal definitions of process-related RBAC models
(see Section 2.2 and [14, 15]).

Resolution 13 Select two different roles

Input: rolei ∈ R
1: select rolex ∈ R | rolei 6= rolex ∧ rolex /∈ rh∗(rolei) ∧ rolei /∈ rh∗(rolex)

Resolution 14 Remove junior-role relation

Input: roley, rolez ∈ R
1: remove roley from rh∗(rolez) so that roley /∈ rh∗(rolez)

5 Detecting and Resolving Runtime Conflicts

Conflicts may also occur when executing process instances. Thus, runtime con-
flicts arise when actually enforcing constraints. In particular, mutual-exclusion
and binding constraints directly impact the allocation of tasks to subjects. Below
we discuss five potential conflicts when allocating a particular task instance to
a certain subject. These conflicts are illustrated in Figures 9a-e, where conflicts
arise when we try to allocate subject s1 to an instance of the a task type tx (in
Figure 9 instances of tx are labeled as txi).

Algorithm 8 checks the runtime consistency of a process-related RBAC model
when allocating a task instance to a particular subject. If one of the runtime
conflicts shown in Figures 9a-e is detected, the algorithm returns the name of
the respective conflict.

Resolving Conflicts of Mutual-Exclusion and Binding Constraints 17

ty

tzrz

ry

s1 tx

executable task conflict

txirx

executing-subject conflict

s1

s2

executing-role conflict

tyi

txirx

ry

s1

Runtime SB conflict

ty

tzrz

ry

s1

SB

tx

s2

tzrz

rx

s1

DME
tx

Runtime DME conflict

a) b) c)

d) e)

Fig. 9: Runtime conflicts

Algorithm 8 Check if a particular task instance executed during a specific pro-
cess instance can be allocated to a particular subject.

Name: isAllocationAllowed
Input: subject ∈ S, tasktype ∈ TT , processtype ∈ PT ,

processinstance ∈ pi(processtype), taskinstance ∈ ti(tasktype, processinstance)
1: if tasktype /∈ executableT asks(subject) then return executableTaskConflict

2: if es(taskinstance) 6= ∅ then return executingSubjectConflict

3: if er(taskinstance) 6= ∅ ∧ er(taskinstance) 6= ar(subject)
4: then return executingRoleConflict

5: if ∃ typex ∈ allSubjectBindings(tasktype) |
6: typex /∈ executableT asks(subject) then return runtimeSBConflict

7: if ∃ instancey ∈ ti(typey, processinstance) |
8: typey ∈ dme(tasktype) ∧ es(instancey) == subject
9: then return runtimeDMEConflict

10: return true

Executable task conflict: An executable task conflict arises if the selected
subject is not allowed to execute the task type the corresponding task instance
was instantiated from. If subject s1 is not allowed to execute instances of task
tx (see Figure 9a), the respective task instance must not be allocated to s1.

Resolutions to executable task conflicts: An executable task conflict can
be resolved by allocating an executing-subject that actually owns the permission
to perform the respective task (see Resolution 15). Alternatively, one may change
the rsa or the tra relations so that s1 is allowed to execute tx.

Executing-subject conflict: An executing-subject conflict arises if the al-
location is not possible, because the respective task instance already has been
allocated to another subject. For example, in Figure 9b the task instance txi

already has an executing-subject s2 and thus cannot be allocated to s1.
Resolution to executing-subject conflicts: An executing-subject conflict

can only be resolved by first deallocating the executing-subject before the re-

18 Sigrid Schefer, Mark Strembeck, Jan Mendling, and Anne Baumgrass

spective task instance can be reallocated to another subject that is allowed to
perform the respective task (see Resolution 16 and Algorithm 8).

Executing-role conflict: An executing-role conflict visualized in Figure 9c
occurs if a task instance already has an executing-role, but this executing-role
is not the active role of the designated executing-subject.

Resolution to executing-role conflicts: An executing-role conflict can be
resolved by changing the active role of the subject to the executing-role of the
respective task instance (see Resolution 17)4.

Runtime SB conflict: Figure 9d shows an example of a runtime SB conflict
that occurs when we try to allocate s1 to an instance of tx. In particular, we
need to check if some task type tz exists that has a SB relation to tx but can-
not be executed by s1. Such an allocation violates the consistency requirement
specified in Def. 3.4, because subject-bound tasks must have the same executing-
subject. Thus, a subject can only be allocated if it owns the right to perform the
corresponding task type as well as all subject-bound tasks.

Resolutions to runtime SB conflicts: This conflict can be resolved by
removing the SB constraint (see Resolution 6). Moreover, the tra relation for
the subject-bound task or the rsa relation for one of the roles owning this task
can be changed so that the designated executing-subject is allowed to perform
the tasks that are connected via a (transitive) SB constraint. Furthermore, one
of the subject-bound tasks can be removed in order to resolve the SB conflict
(see Resolution 12), or the bound tasks can be allocated to another subject (see
[14]).

Runtime DME conflict: In the example from Figure 9e, a runtime DME
conflict would occur if we try to allocate s1 to an instance of tz and to an
instance of tx in the same process instance. This is because a DME constraint
defines that in the same process instance the instances of two DME task types
must not be performed by the same subject (see Def. 3.2).

Resolutions to runtime DME conflicts: A runtine DME conflict is pre-
vented by either removing the DME constraint, by removing one of the DME
tasks, or by changing the executing-subject (see Resolutions 4, 12, 16 and 15).

Resolution Strategies for Runtime Conflicts

The following resolution strategies define the conflict resolutions presented
above with respect to the formal definitions of process-related RBAC models
(see Section 2.2 and [14, 15]).

Resolution 15 Select a subject that is allowed to perform the respective task

Input: task ∈ TT , role ∈ R
1: select subject ∈ S | role ∈ rown(subject) ∧ task ∈ town(role)

4 In principle, it is also possible to first deallocate the task’s executing-role and then
allocate the subject’s active role. However, this may not be possible because of role-
binding constraints defined for the corresponding task (see also comments regarding
Resolution 16).

Resolving Conflicts of Mutual-Exclusion and Binding Constraints 19

Resolution 16 Deallocate a task instance 5

Input: taski ∈ TI

1: set es(taski) = ∅ and er(taski) = ∅

Resolution 17 Change the executing-subject’s active role to the executing-role
of the respective task6

Input: taski ∈ TI , subject ∈ S | es(taski) == subject
1: if er(taski) 6= ar(subject)then set ar(subject) = er(taski)

6 Related Work

Sloman and Moffett [9, 10, 13] were among the first to analyze and categorize
conflicts between different types of policies. They also presented informal strate-
gies for resolving these conflicts. In [1], Ahn and Sandhu presented the RCL 2000
language for the specification of role-based authorization constraints. They also
show how SOD constraints can be expressed in RCL 2000 and discuss differ-
ent types of conflicts that may result from constraints specified via RCL 2000.
Bertino et al. [3] present a language to express SOD constraints as clauses in logic
programs. Moreover, they present corresponding algorithms that check the con-
sistency of such constraints. Thereby, they ensure that all tasks within a workflow
are performed by predefined users/roles only. In [4], Botha and Eloff present an
approach called conflicting entities administration paradigm. In particular, they
discuss possible conflicts of static and dynamic SOD constraints in a workflow
environment and share a number of lessons learned from the implementation
of a prototype system. Schaad [12] discusses the detection of conflicts between
SOD constraints in a role-based delegation model. Schaad follows a rule-based,
declarative approach using the Prolog language as an executable specification
language.

Wang et al. [18] define algorithms for the detection of conflicts between access
control policies. Similarly, in [2], an approach for the formalization of policy rules
is proposed and algorithms for policy conflict resolutions are derived. Yet, both
approaches do not consider conflicts resulting from SOD or BOD constraints.

5 Before we can actually deallocate a task instance we also have to check the corre-
sponding binding constraints. If binding constraints for the respective task exist, a
deallocation of one task instance may result in a cascading deallocation of bound
task instances. If a subject already executed one of the bound tasks, a dealloca-
tion may even violate the binding constraints. In such a case, the deallocation may
be forbidden or it may require specific “emergency procedures” (for example, this
may result in a more detailed logging to document the constraint violation for a
subsequent security audit).

6 The active-role of a subject sx can only be changed to the executing-role of the
respective task instance ti if sx owns the corresponding role, of course. However,
this must always be the case because otherwise ti could not have been allocated to
sx (see also [14]).

20 Sigrid Schefer, Mark Strembeck, Jan Mendling, and Anne Baumgrass

Tan et al. [16] define a model for constrained workflow systems, including SOD
and BOD constraints. They discuss different issues concerning the consistency
of such constraints and provide a set of formal consistency rules that guarantee
the definition of a sound constrained workflow specification. In [6] Ferraiolo et
al. present RBAC/Web, a model and implementation for RBAC in Web servers.
They also discuss the inheritance and resulting consistency issues of SOD con-
straints in role-hierarchies. Jaeger et al. [8] present a formal model for constraint
conflicts and define properties for resolving these conflicts. They applied metrics
for resolving Biba integrity violations in an SELinux example policy.

7 Conclusion

In this paper, we discussed resolution strategies for conflicts of process-related
mutual-exclusion and binding constraints. Because of the countless configura-
tions that could cause conflicts, we chose to discuss frequently occurring conflict
types which group similar conflicts. In the same way, we described correspond-
ing types of resolution strategies. However, if a certain resolution strategy is
actually applicable to a specific real-world conflict can only be decided by the
corresponding process modeler or security engineer.

Note that in our approach, conflicts are detected and resolved before caus-
ing an inconsistent RBAC configuration. In other words, the formal consistency
requirements for static and dynamic correctness of our process-related RBAC
models must hold at any time. Thereby, they prevent the definition of inconsis-
tent RBAC models. The application of the algorithms and resolution strategies
described in this paper can help process modelers and security engineers to iden-
tify resolution options for design-time and runtime conflicts in process-related
RBAC models.

References

1. G. Ahn and R. Sandhu. Role-based Authorization Constraints Specification. ACM
Transactions on Information and System Security (TISSEC), 3(4), November 2000.

2. J. Baliosian and J. Serrat. Finite State Transducers for Policy Evaluation and
Conflict Resolution. In Proc. of the Fifth IEEE International Workshop on Policies
for Distributed Systems and Networks, June 2004.

3. E. Bertino, E. Ferrari, and V. Atluri. The specification and enforcement of au-
thorization constraints in workflow management systems. ACM Transactions on
Information and System Security (TISSEC), 2(1), 1999.

4. R. A. Botha and J. H. Eloff. Separation of duties for access control enforcement
in workflow environments. IBM Systems Journal, 40(3), 2001.

5. F. Casati, S. Castano, and M. Fugini. Managing Workflow Authorization Con-
straints through Active Database Technology. Information Systems Frontiers, 3(3),
2001.

6. D. Ferraiolo, J. Barkley, and D. Kuhn. A Role-Based Access Control Model and
Reference Implementation within a Corporate Intranet. ACM Transactions on
Information and System Security (TISSEC), 2(1), February 1999.

Resolving Conflicts of Mutual-Exclusion and Binding Constraints 21

7. D. F. Ferraiolo, D. R. Kuhn, and R. Chandramouli. Role-Based Access Control.
Artech House, second edition edition, 2007.

8. T. Jaeger, R. Sailer, and X. Zhang. Resolving constraint conflicts. In Proc. of
the 9th ACM Symposium on Access Control Models and Technologies (SACMAT),
2004.

9. J. D. Moffett and M. S. Sloman. Policy Hierarchies for Distributed Systems Man-
agement. IEEE Journal on Selected Areas in Communications, 11(9), 1993.

10. J. D. Moffett and M. S. Sloman. Policy Conflict Analysis in Distributed System
Management. Journal of Organizational Computing, 4(1), 1994.

11. H. F. Ravi Sandhu, Edward Coyne and C. Youman. Role-based access control
models. IEEE Computer, 29(2), 1996.

12. A. Schaad. Detecting Conflicts in a Role-Based Delegation Model. In Proc. of
the 17th Annual Computer Security Applications Conference (ACSAC), December
2001.

13. M. S. Sloman. Policy Driven Management for Distributed Systems. Journal of
Network and Systems Management, 2(4), 1994.

14. M. Strembeck and J. Mendling. Generic Algorithms for Consistency Checking
of Mutual-Exclusion and Binding Constraints in a Business Process Context. In
Proc. of the 18th International Conference on Cooperative Information Systems
(CoopIS), volume 6426 of Lecture Notes in Computer Science (LNCS). Springer
Verlag, October 2010.

15. M. Strembeck and J. Mendling. Modeling Process-related RBAC Models with
Extended UML Activity Models. Information and Software Technology, 53(5),
2011.

16. K. Tan, J. Crampton, and C. A. Gunter. The Consistency of Task-Based Autho-
rization Constraints in Workflow Systems. In Proc. of the 17th IEEE Workshop
on Computer Security Foundations, June 2004.

17. J. Wainer, P. Barthelmess, P. Barthelmess, and A. Kumar. W-RBAC - A workflow
security model incorporating controlled overriding of constraints. International
Journal of Cooperative Information Systems (IJCIS), 12(4), 2003.

18. H. Wang, L. Sun, and V. Varadharajan. Purpose-based access control policies and
conflicting analysis. In Security and Privacy - Silver Linings in the Cloud, volume
330 of IFIP Advances in Information and Communication Technology. 2010.

19. J. Warner and V. Atluri. Inter-instance authorization constraints for secure work-
flow management. In Proc. of the 11th ACM Symposium on Access Control Models
and Technologies (SACMAT), June 2006.

