
Conflict Checking of Separation of Duty Constraints in RBAC -
Implementation Experiences

Mark Strembeck
Department of Information Systems, New Media Lab

Vienna University of Economics and BA, Austria
mark.strembeck@wu-wien.ac.at

ABSTRACT
Separation of duty constraints define mutual exclusion
relations between two entities (e.g. two permissions).
Thus, a software component that supports the definition
of separation of duty constraints implicitly requires a
means to control their definition and to ensure the con-
sistency of the resulting runtime structures. In this pa-
per, we present our experiences with the implementation
of conflict-checking methods for separation of duty con-
straints in the XORBAC access control service.

KEY WORDS
Role-based Access Control, Separation of Duty

1 Introduction

In access control, separation of duty constraints enforce
conflict of interest policies. Conflict of interest arises as
a result of the simultaneous assignment of two mutual
exclusive permissions or roles to the same subject. Mu-
tual exclusive roles or permissions result from the divi-
sion of powerful rights or responsibilities to prevent fraud
and abuse. An example is the common practice to sepa-
rate the “controller” role and the “chief buyer” role in
medium-sized and large companies. A particular access
control specification (an access control policy rule set and
the corresponding subject-assignment relations) is said to
be safe iff no subject can obtain an “unauthorized” right.
In other words, no conflicting permission can ever be as-
signed to the current permission-set of a particular sub-
ject, neither directly nor via a role. However, since the
verification of the safety property for general access con-
trol models, like role-based access control (RBAC), is not
decidable [4], constraints are an attempt to enforce the
safety property via explicit modeling-level artifacts.

The remainder of this paper is organized as follows.
Section 2 gives a brief overview of role-based access con-
trol and the XORBAC access control component. Subse-
quently, Section 3 describes which checks need to be per-
formed with respect to definition of separation of duty
(SOD) constraints and motivates how SOD constraints
are inherited in a role hierarchy. Section 4 then introduces
the methods that are needed to check SOD constraints in
XORBAC, before we describe the conflict checking meth-
ods for permission-to-role assignment (Section 5), role-
to-subject and permission-to-subject assignment (Section

6), and role-to-role assignment (Section 7). Section 8
concludes the paper.

2 The xoRBAC Component

Access control deals with the elicitation, specification,
maintenance, and enforcement of authorization policies
in software-based systems (see also [5, 11, 12]). In or-
der to allow for an (automated) enforcement of authoriza-
tion policies, the high-level control objectives of a system
need to be mapped to the structures provided by an access
control model. Access control model provide a frame-
work for the definition of authorization policies. The
three most important classes of access control models
are discretionary access control (DAC), mandatory access
control (MAC), and role-based access control (RBAC).

Authorization Policy Management

Subject
Management

Static Constraint Management

Assignment Unit

Perm./Role Assignment User/Role Assignment

Perm./Role Activation

Metadata Service Authentication Component

Decision Component

 xoR
B

A
C

Constraint Evaluation

Environment Mapping

Dynamic Constraint
Management

Role Hierarchy Management

RolesPermissions Subjects

Figure 1. XORBAC: conceptual structure

DAC is sometimes criticized as conceding too many
liberties to the rights-manager, while MAC commonly
is regarded as being too restrictive for most applications
(cf. [6, 11]). RBAC [3] offers a promising alternative.
In recent years RBAC (together with various extensions)
has developed into the de facto standard for access con-
trol in both research and industry. One of the advantages
of RBAC is being a general access control model. This
means that a sophisticated RBAC-service may be config-
ured to enforce many different access control policies, in-
cluding DAC- or MAC-based policies (see [10]). A cen-
tral idea in RBAC is to support constraints on almost all

1

permissions directly assigned to (or activated by)
the same subject cannot be defined as mutual

exclusive.

roles directly assigned to (or activated by) the
same subject cannot be defined as mutual

exclusive.

Subject i

Rx Rz

permissions directly or indirectly (via a
role hierarchy) assigned to (or activated by)

the same subject or role cannot be
defined as mutual exclusive.

Subject i

Px Pz

R1

R4

R2

R3

R5 Px

Pz

roles (or permissions) indirectly (via a
role hierarchy) assigned to (or activated by)

the same subject cannot be defined as
mutual exclusive.

Rx Subject i

R5

R6 R3

R1

R4

Rz

a) b) c)

assignment relation inheritance relation indirect assignment of roles and permissions

Figure 2. Required checks when defining SOD constraints

parts of an RBAC model (e.g. permissions, roles, or as-
signment relations) to achieve high flexibility. Static and
dynamic separation of duty (see [2]) are two of the most
common types of RBAC constraints (see e.g. [1]).

The XORBAC component [7, 8] provides an RBAC
service that can be used on Unix and Windows systems
with applications providing C or Tcl linkage. XORBAC
is implemented with XOTcl [9]. While originally de-
veloped as an RBAC service, XORBAC was extended to
provide a multi-policy access control system which can
enforce RBAC, as well as DAC or MAC based policies
including conditional permissions (see [8]). Figure 1 de-
picts the conceptual structure of XORBAC. The Static
Constraint Management of XORBAC enables the defini-
tion of static separation of duty (SSD) constraints and
cardinalities. The Dynamic Constraint Management al-
lows for the definition of dynamic separation of duty con-
straints as well as the definition of context conditions and
context constraints (see [8]).

3 Separation of Duty Constraints

Mutual exclusion relations are defined via separation of
duty (SOD) constraints. SOD constraints can be subdi-
vided in static separation of duty (SSD) constraints and
dynamic separation of duty (DSD) constraints:

• Static separation of duty constraints specify that two
mutual exclusive roles (or permissions) must never
be assigned to the same subject simultaneously.

• Dynamic separation of duty constraints define that
two mutual exclusive roles (or permissions) must
never be activated by the same subject simultane-
ously. This means that two dynamically mutual ex-
clusive roles may be assigned to the same subject.
The corresponding subject, however, is only allowed
to activate at most one of its dynamically mutual ex-
clusive roles (permissions) at the same time.

Figure 3 depicts the assignment relations between
subject, roles, and permissions as they are defined in

XORBAC. Each of these relations influences, and is it-
self influenced by, the definition of SOD constraints.
The XORBAC API offers methods to define separation of
duty constraints for permissions and roles. Subsequently,
we provide a detailed discussion how and when the
permission-to-role assignment (PRA), the permission-to-
subject assignment (PSA), the role-to-subject assignment
(RSA), and the definition of a role hierarchy (role-to-role
assignment, RRA) influence the definition of SOD con-
straints or are themselves influenced by existing (already
defined) SOD constraints.

*
* *

*0..*0..

* *1.. *

role-to-role assignment
(Role-hierarchy)

permission-to-subject
assignment

permission-to-role
assignment

role-to-subject
assignment Subject PermissionRole

Figure 3. xoRBAC Assignment relations

Figure 2 indicates which checks need to be per-
formed prior to establishing a new SOD constraint. Two
roles (or permissions) that are assigned to the same sub-
ject cannot be defined as statically mutual exclusive,
while two roles (permissions) that are concurrently acti-
vated by the same subject cannot be defined as dynam-
ically mutual exclusive. This equally applies to roles
and permissions that are directly or indirectly (via a role-
hierarchy) assigned to a subject.

At any time, an XORBAC subject possesses a set of
permissions that results from the set union of the permis-
sions which are directly assigned to this subject, the per-
missions it receives from its directly assigned role(s), and
the permissions it receives via the role hierarchy, i.e. the
permissions that are assigned to the junior-roles of its di-
rectly assigned role(s). For example, the roles Rx and
Rz in Figure 2b) cannot be defined as mutual exclusive
since both are assigned to Subjecti. Likewise, the junior-
roles R1 and R5 may neither be defined as mutual exclu-
sive since they are indirectly assigned to Subjecti via the
role-hierarchy. Moreover, it is not sensible to define a role

a) b)

R i

Rk

Rm

R l

Rx

R1

R3

R2

R7R6

R5

Rz

R1

R4

R2

R i

Rk

Rm

R l R3

R j

Px

Pz

R7R6

R5

inheritance/propagation of sod constraintsassignment relation inheritance relation

Figure 4. Inheritance/propagation of SOD constraints in role hierarchies

as mutual exclusive to one of its junior- or senior-roles
(for example the roles Rx and R5 in Figure 2). Sim-
ilarly, defining Px and Pz in Figure 2c) as mutual ex-
clusive would cause a conflict, since R5 simultaneously
possesses Px and Pz. Thus, in the presence of a role hier-
archy SOD constraints are also subject to inheritance (see
e.g. [3]). XORBAC allows to define SOD constraints on
roles and on permissions. Both types of SOD constraints
are inherited in XORBAC role-hierarchies. To avoid in-
consistencies or unreasonable configurations, XORBAC
performs the tests discussed above prior to setting a SOD-
constraint.

Figure 4 shows examples for the inheri-
tance/propagation of SOD constraints in role-hierarchies.
Throughout the remainder of this paper we use red
(filled) circles (for roles) and red (filled) rectangles (for
permissions) to indicate that two roles or permissions
are defined as mutual exclusive. In Figure 4a), the roles
Rx and Rz are mutual exclusive. This mutual exclusion
constraint is inherited by the corresponding senior-roles.
Therefore, the SOD constraint between Rx and Rz also
prevents that a senior-role of Rx (for example Rm) and
a senior-role of Rz (for example R6) are simultaneously
assigned to (or activated by) the same subject. In other
words, if a given role Rx is defined as mutual exclusive
to a role Rz, then Rx is also mutual exclusive to all
senior-roles of Rz (and vice versa). This is true since
a subject that is assigned to a senior-role of Rz (e.g. to
role R6) also transitively possesses Rz (and all other
junior-roles of role R6). Thus, two roles may be mutual
exclusive because two of their junior-roles are mutual
exclusive, like Rm and R6 in Figure 4a) for example.

Similar to SOD constraints on roles, SOD con-
straints on permissions are inherited within a role-
hierarchy. In Figure 4 b) the permissions Px and Pz are
defined as mutual exclusive. Thus, Ri and R3 (and all
respective senior-roles) inherit this mutual exclusion con-
straint. In other words, Ri and R3 are mutual exclusive
because they own mutual exclusive permissions. There-
fore, neither Ri and R3 nor two of the corresponding
senior-roles can be simultaneously assigned to the same
subject. If, however, Px or Pz are revoked from Ri resp.
R3, the mutual exclusion constraint between these roles
is automatically erased at the same time.

4 Checking of SOD Constraints

Figure 5 shows four methods that are applied to check
SOD constraints for roles. The isMutualExclusive

method of the Role class expects a mandatory parame-
ter role and checks if the Role object which is calling
this method is mutual exclusive to the Role object identi-
fied through role. In particular, the isMutualExclusive

method calls two other methods to check the current defi-
nitions of SSD and DSD constraints. In the following, we
especially show and describe source code examples for
SSD constraints. This is sufficient since the source code
for SSD and DSD constraints is nearly identical. The
only difference is that, due to their static nature, SSD con-
straints must hold for all sessions simultaneously, while
DSD constraints only apply to the roles and permissions
activated in one particular session.

Role instproc isMutualExclusive {role} {
 if {[[self] isStaticallyMutualExclusive $role]} {return 1}
 if {[[self] isDynamicallyMutualExclusive $role]} {return 1}
 return 0
}
Role instproc isStaticallyMutualExclusive {role} {
 if {[[self] hasSSDRoleConstraintTo $role]} {return 1}
 if {[[self] hasSSDPermConstraintTo $role]} {return 1}
 return 0
}
Role instproc hasSSDPermConstraintTo {role} {
 foreach p [my getAllPerms] {
 foreach op [$role getAllPerms] {
 if {[$p isStaticallyMutualExclusive $op]} {return 1}
 }
 }
 return 0
}
Role instproc hasSSDRoleConstraintTo {role} {
 set mutlExclRoles [my getSSDRoleConstraints]
 if {$mutlExclRoles != ""} {
 if {[lsearch -exact $mutlExclRoles $role] != -1} {return 1}
 }
 return 0
}

Figure 5. Checking of SOD constraints in xoRBAC

The isStaticallyMutualExclusive method re-
ceives a parameter role and checks if the Role object
calling the method has an SSD role constraint or an
SSD permission constraint to the Role object identified
through the role parameter (see Figure 5). In particu-
lar, the hasSSDPermConstraintTo method first fetches a
list of all permissions assigned to the calling Role ob-

R1

R2

R4R3

Pb

Pa

Pc

Pn

Px

PRA allowable ? R1

R2

R4R3

Pb

Pa

Pc

Pn
PRA allowable ?

Pd

Pc

Px
Subject i

a) b)

existing assignment relation requested assignment relation inheritance relation

Figure 6. Example conflicts in PRA

ject (call of [my getAllPerms]) and to the Role object
identified through the role parameter (call of [$role

getAllPerms]). Subsequently, it checks if a permission
in the first list is statically mutual exclusive to a permis-
sion in the second list. The hasSSDRoleConstraintTo

method performs a similar check for mutual exclusive
roles (cf. Figure 5).

Role instproc getSSDRoleConstraints {} {
 set all [concat [my getDirectSSDRoleConstraints]
 [my getTransitiveSSDRoleConstraints]
 [my getInheritedSSDRoleConstraints]]
 return [lsort -unique $all]
}
Role instproc getDirectSSDRoleConstraints {} {
 if {[my exists ssdconstraitns]} {
 return [my set ssdconstraints]
 }
 return ""
}
Each owner of a "senior-role" can activate the corresponding
junior-roles. Thus all senior-roles of a directly mutual
exclusive role are also (transitively) mutual exclusive.
Role instproc getTransitiveSSDRoleConstraints {} {
 set transitive ""
 foreach role [my getDirectSSDRoleConstraints] {
 set transitive [concat $transitive [$role getAllSeniorRoles]]
 }
 return [lsort -unique $transitive]
}
Role instproc getInheritedSSDRoleConstraints {} {
 set inherited ""
 foreach role [my getAllJuniorRoles] {
 set inherited [concat $inherited [$role getSSDRoleConstraints]]
 }
 return [lsort -unique $inherited]
}

Figure 7. The getSSDRoleConstraints method

The getSSDRoleConstraints method returns a list
of all Role objects that are statically mutual exclusive
to the calling Role object (see Figure 7). This list con-
sists of all direct, inherited, and transitive SSD con-
straints. Directly mutual exclusive roles are stored in the
ssdconstraints instance variable of a role object and
can be fetched via the getDirectSSDRoleConstraints

method. The getTransitiveSSDRoleConstraints

method returns the senior-roles of all directly mutual ex-
clusive roles. With respect to the example in Figure 4a), a
method call of Rx getTransitiveSSDRoleConstraints

would result in a list consisting of R5, R6, and
R7. The getInheritedSSDRoleConstraints method
calls the getSSDRoleConstraints method for all junior
roles and returns a list of all inherited SSD role con-
straints. With respect to Figure 4a), the call of R7

getInheritedSSDRoleConstraints would result in a list
consisting of Rk, Rl, Rm, and Rx.

5 SOD Constraint Checking in PRA

Figure 6 shows two typical examples for conflicts aris-
ing in permission-to-role assignment (PRA). Figure 6a)
sketches a situation where a new permission Pn should
be assigned to role R1. However, since Px is mutual ex-
clusive to Pn this assignment operation cannot be per-
mitted. Otherwise R3 would acquire both permissions
Px and Pn, causing a model inconsistency. Thus, the
conflict checking method for PRA relations has to deny
the respective assignment operation. Figure 6b) depicts
a more complex situation where Subjecti owns role R4

and permission Px, while a new permission Pn should be
assigned to R1. Similar to the example in Figure 6a) the
conflict checking method for PRA relations must deny
the respective assignment relation. Otherwise Subjecti

would acquire both permissions Px and Pn (via the role
hierarchy), causing a model inconsistency. Figure 8
shows the PRA conflict checking method of XORBAC.

RightsManager instproc sodPermConstraintAllowPRA {perm role} {
 # first: check if one or more of the permissions that are
 # (directly or through inheritance) assigned to $role are
 # mutual exclusive to $perm
 foreach rp [$role getAllPerms] {
 if {[$perm isMutualExclusive $rp]} {return 0}
 }
 # now: check if one of the senior-roles of $role already owns
 # a permission that is mutual exclusive to $perm. In this case
 # the assignment of $perm to $role must be denied - otherwise
 # the corresponding senior-role would acquire two mutual
 # exclusive permissions
 foreach sr [$role getAllSeniorRoles] {
 foreach srp [$sr getAllPerms] {
 if {[$perm isMutualExclusive $srp]} {return 0}
 }
 }
 # finally: check if one or more of the subjects currently
 # owning $role do already own a permission that is mutual
 # exclusive to $perm.
 set roleowners [[self] getAllSubjectsOwningRole [$role name]]
 foreach subject $roleowners {
 foreach p [$subject getAllPerms] {
 if {[$p isMutualExclusive $perm]} {return 0}
 }
 }
 # if we get here permission-to-role assignment for $perm
 # and $role is allowable
 return 1
}

Figure 8. The PRA conflict checking method

The sodPermConstraintAllowPRA method receives
two mandatory parameters perm and role, identifying a
Permission object and a Role object respectively (see
Figure 8). First, the method checks if a permission as-
signed to role is mutual exclusive to perm. If no mu-

R1

R2

R4R3

Pb

Pc

Pn

Pd

Px

Subject i

PSA allowable ?

R1

R4R3

Pb

Pc

Pd Subject i

Pa
Rn

Rx RSA allowable ?

a) b)

existing assignment relation requested assignment relation inheritance relation

Figure 9. Example conflicts in PSA and RSA

tual exclusion is found, it checks if a senior-role of role
owns a permission which is mutual exclusive to perm. Fi-
nally, the sodPermConstraintAllowPRA method checks
if a subject owning role does also possess a permission
being mutual exclusive to perm. In case none of these
checks discovers a conflict, it is allowed to assign perm

to role (with respect to the separation of duty constraints
being in effect in that very moment).

6 SOD Checking in RSA and PSA

Figure 9 shows typical conflicts arising in permission-to-
subject assignment (PSA) and role-to-subject assignment
(RSA). In Figure 9a), the permissions Px and Pn are mu-
tual exclusive, and Subjecti owns role R4. Starting from
this position, the new permission Pn should be directly
assigned to Subjecti. However, this assignment opera-
tion must be denied by the respective conflict checking
method. Otherwise Subjecti would acquire both permis-
sions Px and Pn, causing a model inconsistency. Figure
9b) depicts a similar situation with two mutual exclusive
roles Rx and Rn whereby the new role Rn should be as-
signed to Subjecti. This assignment operation must also
be denied to prevent Subjecti from obtaining both mu-
tual exclusive roles Rn and Rx

RightsManager instproc sodPermConstraintAllowPSA {perm subject} {
 foreach sp [$subject getAllPerms] {
 if {[$sp isMutualExclusive $perm]} {return 0}
 }
 return 1
}

Figure 10. The PSA conflict checking method

The PSA conflict checking method of XORBAC (see
Figure 10) receives two parameters perm and subject

and checks if one of the permissions assigned to subject

(directly or via roles) is mutual exclusive to perm. Fig-
ure 11 shows the sodConstraintAllowRSA method. This
method first checks if one of the roles currently assigned
to subject is mutual exclusive to role. If no mutual ex-
clusion is found, it checks if one of the permissions that
are directly assigned to subject is mutual exclusive to a
permission the subject would acquire via the Role object
identified through the role parameter.

RightsManager instproc sodConstraintsAllowRSA {role subject} {
 # first: check if a role assigned to $subject (directly
 # or via a role hierarchy) is mutual exclusive to $role
 foreach cr [$subject getAllRoles] {
 if {[$cr isMutualExclusive $role]} {return 0}
 }
 # now: check if one of the permissions that are directly
 # assigned to $subject are mutual exclusive to one of the
 # permissions assigned to $role.
 set directperms [$subject getAllDirectlyAssignedPerms]
 set newperms [$role getAllPerms]
 if {($directperms != "") && ($newperms != "")} {
 foreach dp $directperms {
 foreach np $newperms {
 if {[$dp isMutualExclusive $np]} {return 0}
 }
 }
 }
 # if we get here role-to-subject assignment of $role to
 # $subject is allowable
 return 1
}

Figure 11. The RSA conflict checking method

7 SOD constraint checking in RRA

The specification of a role hierarchy, resp. role-to-role as-
signment (RRA), influences and is influenced by each of
the aforementioned assignment relations. Thus, RRA is
the most complex operation with respect to SOD conflict
checking. When establishing inheritance relations be-
tween two or more roles, SOD conflicts could result from
joining together mutual exclusive permissions or roles
- which may, again, happen in multiple different ways.
Thus, on the source code level, the RRA conflict checking
method of XORBAC sequentially calls the conflict check-
ing methods discussed in the preceding sections.

Figure 12 shows typical conflicts arising in RRA.
The following examples do not distinguish between SSD
role constraints and SSD permission constraints since
their respective effects on role-to-role assignment rela-
tions are quite similar. Figure 12a) depicts two indepen-
dent role hierarchies, and Rx and Rz are mutual exclu-
sive. Now, a new role Rn should unite (parts of) these
two role hierarchies. The conflict checking method has
to decide if the definition of a common senior-role for R3

and R6 is acceptable. In Figure 12a) the definition of a
common senior-role cannot be allowed. Otherwise Rn

(resp. an owner of Rn) would join two mutual exclusive
roles, Rx and Rz. In Figure 12b) two role hierarchies
exist, each containing one of two mutual exclusive roles
Rx and Rz . Role Rn is a junior-role of Rz , and R3 is a

Rn

common senior allowable ?

R1

Rz

R4R3

Rx

R5

R6 senior-role-relation allowable ?

Rn

R5Rz

R1

Rx

R4R3

Subject i

senior-role-relation allowable ?

Rn

R1

R4R3

R6R5

Rx

Rz

a) b) c)

existing assignment relation requested assignment relation inheritance relation

Figure 12. Example conflicts in RRA

senior-role of Rx. Now Rn should be defined as senior-
role of R3. However, the definition of the correspond-
ing inheritance relation must be prevented by the conflict
checking method. Otherwise the resulting role hierarchy
would include an inheritance relation between Rz and
Rx, implying that Rz is mutual exclusive to one of its
junior-roles. In Figure 12c) Subjecti owns the roles Rn

and Rz, while Rx and Rz are mutual exclusive. Now Rn

should be defined as senior-role of R3. With respect to
inter-role inheritance relations this assignment would not
cause a conflict and could be allowed. Nevertheless, ac-
cording to the special case shown in Figure 12c) Rn can-
not be defined as senior-role of R3. Otherwise Subjecti
would acquire both mutual exclusive roles Rx and Rz .

8 Conclusion

In this paper, we discussed the conflict checking of sep-
aration of duty constraints in role-based access con-
trol. We motivated and described the problems aris-
ing from the definition and enforcement of separa-
tion of duty constraints in the presence of role hi-
erarchies and showed how the corresponding conflict
checking methods are affected by these inheritance re-
lations. In particular, we presented the respective con-
flict checking methods as implemented in the XORBAC
software component. XORBAC is publicly available from
http://www.xotcl.org.

References

[1] G.J. Ahn and R. Sandhu. Role-based Authoriza-
tion Constraints Specification. ACM Transactions
on Information and System Security (TISSEC), 3(4),
November 2000.

[2] D.D. Clark and D.R. Wilson. A Comparison of
Commercial and Military Computer Security Poli-
cies. In Proc. of the IEEE Symposium on Security
and Privacy, April 1987.

[3] D.F. Ferraiolo, R. Sandhu, S. Gavrila, D.R. Kuhn,
and R. Chandramouli. Proposed NIST Standard

for Role-Based Access Control. ACM Transactions
on Information and System Security (TISSEC), 4(3),
August 2001.

[4] M.A. Harrison, W.L. Ruzzo, and J.D. Ullman. Pro-
tection in Operating Systems. Communications of
the ACM, 19(8), August 1976.

[5] C.E. Landwehr. Formal Models for Computer Se-
curity. ACM Computing Surveys, 13(3), September
1981.

[6] C.E. Landwehr, C.L. Heitmeyer, and J. McLean.
A Security Model for Military Message Systems.
ACM Transactions on Computer Systems, 9(3), Au-
gust 1984.

[7] G. Neumann and M. Strembeck. Design and Imple-
mentation of a Flexible RBAC-Service in an Object-
Oriented Scripting Language. In Proc. of the 8th
ACM Conference on Computer and Communica-
tions Security (CCS), November 2001.

[8] G. Neumann and M. Strembeck. An Approach
to Engineer and Enforce Context Constraints in an
RBAC Environment. In Proc. of the 8th ACM Sym-
posium on Access Control Models and Technologies
(SACMAT), June 2003.

[9] G. Neumann and U. Zdun. XOTcl, an Object-
Oriented Scripting Language. In Proc. of Tcl2k: 7th
USENIX Tcl/Tk Conference, February 2000.

[10] S. Osborn, R. Sandhu, and Q. Munawer. Configur-
ing Role-Based Access Control to Enforce Manda-
tory and Discretionary Access Control Policies.
ACM Transactions on Information and System Se-
curity (TISSEC), 3(2), February 2000.

[11] P. Samarati and R.S. Sandhu. Access control: Prin-
ciples and practice. IEEE Communications, 32(9),
September 1994.

[12] R.S. Sandhu. Access Control: The Neglected Fron-
tier. In Proc. of the Australasion Conference on In-
formation Security and Privacy, June 1996.

