
Tobias Specht
Matr.-Nr.: 640 412

tobias.specht@student.uni-augsburg.de

BWS
Using Web-Browsers as Application

Platform

Diploma Thesis

March 29, 2004

University of Augsburg
Chair for Business Administration, Business Information Systems III

Prof. Rony G. Flatscher

Contents

1 Introduction 10

1.1 Client Side Web Applications . 10

1.2 General remarks . 11

1.3 Structure of this Paper . 12

2 Economical and Technical Advantages of Client Side Web Applications 14

2.1 Advantages of Web Based Applications 14

2.2 Advantages of Client Side Applications 16

3 Current Solutions for Developing Client Side Web Applications 17

3.1 Platform Independent Solutions . 17

3.1.1 JavaScript . 18

3.1.2 Java . 20

3.2 A Proprietary Solution: Microsoft ActiveScripting 23

3.3 Comparison . 24

4 Base Technologies of BWS 26

4.1 DOM . 26

4.1.1 DOM Basics . 27

2

4.1.2 Navigating a DOM Tree Hierarchically 28

4.1.3 Selecting DOM Elements: XPath 29

4.1.4 Working With the DOM in Java Using dom4j 31

4.2 LiveConnect . 33

4.3 BSF . 35

4.3.1 BSF Architecture . 36

4.3.2 BSF4Rexx . 37

4.4 Relations Between the Base Technologies 38

5 BWS in Detail 39

5.1 Classes and Their Relations . 39

5.2 BWS Implementation . 41

5.2.1 Details of Document Rewriting 42

5.2.1.1 Using BWSDocument 43

5.2.1.2 BWSDocument Class 44

5.2.2 Details of Application Execution 46

5.2.2.1 BWSApplet . 46

5.2.2.1.1 Executing Scripts 47

5.2.2.1.2 Loading a Scripting Engine 49

5.2.2.1.3 Loading Script Code 50

5.2.2.1.4 Mapping Objects to Parameters 51

5.2.2.2 ScriptString Class . 52

5.2.2.3 JSNode Class . 54

5.2.2.3.1 JSNode Method Overview 54

5.2.2.3.2 Advantages of JSNode Over Conventional Live-

Connect DOM Access 55

6 Discussion 58

7 Using BWS 61

7.1 An Example of BWS in Action . 61

7.2 Installing BWS . 62

7.3 Creating BWS Applications . 63

7.3.1 HTML Documents as Starting Point for BWS Applications 64

7.3.2 Scripts and Script Calls . 65

7.3.2.1 Embedding and Referencing Scripts 66

7.3.2.2 Attaching Script Calls to Events 67

7.3.3 Accessing And Modifying DOM Elements 67

7.3.4 Running BWS Applications . 68

7.4 Advanced Possibilities of BWS . 69

7.4.1 Passing Parameters and Returning Values from BWS Scripts . . . 69

7.4.2 Calling Scripts from Other Scripts 70

7.5 Code Comparison: BWS and JavaScript 72

8 Wrap-Up and Outlook 79

List of Figures

1.1 Web Applications in a Three-Tier Schema 11

4.1 Structure of Technologies Used in BWS 27

4.2 A Simple XML Document. 28

4.3 Graphic Representation of the DOM Tree of Figure 4.2. 29

4.4 A minimal dom4j example . 32

4.5 Using XPath with dom4j . 33

4.6 Comparison of DOM access in Java and JavaScript 35

4.7 BSF Overview . 37

5.1 Technical Overview of BWS . 40

5.2 BWS Documents - Representation in Java 42

5.3 BWS Classes Overview . 43

5.4 Class diagram: BWSDocument . 45

5.5 Script Execution Sequence Diagram . 48

5.6 Class Diagram: ScriptString . 53

5.7 Implementation getAttributeNode() . 57

5.8 Implementation setStyleAttribute . 57

5

7.1 Screen shots of the Example Document 62

7.2 Example Document: Rexx script . 63

7.3 Example Document: BWS Document . 64

7.4 Correct And Incorrect XHTML Document 73

7.5 Embedding and Referencing Scripts . 74

7.6 Attaching a Script Call . 75

7.7 Example: Simple Rexx Script . 75

7.8 Rewriter Document Screenshot . 76

7.9 Parameter Interpretation . 76

7.10 Final Version of the Example Document 77

7.11 Calling a Script Within Another Script in Rexx 77

7.12 DOM Scripting Comparison: JavaScript, Java And BWS 78

List of Tables

3.1 Active Scripting Engines . 23

3.2 Assets and Drawbacks of Available Client Side Scripting Solutions 25

4.1 Important org.dom4j.Element Methods 34

5.1 Attributes and Values of the applet Element 46

5.2 JSNode Constructors . 55

7

List of Abbreviations

API Application Programming Interface

BSF Bean Scripting Framework

BWS BSF Web Scripting

Cf. Confer

COM Component Object Model

Corp. Corporation

CSS Cascading Style Sheets

CVS Concurrent Versions System

DOM Document Object Model

ECMA European Computer Manufacturers Association

E.g. Exempli gratia (for example)

Etc. Et cetera

GNU GNU’s Not Unix

GUI Graphical User Interface

HTML Hyper Text Markup Language

HTTP Hyper Text Transport Protocol

IBM International Business Machines

8

I.e. Id est/That is

IEC International Electrotechnical Commission

Inc. Incorporated

IP Internet Protocol

ISO International Organization for Standardization

JAXP Java API for XML Processing

JSP Java Server Pages

Ltd. Limited

MS Microsoft

OLE Object Linking and Embedding

OS Operating System

P. Page

PP. Pages

PC Personal Computer

PDA Personal Digital Assistent

Rexx Restructured Extended Executor

RTE Run Time Environment

SAX Simple API for XML

SDK Software Developer’s Kit

TCP Transmission Control Protocol

URL Uniform Resource Locator

W3C World Wide Web Consortium

XML Extensible Markup Language

XPath XML Path Language

XSLT eXtensible Stylesheet Language Transformations

9

1 Introduction

The intent of this paper is to provide an overview of the technologies and the use of BSF

Web Scripting (BWS), a framework for creating platform independent client side web

applications in arbitrary scripting languages. Before this is done, a general introduction

to the concept of web applications is given.

1.1 Client Side Web Applications

One of the most used parts of the Internet today is the World Wide Web, based on

the HTTP protocol1, the HTML markup language and the URL2 developed by Tim

Berners-Lee and Robert Cailliau in 1990.3 And most of the people using the web are

using web applications too: Search engines, library catalogs, on line shopping systems

or web based email clients. Most of these web applications are server side applications,

meaning that the browser is used only for presenting the user interface.4 The process

logic and the data storage tiers reside on the server side. The alternative to this approach

is to move at least the application logic from the server to the client. This requires the

client to be able to handle the process logic: There must be a way to run code on the

client side within the web browser; see figure 1.1 for a depiction of server- and client-side

1A protocol for transferring files on the Internet.
2A standard for specifying the location of a document on the Internet.
3Cf. [Wik04d].
4Technically spoken the browser is used only as user interface tier of an application, cf. figure 1.1.

10

1 Introduction

web application classified in a three-tier application architecture scheme.5 As depicted

in this figure, a browser based application that has the process logic residing on the

client is a client side web application.

Client-side Web
Applications

Server-side Web
Applications

Data Storage

Process Logic

User Interface

Server

Client

Server

Client

Figure 1.1: Web Applications in a Three-Tier Schema

The existing solutions for this problem all have one or another drawback making them

inconvenient or impractical to use;6 BWS is an attempt to overcome these drawbacks

and provide a way to enable the creation of platform and scripting language independent

client side web applications.

1.2 General remarks

All program code, class, method and variable names are set in a monospaced typescript

font.

BWS is work in progress, this document relates to the 1.0 release of BWS available

5General Information on the three-tier application schema is for example available from [Fol98].
6Cf. section 3.

11

1 Introduction

from the BWS website7, further updates and changes will be documented on the website

and, earlier, at the BWS documentation wiki8, which is also linked from the BWS

website.

BWS is licensed under the GNU General Public License9 and is provided WITHOUT

ANY WARRANTY, the documentation of BWS, including this document, is licensed

under the GNU Free Documentation License10.

Important terms are defined upon their first occurrence in footnotes.

1.3 Structure of this Paper

The section following this introduction, section 2, will present some advantages client side

web applications have over conventional, operating system based applications. Section

3 will discuss some of the currently available solutions for creating such applications.

Following this section, the technologies used as the basis of BWS are introduced. In

section 5 a detailed, technical description of BWS is given before in section 6 some

problems of BWS are discussed. Section 7 provides a step-by-step guide on how to

create BWS applications. The final section recapitulates the major points of this paper

and gives some information on future developments of BWS.

Readers only interested in using BWS and not in the inner workings of BWS will find

all things relevant in section 7 and may want to skip all sections in front of this.

Despite being platform independent in theory, it can not be assured that BWS will

work on any platform: In term of operating systems, BWS has been tested with Microsoft

Windows operating systems and Linux and will probably be tested on the BSD-range

of Unixes11, OS/2 respective eCom-Station and BeOS. Concerning web browsers, BWS

7Cf. [Spe04a].
8Cf. [Spe04b].
9Cf. [Sta04].

10Cf. [Smi03].
11Including Darwin/MacOS X.

12

1 Introduction

has been successfully tested on the Microsoft Internet Explorer12, the Mozilla range of

browsers13, the Opera browser14 and KDE Konqueror15. The term relevant platform in

this paper means Microsoft Windows as well as Linux, relevant browsers are Internet

Explorer, Mozilla/Firefox and Opera.

12Windows Version 6.
13Mozilla 1.4+ and Mozilla Firefox 0.7+.
14Opera 7.20.
15Konqueror 3.2.0. BWS on Konqueror only worked using the Gentoo Linux distribution, other distri-

butions (SuSE 9.0, Fedora Core 1, Fedora Core 2 test 1) did not work and produced LiveConnect
errors.

13

2 Economical and Technical

Advantages of Client Side Web

Applications

The various advantages of client side web applications can be separated to two cate-

gories: The advantages resulting from the use of web browsers for the presentation of

an application and the advantages resulting from the client side execution of the appli-

cations.

2.1 Advantages of Web Based Applications

Compared with standard operating system based applications, applications running on

browser platforms have several advantages:

Easy GUI Creation Using HTML and CSS as GUI markup languages, modern web

browsers provide a standardized and easy way for creating GUIs available inde-

pendent of browser and operating system platform. This allows a cost-effective

development of GUIs for heterogeneous networks and avoids the risk of GUI based

platform lock-ins.

Integrated Printing Functionality Web browsers generally provide printing function-

14

2 Economical and Technical Advantages of Client Side Web Applications

ality which consequently has not to be developed separately for each application.

Easy Porting of Existing Scripts Using HTML/CSS, existing script applications can

be equipped with a modern, easy-to-use GUI with significantly less expense than

with a conventionally programmed GUI.1

Central Maintenance As web based applications are usually retrieved from or run on

a server, updating an application can be done in one central instance without the

need to treat each client individually.

High Availability The basic requirement for web based applications, a web browser

interpreting HTML/CSS documents, is fulfilled by all modern office PCs as well as

many other devices possibly used as clients, e.g. PDAs, smartphones and set-top

boxes.2

No Lock-In Effects As web based applications can be based on open standards sup-

ported by all major operating systems and browsers, lock-in effects requiring the

use of a specific operating system or web browser, are avoided. Switching the

underlying hardware or software platform of a web based application can be done

without the need to specifically adjust a web based application to this platform.

High Usability Web browsers provide an environment almost all users know already.

No special training for end-users is usually necessary because most users will know

already how to do standard tasks like printing as this functionality is provided by

the browser and not by individual applications.

1I.e. using the GUI programming capabilities provided by Java or a C++ class library.
2To be usable as a platform for BWS based applications, the client must also support several other

requirements such as support for Java and LiveConnect (cf. section 4), which are currently not
available on most low-end clients such as set-top boxes and smartphones.

15

2 Economical and Technical Advantages of Client Side Web Applications

2.2 Advantages of Client Side Applications

Web applications running on the client have multiple advantages over those running as

server side applications:

Offline Usage Client side applications can be downloaded to the local client and then

run without depending on network connections.3

Lower Network Load Client side applications do not have to exchange data as often

with the web server as server side applications. While server side applications

depend on the server for any small computation or integrity check, with client side

web applications this is done on the clients and only the final results of client side

applications have to be transferred over the network.

Lower Server Load Client side applications depend only to a very small extent on server

resources. This allows the easy and cost-effective use of additional clients as server

load increases minimally with each new client.

More Efficient Client side applications use primarily client side computing resources,

which often are not as scarce as server resources. Additionally, because of lower re-

quirements for stability, uptime, etc., client side resources are usually much cheaper

than server side resources and especially for small web applications, these server

resources are only used for data storage, not for running the applications them-

selves.

3If an application shall run without network access, it is of course necessary for the developer to
consider this and to care that the application has all necessary code and data stored locally.

16

3 Current Solutions for Developing

Client Side Web Applications

At the time of writing,1 three solutions for developing client side browser based appli-

cations are existing:2 JavaScript and Java are two platform independent options for

developing such applications, Microsoft’s ActiveScripting is an option for applications

that only need to run on the MS Windows/Internet Explorer platform.

3.1 Platform Independent Solutions

Java and JavaScript both are platform independent solutions for creating client side web

applications. Both are available on all relevant platforms; JavaScript is integrated in

all relevant web browsers, Java comes separately and can be downloaded for free from

Sun’s Java website [Jav04b].

Despite the similarity in the name, Java and JavaScript are completely independent

programming languages.

1First quarter of 2004.
2An additional option for creating client side web application is Curl, available from [Cur04]. Curl,

developed by the Curl Corporation, is not based on HTML but uses a proprietary document format
run inside the web browser using a Runtime Environment provided as a browser plug in. As Curl
does not provide real integration with web browsers, it is not discussed further in this document,
see [Cur02].

17

3 Current Solutions for Developing Client Side Web Applications

3.1.1 JavaScript

JavaScript/ECMAScript3 is the common name for the scripting language defined in

[ECM99]. It was originally developed by Brendan Eich at Netscape. The purpose of

JavaScript was to give web developers the possibility to create interactive HTML docu-

ments; JavaScript is integrated with Netscape’s Navigator web browser since version 2.0.

An alternative implementation of a JavaScript interpreter was developed by Microsoft.

This interpreter is not bound directly to Microsoft’s Internet Explorer web browser but is

integrated using OLE/ActiveX and COM. The Microsoft JavaScript interpreter however

is not fully compatible to Netscape’s interpreter; the Microsoft derivative of JavaScript

is called JScript. The JScript interpreter is bundled with the Internet Explorer starting

with its 3.0 release. Microsoft’s approach to client side browser scripting, however, is

not limited to JScript, section 3.2 gives more information on this.4

The development of the standard for the JavaScript language, standardized as EC-

MAScript, started in November 1996; the standard was adopted first in June 1997. It

was also accepted as ISO/IEC standard 16262 in April 1998. As of February 2004,

the standard is in its third edition and available from [ECM99], which corresponds to

JavaScript 1.5.5

JavaScript is now available – to different extents – in all relevant web browsers. Ad-

ditionally, stand-alone JavaScript interpreters exist that allow the use of JavaScript as a

system script language like Perl or Python, i.e. outside of browser environments. One of

the most prominent of these interpreters is the Rhino JavaScript interpreter maintained

by and available from the Mozilla Foundation.6

For use as client side scripting language in web applications, JavaScript has some

3The language standardized in the ECMA-262 standard is called ECMAScript by the standard. This
name came only up with the standardization of the language and never got used widely, JavaScript
is still the more prominent name and will be used.

4Cf. [Wik04c].
5Cf. [ECM99, Section ’Brief History’].
6Cf. [Wik04c].

18

3 Current Solutions for Developing Client Side Web Applications

important disadvantages:

Limited Possibilites The possibilites provided by standard conform JavaScript are very

limited. JavaScript only allows interaction with its parent document7, not with any

system or network resources. Tasks that require for example file system, database

or network access are not possible with standard conform JavaScript.8

Missing Standard Conformance Another problem with JavaScript based solutions is

that although JavaScript is standardized, different browsers interpret the same

JavaScript code differently and any non-trivial application based on JavaScript has

to be customized to the browser platform it will be used on. For an application that

has to work on different platforms, for example Opera and Internet Explorer, some

parts have to be coded for each browser separately. At run time, the script has

to determine which platform it runs on and which code to use. A consequence of

this is that JavaScript applications get too complex and expensive9 if the resulting

application shall be available on multiple browsers.

However, JavaScript also has some important advantages:

Easy to Learn JavaScript is a loose typed language, the syntax is a mix of elements

from C and Java, a lot of simple examples and tutorials are available for free on

the web.10 Additionally, nothing but a web browser and a text editor is necessary

to start programming with JavaScript.

Wide User Base JavaScript is integrated in all relevant browsers and thus provides a

wide user base that can use JavaScript applications ’out of the box’. As JavaScript

is always available when a web browser is installed, no costs of maintaining or

installing JavaScript accumulate.

7The document that embeds or references the script.
8These limitations do not apply to Microsoft’s JScript, cf. section 3.2.
9In terms of coding effort.

10E.g. at [W3S04].

19

3 Current Solutions for Developing Client Side Web Applications

Secure As JavaScript implementations conforming to the standard do not allow op-

erations outside of their designated area – their parent document – potentially

hazardous actions like reading content from other browser windows or accessing

the local file system are theoretically not possible.11

3.1.2 Java

Java is an object oriented programming language developed by the Sun Microsystems

engineer James Gosling as well as some other engineers at Sun. The development of Java

was started in 1990; the first release of Java is available since November 1995. The design

goals of Java are object-orientation, platform independence, distributed programming

and security, especially the possibility to run remote code securely.

To reach the goal of platform independence, a ’two-step’ approach is used: Java is

not, as it is the case with conventional programming languages like C or C++, compiled

into binary machine code but into an intermediate language called the Java bytecode.

This bytecode is then interpreted by a bytecode interpreter, the Java Virtual Machine.

One of the most important reasons why Java was created platform independent was

the intention to use Java as a programming language in heterogeneous environments,

especially the Internet, where platform independence makes it possible to write and

provide binary applications independent of the platform they shall be used on.12

Another feature of Java is that it allows the creation of applications that can be

embedded in HTML documents: Java applets. These applets reside in and control a

designated area of the HTML document. As Java, in contrast to JavaScript, is a full

featured language that provides facilities for potentially hazardous tasks, these applets

can be dangerous. To allow the use of Java applets from remote or unknown sources

without the necessity of a security review by the user and without compromising system

11This is not the case for Microsoft JScript, cf. section 3.2.
12Cf. [Wik04a] and [Wik04b].

20

3 Current Solutions for Developing Client Side Web Applications

security, Sun created a secure environment, the sandbox, wherein all applets are run.

This sandbox only allows safe operations by default; in order to allow hazardous tasks

like file system access, this sandbox can be left when the user explicitly allows this. The

security model of the Java sandbox is fine-grained, the user can specify exactly which

applet should have which permission13 depending on the location and the developer or

vendor14 of the applet.

The Java Standard Edition comes with a huge class library that provides classes for

most standard tasks like reading files from local and remote locations, database access

or TCP/IP connections. All of this functionality of Java is also available in Java applets.

With current versions of Java and web browsers, it is also possible for applets to ’leave’

their designated area and interact directly with the currently loaded document using the

possibilities provided by LiveConnect15. However, compared to JavaScript, interaction

with document elements is much more complicated.

In a nutshell, the disadvantages of Java as a client side application language are:

Hard to Learn As Java is a fully-fledged programming language that is built on the

object-oriented development paradigm and uses strong typing, it is not a pro-

gramming language that is as easy to learn as most scripting languages.

Badly Suited to Small Problems The object orientation and strong typing of Java of-

ten make it necessary to write much more code for small problems compared to

scripting languages that do not demand object oriented developing or strong typ-

ing.

Complicated DOM16Access Accessing the ’live’ DOM of a document currently loaded

by a web browser using LiveConnect is much more complicated than accessing it

13Permissions might be for example to open a specific file or to connect to a specified host on the
Internet.

14Identification of users and companies is done using certificates.
15Cf. section 4.2.
16The DOM is an hierarchical object model of a XML document, cf. section 4.1.

21

3 Current Solutions for Developing Client Side Web Applications

with languages natively supported by the browser, for example JavaScript.17

Compilation Necessary Java code must be compiled to become platform independent

bytecode, it can not be changed at runtime. Additionally, a Java compiler as well

as all classes used in the source code to compile the code must be available on the

client to enable the compilation of Java source code.

Compared with the other available solutions, the advantages of using Java are:

Real Platform Independence Java is a truly platform independent programming lan-

guage available on all major operating system and hardware platforms. Incompat-

ibilities or different implementations that make the cross-platform development of

JavaScript based applications comparably complicated do not exist in Java.18

Class Library Java comes with an enormous class library that provides functionality for

tasks from string manipulation to HTTP transfers and from image rendering to

XML transformation.19

Speed A program written in Java will run in most cases much faster than a comparable

program written in a scripting language like JavaScript or Rexx. Java execution

speed is usually comparable to object-oriented native C++.20

Secure As described above, Java applets always run within the Java sandbox, which

can only be left if the user explicitly grants specific rights.

17Cf. figure 4.6 and section 4.2.
18An exception to this is Microsoft’s ’Java’ Virtual Machine. This is, however, neither developed nor

distributed or supported any more. Cf. [MSJ03].
19Cf. [Jav03b].
20Cf. [SH03a, german] and [SH03b, german].

22

3 Current Solutions for Developing Client Side Web Applications

3.2 A Proprietary Solution: Microsoft ActiveScripting

ActiveScripting, also called ActiveX Scripting, is a technology developed by Microsoft.

It can be used for client side scripting in web browsers. It is a proprietary solution

available only for the Microsoft platform, that is for the Windows operating systems

and the Internet Explorer web browser.21

ActiveScripting is based on COM interfaces that can be used to communicate with

the various supported scripting engines. It is not limited to a specific scripting language,

instead scripting engines for various languages are available from Microsoft and other

vendors, see table 3.1 for an overview of some available languages.22

Language Vendor

URL

VBScript Microsoft
http://www.microsoft.com/scripting/vbscript/

JScript Microsoft
http://www.microsoft.com/scripting/jscript/

Perl ActiveState
http://www.activestate.com/Products/ActivePerl/

Python Python.org
http://www.python.org/windows/win32com/ActiveXScripting.html

Object Rexx IBM
http://www-306.ibm.com/software/awdtools/obj-rexx/

Table 3.1: Active Scripting Engines

Used as a client side web scripting language, some of the advantages of ActiveScripting

are:

Language Independent ActiveScript is not depending on a specific programming lan-

guage developers must use; instead, it provides the possibility to choose one of

several available languages like JScript, VBScript or Perl.

21ActiveScripting depends on the Windows Scripting Host and thus is not available on the Internet
Explorer for MacOS.

22Developing a scripting language for languages other than these is possible, information on this is
available at [MSW04].

23

3 Current Solutions for Developing Client Side Web Applications

Powerful ActiveScripting languages are based on the windows COM and can therefore

use all parts of a system that provide COM interfaces, including system resources

and most Windows applications.

Easy to Use Accessing a currently loaded document’s DOM using an ActiveScripting

language works in the same way as it works using JavaScript.23 The learning

curve for the use of a programming language other than JavaScript in browser

environments is very shallow for any developer already knowing JavaScript.

In contrast to these advantages, ActiveScripting also has some severe disadvantages:

Insecure ActiveScripting within HTML documents can only be switched on or off, 24

a differentiated approach to allow or prohibit specific actions of a script is not

feasible. It also is impossible to run scripts in a secure environment similar to the

Java sandbox.

Platform Dependent ActiveScripting is limited to the Microsoft Windows/Internet Ex-

plorer platform and thus the creation of applications based on this technology

creates massive lock-in effects and raises switching costs to other platforms as

solutions based on this platform would have to be rewritten at least partially.

3.3 Comparison

Table 3.2 gives an overview of the afore mentioned assets and drawbacks of JavaScript,

Java and ActiveScripting.

23Microsoft’s JScript itself is an ActiveScripting language.
24The decision if scripting shall be allowed can be made based on signatures and URLs.

24

3 Current Solutions for Developing Client Side Web Applications

Assets Drawbacks

JavaScript Easy to learn Limited possibilities
Wide user base Missing standard conformity
Secure

Java Real platform independence Difficult to learn
Huge class library Badly suited to small problems
Speed Complicated DOM access
Secure Compilation necessary

ActiveScripting Language Independence Insecure
Powerful Platform Dependence
Easy to use

Table 3.2: Assets and Drawbacks of Available Client Side Scripting Solutions

25

4 Base Technologies of BWS

BWS is an approach to integrate existing technologies into one solution for developing

platform independent client side scripted HTML/XML documents.

These technologies are Java, the Document Object Model (DOM), Java DOM commu-

nication with LiveConnect and the Bean Scripting Framework (BSF) in connection with

the BSF supported scripting languages. The structure of these technologies is depicted

in figure 4.1.

4.1 DOM

The DOM

“is a platform- and language-neutral interface that will allow programs and

scripts to dynamically access and update the content, structure and style of

documents.”1

It is standardized by the W3C DOM working group which accepts submissions from

member companies and tries to implement their wishes in a interoperable and scripting-

language independent solution.2

1[HW04, What is the Document Object Model?].
2The DOM standards are available from the W3C’s DOM Technical Reports page [Hég04].

26

4 Base Technologies of BWS

Hardware / OS

Web Browser

Scripting

Languages

JavaDOM

LiveConnect BSF

BWS

Figure 4.1: Structure of Technologies Used in BWS

4.1.1 DOM Basics

DOM objects are hierarchically organized into a DOM tree with the root element of a

XML document being the root object of the DOM tree. Every part of a XML document

corresponds to a DOM object: Figure 4.2 shows a simple XML document, figure 4.3 a

graphic representation of the mapping of this document to a DOM tree.

The figure shows three types of DOM ’classes’:

1. Element Nodes: These correspond to XML tags and are characterized by their

type, e.g. a h1 or a title.

2. Attribute Nodes: These correspond to XML attributes and are name-value pairs,

e.g. the paragraph’s style value is Heading.

3. Content Nodes: The part of the document between the tags that is the content of

27

4 Base Technologies of BWS

<html>

<head>

<title>DocumentTitle</title>

</head>

<body>

<h1 id="aHeading">Heading</h1>

<p id="aParagraph" style="fontFamily:sans-serif;">Content</p>

</body>

</html>

Figure 4.2: A Simple XML Document.

the document.

Properties and methods available for these DOM classes are defined in the DOM

standard; DOM for example defines that each element node may have an attribute id

and that every element node supports the appendChild() method that expects another

node as argument and attaches this node to the node the method is invoked on.

4.1.2 Navigating a DOM Tree Hierarchically

There are two standard ways of navigating a DOM tree in order to access a specific DOM

element: The first one is to walk the DOM tree hierarchically: Iterate over all elements

of the lowest layer, check if an element of this layer matches the desired criteria, then

select all of this element’s children and do the same for these an all their descendants

until the wished elements are reached.

For example if in figure 4.3 the heading’s content is wanted, the procedure would have

to look like this:3

1. Select all child elements of the html node.

2. Check if the elements type is body.

3In order to access a element this way, the position of the element in the DOM tree must be known
exactly.

28

4 Base Technologies of BWS

html

head

title

body

h1 id

br

p

Heading

id style

Content

Element Object

Attribute Object

Text Object

Associated Object

Child

Figure 4.3: Graphic Representation of the DOM Tree of Figure 4.2.

3. If it is body, select all child elements of this element.

4. Iterate over these elements and check if they are h1 elements.

5. If a element is of type h1, select its content.

As this method is very laborious and time consuming, especially for complex and large

XML documents, another way of selecting specific elements of a DOM tree is necessary:

the XML Path Language (XPath).

4.1.3 Selecting DOM Elements: XPath

XPath, standardized by the W3C in [CD99], is a XML element query language: It allows

to specify certain criteria that are then used to select all elements of a XML document

matching these criteria. The easiest way is to specify the path to an element: To address

29

4 Base Technologies of BWS

the h1 element in figure 4.3, the appropriate XPath expression would be /html/body/h1,

that is, the root element (/) and all relevant child types separated by forward slashes.

For selecting the h1 content, the procedure would be this:

1. Select the h1 element with XPath using /html/body/h1.

2. Get this element’s content.

However, this way of selecting elements is still based on the full path of the elements

within the DOM tree and does not allow accessing elements for example only by type.4

This is necessary if the exact structure of the document is not known in advance. For

this purpose, XPath provides the possibility to select elements independent of their path:

XPath expressions using this method start with a double slash (//) instead of the single

root slash. The expression for selecting all h1 elements in a document e.g. is //h1.

This allows to use the following procedure for selecting the h1 content:

1. Select all h1 elements with XPath using //h1.

2. Get all selected elements’ content.

The difference between the two examples using XPath above is that the second ex-

ample would return any h1 element within the document independent of its position,

for example it would also return a h1 lying under the p element in the given document,

whereas the first expression would only return h1 elements that are exactly in the third

layer of the document and have html/body as parents.

Besides, these selections based on the element type, XPath supports selecting elements

by the existence of specific attributes, by attribute values and several other criteria. A

tutorial on the miscellaneous ways of selecting XML nodes using XPath is available from

[NJ00].

4I.e. without specifying a full path.

30

4 Base Technologies of BWS

4.1.4 Working With the DOM in Java Using dom4j

In order to work with these DOM objects, it is necessary that they are available in the

programming language used; in this case the programming language is Java.

One of the solutions available for mapping DOM objects to Java objects is the open-

source solution dom4j.5 This framework enables the parsing of XML documents to Java

objects, the navigation and modification of parts of the represented XML document

as well as the creation of a XML document from the Java objects. dom4j provides

hierarchical as well as XPath based access to DOM elements.

The first step in modifying an existing6 DOM in Java is parsing a XML document

and building its DOM tree in Java. dom4j uses its own implementation of a SAX reader

for this purpose.

Reading the XML document is done by using a org.dom4j.io.SAXReader object’s

read() method on the source of the XML document; the source may be a String, an

URL, a InputStream, a Reader or a org.sax.InputSource.7 This method returns a

DOM tree as an org.dom4j.Document.

The root element of the parsed document can then be obtained using the getRootEle

ment() method on the document returned from the SAXReader. DOM Elements in

dom4j are represented as objects of the class org.dom4j.Element.

To allow access to child elements of the current element, each Element provides a

standard Java Iterator8 that allows iteration over all child elements. Figure 4.4 shows

a minimal dom4j example that provides two methods: parseDocFromURL() to read an

XML document from an URL and printRootChildren() to print the element types

5dom4j is available from [SCM03], an introduction to dom4j is [RS01]; alternative frameworks for
Java XML processing are for example Sun’s Java API for XML Processing (JAXP) and the JDOM
Project’s JDOM framework.

6dom4j also provides the possibility to build DOM trees/XML documents from scratch. As this
possibility is not used in BWS, it is not described in this paper.

7For details on these classes see their respective API documentation at [dom03] and [Jav03b].
8Available by calling the Element’s elementIterator() method.

31

4 Base Technologies of BWS

of all first-generation descendants of the root element of the document read with the

parseDocFromURL() method.

import java.util.Iterator;

import java.net.URL;

import org.dom4j.*;

import org.dom4j.io.SAXReader;

public class Dom4jExample {

private Document dom4jDocument;

/* SAXReader.read() throws a DocumentException when problems reading

* or parsing an XML document occur, for example if the document is

* not available at the specified place or if it is not well-formed.

*/

public void parseDocFromURL(URL anURL) throws DocumentException {

SAXReader xmlReader = new SAXReader();

this.dom4jDocument = xmlReader.read(anURL);

}

public void printRootChildren() {

Element documentRoot = this.dom4jDocument.getRootElement();

Iterator elementIterator = documentRoot.elementIterator();

// iterate over all children

while(elementIterator.hasNext()) {

Element currentElement = (Element)elementIterator.next();

System.out.println(currentElement.getName());

}

}

}

Figure 4.4: A minimal dom4j example

As stated above, this iterative approach is not practicable for larger documents or

documents with a previously unknown structure. In these cases, the XPath support of

dom4j is helpful. It allows to select elements based on XPath queries and returns the

results of this queries as a java.util.Collection. A shortened example of printing

32

4 Base Technologies of BWS

the number of h1 elements in a document is given in figure 4.5.

import org.dom4j.XPath;

import org.dom4j.DocumentHelper;

...

// create XPath query

XPath xpathSelector = DocumentHelper.createXPath("//h1");

// select elements from document

List results = xpathSelector.selectNodes(document);

// print number of elements

System.out.println(results.size());

...

Figure 4.5: Using XPath with dom4j

Once the wished element has been found, several methods are available for modifying

the element itself, its attributes and its content. See table 4.1 for an overview of the

most important ones.

4.2 LiveConnect

LiveConnect is a technology that provides interfaces usable for interaction between Java,

JavaScript and browser plug ins. It enables calls of Java methods from JavaScript as

well as access from Java to the functionality of JavaScript.

The development of LiveConnect was started by Netscape Inc. in 1996; it was first

available with the release of the Netscape Navigator 3.0. For the Internet Explorer,

interaction between Java and the browser is done using the COM/ActiveX interfaces

of Sun’s Java Plug in. From a web application developer’s point of view, there is no

9I.e. any change in the attribute is done directly to the referenced Attribute, not to a clone.
10Inherited unchanged from org.dom4j.Node.

33

4 Base Technologies of BWS

Return Value Method Head

Description

void addAttribute(String name, String value)

Sets the attribute name to the value value.
Attribute attribute(int index)

Returns the attribute at index.
Attribute attribute(String name)

Returns the attribute name.
List attributes()

Returns as a backed9List of all attributes.
String attributeValue(String name)

Returns the value of the attribute name.
String getText()

returns the text value of the element.
void setAttributes(List attributes)

Sets the attributes of the element.
void setText(String text)10

Sets the Text of the Attribute to text.

Table 4.1: Important org.dom4j.Element Methods

difference between LiveConnect on Netscape/Mozilla or the Internet Explorer, interac-

tion works using the same classes and methods. The other relevant browsers, Opera and

Konqueror, provide their own implementation of LiveConnect.

For invoking JavaScript and modifying the DOM from Java, Netscape provides the

netscape.javascript.JSObject Java class that capsules all non-primitive data types

passed between JavaScript and Java. This class also provides the only way for Java to

access the current documents DOM.11 Due to this very generic DOM interface, modifying

the DOM from Java is comparatively elaborate. See figure 4.6 for a comparison of

modifying a DOM element from Java compared to modifying it from JavaScript.12

11From Java 1.5 on, Sun plans to provide another, better adjusted possibility for accessing the DOM
called the Common DOM API, cf. section 8.

12Cf. [Jav03c, Chapters 24 and 25].

34

4 Base Technologies of BWS

Setting the background color of the first heading to red in JavaScript and Java.

firstHeading=window.getElementsByTagName("h1")[0];

firstHeading.style.backgroundColor="red;"

JavaScript

Object[] objectArray=new Object[1];

JSObject appletWindow=this.getWindow();

objectArray[0]="h1";

JSObject headingArray=

(JSObject)appletWindow.call(getElementsByTagName,objectArray);

JSObject firstHeading=(JSObject)headingArray.getSlot(0);

JSObject styleAttribute=(JSObject)firstHeading.getAttribute("style");

objectArray[0]="red";

styleAttribute.setMember("backgroundColor",objectArray)

Java

Figure 4.6: Comparison of DOM access in Java and JavaScript

4.3 BSF

The Bean Scripting Framework (BSF) is

”a set of Java classes which provides scripting language support within

Java applications. It also provides access to Java object and methods from

supported scripting languages.”13

The main accent of BSF usage at the moment14 is the use of scripting languages

within JSPs and to allow these scripting languages access to the Java class library.

Additionally, BSF enables the creation of Java applications completely or partially in

scripting languages. To enable these functionalities, BSF provides an API that allows

the invocation of scripting engines from Java and an central object registry, the BSF

registry, that allows to register and retrieve objects from scripting languages as well as

from Java.

13[Pro02b, What is Bean Scripting Framework?].
14February 2004.

35

4 Base Technologies of BWS

BSF was initially developed at an IBM research center with the motivation to provide

access to Java Beans from scripting languages. It was moved to IBM’s AphaWorks15

site16 where it found significant interest. This led IBM to move it on to its developer-

Works17 site18 where it was developed as an Open Source project until the release of

BSF 2.2. BSF was incorporated into IBM’s application server WebSphere and also into

the Xalan XSLT processor developed by the Apache project.

The interest of the Apache project in BSF finally led IBM to hand over the project to

the Apache foundation where it is developed since 2002 as an subproject of The Apache

Jakarta Project19. As of February 2004, the current release of BSF is 2.3.

4.3.1 BSF Architecture

BSF consists of two primary components, the BSFManager and the BSFEngine. The

BSFManager maintains the BSF object registry and handles the scripting engines. To

use the BSF, a Java application must instantiate a BSFManager and then either load

a scripting engine directly using the BSFManager’s loadScriptEngine() method20 or

indirectly by passing a script directly to the BSFManager that loads the appropriate

scripting engine transparently. The BSFManager also caches scripting engines so they

only have to be instantiated once.21

For an overview of the structure of BSF and the two methods of executing scripts see

figure 4.7. An overview of the methods provided by BSF is available at [Pro02a].

15Cf. [Alp01], homepage: [Alp04].
16A website whereon IBM provides developers access to its latest innovations.
17developerWorks ‘is IBM’s technical resource for developers’ [Dev04b]; it provides technical information

and code for developers using IBM and open standards technologies like WebSphere, DB2, Java,
Linux, etc.

18Cf. [Dev04a].
19Cf. [Pro04].
20Loading scripting engines explicitly requires one instance of BSFEngine for each scripting language.
21Cf. [Pro02a].

36

4 Base Technologies of BWS

BSFManager

BSFEngine Scripting Engine

Java Application
instanciates

loads

passes scripts

passes scripts

passes

scripts

BSFManager

BSFEngine Scripting Engine

Java Application
instanciates

loads

passes scripts

returns

BSFEngine

passes scripts

Indirect Loading of a Scripting Engine

Direct Loading of a Scripting Engine

Figure 4.7: BSF Overview

4.3.2 BSF4Rexx

BSF4Rexx enables the binding of the Object Rexx22 and the Regina23 rexx interpreters

to the BSF by providing a Rexx scripting engine for use with the BSF. BSF4Rexx was

developed initially by Peter Kalender, a student at the University of Essen, in the winter

semester of 2000/2001, for a term paper.24 BSF4Rexx has since been extended and is

maintained by Prof. Rony Flatscher of the WU Wien; it is available from [BSF03]. Prof.

Flatscher also wrote two papers on BSF4Rexx, one about the early ”Essener” Version25

22An object-oriented rexx interpreter by IBM that also supports classic rexx. Object Rexx is available
for Windows, AIX, OS/2, Sun Solaris and Linux.

23An open source rexx interpreter developed by Mark Hessling and available on around twenty different
operating system platforms.

24Cf. [Kal00].
25Cf. [Fla01].

37

4 Base Technologies of BWS

and one about the current ”Augsburg” version26.

4.4 Relations Between the Base Technologies

The technologies described above are used in BWS in the following constellations:

For document rewriting, dom4j is used to transform the user created BWS document

to a Java object tree. Using other methods provided by dom4j, these objects are then

modified to represent a browser interpretable document. This resulting object tree is

then serialized to a HTML document.

During execution of the document, LiveConnect is used to provide DOM access to

the runtime environment applet, BSF is used to run the scripts and forward their DOM

method calls.

For a graphical representation of these relations see figure 5.1.

26Cf. [Fla03].

38

5 BWS in Detail

Technically, BWS is split in two parts: The first part transforms a BWS document1 to

a browser interpretable BWS/HTML document, the second part provides the runtime

environment that connects the different technologies necessary for script execution and

DOM access.

As depicted in figure 5.1 the first part of BWS, document rewriting, can be integrated

into the second one so that working with BWS documents for the user is similar to

working with conventional HTML documents.

5.1 Classes and Their Relations

BWS consists of two separated sets of classes:

• The first set is based on the BWSDocument class that represents an BWS document

and provides methods to transform it to a browser interpretable HTML document

and is used by the BWSRewriter, the BWS2XHTML and the RewriterApplet class.2

BWSRewriter reads the BWS document from an specified URL, rewrites the docu-

ment and prints messages useful for debugging a failing document; BWS2XHTML also

1The term BWS document refers to a document meeting the requirements stated in section 7.3.1, p.
64, a BWS/HTML document is a BWS document transformed to a browser interpretable document
as described in this section.

2BWSRewriter and BWS2XHTML are command line applications that expect the URL of the BWS doc-
ument as their first parameter.

39

5
B

W
S

in
D

eta
il

Web browser

document rewriting

HTML document

BWS runtime environment

(RTE)
scripting engine

loads

RTE

triggers

events

provides

DOM

access

Web browser

BWS document

HTML document

BWS runtime environment

(RTE) scripting engine

loads

RTE

triggers

events

loads

scripts

provides

DOM

access

evaluate scripts

forward DOM calls

Document rewriting and

execution separated

Document rewriting and

execution combined

evaluate scripts

forward DOM calls

BSF
BSF

LiveConnect

dom4j

dom4j

LiveConnect

RewriterDocument

document

rewriting

Opens in new browser window

BWS document

loads

scripts

F
igu

re
5.1:

T
ech

n
ical

O
verv

iew
of

B
W

S

40

5 BWS in Detail

reads the document from a specified URL and prints only the transformed doc-

ument to the standard output. Another option for BWS to BWS/HTML trans-

formation is the RewriterApplet that reads a BWS document from an URL,

transforms it to a BWS/HTML document and directly opens it in a new browser

window.3

• The second set is based on the BWSApplet class that provides the runtime envi-

ronment for BWS scripts. This class utilizes the JSNode class, a capsule class for

HTML/XML nodes4, and the ScriptString class that is used for the interpreta-

tion and evaluation of script calls from events.

Figure 5.2 shows which elements of a document are represented by which classes, figure

5.3 shows the relations between the classes and their relations to their environment.

5.2 BWS Implementation5

The following section will describe the two parts of BWS in detail as they are imple-

mented. To follow the description of the individual processes, it is recommended to have

the source code of the described classes at hand.

3This is done using the DOM document.write() method. It does not work on the Internet Explorer
as the Internet Explorer does not load applets referenced from tags it gets passed using this method.

4DOM objects are capsuled independent of the node type, i.e. element, text and attribute nodes are
all represented as JSNode; this is the same as it is with the DOM’s node ’class’.

5The code of BWS as it is described here is available via anonymous CVS. The CVS server is
cvs.berlios.de, the repository is bsfws and the 1.0 relase described in this paper is contained
in the org module and tagged as Release-Branch-1 0. It can be checked out with these com-
mands:
cvs -d:pserver:anonymous@cvs.bsfws.berlios.de:/cvsroot/bsfws login

cvs -z3 -d:pserver:anonymous@cvs.bsfws.berlios.de:/cvsroot/bsfws co org -r Release-Branch-1 0.
There is no password set for the anonymous account.

41

5 BWS in Detail

BWSDocument ScriptStringJSNode

<html>

<head>

<title>A Document</title>

</head>

…

<body>

<h1 onClick=“bws:aValue=RexxScript(parameter)“>heading</h1>

<div style=“color:green“>Text</div>

<p>More Text</p>

</body>

</html>

Figure 5.2: BWS Documents - Representation in Java

5.2.1 Details of Document Rewriting

Document rewriting is the process of rewriting a BWS document conforming to the

requirements defined in section 7.3, p. 63 to a BWS/HTML document interpretable

by the browser. To achieve this, BWS script calls must be transformed to JavaScript

calls to the BWSApplet’s executeScript() method; additionally, the BWS runtime

environment, provided by the BWSApplet class, must be embedded in the document. As

shown in figure 5.1, this process can be run separately from the application execution

itself or it can be run directly at runtime by using the RewriterApplet; then of course

a starter document embedding this applet must be used.6

6An example for such a starter document is the RewriterDocument.html contained in the BWS
distribution. As stated above, this does not work with the Internet Explorer.

42

5 BWS in Detail

BWSApplet

BWSDocument

BWSRewriter

BWS2XHTML

RewriterAppletBWS Document

BWS/HTML

Document

JSNode

ScriptString

BSF/
Scripting
Languages

DOM/
Browser

User

Java Class

Figure 5.3: BWS Classes Overview

5.2.1.1 Using BWSDocument

BWS provides two command line applications and one applet for document rewriting:

Both command line applications, BWSRewriter and BWS2XHTML,7 expect the URL of the

BWS document as the first argument of their invocation and both print the resulting

BWS/HTML document to the standard output from which it can be redirected for

example to a file. The difference between both applications is that BWSRewriter prints

7Despite the name, BWS2XHTML at the moment does not produce valid XHTML documents. The
reason for this is that the applet tag is not allowed in XHTML; applet however currently is the
only working way to embed an applet regardless which browser is used to open the embedding
document.

43

5 BWS in Detail

out additional debugging information and is not be of use for document rewriting; in

contrast to this, BWS2XHTML only prints out the final BWS/HTML document and thus

can be used for example to save the standard output to a file.

The RewriterApplet, contrary to the command line applications, is a more end-user

oriented solution: In combination with the RewriterDocument, it offers a HTML user

interface where the user can specify the location of a BWS document as an URL. This

document is then retrieved and transformed to a BWS/HTML document. The resulting

document is instantly opened in a new browser window where the user can immediately

work with it.8

5.2.1.2 BWSDocument Class

The BWSDocument class is, as shown in figure 5.2, a Java representation of a BWS

document. It provides methods to transform a BWS document to a browser interpretable

HTML document by rewriting the script calls from BWS script calls to JavaScript calls

calling an applet method that runs the desired script. Additionally, it embeds the

runtime environment applet in the HTML document.

For these purposes, the class provides nine methods, an overview of these method is

available in the class diagram in figure 5.4. The printDocumentSource() method is

used to print the source code of the currently represented DOM tree to the standard

output; the printVector() method can be used to check if all BWS script calls are

gathered correctly by the BWSDocument class. The other methods are used for reading a

document from an URL and rewriting it.

The usual work flow for transforming documents is as follows:

1. Read and parse the document.

2. Gather all script ids occurring in the document.

8This does not work with the Microsoft Internet Explorer at the moment, see above.

44

5 BWS in Detail

BWSDocument

appendApplet()

getAttributeElement()

getDocument()

getScriptNames()

printDocumentSource()

printVector()

readDocumentFromURL()

rewriteDocument()

rewriteScriptCalls()

Figure 5.4: Class diagram: BWSDocument

3. Search all attributes of all elements if they reference a BWS script and replace the

script call if this it the case.

4. Embed the runtime environment applet in the document.

This work flow corresponds to the following method calls of BWSDocument:

1. readDocumentFromURL(String URL)9.

2. getScriptNames()10.

3. rewriteScriptCalls()11.

9The readDocumentFromURL() method creates an URL and a SAXReader. The SAXReader’s read()

method is then used on the URL and its result is assigned to the xmlDocument property of
BWSDocument.

10getScriptNames() creates a XPath object selecting all script elements (The XPath expression for
this is //script, see section 4.1.3, p. 29). This XPath expression is then used to select the matching
nodes which are referenced in the results List. Using an Iterator, all scripts are parsed for their
id attribute. The value of the id attribute is then added to the scriptNames Vector, which is a
private property of the BWSDocument class. If an id is not available, the name attribute is used
instead, if this also is missing, the script is ignored.

11rewriteScriptCalls() is a very short method that iterates over the scriptNames Vector and calls
the getAttributeElement() method for each of the Vector’s elements.
getAttributeElement() is the method used to actually rewrite the script calls: It gets the name

of a script embedded in the document and replaces all occurrences of BWS calls to this script with
JavaScript calls to the BWSApplet’s executeScript() method.

45

5 BWS in Detail

4. appendApplet()12

Instead of calling getScriptNames(), rewriteScriptCalls() and appendApplet()

individually, the rewriteDocument() method which calls these three methods can be

used.

Attribute Value

code org.tsp.bws.BWSApplet

id BWSApplet

width 0

height 0

mayscript true

Table 5.1: Attributes and Values of the applet Element

The resulting final document13 can then be printed out to the standard output us-

ing the printDocumentSource() method; alternatively, the complete document can be

obtained in a String using the getDocument() method.

5.2.2 Details of Application Execution

Running BWS applications is enabled by the BWS runtime environment, consisting of

the BWSApplet applet and the ScriptString and JSNode ’helper’ classes.

5.2.2.1 BWSApplet

The BWSApplet class is the centerpiece of the BWS runtime environment. It is embed-

ded automatically during document rewriting in BWS/HTML documents and provides

Upon invocation, getAttributeElement() queries the document for all attributes of all elements
(XPath query: //@*). It then iterates over these attributes and checks if the attribute’s value
matches bws:ScriptString or #:ScriptString; if this is the case, the attribute value is replaced
with the correspondent JavaScript call of the form
document.getElementById(’BWSApplet’).executeScript(’scriptString’,this).

12appendApplet() first retrieves the body element of the document (Using XPath; query: /html/body)
and then adds a new applet element and sets the attributes specified in table 5.1 to the values
specified in this table.

13The document is stored in the BWSDocument’s xmlDocument property.

46

5 BWS in Detail

methods for running scripts embedded in or referenced from BWS/HTML documents

as well as methods to easily obtain nodes of the current document. It is, as any applet

must be, an extension of the java.applet.Applet class.

BWSApplet provides six public methods and a standard constructor.14

Two methods, init() and destroy()15 are overwritten Applet methods that are

automatically executed on loading respective unloading of the applet.

The init() method creates a new BSFManager and stores three objects to the BSF

registry so these are always easily available in any BWS script. These objects are:

• The BWS applet itself.16

• The java.lang.System.out object to allow scripts access to the Java console.17

• The window the applet resides in.18

Of the remaining four methods one, getNode(), is a shortcut to obtain a DOM node

as a JSNode object using the applet,19 the other three methods are described in the

following part of this section in detail.

5.2.2.1.1 Executing Scripts The executeScript() method is the core of the BWSApp

let. It is called from the BWS/HTML document by the JavaScript/DOM event handlers

and upon calling, runs the scripts specified with the method call. The process flow of

script execution is shown in the sequence diagram in figure 5.5.

It can be called either with one or with two parameters. If it is called with one

parameter, this parameter must be a String specifying a script call string; the two

14The constructor only prints a startup notification to the standard output.
15destroy() is a rudimentary method that sets the BSFManager null and prints a string to the standard

output.
16Registry key: BWSApplet.
17Registry key: SystemOut.
18Registry key: DocumentWindow.
19This method expects the node’s id as the only parameter to the method call.

47

5 BWS in Detail

BWSApplet ScriptString:currentScriptStringBrowser

executeScript(ScriptString, object)

ScriptString(scriptString)

ScriptString

loadScriptingEngine()

getScriptId()

scriptId

JSNode::scriptContainer

getNode(scriptId)

scriptContainer

getScript()

getParameters()

paramArray[]

BSFEngine::evalEngine

evalEngine

apply("",0,0,script,parameterNames,parameters)

applyReturnedObject

applyReturnedObject

Figure 5.5: Script Execution Sequence Diagram

parameter variant expects an DOM node, represented as a JSObject, as additional

second parameter.20

The first step in the execution of a BWS script is the interpretation of the script call

string passed with the script call. This is done using the ScriptString class. After

the script id has been determined by ScriptString, it is used to load the appropriate

scripting engine and look up the script code using the loadScriptingEngine()21 and

getScript() methods.

After the engine has been loaded and the script is available, the script parameters are

evaluated. This is done by first reading the parameters keys from the ScriptString with

getParameters() and then passing these keys to the evaluateParameters() method

described below.22

20This second parameter may be accessed within the script string’s parameters section using this as a
shortcut; it usually is a JSObject representation of the HTML event that triggered the execution of
the script, if executeScript() is invoked from another script and not from a DOM event handler,
it may be an arbitrary object. Cf. section 7.4.1, p. 69.

21This is a private method and therefore not shown in the API documentation.
22Additionally, a Vector is created that contains the names of the arguments; as the original names

48

5 BWS in Detail

As scripts may possibly need to leave the Java sandbox, they have to be executed

within a privileged environment23 which is available in Java using the java.security.

AccessController’s doPrivileged() method with an anonymous instance of the java.

security.PrivilegedAction interface.24 Script execution is done using the apply()

method provided by the BSFEngine.25 The object returned from the script, i.e. from

apply(), is stored in an Object created before script execution.

After script execution, the returned object as well as the return key26 is checked if

it contains a value or null. If a return key was specified and the script returned a

non-null value, this object is stored in the BSF registry under the specified key and

returned to the calling method. If no return key was specified or the script returned no

value, nothing is stored to the registry and the returned value, independent if it is null

or an actual object, is returned to the caller.

5.2.2.1.2 Loading a Scripting Engine Loading a scripting engine in BWS is done in

the loadScriptingEngine()27 method and works in two steps:

1. The language of the script and the according scripting engine is determined by

reading the respective script’s type attribute. This is done by calling the BWSApp

let’s getScriptingEngine() method.28

of these objects are not known, they are named argumentX where X is an increasing integer index
starting at zero; i.e. the arguments are named argument0, argument1, argument2, ...

23Privileged environments can be equipped with less restrictions, depending on the Java security policies
set, cf. section 7.2, pp. 62.

24The portal page for Java 2 SDK 1.4.2 security is [Jav04a]; for details on Java security architecture
see [Jav03a], for information on the Privileged Block API [Jav01].

25This method expects six parameters: The first three are not used and therefore left empty respective
zero in BWS, the fourth is a String containing the complete script code, the fifth and sixth are
Vectors containing the names of the parameters passed and the parameters for the script.

26The return key is obtained from the ScriptString object using its getRetKey() method just before
script execution.

27This is a private method of BWSApplet and therefore is not shown in the generated API documentation
of BWS. It expects the id of the script that is to be invoked as its only parameter.

28getScriptingEngine() gets passed the script id; it creates a JSNode of the script element and reads
the script element’s type attribute. A substring of this type attribute, the part behind the slash
stored in the engineString, specifies the BSFEngine that shall be used as the interpreter of the
script. This engineString is then returned to the loadScriptingEngine() method.

49

5 BWS in Detail

2. The engine itself is loaded explicitly as a BSFEngine29 with using the BSFManager’s

loadScriptingEngine() method.

After the appropriate scripting engine has been determined, the loading procedure

starts: As the scripting engine may be based on native code,30 the JNI might be used

for loading the engine. This is normally not allowed for applets and thus this code must

be granted the rights to do so. This is again done here using a privileged environment31

Within this privileged block, only the direct loading of the scripting engine takes place;

after the engine has been loaded, it is returned out of the privileged environment and

from there on directly to the method that called loadScriptingEngine().

5.2.2.1.3 Loading Script Code Loading the script code is done using the method

getScript():32 This method expects a JSNode of the script element and returns the

script code as a String.

The script code can be either embedded between the script tags or referenced spec-

ifying the scripts location as the src attribute of the script tag. The location may be

specified as an absolute or relative path or as an URL.

The first action of the getScript() method is to determine if the script is embedded

or referenced: This is done by checking if the script element has got a src attribute

that is not null or empty. If it has not got one, the text within the script tag is read33

and returned. If a src attribute is available, the content of the script tag is ignored

and the method tries to read the script code from the specified location.

If the script is referenced, it has to be determined if the specified src value is an URL

29Cf. figure 4.7, p. 37.
30I.e. written not in Java but in C/C++ or any platform specific, compiled code. An example for such

an engine is the Rexx engines of BSF4Rexx which uses ObjectRexx or Regina Rexx as interpreters.
31See section 5.2.2.1.1 directly above.
32getScript() is a private method and therefore not shown in the API documentation.
33This is either done using the DOM conform getData() method, or it this fails using the

getInnerHTML() method; both methods are methods of JSNode. getData() at the moment only
works on Mozilla browsers.

50

5 BWS in Detail

or an absolute or relative path: This is done by checking if the value of the src attribute

• contains a colon followed by a double forward slash (://),

• starts with a slash (/) or

• matches neither of these criteria.

Values of src containing :// are treated as URLs, values starting with / are treated

as absolute paths34 while values matching neither criteria are treated as relative paths.35

After the type of the reference has been determined, the script is read from the

specified location to a String and returned to the method that called getScript.36

5.2.2.1.4 Mapping Objects to Parameters As described in section 5.2.2.2, script

calls may contain parameters passed to scripts upon execution. Since BWS only expects

a script call string for method invocation, objects that shall be passed to the script can

not be passed directly to the script, but only be referenced by a key within this call

string.37 The look-up of the objects referenced by the key is always done at runtime of

the script, therefore all objects are always used in their current state.

The BWSApplet provides the evaluateParameters() method for mapping these keys

34When an absolute path is used, the protocol, host and port of the embedding document’s URL are
obtained using the applet’s getDocumentBase() method. The specified path is then appended to
the String representations of protocol, host and port of the document’s URL.

35For a relative path, the embedding document’s URL is read; this URL is then converted to a String.
The URL of the script is then obtained concatenating the applet’s URL with the relative path
specified as the src attribute.

36This is done using conventional stream reading: i.e. a stream is created on the specified location,
read to a byte array and a String is created from this array.

37The reason for this limitation is that both possibilities theoretically available for passing parameters
directly are not feasible: The first possibility would be to overload the executeScript() method
with any possible combination of objects that could be passed to the script. This option would lead
to a nearly unlimited number of executeScript() methods and thus is not a real possibility. The
second theoretical option would be to wrap all objects that shall be passed into one container (as
e.g. the BSFEngine’s apply() method does with Vectors). This however would have to be done by
the person writing BWS documents and scripts and would make the creation of these scripts and
documents overly complex and thus also is not a real alternative to the parameter mapping used
currently.

51

5 BWS in Detail

to their objects.38 When this method is called, keys are mapped to objects in the

following order:

1. If the key is this, the object that invoked this script, e.g. the HTML element that

triggered the execution of a script, is used.

2. If the key is in quotation marks, its quotation marks are stripped off and the key

itself is used.39

3. If an object in the BSF registry is available under the key, this object is retrieved

and used.

4. If a DOM node has the id specified as the key, this DOM node is used.40

5. If none of this criteria match, the key itself is used.41

As soon as the first of these criteria matches, the matching object is used and the

next key evaluated. After all keys have been mapped to their respective objects, they

are returned to the method that called evaluateParameters().42

5.2.2.2 ScriptString Class

ScriptString is the class providing interpretation of BWS script call strings for the

runtime environment. These call strings are the strings used in DOM event handlers to

call BWS scripts. They generally are formed according to this example: returnValue=

scriptId(parameter1,parameter2). Script call strings are passed to the BWSApplet

38This also is a private method and therefore not shown in the API documentation. The method
expects a String array containing the parameter keys and returns a Vector holding references to
the objects found under the specified keys. The objects are always mapped and passed to the script
in the exact order in which they were specified in the script call string.

39As a String object.
40A JSNode reference to this node is created and used.
41As a String object.
42During evaluation, all objects that were mapped are put on a Vector, this Vector is returned to the

calling method.

52

5 BWS in Detail

using the executeScript() method and then have to be interpreted by the runtime

environment to call the appropriate script, lookup the specified parameters and store

the return value to the specified place after script execution. A class diagram of the

ScriptString class is depicted in figure 5.6.

ScriptString

getScriptId()

getParameters()

getRetKey()

interpretScriptString()

parseParameters()

Figure 5.6: Class Diagram: ScriptString

The get methods43 of this class make the results of the interpretation available for

other classes. The interpretation itself is done in the ScriptString’s interpretScript

String() method using the parseParameters() method to interpret the parameter

part of the string.

Interpretation of the script strings works according to the following description:

1. Before the string is interpreted it is tested if it assigns a return value and if it has

got parameters that are to be passed to the script.44

2. If the string contains neither return value nor parameters, it is interpreted as only

the script id and stored in the ScriptString property scriptId, available using

getScriptId().

3. The part of the string recognized as the parameters part is passed to the parse

Parameters() method, the String array returned by this method is stored as

43getParameters(), getRetKey() and getScriptId().
44The string is tested for the assignment operator (=) and a left parenthesis (().

53

5 BWS in Detail

the parameters property and can be obtained by calling the getParameters()

method.45

4. If available, the return value key46 is stored as returnValue. It is available with

getRetKey().

The assignment of values to the keys, i.e. the creation of references to DOM nodes etc.

is not done during ScriptString interpretation but at runtime using the keys obtained

during interpretation.

5.2.2.3 JSNode Class

JSNode is a class providing the functionality of the DOM’s node object directly in Java

using LiveConnect for Java to DOM communication.47 It can be used to reference and

modify already existing nodes or to create new ones. In addition to the methods defined

for the DOM node, it also provides some helpful methods not available there.

It is important that JSNodes are only references to DOM nodes, they are not the nodes

themselves. Therefore, creating a new JSNode object does not implicate the creation of

a new DOM node, but only the creation of a reference to such a node. Creating DOM

nodes must be done explicitly using the create methods of JSNode.48

5.2.2.3.1 JSNode Method Overview A JSNode object can be created using one of

three available constructors, see table 5.2.

Additionally, a node can be obtained without specifying a window by calling an ex-

isting JSNode’s getJSNode() method. This method expects a reference to an existing

45The parseParameters() method takes the string it gets passed, removes everything not in parenthe-
ses (()) and splits the remaining string using commas as delimiters. The resulting parameter keys
are the returned as a String array.

46The part of the script call string in front of the equals sign (=).
47JSNode implements all core methods of the DOM Level 1 node object as well as the methods

of the CharacterData interface and Element interface except the getElementsByTagName() and
normalize() methods as these are not available in the current JavaScript implementations.

48Cf. section 5.2.2.3.1.

54

5 BWS in Detail

Method Head Description

JSNode(JSObject window, Creates a reference to the node with the id nodeRef

String nodeRef) in the window.
JSNode(JSObject window, Creates a reference to the node passed as existingNode.
JSObject existingNode)

JSNode(JSObject window, Creates a reference to the node passed as existingNode
JSObject existingNode, and sets its id to the specified id.
String id)

Table 5.2: JSNode Constructors

node of the type JSObject as its argument. It returns a new JSNode with the window

of the called node.

Other methods provided by JSNode can be used to obtain the nodes window (getWin

dow() and document (getDocument()), its id(getIdentifier()), the full HTML con-

tent of an element (getInnerHTML()) and the node object referenced by the JSNode

(getNode()).

JSNode also provides three methods for creating new nodes of different types:

• createAttribute(String attributeType, String attributeValue), creates

an attribute named attributeType, e.g. style or name, set to the value attribute

Value.

• createElement(String elementType), creates an element of the type element

Type, e.g. h1 or div.

• createTextNode(String elementText), creates a text node with the specified

content (elementText).

5.2.2.3.2 Advantages of JSNode Over Conventional LiveConnect DOM Access

The purpose of JSNode is to ease the access to DOM elements at runtime in comparison

to LiveConnect. As LiveConnect handles all DOM interaction over JSObject which

provides very limited functionality, DOM interaction only using LiveConnect directly

55

5 BWS in Detail

usually leads to long and error-prone code. Especially when compared to JavaScript

DOM interaction, direct Java DOM interaction is unnecessary complicated.49

One of the most problematic and ’code-consuming’ aspects of JSObject is the call()

method. This method can be used to call methods of the underlying DOM node in Java,

for example, it can be used to call a nodes getAttributeNode() method. The syntax for

calling these DOM methods is Object returnedObject = nodeObject.call(method

Name, arguments) where methodName is a string representing the name of the method

to be invoked, e.g. getAttributeNode and arguments is an array of Objects that

contains the arguments that are to be passed to the method. This means that for every

DOM method call, an Object array has to be created and the individual arguments

have to be stored in this array. If an argument is a primitive value, it additionally has

to be converted to an object before it can be put in the array.

To overcome these drawbacks of ’pure’ LiveConnect, JSNode capsules the methods

normally used in JavaScript using the DOM node object. This capsuling is implemented

using the methods provided by LiveConnect’s JSObject. An example of how these

methods are implemented is given in figures 5.7 and figure 5.8.50

The getAttributeNode() method shown in figure 5.7 expects a string that identifies

the attribute to be returned, e.g. the name or src attribute, and returns this attribute as

a JSNode object. To do this, getAttributeNode() first creates a new Object array with

one field and assigns this field the string that was passed as attributeName. It then calls

the call() method of the JSNode’s node property to obtain a JSObject representation

of the attribute node. This JSObject representation is assigned to the attributeNode

variable which is then used to create a new JSNode containing the attributeNode. This

JSNode is then return to the calling function.

setStyleAttribute() of figure 5.8 is a shorter method as it does not involve calling

49Cf. figure 4.6, p. 35.
50Debug messages were omitted in these examples to improve readability.

56

5 BWS in Detail

public JSNode getAttributeNode(String attributeName) {

Object[] callArgs=new Object[1];

callArgs[0]=attributeName;

JSObject attributeNode=(JSObject)node.call("getAttributeNode",callArgs);

JSNode attributeJSNode=this.getJSNode(attributeNode);

return attributeJSNode;

}

Figure 5.7: Implementation getAttributeNode()

the JSObject’s call() method and thus creating and filling an Object array is not

necessary here. The method expects two strings, styleAttribute specifying the at-

tribute that is to be set, e.g. fontFamily or color, and value specifying the value this

attribute shall be set to.

public int setStyleAttribute(String styleAttribute, String value) {

JSObject styleNode=(JSObject)node.getMember("style");

styleNode.setMember(styleAttribute,value);

return 0;

}

Figure 5.8: Implementation setStyleAttribute

57

6 Discussion

The 1.0 release of BWS still has got some issues resulting often from shortcomings of

integrated technologies as well as misinterpretation and ignoration of web standards in

some situations.

DOM Standard Conformance One of the most critical of these problems is the In-

ternet Explorer’s failure to correctly interpret HTML code that is not read from a file

or an URL but is passed to it directly from a JavaScript or via LiveConnect using the

document.write() method. In these cases, the Internet Explorer does not load applets

referenced from the passed HTML code. As this method of directly passing HTML code

to the browser is used in the RewriterApplet, it is at the moment not possible to load

and run BWS applications end-user friendly using the Internet Explorer.

Another one of these problems is the direct embedding of scripts in BWS/HTML

documents. While reading this embedded script code is possible with Mozilla-based

browsers using standard DOM methods and the Internet Explorer at least supports

this using the innerHTML property1 of DOM nodes on the script node, Opera and

Konqueror support neither of these methods when they are invoked from LiveConnect.

Consequently, applications that are required to run on all of these browsers must not use

embedded scripts but only external, referenced ones; as retrieval of these scripts is done

1innerHTML was originally created by Microsoft; nowadays (March 2004) is can be considered a de
facto standard which is available in most browsers’ JavaScript implementation. It is available in all
considered browsers but apparently not accessible via LiveConnect on Opera and Konqueror.

58

6 Discussion

browser independent using Java methods, referencing scripts works browser independent.

Other issues resulting from misinterpretation or ignorance of DOM standard are

the event model,2 especially of the Internet Explorer3 or the implementation of the

attributes property.4 An excellent overview on which browser interprets which browser

standard to which extent is available in [Koc04].

The BSF’s apply() Method A problem not related to browsers but to the BSF engine

implementations is the insufficient support of the BSFEngine’s apply() method that is

used to pass scripts to their engines. Some standard BSFEngines, for example the Rhino

engine, do not support the method to its full extent but only evaluate the script passed to

them using the BSFEngine’s eval() method that does not support passing parameters

to scripts. As a consequence to this, passing parameters to scripts is only available

for scripting languages that support the apply() method, for example the BSF4Rexx

engines.

Client Side Rewriting Another discussable point of BWS is the incorporation of docu-

ment rewriting directly into the BWS runtime environment in order to enable the loading

of only the BWS document from a server without the need to transform it on the server

or through an intermediary applet. This however would make the creation of a BWS

document more complicated as the BWS applet with all its parameters would have to

be embedded by the developer of a BWS application. The provided RewriterApplet

solution that is based on a HTML document and an intermediary applet in contrast

2The DOM event model defines how DOM events should be handled, it allows for example the dynamic
registration of event handlers (e.g. onClick).

3The Internet Explorer even in its current release (Internet Explorer 6 Service Pack 1) does not support
the DOM event interface at all, but still uses Microsoft’s proprietary event interface.

4attributes provides a numbered array of all attributes of a DOM node. On the Internet Explorer,
these array contains values for all theoretically available attributes of the node while on other
browsers, it only contains the values of attributes actually set; consequently, e.g. the fifth element
of attributes will contain different values on Internet Explorer and other browsers and makes
attributes unusable in cross-browser environments.

59

6 Discussion

to this is a generic alternative that can be used with any BWS document without the

need to embed the applet directly in the HTML document. The drawbacks of the

RewriterDocument are that at the moment it does not work with the Internet Explorer

and it requires the specification of the full URL of a document.5

Concerning document rewriting, there is also the problem that large parts of dom4j

are necessary on the computer doing the rewriting. If client side rewriting is used, be it

using the RewriterApplet, the command line utilities or any other theoretical option,

it always is necessary to have dom4j installed and available for Java on the client or in

the Java archive containing the BWS runtime environment. This, however, blows up the

size of this Java archive and make BWS less comfortable to use, especially when only a

low-bandwidth connection to the server is available.

Consequently, it is recommended to do document rewriting preferably on the server

side or computers that have dom4j installed permanently; however, a solution to the

problem of user friendly document rewriting is considered an absolute necessity and will

be the next improvement of BWS.

5Cf. section 7.3.4, pp. 68.

60

7 Using BWS

The creation of BWS applications works mostly like the creation of conventional client

side web applications realized in JavaScript. This section will provide information on

how BWS applications are created, what requirements must be met and what limitations

do apply. To improve the comprehensibility of this section, all of the explanations will

be based on an example document.

It is assumed that the reader will have BSF as well as the wished scripting languages

installed. Additionally, a basic knowledge of HTML is assumed.

7.1 An Example of BWS in Action

The example document is a BWS document that allows the user to specify the name

and path of a local text1 file. This file is then read by a rexx script, the paragraphs of it

are created as HTML tags2 and the resulting HTML code is shown in a designated area

of the document. Figure 7.1 shows two screen shots: One depicts the screen when the

document has been loaded, the other after the script has been run. The BWS document

and rexx script used are shown in figures 7.2 and 7.3.

1The file type of the file is not checked, so in theory using a binary file is also possible. Using a binary
file will probably result in various results, including crashes of the browser and is not recommended.

2I.e. they are embedded withing <div> tags.

61

7 Using BWS

Figure 7.1: Screen shots of the Example Document

7.2 Installing BWS

Just for running a simple BWS document that uses only Java based script engines3 and

does not need to leave the Java sandbox, an installation is not necessary. Depending on

the way BWS is distributed, it may or may not contain the necessary scripting engines

within the BWS’ Java archive. If the scripting engines are not contained in the archive,

their Java classes must be made available by incorporating them in the Java CLASSPATH

environment variable.

For non-Java based scripting engines, like the BSF4Rexx engine, it is also necessary

to make the libraries containing the engine available by providing them in the library

path of the Java Runtime Environment. On Microsoft Windows systems, this can be

done by setting the PATH environment variable to include the path of the scripting

engine’s library; on Unix systems, either the libraries must be copied or linked to the

jre/lib/i386/ and jre/lib/i386/client/ subdirectories of the Java installation or

the java.library.path of the Java Runtime Environment must be adapted to include

the engine library’s paths.

If the BWS applications needs to leave the Java sandbox or if a native scripting engine

3E.g. Rhino or NetRexx.

62

7 Using BWS

1 parse arg filename, outputArea

2

3 filename=.bsf~lookupbean(filename)

4 outputArea=.bsf~lookupbean(outputArea)

5

6 file=.stream~new(filename~getAttribute(’value’))

7 do while file~lines<>0

8 text=file~linein

9 anElementNode=outputArea~createElement(’div’)

10 anElementNode~addEventListener(’onClick’,’alertMe’)

11 contentText=outputArea~createTextNode(text)

12 anElementNode~appendChild(contentText)

13 anElementNode~setStyleAttribute(’padding’,’2px’)

14 anElementNode~setStyleAttribute(’backgroundColor’,’#aaffaa’)

15 anElementNode~setStyleAttribute(’margin’,’5px’)

16 anElementNode~setStyleAttribute(’border’,’#00cc00 2px ridge’)

17 outputArea~appendChild(anElementNode)

18 end

19

20 outputArea~setStyleAttribute(’backgroundColor’,’#99ff99’)

21 outputArea~setStyleAttribute(’border’,’#009900 2px dashed’)

22

23 ::REQUIRES BSF.CLS

Figure 7.2: Example Document: Rexx script

is used, it is necessary to create appropriate Java security policies: Java for this purpose

provides the policytool available in the bin subdirectory of the Java installation. Using

this tool, the necessary permissions can be set; the resulting policy file must be saved to

the user’s home directory4 under the name .java.policy.

7.3 Creating BWS Applications

After BWS has been installed successfully, the creation of a BWS applications can begin

with the creation of a BWS document.

4On Unix-based system this usually is /home/<username>/, on Windows XP it is c:\documents and

settings\<username>\ or something similar, depending on with localization of Windows is used.

63

7 Using BWS

1 <html>

2 <head>

3 <title>

4 BWSExamplaryDocument

5 </title>

6 <script id="readFile" type="bws/rexx" src="readFileScript.rex" />

7 </head>

8

9 <body>

10 File to open: <input type="text" id="filename" />

11 <input type="button" onclick="bws:readFile(filename)" value="Open!" />

12 <div id="output">

13 </div>

14 </body>

15 </html>

Figure 7.3: Example Document: BWS Document

7.3.1 HTML Documents as Starting Point for BWS Applications

The starting point of a BWS document is a standard well-formed HTML document

fulfilling the following requirements:5

• For every start tag, there must be a corresponding closing tag, i.e. for every

 tag there must be a tag; an exception to this rule is allowed for tags

that have no content, e.g.
, these tags may alternatively be specified in the

combined notation
. As some browsers do not accept the later variant, it

is recommended to use explicit start and end tags or, in cases where this is not

possible, separate the closing slash by a space from the tag name, e.g.
.

This notation works with any of the browsers BWS was tested on.

• Elements can have sub elements, they must use strict nesting, ’overlapping’ tags,

for example <h1>Text<center>Centered</h1>also centered</center>, are not

5There are some additional requirements that do not apply to BWS documents, see [CMP01], the exact
requirements of well-formedness for XML documents is [BPSMM00, Section 2.1]. These requirements
are not ’native’ requirements of BWS but are only necessary for enabling the parsing of the document
using a conventional XML parser. Cf. section 5.2.1.2, pp. 44.

64

7 Using BWS

allowed.

• Tags and attributes are case-sensitive, for example <h1> and </H1> are not match-

ing.

• Attributes must have exactly one value, empty attributes that are allowed in stan-

dard HTML, e.g. the mayscript attribute of objects must be given as <object

mayscript="true" />, not only <object mayscript>, all attributes must be en-

closed in quotes.

• The document must have exactly one root element, i.e. a construction <html><!--

htmlcode --></html><somethingElse></somethingElse> is not allowed.

Any document conforming to these requirements can be used as a BWS document

and extended with BWS scripts; generally, an XHTML compliant document will work.6

Figure 7.4, p. 73 shows the basic example document first in an incorrect and then in a

corrected version.7

7.3.2 Scripts and Script Calls

Once a BWS compliant document as described above has been created, scripts can be

embedded. This step consists of two parts:

1. Embedding or referencing the scripts in the document.

2. Attaching script calls to the events that shall be handled.

Both steps are done almost exactly like they would be done using JavaScript scripts.

6The resulting BWS/HTML, however, will never be a XHTML conforming document, as the applet

tag is not allowed in XHTML.
7Changed lines are marked with an asterisk (*).

65

7 Using BWS

7.3.2.1 Embedding and Referencing Scripts

For every script you want to use, create a <script> tag.8 This script tag must have at

least two attributes:

1. The type attribute that specifies that this script is a script that shall be interpreted

using BWS and the programming language the script is written in; this attribute

is given as bws/scriptengine, for example it is bws/netrexx for the NetRexx

interpreter or bws/javascript for the Rhino JavaScript interpreter.

2. The id attribute under which this script is referenced in script calls. This id, as

well as any other id used in the document, must be unique, it may consist of only

alphanumeric characters (A-Z, a-z, 0-9), dashes (-), underscores (), dots (.) and

colons (:).

If only these two attributes are specified, the script code must be embedded within the

script element (see figure 7.5, p. 74); if the script code shall not be contained within the

document, it is also possible to reference scripts contained in extra files. To do this, the

optional source attribute src can be specified. This attribute has to be in the form of

an absolute9 or a relative10 path or an URL; using this method, the script file is loaded

only on execution. If the src attribute is specified, the code under the script element is

not inspected.

Other tags may be specified too, but are not evaluated by BWS.11 The example

document with the reference to the script is shown in figure 7.5, p. 74.12

8It is not possible to embed two scripts within one script tag.
9Relative to the root path of the current document’s server, e.g. /scripts/aScript.rex when the

script and the document reside on the same server.
10Relative to the path of the current document, e.g. if the document is avail-

able from http://www.mydomain.com/docs/aDocument.html and the script file is avail-
able from http://www.mydomain.com/scripts/aScript.bws, it can also be referenced as
../scripts/aScript.bws.

11They may be evaluated by the browser.
12Changed line is marked with an asterisk (*).

66

7 Using BWS

7.3.2.2 Attaching Script Calls to Events

After all necessary scripts are embedded or referenced in the document, script calls can

be attached to events, i.e. scripts can be triggered by DOM events, for example by

clicking a part of text. Attaching a script to a specific event is done by setting the

correspondent script handler, e.g. onClick, to bws: followed by the script id.13 To

attach a script to the button that calls the readFile script when the button is clicked,

the button’s onClick attribute is set to bws:readFile in figure 7.6.14 For an overview

which events are available see [Pix00].

7.3.3 Accessing And Modifying DOM Elements

Scripts will usually have to access the document, for example for outputting the results

of an computation, for setting certain styles of a document or for reading input values

of a user. To access parts of the document, the first step is to obtain access to the BWS

runtime environment, specifically the BWSApplet. This applet is always available in the

BSF registry15 and can be retrieved by calling the BSF object’s lookupBean() method

and specifying the applet’s key: BWSApplet, as the parameter to this function call. An

example call for obtaining the applet in rexx is line 1 of the example script in figure 7.7,

p. 75.16

Once the applet is available in the script, the applet’s getJSNode() method can be

used to obtain document nodes represented as objects of the JSNode class. To obtain a

specific node, the node’s id attribute must be passed as parameter of the method call.

In the example, retrieving a node using this method is done in lines 3 and 4.

13Instead of bws:, a hash sign (#) followed by a colon and the script id is also allowed, e.g. #:scriptId.
14Changed line is marked with an asterisk (*).
15The BSF registry is a central object storage were objects can be stored and retrieved using a unique

key. The BSF registry is provided by the BSF and available in all BWS scripts. Cf. section 4.3, pp.
35.

16This script is a shortened version of the example rexx script in figure 7.3, p. 64 that only reads the
file and does no formating.

67

7 Using BWS

The retrieved nodes can then be modified using the methods provided by the JSNode

class17, these methods are exactly the same as the methods provided by the DOM

node object in DOM supporting web browsers. For example in lines 11 and 12, the

appendChild() method is used to first add text to a existing node and then append

this node to the document. JSNode also provides methods for creating new nodes, for

example the creation of a new div element in line 9 and the creation of a new text node

in line 10 of figure 7.7, p. 75.

7.3.4 Running BWS Applications

Once a BWS document has been completed, it can be run directly using the Rewriter

Document HTML document. 18 This document allows the user to specify the location of

a BWS document in the form of an URL: On Windows systems, this URL is created by

using file:///, the drive the document is located on, e.g. c: and the full path of the

document. In contrast to the usage of backslashes for separating directories in windows,

for URLs directories have to be separated with forward slashes.19 On Unix systems,

the URL is file:// followed by the full path of the document, e.g. file:///home

/myhome/bws/testApplication.bws. A click on the Open button loads the specified

document to a new browser window where it is run.

Figure 7.8, p. 76 shows a screenshot of the rewriter document.

17Cf. API Documentation, appendix A.
18It is necessary to have dom4j installed and available in the Java classpath to use the BWSDocument

class, which is necessary for document rewriting.
19If the BWS document is c:\documents and settings\admin\my documents\test

Application.bws, the correspondent URL is file:///c:/documents and settings/admin/my

documents/testApplication.bws.

68

7 Using BWS

7.4 Advanced Possibilities of BWS

In addition to the basics of BWS mentioned earlier that will be sufficient for many

applications, BWS also provides two more advanced possibilites:

• Passing parameters to and returning values from scripts.

• Calling BWS scripts, embedded or referenced, within other scripts.

7.4.1 Passing Parameters and Returning Values from BWS Scripts

BWS scripts that run on an engine supporting the apply() method of BSF, for example

BSF4Rexx engines, can pass parameters to scripts and access their return values in other

scripts. Instead of using only the script id in the script call string, script call strings

that shall pass parameters or receive return values must specify the script call using a

C/Java style syntax:

Only Parameters For calling a script with parameters but without a return value, pa-

rameters should be appended to the script id within parentheses and separated by

commas. The final version of the example document shown in figure 7.10 shows

such a invocation in the onclick attribute in line 12.

Only Return Value When only a return value is necessary, the key for the return value

may be specified by putting it in front of the script id followed by an equals sign

(=).

Parameters and Return Value Specifying both, parameters and return value works

with the combination of both possibilites, i.e. the return value key followed by

an equals sign (=), the script id and the comma-separated values in parameters:

returnValue=script Id(parameters).

69

7 Using BWS

Parameters specified with script calls are evaluated always on script invocation, they

are evaluated to the following values:

1. If the parameter is this, the DOM object that triggered the event is passed, for

example in figure 7.10, p. 77 a JSObject referencing the input element would be

used.20

2. Parameters specified in quotations marks are stripped of their quotation marks

and passed as Strings.

3. If the parameter is the key to a object in the BSF registry, the corresponding

object is passed.

4. Parameters that are neither in quotation marks nor match a BSF registry key are

tested if they match the id of a DOM object. If this is the case, the correspondent

DOM object is passed as a JSNode.

5. If none of these criteria matches, the parameter is passed as a String.

The return value of the script is then stored in the BSF registry under the specified

key. Independent of the method invocation, the return value is always returned directly

to the method calling the script.

7.4.2 Calling Scripts from Other Scripts

Calling scripts from other scripts is significantly different from calling scripts from

HTML event handlers: Script invocation within scripts is done using one of BWSApplet’s

executeScript() methods,21 either with only a script string as parameter or with an

20This applies only to script calls from HTML element event handlers. If scripts are called from other
scripts, the object that will be referenced as this can be specified by the developer of the calling
script. Cf. section 7.4.2.

21Cf. API documetation appendix A.

70

7 Using BWS

additional arbitrary object as second parameter. If such an object is specified with the

method call, this object will be passed to the invoked script and can be referenced using

the this keyword in the parameters part of the script string. If no object is passed,

this will be a reference to the script node that holds the invoked script.

The script string that is passed to the applet as parameter of executeScript()

method must at least contain the script id of the script to be invoked, it may addi-

tionally specify parameters or a return value as any script invocation that is done with

HTML event handlers; evaluation of parameters works the same as it is the case with

HTML event handler calls. In contrast to the value of an event handler, script strings

passed directly to the BWS applet must not start with bws: or #:.

An example of such a script invocation within a rexx script is shown in figure 7.11,

p. 77. This example starts by retrieving a reference to the BWSApplet in line 1. Ad-

ditionally, another object stored under the key anObjectKey is retrieved from the BSF

registry and referenced as anObject in line 2. Line 4 executes the script otherScript

that must be existent under this id in the currently loaded BWS/HTML document.

This script is invoked with the anObject as additional parameter; the anObject can be

referenced from the script string with the this keyword, which is done. Consequently,

the BWS runtime environment will pass the anObject object to the otherScript as

the only parameter of the script call.22

22The BWS parameter interpretation also makes it possible to omit retrieving the object
from the registry explicitly to use it in calling the script: As strings that are the
keys of registry objects are automatically resolved to the registry objects, the more sen-
sible way in this case would be to omit line 2 of the example and replace line 4 with
otherScriptReturnValue=theApplet∼executeScript(’otherScript(anObjectKey)’).

71

7 Using BWS

7.5 Code Comparison: BWS and JavaScript

Figure 7.1223 shows four different ways of modifying DOM elements using different ap-

proaches: JavaScript provided by the browser, Java using LiveConnect and BWS with

the Rhino and the BSF4Rexx24 scripting engine. As can be seen in this figure, BWS

code is much easier to read and to write compared to Java, it also is only slightly differ-

ent and not more complicated than comparable code written using the browser supplied

JavaScript engine.

23This is a slightly modified version of the comparison shown in figure 4.6, p. 35.
24With Object Rexx as interpreter.

72

7 Using BWS

1 <html>

2 <head>

3 <Title>

4 BWSExamplaryDocument

5 </title>

6 </head>

7

8 <body>

9 File to open: <input type="text" id="filename">

10 <input type="button" value="Open!">

11 <div id="output">

12 </div>

13 </body>

14 </html>

The incorrect document.

1 <html>

2 <head>

* 3 <title>

4 BWSExamplaryDocument

5 </title>

6 </head>

7

8 <body>

* 9 File to open: <input type="text" id="filename" />

*10 <input type="button" value="Open!" />

11 <div id="output">

12 </div>

13 </body>

14 </html>

A corrected version.

Figure 7.4: Correct And Incorrect XHTML Document

73

7 Using BWS

Example document with reference to the script

1 <html>

2 <head>

3 <title>

4 BWSExamplaryDocument

5 </title>

* 6 <script id="readFile" type="bws/rexx" src="readFileScript.rex" />

7 </head>

8

9 <body>

10 File to open: <input type="text" id="filename" />

11 <input type="button" value="Open!" />

12 <div id="output">

13 </div>

14 </body>

15 </html>

Example of an embedded script

1 <html>

2 ...

3 <script type="bws/netrexx" id="aRexxScript">

4 -- some netrexx code

5 </script>

6 ...

7 </html>

Figure 7.5: Embedding and Referencing Scripts

74

7 Using BWS

1 <html>

2 <head>

3 <title>

4 BWSExamplaryDocument

5 </title>

6 <script id="readFile" type="bws/rexx" src="readFileScript.rex" />

7 </head>

8

9 <body>

10 File to open: <input type="text" id="filename" />

*11 <input type="button" value="Open!" onclick="bws:readFile" />

12 <div id="output">

13 </div>

14 </body>

15 </html>

Figure 7.6: Attaching a Script Call

1 theBWSApplet=.bsf~lookupbean(’BWSApplet’)

2

3 filename=theBWSApplet~getJSNode(’filename’)

4 outputArea=theBWSApplet~getJSNode(’outputArea’)

5

6 file=.stream~new(filename~getAttribute(’value’))

7 do while file~lines<>0

8 text=file~linein

9 anElementNode=outputArea~createElement(’div’)

10 contentText=outputArea~createTextNode(text)

11 anElementNode~appendChild(contentText)

12 outputArea~appendChild(anElementNode)

13 end

14

15 ::REQUIRES BSF.CLS

Figure 7.7: Example: Simple Rexx Script

75

7 Using BWS

Figure 7.8: Rewriter Document Screenshot

IDs:
readFile

filename

output

BSF registry:
BWSApplet

SystemOut

DocumentWindow

retVal

readFile(filename,output)

readFile(this,DocumentWindow)
HTML Document

…

<input …/>

…

retVal=readFile(“Hello“,World)

String
Hello

String
World

references

creates

Figure 7.9: Parameter Interpretation

76

7 Using BWS

1 <html>

2 <head>

3 <title>

4 BWSExamplaryDocument

5 </title>

6 <script id="readFile" type="bws/rexx" src="readFileScript.rex" />

7 </head>

8

9 <body>

10 File to open: <input type="text" id="filename" />

*11 <input type="button" value="Open!"

*12 onclick="bws:readFile(filename,output)" />

13 <div id="output">

14 </div>

15 </body>

16 </html>

Figure 7.10: Final Version of the Example Document

1 theApplet=.bsf~lookupBean(’BWSApplet’)

2 anObject=.bsf~lookupBean(’anObjectKey’)

3

4 otherScriptReturnValue=theApplet~executeScript(’otherScript(this)’,anObject)

5

6 ::REQUIRES BSF.cls

Figure 7.11: Calling a Script Within Another Script in Rexx

77

7 Using BWS

Setting the heading’s background color to red, the heading’s id must be aHeading.
JavaScript

1 firstHeading=window.getElementById("aHeading");

2 firstHeading.style.backgroundColor="red;"

Java

1 Object[] objectArray=new Object[1];

2 JSObject appletWindow=this.getWindow();

4

3 objectArray[0]="aHeading";

5 JSObject heading=

(JSObject)appletWindow.call(getElementsyTagName,objectArray);

6

7 JSObject styleAttribute=(JSObject)heading.getAttribute("style");

8 objectArray[0]="red";

9 styleAttribute.setMember("backgroundColor",objectArray)

BWS with Rhino

1 theBWSApplet=BSF.lookupBean(’BWSApplet’);

2

3 firstHeading=theBWSApplet.getJSNode(’aHeading’);

4 firstHeading.setStyleAttribute(’backgroundColor’,’red’);

BWS with ObjectRexx

1 theBWSApplet=.bsf~lookupBean(’BWSApplet’)

2

3 firstHeading=theBWSApplet~getJSNode(’aHeading’)

4 firstHeading~setStyleAttribute(’backgroundColor’,’red’)

5

6 ::REQUIRES BSF.cls

Figure 7.12: DOM Scripting Comparison: JavaScript, Java And BWS

78

8 Wrap-Up and Outlook

Compared to JavaScript, BWS overcomes JavaScript’s limitations and enables any task

within the browser that can be done with a supported scripting language and that

doesn’t violate the safety measures of the Java sandbox. BWS, using BSF, also provides

access to the full Java class library within the user’s preferred scripting language. And

in comparison to ActiveScripting, BWS allows an as easy integration of scripts and

documents, but in a browser and operating system independent and more secure way.

BWS scripts can be edited ad hoc and immediately tested in a web browser, without

the need to compile them or do anything besides editing; if they are not embedded

directly in the BWS/HTML document but referenced, it is not even necessary to reload

the document in the browser.

Concerning the possible fields of usage of BWS, one of the most interesting areas is

the use of BWS for cryptographic applications that shall run inside web browsers. This

is an area that is problematic with server side applications as in this case, the keys for

encryption or decryption have to be available on the server, which is a potential security

hazard as keys may be compromised by the server administrator easily. With the use of

client side scripting, there is no need to store keys or decrypted files on the server, all

cryptographic operations can take place on the client.

The future of BWS to a large part depends on the future development of Java and

web browsers. One of the most important task is the use of the Common DOM API

instead of LiveConnect. The Common DOM API will provide a direct, DOM conform,

79

8 Wrap-Up and Outlook

way of accessing the DOM of the document currently loaded in the web browser. It

was originally planned to be available with Java 1.4. However, Java 1.4 only provided

a extremely limited and practically unusable version of the Common DOM API. Sun,

despite announcing to do so, did not change that in later releases of Java 1.4 and now

plans to have a working version with Java 1.5 which will probably be available in the

third quarter of 2004. Another planned improvement is to provide a unified interface

to the DOM event model if this is still necessary with the availability of the Common

DOM API and if it is realizable using Java.

For ease of use, it is also planned to provide a server-side rewriting mechanism in form

of PHP and JSP scripts that would do document rewriting on the server without any

interaction from the user and without the need to embed the applet in the document by

hand.

However, the most important change that will be made to BWS in the next time

will be the creation of an end-user friendly way of transforming BWS documents to

BWS/HTML documents. This aspired solution shall work on the client, be completely

independent of the browser and further diminish the difference between browser native

and BWS based client side scripting.

80

Bibliography

[Alp01] IBM AlphaWorks, editor. About alphaWorks. IBM Corp.,

http://alphaworks.ibm.com/about, 2001.

[Alp04] IBM alphaWorks : emerging technologies. IBM Corp.,

http://alphaworks.ibm.com/ (visited: 2004-03-23), 2004.

[BPSMM00] Tim Bray, Jean Paoli, C. M. Sperber-McQueen, and Eve Maler,

editors. Extensible Markup Language (XML) 1.0 (Second Edition).

W3C, http://www.w3.org/TR/2000/REC-xml-20001006#sec-well-formed

(visited: 2004-03-13), 2000.

[BSF03] BSF4Rexx homepage. http://wi.wu-wien.ac.at/rgf/rexx/bsf4rexx/ (vis-

ited: 2004-03-94), 2003.

[CD99] James Clark and Steve DeRose, editors. XML Path Language (XPath)

Version 1.0. W3C XSL Working Group and W3C XML Linking Working

Group, http.//www.w3.org/TR/xpath (visited: 2004-03-03), 1999.

[CMP01] The Well-Formed XML Document. CMP Me-

dia LLC, http://www.intelligenteai.com/XML Reposi-

tory/well formed xml document.htm (visited: 2004-03-13), 2001.

81

Bibliography

[Cur02] The Curl Client/Web Platform. Curl Corporation,

http://www.curl.com/pdf/The Curl ClientWeb Platform.pdf (visited:

2004-03-08), 2002.

[Cur04] Curl Corporation Website. Curl Corporation, http://www.curl.com/ (vis-

ited: 2004-03-08), 2004.

[Dev04a] Developer Works : IBM’s resource for developers. IBM Corp.,

http.//www.ibm.com/developerworks (visited: 2004-03-23), 2004.

[Dev04b] IBM DeveloperWorks, editor. About developerWorks. IBM,

http://www.ibm.com/developerworks/aboutdw/, 2004.

[dom03] dom4j 1.4 API. MetaStuff Ltd., http://www.dom4j.org/apidocs/index.html

(visited: 2004-03-23), 2003.

[ECM99] ECMAScript language specification. Technical Report Standard ECMA-

262, European Computer Manufacturers Association, http://www.ecma-

international.org/publications/files/ECMA-ST/Ecma-262.pdf (visited:

2004-03-08), 1999.

[Fla01] Rony G. Flatscher. Java bean scripting with rexx. In Proceedings of

the ”12th International Rexx Symposium”, Raleigh N.C., http://wi.wu-

wien.ac.at/rgf/rexx/orx12/JavaBeanScriptingWithRexxxxxorx12.pdf

(visited: 2004-03-04), 2001. The Rexx Language Association.

[Fla03] Rony G. Flatscher. The augsburg version of BSF4Rexx. In Proceedings of

the ”2003 International Rexx Symposium”, Raleigh N.C., http://wi.wu-

wien.ac.at/rgf/rexx/orx14/orx14 bsf4rexx-av.pdf (visited: 2004-03-04),

2003. The Rexx Language Association.

82

Bibliography

[Fol98] Three-Tier. Imperial College London, http://foldoc.doc.ic.ac.uk/foldoc/

foldoc.cgi?three-tier (visited: 2004-03-03), 1998.

[Hég04] Philippe Le Hégaret. Document Object Model (DOM) Technical Reports.

W3C DOM Working Group, http://www.w3.org/DOM/DOMTR (visited:

2004-03-03), 2004.

[HW04] Philippe Le Hégaret and Ray Whitmer. W3C Document Object Model.

W3C DOM Working Group, http://www.w3.org/DOM/ (visited: 2004-

03-03), 2004.

[Jav01] API for Privileged Blocks. Sun Microsystems, Inc.,

http://java.sun.com/j2se/1.4.2/docs/guide/security/doprivileged.html

(visited: 2004-03-05), 2001.

[Jav03a] Security. Sun Microsystems, Inc., http://java.sun.com/j2se/1.4.2/docs/guide/

security/ (visited: 2004-03-05), 2003. Security enhancements for the Java

2 SDK, Standard Edition, v 1.4.2.

[Jav03b] Java 2 Platform, Standard Edition, V 1.4.2 API Specification. Sun Mi-

crosystems, http://java.sun.com/j2se/1.4.2/docs/api/index.html (visited:

2004-03-14), 2003.

[Jav03c] Java Plug-in 1.4.2 Developer Guide. Sun Microsystems, Inc.,

http://java.sun.com/j2se/1.4.2/docs/guide/plugin/developer guide/contents.html

(visited: 2004-03-23), 2003.

[Jav04a] Security and the Java Platform. Sun Microsystems, Inc.,

http://java.sun.com/security (visited: 2004-03-05), 2004.

[Jav04b] Java Technology Website. Sun Microsystems, Inc., http://java.sun.com/

(visited: 2004-03-08), 2004.

83

Bibliography

[Kal00] Peter Kalender. A Concept for and an Implementation of the Bean

Scripting Framework for Rexx. University of Essen, http://nestroy.wi-

inf.uni-essen.de/Lv/seminare/ws0001/PKalender/Seminararbeit.pdf (vis-

ited: 2004-03-04), 2000.

[Koc04] Peter-Paul Koch. QuirksMode. http.//www.quirksmode.org/ (visited:

2004-03-14), 2004.

[MSJ03] MSJVM Transition FAQ. Microsoft Corp.,

http://www.microsoft.com/mscorp/java/faq.asp (visited: 2004-03-14),

2003.

[MSW04] Microsoft Windows Script Interfaces - Introduction. Microsoft

Corp., http://msdn.microsoft.com/library/default.asp?url=/library/en-

us/script56/html/scripting.asp (visited: 2004-03-14), 2004.

[NJ00] Miloslav Nic and Jiri Jirat. XPath Tutorial. Zvon.org,

http://www.zvon.org/xxl/XPathTutorial/General/examples.html (vis-

ited: 2004-03-03), 2000.

[Pix00] Tom Pixley, editor. Document Object Model Events.

W3C, http://www.w3.org/TR/2000/REC-DOM-Level-2-Events-

20001113/events.html (visited: 2004-03-09), 2000.

[Pro02a] The Apache Jakarta Project, editor. BSF Documentation. Apache Software

Foundation, http.//jakarta.apache.org/bsf/manual.html (visited: 2004-03-

04), 2002.

[Pro02b] The Apache Jakarta Project, editor. BSF FAQ. Apache Software Founda-

tion, http://jakarta.apache.org/bsf/faq.html, 2002.

84

Bibliography

[Pro04] The Apache Jakarta Project, editor. The Jakarta Site. The Apache Soft-

ware Foundation, http://jakarta.apache.org/index.html, 2004.

[RS01] Tobias Rademacher and James Strachan. Dom4j Cookbook. MetaStuff

Ltd., http://www.dom4j.org/cookbook/cookbook.pdf (visited: 2004-03-

03), 2001.

[SCM03] James Strachan, Maarten Coene, and Bob McWhirter. dom4j: The Flex-

ible XML Framework for Java. MetaStuff Ltd., http.//www.dom4j.org/

(visited 2004-03-03), 2003.

[SH03a] Arne Schäpers and Rudolf Huttary. Daniel Düsentrieb, C#, Java, C++

und Delphi im Effizienztest, Teil 1. c’t magazin für computertechnik,

(19):204, 2003.

[SH03b] Arne Schäpers and Rudolf Huttary. Daniel Düsentrieb, C#, Java, C++

und Delphi im Effizienztest, Teil 2. c’t magazin für computertechnik,

(21):222, 2003.

[Smi03] Brett Smith. GNU Free Documentation License. Free Software Foundation,

Inc., http://www.gnu.org/copyleft/fdl.html, 2003.

[Spe04a] Tobias Specht. BSFWebScripting (BWS). BerliOS,

http://bsfws.berlios.de/ (visited 2004-03-03), 2004.

[Spe04b] Tobias Specht. BWS Documentation Wiki. BerliOS,

http://openfacts.berlios.de/index-en.phtml?title=BSFWebScripting

(visited: 2004-03-03), 2004.

[Sta04] Richard M. Stallman. GNU General Public License. Free Software Foun-

dation, Inc., http://www.gnu.org/copyleft/gpl.html (vistited: 2004-03-05),

2004.

85

Bibliography

[W3S04] Introduction to JavaScript. Refsnes Data,

http://www.w3schools.com/js/js intro.asp (visited: 2004-03-08), 2004.

[Wik04a] Wikipedia Article: Java Programming Language. Wikipedia,

http://en.wikipedia.org/wiki/Java programming language (visited:

2004-03-08), 2004.

[Wik04b] Wikipedia Article: Java Platform. Wikipedia,

http://en.wikipedia.org/wiki/Java platform (visited: 2004-03-08), 2004.

[Wik04c] Wikipedia Article: JavaScript. Wikipedia,

http://en.wikipedia.org/wiki/JavaScript (2004-03-16), 2004.

[Wik04d] Wikipedia Article: World Wide Web. Wikipedia,

http://en.wikipedia.org/wiki/Www (visited: 2004-03-03), 2004.

86

