0% DropOuts, From 0 To GUI Programming in 1 Semester

After 1°* month (after four weeks)

ooRexx: Loops, routines, functions,
classes (attributes, methods), multiple
inheritance, commands with redirection
& piping, JSON, curl, interacting with
LLMs

After 2" month (after 7" week)

ooRexx: Windows OLE/COM, VBS/VBA
(Visual Basic Script/Application),
programming wsh (Windows shell), MSIE
(Internet Explorer) and DOM (document
object model), MS Office (Word, Excel),
ADSI (active directory service interfaces),
WMI (Windows management
instrumentation) et.al.

« After 3 month (after 11" week)

ooRexx-Java bridge: GUI (java.awt,
java.swing), Internet programming with
sockets (java.net, javax.net, javax.net.ssl)
either OpenOffice/LibreOffice or ML
(machine learning employing Weka), XML
parsing (SAX, DOM with recursion) and
XSLT

« After 4™ month (after 14™ week)

ooRexx-Java bridge: External Java class
libraries, CLASSPATH, modular Java, Java
startup options, Jsoup, Java scripting
framework (javax.script),
RexxScriptEngine, JavaFX, NetRexx,
JDOR (Java2D ooRexx command

language) Rony G. Flatscher

Department of Information Systems
and Operations Management

portabler GUIs in einem Semester

(Critical Factors from Zero to Portable GUI Programming in Four Hours)
SE25-Workshop (Karlsruhe, 2026-02-23)
Rony G. Flatscher & Till Winkler

Business Programming 1 (BP1, Months 1+2, 7 Installments) Business Programming 2 (BP2, Months 3+4, 7 Installments)

Rg)g< REXX @@ ooRexx N BSF400Rexx850 (Java Bridge)
. Message . GUIs XML Scripting Rexx Portable
Classes ’ swing) Jsoup (UNO) Engine (JavaFX)

Vienna University of Economics and Business = Welthandelsplatz 1, D2-C = A-1020 Vienna Rony G. Flatscher

Overview

Part 1: Background, Goals, Cognitive Load Theory, Critical Success Factors

Part 2: Critical Success Factor "Programming Language"

Rexx/ooRexx: Overview, Concepts and Nutshell Examples

Part 3: Critical Lectures
1st Installment: Onboarding
3rd Installment: Messaging and Object-Orientation
5th Installment: COM/OLE for Windows Applications
8th Installment: Java and ooRexx Java Bindings

Part 4: Hands-on: Installations, Running Nutshell Examples

Workshop Roundup, Links, Addendum

Rony G. Flatscher

Part 1
Background
Goals
Cognitive Load Theory
Critical Success Factors

Rony G. Flatscher

Part 1 - Background
"Business Programming" — What Students Learn

« Teach novices in a single semester (four months, 4h per week)
- First half of the semester (two months)
* Object-oriented programming
* Programming of Windows OLE applications including MS Office
- Second half of the semester (two months)

* Programming using Java classes and interacting with Java objects
- Possible because Java gets camouflaged
- Platform independence all programs run unchanged on Windows, macOS and Linux

* Learn to creat GUIs (awt/swing, JavaFX), learn client/server socket programming, learn
to process XML and HTML files, interface with OpenOffice/LibreOffice

» Total teaching load 8 ECTS points (total of 200 hours)

Rony G. Flatscher

Part 1 - Background
WU (Business Administration University)

e |ocated in Vienna, Austria

- WU (acronym from "Wirtschaftsuniversitat")
- Founded 1898 as a "World Trade High School" ("Hochschule fiir Welthandel")

e More than 20,000 students

— One of the largest universities of its kind

* Department of Information Systems (IS) and Operations Management
— One of eleven departments at WU
— Currently eight institutes, in alphabetic order

« "Complex Networks", "Data, Energy, and Sustainability", "Data, Process, and Knowledge
Management", "Digital Economy", "Distributed Ledgers and Token Economy",
"Information Management and Control", "Information Systems and Society", "Production
Management"

Rony G. Flatscher

Part 1 - Background
Evolution of "Business Programming"

« Original challenge: "is it possible to teach interested novice BA students programming in a single
semester such that the students become able to program MS Office?"

* More than 35 years of evolution (appr. 120 lectures — two each semester)

Each lecture's installment got systematically analyzed

Observing and analyzing students' problems in understanding taught concepts
Constantly reworking focus areas, slides, nutshell examples accordingly
Experimenting with various programming languages (VBA, VBS, Java, REXX/ooRexx)

e Current status (2025)
- BA students learn in a four hour lecture (8 ECTS points) in a single semester (four months)

* Fundamentals of object-oriented programming
* Windows and MS Office, OpenOffice/LibreOffice programming via COM/OLE

* Platform independent programming via Java: GUIs, client/server, OpenOffice/LibreOffice, ...

« Key success factors: Programming language ooRexx

Rony G. Flatscher

Part 1 - Goals
What to Learn and to Apply, 1

e Statement, comment, symbol, variable, block, comparison, branch, loop
* Routine, label, scope, function, associative arrays, commands
* Exception, handler, routine and requires directive, arguments by reference

e 0O: Abstract datatype (ADT), class/type, attribute, method, creating
objects/instances/values, message

« Class hierarchy, inheritance, collection classes and iteration

 Windows: COM, OLE, Windows registry, ooRexx class OLEODbject to camouflage
Windows, MS Excel, MS Word, OpenOffice/LibreOffice as ooRexx

* Fundamentals of HTML and XML, Instrumentating InternetExplorer (sic!) via
OLE, and cURL using redirected commands from ooRexx

Rony G. Flatscher

Part 1 - Goals
What to Learn and to Apply, 2

* Introduction to Java and the ooRexx Java bridge (BSF400Rexx850)

 Thanks to employing Java all programs run on Windows, macOS and Linux

— GUI concepts with events (and callbacks), Socket programming
(client/server)

- OpenOffice/LibreOffice: UNO architecture, swriter, scalc, simpress
- XML: concepts, using SAX (callbacks) and DOM to parse XML text files
- HTML: concepts, applying the Jsoup class library

— Java scripting framework: BSF400Rexx850' RexxScriptEngine (allows
ooRexx to be used as a Java scripting language in all Java applications)

- JavaFX: concepts, creating most complex GUIs in an easy manner

Rony G. Flatscher

Part1 - Goals
Some Challenges

* There are many different concepts to learn and to apply
* Students should master the course and not drop out!

e Everything should be taught and learned in a single semester only

How can this reliably be achieved?

What has to be taken into account for teaching all of this, how do
humans learn?

10

Rony G. Flatscher

Part 1 — Cognitive Load Theory
I n a N utShe“., 1 (Sweller, 1988; Garner, 2002; Sweller & Van Merriénboer, 2005; Paas et al. 2003)

 Knowledge is stored in long-term memory as schemata

- A schemais treated as a single element by our brain, but can itself be made up of
several elements

e Learning means constructing a new (more complex) schema by
combining existing schemata with the help of working memory

- The goal of teaching is to enable the construction of increasingly complex schemata
and to facilitate their automation through practice (paas etal., 2003)

- Learning requires active involvement of the working memory

* Working memory can only deal in parallel with a limited number of elements/schemata

11

Rony G. Flatscher

Part 1 — Cognitive Load Theory
I n a N utShe“., 2 (Sweller, 1988; Garner, 2002; Sweller & Van Merriénboer, 2005; Paas et al. 2003)

* Three cognitive load types competing for the limited working memory
- Intrinsic cognitive load: the complexity of the subject to learn

- Extraneous coghitive load: the context of learning, e.g. the burden induced by bad
teaching techniques (e.g. complicated explanations) or laborious research needs

- Germane cognitive load: learning through thinking about new information and
concepts

 The more working memory capacity is available (low intrinsic/external
cognitive load), the faster learning takes place (high germane cognitive
load)

Rony G. Flatscher

12

Part 1 - Critical Success Factors (CSF)
CSF # 1: Use an easy to learn programming language!

» Saves precious lecture time which is better used for explaining and digesting,
understanding, applying fundamental programming concepts

« Experimented with various languages (e.g. Pascal, BASIC, VBS/VBA, Java,
Rexx/ooRexx), surprisingly Rexx was the most efficient language for novices

* 0oRexx (acronym for "open object Rexx")

- Students learned it fastest, the saved time can be used to teach additional content

- Human-centric design
* Easy syntax, reads almost like pseudo code
* Incorporates object-oriented concepts to "play with"

Interpreter, can be used interactively (rexxtry.rex, trace)

Developed originally by IBM handed over to the non-profit special interest group RexxLA.org
* Professional and powerful programming language

- Open-source and free for all major platforms (Windows, Linux, macOS)

. T Y Rony G. Flatscher

Part 1 - Critical Success Factors (CSF)

CSF # 2: Pareto principle

 Impossible to teach everything in detail in an introductory course,

therefore
- Teach conceptual, overview knowledge
- Select the most "important concepts”

 E.g., object-oriented paradigm, COM/OLE on Windows and MS Office, Java interface to be able
to create portable (Windows, Linux, MacOS), GUI, Internet (socket) programs,
OpenOffice/LibreOffice, parsing XML and HTML text

« Pareto principle: "teach 80% of the most important concepts in 20% of the
time"

- Rather than targeting 100% which would impose an additional 80% of time, which is not
available

- If the students become curious they will research on their own!

14

Rony G. Flatscher

Part 1 - Critical Success Factors (CSF)

CSF # 3: Humboldt's ideal

 Observe the students
- What do they understand immediately, what questions do they ask?
- What problems do they get and why (complex concept or missed classes)?

» If necessary
— Create new paths to ease understanding
- Rework or add new slides, remove complex slides and improve nutshell examples
— Retest the new/updated slides and nutshell examples

* Allows to gradually improve the course and its materials over time

15

Rony G. Flatscher

Part 1 - Critical Success Factors (CSF)

CSF # 4: No student is left alone

* Create groups of two students (pair programming)
— Inhibits drop-outs
- Enables direct help

» Mix students' skills if possible at all
- Askilled student becomes "buddy tutor”
— for a Zero-skilled student in that group

16

Rony G. Flatscher

Part 1 - Critical Success Factors (CSF)

CSF # 5: Searching the Internet

 Modern programming is about searching the Internet!

 Find one own's coding problems and possible solutions
- Follow links to explanations and tutorials for the problem at hand

* Find additional learning resources in all media forms on the Internet

- E.g., tutorials for concepts that are not yet understood, Youtube-videos for
demonstrating the handling of development tools, AI-supported research and
explanations of concepts

17

Rony G. Flatscher

Part 1 - Critical Success Factors (CSF)

CSF # 6: Nutshell examples

18

 Make it as easy as possible to learn programming

e Use easy to understand, small ("nutshell") programs
— As short as possible
- Demonstrate a single concept, if possible at all
- Allow for experimenting with the code and by doing so experimenting with the
concept

 Show the output of nutshell programs on the slides
"Seeing is better than believing”

Rony G. Flatscher

Part 1 - Critical Success Factors (CSF)

CSF # 7: Weekly coding assighments

19

» Create two short (!) programs together in the group
— Students become able to help each other

— Novices can usually handle short assignments and are normally also able to
understand short programs from other groups on their own

* Weekly assignments must be shared with all students
— Allows studying other students' programs
- Stimulus for programming ideas

Rony G. Flatscher

Part 1 - Critical Success Factors (CSF)

CSF # 8: Concluding project assighment

» Students suggest three projects combining with ooRexx
— Three Windows programs ("Business Programming 1")
* After two months, at the end of the first half of the semester
— Three Java jar class libraries ("Business Programming 2")

» After another two months, at the end of the (second half of the) semester where
- JRE (Java runtime environment) counts as a proper jar class library
- Inaddition JavaFX counts as a proper jar class library

* One project will be picked and needs to be implemented within a week
— Project gets presented and demonstrated
- Students experience success
— Students realize the skills and knowledge they have acquired in the course!

20

Rony G. Flatscher

21

Part 2
CSF # 1: "Programming Language"

Rexx/ooRexx:
Overview, Concepts and Nutshell Examples

Rony G. Flatscher

Part 2 - Overview
Developing Business Programming

e Specialisation in "(Business) Information Systems"

- As customary at the time, the most popular languages were used to teach
beginners: Pascal, BASIC, COBOL, C, PROLOG, Visual Basic Script (VBS) /
Applications (VBA), Java, ...

e Surprise when experimenting with the Rexx programming language
- Novices learn much faster and more in-depth than with popular languages

- Analysing the critical success factors showed that the most important aspect
was the programming language

« 35 years of participant observation (two lectures per semester)

— Observed difficulties yielded changes in: content, slides, nutshell examples,
infrastructure, presentation, ...

22

Rony G. Flatscher

Part 2 - Overview
Some Historical Bits on Rexx

« Created for IBM mainframes to make programming easier

compared to the rather awkward EXEC2 e
- Rexx design goals: "human centric", "keep the language small", "easy to ex

learn", "easy to understand hence easy to maintain" e G
- Rexx s still instrumental for IBM mainframe operating systems today!

* Extremely successful in the 80'ies
- Companies selling Rexx interpreters successfully, ANSI/INCITS standard (!)

* Object-oriented successor ("Object Rexx") in the 90'ies by IBM
- Open-sourced in 2005 by RexxLA.org — "open object Rexx" (ooRexx)
* Available for all major operating systems

* Possible to program even MS Windows applications via OLE ...

23

Rony G. Flatscher

THE

Fundamental Rexx Concepts, 1 RQXE

Part 2 — Rexx Concepts

 "Everythingis a string"
- If astring represents a number, one can carry out arithmetic

 Three instruction types
1) Assignment
» Variable name followed by the assignment operator (=) and an expression
2) Keyword instruction

« Keywords are English words conveying the intent of the keyword instruction, e.g. SAY,
DO, IF, LOOP, CALL, PARSE, SELECT, ITERATE, LEAVE, INTERPRET, ...

* Makes Rexx code legible as if it was pseudocode
3) Commands

* Astring passed to the operating system for execution (as if typed in a window)

24

Rony G. Flatscher

Part 2 — Rexx Concepts mk
Fundamental Rexx Concepts, 2 2t

* White space can be freely used to format code for better legibility
— Space around operators gets removed

- White space between symbols will be reduced to a single space serving as
concatenation operator

- Hence indentations (for better legibility) with white space not significant

e Case of symbols irrelevant

- Rexx uppercases everything outside of quoted strings
— No (frustrating) casing errors for novices

* Rexx nutshell examples to stress fundamental concepts
— Illustrate the language
- Same examples in the popular Python language to allow direct comparisons

25

Rony G. Flatscher

THE

Xy

Part 2 — Rexx Nutshell Example, 1
Instructions

26

THE

R@,&, @ python’

/* an assignment instruction: */ # an assignment instruction
a="hello world" /* assigns "hello world" to a variable named a */ a="hello world" # assigns "hello world" to a variable named a
/* a keyword instruction: */ # no keyword instruction for output, using built-in function print()
say a /* output: hello world %/ print(a)
/* a command instruction: */ # no command instruction using module subprocess instead
/* a command (could be typed into a command line window) */ import subprocess # import subprocess module
"echo Hello World 2" /x execute command */ # execute command

/* variable RC contains the command's return code, 0 means success */
if rc=0 then say "success!"
else say "some problem occurred, rc="rc /+ show return code */

completedProcess=subprocess.run("echo Hello World 2", shell=True) # run
rc=completedProcess.returncode # fetch return code, an int
1f rc==0:
print("success!") # indentation mandatory (forcing a block)
else: # must use + (concatenation operator) with str() function
print("some problem occurred, rc="+str(rc)) # turn rc into a string

Output: Output:
hello world
Hello World 2
Success!

hello world
Hello World 2
Success!

Rony G. Flatscher

Part 2 — Rexx Nutshell Example, 2

Blocks, Selection, Multiple Selections

THE

Xy

THE

Rex

max=5 /* number of repetitions
loop a=1 to max /* loop block
select /* nested block # 1

when a=1 then say a":
when a=2 then say a": second round"
when a=3 then say a": third round"
otherwise say "(a="a")"

end

first round"

if a=max then

do /* nested block # 2
say "-> a=max"
say "-> last round!"
say "-> loop will end"

end

end

Output:

1: first round
2: second round
3: third round
(a=4)

(a=5)

-> a=max

-> last round!
-> loop will end

27

*/
*/
*/

*/

@ python’

max=5 # number of repetitions
for a in range(1,max+1): # loop with range() function, must add 1 to max
must use str() function with + (concatenation operator)

match a: # must be indented, "match" needs Python 3.10 or higher
case 1: print(str(a)+": first round") # nested block # 1
case 2: print(str(a)+": second round") # nested block # 1
case 3: print(str(a)+": third round") # nested block # 1

case _: print("(a="+str(a)+")") # default, nested block # 1

if a==max: # must be indented, must use == instead of =

print("-> a==max")

nested block # 2

print("-> last round!") # nested block # 2
print("-> loop will end") # nested block # 2

Output:

1: first round
2: second round
3: third round
(a=4)

(a=5)

-> a==max

-> last round!
-> loop will end

Rony G. Flatscher

Part 2 — Rexx Nutshell Example, 3
Parsing Strings

THE

X

Rexa

text = " John Doe Vienna Austria"
parse var text firstName lastName city country
say "first name:" firstName", last name:" lastName", city:

"

city

text = "Mary Doe Tokyo Japan"
parse var text firstName lastName city .
say "first name:" firstName", last name:" lastName", city:"

/* ignore country */
" city

Output:

first name: John, last name: Doe, city: Vienna
first name: Mary, last name: Doe, city: Tokyo

28

@ python’

Vienna Austria"
create list of words

text = " John Doe
words = text.split()
firstName = words[0] # assign to variable

lastName = words[1] # assign to variable

city = words[2] # assign to variable

print("first name:", firstName+",", "last name:",lastName+",", "city:",city)

text = "Mary Doe Tokyo Japan"
words = text.split() # create list of words

assign multiple elements in a single statement
firstName, lastName, city = [words[i] for i in (0, 1, 2)]
print("first name:",firstName+","

non

,"last name:",lastName+",", "city:", city)

Output:

first name: John, last name: Doe, city: Vienna
first name: Mary, last name: Doe, city: Tokyo

Rony G. Flatscher

Some Thoughts ... R?X

* Popular languages are not the best choice for teaching novices programming!

 Rexx' human centric design allows novices to learn programming much faster
— Intrinsic load much lower

e Less syntaxrules
« Keywords imply intent (intuitive, looks almost like pseudo code)

e Very easy to instrumentalize one own's computer with commands

- Lower coghitive load is a critical success factor for teaching novices
programming with almost no drop-outs

 The learned programming concepts can be applied to any other programming
language (Java, Python, ...) quickly
- In effect, additional languages can be learned in a fraction of the time!
D <A Rony G. Flatscher

29

Part 2 - ooRexx Concepts @
Fundamental ooRexx Concepts, 1 E@

I'm sorry that I long ago coined the term “objects” for this topic
because it gets many people to focus on the lesser idea. The big idea
(s "'messaging”. — Alan Kay (ttps:/en.wikipedia.org/wiki/Alan_Kay)

* ooRexx has been influenced by SmallTalk including its message
paradigm

* o0oRexx adds message expressions and directive instructions to Rexx

30

Rony G. Flatscher

Part 2 — ooRexx Concepts @@
Fundamental ooRexx Concepts, 2 ~

« "Everything is an object (synonyms: value, instance)"
- An object is conceptually regarded as if it was a living thing
— One can only interact with an object by sending it messages

* A message expression consists of a receiver, the message operator ~ (tilde)
and the message name, optionally followed by arguments in parentheses

— The receiver will search a method by the name of the received message,
Invokes it and returns any result to the sender

- No one can invoke methods directly but the receiver (encapsulation)

- As aresult the sender does not need to know anything about
Implementation details

31

Rony G. Flatscher

Part 2 — ooRexx Nutshell Example
Messages

say reverse("olleh") -- classic Rexx BIF (built-in function)
say "olleh"~reverse -- message to string object
Output:

hello

hello

32

a="dlrowolleh"

-- assign string to variable

-- use built-in-functions (BIFs) reverse(), substr()
say substr(reverse(a),1,5) substr(reverse(a),6)

-- use String methods reverse and substr
say a-reverse~substr(1,5) a-reverse~substr(6)

Output:

hello world
hello world

Rony G. Flatscher

Part 2 — ooRexx Concepts @@
Concepts Added by ooRexx m

* Directive instruction
- If present then always placed at the end of a program
- Led in by two consecutive colons (::) serving as an eye catcher

* Directives that cause ooRexx to create classes with attributes and methods during the
setup phase
::CLASS name, ::ATTRIBUTE name, ::METHOD name, ...

* Classes with attributes and methods
— Can be defined with directive instructions or dynamically at runtime
- Instances get created by sending the class the message new

 The new method will create the object and before returning it, the newly created object
gets the message init sent with the arguments supplied to the new message, if any
- Hence, defining a method named init will always run at construction time (constructor)

33

Rony G. Flatscher

Part 2 — ooRexx Nutshell Example
Creating A Class with Directives and Dynamically z

clz: The DOG class
wuff!
d: a DOG, an instance of: The DOG class

.dog: The DOG class
wuff!
d: a DOG, an instance of: The DOG class

. B Not for novices,
. just for this audience! :)
N
[\\ \\
. ~
say ".dog:" .dog -- string value of the class E clz=.object~subclass("D0OG") -- create the dog class
d=.dog~new -- create and assign a dog . say "clz:" clz -- string value of the class
d~bark -- let the dog bark . m =.method~new("bark", 'say "wuff!"') -- create method
say "d:" d", an instance of:" d~class E clz~define("bark",m) -- define as instance method for class
::class dog -- class directive E d=clz~new -- create and assign a dog
::method bark -- method routine directive : d~bark -- let the dog bark
say "wuff!" -- code to run . say "d:" d", an instance of:" d~class
Output: : Output:

34 o Rony G. Flatscher

Part 2 - ooRexx Concepts C
Ad Messages, 1 RE@,

35

* Quickly familiar, intuitive for novices

« Seeing objects as living things makes it easy to accept behaviours and concepts like

The new method of a class will send the init message to the newly created object (a
method named init is therefore a constructor)

An object using the class hierarchy to locate the method to invoke (inheritance)
Multiple inheritance (!) deviating the search carried out by the object

Intercepting messages for which no method could be found as the object then
sends the unknown message to itself (simply implement a method unknown)
The variables self (reference to the object that invoked the method) and super
(reference to the immediate superclass) in methods

As objects know how to find and invoke methods, the sender does not need to know
that (black box) at all, alleviating the (novice) programmer

Rony G. Flatscher

Part 2 — ooRexx Concepts @E@
Ad Messages, 2 m

* Addressing complex software infrastructures can be made easy for

message senders (programmers)
— Create a proxy class in ooRexx and process the received messages, marshall the
arguments and unmarshal the return value

 Example Windows and Windows programs
- o0oRexx for Windows has ooRexx classes for Windows support
- The OLEODbject class is the proxy class for interacting via OLE (Object Linking and
Embedding) with any OLE Windows component

« TIts unknown method will intercept all messages for which no method can be found on the
ooRexx side, such that it gets forwarded to the proxied Windows object by searching and
invoking the appropriate Windows method

* To exploit this functionality no implementation knowledge of COM or OLE is needed!

Rony G. Flatscher

36

Part 2 — ooRexx Nutshell Example

Programming Excel Using ooRexx Messages

excApp = .OLEObject~new("Excel.Application") -- create Excel object

excApp~visible = .true -- make Excel visible
sheet = excApp~Workbooks~Add~Worksheets[1l] -- add and get sheet
-- set titles from an ooRexx array
titleRange=sheet~range("A1:C1") -- get title cell range
titleRange~value = .array~of ("Argentina", "Brasil", "Chile")
titleRange~font~bold = .true -- make font bold
sheet~range("A2:C5")~value = createRows(4) -- create and assign array
excApp~displayAlerts = .false -- no alerts (should file exist already)
fileName=directory()"\test.x1lsx" -- save in current directory
Say 'fileName:' fileName -- show fully qualified file name
sheet~SaveAs(fileName) -- save file (no alerts, see above)
excApp~quit -- quit (end) Excel
::routine createRows -- return two-dimensional array with random data
use arg items -- fetch argument
arr=.array~new -- create Rexx array
do i=1 to items -- create random(min, max) numbers
arr[i,1] = random(0,1000) -- Argentina
arr[i,2] = random(1001,2000) -- Brazil
arr[i,3] = random(2001, 3000) -- Chile
end
return arr -- return two-dimensional Rexx array

Insert Page Layout Fo

aln
'[%E’C“t Calibri -1 -
= CD -
Paste E; > B I U- &
- ™ Format Painter =
Clipboard P Font
Al v fx Arget
A B C D
1 |Argentina|Brasil Chile
2 | 748 1929 2268
3 | 66 1059 2907
4 | 86 1592 2963
3 | 456 1075 2674
.x1sx

Possible Output: fileName: C:\Program Files\JetBrains\IntelliJ IDEA\jbr\bin\test

37

Rony G. Flatscher

Part 2 — ooRexx Concepts @@
Ad Messages, 3 .

* Addressing complex software infrastructures can be made easy for

message senders (programmers)
— Create a proxy class in ooRexx and process the received messages, marshall the
arguments and unmarshal the return value

 Example Java and Java class libraries
- BSF400Rexx850 for Windows, macOs and Linux implements an ooRexx-Java bridge
— Its BSF class is the ooRexx proxy class for interacting with Java

» Its unknown method will intercept all messages for which no method can be found on the
ooRexx side, such that it gets forwarded to the proxied Java object by searching and
invoking the appropriate Java method

* To exploit this functionality no implementation knowledge of BSF400Rexx850 is needed!

Rony G. Flatscher

38

Part 2 — ooRexx Nutshell Example

Communicating with Java Objects Using ooRexx Messages 2

dim=.bsf~new("java.awt.Dimension",6111,222)

say "dim: " dim", dim~class:" dim-~class

say "dim~toString:" dim~toString -- Java method
-- use Java fields as if ooRexx attributes

say "dim~width: " dim~width -- Java field

say "dim~height: " dim~height -- Java field

dim~setSize(333,444) -- Java method

say "dim~toString:" dim~toString -- Java method
-- use Java fields as if ooRexx attributes

dim~width=555 -- setting Java field

dim~height=666 -- setting Java field

say "dim~toString:" dim~toString -- Java method

:irequires "BSF.CLS" -- get ooRexx-Java bridge

Output:

dim: java.awt.Dimension@lc4af82c, dim~class: The BSF class

dim~toString: java.awt.Dimension[width=111,height=222]
dim~width: 111
dim~height: 222
dim~toString: java.awt.Dimension[width=333,height=444]
dim~toString: java.awt.Dimension[width=555,height=666]

39

jf = .bsf~new("javax.swing.JFrame", "Title By ooRexx") -- create JFrame
style = 'style="color: blue; font-family: serif; font-size: 18;"'
1blText = '<html><em' style'> Hi there! (by ooRexx) </html>'

1bl = .bsf~new("javax.swing.JLabel", 1lblText)

-- create JlLabel

jf~add(1lbl) -- add JLabel to JFrame
jf~setSize(280,70) -- set size

jf~setLocation(50,200) -- set JFrame's location on screen
jf~visible=.true -- make JFrame visible

jf~toFront -- place JFrame in front of all windows
say 'Hit <enter> on the keyboard to proceed (end) ...'

parse pull data -- wait until user presses <enter>
:irequires "BSF.CLS" -- get ooRexx-Java bridge

=2

Hi there! (by coRexx)

Hit <enter> on the keyboard to proceed (end) ...

Output:

Rony G. Flatscher

Some Thoughts ... @@@

* Message paradigm
— Easy and intuitive for novices!

- All important object-oriented concepts can be informally (!) explained and
understood by novices

* Proxy classes allow the message paradigm to be extended to other software systems
- Windows COM/OLE, proxy class OLEObject (supplied by ooRexx)
- Java, proxy class BSF (supplied by BSF4ooRexx850)
- Novice students do not care and are not afraid! :-)

* They "only" send messages and need not know any implementation details!

 The supplied nutshell examples allow novices to exploit OLE and Java
- Windows: MS Excel, MS Word, MS PowerPoint, AOO swriter, LO scalc, ...
- Java: from (secure!) socket programming to JavaFX GUIs!

Rony G. Flatscher

40

41

Part 3

Overview of the Slides
1% Installment: Onboarding, Fundamental Programming Concepts
3" Installment: Messaging and Object-Orientation
5™ Installment: COM/OLE for Windows Applications

8" Installment: Java and ooRexx Java Bindings

[_ew
“Fo

us @) < Avisa Rony G. Flatscher

Part 3 — Critical Lectures
Slides and Critical Installments

» Slides and their nutshell examples are made freely available
- See link section in the back of this presentation

* Led-in number in filename suggests the sequence position in the course
* Filename includes the version of the slides or nutshell zip archives

 Example filenames
- If it starts with "010_ooRexx" then

 "010_ooRexx_V11.odp"... Apache OpenOffice (AOO a.k.a. 000) presentation file

- odp ("open documeent presentation”) files are standardized and can be usually processed by other
presentation programs like LibreOffice, PowerPoint , Keynote and the like

- AOO is open source, cf. https://OpenOffice.org which also supplies download links
* "010_ooRexx_V11.pdf" ... PDF version of the slides

* "010_ooRexx_code_V11.zip" ... zip archive of the nutshell examples in the slides

e Critical installments are hlghllghte In red in the addendum

42 rouis (@) G AMER Rony G. Flatscher

Part 3 — Critical Lectures “*k
1* Installment: Onboarding, 1 ex
e Goals

- Make the students comfortable, assure they can manage and complete the course

« Introduction round, overview and organization of the course, 90'
- Introduction round, each student tells

* Name, prior school, study program at University, any programming experiences (if so
which languages, which skills), why in this course, what does the student expect from the
course

- Students will see that there are novices and maybe experts, novices will see they are not alone

- Encourage "stupid questions”
« There are no stupid questions, those who ask concentrate on the answer
— Pair programming: no one is on her/his own

« If possible mix a novice with a skilled student who takes on a tutor role

43

Rony G. Flatscher

Part 3 — Critical Lectures

1° Installment: Onboarding, 2 Rex

e Introduction round, overview and organization of the course (continued)
- Homework assignment
* Two programs, as short (!) as possible, applying newly learned concepts

* Sendinthe two programs via a shared mailing list, such that everyone can see each
others' code (and potentially rehearse the concepts by studying the code of others)

- Stressing that it is important to help each other and to ask actively for help!

— Concluding project after two months
» Students come up with three project ideas (can be funny!), one gets picked and assigned
« Students will program the project, create a presentation and demo the program

 Important to start slowly to introduce the students to 010_ooRexx, 90"
— Take time for explaining each slide!
- Ask whether there are questions about each slide before going on!

G AMER Rony G. Flatscher

44 * Take time to answer any quesHong

Part 3 — Critical Lectures C
3" Installment: Messaging and Object-Orientation, 1 RE@-

* Overwhelming!
- 040_ooRexx, 90'
* Confront the students with the most important OO terminology and concepts, no details
- 050_ooRexx, 90': repeats 040_ooRexx, adds details, allows students to digest

 Message paradigm
- Easy to understand for novices!
— Difficult for people who know to program already and have never been exposed to it

- Allows to conceptually picture objects as living things with which programmers
Interact by sending messages and receiving answers if any returned

* The objects are conceptually responsible for looking up and invoking the methods named
after the received message thereby abstracting the resolution process

* The programmer does not need to know about any complexities a message may induce

Rony G. Flatscher

45

Part 3 — Critical Lectures C
3" Installment: Messaging and Object-Orientation, 2 RE@

* Message paradigm (continued)
- Explicit message operator ~ (tilde), receiving object is always on the left, message
name on the right, optionally with arguments in parentheses
- Message chaining: result (answer) of a message becomes receiver of a new
message
- Message cascading (always returns the object that receives the message)
* Receiver of a message gets returned such that the next message is aimed at the same

object
« Adifficult concept at first, students are relieved when they learn that one can forgo them
- Students can accept that this concept is taught for "pedagogical reasons"

* Message cascading, once understood, can considerably simplify certain coding needs

Rony G. Flatscher

46

Part 3 — Critical Lectures C
3" Installment: Messaging and Object-Orientation, 3 RE@

* Object-orientation
— Terminology confounding at first!

* Synonyms "object"="instance"="value", "class"="type"="structure"
- Intentionally speak out all three synonyms in this lecture to accustom the students
- Note: these terms get informally defined

* Homonym "object"
- Generic term for an instance of a class/type/structure or denotes the root class named "Object"?

— Class hierarchy, inheritance

* Nutshell "Animal SIG": distracts by modelling and implementing normal dogs, little and
big dogs

- Multithreading: expose students to the concept, then tell them to forget about it ;)
« Inter object multithreading
« Intra object multithreading

47

Rony G. Flatscher

Part 3 — Critical Lectures @@
5" Installment: COM/OLE for Windows Applications, 1 -

e 110_AutoWin, 90
- Important to understand conceptually

« COM ("component object model") and OLE ("object linking and embedding")
- OLE: standardized way of interacting with methods, attributes, events, constants
- Windows programs can communicate via COM/OLE with other Windows programs
 The Windows registry
- Central database organized in hives, each COM Windows program stored in this registry
- Windows can consult the registry to find and run COM classes on behalf of ourselves

- o00oRexx proxy class OLEObject
* Can be used to instantiate or fetch any OLE Windows program

» Messages to OLEObject instances get forwarded to Windows via OLE if unknown
- Published methods, attributes, events and constants can be queried via ooRexx
- Marshalling and unmarshalling done transparently, no need to know any details!

Rony G. Flatscher

48

Part 3 — Critical Lectures C
5" Installment: COM/OLE for Windows Applications, 2 RE@

 110_AutoWin (continued)
- Explain important ooRexx OLE nutshell samples (ooRexx/samples/ole)

49

Empowers the students to study the remaining nutshells in their groups
Empowers students to create programs that interact with MS Office and AOO/LO

MS Internet Explorer (MSIE)
- Deprecated by Microsoft, yet in Windows 10 available via OLE
- "Spectacular" for students to be able to "remote control" MSIE and navigate

MS Excel

- Explain conceptually the MS Excel model and why it is important to make MS Excel visible
- Explain all details of the MS Excel nutshell such that students understand all of it

Nutshell using Windows OLE program with the ProgID "Wscript.Network"
- Explain 0-based C which shines through this sample (ooRexx is 1-based)

- Explain programming technique to use a single dimensioned array to represent data that would
be better represented in a two dimensional array

Rony G. Flatscher

Part 3 — Critical Lectures //’Q§
8" Installment: Java and ooRexx Java Bindings, 1 &5

« 210 _AutoJava_BSF4ooRexx, 180' (entire installment)

— Nutshell example "java.awt.Dimension" to demonstrate how easy it is to use Java
classes and objects from ooRexx

- Important to understand conceptually Java

Stress differences to ooRexx: static language, strictly typed, case sensitive, compiled

Stress primitive types (boolean, byte, char, short, int, long, float, double)
- Boxing to and unboxing from Java wrapper classes like e.g. java.lang.Boolean, ...
- Values of primitive types can be represented as simple strings in Rexx

Stress access rights public, private, protected and package private (no access modifier)

- BSF400Rexx850 allows acess only to public classes, fields and methods and to
inherited protected fields and methods

Stress platform independence, i.e. compiled Java classes do not need to be recompiled

50

Rony G. Flatscher

Part 3 — Critical Lectures ,/IQ§
8" Installment: Java and ooRexx Java Bindings, 2 &5

« 210_AutoJava_BSF4oo0Rexx (continued)
- Stress "javadoc" making it possible to find all Java documentation on the Internet

* Find any Java documentation on the Internet and look it up with any browser: easy and
fast to find and complete documentation with links to related documentation

- Make explicitly clear that
» Java classes correspond to ooRexx classes
« Java fields correspond to ooRexx attributes (object variables)
« Java methods correspond to ooRexx methods
— Introduce the ooRexx-Java bridge BSF400Rexx850, explain its name
« BSF: "Bean Scripting Framework" (Java scripting framework from Apache/ASF)
e 8:Java version 8 or later
* 50: ooRexx version 5.0 or later
* Developed for more than 25 years y Ronﬂy G. Flatscher

o1 ~equs (@) o AvEA Rony G. Flatscher

Part 3 — Critical Lectures ,/IQ§
8" Installment: Java and ooRexx Java Bindings, 3 &5

« 210_AutoJava_BSF4oo0Rexx (continued)
- The ooRexx proxy class BSF is defined in the package BSF.CLS (an ooRexx program)

* Requiring BSF.CLS makes all its public classes and public routines available

- E.g the public proxy class BSF or the public routines box() and unbox() for primitive Java types
* The proxy class BSF camouflages Java objects as ooRexx objects

- Camouflaged Java objects are therefore able to process plain ooRexx messages

* BSF forwards unknown messages to the ooRexx-Java bridge in which the
corresponding Java method gets looked up, any arguments marshalled, the Java
method invoked and its return value unmarshalled and returned to ooRexx

- The case of messages does not need to match the Java case of field or method
names, the ooRexx-Java bridge will resolve any case mismatches transparently

52

Rony G. Flatscher

Part 3 — Critical Lectures //’Q§
8" Installment: Java and ooRexx Java Bindings, 4 &5

e 210 _AutoJava_BSF4o0oRexx (continued)
— Java arrays are strictly typed, have a predefined size and have 0-based indices

* Returned Java arrays get automatically camouflaged as ooRexx arrays
by the bridge
 BSF.CLS includes public routines to ease the creation of Java arrays directly

from ooRexx and automatically camouflages them as ooRexx arrays
- BSF400Rexx850 camouflages Java arrays as ooRexx arrays hence

 1-based indices as if they were an ooRexx array

 o0oRexx array methods like makeArray, supplier, at, put are available

- Among other things this support allows for iterating over Java arrays with
do ... over!

53

Rony G. Flatscher

54

Part 4
Hands-on: Installations,
Running Nutshell Examples

ooRexx 5 or Higher
Java 8 or Higher (with JavaFX!)
ooRexx Java Bindings (BSF400Rexx850)
Nutshell Examples

Rony G. Flatscher

Part 4 - Hands-on '//'0@

Installation, 1 {27

 General remarks ad Windows and macOS
— Files downloaded from the Internet get flagged as dangerous

— Unzipping zip archives using Windows or MacOS supplied tools will flag all extracted
files as well

— If executables are signed then they will still execute, unsigned binaries will not

» Signing costs money (on a yearly basis) and many open-source projects can not afford it

* Allowing open-source binaries to run ("de-quarantize")
- Windows
* Right mouse click to get the properties of the downloaded file, click "unblock" and "apply"
* Orinacommand promptissue: powershell Unblock-File filename
- MacOS

 Inaterminal window issue: xattr -d com.apple.quarantine filename

Rony G. Flatscher

55

Part 4 — Hands-on '/i
Installation, 2 REXS

e 00RexXx
- URL (as of 2026-02-10)

- Recommended: https://sourceforge.net/projects/oorexx/files/oorexx/5.2.0beta/
- Released version: https://sourceforge.net/projects/oorexx/files/oorexx/5.1.0/
- "portable" subdirectory : contains portable versions that can be used without installation

« Installation package: system wide installation, needs administrator rights to install
- macO0S

* Thereis a package that installs both, ooRexx and BSF400Rexx850, see BSF400Rexx850
- Needs Java already installed because of the contained ooRexx-Java bridge

56

Rony G. Flatscher

Part 4 - Hands-on '//'0@

Installation, 3 {27

 Java/OpenJDK

— Java name rights with Oracle , OpenJDK same as Java but by others and 0SS
license
* OpendDK Java e.g. from Amazon, IBM, Microsoft, SAP, and many more ...

» Make sure you install the package with the JavaFX modules, e.g.
- https://bell-sw.com/pages/downloads/ choose "Package Type" and set "Full JRE" or "Full IDK"

- https://www.azul.com/downloads/?package=|re-fx#zulu choose "Java Package" and set "JRE FX"
or "JDK FX"

- Notes on Version 8 (LTS, long term support)
* Last non-modular Java version (released 2014), supported at least until March 2031!
* Runs Java programs that exploit Java internals which may be prohibited in modular Java
— Notes on modular versions of OpenJDK Java
* Bi-annually a new version, LTS versions are "long-term support" and used by businesses
57 * Continuous development, rolled, o mugh earlier (for testing) than nepsmodular, versions

EQUIS &2

Part 4 — Hands-on '/i
Installation, 4 REXX

e BSF400Rexx850
- Prerequisite: ooRexx 5+ and Java 8+ need to be installed/available via PATH

- URL (as of 2026-02-10)
- https://sourceforge.net/projects/bsfdoorexx/files/GA/BSF400Rexx-850.20240304-GA/
* Release, no reported open bugs!

« Installation package: system wide installation, needs administrator rights to install
- Change into bsf4oorexx/install/{windows|linux} and run install.{cmd|sh}

* Portable: de-quarantize, unzip, change into "bsf4oorexx/install",
run "rexx setupBSF.rex" use resulting shell scripts

- macOS

* There is a universal package that installs both, ooRexx and BSF400Rexx850

* URL (as of 2026-02-10)
- https://sourceforge.net/projects/bsfdoorexx/files/GA/BSF400Rexx-850.20240304-GA/
- De-quarantize, unzip and run/instler

o8 ~equs (@) o AVEA Rony G. Flatscher | @07

Part 4 - Hands-on '/‘;a@

IRE XiXe

Nutshell Examples, 1 V.74

59

 ooRexx (as of 2026-02-10), selection

oorexx/samples: demonstrate important ooRexx capabilities

oorexx/samples/OReadMe.first: brief overview of samples directories
oorexx/samples/api: C and C++ samples to demonstrate writing libraries
oorexx/samples/misc: a drop file handler sample

oorexx/samples/oodialog: a set of samples of the ooDialog GUI framework for ooRexx
oorexx/samples/ole: OLE (Object Linking and Embedding) samples
oorexx/samples/ole/adsi: Active directory service samples (managing Windows)
oorexx/samples/ole/apps: Windows Shell, MS Office, OpenOffice/LibreOffice samples
oorexx/samples/ole/wmi: Windows management instrumentation (managing Windows)

oorexx/samples/ole/methinfo: Windows GUI to inspect OLE Windows methods

Rony G. Flatscher

Part 4 - Hands-on '/‘;a@

IRE XiXe

Nutshell Examples, 2 V.74

60

» BSFooRexx850 (as of 2026-02-10), selection
- BSF400Rexx850/samples: demonstrate important BSF4o0oRexx850 capabilities

Hint: open the index.html file, it briefly documents each sample in the directory and
allows for changing into subdirectories that have index.html files for the same purpose!

BSF4o00Rexx850/samples/clr: .Net/CLR samples, needs Windows and Java 8
BSF4o00Rexx850/samples/{DOM|SAX} samples processing XML files

BSF4o00Rexx850/samples/{Java|NetRexx}: Java/NetRexx samples to demonstrate the
Java scripting framework, implementing Rexx exit handlers in Java/NetRexx

BSF4o00Rexx850/samples/000: numerous Apache OpenOffice (LibreOffice) samples

BSF4o0Rexx850/samples/LeePeedin: samples demonstrating swing and dialog related
GUI functionalities, including formatting

BSF4ooRexx850/samples/ReneJansen: samples demonstrating XSLT and JDBC
(MySQL/MariaDB, Apache Derby, HyperSQL, PostgreSQL, SOQLite, H2)

Rony G. Flatscher

Workshop Roundup

61

 "Business Programming": introducing novices to programming and its application
- Four weekly contact hours for one semester (four months)
- 8 ECTS points, total net teaching load of 200 hours
- Novices get empowered by being able to learn programming quickly

- Novices get empowered by learning and applying the concepts on Windows with OLE (e.g., MS
Office programming) and portable (exploiting the ooRexx Java bindings) client/server
programming, GUI-programming, XML SAX & DOM parsing, web scraping (cURL, Jsoup), ...

* Critical success factor "programming language": ooRexx
- Popular languages are usually not adequate to teach novices programming!
- 00Rexx: easy to learn programming and much more, especially suited for novices!
— Learning and exploiting Java directly becomes possible in a fraction of the time usually needed

* All materials (slides, software for all platforms) are freely available

* Last but not least: no dropouts (!) despite the overwhelming learning outcomes!
Rony G. Flatscher

Links (As of 2026-02-10), 1

* WU (English): https://www.wu.ac.at/en/the-university/about-wu/facts-figures/studierende/
- Business Programming 1 (BP1): first half of semester (two months)

* Syllabus (German use e.g. Google translate, deepl.com) 2025/26:
http://wi.wu.ac.at/rgf/wu/lehre/autowin/2025wBP1/BP1-autowin-2025w-uebersicht.pdf

» Slides (English): https://wi.wu.ac.at/rgf/wu/lehre/autowin/material/foils/
- Business Programming 2 (BP2): second half of semester (two months)

* Syllabus (German use e.g. Google translate, deepl.com) 2025/26:
https://wi.wu.ac.at/rgf/wu/lehre/autojava/2025wBP2/BP2-autojava-2025w-uebersicht.pdf

» Slides (English): https://wi.wu.ac.at/rgf/wu/lehre/autojava/material/foils/
- Some seminar papers, Bachelor and Master theses with ooRexx, BSF400Rexx: https://wi.wu.ac.at/rgf/diplomarbeiten/

 Software
- 00Rexx 5.1: https://sourceforge.net/projects/oorexx/files/oorexx/5.1.0beta/
- Java/OpendDK with JavaFX modules, e.g. https://www.azul.com/downloads/?package=jdk-fx#zulu
- BSF400Rexx850: https://sourceforge.net/projects/bsf4oorexx/files/GA/BSF400Rexx-850.20240304-GA/

* Hock-Chuan, Chua: "Java Game Programming: 2D Graphics, Java2D and Images"; AffineTransformDemo:
https://www3.ntu.edu.sg/home/ehchua/programming/java/J8b_Game_2DGraphics.html#zz-2.2

‘e‘w:gg/REXinitspec-1979.pdf Rony G. Flatscher

62 ° REXXhistory(initialspecification):https://speleotrg%gég

Links (As of 2026-02-10), 2

 JavaFX SceneBuilder: https://www.jetbrains.com/idea/download/
- Interactive JavaFX GUI editor (create and edit FXML GUI definitions): https://gluonhg.com/products/scene-builder/

* JetBrain's Intellid: https://www.jetbrains.com/idea/download/
- Community edition for free, education license for additional professional tools
- ooRexx plugin and directions: https://sourceforge.net/projects/bsf4oorexx/files/Sandbox/aseik/ooRexxIDEA/GA/

* RexxLA: https://www.rexxla.org/
- Non-profit interest group developing and maintaining open-source Rexx related software and standards
- US based, but members from all over the world
- Organizes yearly international Rexx symposium: https://www.rexxla.org/events/
- Members encompass creators and maintainers of various Rexx software, including the creator of Rexx, Mike F. Cowlishaw

* Membership free: https://www.rexxla.org/members/index.rsp?action=join

63

Rony G. Flatscher

Some Literature: ooRexx

* Flatscher, R. G. (2024). Introduction to Rexx and ooRexx. RexxLA, ISBN 9789403 739298 (glossy white paper, preferred)
or ISBN 9789403 755038 (regular white paper).

* Flatscher, R. G., & Mdller, G. (2021). "Business Programming" — Critical Factors from Zero to Portable GUI Programming in
Four Hours. In Marko Kolakovic, Tin Horvatinovic, Ivan Turcic (Ed.), 6th Business and Entrepreneurial Economics 2021 -
Conference Proceedings (pp. 76-82):
https://research.wu.ac.at/files/32933925/2021_BusinessProgramming_BEE2021_accordingToGuidelines.pdf

» Flatscher, R. G. (2023). Proposing ooRexx and BSF4o0Rexx for Teaching Programming and Fundamental Programming
Concepts. In 2023 Program Guide ISECON: Information Systems Education Conference (pp. 89-102):
https://research.wu.ac.at/files/41301564/ISECON23_Flatscher_Proposing_ooRexx_article.pdf

* Winkler, T., & Flatscher, R. G. (2023). Cognitive Load in Programming Education: Easing the Burden on Beginners with
REXX. in Central European Conference on Information and Intelligent Systems (S. 171-178). Faculty of Organization and
Informatics.
https://research.wu.ac.at/files/46150789/CECIIS_CLT_REXX.pdf

* Flatscher, R. G., & Winkler, T. (2024). Concepts that Allow Learning the Programming Language Rexx Much Faster than
Other Languages. Accepted paper for MIPRO 2024, 47th Convention, engineering education track.
https://research.wu.ac.at/files/64505014/mipro24_9192_Flatscher_Winkler_LearningProgrammingFast_final-5.pdf

* Flatscher, R. G., & Winkler, T. (2024). Employing the Message Paradigm to Ease Learning Object-oriented Concepts and
Programming. Accepted paper for MIPRO 2024, flr_'Zj;h nvention, engineering education track. ©
https://research.wu.ac.at/files/64505159/mipro 24" 4’_1A—Taa%cher_wmkler_EmployingMessaggg%gdigﬁwtf |hn%rl-

https://research.wu.ac.at/files/32933925/2021_BusinessProgramming_BEE2021_accordingToGuidelines.pdf
https://research.wu.ac.at/files/46150789/CECIIS_CLT_REXX.pdf
https://research.wu.ac.at/files/64505014/mipro24_9192_Flatscher_Winkler_LearningProgrammingFast_final-5.pdf
https://research.wu.ac.at/files/64505159/mipro24_9194_Flatscher_Winkler_EmployingMessageParadigm_final-4.pdf

Literature: Cognitive Load Theory

65

» Sweller, J. (1988). Cognitive load during problem solving: Effects on learning. Cognitive
science, 12(2), 257-285.

« Sweller, J., & Van Merriénboer, J. J. G. (2005). Cognitive load theory and complex
learning: Recent developments and future directions. Educational Psychology Review,
53(3), 147-177

* Garner, S. (2002). Reducing the cognitive load on novice programmers (pp. 578-583).
Association for the Advancement of Computing in Education (AACE).

* Paas, F,, Renkl, A., & Sweller, J. (2003). Cognitive load theory and instructional design:
Recent developments. Educational psychologist, 38(1), 1-4.

Rony G. Flatscher

Addendum B
Overview of BP1-Slides, 1 RQZQ\/ @‘3@

* 010_ooRexx, installment 1, 90": history, symbols, comparisons, blocks, loops, commands

 020_ooRexx, installment 2, 90': labels, internal routines, functions, search order, scopes, associative
arrays, parsing strings, parsing keyboard input, parsing arguments

» 030_ooRexx, installment 2, 90': exceptions (conditions, includes a brief lecture on stdin, stdout, stderr
and redirection), references, directives (::routine, ::requires)

* 040_ooRexx, installment 3, 90": abstract datatype (ADT), classes, methods, attributes, messages, class
hierarchy, inheritance, inter and intra object multithreading

* 050_ooRexx, installment 3, 90": repetition of abstract datatype (ADT), classes, methods, attributes,
messages, class hierarchy, inheritance, add details compared to 040_ooRexx

« 051_ooRexx, installment 4, 90": ordered and unordered collections, iterating over collections
 340_JSON, installment 4, 15" JSON, json.cls, reading and creating JSON data

 060_ooRexx_commands, installment 4, 30': process, environment variables, standard files (stdin,
stdout, stderr), redirection, pipes, commands, curl

A

e 350 LLM curl, installment 4, 45': generative Al's, interface with with chatgpt, grok
- - & ft"”'w D < Avies EPL. & Rony G. Flatscher

equis (&=

Addendum
Overview of BP1-Slides, 2 @‘3@

67

110_AutoWin, installment 5, 90': COM, OLE, proxy class OLEObject, explaining key nutshell programs
coming with the Windows version of ooRexx (% ProgramFiles%\ooRexx\samples\ole), like MS Excel, AD
(active directory services), WMI (windows management instrumentation) and more

120_AutoWin_markup, installment 5, 90": introduction to HTML, XML (learned concepts will be reused in
BP2's SAX, DOM and Jsoup lectures!), nutshell sample for MS InternetExplorer (still accessible via OLE),
allows retrieving and analyzing text from webservers

Installment 6: students present project ideas, then the following slides

Installment 7: presentation and demonstr«@@g)

130_AutoWin_oleinfo, 30': utility to query all registered COM classes and to generate HTML
documentations of the published OLE interfaces of any Windows OLE program

140_AutoWin_vba, 30': overview of VBA, VBA macros, how to map VBA to ooRexx and vice versa
060_ooRexx_commands, 60': on processes, standard files, redirection of Rexx commands, cURL
070_ooRexx_trace_debug, 30': optional, turn on (off) trace to learn how statements execute exactly
and how one can debug interactively at program runtime

080_ooRexx_environment_symbols, 15': optional, ooRexx runtime environment and resolution of
environment symbols

bf.caeh assigned student project Rony G. Flatscher

Addendum 4y
Overview of BP1-Slides, 3 '@’@9

« 210_AutoJava_BSF4ooRexx, installment 8, 180": overview of Java, static language, strictly typed, case
sensitive, qualified and unqualified class names, Java arrays (strictly typed, fixed size), mapping of
classes/methods/fields to ooRexx classes/methods/attributes, JavaDocs on the Internet; ooRexx
external function package BSF4o00Rexx850, ooRexx program BSF.CLS defining the proxy class BSF for
camouflaging Java objects as ooRexx, BsfCreateRexxProxy() function to create a Java RexxProxy (a Java
object) to allow interaction from Java with embedded ooRexx objects

- Exploiting Java has the effect that all ooRexx programs run unchanged on Windows, macOS and Linux!

 220_AutoJava_gui, instalment 9, 90": introduction to GUIs, event thread, events (Java event callbacks
to ooRexx), awt nutshell sample

« 230_AutoJava_Sockets, installment 9, 90': switchboard and sockets, IP addresses, client/server,
java.net.Socket, java.net.ServerSocket, data encrypted client/server with SSL/TLS (javax.net.ssl)

e« 240_AutoJava_AO0O_LO, installment 10, 180": AOO/LO via their Java APIs, history, programming model,
UNO framework, UNO classes, nutshells for the modules swriter, scalc, simpress
350_Weka_ML, installment 10, 180': machine learning (ML), concepts, Weka structure, Weka GUI, Weka

commandline, Weka Java APIs, nutshell examples for superwsed and unsupervised learning, plottln
@) < Rony G. Flatscher

Addendum /’1@
Overview of BP1-Slides, 4 $27,

« 250_AutoJava_XML_SAX, installment 11, 90': SAX programming model, callbacks to ooRexx, nutshells
that extract text, element names, element hierarchy

« 252_AutoJava_XML_DOM, installment 11, 90": DOM programming model, walk trees recursively,
nutshells that extract text, element names, element hierarchy; in addition xhtml and xslt

« 254_AutoJava_jsoup, installment 11, 30": Jsoup programming model, nutshells

 260_AutoJava_RexxScript, installment 12, 90': Java scripting framework (javax.script), features,
application, RexxScript scripting engine implementaion, nutshells

« 270_AutoJava_JavaFX, installment 12, 90" history, concepts, SceneBuilder, FXML and exploiting Java
scripting framework, nutshells

« Installment 13: students present project ideas, then the following slides
- 280_AutoJava_Environment, 30': Java environment, CLASSPATH, Java modules
- 320_Codepages, 30': ASCII, 8-bit codepages (Windows cpl1252), Unicode, UTF-8, nutshells
- 330_Paths, 15': source, current home, temporary directory, environment variables, java.lang.System
- 340_JSON, 30'": concepts, nutshells

. Installment 14: presentation and demonstFati@ ofech assigned student project Rony G. Flatscher

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	Slide 33
	Slide 34
	Slide 35
	Slide 36
	Slide 37
	Slide 38
	Slide 39
	Slide 40
	Slide 41
	Slide 42
	Slide 43
	Slide 44
	Slide 45
	Slide 46
	Slide 47
	Slide 48
	Slide 49
	Slide 50
	Slide 51
	Slide 52
	Slide 53
	Slide 54
	Slide 55
	Slide 56
	Slide 57
	Slide 58
	Slide 59
	Slide 60
	Slide 61
	Slide 62
	Slide 63
	Slide 64
	Slide 65
	Slide 66
	Slide 67
	Slide 68
	Slide 69

