
Abteilung für
Wirtschaftsinformatik

"A Syllabus for Introducing MBA
Students to Procedural and
Object-oriented Programming
(Object Rexx)"

Rony G. Flatscher (Rony.Flatscher@wu-wien.ac.at)

Vienna University of Economics and
Business Administration (http://www.wu-wien.ac.at)

MIS Department (http://www.wu-wien.ac.at/wi)
Foils: http://wwwi.wu-wien.ac.at/rgf/conf/amcis/1999/T09-003-foils.pdf

© Rony G. Flatscher, WU-Wien, 1999 AMCIS, Milwaukee, Tennessee (page 1)

http://wwwi.wu-wien.ac.at/rgf/conf/amcis/1999/T09-003-foils.pdf
http://www.wu-wien.ac.at/wi
http://www.wu-wien.ac.at
http://www.wu-wien.ac.at
http://www.wu-wien.ac.at/wi
http://www.wu-wien.ac.at/wi
mailto:Rony.Flatscher@wu-wien.ac.at

Vienna University of Economics and Business
Administration and the MIS department

"Special field of Business Administration": MIS curriculum
The advent of OO in MIS, problems for MBA students

OO-development trends in business applications
ERP software
Individual software

Teaching MBA students the OO paradigm
Syllabus for teaching the mandatory concepts

Discussion
Experiences with the concepts, the Object Rexx language
Lessons learned

Overview

© Rony G. Flatscher, WU-Wien, 1999 AMCIS, Milwaukee, Tennessee (page 2)

WU-Wien - http://www.wu-wien.ac.at
"Wirtschaftsuniversität Wien"
English: "Vienna University of Economics and Business
Administration"

Over 20,000 MBA students
Master degree in one of the four fields of studies:
Business Administration (51%), Commerce (36%),
Economics (8%), Business Education (5%)
Miscellaneous

Free form studies (no class system!)
Duration in effect 6-7 years in the average (4 years minimum)
Drop-out rate more than 60%

WU-Wien (1)
(Wirtschaftsuniversität Wien)

© Rony G. Flatscher, WU-Wien, 1999 AMCIS, Milwaukee, Tennessee (page 3)

4 years studies in two parts, e.g. BA studies
Part I studies encompasses

Business Administration (15-16hrs), Economics (13hrs), Private
Law (8-12hrs), Mathematics and Statistics (8-12hrs), Foreign
Language (8hrs), Foreign Language II (12hrs) and Sociology
(8-12hrs)

Part II studies encompasses
Business Administration (13hrs), First Special Field of Business
Administration (12hrs), Second Special Field of Business
Administration (12hrs), Elective (8hrs), Economics (10hrs), Public
Law (8hrs)

Master Thesis (6 months to a couple of years)
Management Information Systems (MIS)

Special field of Business Administration in Part II studies
Elective in Part II studies

WU-Wien (2)
(Wirtschaftsuniversität Wien)

© Rony G. Flatscher, WU-Wien, 1999 AMCIS, Milwaukee, Tennessee (page 4)

Electronic Commerce
(lecture, 2 hours)

Electronic Finance
(lecture, 2 hours)

Business Process Modelling (lecture, 2 hours)

Choice of
„ISD“: Information Systems
Development with CASE

(optional lecture, 2 hours)

„SPET“: Solving Problems with
Enduser Tools

(optional lecture, 2 hours)

ISD – Application
(mandatory proseminar, 2 hours)

SPET - Application
(mandatory proseminar, 2 hours)

at least two (à 2 hours) lectures („Electives“) out of:
IS in Finance and Accounting; IS in Marketing; IS in Commerce;

Computer Law; IT Market and Information Management;
Electronic Money, Payment Systems and Security; Introduction to

Procedural and Object-oriented Programming (Object Rexx)
MIS Seminar (mandatory seminar, 2 hours)

WU-Wien (3)
Special BA "MIS" (3 Semesters)Semester 5

(6-8hrs)

Semester 6
(6hrs)

Semester 7
(2hrs)

© Rony G. Flatscher, WU-Wien, 1999 AMCIS, Milwaukee, Tennessee (page 5)

OO-development trends relevant to business
applications

Enterprise Resource Programs (ERP) start to employ
terms (and introduce concepts) like

"Business objects"
"Business components"
"Patterns"
"Frameworks"

Object Management Group (OMG)
Business Object Domain Task Force (BODT)

Produced OO-standard for Workflow Management Systems
Devised a "Business Object Component Architecture"

Split up (March 1999) to three new RFP's (August 1999)
Genuine OMG "Component Architecture Standard"

Introducing OO-Concepts into
Business Applications (1)

© Rony G. Flatscher, WU-Wien, 1999 AMCIS, Milwaukee, Tennessee (page 6)

Problems with MBA students
No working knowledge of the fundamentals of OO

Classes, objects, messages, methods, ...
Inheritance (attributes and methods)

As a result
No ability to fully evaluate and assess OO-based business
applications
No working knowledge for analyzing and devising OO-models

MBA students with a working knowledge in EERM (Extended
Entity-Relationship-Modelling) think they have no knowledge
whatsoever with respect to OOM (Object-oriented Modelling)

True for OMG's UML (Unified Modelling Language, a meta-model)
True for OMG's MOF (Meta Object Facility, a meta-meta-model)

Introducing OO-Concepts into
Business Applications (2)

© Rony G. Flatscher, WU-Wien, 1999 AMCIS, Milwaukee, Tennessee (page 7)

"Class"
Specification (and in the context of an OO-language an
implementation) of an abstract data type (ADT)

Properties, e.g.
Attributes

Determining data structure
Functions/Procedures (Methods)

Methods are invoked by sending messages to the instances (objects)
Flow of messages can be seen as behaviour

Classification tree
Generalization/Specialization

There is a root class
Inheritance, Multiple Inheritance

 Taking advantage of pre-defined and pre-tested properties of
superclasses up to and including the root class

Mandatory OO-Concepts (1)

© Rony G. Flatscher, WU-Wien, 1999 AMCIS, Milwaukee, Tennessee (page 8)

Instance (an "object") of a class
Creation (Initializing)
Destroying (Uninitializing)

Sending of messages
Resolution of methods
Unknown messages

"Instance" methods versus "Class" methods
Metaclasses

Concurrency
Execution of methods in parallel, differentiated between:

Inter-object
Intra-object

Mandatory OO-Concepts (2)

© Rony G. Flatscher, WU-Wien, 1999 AMCIS, Milwaukee, Tennessee (page 9)

Pre-requisites
Only 2 (two!) hours available due to the MIS curriculum

Students, who mostlikely have no knowledge of OO-concepts
Students, who possibly have no prior experience with
programming languages at all

Conclusions
Teaching OO-concepts should be supported with
examples in order to ease understanding

Programming language for experimenting with the examples
Must have

Easy syntax (in order to save time), preferably pseudo-code like
Powerful OO-model (in order to experiment with all OO-concepts)

Examples for demonstrating OO-concepts need to be
carefully chosen and worked out

Teaching MBA Students the
OO-paradigm with Object Rexx

© Rony G. Flatscher, WU-Wien, 1999 AMCIS, Milwaukee, Tennessee (page 10)

Syllabus
Procedural Concepts (1)

Class 1 (2hrs, i.e. 90 minutes)
Overview of the lecture, history of Rexx, new
developments: ANSI Rexx, Object Rexx, NetRexx

Class 2 (2hrs, i.e. 90 minutes)
Minimal Rexx program, "Rexxtry.cmd" resp. "Rexxtry.rex",
variables, constants, comments
Statement, block, conditional branch, iteration

Class 3 (2hrs, i.e. 90 minutes)
Labels, procedures/functions, resolution of function calls,
Scopes

Class 4 (2hrs, i.e. 90 minutes)
Rexx builtin functions
Stems (associative arrays), RexxUtility functions

© Rony G. Flatscher, WU-Wien, 1999 AMCIS, Milwaukee, Tennessee (page 11)

Syllabus
Procedural Concepts (2)

Class 5 (2hrs, i.e. 90 minutes)
Exceptions (SIGNAL, RAISE) and their handling
Object Rexx extensions

Routines
Public or private depending on the keyword PUBLIC at the end of a
::ROUTINE-directive
All public routines can be called from other programs

References to arguments which allows stems to be passed by
reference
USER-definable exceptions

Class 6 (2hrs, i.e. 90 minutes)
Examples and possible solutions

© Rony G. Flatscher, WU-Wien, 1999 AMCIS, Milwaukee, Tennessee (page 12)

Syllabus
Object-oriented Concepts (1)

Class 7 (2hrs, i.e. 90 minutes)
Abstract data type (ADT)
Implementing an ADT with Object Rexx

Class, methods, attributes
Messages (message operator "~")

Cascading messages "~~"
Scopes
Creating an instance (an object) of a class

Initializing (INIT)
Destroying an instance (an object) of a class

DROP
Garbage collector
Uninitializing (UNINIT)

© Rony G. Flatscher, WU-Wien, 1999 AMCIS, Milwaukee, Tennessee (page 13)

Syllabus
Object-oriented Concepts (2)

Class 8 (2hrs, i.e. 90 minutes)
Reiterating ADT, class, method, attribute, message, INIT
and UNINIT
Specializing, inheritance
Multi-threading
Scopes

Class 9+10+11 (2hrs, i.e. 90 minutes)
Method resolution

Special variables supplied by the run-time and available within
methods only

self and super
UNKNOWN Method
Effects of multiple inheritance on the method resolution

© Rony G. Flatscher, WU-Wien, 1999 AMCIS, Milwaukee, Tennessee (page 14)

Syllabus
Object-oriented Concepts (3)

Class 9+10+11continued (2hrs, i.e. 90 minutes)
Object Rexx classification tree

Introduction class by class
Fundamental classes: Object, Class, Method, Message
Alarm class Alarm and monitor class Monitor
Classic Rexx classes: String, Stem, Stream
Collection classes

System (external) supplied indices: Array, List, Queue
User (programmer) supplied indices: Directory, Relation, Bag, Table, Set
Iterating over all collected objects with DO...OVER or with the help of a
Supplier object

© Rony G. Flatscher, WU-Wien, 1999 AMCIS, Milwaukee, Tennessee (page 15)

Syllabus
Object-oriented Concepts (4)

Class 12 (2hrs, i.e. 90 minutes)
Class methods
Metaclasses

Taking advantage of metaclass programming, e.g.
Singleton pattern
Manager pattern

Defining classes and methods at run-time
"One-off objects" and creating them
"The Big Picture"

Starting and instantiating the Object Rexx run-time
environment

© Rony G. Flatscher, WU-Wien, 1999 AMCIS, Milwaukee, Tennessee (page 16)

Syllabus
Object-oriented Concepts (5)

Class 13 (2hrs, i.e. 90 minutes)
Coupling of Object Rexx programs with the available
environments (interpreter supplied directory objects)

.local

.environment

Class 14 (2hrs, i.e. 90 minutes)
Introduction to Object Rexx utilities

ORX7 (from the 7th International Rexx symposium)
Object Rexx program for analyzing (Object) Rexx programs and
rendering them into ASCII or HTML
Articles on explaining the "environment", "classes" and
"metaclasses" and documenting the analysis tool

URLs
ftp://hobbes.nmsu.edu/pub/os2/dev/orexx/orx7.zip
ftp://hobbes.nmsu.edu/pub/os2/dev/orexx/orx7doc.zip

© Rony G. Flatscher, WU-Wien, 1999 AMCIS, Milwaukee, Tennessee (page 17)

Syllabus
Object-oriented Concepts (6)

Class 14continued (2hrs, i.e. 90 minutes)
ORX8 (from the 8th International Rexx symposium)

Utility classes e.g.
Classes for managing anchors and references
Classes for implementing a NLS version of the class Directory, etc.

Utility routines e.g.
Routines for sorting any collection in a versatile manner
Routines for supporting national languages
Routines for determining whether an object is of a given type or whether
an object is a class object, etc.

URLs
ftp://hobbes.nmsu.edu/pub/os2/dev/orexx/orx8.zip
ftp://hobbes.nmsu.edu/pub/os2/dev/orexx/orx8doc.zip

© Rony G. Flatscher, WU-Wien, 1999 AMCIS, Milwaukee, Tennessee (page 18)

Syllabus
Object-oriented Concepts (7)

Class 15 (2hrs, i.e. 90 minutes)
Concurrency

Inter-Object
Intra-Object
GUARD and REPLY
Object Rexx classes Message and Alarm

Class 16 (2hrs, i.e. 90 minutes)
Overview of the Object Rexx "Security Manager":

Tasks, Implementation
Example of implementing a sandbox

FORWARD statement
Direct D/SOM support
Direct OLE-/ActiveX-support

© Rony G. Flatscher, WU-Wien, 1999 AMCIS, Milwaukee, Tennessee (page 19)

Roundup
Teaching MBA students ... (1)

Experiences
Understood all taught OO-concepts

E.g., the concept of multiple inheritance has not posed any
conceptual problems
Yet, problems with metaclasses

Students have no problems whatsoever understanding
examples presented in the Object Rexx syntax

The examples can be read as if they were pseudo code
Preparing the classes was extremely time consuming

Defining the sequence of OO-concepts to be introduced
Devising examples highlighting the freshly introduced
OO-concepts such that the OO-concepts become perfectly
clear
"Inventing" excercises which need the taught concepts only

© Rony G. Flatscher, WU-Wien, 1999 AMCIS, Milwaukee, Tennessee (page 20)

Roundup
Teaching MBA students ... (2)

Conclusions
It is possible to teach the fundamental procedural and
object-oriented concepts in a lecture of 2 hours
Object Rexx seems to be an ideal language for crafting
example code and have the students experiment with it

Simple Syntax
Powerful OO-model
Masterable with respect to the built-in classes

Learned concepts directly applicable to real-world
problems

CGI-Scripting
Scripting of applications, components

Taking advantage of OLE-/ActiveX-automation, D/SOM
Stand-alone applications

© Rony G. Flatscher, WU-Wien, 1999 AMCIS, Milwaukee, Tennessee (page 21)

Related University URL's

WU-Wien ("Vienna University of Economics and
Business Administration")

Home: http://www.wu-wien.ac.at

English: http://www.wu-wien.ac.at/englhome.html

Key data (English)
http://www.wu-wien.ac.at/rektorat/KeyData.html

MIS Department at the WU-Wien
Home: http://www.wu-wien.ac.at/wi

PDF-foils for the lecture "Einführung in die Prozedurale
und objekt-orientierte Programmierung (Object Rexx)"
(in German)
http://wwwi.wu-wien.ac.at/Studium/LVA-Unterlagen/poolv/1999s/

© Rony G. Flatscher, WU-Wien, 1999 AMCIS, Milwaukee, Tennessee (page 22)

http://www.wu-wien.ac.at
http://www.wu-wien.ac.at/englhome.html
http://www.wu-wien.ac.at/rektorat/KeyData.html
http://www.wu-wien.ac.at/wi
http://wwwi.wu-wien.ac.at/Studium/LVA-Unterlagen/poolv/1999s/

Rexx-Related URL's

"Rexx Language Association" homepage
http://www.RexxLA.org/

Object Rexx homepage
http://www2.hursley.ibm.com/orexx/

http://www.software.ibm.com/ad/obj-rexx/

Rexx homepage
http://www2.hursley.ibm.com/rexx/

NetRexx homepage
http://www2.hursley.ibm.com/netrexx/

© Rony G. Flatscher, WU-Wien, 1999 AMCIS, Milwaukee, Tennessee (page 23)

http://www.RexxLA.org/
http://www2.hursley.ibm.com/orexx/
http://www.software.ibm.com/ad/obj-rexx/
http://www2.hursley.ibm.com/rexx/
http://www2.hursley.ibm.com/netrexx/

Addendum - Object Rexx (1)
Available OO-Features

Object Rexx
Backward compatible with "classic" Rexx
Internally totally OO

"Classic" Rexx statements transformed internally to their OO
equivalents

Abstract data type (ADT)
::CLASS- and ::METHOD-directives allow for fully
implementing ADT's including attributes

Classification tree available
Object, Class, Method, Message
Alarm, Monitor
String, Stem, Stream

© Rony G. Flatscher, WU-Wien, 1999 AMCIS, Milwaukee, Tennessee (page 24)

Addendum - Object Rexx (2)
Available OO-Features

Classification tree availablecontinued

Collection classes
 Array, List, Queue, Directory, Relation, Bag, Table, Set

Multiple Inheritance
Instantiation/destruction (creating/destructing objects)

Initializing (method INIT)
Uninitializing (method UNINIT)

Resolution of messages
Handling of unknown messages (method UNKNOWN)

"Instance" methods versus "Class" methods
Metaclasses

© Rony G. Flatscher, WU-Wien, 1999 AMCIS, Milwaukee, Tennessee (page 25)

Addendum - Object Rexx (3)
Available OO-Features

Concurrency
Execution of methods in parallel, differentiated between:

Inter-object
By default available

Intra-object
Individual objects are sheltered by default from having more than
one method activated from the same class (possible for
programmers to change this behaviour)
By default available if the methods running in parallel for individual
objects stem from different classes

Pre- and Postconditions (GUARD)

© Rony G. Flatscher, WU-Wien, 1999 AMCIS, Milwaukee, Tennessee (page 26)

Addendum - Object Rexx (4)
Miscellaneous Aspects

Syntax
Same intention as with classic Rexx

Keeps the syntax and built-in functionality "user friendly",
i.e. as simple as possible ("pseudo-code like")

Versatility
Underpinned with a powerful OO-model
Classes, methods, messages can be generated/inspected
at runtime
"One-off objects"

Direct support of OO-infrastructure in OS
OS/2: direct SOM- and DSOM-support

Object Rexx classes specializing D/SOM classes
Instantiating D/SOM classes from Object Rexx, sending
D/SOM messages as if they were Object Rexx messages

© Rony G. Flatscher, WU-Wien, 1999 AMCIS, Milwaukee, Tennessee (page 27)

Addendum - Object Rexx (5)
Miscellaneous Aspects

Direct support of OO-infrastructure in OScontinued

Windows 95/98/NT/2000: direct OLE-/ActiveX-automation
support in beta test

Instantiating OLE-/ActiveX-classes from Object Rexx, sending
OLE-/ActiveX-messages as if they were Object Rexx messages
http://www.software.ibm.com/ad/obj-rexx/download.html

URL to download "OLE/ActiveX extension" for Object Rexx

Multiplatform availability
AIX (since 1999)
Linux (since 1998, freely available)
OS/2 (since 1997 part of Warp4, freely available for
Warp3)
Windows 95/98/NT/2000 (since 1998)

© Rony G. Flatscher, WU-Wien, 1999 AMCIS, Milwaukee, Tennessee (page 28)

http://www.software.ibm.com/ad/obj-rexx/download.html

Addendum - ::CLASS-Directive
Example: ADT "Vehicle" (1)
/* single inheritance */
.land_vehicle~new("Truck")~Drive
.watercraft~new("Boat")~Swim

::CLASS Vehicle
::METHOD Type ATTRIBUTE
::METHOD INIT
self~Type = ARG(1)

::CLASS Land_Vehicle SUBCLASS Vehicle

::METHOD Drive
SAY self~Type": 'Now, I am driving ...'"

::CLASS Watercraft SUBCLASS Vehicle

::METHOD Swim
SAY self~Type": 'Now, I am swimming ...'"

Output:
Truck: 'Now, I am driving ...'
Boat: 'Now, I am swimming ...'

© Rony G. Flatscher, WU-Wien, 1999 AMCIS, Milwaukee, Tennessee (page 29)

Addendum - ::CLASS-Directive
Example: ADT "Vehicle" (2)
/* Multiple Inheritance */

.land_vehicle~new("Truck")~Drive

.watercraft~new("Boat")~Swim

.Amphibious_Vehicle ~new("Floatable_Car") ~ Show_What_You_Can

::CLASS Vehicle
::METHOD Type ATTRIBUTE
::METHOD INIT

self~Type = ARG(1)
::CLASS Land_Vehicle MIXINCLASS Vehicle
::METHOD Drive

SAY self~Type": 'Now, I am driving ...'"
::CLASS Watercraft MIXINCLASS Vehicle
::METHOD Swim

SAY self~Type": 'Now, I am swimming ...'"
::CLASS Amphibious_Vehicle SUBCLASS Land_Vehicle INHERIT Watercraft

::METHOD Show_What_You_Can
self~~Drive~~Swim

Output:
Truck: 'Now, I am driving ...'
Boat: 'Now, I am swimming ...'
Floatable_Car: 'Now, I am driving ...'
Floatable_Car: 'Now, I am swimming ...'

© Rony G. Flatscher, WU-Wien, 1999 AMCIS, Milwaukee, Tennessee (page 30)

Addendum - ::CLASS-Direktive
Example: ADT "Vehicle" (3)

Vehicle

Land_Vehicle Watercraft

Amphibious_Vehicle

Mixin class

Mixin class

Base class

© Rony G. Flatscher, WU-Wien, 1999 AMCIS, Milwaukee, Tennessee (page 31)

	Untitled

