
Softw Syst Model (2014) 13:513–548
DOI 10.1007/s10270-012-0263-y

THEME SECTION PAPER

Modeling and enforcing secure object flows in process-driven
SOAs: an integrated model-driven approach

Bernhard Hoisl · Stefan Sobernig · Mark Strembeck

Received: 7 October 2011 / Revised: 25 April 2012 / Accepted: 13 July 2012 / Published online: 5 October 2012
© Springer-Verlag 2012

Abstract In this paper, we present an integrated model-
driven approach for the specification and the enforcement of
secure object flows in process-driven service-oriented archi-
tectures (SOA). In this context, a secure object flow ensures
the confidentiality and the integrity of important objects
(such as business contracts or electronic patient records)
that are passed between different participants in SOA-based
business processes. We specify a formal and generic meta-
model for secure object flows that can be used to extend
arbitrary process modeling languages. To demonstrate our
approach, we present a UML extension for secure object
flows. Moreover, we describe how platform-independent
models are mapped to platform-specific software artifacts
via automated model transformations. In addition, we give a
detailed description of how we integrated our approach with
the Eclipse modeling tools.

Communicated by Dr. Juan M. Vara, Mike Papazoglou and Il-Yeol Song.

This work has partly been funded by the Austrian Research Promotion
Agency (FFG) of the Austrian Federal Ministry for Transport,
Innovation and Technology (BMVIT) through the Competence
Centers for Excellent Technologies (COMET K1) initiative and the
FIT-IT program.

B. Hoisl (B) · S. Sobernig (B) · M. Strembeck (B)
New Media Lab, Institute for Information Systems,
Vienna University of Economics and Business (WU Vienna),
Vienna, Austria
e-mail: bernhard.hoisl@wu.ac.at

S. Sobernig
e-mail: stefan.sobernig@wu.ac.at

B. Hoisl · M. Strembeck
Secure Business Austria Research (SBA Research),
Vienna, Austria
e-mail: mark.strembeck@wu.ac.at

Keywords Process modeling · Secure object flows ·
Security engineering · Service-oriented architecture ·
Model-driven development · UML · SoaML · Web services

1 Introduction

1.1 Motivation

Business processes define an organization’s operational
procedures and are performed to reach operational goals.
In recent years, service-oriented architectures (SOA; see,
e.g., [29,62,64]) are increasingly used in the area of busi-
ness process management. In this context, a process-driven
SOA (see, e.g., [96]) is specifically built to support the defi-
nition, the execution, and monitoring of intra-organizational
and cross-organizational business processes. The widespread
use of service-oriented technologies also led to demands for a
thorough integration of security features in the development
process of service-oriented systems.

In particular, IT systems must comply with certain laws
and regulations, such as the Basel II Accord, the International
Financial Reporting Standards (IFRS), or the Sarbanes-
Oxley Act (SOX). For example, adequate support for the
definition and the enforcement of process-related security
policies is one important part of SOX compliance (see, e.g.,
[7,9,43]). Corresponding compliance requirements also arise
from security recommendations and standards, such as the
NIST security handbook [45], the NIST recommended secu-
rity controls [49], or the ISO 27000 standard family [16–18]
(formerly ISO 17799). Legally binding agreements, such as
business contracts, or company-specific (internal) rules and
regulations do also have a direct impact on corresponding
information systems (see, e.g., [87]).

123

514 B. Hoisl et al.

Yet, modeling process-related security properties yields
different types of problems. First, contemporary modeling
languages such as Business Process Model and Notation
(BPMN, [52]), Event-driven Process Chain (EPC, [70]), or
Unified Modeling Language (UML) activity models [59] do
not provide native language constructs to model security
features. A second problem is that the language used for
process modeling is often different from (or not integrated
with) the system modeling language that is used to specify
the corresponding software system. This, again, may result
in problems because different modeling languages provide
different language abstractions that cannot easily be mapped
to each other. In particular, such semantic gaps may involve
significant efforts when conceptual models from different
languages need to be integrated and mapped to a software
platform (see, e.g., [4,34,95]). However, a complete and cor-
rect mapping of process definitions and related security prop-
erties to the corresponding software system is essential in
order to assure consistency between the modeling-level spec-
ifications on the one hand, and the software system that actu-
ally manages corresponding process instances and enforces
the respective security properties, on the other hand.

In this paper, we are especially concerned with the confi-
dentiality and the integrity of object flows in process-driven
systems. Confidentiality ensures that important/classified
objects (such as court records, business contracts, or elec-
tronic patient records) which are used in a business process
can only be read by designated subjects (see, e.g., [8,49]).
Integrity ensures that important objects are in their origi-
nal/intended state, and enables the straightforward detection
of accidental or malicious changes (see, e.g., [45,50,69]).
At the modeling-level, an object flow defines that an object
is passed from one node in a business process model to
another. In a process-driven SOA, the corresponding object
flow is then implemented via different messages that are
passed between different software services. In the remain-
der of this paper, we use the term secure object flow to refer
to an object flow whose confidentiality and/or integrity is
ensured via cryptographic mechanisms.

1.2 Approach synopsis

We use model-driven development (MDD) techniques (see,
e.g., [77,79,82]) to provide an integrated, tool-supported
approach for the definition, for the deployment, and for the
execution of secure object flows in process-driven SOAs.
In the context of MDD, a computation-independent model
(CIM) defines a certain domain (or sub-domain) at a generic
level. The CIM is independent of a particular modeling lan-
guage or technology. A CIM can be used to build a platform-
independent model (PIM) of the corresponding domain.
While it is independent of any platform, and thereby neutral
from an implementation point of view, the PIM is typically

Generic Meta-Model for
Secure Object Flows

WS-SecurityPolicyWSDLWS-BPEL

UML SOA Extensions

UML Extension for
Secure Object Flows

PIM
Platform-independent Model

CIM
Computation-independent Model

PSM
Platform-specific Model

Fig. 1 The secure object flows approach covers the CIM, PIM,
and PSM layers

specified in a particular modeling language (such as BPMN
or UML) and describes the structure of a system, the ele-
ments/results that are produced by a system, or the con-
trol and object flow in a system. Finally, a platform-specific
model (PSM) describes the realization/implementation of a
software system via platform-specific technologies and tools.

Our work on secure object flows presented in this paper
is an integrated approach which covers the CIM, PIM, and
PSM layers (see Fig. 1). At the CIM layer, we provide a
generic metamodel for secure object flows that can be used
to extend arbitrary process modeling languages. At the PIM
layer, we provide a UML extension that allows to model
secure object flows via extended activity diagrams. More-
over, we integrate our extension with the SoaML [58] and
UML4SOA [38] to enable the definition of secure object
flows for process-driven SOAs. At the PSM layer, we gen-
erate WS-BPEL [61], WSDL [92], and WS-SecurityPolicy
[63] specifications from the PIMs.

To enable the specification and the implementation of
secure object flows in process-driven SOAs, we provide
an integrated tool support for our approach based on the
Eclipse IDE [10]. Figure 2 gives an overview of our tool sup-
port on different abstraction levels for the definition and for
the implementation of secure object flows. In particular, we
apply model transformations [42,80] to automatically gen-
erate executable, platform-specific service descriptions that
are deployed in a SOA process engine. At the topmost layer,
our tool supports the definition of security-enhanced Busi-
ness Process models via UML activity diagrams (see Fig. 2).
At the SOA Models level, the service-oriented architecture is
modeled via component structures, service activities, mes-
sage types, as well as service and invocation protocols.
Web Service Artifacts (such as WS-BPEL, WSDL, or WS-
SecurityPolicy specifications) are derived from SOA models
through automatic model transformations. Finally, these arti-
facts are deployed for execution in a process-driven Runtime
Environment.

Our contribution is based on previous publications con-
cerning the modeling of secure object flows [27] and its adop-

123

Modeling and enforcing secure object flows in process-driven SOAs 515

Business Processes

SOA Models

Web Service Artifacts

Runtime Environment

S
pe

ci
fic

at
io

n
T

ra
ns

fo
rm

at
io

n
D

ep
lo

ym
en

t

T
oo

l s
up

po
rt

T
oo

l s
up

po
rt

T
oo

l s
up

po
rt

<?xml version="1.0" encoding="UTF-8">
<definitions

 xmlns="http://sche"
 xmlns:corr="http://www.m"

 xmlns:plnk="http://schem""])
 xmlns:soap="http://sc"

 xmlns:this="http://www.mdd4s"
 xmlns:types="http://www.mdd4"

 xmlns:xs="http://www.w3\"])
 name="applicant"

 targetNamespace="http://ww">
</definitions>

<?xml version="1.0" encoding="UTF-8">
<definitions

 xmlns="http://sche"
 xmlns:corr="http://www.m"

 xmlns:plnk="http://schem""])
 xmlns:soap="http://sc"

 xmlns:this="http://www.mdd4s"
 xmlns:types="http://www.mdd4"

 xmlns:xs="http://www.w3\"])
 name="applicant"

 targetNamespace="http://ww">
</definitions>

<?xml version="1.0" encoding="UTF-8">
<definitions

 xmlns="http://sche"
 xmlns:corr="http://www.m"

 xmlns:plnk="http://schem""])
 xmlns:soap="http://sc"

 xmlns:this="http://www.mdd4s"
 xmlns:types="http://www.mdd4"

 xmlns:xs="http://www.w3\"])
 name="applicant"

 targetNamespace="http://ww">
</definitions>

<?xml version="1.0" encoding="UTF-8">
<definitions

 xmlns="http://sche"
 xmlns:corr="http://www.m"

 xmlns:plnk="http://schem""])
 xmlns:soap="http://sc"

 xmlns:this="http://www.mdd4s"
 xmlns:types="http://www.mdd4"

 xmlns:xs="http://www.w3\"])
 name="applicant"

 targetNamespace="http://ww">
</definitions>

<?xml version="1.0" encoding="UTF-8">
<definitions

 xmlns="http://sche"
 xmlns:corr="http://www.m"

 xmlns:plnk="http://schem""])
 xmlns:soap="http://sc"

 xmlns:this="http://www.mdd4s"
 xmlns:types="http://www.mdd4"

 xmlns:xs="http://www.w3\"])
 name="applicant"

 targetNamespace="http://ww">
</definitions>

<?xml version="1.0" encoding="UTF-8">
<definitions

 xmlns="http://sche"
 xmlns:corr="http://www.m"

 xmlns:plnk="http://schem""])
 xmlns:soap="http://sc"

 xmlns:this="http://www.mdd4s"
 xmlns:types="http://www.mdd4"

 xmlns:xs="http://www.w3\"])
 name="applicant"

 targetNamespace="http://ww">
</definitions>

Fig. 2 Integrated tool support for the definition and implementation of secure object flows

tion for SOA modeling [26]. These previous contributions do,
however, only discuss specific and limited modeling options
at the PIM level. They do neither provide a generic CIM
nor integrated PIM models, or tool support. In this paper,
we extend our previous contributions via MDD techniques
to build an integrated approach (see Figs. 1, 2) for the spec-
ification and for the enforcement of secure object flows in
process-driven SOAs. We provide a thorough description of
the capabilities of our approach to model secure object flows
in SOAs, both at a generic and at the modeling language
level. In addition, we present our tool support (including auto-
mated model transformations) for the specification and for
the deployment of secure object flows.

The remainder of this paper is structured as follows.
Section 2 discusses the general characteristics of secure
object flows and Sect. 3 defines a formal and generic CIM.
Next, we describe our PIM which consists of a generic UML
extension for secure object flows (see Sect. 4) as well as an
integration of secure object flows with SOA-based model-
ing primitives (see Sect. 5). Subsequently, Sect. 6 presents
tool support for our approach and describes automated model

transformations that produce PSM artifacts from correspond-
ing PIMs. Finally, Sect. 7 discusses related work and Sect. 8
concludes the paper.

For the sake of readability, we moved the formal
constraints that define the semantics of our UML extension
to Appendices A and B.

2 Characteristics of secure object flows

Process models typically have (implicit or explicit) token
semantics, and object tokens are passed along object flow
edges. Thus, to ensure the consistency of the correspond-
ing process models, it is especially important to thoroughly
specify the semantics of secure object flows with respect to
control nodes (such as fork, join, decision, and merge nodes).

In general, a secure object flow consists of one or more
arcs in a business process model that transport important,
security-sensitive workflow objects (e.g., electronic patient
records or business contracts) between two secure nodes of
the respective process model. In particular, we have to ensure

123

516 B. Hoisl et al.

(a) (c)(b)

Fig. 3 Secure object flows with decision and merge nodes

that the security attributes determined by the source node of a
secure object flow (such as the confidentiality algorithm used
to encrypt the corresponding objects) are understood by the
respective target node(s). In this context, control nodes (fork,
join, decision, merge) are of special importance because they
influence the semantics of secure object flows. Below, we
give an overview of the impact that different configurations
of control nodes have on the corresponding secure object
nodes. Subsequently, Sect. 3 provides generic definitions that
formally define the semantics of secure object nodes at the
CIM level.

Figure 3 shows examples for the different configuration
options of secure object flows that include decision or merge
nodes.1 In the subsequent figures, a rectangle including a
key symbol represents a secure object node, while a blank
rectangle represents an ordinary object node.

Figure 3a shows a configuration in which a decision node
has an incoming secure object flow and presents the cor-
responding object tokens to multiple outgoing edges. As the
source of the incoming object flow is a secure node both target
nodes must also be secured. Otherwise, a secure object flow
could have a secure node as its source and an ordinary object
node as its target, which would result in an inconsistency
because ordinary object nodes cannot ensure the confiden-
tiality or the integrity of object tokens. Furthermore, target
nodes of a secure object flow must support the same secu-
rity properties as the respective source node. This constraint
ensures that (1) security properties cannot be lost when tra-
versing a decision node and that (2) the target node(s) are able
to check and to ensure the corresponding security properties.

Figure 3b shows a configuration where a merge node
brings together different flows, one of which is a secure object
flow. For such a configuration, we define that if a merge node
receives at least one secure object flow, the target node of this
merge node must also be a secure node. This constraint guar-
antees that each secure object token passing a merge node
can be checked and processed by the corresponding target
node.

1 For the sake of simplicity, Figs. 3 and 4 show only two
incoming/outgoing flows for the respective control nodes. However,
the corresponding discussion equally applies to an arbitrary number of
incoming/outgoing edges, of course.

(a) (c)(b)

Fig. 4 Secure object flows with fork and join nodes

Figure 3c shows a configuration where a merge node
brings together different secure object flows. In this case, the
target must also be a secure node. Furthermore, we define
that all source nodes must provide compatible security prop-
erties, i.e., the nodes must support the same confidential-
ity and/or integrity algorithms. In addition, the target node
must support all security properties of the respective source
nodes. Otherwise, incompatibilities could emerge if the secu-
rity properties supported by the source nodes are different
from the security properties supported by the target node.

Figure 4 shows examples for the different configuration
options of secure object flows that include fork or join nodes.
Figure 4a shows a configuration where a fork node splits a
secure object flow into multiple concurrent flows. Because
the tokens arriving at a fork node are duplicated, all target
nodes must be secure nodes. Furthermore, the target nodes
must support the same security properties as the correspond-
ing source node. This constraint ensures (1) that security
properties cannot be lost when traversing a fork node and
(2) that the target node(s) are able to check and ensure the
corresponding security properties.

Figure 4b shows a configuration where a join node
synchronizes multiple object flows, one of which is a secure
object flow. We define that if a join node receives at least one
secure object flow, then the target node of this join node must
also be a secure node. This constraint guarantees that each
secure object token passing a join node can be checked and
processed by the corresponding target node.

Figure 4c shows a configuration where a join node
synchronizes multiple secure object flows. In such a situ-
ation, the target must also be a secure node. Furthermore, all
source nodes and the target node must support compatible
security properties. Otherwise, inconsistencies could emerge
if the security properties supported by the source nodes are
different from the security properties supported by the target
node.

The examples from Figs. 3 and 4 only include a single con-
trol node, respectively. However, in principle, the path from
one secure object node to another secure object node may
include an arbitrary number of control nodes. Figure 5 shows
examples of such configurations. In case a path between two
secure object nodes includes two or more intermediate con-
trol nodes, we also have to ensure that the source and the

123

Modeling and enforcing secure object flows in process-driven SOAs 517

(a) (b) (c)

.

.

. . .

. . .

. . .

. . .

. . .

. . .

.

.

.

. . .

. . .

. . .

. . .

Fig. 5 Secure object flows with an arbitrary number of intermediate control nodes

1

1

* sourceoutgoing

targetincoming*

Node

ControlNode

Join Decision Merge

EndNode

ObjectNodeArc

ControlFlow TaskType

SecureObjectNode

StartNode

Fork

ObjectFlow

F C J C D C M C

T T

ONA

C A

O A

Cstart end

Sec O

Fig. 6 Conceptual overview: main elements of Business Activity process flows (see also [85])

target nodes of the respective path provide compatible secu-
rity features.

After discussing the constraints for secure object flows
on the above examples, Sect. 3 now provides a formal and
generic metamodel (CIM) for secure object flows.

3 A formal and generic metamodel for secure object
flows

Figure 6 shows the basic elements of Business Activity
process flows [85] and the main relations between these ele-
ments as a MOF-compliant structural diagram [53]. While
this graphical model only gives an overview, we now pro-

vide a formal specification of the process flow model. The
formal definitions below complement the definitions from
[85].

Definition 1 (Business Activity Process Flow Model)
A Process Flow Model P F M = (N , A, S, Y) where N =
TT ∪ CF ∪ CJ ∪ CD ∪ CM ∪ O ∪ OSec ∪ {start, end} and
A = AC ∪ AO refer to pairwise disjoint sets of the meta-
model, A ⊆ N × N refers to a set of arcs that connect
nodes, S = SC ∪SI refers to pairwise disjoint sets of security
attributes, and Y = in ∪ out ∪ source ∪ target ∪ of path ∪
successors ∪ predecessors ∪ ca ∪ ia refers to mappings
that establish relationships such that

123

518 B. Hoisl et al.

• an element of N is called node and an element of A is
called arc;

• an element of AC is called control flow and an element
of AO is called object flow;

• an element of SC is called confidentiality algorithm and
an element of SI is called integrity algorithm;

• an element of TT is called task type;
• an element of O is called object node and an element of

OSec is called secure object node with OSec ⊆ O;
• an element of C = CF ∪CJ ∪CD ∪CM is called control

node. An element of CF is called fork, an element of CJ

join, an element of CD decision, and an element of CM

merge;
• start is called start node and end is called end node;
• all nodes n ∈ N are on a path from start to end.

Below, we iteratively define the partial mappings of the
Business Activity Process Flow Model and provide corre-
sponding formalizations (P refers to the power set):

1. The mapping in : N �→ P(A) is called incoming arc.
For in(n) = Ain with n ∈ N and Ain ⊆ A we call each
a ∈ Ain an incoming arc of node n.

2. The mapping out : N �→ P(A) is called outgoing arc.
For out (n) = Aout with n ∈ N and Aout ⊆ A we call
each a ∈ Aout an outgoing arc of node n.

3. The mapping source : A �→ N is called source node.
For source(a) = n with a ∈ A and n ∈ N we call n the
source node of arc a.

4. The mapping target : A �→ N is called target node.
For target (a) = n with a ∈ A and n ∈ N we call n the
target node of arc a.

5. The mapping of path : (O × O) �→ P(AO) is called
object flow path. For of path(os, ot) = Apath with
os, ot ∈ O and Apath ⊆ AO we call os source node,
ot target node, and each a ∈ Apath is an arc on the
path from os to ot . Thus, an object flow path between
two object nodes os and ot must only include arcs or
control nodes, it must not include intermediary tasks
or (other) object nodes. Therefore, the following con-
sistency requirements must hold for each object flow
path:

• An object flow path connects the source node os and
the target node ot via an arbitrary number of arcs and
intermediary control nodes, therefore: ∀a ∈ Apath :
source(a) = os ∨ source(a) ∈ C and ∀a ∈ Apath :
target (a) = ot ∨ target (a) ∈ C .

• The first arc a f irst in an object flow path is an out-
going arc of the source node os , therefore: ∃a f irst ∈
Apath : source(a f irst) = os .

• Each object flow path includes exactly one outgoing
arc of the source node os , therefore:∀a1, a2 ∈ Apath :
a1 ∈ out (os) ∧ a2 ∈ out (os) ⇒ a1 = a2.

• In an object flow path, the source node os has no
incoming arcs, therefore: ∀a ∈ Apath : a /∈ in(os).

• The last arc alast in an object flow path is an incoming
arc of the target node ot , therefore: ∃alast ∈ Apath :
target (alast) = ot .

• Each object flow path includes exactly one incoming
arc of the target node ot , therefore: ∀a1, a2 ∈ Apath :
a1 ∈ in(ot) ∧ a2 ∈ in(ot) ⇒ a1 = a2.

• In an object flow path, the target node ot has no out-
going arcs, therefore: ∀a ∈ Apath : a /∈ out (ot).

6. The mapping successors : O �→ P(O) is called
succeeding object nodes. For successors(os) = Osucc

with os ∈ O and Osucc ⊆ O we call os source node
and each ot ∈ Osucc a direct successor of os . In par-
ticular, Osucc is the set of object nodes for which a
path exists between os and each ot ∈ Osucc. Formally:
∀os ∈ O, ot ∈ successors(os) : of path(os, ot) �= ∅.

7. The mapping predecessors : O �→ P(O) is called
preceding object nodes. For predecessors(ot) = Opre

with ot ∈ O and Opre ⊆ O we call ot target node and
each os ∈ Opre a direct predecessor of ot . In particular,
Opre is the set of object nodes for which a path exists
between each os ∈ Opre and ot . Formally: ∀ot ∈ O, os ∈
predecessors(ot) : of path(os, ot) �= ∅.

8. The mapping ca : OSec �→ SC is called confidentiality
algorithm. For ca(os) = sc with os ∈ OSec and sc ∈ SC

we call sc the confidentiality algorithm used by os .
9. The mapping ia : OSec �→ SI is called integrity algo-

rithm. For ia(os) = si with os ∈ OSec and si ∈ SI we
call si the integrity algorithm used by os .

A direct object flow consists of a single arc that directly
connects two object nodes without intermediary control
nodes, i.e., ADO = {a ∈ AO |source(a) ∈ O ∧ target (a) ∈
O}. A transitive object flow consists of two or more arcs
which connect two object nodes via an object flow path, i.e.,
AT O = {a ∈ AO |a ∈ of path(os, ot)} with os, ot ∈ O . If
the source of a (direct or transitive) object flow is a secure
object node, i.e., a ∈ AO ∧ source(a) ∈ OSec, we call this
object flow a secure object flow.

Definition 2 Let P F M = (N , A, S, Y) be a Business
Activity Process Flow Model. P F M is said to be correct
if the following requirements hold:

1. Each secure object node ensures either or both confiden-
tiality and integrity: ∀os ∈ OSec : ca(os) ∪ ia(os) �= ∅.

2. The successor of a secure object node must also be a
secure object node: ∀os ∈ OSec, ot ∈ successors(os) :
ot ∈ OSec.

3. The successor of a secure object node must support the
same confidentiality algorithm as the respective source

123

Modeling and enforcing secure object flows in process-driven SOAs 519

Package SecureObjectFlows

ObjectNode
(from BasicActivities)

Activity
(from FundamentalActivities)

ActivityNode
(from FundamentalActivities)

ActivityEdge
(from BasicActivities)

Action
(from FundamentalActivities)

ControlNode
(from BasicActivities)

ControlFlow
(from BasicActivities)

ObjectFlow
(from BasicActivities)

Pin
(from BasicActivities)

CentralBufferNode
(from IntermediateActivities)

ActivityParameterNode
(from BasicActivities)

SecurePin

SecureActivityParameterNode

SecureDataStoreNode
DataStoreNode

(from CompleteActivities)

+edge*+node *

+activity

0..1

+activity

0..1

+target +incoming

+source +outgoing

1 *

1 *

Classifier
(from Kernel)

SecureNode

Fig. 7 UML metamodel extension for secure object flows

node: ∀os ∈ OSec, ot ∈ successors(os) : ca(os) =
ca(ot).

4. The successor of a secure object node must support the
same integrity algorithm as the respective source node:
∀os ∈ OSec, ot ∈ successors(os) : ia(os) = ia(ot).

5. The security attributes of two secure object nodes
os1, os2 ∈ OSec may influence each other, even if they
are not connected via a direct or via a transitive object
flow. In particular, this is the case if os1 and os2 are pre-
decessors of a common target object node ot ∈ OSec. In
other words, if a secure object node ot has two or more
predecessors that are also secure object nodes, then each
predecessor must support the same confidentiality algo-
rithm as the respective target node: ∀ot ∈ OSec, os ∈
predecessors(ot) : os ∈ OSec ⇒ ca(ot) = ca(os).

6. If a secure object node ot has two or more predecessors
that are also secure object nodes, then each predecessor
must support the same integrity algorithm as the respec-
tive target node: ∀ot ∈ OSec, os ∈ predecessors(ot) :
os ∈ OSec ⇒ ia(ot) = ia(os).

4 UML extension for secure object flows

To provide modeling support for confidentiality and integrity
properties of object flows at the PIM level, we define a new
package called SecureObjectFlows as an extension to the
UML metamodel (see Fig. 7). In particular, we introduce
SecureNode,SecurePin,SecureDataStoreNode,

and SecureActivityParameterNode as new model-
ing elements. A secure object flow is defined as an object flow
between two of the above mentioned secure object nodes.
The SecureNode element is defined as an abstract node,
and the SecurePin, SecureDataStoreNode, and
SecureActivityParameterNode represent special-
ized secure nodes. In particular, these three node types inherit
the properties from their corresponding parent object nodes
as well as the security related properties from SecureNode
(see Fig. 7).

Below, we specify the attributes of the SecureNode
elements defined via the metamodel extension. In addition,
we use the Object Constraint Language (OCL, [57]) to for-
mally specify the semantics of the SecureObjectFlows pack-
age. For the sake of readability, we decided to move the
associated OCL constraints to Appendix 8. However, these
OCL constraints are a significant part of our UML exten-
sion, because they formally define the semantics of the new
modeling elements. Therefore, each UML model that uses
the SecureObjectFlows package must conform to these OCL
constraints.2

2 For some of our OCL constraints, Appendix A provides two optional
OCL statements expressing identical constraints, where each of these
optional constraints complies with a different version of the OCL
standard. OCL Constraints 4a and 6a comply with OCL version
2.2 [56], while OCL Constraints 4b and 6b use new language con-
structs from the OCL 2.3.1 standard [57]. The changes affect only the
allSuccessors() and allPredecessors() definitions which
are interchangeable.

123

520 B. Hoisl et al.

Table 1 Notation of elements for modeling secure objects

Node type Notation Explanation

SecurePin (attached to an action) A SecurePin attached to an action
is shown as a UML Pin element that
includes a key symbol

SecureDataStoreNode A SecureDataStoreNode is
shown as a UML DataStoreNode
element with a key symbol in the lower
right corner surrounded by a small
rectangle

SecureActivityParameterNode A SecureActivityParameter
Node is shown as a UML
ActivityParameterNode ele-
ment with a key symbol in the lower
right corner surrounded by a small
rectangle

• confidentialityAlgorithm : Classifier [0..1]

– References a classifier that provides methods to
ensure confidentiality properties of the object tokens
that are sent or received by a SecureNode, e.g., a
class implementing Data Encryption Standard (DES,
[46]) or Advanced Encryption Standard (AES, [47])
functionalities.

• confidentialityEnsured : Boolean [0..1]

– This attribute is derived from the attribute con-
fidentialityAlgorithm. It evaluates to “true” if a
SecureNode supports confidentiality-related secu-
rity properties (see OCL Constraint 1 in Appendix A).

• integrityAlgorithm : Classifier [0..1]

– References a classifier that provides methods to
ensure integrity properties of the object tokens that
are sent or received by a SecureNode, e.g., a class
implementing SHA-1 or SHA-384 (Secure Hash
Algorithm, [48]) functionalities.

• integrityEnsured : Boolean [0..1]

– This attribute is derived from the attribute integrityAl-
gorithm. It evaluates to “true” if aSecureNode sup-
ports integrity-related security properties (see OCL
Constraint 2).

With respect to the attributes defined above, we specify
that a secure object node supports either or both confiden-
tiality and integrity properties (see OCL Constraint 3).
Table 1 shows the graphical elements for SecureNodes.
Table 2 gives an overview of how each of the generic (CIM)

definitions from Sect. 3 is mapped to our UML extension
(PIM) for secure object flows.

4.1 Example processes with secure object flows

Below, we show two examples that model secure object
flows. In Sect. 4.1.1, we present a radiological image read-
ing process that is conducted in a hospital. In Sect. 4.1.2, we
show a simple credit application process in a bank.

4.1.1 Radiological examination process

Figure 8 shows a radiological examination process, modeled
via a UML activity diagram that uses elements of the Secure-
ObjectFlows package. The process starts with a Radiological
examination action that produces images which are read in
a next step. The corresponding SecurePins enforce the
security properties defined in Table 3 for all Image object
tokens traveling between the Radiological examination and
Image reading actions. The attributes are derived from the
SecureNode classifier defined via the SecureObjectFlows
package. Note that the different attributes are properties of
the corresponding SecureNodes and exist independent of
their visualization in a model.3 If the images are of sufficient
quality, the activity continues with two concurrent flows: the
images are annotated and the patient record is fetched. Both
actions produce output tokens of type Image and Patient

3 For example, an alternative visualization of SecureObjectFlows
attributes would use comments/constraints attached to secure object
nodes directly in an activity diagram.

123

Modeling and enforcing secure object flows in process-driven SOAs 521

Table 2 Consistency of the generic metamodel and the SecureObjectFlows UML extension

Generic definitions Covered through

Definition 1.1: in : N �→ P(A) Implicitly defined via our metamodel extension and the specification of
UML activity models (see Fig. 7; [59])

Definition 1.2: out : N �→ P(A) Implicitly defined via our metamodel extension and the specification of
UML activity models (see Fig. 7; [59])

Definition 1.3: source : A �→ N Implicitly defined via our metamodel extension and the specification of
UML activity models (see Fig. 7; [59])

Definition 1.4: target : A �→ N Implicitly defined via our metamodel extension and the specification of
UML activity models (see Fig. 7; [59])

Definition 1.5: of path : (O × O) �→ P(AO) Implicitly defined via our metamodel extension, the specification of
UML activity models (see Fig. 7; [59]), as well as the usage of the OCL
quantifiers collect (see [56,57]) or closure (see [57])

Definition 1.6: successors : O �→ P(O) Implicitly defined via our metamodel extension, the specification of
UML activity models (see Fig. 7; [59]), and helper OCL operations
(see, e.g., allSuccessors in Constraints 4a and 4b in Appendix A)

Definition 1.7: predecessors : O �→ P(O) Implicitly defined via our metamodel extension, the specification of
UML activity models (see Fig. 7; [59]), and helper OCL operations (see,
e.g., allPredecessors in OCL Constraints 6a and 6b in Appendix
A)

Definition 1.8: ca : OSec �→ SC Metamodel extension SecureNode and corresponding sub-types (see
Fig. 7)

Definition 1.9: ia : OSec �→ SI Metamodel extension SecureNode and corresponding sub-types (see
Fig. 7)

Definition 2.1: ∀os ∈ OSec : ca(os) ∪ ia(os) �= ∅ OCL Constraints 1, 2, and 3 in Appendix A

Definition 2.2: ∀os ∈ OSec : ∀ot ∈ successors(os) : ot ∈ OSec OCL Constraints 4a and 4b in Appendix A

Definition 2.3: ∀os ∈ OSec : ∀ot ∈ successors(os) : ca(os) =
ca(ot)

OCL Constraint 5 in Appendix A

Definition 2.4: ∀os ∈ OSec : ∀ot ∈ successors(os) : ia(os) =
ia(ot)

OCL Constraint 5 in Appendix A

Definition 2.5: ∀ot ∈ OSec : ∀os ∈ predecessors(ot) : os ∈
OSec ⇒ ca(ot) = ca(os)

OCL Constraints 6a and 6b in Appendix A

Definition 2.6: ∀ot ∈ OSec : ∀os ∈ predecessors(ot) : os ∈
OSec ⇒ ia(ot) = ia(os)

OCL Constraints 6a and 6b in Appendix A

Radiological examination process

Image

Image reading

Radiological
examination

Report

Report

Write report Validate report

Patient record

Image

Patient data
Fetch patient

record

Archive report
«datastore»

Report archive

Report

[Image
OK]

[Image
not OK]

[Report OK]

[Missing information]

Image Annotate image

Fig. 8 Radiological examination process with secure object flows

record, respectively. Note that Image and Patient record are
specialized classifiers of type Patient data (see Fig. 9) and,
therefore, support the same SecureObjectFlows attributes as
defined in Table 3.

After the report has been written, it is validated by a senior
physician. If the report is incomplete, the corresponding
actions have to be repeated. Otherwise, the report is archived
via a SecureDataStoreNode (see Fig. 8).

123

522 B. Hoisl et al.

Table 3 SecureObjectFlows
attributes for the radiological
examination process

Object type SecureObjectFlows attributes

Patient data confidentialityAlgorithm = Aes256; integrityAlgorithm = Sha512

Report confidentialityAlgorithm = Aes256; integrityAlgorithm = Sha512

Patient data

Patient recordImage

Fig. 9 Patient data object types

4.1.2 Credit application process

Figure 10 shows a credit application process that uses the
elements of the SecureObjectFlows package. The model con-
tains swimlanes representing a customer and a bank clerk.
Figure 11 shows a UML class diagram that describes the
data items used in the credit application process. In addi-
tion, Table 4 documents the attribute-value pairs of the cor-
responding secure object nodes. The activity starts when
the SecureActivityParameterNode named Credit
application passes an object token to the Check application
form action (see Fig. 10). In this example, the Credit applica-
tion SecureActivityParameterNode is ensuring the
data confidentiality and the data integrity of the correspond-
ing object tokens via the AES-192 and SHA-1 algorithms,
respectively (see Table 4). Remember that the formal seman-
tics of the respective modeling elements are defined via the
OCL constraints from Appendix A.

CreditApplication

- appId : Integer
- statusId : Integer
- content : String

Contract

- contractId : Integer
- creditSum : Integer
- content : String

Fig. 11 Data items of the credit application process

After completing the Check application form action, the
creditworthiness of the applicant is checked. If the check
fails, the credit application is rejected and the process ends
(see Fig. 10). If the creditworthiness check is passed, how-
ever, the bank offers a contract to the respective customer. If
the credit sum does not exceed the amount of 5000, the appli-
cant is offered a standard contract. Otherwise, a customized
contract is negotiated with the client. Because the contents
of this contract are confidential, both output pins of the Stan-
dard contract and Negotiate contract actions as well as the
input pin of the subsequent action Approve contract support
confidentiality properties (see also Table 4). In Sects. 5 and 6,
we use the credit application example to describe the mod-
eling of (secure) process-driven SOAs and to illustrate our
tool support for secure object flows.

5 Modeling process-driven SOAs with UML

In the context of (Web) service modeling, identifying and
categorizing services that are based on business process arti-
facts is an important modeling task. It provides the input for

Credit application process

Check
application form

[else]

[Form Ok]

[else]

Check credit
worthiness

Credit
application

Negotiate
contract

Standard
contract

Contract

Approve contract

Contract

Contract

[else]

[approved]

[Check
passed]

[creditSum > 5000]

[creditSum
<= 5000]

Reject
application

Customer Bank clerk

Credit
application

Fig. 10 Credit application process with secure object flows

123

Modeling and enforcing secure object flows in process-driven SOAs 523

Table 4 SecureObjectFlows
attributes for the credit
application process

Object type SecureObjectFlows attributes

Credit
application

confidentialityAlgorithm = Aes192; integrityAlgorithm = Sha1

Contract confidentialityAlgorithm = Aes192

specifying the services, the service architecture, and the tech-
nical (i.e., executable) process descriptions. In the remainder
of this paper, we focus on the specification of services and
a corresponding service architecture using extended UML
activities (see Sect. 4) and other UML models. Below, we
describe how we derive the structural specification of a SOA
(in terms of a distributed system architecture) from a busi-
ness process modeled as a UML activity model. The exam-
ples given below refer to the credit application process from
Fig. 10. For the sake of simplicity, we make the following
assumptions:4

• Business units and actors involved in a process are mod-
eled as ActivityPartitions (swimlanes). Thus,
each swimlane indicates task ownership by a single unit
or by an actor. In the service modeling step, units and
actors may be modeled as SOA participants that provide
and consume services. For example, the credit applica-
tion activity from Fig. 10 contains two swimlanes (and
thereby two task owners): TheBankClerk receives and
evaluates the credit application filed by the Customer.

• A process model identifies the object flows between
tasks. This means that the model specifies the data items
(objects) that serve as the input for and as the output
of the tasks. For example, the credit application process
describes object flows for a credit application and for the
respective contract (see Figs. 10, 11). The corresponding
data items (objects) enter a service model as the invoca-
tion data that are exchanged between the services (e.g.,
via messages, see [81]).

• A process model may define object flows between tasks
owned by a single actor as well as object flows which
occur between tasks owned by two (or more) distinct
actors. Thus, an object flow within the same swimlane is
executed by a single actor (i.e., it does not involve inter-
action between actors). In a service architecture, such
an actor becomes a SOA participant which is responsi-
ble for executing a macroflow or a microflow (see also
[25]). On the other hand, object flows crossing swimlane
boundaries identify interactions between services that are
provided and consumed by two (or more) actors (SOA
participants). Such interactions effectively turn into

4 Note, however, that we only make these assumptions to simplify the
following explanations, our approach is independent of these assump-
tions, of course.

service invocations, and the object flow details (such as
object types and security attributes) are contracted via
respective service interfaces.

• The data integrity and data confidentiality properties
expressed via our SecureObjectFlows extension apply
to both intra-swimlane and inter-swimlane object flows
(of course). In the subsequent step of modeling a ser-
vice architecture, the secure object flows therefore map
to either or both the macroflow/microflow specifications
and the service interfaces.

A service specification includes the definition of structural
and behavioral views of a service architecture. In particu-
lar, we use the Service-oriented architecture Modeling Lan-
guage (SoaML, [58]) and the SoaML extension UML4SOA
(see [38]). The SoaML provides essential modeling primi-
tives for structural views of a service architecture (including
participants, collaborations, service contracts and interfaces,
as well as messages). The UML4SOA extension is used for
modeling macroflow/microflow specifications for the partic-
ipants of a service architecture. Moreover, we describe how
we integrated the SecureObjectFlows extension (see Sect. 4)
with the SoaML and UML4SOA, respectively. Thereby, we
provide a seamless mapping of integrity and confidential-
ity properties specified at the business process level to the
structural and behavioral views of a service architecture.

5.1 Modeling the structure of a process-driven SOA

The SoaML offers an extension of the UML composite struc-
ture metamodel: Fig. 12 shows an excerpt from the SoaML
metamodel extension. This extension enables a composition
of service consumers and providers via a set of interact-
ing entities, referred to as Participants. A partici-
pant announces its interaction capabilities and requirements
through Service and Request ports, respectively (see
Fig. 12). Because the Service and Request elements
are derived from the UML Port metaclass, they specify
required and provided Interfaces.
Interfaces can directly be attached to Service and

Request ports or they can be specified for a port via an
intermediary construct: a so called ServiceInterface
(see also [14]). A SoaML ServiceInterface is derived
from the Class metaclass (see Fig. 12) and can be used
to define a port protocol. Participants are connected
via ports. The context of such a connection is modeled

123

524 B. Hoisl et al.

Fig. 12 Excerpt from the SoaML metamodel extension (see [58])

Table 5 Selected SoaML modeling elements

SoaML::Services
metaclass

SoaML stereotype Specialized/Extended
metaclass

Description

Participant «Participant» Class Represents a software system, component, or application
which provides or consumes services (including process
engines)

Request «Request» Port Defines the service interaction point of a participant for con-
suming services offered by other participants, according to
the port’s required interfaces

Service «Service» Port Defines the service interaction point of a participant for pro-
viding services to other participants, according to the port’s
provided interfaces

ServiceInterface «ServiceInterface» Class Defines the structural (e.g., the operational interface) and
behavioral properties (e.g., the invocation protocol) of a ser-
vice. It is shared between a pair of request and service ports

as a ServiceChannel. A SoaML ServiceChannel
ensures protocol compliance between a pair of Service
and Request ports. In the structural view, protocol compli-
ance is either expressed by sharing aServiceInterface
between corresponding Request and Service ports, or
by directly connecting their required and provided
Interfaces. Table 5 gives an overview of selected SoaML
elements for the definition of composite structures (see also
Fig. 12).

Figure 13 shows an example of a composite SOA struc-
ture modeled using the SoaML. The example includes two
Participants (A andB) which define interacting subsys-
tems of the SOA. Participant B acts as the service provider.
This is modeled via its «Service» port. Participant A is

a service consumer modeled via a «Request» port. The
requestor and consumer ports are connected through
a service channel. The structural dependency realized by
the two ports via mutually provided and required opera-
tions is specified by the service interface AService (see
Fig. 13). This service interface describes two participating
roles (roleA and roleB) with each role referring to a cor-
responding Interface. In the context of the given ser-
vice channel, the requestor port binds roleA while the
provider port binds roleB. This binding indicates that
the «Service» port implements the provided interfaces
(i.e., InterfaceB) and uses the required interfaces (i.e.,
InterfaceA; see Fig. 13). The «Requestor» port of
participant A is also typed by the AService interface and

123

Modeling and enforcing secure object flows in process-driven SOAs 525

Fig. 13 Example of a composite SOA structure in the SoaML

because it is defined as a conjugated port, the meaning of the
required and provided interfaces linked to the port is inversed
(see Fig. 13). The requestor port provides an interface
realization for InterfaceA and expects InterfaceB to
be implemented by its port provider (for further details
see [58]).

5.2 Modeling the behavior of a process-driven SOA

After defining a SoaML structure model, we require means
to express the object flows resulting from service invoca-
tions (as well as their integrity and confidentiality properties).
In general, we can distinguish two types of object flows in
a process-driven SOA. First, object flows occurring during
execution of macroflows/microflows (see [25]). These object
flows are internal to a process engine and will be referred to
as process execution data in the following. Second, object
flows resulting from service invocations. Note, however, that
neither business nor control data are exclusive to one of these
object flow categories. They may rather be involved in both
types of object flows. Consider, for example, that the credit
application data from Fig. 10 are first reified as a data struc-
ture that is associated with a certain process instance and
stored by the respective process engine. In a subsequent step,
the data are marshaled into a message which is then delivered
to a remote service endpoint. Because of this dual character
of business and control data in a process-driven SOA, we
require two different, yet complementary, behavioral view-
points to specify secure object flows for these data assets. In
particular, it is necessary to incorporate secure object flows in
service orchestration specifications as well as service chore-
ography specifications.

The SoaML provides explicit extension points for attach-
ing behavioral specifications to elements of a composite SOA
structure. As far as participants and service interfaces are
concerned, the SoaML recommends the use of UML activi-

ties and interactions (see, e.g., [13,58]). However, the SoaML
does not provide any normative guidance for specifying SOA
behaviors such as service choreography and service orches-
tration (see, e.g., [19]).

5.2.1 Specifying a choreography via UML activities

Object flows that realize service invocations across ports are
constrained by the ports’ protocol. This also applies for object
flows between correspondingService andRequestports
that are provided through the same Participant. The
behavioral part of a port protocol stipulates the choreog-
raphy of service invocations between the Interfaces
and it defines the respective service invocation patterns
(such as “fire and forget” or “result callbacks”). While
the structural part of a port protocol is specified by a
ServiceInterface, the ServiceInterface can be
extended via an owned Behavior to express the details
of a corresponding behavioral protocol. To represent secure
object flows at the level of such a choreography specifi-
cation, we use an extended UML activity. For example,
the use of UML activities allows us to integrate the proto-
col viewpoint with the orchestration viewpoint in terms of
ServiceActivityNodes (see Fig. 14).

In particular, we use UML activities as owned behavior
of ServiceInterfaces to model flows of invocation
objects. This choice permits us to model the characteristics of
service invocation data (see, e.g., [81]) through UML object
flows:

• Invocation data as object nodes: An Activity can
model input and output parameter streams of service
invocations. This is a prerequisite for applying the
SecureObjectFlows extension to invocation data at this
level.

123

526 B. Hoisl et al.

Fig. 14 Activities as
behavioral specifiers

Fig. 15 Example of
a choreography activity

• Choreography roles: ActivityPartitions can be
used for modeling choreography roles.5 Thus, each
ActivityPartition represents an “interface-
realizing role” and thereby abstracts from the
Participants that use or implement the interfaces.
In the compositional view, they correspond to the respec-
tive ServiceInterfaces (see roleA and roleB
in Figs. 13 and 14). Note that ServiceInterfaces
may refer to more than two parts (or choreography roles)
and can be used to model multi-directional invocation
flows.

• Duality of invocations: Choreography roles are typed
through the Interfaces that are required and imple-
mented by the corresponding ServiceInterface
(for example InterfaceA and InterfaceB in
Fig. 13). ActivityPartitionsmodel the providers
and consumers of invocations. Thus, the SecureObject-
Flows elements in an Activity model consumer-side
and provider-side security properties (such as signature
mechanisms for messages).

5 Note that such “choreography roles” do only model which partici-
pant provides and/or requests specific functions/interfaces. They do not
model access control roles. For the definition of process-related access
control models, the SecureObjectFlows extension is integrated with the
extension presented in [85].

• Standalone choreography specification: An Activity
that is owned by a ServiceInterface and the secu-
rity properties that are specified for its object flows are
modeled independently of the Participants which
consume or implement the respective service endpoints.
For example, in Fig. 13 AService applies to any pair
of ParticipantsA and B, regardless of whether they
act as process engine or service providers.

Figure 15 shows an example choreography activity,
where AChoreographyActivity further specifies the
AService interface from Fig. 14. Through itsrequestor
port, participant A consumes the AService interface (rep-
resented via roleA, see Figs. 13, 14). Thus, the activity
defines the operation calls between the Interfaces via
actions and a corresponding control flow. Object flows model
the flow of input and output parameters between the opera-
tion calls (see parameters p1–p4 in Fig. 15).

SecureObjectFlows are independent of different types of
invocation patterns. Therefore, we do not further elaborate
on the definition of invocation patterns for distributed sys-
tems in general (see, e.g., [81]), or for process-driven SOAs
(see, e.g., [97]). Note, however, that UML activities can be
used to model service invocation patterns such as fire-and-
forget invocations, sync-with-server invocations, request-

123

Modeling and enforcing secure object flows in process-driven SOAs 527

Fig. 16 Excerpt from the UML4SOA metamodel (see [38])

reply invocations, or result callbacks, of course (see, e.g.,
[97]).

5.2.2 Specifying service orchestrations via UML activities

We use the UML4SOA [38] to model object flows as
an integral part of service orchestrations. UML4SOA is a
SoaML extension to model process-driven service compo-
sitions through orchestration specifications that are defined
with UML activities. In a process-driven SOA, one or more
Participants act as process engines that invoke the
functions of service providers to execute tasks. The cor-
responding tasks are defined via a composite activity. In
UML4SOA, such a composite activity (controlled by a sin-
gle, orchestrating Participant) is modeled through a
ServiceActivityNode (also referred to as a “service
activity”). A ServiceActivityNode is owned by the
orchestrating Participant (see Fig. 16 and the example
from Fig. 14).

In particular, a service activity defines the control flow
through ServiceInteractionActions and corres-
ponding UML protocol state machines. For example,
a fire-and-forget invocation is modeled using a
ServiceSendAction. Accessing and changing the
process engine’s state can be modeled viaDataHandling-
Actions. The internal data flow and data dependencies
of a service activity (e.g., the process engine state or the
invocation data) are expressed using a set of refined object
nodes (SendPins and ReceivePins) that are linked

to ServiceInteractionActions. These SendPins
and ReceivePins represent the object nodes which form
object flows (see Fig. 16). Table 6 provides an overview of the
UML4SOA model elements that are relevant for the remain-
der of this paper.

Figure 17 shows an example of a
ServiceActivityNode. The orchestration specifica-
tionAServiceActivity (see also Fig. 14) is modeled via
a ServiceActivityNode that is registered as an owned
behavior of the corresponding Participant (participant
A from Fig. 14). Process execution starts by sending a call
request to an operation OperationB1 via the consumer
port (requestor) of participant A. The process instance
must provide two input parametersp1 andp2 asSendPins
to the call request (see Fig. 17). The call request does not
return out parameters to the process instance (i.e., it models
a fire-and-forget invocation). The participant then enters a
waiting state, until an inbound call request for the operation
OperationA2 is signalled through the requestor port.
This inbound call request provides invocation data (p4) via
a ReceivePin (see Fig. 17).

The examples from Figs. 15 and 17 show the comple-
mentary nature of the invocation activities and the service
activities. Service invocations that are issued or expected by
the orchestration specification (see Fig. 17) are reflected in
the corresponding choreography specification (see Fig. 15)
as the required or the provided operations. While the orches-
tration specification only considers consuming or providing
roles (i.e., the required or implemented Interfaces) of a
single participant, the choreography specification integrates

123

528 B. Hoisl et al.

Table 6 Selected UML4SOA/SoaML modeling elements

SoaML::Services metaclass SoaML/UML4SOA stereotype Specialized/Extended metaclass Description

ServiceActivityNode «ServiceActivity» Activity A service orchestration specification; spe-
cific to a single SoaML participant

SendPin «Snd» Pin Represents outbound invocation data pro-
vided to a service in a send action

ReceivePin «Rcv» Pin Represents inbound invocation data
received from a service in a receive action

ServiceSendAction «Send» CallOperationAction Models a non-blocking service invocation

ServiceReceiveAction «Receive» AcceptCallAction Models a blocking message listener

ServiceReplyAction «Reply» ReplyAction Represents an invocation which completes
a receive action; i.e., the provider-side of a
result-callback invocation

ServiceSend&ReceiveAction «Send&Receive» ServiceSendAction,
ServiceReceiveAction

Models a blocking request-reply invoca-
tion

LinkPin «Lnk» Pin A reference to a service endpoint (i.e., a
service or a request port)

Fig. 17 Example of a service
activity

the consuming and providing roles of two or more partici-
pants for the scope of a single service channel.

5.3 A SoaML extension for secure object flows

Security concerns such as message confidentiality and
message integrity are crosscutting in nature and must be
addressed in different types of SOA models (see, e.g.,
[25,81]). Business process data (e.g., business and control
objects) are exchanged in terms of invocation data. Invo-
cation data include service endpoint references, operation
names, input and output parameters, as well as exception
data (see, e.g., [81]). At runtime, a process engine controls
process instances that include corresponding data objects.
Confidentiality and integrity properties of invocation data
and process execution data affect data transformation steps at
various layers of a SOA. As a result, the invocation process-
ing infrastructure as well as the respective transport han-
dling must be adapted. For example, if we need to ensure the
integrity of data assets in a business process, a modeler must
define message integrity constraints over the corresponding
service interfaces. Afterwards, corresponding source code
(such as message interceptors for message signing) and/or

configuration data (e.g. for a security component) can be
generated. Therefore, multiple views must be considered to
support the definition of secure object flows in a SOA context.
In this context, the choreography specifications for service
interfaces and the corresponding orchestration specifications
are of special importance:

• Choreography specifications for secure flows of invoca-
tion data: This view includes modeling support for invo-
cation data (such as input and output parameters) which
require integrity and/or confidentiality properties. In the
compositional view of a SoaML model, the structural
characteristics (e.g., the interface signature) of service
invocations are specified via ServiceInterfaces
(see also Fig. 12).

• Orchestration specifications for secure flows of process
execution data: This view includes modeling support
for secure object flows of process execution data
as well as invocation data. A UML4SOA
ServiceActivityNode allows to model specifying
flows of process execution and invocation data for a sin-
gle entity, e.g., a Participant or a role in the sense
of a ServiceInterface (see also Fig. 16).

123

Modeling and enforcing secure object flows in process-driven SOAs 529

Fig. 18 The
SecureObjectFlows::Services
package

Modeling integrity and confidentiality properties in the
choreography specifications of SecureInterfaces and
ServiceActivityNodes is complementary. If the
SecureInterface view was not available, the
modeling effort would have to be duplicated for
the ServiceActivityNodes of all Participants
which share one or more ServiceInterfaces. This is
because aServiceActivityNode captures service invo-
cations as patterns of ServiceInteractionActions
from either the consumer or provider side only (see also
Sect. 5.2). Moreover, a Participant may represent a
process engine as well as simple service providers. As a con-
sequence, the ServiceActivityNode element may not
be available for all Participants.

To integrate the SecureObjectFlows extension with the
SoaML, we provide a UML integration package (see Fig. 18).
Our SecureObjectFlows::Services package adds SoaML-
specific constraints for secure object flows.

5.3.1 SecureObjectFlows::Services abstract syntax

The SecureObjectFlows::Services package introduces a
specialized ServiceInterface called Secure-
Interface. At the SoaML metamodel level, Secure-
Interface extends the ServiceInterfacemetaclass
(see Fig. 18; and OCL Constraint 7 in Appendix B). A
SecureInterface contracts either a strict or a permis-
sive mode. The permissive mode is the default mode (i.e.,
isStrict is set to false) which allows to include secure
object flows as well as ordinary object flows. In contrast, the
strict mode (i.e., isStrict is set to true) defines that all
invocation data flows (as specified further below) must be
secure object flows (see OCL Constraint 8).

To model secure object flows in UML4SOA
ServiceActivityNodes, we provide two additional

metaclasses:SecureSendPin andSecureReceivePin
(see Fig. 18). They integrate the capabilities of the
SecureNodemetaclass (see Sect. 4) and theReceivePin
and SendPin, respectively. For all metaclasses provided by
the SecureObjectFlows::Services package, the notation for
the SecureNode metaclass applies (see Sect. 4; [27]).

5.3.2 Constraints for the SecureObjectFlows::Services
package

In this section, we discuss constraints for an Activity
that is owned by a SecureInterface and for
ServiceActivityNodes of the Participants
which are connected by SecureInterfaces. The OCL
constraints for the SecureInterface metaclass are
defined over the metaclasses SecurePin and
SecureActivityParameterNode. The OCL
constraints for ServiceActivityNodes refer to the
SecureSendPin andSecureReceivePinmetaclasses
(see Figs. 12, 16, 18).

Explicit links between invocations and interfaces: An
Activity that specifies a choreography must only describe
service invocations betweenOperations that are provided
or required by the Interfaces referenced by the cor-
responding SecureInterface (see OCL Constraint 9).
This allows the modeler to express explicit links between
Actions in a choreography activity and the Operation
repository represented by these Interfaces.

Cross-interface invocations only: ActivityParti-
tions represent “interface-realizing” and “interface-
providing” roles with respect to a SecureInterface
(see also Sect. 5.2). Object flows may occur within a sin-
gle partition or between two partitions. Thus, an object
flow between two CallOperationActions, which are
modeled in different ActivityPartitions, depicts an

123

530 B. Hoisl et al.

output/input dependency between operations which repre-
sent an actual service invocation (see Figs. 12, 16, 18). If
two adjacent CallOperationActions reside within the
same ActivityPartition, they are required and pro-
vided by the same Interface. Thus, secure object flows
in the SecureObjectFlows::Services package apply to cross-
interface invocations (see OCL Constraint 10), and each
activity node is assigned to exactly one partition (see OCL
Constraint 11).

Activity parameters for initial and intermediary inbound
data: A choreography activity captures data dependencies
between invocations, i.e., the output data of one invocation
serve as the input data for a subsequent invocation. In two
important cases, however, the input data may originate from
the outside. These cases are initial and intermediary inbound
data.

Initial inbound data are provided through the required
Interface of the consumer role. These data are contracted
by the operation of a SecureInterface that triggers the
execution of an Activity (see Figs. 12, 16, 18). Inter-
mediary inbound data are not the result of previous invo-
cations within the same choreography. The input is rather
provided from the outside, such as from a process engine
holding process control data which are then used as the input
parameters for an operation call.

For specifying secure object flows, however, it is manda-
tory to model pairs of secure object nodes (see Sect. 4; [27]).
This is because the security properties required at either end
of an object flow must be compatible (see also Sect. 3). Thus,
each secure pin and each secure activity parameter node must
be connected to (at least) one object flow (see OCL Constraint
12).

Activity parameters for intermediary and flow-final out-
bound data: Analogous to initial and intermediary inbound
data, output data can describe external data dependencies,
i.e., dependencies which do not manifest within the choreog-
raphy activity alone. For instance, an invocation’s output may
be stored in a process-persistent variable by a process engine.
In this context, each secure pin and each secure activity para-
meter node must be connected to (at least) one corresponding
object flow (see OCL Constraint 12).

Streaming-only intermediary activity parameters:
ActivityParameterNodes that are used to model
intermediary inbound data, and output data represent stream-
ing activity parameters (see OCL Constraint 13). Streaming
parameters model data which become available in the context
of an activity, or which leave this context during execution
of the Activity. Note that the streaming mode is only
mandatory for cases of secure intermediary InputPins
and OutputPins (in the sense of OCL Constraint 12).

Same origin for input data flows: Input data for service
invocations, which are represented by InputPins on
CallOperationActions, must have related object nodes

which reside in the same ActivityPartition. Differ-
ent partitions as the origins for input data of an operation
are not valid (see OCL Constraint 14). This requirement fol-
lows from the intention to model input/output data depen-
dency along a path of operation calls. The input parame-
ters of an operation, i.e., the InputPins modeled for a
CallOperationAction, must either be related to out-
put parameters (OutputPins) of the preceding operation
call, or to (initial or intermediary) inbound parameters of
the choreography activity. In either case, these source object
nodes must share their ActivityPartition origin.

Explicit links between orchestration and choreography
activities: The overlap between the views provided by chore-
ography activities for SecureInterfaces and
ServiceActivityNodes becomes evident through the
dual appearance of business and control data—once in terms
of process execution data items and once as invocation data
items. On the one hand, data returned from service invoca-
tions, e.g., out-parameter values, enter the process execution
view as input data (e.g., for result callbacks). On the other
hand, process execution data that are passed as parameter to
invocation requests become in-parameters traveling across
object flows in the choreography view. To avoid inconsis-
tent models, it is important to verify these dependencies in
the model specification phase. Therefore, OCL constraints
15 and 16 define consistency constraints between the two
model views (see also Figs. 12, 16, 18).

5.4 UML profiles for secure object flows

Sections 4 and 5.3 introduced the SecureObjectFlows pack-
age and the SecureObjectFlows::Services package, respec-
tively. Both packages specify UML metamodel extensions
at the PIM level and provide native UML elements for the
definition of secure object flows in general, and for secure
object flows in SOAs in particular. An extension of the UML
metamodel allows to define new and specifically tailored
UML elements (defined via new metaclasses), and it allows
to define a customized notation, syntax, and semantics for
the new modeling elements. However, the integration of a
metamodel extension with software tools most often results
in a significant development effort. Therefore, a metamodel
extension can be seen as a medium-term and long-term option
to extend the UML (or another modeling language) as well
as corresponding software tools.

In contrast, UML profiles provide a mechanism for the
extension of existing UML metaclasses to adapt them for
non-standard purposes. However, UML profiles are not a
first-class extension mechanism (see [59, p. 660]) and are
less powerful than metamodel extensions. In particular, UML
profiles do not allow for modifying existing metamodels.
Nevertheless, most UML tools directly support the definition
of profiles. Therefore, it is comparatively easy to integrate

123

Modeling and enforcing secure object flows in process-driven SOAs 531

Fig. 19 The UML profile packages SOF and SOF::Services

Table 7 Mappings between the SOF::Services profile and the SecureObjectFlows::Services metamodel extension

UML profiles in a software tool. For this reason, we introduce
two UML profiles for secure object flows. By these means,
we provide both a long-term option based on metamodel
extensions and a short-term option based on UML profiles.

Below, we describe the UML profile packages Secure
Object Flows (SOF) and SOF::Services (see Fig. 19). In
Sect. 6, we present our tool support for the definition of secure
object flows in process-driven SOAs based on these two pro-
file packages.

The SOF package provides a profile for a (simplified)
variant of the SecureObjectFlows package (see Sect. 4), and
the SOF::Services package provides a (simplified) variant
of the SecureObjectFlows::Services package (see Sect. 5.3).

The secure stereotype provides the integrity and confi-
dentiality attributes of the SecureNode metaclass (see
Fig. 19). The OCL constraints for the SecureObjectFlows
metamodel (see Appendix A) were adapted for the con-
text of the secure stereotype. Table 7 shows mappings
between the SOF::Services profile and the SecureObject
Flows::Services metamodel extension. In particular, the
following transformation rules exist: Instances of
Pin, ActivityParameterNode, SendPin, and
ReceivePin tagged with the «secure» stereotype
map to instances of SecurePin,
SecureActivityParameterNode, SecureSendPin,
and SecureReceivePin, respectively.

123

532 B. Hoisl et al.

Fig. 20 The metamodel and profile packages for secure object flows

The SecureInterface metaclass is represented
via the SecureInterface stereotype (see Fig. 19).
In particular, this stereotype identifies a tagged
ServiceInterface as a secure interface, and allows for
specifying the strict or the permissive mode (see Sect. 5.3.1).
The SecureReceivePin and SecureSendPin meta-
classes are included in the SOF profile. However, an impor-
tant limitation applies: ServiceActivitiyNodes may
also contain LinkPins for identifying the ports of a given
ServiceInteractionAction. Because they also rep-
resent ObjectNodes which are in principle extensible via
the «secure» stereotype, we define that the «secure»
stereotype must not be applied to object nodes tagged as
«lnk» pins:

1 context SOF:: Services :: secure
2 inv: self.base_ObjectNode .getAppliedStereotype (’UML4SOA :: Services

::lnk ’) = null

The definition of secure object flows for the UML and
their integration with the SoaML/UML4SOA via a meta-
model extension as well as two profiles open up two integra-
tion paths (see Fig. 20). If we use the metamodel extension
to define secure object flows, we essentially instantiate the
corresponding metamodel (see “instanceOf” relation from
PackageA to the SecureObjectFlows::Services package in
Fig. 20). In contrast, if we use the profile extension to define
secure object flows, we apply the profile to the correspond-
ing UML model (see “apply” relation fromPackageB to the
SecureObjectFlows::Services package in Fig. 20). For details
concerning the “instanceOf” and “apply” relations see [60].

5.5 An integrated example

Figure 21 shows an example that uses the SOF and
SOF::Services profile packages—it extends the example
from Sects. 5.1 and 5.2. Remember that in this exam-

ple, participant A acts as process engine and is specified
via AServiceActivity. The service channel between
the process engine and the service provider (participant
B) is defined through the AService interface which
owns AChoreographyActivity (see also Figs. 13, 14,
15, 17).
AChoreographyActivity is tagged with the

«SecureInterface» stereotype, requesting the permis-
sive mode (see Fig. 21). Thus, not all invocation object
flows in the choreography activity need to be specified as
secure object flows (see also Sect. 5.3.1). The choreogra-
phy activity defines that the object flow pointing towards
OperationB1 realizes a secure object flow that uses
the Aes192 as confidentiality mechanism. Moreover, the
choreography activity specifies another secure object flow
between OperationB2 and OperationA2. This invo-
cation object flow establishes end-to-end message integrity
via the Sha256 integrity algorithm.
AServiceActivity defines the orchestration speci-

fication of participant A (see Fig. 21). It includes the cor-
responding secure object flows from the perspective of the
process engine (participant A). The two SendPins from
the orchestration specification map to the input parameters
p1 and p2 defined on OperationB1 in the choreogra-
phy activity. Moreover, the input parameter p4 from the
choreography activity matches the respective ReceivePin
on the ServiceReceiveAction in the orchestration
specification.

6 Tool support for secure object flows in SOAs

Our tool support for the definition of secure object flows
in process-driven SOAs is based on the Eclipse 3.6 Model
Development Tools (MDT; [11]) and the Eclipse Papyrus
visual UML editor [12]. Moreover, we use the SoaML and

123

Modeling and enforcing secure object flows in process-driven SOAs 533

Fig. 21 Integrated views on secure object flows: orchestration and choreography specifications

UML4SOA profile definitions for MagicDraw 17.0 [51] to
define service specifications. Model integrity checking based
on the OCL constraints for our UML packages (see Appen-
dices A, B) is performed in the Eclipse MDT environ-
ment.6

Our tool support enables automated model transforma-
tions for secure object flows that are defined via platform-
independent models (PIMs). The model transformations
produce corresponding platform-specific models (PSMs).
The generated PSM artifacts include WSDL interface descrip-
tions [92] and WS-BPEL process descriptions [61]. A major
challenge of this model transformation step was to bridge the
gap between the graph-based PIMs (defined via extended
UML activities; see Sect. 5) and the block-based PSMs
(defined via BPEL specifications; see, e.g., [41]). In par-
ticular, we extended the MDD4SOA Eclipse plugin [36]
to support the corresponding model transformations for
secure object flows. Additional transformation steps add
WS-SecurityPolicy statements [63] to the generated inter-
face descriptions and deployment descriptors. Moreover, our
approach allows to add security properties to invocation data

6 All modeling and implementation artifacts are available from http://
nm.wu.ac.at/modsec.

(e.g., single parameters or message elements). These security
properties are transformed into WS-SecurityPolicy descrip-
tions (e.g., EncryptedElements, SignedParts).
Modeling elements that specify integrity and confidentiality
requirements of object flows map to identifiers for algorithm
suites (as defined by the WS-SecurityPolicy specification
[63]).

In the following, we use the credit application example
from Sect. 4.1 to describe our extension for the Eclipse MDT
tool chain in detail. Figure 22 gives an overview of the dif-
ferent steps and the resulting artifacts.

For the sake of simplicity, and in order to emphasize the
details relevant for this paper, we focus on the object flow
which triggers the processing of a credit application (see
Sect. 4.1.2). The corresponding object flow is also depicted
in the topmost diagram of Fig. 22 (PIM, Business Level,
Business Activity). This object flow is defined as a secure
object flow and models the submission of a credit applica-
tion document, that is, it specifies integrity and confidentiality
properties for the transferred document.

6.1 Modeling the SOA structure

The credit application is submitted by a customer software
component and received by a bank clerk software component

123

http://nm.wu.ac.at/modsec
http://nm.wu.ac.at/modsec

534 B. Hoisl et al.

Fig. 22 Different modeling levels supported by the tool chain

Fig. 23 Static structure of the credit application SOA

(see Fig. 22). In the structural viewpoint of a SOA, this trans-
lates into two interacting participants named BankClerk
and Customer. A corresponding SoaML composite struc-
ture model is shown in Fig. 23.

The Customer and BankClerk participants are con-
nected through a ServiceChannel which carries credit
application submissions. The channel connects the two
participants through their Request and Service ports.

123

Modeling and enforcing secure object flows in process-driven SOAs 535

Fig. 24 Business objects as SoaML message types

The customer request port represents the Customer’s
consuming interaction point. The bclerk service port rep-
resents the corresponding providing interaction point of the
BankClerk participant (see Fig. 23).

The details of service invocations for submitting
credit applications are negotiated by the ports’
protocol, i.e., via an instance of a SecureInterface
named CreditApplicationService. This
SecureInterface defines the required and provided
interfaces for service invocations traveling through the
customer and bclerk ports. The structural part of a
respective protocol identifies a single operation
submitApplication that is defined via the
CreditApplication interface. This operation realizes
the application submission and must be implemented by the
BankClerk participant via its bclerk port (see Fig. 23).

While this section highlights the specification of one
secure object flow only, the composite structure model from
Fig. 23 includes additional ServiceInterfaces that
result from other tasks of the credit application process (see
Fig. 10). For example, the BankClerk participant pro-
vides the CreditCheckService interface via its check
service port.

The CreditApplicationInterface is defined as
a SecureInterface. Corresponding confidentiality and
integrity properties are specified via a UML activity attached
to the SecureInterface. The «SecureInterface»
slot value for isStrict is set to false (see Fig. 23).
Therefore, the SecureInterface is said to be per-
missive (see also Sect. 5.3.1). This is necessary because
service invocations other than the secured application sub-
mission are specified via the same service interface (e.g.,
the updateApplicationStatus function provided
through the CustomerStatus interface,
see Fig. 23).

In addition, we must define a structural model of the busi-
ness objects via SoaML message type specifications. In the
credit application example, we have two types of business
objects (the CreditApplication and the Contract,
see also Sect. 4.1.2). Figure 24 shows the respective SoaML
message type specification for these object types. Note that
in the subsequent steps of our example, we do not use a
document-centric service invocation style, but rather a pro-
cedural invocation style (also referred to as RPC-style). As a
result, message type features (such asappIdorstatusId)

are included in the operation signatures rather than in the
messages.

6.2 Modeling the SOA behavior

After defining the structural model, the control flow and the
object flow for processing credit applications are added to the
SoaML model. In Sect. 6.2.1, we specify the choreography
of the CreditApplicationService interface. Subse-
quently, Sect. 6.2.2 defines the corresponding orchestration
specification.

6.2.1 Choreography specification

ServiceInterface instances can include behavioral
protocol specifications for the corresponding ports (see also
Sect. 5). A behavioral protocol specification defined through
a UML activity can describe various characteristics of a ser-
vice channel. It identifies the Interfaces (grouped by a
ServiceInterface) which depend on each other, the
order and the targets of consecutive operation calls, as well
as the respective invocation patterns (i.e., the choreography).
In addition, input and output dependencies between the oper-
ation calls can be specified via object flows.

For the CreditApplicationService, we must
define a choreography over four Interfaces and their
operations: CreditCheck, CreditApplication,
CustomerStatus, and CreditApplicant (see
Fig. 23). Figure 25 shows a UML activity that mod-
els the corresponding choreography. The choreography
identifies five data-level dependencies in terms of object
flows between the call operation actions. When invok-
ing the newCreditApplication operation, the appId
and content parameters must be provided. Furthermore,
the output parameters of the newCreditApplication
(content and appId) are expected as input parame-
ters for the subsequent submitApplication call. The
fifth dependency specifies that the output parameter of the
checkApplicationForm (statusId) is expected as
the input parameter for theupdateApplicationStatus
action.

To model secure object flows, we tag the corresponding
input and output pins of newCreditApplication and
of submitApplication (see Fig. 25). The other object
flows in the example are ordinary object flows. According
to the constraints for the SecureObjectFlows package (see
Appendix A), any secure target node must support the same
security properties as its source node(s) (see OCL Constraint
5). Therefore, both secure object flows from Fig. 25 (and
all four secure object nodes) support the same confidential-
ity and integrity algorithms (in this example AES-192 and
SHA-1).

123

536 B. Hoisl et al.

Fig. 25 Secure choreography activity

Fig. 26 Consumer (customer) service activity

Fig. 27 Provider (bank clerk) service activity

6.2.2 Orchestration specification

A ServiceActivityNode models the behavior of
a Participant across all service and request ports
(see Sect. 5; [38]). While the choreography for
ServiceInterfaces lays out the order of service invo-
cations for a service channel, a ServiceActivityNode
orchestration specification defines the control and object flow
between service invocations that are controlled by a par-
ticular Participant. In Figs. 26 and 27, we show the
ServiceActivities (i.e., the orchestration specifica-
tions) of the BankClerk and Customer participants.

The Customer service activity is triggered through the
newCreditApplication operation call (see Fig. 26).
As a result of the call request, two variables are stored in
the correspondingReceivePins (appId andcontent).
After receiving the newCreditApplication call, the
Customer executes the submitApplication oper-
ation. The submitApplication action specifies two

SendPins (appId and content) which hold the input
parameters that are transmitted in the corresponding opera-
tion call. The participant then enters a waiting state, until
it receives the updateApplicationStatus request
through its customer port (see Fig. 26).

To ensure consistency between the models, the Secure
ObjectFlows extension requires that SendPins and
ReceivePins, which modelSecureNodes in the chore-
ography (see Fig. 25), also include corresponding security
properties in the respective service activity (see Fig. 26).
Therefore, the SendPins of the submitApplication
action (appId and content) include confidentiality and
integrity properties which refer to the OutputPins of the
newCreditApplication action in the associated invo-
cation protocol (see Figs. 25, 26).

The orchestration specification for the BankClerk
participant is shown in Fig. 27. This specification
stipulates a blocking Send&ReceiveAction on the
checkApplicationForm operation. Thus, after sending

123

Modeling and enforcing secure object flows in process-driven SOAs 537

the request data (i.e., the appId and content), the action
waits for a response which is then stored in theReceivePin
(statusId). Note that the submitApplication
ReceiveAction includes secure object flow annota-
tions (see Fig. 27). Again, the security properties for the
submitApplication action establish a consistency link
between the choreography activity and the respective service
activity (see Figs. 25, 27).

6.3 Intermediary model transformations

After modeling the SOA structure and behavior (see Sects.
6.1, 6.2), the respective models are transformed into an inter-
mediary PIM. We extended the MDD4SOA Eclipse plug-in
[36,39] to automate this step for models that include secure
object flows.

The corresponding processing steps perform model-to-
model transformations via customized rule-based transla-
tions (see, e.g., [42]). In particular, the XMI representation
(XML Metadata Interchange [55]) of the SoaML models
is transformed into an intermediate object model (IOM).
The primary objective of the SoaML-to-IOM transforma-
tion is to bridge between the graph-based UML PIMs (i.e.,
extended UML activities, see Sects. 4, 5) and the block-based
PSMs defined via WS-BPEL (see, e.g., [41]). For example,
in the UML-based PIMs loops are modeled via specific con-
trol nodes and control flow edges between nodes. However,
because our PSM process execution format (WS-BPEL) does
not allow for the definition of graphs that contain cycles, con-
trol flow loops at the PIM-level must be translated to block-
structured loops in the PSMs (see, e.g., [35]).

The XMI representation of the SoaML structure and
behavior models (see Sects. 6.1, 6.2) serves as input for
the intermediary model transformation. Listing 1 shows
an excerpt from the XMI representation for the secure
choreography from Fig. 25. In particular, it shows the
assignment of the activity as ownedBehavior to the
CreditApplicationService class. In addition,
Listing 1 includes the appID and content
ActivityParameterNodes (lines 12–17). An exam-
ple of a «secure» stereotype instance and the respec-
tive slot values are shown in line 30. It refers to the
ActivityParameterNode named content (refer-
enced via id = 4149, see lines 15–17).

The transformation maps the XMI representation of the
SoaML model to the IOM which is implemented on top of
Eclipse’s Ecore facility. The Ecore metamodel is based on
the essential meta object facility (EMOF, [53]) standard and
supported by the Eclipse Modeling Framework (EMF, [83])
project.

The Ecore model of the MDD4SOA IOM provides all
stereotypes that are required by the UML4SOA profile
via Ecore classes (EClass). The MDD4SOA infrastruc-

ture defines three Ecore packages for the intermediary
metamodel: Statik, Behaviour, and Data (see [37]).
The Statik Ecore package contains intermediary abstrac-
tions corresponding to SoaML’s composite structure meta-
model. The structural abstractions include Ecore classes for
participants, service endpoints, and so on. Similarly, the
Behaviour Ecore package provides an EClass for service
activities. In order to transform SecureInterfaces (see
Sects. 5.3, 5.4) and their choreography specifications into any
IOM representation we had to extend the Statik package.
The Data and Behaviour Ecore packages did not need
to be changed. In particular, we had to address the following
requirements to integrate the SOF package (see Sect. 5) into
the IOM.

1 <xmi:XMI [...] >
2 [...]
3 <packagedElement xmi:type="uml:Class" xmi:id="3709" name="

CreditApplicationService" clientDependency="7807"
classifierBehavior="3841">

4 <ownedBehavior xmi:type="uml:Activity" xmi:id="3841" name="
SecureInvocationProtocol" isReentrant="true" partition="
1975">

5 [...]
6 <ownedParameter xmi:id="4081" name="appId" visibility="public

" isStream="true">
7 <type xmi:type="uml:PrimitiveType" href="pathmap: //

UML_LIBRARIES/JavaPrimitiveTypes.library.uml#int"/>
8 </ownedParameter >
9 <ownedParameter xmi:id="4150" name="content" visibility="

public" isStream="true">
10 <type xmi:type="uml:PrimitiveType" href="pathmap: //

UML_LIBRARIES/UMLPrimitiveTypes.library.uml#String"/>
11 </ownedParameter >
12 <node xmi:type="uml:ActivityParameterNode" xmi:id="4080" name

="appId" visibility="public" outgoing="1817"
inPartition="3917" parameter="4081">

13 <type xmi:type="uml:PrimitiveType" href="pathmap: //
UML_LIBRARIES/JavaPrimitiveTypes.library.uml#int"/>

14 </node>
15 <node xmi:type="uml:ActivityParameterNode" xmi:id="4149" name

="content" visibility="public" outgoing="1801"
inPartition="3917" parameter="4150">

16 <type xmi:type="uml:PrimitiveType" href="pathmap: //
UML_LIBRARIES/UMLPrimitiveTypes.library.uml#String"/>

17 </node>
18 <node xmi:type="uml:InitialNode " xmi:id="4295" name=""

visibility="public" outgoing="1831" inPartition="3917"/
>

19 [...]
20 <node xmi:type="uml:CallOperationAction" xmi:id="1593" name="

" visibility="public" outgoing="1767" inPartition="3917
" operation="4236">

21 <argument xmi:id="1604" name="statusId" visibility="public"
incoming="2359" inPartition="3917">

22 <type xmi:type="uml:PrimitiveType" href="pathmap: //
UML_LIBRARIES/JavaPrimitiveTypes.library.uml#int"/>

23 </argument >
24 </node>
25 [...]
26 </ownedBehavior >
27 [...]
28 </packagedElement >
29 [...]
30 <SOF:secure xmi:id="q1kQ" confidentialityAlgorithm="2366"

confidentialityEnsured="true" integrityAlgorithm="2053"
integrityEnsured="true" base_ObjectNode ="4149"/>

31 [...]
32 </xmi:XMI >

Listing 1 XMI excerpt from a secure choreography activity

Transformation Requirement 1 Make all UML stereotypes
defined in the SOF profile package available as model ele-
ments in the Ecore-based IOM.

To meet this requirement, we added the EClass Secure
to the Statik Ecore package (see Fig. 28). The Secure
EClass represents the «secure» stereotype (see Sect. 5.4).
Instances of the Secure EClass describe instances of
the IOM’s InterfaceParameter (see Fig. 28). The
InterfaceParameter EClass represents input and out-
put parameters for InterfaceOperations. Because

123

538 B. Hoisl et al.

Fig. 28 Ecore-based IOM of
the SOF extension

Fig. 29 Excerpt from the IOM object model for the credit application example

the Pin types used in ServiceActivityNodes and
SecureInterface choreography activities map to the
input and output parameters of the corresponding UML oper-
ations, the InterfaceParameter EClass qualifies as an
appropriate extension point for attaching secure object flow
properties at the IOM level.

Transformation Requirement 2 Define transformation
rules for converting an XMI-based into an IOM-based rep-
resentation of secure object flows.

We implemented a converter component to transform
secure object flows into an IOM structure. Figure 29 shows
an excerpt from the IOM model that the converter produced
for the credit application example. In principle, the conver-
sion from SoaML/XMI artifacts into IOM instances involves
three steps: First, we identify theSecureInterfaces and
their owned activities (i.e., the choreography specifications)
from the SoaML/XMI document. Second, the secure object
flows from the choreography specifications that involve an
invocation between two entities (e.g., two distinct ports) are
selected for further processing. Then, the SecureNodes
included in these object flows are mapped to IOM instances
(in particular instances of type InterfaceParameter,
see also Fig. 28). Third, the resulting IOM is serialized into
its Ecore/XMI representation.

6.4 Platform-specific model transformations

After the intermediary model transformations, our extended
MDD4SOA plug-in creates platform-specific models (PSMs)
for a selected execution platform. While our approach is
not limited to this platform family, the MDD tool chain
described in this paper integrates with Web services com-
munication middleware. In particular, the IOM represen-
tations of the SOA composite structure (i.e., the service
interfaces and message type specifications) are transformed
into WSDL interface descriptions [92], and the behavioral
parts (i.e., the service activities) are translated into WS-
BPEL execution specifications [61]. For our credit appli-
cation example, we generate WS-BPEL specifications for
the Apache orchestration director engine (ODE, [2]). The
corresponding secure object flow properties are transformed
into WS-SecurityPolicy statements [63]. Finally, supplemen-
tal artifacts such as deployment descriptors for Apache ODE
are created.

Transformation Requirement 3 Secure object flow prop-
erties of the PIM must be mapped to the PSM.

The WS-SecurityPolicy standard [63] allows to define a
number of security binding properties. In particular, it pro-
vides a list of security algorithm suites for cryptographic
operations with symmetric or asymmetric encryption mech-

123

Modeling and enforcing secure object flows in process-driven SOAs 539

Table 8 Examples for WS-SecurityPolicy algorithm suites

Encryption Aes128 Aes192 Aes256 TripleDes
Digest Sha1 Sha1 Sha1 Sha1

Algorithm suite Basic128 Basic192 Basic256 TripleDes

anisms. To be compliant with the WS-SecurityPolicy stan-
dard, Web service communication middleware must provide
software support for these security bindings (message-level
encryption). Each algorithm suite specifies the actual algo-
rithm and the respective key lengths [63]. Table 8 shows
encryption algorithms and hash functions which can be
applied in the credit application example.

Thus, our extended MDD4SOA plug-in must perform
an automated mapping of secure object flow properties
(i.e., confidentiality and integrity attributes) to the algo-
rithm suites specified by the WS-SecurityPolicy standard.
In the credit application example, the following secu-
rity properties have been defined (see also Figs. 25,
26, 27): confidentialityAlgorithm = Aes192
and integrityAlgorithm = Sha1. Both, encryption
algorithm and integrity algorithm, correspond to the Basic192
algorithm suite of the WS-SecurityPolicy standard (see
Table 8).

Transformation Requirement 4 Implement transformation
rules for converting the IOM/XMI representation into the
PSMs.

Because our PSMs are Web service artifacts, we map
the Ecore representation of the Statik IOM package
(e.g., the EClasses Service, InterfaceOperation,
InterfaceParameter; see Sect. 6.3) to WSDL
descriptions. The artifacts from the Behaviour
package are translated to WS-BPEL definitions (e.g.,
ServiceActivityNode or ServiceProtocol; see
[37]). The EClass from our security extension in the IOM
SOF package is transformed into WS-SecurityPolicy frag-
ments.

The WS-SecurityPolicy specification allows to define
nested policy assertions (see [94]). In principle, the WS-
SecurityPolicy standard defines three attachment points for
policies (called policy subjects, see [93]):

Endpoint policy subject A policy that applies to the ser-
vice at the endpoint level.
WSDL attachment points: wsdl:binding and
wsdl:port.

Operation policy subject A policy on a per-operation
basis. WSDL attachment points: wsdl:binding/
wsdl:operation.

Message policy subject A policy at the message level.
WSDL attachment points:
wsdl:binding/wsdl:operation/wsdl:input,
wsdl:binding/wsdl:operation/wsdl:output,
and
wsdl:binding/wsdl:operation/wsdl:fault.

A benefit of the SecureObjectFlows extension is its abil-
ity to model data security properties at the level of individual
object flows. Therefore, we are able to model confidentiality
and integrity requirements of single invocation parameters,
if necessary. This level of detail can be expressed through the
Message Policy Subject of the WS-SecurityPolicy specifica-
tion (see above).

We implemented a converter which adds WS-
SecurityPolicy statements to the WSDL interface descrip-
tions (see Listing 2 for an example). In particular, we need
to find all InterfaceParameters from the IOM which
include confidentiality and integrity properties.
For every secured InterfaceParameter, we must
identify the corresponding WS-SecurityPolicy algorithm
suite (see Table 8). Next, we have to generate
a policy assertion for each interface parameter with the cor-
respondingSignedElements, EncryptedElements,
ContentEncryptedElements, and
AlgorithmSuite (see Listing 2, lines 3–22). Subse-
quently, each message parameter in the binding definition
of the WSDL document is extended to contain a refer-
ence to the corresponding policy assertion in terms of a
PolicyReference statement (see Listing 2, line 30).

1 <definitions [...] name="bclerk" [...] >
2 [...]
3 <wsp:Policy wsu:Id="sp_submitApplication_input_appId ">
4 <wsp:ExactlyOne >
5 <wsp:All >
6 <sp:SignedElements >
7 <sp:XPath >/Envelope/Body// appId </sp:XPath >
8 </sp:SignedElements >
9 <sp:EncryptedElements >

10 <sp:XPath >/Envelope/Body// appId </sp:XPath >
11 </sp:EncryptedElements >
12 <sp:ContentEncryptedElements >
13 <sp:XPath >/Envelope/Body// appId </sp:XPath >
14 </sp:ContentEncryptedElements >
15 <sp:AlgorithmSuite >
16 <wsp:Policy >
17 <sp:Basic192/>
18 </wsp:Policy >
19 </sp:AlgorithmSuite >
20 </wsp:All >
21 </wsp:ExactlyOne >
22 </wsp:Policy >
23 [...]
24 <binding name="bclerk_binding" type="this:bclerk">
25 <soap:binding style="rpc" transport="http: // schemas.xmlsoap.org

/soap/http"/>
26 <operation name="submitApplication">
27 <soap:operation soapAction="submitApplication"/>
28 <input name="submitApplication_input">
29 <soap:body namespace="http: //www.mdd4soa.eu/generated/

BankClerk/" use="literal"/>
30 <wsp:PolicyReference URI="#sp_submitApplication_input_appId

" required="true"/>
31 [...]
32 </input >
33 </operation >
34 [...]
35 </binding >
36 [...]
37 </definitions >

Listing 2 Excerpt from a WSDL document with WS-SecurityPolicy
assertions

123

540 B. Hoisl et al.

Transformation Requirement 5 Execution of generated
PSMs in a selected environment.

The credit application example was deployed in the
Apache ODE 1.3.5. Apache Axis2 [1] serves as the integra-
tion layer for the communication over Web services. Apache
Rampart (the security module of Axis2; [3]) enforces the
corresponding WS-SecurityPolicy specifications. With the
automated creation of deployment descriptors, we realize
the integrated model-driven specification of secure object
flows from the CIM and PIM levels down to the execution
of the PSM in a specific platform environment (here: a SOA
environment).

7 Related work

We use three main characteristics to review related app-
roaches: 1) whether a formal and generic metamodel (CIM)
is provided, 2) whether modeling support (for PIMs) is pro-
vided, and 3) whether an integrated tool chain is available
(including automated model transformations into PSMs). For
each of these characteristics, we further consider multiple
sub-criteria. Table 9 shows an overview of related work on
modeling of secure object flows for process-driven SOAs.
With respect to the concepts and artifacts specified in Sects.
3–6, we use a

√
if a related approach provides similar or com-

parable support for a certain concept; and a � if a related
approach provides at least partial support for a particular
concept.

Wolter et al. [89,90] presented an approach to model
security goals in business processes. The security goals are
mapped to a workflow model, and finally to executable Web
service specifications. Wolter et al. provide generic meta-
models for security properties that are expressed via con-
cept diagrams which loosely resemble UML class diagrams,
whereas the workflow models use BPMN (see also [91]).
Informal semantics can be derived from UML-like secu-
rity policy diagrams and the assisting comments. However,
they do not provide an integrated metamodel for the busi-
ness process view and crosscutting security views (neither
at the CIM nor at PIM level). As a result, Wolter et al.
only sketch their model transformation framework. In par-
ticular, they do not describe how the model transformations
actually merge the security goals and the BPMN process
descriptions to produce platform-specific Web service arti-
facts. Furthermore, the behavioral model view (BPMN) only
provides model annotations for security properties without
processable or formalized semantic constraints. Therefore,
the approach does not support the specification of security
properties for object flows at various abstraction levels (such
as process assets, process execution data, invocation data,
messages). Regarding tool support, the authors provide an
overview of a transformation framework based on annotated

XMI representations of BPMN models. However, a detailed
discussion of how the security properties are integrated with
the XMI representation is missing.

Gilmore et al. [20] discuss modeling of non-functional
aspects for service-oriented systems. They define a UML pro-
file based on the SoaML that supports the definition of non-
functional properties (performance, reliable messaging, and
security). Similar to our work, the approach of Gilmore et al.
uses the UML4SOA extension [36,38,39]. However, in con-
trast to [20] our work is based on a formal and generic meta-
model (CIM) that integrates the process flow view with our
security extension (see also [85]). Thus, in principle, our CIM
for secure object flows can be used to extend arbitrary process
modeling languages. Moreover, Gilmore et al. treat security
specifications along with non-functional properties such as
QoS and emphasize a (predominantly) structural view on
security properties. The structural view especially includes
non-functional contracts that are associated with SoaML
interfaces. However, this design choice also limits the expres-
siveness, in particular, security properties cannot be specified
at different abstraction levels (such as message parts, scope of
single invocations, or context dependencies). Gilmore et al.
define non-functional properties as part of a service interface.
Therefore, a contract specifies requirements for every inter-
action between the corresponding participants. Thus, it is not
possible to define security properties at the level of individual
service invocations or at the level of separate message para-
meters. In contrast, our secure object flows provide means for
a much more fine-grained specification of security properties
from the CIM to the PSM level. However, the approach from
[20] could be integrated with our approach. The level of ser-
vice contracts could add an additional, global specification
scope for integrity and confidentiality properties.

Jürjens et al. present UMLsec [32,33], a UML pro-
file that supports the definition of various security prop-
erties. For example, UMLsec is used to define and verify
cryptographic protocols. Moreover, data confidentiality and
integrity stereotypes can define dependencies in static struc-
ture or component diagrams. While UMLsec does not explic-
itly target SOAs, it could be integrated with other UML-
based approaches such as the SoaML with moderate effort.
Jürjens et al. offer tool support for running static and behav-
ioral checks and a permission analyzer for access control
mechanisms (see [78]). The original UMLsec approach was
defined using UML 1.5 [32]. Recently, they introduced a cor-
responding UML 2.3 profile [78] as well as Eclipse-MDT-
based tool support [88]. However, regarding model-driven
development UMLsec does not (yet) provide a model trans-
formation framework and, consequently, does not address
platform integration issues. Therefore, UMLsec is well-
suited to be integrated with our approach. For example,
UMLsec models can be supported by our model transfor-
mation framework to target other (non-SOA) platforms.

123

Modeling and enforcing secure object flows in process-driven SOAs 541

Ta
bl

e
9

Se
cu

re
ob

je
ct

flo
w

s
fo

r
pr

oc
es

s-
dr

iv
en

SO
A

s:
re

la
te

d
w

or
k

In
te

gr
ity

an
d

co
nfi

de
nt

ia
lit

y
Fo

rm
al

an
d

ge
ne

ri
c

m
et

am
od

el
(C

IM
)

In
te

gr
at

ed
m

et
am

od
el

(C
IM

,
PI

M
,P

SM
)

Fo
rm

al
se

m
an

tic
s

Se
pa

ra
tio

n
of

co
nc

er
ns

M
ul

tip
le

m
od

el
vi

ew
s

M
ul

tip
le

re
fin

em
en

t
le

ve
ls

To
ol

su
pp

or
t

M
od

el
tr

an
sf

or
m

at
io

n
fr

am
ew

or
k

M
od

el
-d

ri
ve

n
se

c.
re

qu
ir

em
en

ts
pe

c.
[8

9,
90

]

√
�

�
√

N
on

-f
un

ct
io

na
l

pr
op

er
tie

s
in

M
D

D
[2

0]

√
√

�
�

�
�

√

M
od

el
-d

ri
ve

n
se

cu
ri

ty
[5

]

√
�

√
�

√
�

Se
cu

re
sy

s.
de

ve
lo

pm
en

tw
ith

U
M

L
[3

2,
33

]

√
√

�
√

�
√

√
�

In
te

r-
or

g.
w

or
kfl

ow
se

c.
[2

1–
24

,4
0]

√
�

√
�

�
√

√
√

√

Se
c.

fo
r

W
S-

ba
se

d
bu

si
ne

ss
pr

oc
es

se
s

[3
1]

√
√

�
√

Se
cu

re
bu

si
ne

ss
pr

oc
es

s
m

od
el

sp
ec

.
[6

6,
67

]

√
�

�
�

�
�

M
D

D
of

se
cu

ri
ty

as
pe

ct
s

[6
5]

�
�

�
�

√

M
D

A
ap

pr
oa

ch
to

ac
ce

ss
co

nt
ro

ls
pe

c.
[1

5]

�
√

�
�

�

G
en

er
at

iv
e

ar
ch

.f
or

m
od

el
-d

ri
ve

n
se

c.
[6

8]

√
�

�
√

�
√

M
od

el
-d

ri
ve

n
se

cu
ri

ty
ba

se
d

on
W

S
[4

4,
86

]

√
�

�
�

Se
cu

re
ob

je
ct

flo
w

s
(o

ur
ap

pr
oa

ch
)

√
√

√
√

√
√

√
√

√

123

542 B. Hoisl et al.

The SECTET framework [21–24,40] aims at support-
ing the design and implementation of security-critical inter-
organizational workflows based on Web services. The
approach includes a metamodel consisting of multiple UML
class diagrams. However, SECTET is not based on a formal
CIM. Yet, because SECTET is based on the UML, the respec-
tive PIMs are (implicitly) based on a common metamodel
(i.e., the UML metamodel). Nevertheless, SECTET does not
use SOA-related UML extensions (such as the SoaML). For-
mal semantics for SECTET models are specified via a cus-
tom, OCL-like constraint language. A global workflow view
is used for specifying message exchange contracts between
service providers and service consumers. However, security
properties of object flows between service invocations are
not covered.

In [31], Jensen and Feja extend a proprietary MDD soft-
ware tool for modeling SOA-based security properties. The
approach uses event-driven process chains (EPCs), but does
not provide a formal and generic CIM. Security models are
defined separately from process models and add security-
related notation elements to different workflow elements.
Security and process models are integrated via a model trans-
formation step. However, the approach does not provide for-
mal semantics for the process-related security properties. In
addition, the security properties are defined for the scope of
a single process engine (rather than for a collaboration of
service partners).

Rodríguez et al. [66,67] present a UML profile to model
security requirements via UML activities. Separation of con-
cerns and multi-level specification of security properties
are not supported. The approach provides a single process-
related view, yet, it could be extended with additional views
provided in our approach. Rodríguez et al. describe PIM
transformations to use case and class diagrams. However,
they do not define PSM transformations. The PIM transfor-
mation rules are specified via QVT [54], but they are not inte-
grated with the overall tool chain. In [67], they describe the
modeling of security requirements in BPMN and the corre-
sponding model-to-model transformations into UML activ-
ity diagrams. Rodríguez et al. do not provide a formal and
generic metamodel (CIM).

Reznik et al. [65] address the automatic generation of
security-critical applications for different middleware plat-
forms. The approach defines a UML profile for an adapted
subset of the UML metamodel. Corresponding PIMs are
mapped to a security-extended CORBA component model.
While their PIMs are based on a UML subset, Reznik et al.
redefine some parts of the UML metamodel. As a result, the
corresponding subset it is not compliant with the UML stan-
dard. Moreover, because their UML profile is based on the
adapted UML subset it is not supported by standard UML
tools. The approach of Reznik et al. does neither provide a

CIM nor does it discuss multi-view modeling or refinement
of security properties.

In [68], Sanchez et al. present a model-driven approach for
the definition of different security properties. The approach
is based on multi-stage, automatic model transformations.
The generic metamodel of the approach is defined as a UML
M1 class diagram. Sanchez et al. do not provide a CIM, they
emphasize that their approach is limited to a specific model-
ing language. In [68], they describe a custom modeling lan-
guage that uses the Eclipse Ecore facility. Hence, regarding
syntax and semantic, their generic UML-based metamodel
does not integrate seamlessly with their custom modeling
language.

Nakamura et al. [44] and Tatsubori et al. [86] present a
toolkit for generating Web service security configurations.
UML class models are applied to provide a structural view
on a SOA. In addition, they provide stereotypes to define
selected security properties. However, the corresponding
UML profile is defined in an ad-hoc fashion and does not
conform to the UML standard. Process views are not consid-
ered, but could be added via an extension of their approach.
Nakamura et al. and Tatsubori et al. neither define a formal or
generic metamodel (CIM) nor do they discuss formal seman-
tics or issues regarding separation of concerns.

In addition to the approaches described above, multiple
other model-driven security approaches exist that do not
address the modeling of secure object flows but focus on
other process-related security aspects. For example, Fink et
al. [15] propose to generate access control specifications from
MOF-based models, and Basin et al. [5] specify access con-
trol properties via domain-specific UML profiles.

8 Conclusion

In this paper, we presented an integrated approach to model
and to enforce secure object flows in process-driven SOAs. In
particular, we provide a generic metamodel (CIM) for secure
object flows, a corresponding UML extension to define
platform-independent models (PIM), a model transformation
framework for PIM-to-PSM transformations for Web service
artifacts, as well as corresponding tool support. Our approach
enables the continuous specification and the enforcement of
confidentiality and integrity properties for object flows in
business processes that are executed in a distributed sys-
tem. Moreover, secure object flows are a part of the Busi-
ness Activities framework and are thereby directly integrated
with extensions for the specification, for checking, and for
the enforcement of other security properties, such as access
control or audit rules (see, e.g., [6,28,30,71–76,84,85]).

Our approach follows the model-driven development
paradigm. At the PIM level, we provide both a metamodel

123

Modeling and enforcing secure object flows in process-driven SOAs 543

extension for secure object flows (see Sect. 4) as well as a cor-
responding UML profile (see Sect. 5). For both extensions,
we provide OCL constraints that define consistency require-
ments for the corresponding modeling artifacts. Therefore,
each valid secure object flow must conform to the respective
OCL constraints. Our metamodel extension provides specif-
ically tailored UML elements. It can be used to extend future
versions of UML tools with native modeling support for
secure object flows. In contrast, a UML profile adapts exist-
ing UML metaclasses for non-standard purposes. In our case,
it extends the SoaML/UML4SOA with modeling support for
secure object flows. Because most UML tools directly sup-
port the definition of profiles, it is comparatively easy to inte-
grate UML profiles in a software tool. Our tool support for
secure object flows in process-driven SOAs is based on the
Eclipse Model Development Tools (see Sect. 6). Our model
transformation framework generates WS-BPEL, WSDL, and
WS-SecurityPolicy artifacts. The generated artifacts were
deployed in the Apache orchestration director engine (ODE).
Apache Axis2 serves as the integration layer for the commu-
nication over Web services. Apache Rampart enforces the
corresponding WS-SecurityPolicy specifications. However,
note that our approach is generic and does neither depend on
the UML nor on a specific software tool or runtime environ-
ment. Thus, it can also be applied to extend other modeling
languages or other software tools.

In addition to the main contributions of this paper,
we also gained numerous other experiences and insights.
Some of which are specific to certain design artifacts. For
example, during the tool integration, it turned out that the
UML4SOA extension [38] deviates from the UML standard
by using an AcceptCallAction with the «Receive»
stereotype for defining an event or message listener (i.e., a
ServiceReceiveAction). Moreover, it demands that a
specific stereotype is defined on the corresponding input pins.
However, the resulting constraint is not compliant with the
UML standard. This small yet important anomaly directly
influenced the tool integration and corresponding PIM-to-
PSM transformations. In general, such small anomalies may
always occur if one integrates different modeling extensions
in a consolidated tool environment.

In our future work, we will extend the Business Activ-
ities framework to provide an integrated environment for
the model-driven specification, checking, deployment, and
enforcement of secure business processes in distributed sys-
tems.

Appendix A: Constraints for the SecureObjectFlows
package

This section provides the complete list of OCL-expressions
for the UML extension specified in Sect. 4.

OCL Constraint 1 The confidentialityEnsured attribute of the
SecureNode classifier is derived from the confidentialityAlgorithm
attribute and evaluates to true if a confidentiality-related security prop-
erty is supported.

1 context SecureObjectFlows :: SecureNode :: confidentialityEnsured :
Boolean

2 derive: confidentialityAlgorithm ->notEmpty ()

OCL Constraint 2 The integrityEnsured attribute of the
SecureNode classifier is derived from the integrityAlgorithm attribute.
It evaluates to true if an integrity-related security property is supported.

1 context SecureObjectFlows :: SecureNode :: integrityEnsured : Boolean
2 derive: integrityAlgorithm ->notEmpty ()

OCL Constraint 3 A secure object node must ensure either or both
the confidentiality and the integrity.

1 context SecureObjectFlows :: SecureNode
2 inv: self.confidentialityEnsured or
3 self.integrityEnsured

OCL Constraint 4a The successor object node of a secure object flow
must also be a secure object node.7

1 context SecureObjectFlows :: SecureNode
2 def: allSuccessors(node : ActivityNode) : Set(ActivityNode) =

node.outgoing.target ->collect(x |
3 allSuccessors(x))->asSet ()->union(node.outgoing.target)
4 inv: allSuccessors(self)->select(oclIsKindOf(ObjectNode))->

forAll(node |
5 node.oclIsKindOf(SecureNode))

OCL Constraint 4b The successor object node of a secure object flow
must also be a secure object node.8

1 context SecureObjectFlows :: SecureNode
2 def: allSuccessors(node : ActivityNode) : Set(ActivityNode) =

node.outgoing.target ->closure(x |
3 x.outgoing.target)->asSet ()->union(node.outgoing.target)
4 inv: allSuccessors(self)->select(oclIsKindOf(ObjectNode))->

forAll(node |
5 node.oclIsKindOf(SecureNode))

OCL Constraint 5 The successor secure object nodes must support
the same security properties as the corresponding source secure object
node.

1 context SecureObjectFlows :: SecureNode
2 inv: allSuccessors(self)->select(oclIsKindOf(SecureNode))->

forAll(node |
3 node.oclAsType(SecureNode).confidentialityEnsured implies
4 node.oclAsType(SecureNode).confidentialityAlgorithm =

self.confidentialityAlgorithm)
5 inv: allSuccessors(self)->select(oclIsKindOf(SecureNode))->

forAll(node |
6 node.oclAsType(SecureNode).integrityEnsured implies
7 node.oclAsType(SecureNode).integrityAlgorithm = self.

integrityAlgorithm)

OCL Constraint 6a All secure object nodes having the same target
secure object node must support identical security properties. 9

1 context SecureObjectFlows :: SecureNode
2 def: allPredecessors (node : ActivityNode) : Set(ActivityNode) =

node.incoming.source ->collect(x |
3 allPredecessors (x))->asSet ()->union(node.incoming.source)
4 inv: allPredecessors (self)->select(oclIsKindOf(SecureNode))->

forAll(node |
5 node.oclAsType(SecureNode).confidentialityEnsured implies
6 node.oclAsType(SecureNode).confidentialityAlgorithm =

self.confidentialityAlgorithm)
7 inv: allPredecessors (self)->select(oclIsKindOf(SecureNode))->

forAll(node |
8 node.oclAsType(SecureNode).integrityEnsured implies
9 node.oclAsType(SecureNode).integrityAlgorithm = self.

integrityAlgorithm)

OCL Constraint 6b All secure object nodes having the same target
secure object node must support identical security properties. 10

7 This constraint conforms to the OCL standard version 2.2 [56].
8 This constraint conforms to the OCL standard version 2.3.1 [57].
9 This constraint conforms to the OCL standard version 2.2 [56].
10 This constraint conforms to the OCL standard version 2.3.1 [57].

123

544 B. Hoisl et al.

1 context SecureObjectFlows :: SecureNode
2 def: allPredecessors (node : ActivityNode) : Set(ActivityNode) =

node.incoming.source ->closure(x |
3 x.incoming.source)->asSet ()->union(node.incoming.source)
4 inv: allPredecessors (self)->select(oclIsKindOf(SecureNode))->

forAll(node |
5 node.oclAsType(SecureNode).confidentialityEnsured implies
6 node.oclAsType(SecureNode).confidentialityAlgorithm =

self.confidentialityAlgorithm)
7 inv: allPredecessors (self)->select(oclIsKindOf(SecureNode))->

forAll(node |
8 node.oclAsType(SecureNode).integrityEnsured implies
9 node.oclAsType(SecureNode).integrityAlgorithm = self.

integrityAlgorithm)

Appendix B: Constraints for the SecureObjectFlows::
Services package

This section provides the complete list of OCL constraints
for the UML extension specified in Sect. 5.

OCL Constraint 7 ASecureInterfacemust own anActivity
instance as its owned behavior.

1 context SecureObjectFlows :: Services :: SecureInterface
2 inv: self.ownedBehavior ->one(oclIsKindOf(Activity))

OCL Constraint 8 In strict mode all cross-interface object flows must
be secured.11

1 context SecureObjectFlows :: Services :: SecureInterface
2 def: allPredecessors (node : ActivityNode) : Set(ActivityNode) =

node.incoming.source ->collect(x |
3 allPredecessors (x))->asSet ()->union(node.incoming.source)
4 inv: self.isStrict implies
5 self.ownedBehavior.oclAsType(Activity).node ->select(

oclIsKindOf(ObjectNode))->forAll(node |
6 allPredecessors (node)->select(incoming ->isEmpty ())->

forAll(s |
7 s.inPartition <> node.inPartition implies
8 s.oclIsKindOf(SecureNode) and node.oclIsKindOf(

SecureNode)))

OCL Constraint 9 All Actions must be instances of
CallOperationAction and each CallOperationAction’s
operation enclosed by a given partition must correspond to an
Operation owned by the Interface denoted by this partition.

1 context SecureObjectFlows :: Services :: SecureInterface
2 inv: self.ownedBehavior.oclAsType(Activity).node ->select(

oclIsKindOf(Action))->forAll(a |
3 a.oclIsKindOf(CallOperationAction) and
4 self.part ->any(name = a.inPartition ->any(true).name).type

.oclAsType(Interface).ownedOperation ->
5 includes(a.oclAsType(CallOperationAction).operation))

OCL Constraint 10 Corresponding secure object nodes must reside
in different partitions.12

1 context SecureObjectFlows :: Services :: SecureNode
2 def: allPredecessors (node : ActivityNode) : Set(ActivityNode) =

node.incoming.source ->collect(x |
3 allPredecessors (x))->asSet ()->union(node.incoming.source)
4 inv: allPredecessors (self)->select(incoming ->isEmpty () and
5 oclIsKindOf(SecureNode))->forAll(s | s.inPartition <> self

.inPartition)

OCL Constraint 11 All activity nodes must be assigned to and must
be contained by exactly one and only one activity partition.

11 Here, an OCL 2.3.1 compliant definition is omitted. For an OCL 2.3.1
compliant definition of allPredecessors() see OCL Constraint
6b in Appendix A.
12 Here, an OCL 2.3.1 compliant definition is omitted. For an OCL 2.3.1
compliant definition of allPredecessors() see OCL Constraint
6b in Appendix A.

1 context SecureObjectFlows :: Services :: SecureInterface
2 inv: self.ownedBehavior.oclAsType(Activity).node ->forAll(

inPartition ->size() = 1)

OCL Constraint 12 Only InputPins, OutputPins, and
ActivityParameterNodes can be secured. All secured Input-
Pins must have an incoming object flow; all secured OutputPins
must have an outgoing object flow. Secured ActivityParameter-
Nodes must either be connected to an incoming object flow, to an
outgoing object flow, or to both; depending on the parameter direction.

1 context SecureObjectFlows :: Services :: SecureNode
2 inv: self.oclIsKindOf(InputPin) or self.oclIsKindOf(OutputPin)

or self.oclIsKindOf(ActivityParameterNode)
3 inv: self.oclIsKindOf(InputPin) implies self.incoming ->notEmpty

()
4 inv: self.oclIsKindOf(OutputPin) implies self.outgoing ->

notEmpty ()
5 inv: self.oclIsKindOf(ActivityParameterNode) implies
6 (self.oclAsType(ActivityParameterNode).parameter.

direction = ParameterDirectionKind ::in or
7 self.oclAsType(ActivityParameterNode).parameter.direction

= ParameterDirectionKind :: inout implies
8 self.incoming ->notEmpty ()) and
9 (self.oclAsType(ActivityParameterNode).parameter.

direction = ParameterDirectionKind ::out or
10 self.oclAsType(ActivityParameterNode).parameter.direction

= ParameterDirectionKind :: inout or
11 self.oclAsType(ActivityParameterNode).parameter.direction

= ParameterDirectionKind :: return implies
12 self.outgoing ->notEmpty ())

OCL Constraint 13 All ActivityParameterNodes which are
not initial or final nodes in a control and data flow but counterparts of
intermediary InputPins and OutputPins must refer to a stream-
ing Parameter.13

1 context SecureObjectFlows :: Services :: SecureInterface
2 def: isFirstNode(a : ActivityNode) : Boolean =
3 a.owner.oclAsType(Activity).node ->select(oclIsKindOf(

InitialNode))->exists(outgoing.target ->any(true) =
a) or

4 a.owner.oclAsType(Activity).node ->select(oclIsKindOf(
ActivityNode) and incoming ->isEmpty ())->includes(a)

5 def: isLastNode(a : ActivityNode) : Boolean =
6 a.owner.oclAsType(Activity).node ->select(oclIsKindOf(

ActivityFinalNode))->exists(incoming.source ->any(
true) = a) or

7 a.owner.oclAsType(Activity).node ->select(oclIsKindOf(
ActivityNode) and outgoing ->isEmpty ())->includes(a)

8 def: allSuccessors(node : ActivityNode) : Set(ActivityNode) =
node.outgoing.target ->collect(x |

9 allSuccessors(x))->asSet ()->union(node.outgoing.target)
10 inv: self.ownedBehavior.oclAsType(Activity).node ->select(

oclIsKindOf(ActivityNode))->forAll(an |
11 (not isFirstNode(an) implies
12 an.input ->forAll(ipin | allPredecessors (ipin)->select(

oclIsKindOf(ActivityParameterNode))->forAll(
13 oclAsType(ActivityParameterNode).parameter.isStream))

) and
14 (not isLastNode(an) implies
15 an.output ->forAll(opin | allSuccessors(opin)->select(

oclIsKindOf(ActivityParameterNode))->forAll(
16 oclAsType(ActivityParameterNode).parameter.isStream))

))

OCL Constraint 14 All source object nodes of a set of InputPins
owned by a CallOperationAction must be assigned to the same
activity partition.

1 context UML:: ObjectNode
2 inv: self.activity.owner.oclIsKindOf(SecureInterface) and
3 self.oclIsKindOf(InputPin) implies
4 self.oclAsType(InputPin).owner.oclAsType(

CallOperationAction).input ->forAll(ipin |
5 allPredecessors (ipin)->select(incoming ->isEmpty () and

oclIsKindOf(ObjectNode))->forAll(on1 ,on2 |
6 on1.inPartition = on2.inPartition))

OCL Constraint 15 If provided for a Participant, the
ServiceActivityNode must contain a corresponding and com-
patible SecureSendPin for each secured InputPin in a chore-
ography activity; provided that a) there is a choreography activity in

13 Here, an OCL 2.3.1 compliant definition is omitted. For an OCL 2.3.1
compliant definition of allSuccessors() see OCL Constraint 4b
in Appendix A.

123

Modeling and enforcing secure object flows in process-driven SOAs 545

the first place, and that b) the CallOperationAction owning the
InputPin and the ServiceInteractionAction owning the
SecureSendPin share the Operation (required from the same
Interface).

1 context UML4SOA :: ServiceActivityNode
2 inv: self.node ->select ((oclIsKindOf(ServiceSendAction) or

oclIsKindOf(ServiceReplyAction)) and
3 oclAsType(ServiceInteractionAction).input ->select(

oclIsKindOf(SecureSendPin)))->forAll(sa |
4 let p : Port =
5 if oclIsKindOf(ServiceSendAction)
6 then sa.oclAsType(ServiceSendAction).target.oclAsType(

Port)
7 else sa.oclAsType(ServiceReplyAction).returnInformation

.oclAsType(Port)
8 endif
9 in

10 p.type.oclAsType(SecureInterface) and
11 p.type.oclAsType(SecureInterface).ownedBehavior.

oclAsType(Activity).node ->select(
12 let op : Operation =
13 if oclIsKindOf(ServiceSendAction)
14 then sa.oclAsType(ServiceSendAction).operation
15 else sa.oclAsType(ServiceReplyAction).replyToCall.

oclAsType(CallEvent).operation
16 endif
17 in
18 oclIsKindOf(CallOperationAction) and
19 oclAsType(CallOperationAction).operation = op)->

forAll(
20 oclAsType(CallOperationAction).input ->select(

oclIsKindOf(SecureNode))->forAll(i |
21 sa.input ->exists(
22 name = i.name and
23 type = i.type and
24 (i.oclAsType(SecureNode).integrityEnsured =

oclAsType(SecureNode).integrityEnsured)
implies

25 i.oclAsType(SecureNode).integrityAlgorithm
= oclAsType(SecureNode).
integrityAlgorithm and

26 (i.oclAsType(SecureNode).
confidentialityEnsured = oclAsType(
SecureNode).confidentialityEnsured)
implies

27 i.oclAsType(SecureNode).
confidentialityAlgorithm = oclAsType(
SecureNode).confidentialityAlgorithm)
)))

OCL Constraint 16 If provided for a Participant, the
ServiceActivityNode must contain a corresponding and com-
patible SecureReceivePin for each secured OutputPin in a
choreography activity; provided that a) there is a choreography activity
in the first place, and that b) the CallOperationAction own-
ing the OutputPin and the ServiceReceiveAction owning
the SecureReceivePin share the Operation (required from the
same Interface).

1 context UML4SOA :: ServiceActivityNode
2 inv: self.node ->select(oclIsKindOf(ServiceReceiveAction) and
3 oclAsType(ServiceReceiveAction).output ->select(oclIsKindOf

(SecureReceivePin)))->forAll(sa |
4 sa.oclAsType(ServiceReceiveAction).returnInformation.

oclAsType(Port).type.oclAsType(SecureInterface) and
5 sa.oclAsType(ServiceReceiveAction).returnInformation.

oclAsType(Port).type.oclAsType(SecureInterface).
ownedBehavior.oclAsType(

6 Activity).node ->select(
7 oclIsKindOf(CallOperationAction) and
8 oclAsType(CallOperationAction).operation = sa.

oclAsType(ServiceReceiveAction).trigger ->
9 any(true).oclAsType(CallEvent).operation)->forAll(

10 oclAsType(CallOperationAction).input ->select(
oclIsKindOf(SecureNode))->forAll(i |

11 sa.output ->exists(
12 name = i.name and
13 type = i.type and
14 (i.oclAsType(SecureNode).integrityEnsured =

oclAsType(SecureNode).integrityEnsured)
implies

15 i.oclAsType(SecureNode).integrityAlgorithm
= oclAsType(SecureNode).
integrityAlgorithm and

16 (i.oclAsType(SecureNode).
confidentialityEnsured = oclAsType(
SecureNode).confidentialityEnsured)
implies

17 i.oclAsType(SecureNode).
confidentialityAlgorithm = oclAsType(
SecureNode).confidentialityAlgorithm)
)))

References

1. Apache Software Foundation (ASF): Apache Axis2. http://axis.
apache.org/axis2/java/core/ (2012)

2. Apache Software Foundation (ASF): Apache ODE. http://ode.
apache.org (2012)

3. Apache Software Foundation (ASF): Apache Rampart—Axis2
Security Module. http://axis.apache.org/axis2/java/rampart/
(2012)

4. Axenath, B., Kindler, E., Rubin, V.: AMFIBIA: a meta-model for
the integration of business process modelling aspects. In: Leymann,
F., Reisig, W., Thatte, S., van der Aalst, W. (eds.) The Role of
Business Processes in Service Oriented Architectures, Dagstuhl
Seminar Proceedings (2006)

5. Basin, D., Doser, J., Lodderstedt, T.: Model driven security: from
UML models to access control infrastructures. ACM Transact.
Softw. Eng. Methodol. (TOSEM) 15(1), 39–91 (2006)

6. Baumgrass, A., Baier, T., Mendling, J., Strembeck, M.: Confor-
mance checking of RBAC policies in process-aware information
systems. In: Proceedings of the Workshop on Workflow Security
Audit and Certification (WfSAC), Lecture Notes in Business Infor-
mation Processing (LNBIP), vol. 100. Springer, Berlin (2011)

7. Cannon, J., Byers, M.: Compliance deconstructed. ACM Queue
4(7), 30–37 (2006)

8. Committee on National Security Systems (CNSS): National Infor-
mation Assurance (IA): glossary. http://www.cnss.gov/Assets/pdf/
cnssi_4009.pdf (2010)

9. Damianides, M.: How does SOX change IT? J. Corp. Account.
Finance 15(6), 35–41 (2004)

10. Eclipse Foundation: Eclipse IDE. http://www.eclipse.org (2012)
11. Eclipse Foundation: Eclipse model development tools (MDT).

http://www.eclipse.org/modeling/mdt/ (2012)
12. Eclipse Foundation: Eclipse Papyrus. http://www.eclipse.org/

modeling/mdt/papyrus/ (2012)
13. Elvesæter, B., Berre, A.-J., Sadovykh, A.: Specifying ser-

vices using the service oriented architecture modeling language
(SoaML)—a baseline for specification of cloud-based services. In:
Proceedings of the 1st International Conference on Cloud Comput-
ing and Services Science (CLOSER’11), pp. 276–285. SciTePress
(2011)

14. Elvesæter, B., Carrez, C., Mohagheghi, P., Berre, A.-J., Johnsen,
S., Solberg, A.: Model-driven service engineering with SoaML.
In: Service Engineering—European Research Results, pp. 25–54.
Springer, Berlin (2011)

15. Fink, T., Koch, M., Pauls, K.: An MDA approach to access control
specifications using MOF and UML profiles. In: Electronic Notes
in Theoretical Computer Science, pp. 161–179 (2006)

16. International Organization for Standardization (ISO): Infor-
mation technology: security techniques—code of practice
for information security management, ISO/IEC 27002:2005,
Stage: 90.92. http://www.iso.org/iso/iso_catalogue/catalogue_tc/
catalogue_detail.htm?csnumber=50297 (2008)

17. International Organization for Standardization (ISO): Infor-
mation technology: security techniques—information secu-
rity management systems—requirements, ISO/IEC 27001:2005,
Stage: 90.92. http://www.iso.org/iso/iso_catalogue/catalogue_tc/
catalogue_detail.htm?csnumber=42103 (2008)

18. International Organization for Standardization (ISO): Information
technology—security techniques—information security manage-
ment systems—overview and vocabulary, ISO/IEC 27000:2009,
Stage: 60.60. http://www.iso.org/iso/iso_catalogue/catalogue_tc/
catalogue_detail.htm?csnumber=41933 (2009)

19. Foster, H., Gönczy, L., Koch, N., Mayer, P., Montangero, C., Varró,
D. UML extensions for service-oriented systems. In: Wirsing,
M., Hölzl, M. (eds.) Rigorous Software Engineering for Service-

123

http://axis.apache.org/axis2/java/core/
http://axis.apache.org/axis2/java/core/
http://ode.apache.org
http://ode.apache.org
http://axis.apache.org/axis2/java/rampart/
http://www.cnss.gov/Assets/pdf/cnssi_4009.pdf
http://www.cnss.gov/Assets/pdf/cnssi_4009.pdf
http://www.eclipse.org
http://www.eclipse.org/modeling/mdt/
http://www.eclipse.org/modeling/mdt/papyrus/
http://www.eclipse.org/modeling/mdt/papyrus/
http://www.iso.org/iso/iso_catalogue/catalogue_tc/catalogue_detail.htm?csnumber=50297
http://www.iso.org/iso/iso_catalogue/catalogue_tc/catalogue_detail.htm?csnumber=50297
http://www.iso.org/iso/iso_catalogue/catalogue_tc/catalogue_detail.htm?csnumber=42103
http://www.iso.org/iso/iso_catalogue/catalogue_tc/catalogue_detail.htm?csnumber=42103
http://www.iso.org/iso/iso_catalogue/catalogue_tc/catalogue_detail.htm?csnumber=41933
http://www.iso.org/iso/iso_catalogue/catalogue_tc/catalogue_detail.htm?csnumber=41933

546 B. Hoisl et al.

Oriented Systems, Lecture Notes in Computer Science (LNCS),
pp. 35–60. Springer, Berlin (2011)

20. Gilmore, S., Gönczy, L., Koch, N., Mayer, P., Tribastone, M., Varró,
D.: Non-functional properties in the model-driven development
of service-oriented systems. Softw. Syst. Model. 10(3), 287–311
(2011)

21. Hafner, M., Alam, M., Breu, R.: Towards a MOF/QVT-based
domain architecture for model driven security. In: Proceedings of
the 9th International Conference on Model Driven Engineering
Languages and Systems (MODELS 2006), Lecture Notes in Com-
puter Science (LNCS), pp. 275–290. Springer, Berlin (2006)

22. Hafner, M., Breu, R.: Security Engineering for Service-Oriented
Architectures, 1st edn. Springer, Berlin (2009)

23. Hafner, M., Breu, R., Agreiter, B., Nowak, A.: SECTET: an exten-
sible framework for the realization of secure inter-organizational
workflows. Internet Res. 16(5), 491–506 (2006)

24. Hafner, M., Memon, M., Alam, M.: Modeling and enforcing
advanced access control policies in healthcare systems with
SECTET. In: Giese, H. (ed.) Models in Software Engineering,
pp. 132–144. Springer, Berlin (2008)

25. Hentrich, C., Zdun, U.: A pattern language for process execution
and integration design in service-oriented architectures. In: Noble,
J., Johnson, R. (eds.) Transactions on Pattern Languages of Pro-
gramming I, Lecture Notes in Computer Science (LNCS), pp. 136–
191. Springer, Berlin (2009)

26. Hoisl, B., Sobernig, S.: Integrity and confidentiality annotations for
service interfaces in SoaML models. In: Proceedings of the Interna-
tional Workshop on Security Aspects of Process-aware Information
Systems (SAPAIS2011), pp. 673–679. IEEE (2011)

27. Hoisl, B., Strembeck, M.: Modeling support for confidentiality
and integrity of object flows in activity models. In: Proceedings
of the 14th International Conference on Business Information Sys-
tems (BIS2011), Lecture Notes in Business Information Processing
(LNBIP), pp. 278–289. Springer, Berlin (2011)

28. Hoisl, B., Strembeck, M.: A UML extension for the model-driven
specification of audit rules. In: Proceedings of the 2nd Inter-
national Workshop on Information Systems Security Engineer-
ing (WISSE), Lecture Notes in Business Information Processing
(LNBIP). Springer, Berlin (2012)

29. Huhns, M., Singh, M.: Service-oriented computing: key concepts
and principles. IEEE Internet Comput. 9, 75–81 (2005)

30. Hummer, W., Gaubatz, P., Strembeck, M., Zdun, U., Dustdar, S.:
An integrated approach for identity and access management in a
SOA context. In: Proceedings of the 16th ACM Symposium on
Access Control Models and Technologies (SACMAT) (2011)

31. Jensen, M., Feja, S.: A security modeling approach for web-service-
based business processes. In: Proceedings of the 16th Annual IEEE
International Conference and Workshop on the Engineering of
Computer Based Systems, pp. 340–347. IEEE (2009)

32. Jürjens, J.: UMLsec: extending UML for secure systems develop-
ment. In: Proceedings of the 5th International Conference on The
Unified Modeling Language, pp. 412–425. Springer, Berlin (2002)

33. Jürjens, J.: Secure Systems Development with UML. Springer,
Berlin (2005)

34. Kim, S., Burger, D., Carrington, D.: An MDA approach towards
integrating formal and informal modeling languages. In: Proceed-
ings of the International Symposium of Formal Methods Europe,
Lecture Notes in Computer Science (LNCS), vol. 3582, pp. 448–
464. Springer, Berlin (2005)

35. Kopp, O., Martin, D., Wutke, D., Leymann, F.: The difference
between graph-based and block-structured business process mod-
elling languages. Enterp. Model. Inf. Syst. 4(1), 3–13 (2009)

36. Mayer, P.: Model-driven development for service-oriented
computing—transformers. http://mdd4soa.eu/transformers/
(2008)

37. Mayer, P.: MDD4SOA—model-driven development for service-
oriented architectures. PhD thesis, Ludwig Maximilian University
of Munich, Faculty of Mathematics, Computer Science and Statis-
tics (2010)

38. Mayer, P., Koch, N., Schröder, A., Knapp, A.: The UML4SOA
profile. http://www.uml4soa.eu/wp-content/uploads/uml4soa.pdf
(2010)

39. Mayer, P., Schröder, A., Koch, N.: MDD4SOA: model-driven ser-
vice orchestration. In: Proceedings of the 12th International IEEE
Enterprise Distributed Object Computing Conference, pp. 203–
212. IEEE (2008)

40. Memon, M., Hafner, M., Breu, R.: SECTISSIMO: a platform-
independent framework for security services. In: Proceedings of
the Modeling Security Workshop in Association with MODELS
2008 (2008)

41. Mendling, J., Lassen, K., Zdun, U.: On the transformation of control
flow between block-oriented and graph-oriented process modeling
languages. Int. J. Business Process Integr. Manag. 3(2), 96–108
(2008)

42. Mens, T., van Gorp, P.: A taxonomy of model transformation. Elec-
tron. Notes Theor. Comput. Sci. 152, 125–142 (2006)

43. Mishra, S., Weistroffer, H.: A framework for integrating Sarbanes-
Oxley compliance into the systems development process. Com-
mun. Assoc. Inf. Systems (CAIS) 20(1), 712–727 (2007)

44. Nakamura Y., Tatsubori M., Imamura T., Ono K.: Model-driven
security based on a web services security architecture. In: Proceed-
ings of the IEEE International Conference on Services Computing,
pp. 7–15. IEEE (2005)

45. National Institute of Standards and Technology (NIST): An Intro-
duction to Computer Security: The NIST Handbook. Special Publi-
cation 800–12. http://csrc.nist.gov/publications/nistpubs/800-12/
handbook.pdf (1995)

46. National Institute of Standards and Technology (NIST): Data
Encryption Standard (DES). Federal Information Processing
Standards Publication 46–3. http://csrc.nist.gov/publications/fips/
fips46-3/fips46-3.pdf (1999)

47. National Institute of Standards and Technology (NIST): Advanced
Encryption Standard (AES). Federal Information Processing
Standards Publication 197. http://csrc.nist.gov/publications/fips/
fips197/fips-197.pdf (2001)

48. National Institute of Standards and Technology (NIST): Secure
Hash Standard (SHS). Federal Information Processing Stan-
dards Publication 180–3. http://csrc.nist.gov/publications/fips/
fips180-3/fips180-3_final.pdf (2008)

49. National Institute of Standards and Technology (NIST): Rec-
ommended Security Controls for Federal Information Systems
and Organizations. NIST Special Publication 800–53, Revi-
sion 3. http://csrc.nist.gov/publications/nistpubs/800-53-Rev3/
sp800-53-rev3-final_updated-errata_05-01-2010.pdf (2009)

50. National Security Agency (NSA): Information assurance technical
framework. http://handle.dtic.mil/100.2/ADA393328 (2000)

51. No Magic, Inc.: MacigDraw. https://www.magicdraw.com
(2012)

52. Object Management Group: OMG Business Process Model and
Notation (BPMN) Specification, Version 2.0, formal/2011-01-03.
http://www.omg.org/spec/BPMN (2011)

53. Object Management Group: OMG Meta Object Facility (MOF)
Core Specification, Version 2.4.1, formal/2011-08-07. http://www.
omg.org/mof (2011)

54. Object Management Group: Meta Object Facility (MOF)
2.0 Query/View/Transformation Specification, Version 1.1,
formal/2011-01-01. http://www.omg.org/spec/QVT (2011)

55. Object Management Group: OMG MOF 2 XMI Mapping Spec-
ification, Version 2.4.1, formal/2011-08-09. http://www.omg.org/
spec/XMI (2011)

123

http://mdd4soa.eu/transformers/
http://www.uml4soa.eu/wp-content/uploads/uml4soa.pdf
http://csrc.nist.gov/publications/nistpubs/800-12/handbook.pdf
http://csrc.nist.gov/publications/nistpubs/800-12/handbook.pdf
http://csrc.nist.gov/publications/fips/fips46-3/fips46-3.pdf
http://csrc.nist.gov/publications/fips/fips46-3/fips46-3.pdf
http://csrc.nist.gov/publications/fips/fips197/fips-197.pdf
http://csrc.nist.gov/publications/fips/fips197/fips-197.pdf
http://csrc.nist.gov/publications/fips/fips180-3/fips180-3_final.pdf
http://csrc.nist.gov/publications/fips/fips180-3/fips180-3_final.pdf
http://csrc.nist.gov/publications/nistpubs/800-53-Rev3/sp800-53-rev3-final_updated-errata_05-01-2010.pdf
http://csrc.nist.gov/publications/nistpubs/800-53-Rev3/sp800-53-rev3-final_updated-errata_05-01-2010.pdf
http://handle.dtic.mil/100.2/ADA393328
https://www.magicdraw.com
http://www.omg.org/spec/BPMN
http://www.omg.org/mof
http://www.omg.org/mof
http://www.omg.org/spec/QVT
http://www.omg.org/spec/XMI
http://www.omg.org/spec/XMI

Modeling and enforcing secure object flows in process-driven SOAs 547

56. Object Management Group: OMG Object Constraint Language
(OCL) Specification, Version 2.2, formal/2010-02-01. http://www.
omg.org/spec/OCL (2010)

57. Object Management Group: OMG Object Constraint Language
(OCL) Specification, Version 2.3.1, formal/2012-01-01. http://
www.omg.org/spec/OCL (2012)

58. Object Management Group: OMG Service oriented architecture
Modeling Language (SoaML) Specification, Version 1.0 Beta 2,
ptc/2009-12-09. http://www.omg.org/spec/SoaML (2009)

59. Object Management Group: OMG Unified Modeling Language
(OMG UML): superstructure, Version 2.4.1, formal/2011-08-06.
http://www.omg.org/spec/UML (2011)

60. Object Management Group: OMG Unified Modeling Language
(OMG UML): infrastructure, Version 2.4.1, formal/2011-08-05.
http://www.omg.org/spec/UML (2011)

61. Organization for the Advancement of Structured Information
Standards (OASIS): Web Services Business Process Execution
Language, Version 2.0. http://docs.oasis-open.org/wsbpel/2.0/OS/
wsbpel-v2.0-OS.pdf (2007)

62. Organization for the Advancement of Structured Information Stan-
dards (OASIS): Reference Architecture Foundation for Service
Oriented Architecture, Version 1.0. http://docs.oasis-open.org/
soa-rm/soa-ra/v1.0/soa-ra-cd-02.pdf (2009)

63. Organization for the Advancement of Structured Information Stan-
dards (OASIS): WS-SecurityPolicy 1.3. http://docs.oasis-open.
org/ws-sx/ws-securitypolicy/v1.3/os/ws-securitypolicy-1.
3-spec-os.pdf (2009)

64. Papazoglou, M., Traverso, P., Dustdar, S., Leymann, F.: Service-
oriented computing: state of the art and research challenges. IEEE
Comput. 40, 38–45 (2007)

65. Reznik, J., Ritter, T., Schreiner, R., Lang, U.: Model driven devel-
opment of security aspects. Electron. Notes Theo. Comput. Sci.
163, 65–79 (2007)

66. Rodríguez, A., Fernández-Medina, E., Trujillo, J., Piattini, M.:
Secure business process model specification through a UML 2.0
activity diagram profile. Decis. Support Syst. 51(3), 446–465
(2011)

67. Rodríguez, A., García-Rodríguez de Guzmán, I., Fernández-
Medina, E., Piattini, M.: Semi-formal transformation of secure
business processes into analysis class and use case models: an MDA
approach. Inform. Softw. Technol. 52, 945–971 (2010)

68. Sánchez, Ó., Molina, F., García-Molina, J., Toval, A.: ModelSec: a
generative architecture for model-driven security. J. Univ. Comput.
Sci. 15(15), 2957–2980 (2009)

69. Sandhu, R.: On five definitions of data integrity. In: Proceedings of
the IFIP WG11.3 Working Conference on Database Security VII
(1993)

70. Scheer, A.-W.: ARIS: Business Process Modeling. Springer, Berlin
(2000)

71. Schefer, S., Strembeck, M.: Modeling process-related duties with
extended UML activity and interaction diagrams. In: Proceedings
of the International Workshop on Flexible Workflows in Distributed
Systems, Electronic Communications of the EASST (2011)

72. Schefer, S., Strembeck, M.: Modeling support for delegating roles,
tasks, and duties in a process-related RBAC context. In: Proceed-
ings of the International Workshop on Information Systems Secu-
rity Engineering (WISSE), Lecture Notes in Business Information
Processing (LNBIP), vol. 83. Springer, Berlin (2011)

73. Schefer, S., Strembeck, M., Mendling, J.: Checking satisfiability
aspects of binding constraints in a business process context. In:
Proceedings of the Workshop on Workflow Security Audit and
Certification (WfSAC), Lecture Notes in Business Information
Processing (LNBIP), vol. 100. Springer, Berlin (2011)

74. Schefer, S., Strembeck, M., Mendling, J., Baumgrass, A.: Detecting
and resolving conflicts of mutual-exclusion and binding constraints
in a business process context. In: Proceedings of the 19th Interna-

tional Conference on Cooperative Information Systems (CoopIS),
Lecture Notes in Computer Science (LNCS), vol. 7044. Springer,
Berlin (2011)

75. Schefer-Wenzl, S., Strembeck, M.: An approach for consistent del-
egation in process-aware information systems. In: Proceedings of
the 15th International Conference on Business Information Sys-
tems (BIS), Lecture Notes in Business Information Processing
(LNBIP). Springer, Berlin (2012)

76. Schefer-Wenzl, S., Strembeck, M.: Modeling context-aware RBAC
models for business processes in ubiquitous computing environ-
ments. In: Proceedings of the 3rd International Conference on
Mobile, Ubiquitous and Intelligent Computing (MUSIC) (2012)

77. Schmidt, D.: Model-driven engineering: guest editor’s introduc-
tion. IEEE Comput. 39(2), 25–31 (2006)

78. Schmidt, H., Jürjens, J.: Connecting security requirements analysis
and secure design using patterns and UMLsec. In: Proceedings of
the 23rd International Conference on Advanced Information Sys-
tems Engineering (CAiSE), Lecture Notes in Computer Science
(LNCS), pp. 367–382. Springer, Berlin (2011)

79. Selic, B.: The pragmatics of model-driven development. IEEE
Softw. 20(5), 19–25 (2003)

80. Sendall, S., Kozaczynski, W.: Model transformation: the heart and
soul of model-driven software development. IEEE Softw. 20(5),
42–45 (2003)

81. Sobernig, S., Zdun, U.: Invocation assembly lines: patterns of invo-
cation and message processing in object remoting middleware. In:
Kelly, A., Weiss, M. (eds.) Proceedings of 14th Annual European
Conference on Pattern Languages of Programming (EuroPLoP
2009), CEUR-WS.org, vol. 566. (2009)

82. Stahl, T., Völter, M.: Model-Driven Software Development. Wiley,
New York (2006)

83. Steinberg, D., Budinsky, F., Paternostro, M., Merks, E.: EMF:
Eclipse Modeling Framework. Addison-Wesley, Boston (2008)

84. Strembeck, M., Mendling, J.: Generic algorithms for consistency
checking of mutual-exclusion and binding constraints in a business
process context. In: Proceedings of the 18th International Confer-
ence on Cooperative Information Systems (CoopIS), Lecture Notes
in Computer Science (LNCS), vol. 6426. Springer, Berlin (2010)

85. Strembeck, M., Mendling, J.: Modeling process-related RBAC
models with extended UML activity models. Inform. Softw. Tech-
nol. 53(5), 456–483 (2011)

86. Tatsubori, M., Imamura, T., Nakamura, Y.: Best-practice patterns
and tool support for configuring secure web services messaging.
In: Proceedings of the IEEE International Conference on Web Ser-
vices, pp. 244–251. IEEE (2004)

87. Warner, J., Atluri, V.: Inter-instance authorization constraints for
secure workflow management. In: Proceedings of the 11th ACM
Symposium on Access Control Models and Technologies (SAC-
MAT) (2006)

88. Wenzel, S.: CARiSMA. http://vm4a003.itmc.tu-dortmund.de/
carisma/web/doku.php (2012)

89. Wolter, C., Menzel, M., Meinel, C.: Modelling security goals in
business processes. In Modellierung 2008, Lecture Notes in Infor-
matics (LNI), pp. 197–212 (2008)

90. Wolter, C., Menzel, M., Schaad, A., Miseldine, P., Meinel, C.:
Model-driven business process security requirement specification.
J. Systems Archit. 55(4), 211–223 (2009)

91. Wolter, C., Schaad, A.: Modeling of task-based authorization con-
straints in BPMN. In: Alonso, G., Dadam, P., Rosemann, M.
(eds.) Proceedings of the 5th International Conference on Busi-
ness Process Management (BPM), volume 4714 of Lecture Notes
in Computer Science (LNCS), pp. 64–79. Springer, Berlin (2007)

92. World Wide Web Consortium (W3C): Web Services Description
Language (WSDL) 1.1. http://www.w3.org/TR/wsdl (2001)

93. World Wide Web Consortium (W3C): Web Services Policy 1.5,
Attachment. http://www.w3.org/TR/ws-policy-attach/ (2007)

123

http://www.omg.org/spec/OCL
http://www.omg.org/spec/OCL
http://www.omg.org/spec/OCL
http://www.omg.org/spec/OCL
http://www.omg.org/spec/SoaML
http://www.omg.org/spec/UML
http://www.omg.org/spec/UML
http://docs.oasis-open.org/wsbpel/2.0/OS/wsbpel-v2.0-OS.pdf
http://docs.oasis-open.org/wsbpel/2.0/OS/wsbpel-v2.0-OS.pdf
http://docs.oasis-open.org/soa-rm/soa-ra/v1.0/soa-ra-cd-02.pdf
http://docs.oasis-open.org/soa-rm/soa-ra/v1.0/soa-ra-cd-02.pdf
http://docs.oasis-open.org/ws-sx/ws-securitypolicy/v1.3/os/ws-securitypolicy-1.3-spec-os.pdf
http://docs.oasis-open.org/ws-sx/ws-securitypolicy/v1.3/os/ws-securitypolicy-1.3-spec-os.pdf
http://docs.oasis-open.org/ws-sx/ws-securitypolicy/v1.3/os/ws-securitypolicy-1.3-spec-os.pdf
http://vm4a003.itmc.tu-dortmund.de/carisma/web/doku.php
http://vm4a003.itmc.tu-dortmund.de/carisma/web/doku.php
http://www.w3.org/TR/wsdl
http://www.w3.org/TR/ws-policy-attach/

548 B. Hoisl et al.

94. World Wide Web Consortium (W3C): Web Services Policy 1.5,
Framework. http://www.w3.org/TR/ws-policy/ (2007)

95. Zdun, U.: Patterns of component and language integration. In:
Manolescu, D., Völter, M., Noble, J. (eds.) Pattern Languages of
Program Design 5 (2006)

96. Zdun, U., Dustdar, S.: Model-driven and pattern-based integra-
tion of process-driven SOA models. Int. J. Business Process Integr.
Manag. (IJBPIM) 2(2), 109–119 (2007)

97. Zdun, U., Hentrich, C., Dustdar, S.: Modeling process-driven and
service-oriented architectures using patterns and pattern primitives.
ACM Transact. Web 1(3), 14:1–14:44 (2007)

Author Biographies

Bernhard Hoisl holds a MSc
degree in Information Systems
from the Vienna University of
Economics and Business (WU
Vienna) and a MSc degree in
Computer Science Management
from the Vienna University of
Technology. Currently, he works
at the New Media Lab, Institute
for Information Systems, WU
Vienna on a dissertation fellow-
ship project. Since April 2010
he is also part-time researcher at
Secure Business Austria (SBA).
His PhD research interests are

focused on model-driven software development, domain-specific lan-
guages, and process modeling with a special emphasis on the specifi-
cation of security aspects.

Stefan Sobernig is a Post-
doc Researcher and Lecturer
at the New Media Lab, Insti-
tute for Information Systems,
Vienna University of Economics
and Business (WU Vienna).
In his research, he works in
the fields of feature-oriented
software development, domain-
specific language engineering,
software patterns, and communi-
cation middleware.

Mark Strembeck is an Asso-
ciate Professor of Information
Systems at the Vienna University
of Economics and Business (WU
Vienna), Austria. His research
interests include secure business
systems, business process man-
agement, model-driven software
development, and the model-
ing and management of dynamic
software systems. He received
his doctoral degree as well as
his Habilitation degree (venia
docendi) from WU Vienna. He is
a key researcher at Secure Busi-

ness Austria (SBA), and the Vice Institute Head of the Institute for
Information Systems at WU Vienna.

123

http://www.w3.org/TR/ws-policy/

	Modeling and enforcing secure object flows in process-driven SOAs: an integrated model-driven approach
	Abstract
	1 Introduction
	1.1 Motivation
	1.2 Approach synopsis

	2 Characteristics of secure object flows
	3 A formal and generic metamodel for secure object flows
	4 UML extension for secure object flows
	4.1 Example processes with secure object flows
	4.1.1 Radiological examination process
	4.1.2 Credit application process

	5 Modeling process-driven SOAs with UML
	5.1 Modeling the structure of a process-driven SOA
	5.2 Modeling the behavior of a process-driven SOA
	5.2.1 Specifying a choreography via UML activities
	5.2.2 Specifying service orchestrations via UML activities

	5.3 A SoaML extension for secure object flows
	5.3.1 SecureObjectFlows::Services abstract syntax
	5.3.2 Constraints for the SecureObjectFlows::Services package

	5.4 UML profiles for secure object flows
	5.5 An integrated example

	6 Tool support for secure object flows in SOAs
	6.1 Modeling the SOA structure
	6.2 Modeling the SOA behavior
	6.2.1 Choreography specification
	6.2.2 Orchestration specification

	6.3 Intermediary model transformations
	6.4 Platform-specific model transformations

	7 Related work
	8 Conclusion
	Appendix A: Constraints for the SecureObjectFlows package
	Appendix B: Constraints for the SecureObjectFlows:: Services package
	References

