
XML, Servlets and JavaServer Pages™

an introduction

Florian Heinisch

Vienna University of Economics and Business Administration

2006

To my parents who have stood behind me steadfast and from whom I always

have experienced endless support.

Contents Page 3

Contents
1 Introduction... 14

2 XML.. 16

2.1 Overview... 16

2.1.1 Definition.. 16

2.1.2 SGML... 17

2.1.3 HTML... 20

2.1.4 XML is Born.. 21

2.1.5 XML’s Goals... 22

2.1.6 XML Principles... 23

2.1.7 XML Usage.. 23

2.2 XML Basics... 25

2.2.1 Simple Example... 25

2.2.2 Structure of an XML document.. 25

2.2.3 Markup... 27

2.3 Well-Formed vs. Validated XML documents... 34

2.3.1 Document Type Definition.. 35

2.3.2 XML Schema.. 39

2.4 Displaying XML Documents.. 46

2.4.1 Style Sheets... 47

3 Hypertext Transfer Protocol.. 57

3.1 Introduction.. 57

3.1.1 Resources.. 57

3.1.2 Uniform Resource Identifier... 57

3.1.3 HTTP Defintion... 60

3.2 HTTP Messages.. 61

3.2.1 HTTP Request... 61

3.2.2 HTTP Response... 65

4 Servlets... 68

4.1 Introduction.. 68

4.1.1 Servlet Container... 69

4.1.2 A Servlet's Process.. 69

Contents Page 4

4.2 Java Servlet API.. 70

4.3 Basic Servlet Structure.. 72

4.4 The Servlet's Life-Cycle... 74

4.4.1 Servlet's “Birth”: Loading, Instantiation and Initialisation.................. 75

4.4.2 Servlet's “Life”: Request Handling.. 76

4.4.3 Servlet's “Death”: destroy() Method... 80

4.5 Servlet Examples.. 80

4.5.1 Data Servlet... 81

4.5.2 Watermark Servlet... 82

4.6 Deploying Servlets.. 85

4.6.1 Definition of a Web Application.. 85

4.6.2 Directory Structure... 86

4.6.3 Deployment Descriptor... 89

4.7 Servlets vs. CGI.. 92

4.7.1 Efficiency.. 92

4.7.2 Portability... 92

5 JavaServer Pages™... 93

5.1 Introduction.. 93

5.1.1 Simple JSP Example.. 93

5.2 JSP Container... 94

5.2.1 JSP Advantages over Competing Technologies.............................. 94

5.3 JSP's Life-Cycle.. 94

5.3.1 The Generated Servlet Java-file.. 96

5.4 JSP's Components.. 98

5.4.1 Directive Elements... 99

5.4.2 Scripting Elements... 101

5.4.3 Action Elements... 108

5.4.4 Implicit Objects... 121

5.5 Script-free JSP Pages... 123

5.5.1 Expression Language.. 124

5.5.2 Using Customs Tags.. 130

5.5.3 Java Standard Tag Library (JSTL)... 132

5.5.4 Creating Custom Tags... 137

6 Roundup and Outlook... 146

Contents Page 5

7 Appendix: Music Store.. 149

7.1 Model-View-Controller (MVC) Pattern... 149

7.2 Struts... 151

7.2.1 Basic Components of Struts... 151

7.2.2 Struts Workflow.. 152

7.3 Architecture of the MusicStore Web Application................................... 155

7.3.1 Business Logic Layer... 157

7.3.2 Data Access Layer... 157

7.3.3 Persistent Data Store Layer... 159

7.4 MusicStore Directory Structure... 159

7.5 Installing the Web Application... 162

7.5.1 Installing the MusicStore Database.. 163

7.5.2 Deploying MusicStore to IBM WAS.. 166

7.5.3 Deploying MusicStore to Apache Tomcat...................................... 170

7.6 Listings.. 171

8 References... 177

9 Resources and Utilities... 199

Table of Figures Page 6

Table of Figures

Figure 2-1: Logical (or tree) structure of the XML document “thesis.xml”..........26

Figure 2-2: “thesis.xml” displayed in a Web browser... 47

Figure 2-3: The document "thesis_css.xml" displayed in a Web browser......... 51

Figure 2-4: The transformed XML document “thesis_xsl.xml” displayed in a Web

browser.. 56

Figure 3-1: HTTP request format... 61

Figure 3-2: Sample HTTP request (GET method)... 62

Figure 3-3: Order form of the MusicStore Web application............................... 64

Figure 3-4: Sample HTTP request (POST method)...65

Figure 3-5: HTTP response format.. 65

Figure 3-6: Sample HTTP response.. 66

Figure 4-1: Servlet process flow.. 70

Figure 4-2: A servlet's class diagram... 72

Figure 4-3: Basic servlet structure... 73

Figure 4-4: A servlet's life-cycle... 75

Figure 4-5: HttpServletRequest calls diagram... 78

Figure 4-6: HttpServletResponse class diagram... 79

Figure 4-7: "DateServlet.java"... 81

Figure 4-8: DateServlet displayed in a Web browser.. 82

Figure 4-9: WatermarkServlet displayed in a Web browser.............................. 85

Figure 4-10: Web application directory structure... 87

Figure 5-1: "date.jsp"... 94

Figure 5-2: Translation and request phase.. 95

Figure 5-3: "userForm.html" displayed in a Web browser............................... 118

Table of Figures Page 7

Figure 5-4: "userBean.jsp" diplayed in a Web browser................................... 119

Figure 5-5: SimpleTag class diagram.. 139

Figure 5-6: "simpleTag.jsp" using a custom tag (default pattern).................... 145

Figure 5-7: "simpleTag.jsp" using a custom tag with an attribute.................... 145

Figure 7-1: Model-View-Controller Architecture...149

Figure 7-2: Struts workflow.. 153

Figure 7-3: MusicStore architecture.. 156

Figure 7-4: The MusicStore directory layout.. 159

Figure 7-5: Deploying to IBM WAS: Step 3... 167

Figure 7-6: Deploying to IBM WAS: Step 4... 168

Figure 7-7: Deploying to IBM WAS: Step 5... 169

Figure 7-8: The MusicStore Web application displayed in a browser.............. 170

Table of Listings Page 8

Table of Listings

Listing 2-1: A simple XML-document “thesis.xml”.. 25

Listing 2-2: DTD for the XML document “thesis.xml”... 36

Listing 2-3: “thesis_int-DTD.xml”... 38

Listing 2-4: “thesis_ext-DTD.xml”.. 39

Listing 2-5: XML Schema “thesis.xsd”... 40

Listing 2-6: “thesis_schemaLocation.xml”.. 44

Listing 2-7: “thesis_targetNamespace.xsd”... 45

Listing 2-8: “thesis_Schema.xml”.. 46

Listing 2-9: "thesis.css".. 49

Listing 2-10: "thesis_css.xml".. 50

Listing 2-11: “thesis.xsl”... 54

Listing 2-12: "thesis_styles.css"... 55

Listing 2-13: "thesis_xsl.xml"... 55

Listing 4-1: Get a parameter's value.. 78

Listing 4-2: A servlet that watermarks a picture... 83

Listing 4-3: "web.xml" deployment descriptor.. 90

Listing 5-1: Auto-generated "servlet_date.java"... 97

Listing 5-2: The included file "header.html"... 100

Listing 5-3: "AM_PM.jsp"... 103

Listing 5-4: "bsf_javascript.jsp".. 106

Listing 5-5: “bsf_oorexx.jsp”.. 107

Listing 5-6: “UserBean.java”.. 109

Listing 5-7: "userForm.html".. 117

Listing 5-8: "userBean.jsp".. 118

Table of Listings Page 9

Listing 5-9: "userBean_scriptlet.jsp".. 120

Listing 5-10: Syntax for the <c:if> action.. 135

Listing 5-11: "userInfo1.jsp"... 135

Listing 5-12: Syntax for the <c:choose> action.. 136

Listing 5-13: "userInfo2.jsp"... 137

Listing 5-14: Simple tag handler "DateTag.java"... 140

Listing 5-15: TLD "simple.tld"... 144

Listing 5-16: "simpleTag.jsp" using the custom tag date................................. 144

Listing 7-1: SQL tables in the MusicStore database.. 165

Listing 7-2: "web.xml".. 172

Listing 7-3: "struts-config.xml"... 174

Listing 7-4: "OrderAction.java"... 175

Listing 7-5: "ManufacturerForm.java".. 176

Table of Tables Page 10

Tables of Tables

Table 2-1: Predefined entities.. 33

Table 2-2: Built-in data types... 42

Table 3-1: Description of URL components... 59

Table 5-1: "jsp:useBean” attributes... 111

Table 5-2: "jsp:getProperty" attributes... 112

Table 5-3: "jsp:setProperty" attributes... 114

Table 5-4: "jsp:include" attributes.. 115

Table 5-5: "jsp:plugin" attributes.. 116

Table 5-6: Implicit objects.. 122

Table 5-7: Reserved words... 128

Table 5-8: EL implicit objects... 129

Table 5-9: JSTL tag libraries... 133

Table 5-10: JSTL URIs.. 134

Table 5-11: Subelements of the taglib element... 141

Table 5-12: The tag element's subelements.. 142

Table 5-13: The attribute element's subelements.. 143

Table 7-1: Files contained in the MusicStore application................................ 162

Acronyms Page 11

Acronyms

ANSI American National Standards Institute

API Application Programming Interface

ASCII American Standard Code for Information
Interchange

ASF Apache Software Foundation

ASP ActiveServer Pages

BSF Bean Scripting Framework

CDATA Character Data

CDF Channel Definition Format

CGI Common Gateway Interface

CR Carriage Return

CRUD Create, Retrieve, Update and Delete

CSS Cascading Style Sheet

DAO Data Access Object

DLL Dynamic Link Library

DNS Domain Name Service

DTD Document Type Definition

DTO Data Transfer Object

EAR Enterprise Archive

ECMA European Computer Manufacturers
Association

EL Expression Language

FTP File Transport Protocol

GIF Graphic Interchange Format

GML General Markup Language

Acronyms Page 12

GUI Graphical User Interface

HTML Hypertext Markup Language

HTTP Hypertext Transport Protocol

IBM International Business Machines

IETF Internet Engineering Task Force

IP Internet Protocol

ISO International Organization for Standardization

J2EE Java 2 Platform Enterprise Edition

J2SE Java 2 Platform Standard Edition

JAR JavaTM Archive

JDK J2SE Delelopment Kit

JSP JavaServer Pages™

JSTL JSP Standard Tag Library

JVM Java Virtual Machine

LF Line Feed

MathML Mathematical Markup Language

MIME Multipurpose Internet Mail Extension

MVC Model-View-Controller

ooRexx Object Rexx

PCDATA Parseable Character Data

PDA Personal Digital Assistant

PDF Portable Document Format

PHP Hypertext Preprocessor

PI Processing Instructions

Acronyms Page 13

PIM Personal Information Management

POJO Plain Old Java Object

RFC Request for Comments

RSS Rich Site Summary

SGML Standard General Markup Language

SMIL Synchronized Multimedia Integration Language

SVG Scalable Vector Graphics

TEI Text Encoding Initiative

TLD Tag Library Descriptor

URI Uniform Resource Identifier

URL Uniform Resource Locator

W3C World Wide Web Consortium

WAR Web Archive

WAS Websphere Application Server

WML Wireless Markup Language

WWW World Wide Web

WYSIWYG What You See Is What You Get

XHTML Extensible HyperText Markup Language

XLL XML Link Language

XML Extensible Markup Language

XPath XML Path Language

XSL Extensible Stylesheet Language

XSL-FO XSL Formatting Objects

XSLT XSL Transformations

Introduction Page 14

1 Introduction

Originally, the World Wide Web was “a medium for the broadcast of read-only

material” [Bern96]. The “read-only material” took the form of static HTML pages

which did not support any form of user interaction. Although static HTML pages

were adequate to provide rapid access to information, “service providers recog-

nized the need for dynamic content” [ArBa04] as the Internet also began to be

used for delivering services. Since then, various technologies (such as CGI

scripts, ASP, PHP or Servlets) have been created to meet the need to provide

dynamic content.

The primary goal of this thesis is to introduce the reader to the Extensible

Markup Language (XML), Servlets and JavaServer Pages™ (JSP) which are

technologies that allow to enhance the development of dynamic content.

The information given in this document is categorized into five parts. As each

part separately deals with a specific topic the reader can simply skip any part he

or she might be familiar with.

The first part introduces the Extensible Markup Language (XML). After a short

introduction of the historical development of XML, XML basics such as the syn-

tax and the structure of XML documents are explained. Finally, it is shown how

to validate and display XML documents.

The second part provides a basic introduction to the Hypertext Transfer Proto-

col (HTTP).

The third part shall give the reader a basic understanding of servlets. Therefore,

the servlet's structure and life-cycle are described. Additionally, the provided

theory about servlets is highlighted with the use of examples. For that purpose,

the deployment of servlets is described so the reader gains the crucial know-

ledge needed to build Web applications with Java. As servlets strongly resem-

ble the Common Gateway Interface (CGI), this part concludes with a compari-

son of those two technologies.

The fourth part deals with the discussion of JavaServer Pages™ (JSP). Since

JSPs are considered to be an extension of servlets, it is highly recommended

Introduction Page 15

reading first the chapter on servlets for a thorough understanding of this topic in

the case the reader is not familiar with servlets. This chapter's purpose is to ex-

pound the JSP’s life-cycle and the main components a JSP may consist of. In

order to illustrate that JSPs can include scripts written in none-Java program-

ming languages, a short digression is made into the Bean Scripting Framework

(BSF). The development of script-less JSPs is explained at the end.

The discussion on XML, Servlets and JavaServer Pages™ concludes with a

roundup and outlook.

In order to demonstrate how to build powerful Web applications by combining

XML, Servlets and JavaServer Pages™, the author developed a simple shop-

ping cart Web application that extensively uses these three technologies. For

that reason this Web application is explained in depth in this paper’s fifth part,

the appendix. As the Web application is built upon a Model-View-Controller

(MVC) framework, essential theory on this topic is explained. Furthermore, the

Web application’s architecture is revealed and a step-by-step installation-in-

structions is provided so that the reader should be able to easily install the Web

application on her or his machine.

XML Page 16

2 XML

This chapter will provide an introduction to XML. It starts with a discussion

about markup languages, XML's background and development. Next, XML's

syntax will be described before moving on to the explanation of how XML docu-

ments can be validated. At the end of the chapter, two different ways to format

XML documents will be discussed.

2.1 Overview

The discussion about XML starts with the definition of markup languages and a

brief introduction to SGML. Next, the reader will be given an explanation about

HTML's shortcomings and an abstract about XML's goals and its development.

2.1.1 Definition

XML stands for eXtensible Markup Language. XML is a restricted form (i.e. sub-

set) of SGML. By construction, XML documents are conforming SGML docu-

ments [BrPa00].

2.1.1.1 Markup Language

Before delving into the discussion of markup languages the terms markup and

markup languages need to be defined.

The Text Encoding Initiative (TEI) defines markup “as any means of making ex-

plicit an interpretation of a text” [SpBu94]. In this sense all texts are encoded,

for example by punctuation marks or spaces between words. In context of auto-

mated text processing, the TEI states that “encoding a text for computer pro-

cessing is in principle [...] a process of making explicit what is conjectural or im-

plicit” [SpBu94].

A markup language is “a set of markup conventions used together for encoding

texts” [SpBu94]. A markup language specifies [SpBu94]:

• what markup is allowed,

XML Page 17

• what markup is required,

• how markup is to be distinguished from text,

• and what the markup means.

2.1.2 SGML

In 1969 Charles Goldfarb together with Edward Mosher and Raymond Lorie, in-

vented the General Markup Language (GML) in the context of an IBM research

project as a means of sharing documents. Charles Goldfarb introduced with

GML “the concept of a formally-defined document type with an explicit nested

element structure” [SGML90]. Having completed the development of GML,

Goldfarb went on to research document structures and created additional con-

cepts (such as concurrent document types).

In 1978, the American National Standards Institute (ANSI) established a com-

mittee which had the task to develop GML and Goldfarb's research results into

a standard. The first industry standard of SGML was released in 1983. Finally,

after further reviewing and development of SGML it became an ISO standard1 in

1986. [John99], [SpBu94].

SGML is the mother tongue of all markup languages. It is a standard for de-

scribing the structure and content of machine-readable information. The TEI de-

scribes SGML as “an international standard for the description of marked-up

electronic text” [SpBu94]. Furthermore, SGML is a metalanguage. A metalan-

guage is defined as a “a means of formally describing a language” [SpBu94] (in

this case a markup language).

Jon Busak states that SGML permits “documents to describe their own gram-

mar” [Bosa97]. With SGML it is possible to specify the tag set used in the docu-

ment as well as the structural relationships that those tags describe.

1 ISO (International Organization for Standardization, situated in Geneva): ISO 8879:1986(E).
Information processing -- Text and Office Systems -- Standard Generalized Markup
Language (SGML). First edition -- 1986-10-15. [BrPa00].

XML Page 18

2.1.2.1 Characteristics of SGML

There are three characteristics of SGML that will be discussed shortly [SpBu94]:

1. descriptive markup,

2. document type concept,

3. data independence.

2.1.2.1.1 Descriptive Markup

SGML uses descriptive markup codes which provide names to categorize parts

of a document. For example, a markup code like <p> identifies a part of a docu-

ment's text and declares that the item following the markup code is a para-

graph. In contrast to procedural markup which defines “what processing is to be

carried out at particular points in a document” [SpBu94], descriptive markup al-

lows that “the same document can readily be processed by many different

pieces of software, each of which can apply different processing instructions to

those parts of it which are considered relevant” [SpBu94]. For example, one

program could retrieve specific content of the document to store it in a database

while another could format the document for printing.

2.1.2.1.2 Document Type Concept

SGML introduced the concept of a document type, and as a result a document

type definition (DTD). In SGML, “documents are regarded as having types [...].

The type of a document is formally defined by its constituent parts and their

structure” [SpBu94]. For example, the definition of a diploma thesis might be

that it consists of a title, an author, an introduction followed by chapters contain-

ing paragraphs and a summary. Such a logical structure is defined in a docu-

ment type definition (DTD).

The significant benefit of a document type definition is that “a special purpose

program (called a parser) can be used to process a document claiming to be of

a particular type and check that all the elements required for that document type

are indeed present and correctly ordered” [SpBu94]. Consequently, different

documents that are of the same type can be processed in a uniform way.

XML Page 19

2.1.2.1.3 Data Independence

A fundamental objective of SGML is to “ensure that documents encoded ac-

cording to its provisions should be transportable from one hardware and soft-

ware environment to another without loss of information” [SpBu94]. For this pur-

pose, “SGML provides a general purpose mechanism for string substitution”

[SpBu94]. string substitution is “a simple machine-independent way of stating

that a particular string of characters in the document should be replaced by

some other string when the document is processed” [SpBu94].

There are two obvious applications for string substitution [SpBu94]:

1. Provide for the consistency of nomenclature.

2. Compensate for “the notorious inability of different computer systems to

understand each other’s character sets [...] by providing descriptive map-

pings for non-portable characters” [SpBu94].

2.1.2.2 SGML Applications

According to the W3C, “each markup language defined in SGML is called an

SGML application” [RaLe99]. An SGML application consists of [RaLe99]:

1. an SGML declaration2,

2. a document type definition,

3. a specification that describes the semantics to be ascribed to the

markup,

4. a document instance that contains both data (i.e. content) and markup.

To summarize, SGML makes it possible to define ones own formats for ones

own documents. However, full SGML contains many optional and complex fea-

tures that are not needed for Web applications.

2 An SGML declaration specifies the character set, the codes used for SGML delimiters (e.g.
“<, >, /”) and the length of identifiers [SpBu94].

XML Page 20

2.1.3 HTML

The Hypertext Markup Language (HTML) was designed for the interchange of

hypertext as a data format to be transmitted via the Hypertext Transfer Protocol

(HTTP, see chapter 3, p. 57). HTML was invented in 1991 by Tim Berners-Lee

in Geneva at the European Laboratory for Particle Physics (CERN), Switzerland

[Bern96], [Münz98].

HTML “is an SGML application” [RaLe99], consequently HTML documents are

SGML documents. As an SGML application, HTML also has an SGML declara-

tion, a document type definition and a specification. At the time of writing this

thesis, the latest HTML specification published by the W3C was “HTML 4.01”3.

This specification includes an SGML declaration4 and three document type defi-

nitions5 (the DTDs vary in the elements they support) [RaLe99].

HTML's document type definitions define “a fixed set of document elements with

markup” [Culs97] that lets the developer describe simple documents containing

headings, paragraphs, illustrations, lists, tables, etc. A major advantage of

HMTL is “its built-in support for hypertext and multimedia” which enables “the

construction of easy and intuitive user interfaces6 for accessing published infor-

mation” [Culs97]. Other advantages include “the ability to exchange information

between different computer systems and applications through the use of stan-

dard formats and protocols, and the power of hypertext to organize a set of doc-

uments to be searched, accessed and consulted interactively” [Culs97].

Here are the following advantages resulting from HTML’s simplicity [Claß1a]:

1. It is quick and easy to learn.

2. It can be viewed with minimal client requirements (e.g. Web browsers).

3. It is well suited for describing the visual appearance of a human-readable

document, including text and images.

3 W3C defined XHTML as HTML's successor (see chapter 2.1.7.2, p. 24).
4 To view the SGML declaration please refer to [HTML99a].
5 To view the DTDs please refer to [HTML99b].
6 For example such an user interface is built in a Web browser [Culs97].

XML Page 21

On the other hand, because of its simplicity there are shortcomings as follows

[Bosa97], [Frete98]:

1. HTML is only a presentation technology: “HTML does not necessarily re-

veal anything about the information to which HTML tags are applied”

[Frete98]. For example <h1>Introduction</h1> has a predictable

appearance in a Web browser but it does not reveal anything about the

content itself.

2. As it uses a fixed set of well-defined tags, it is not extensible to allow

user-defined tags7.

Despite of HTML's advantages, HTML seems “to have reached the limit of its

usefulness as a way of describing information” [Culs97]. The inherent simplicity

of HTML has been a decisive factor for the success of HTML. But as HTML has

a limited set of tags it offers only one way to describe documents which impos-

es a severe limitation to the description of professional documents [Culs97].

Although the use of SGML could compensate for HTML's deficiencies, “the in-

herent complexity of SGML limits its adoption in full-scale applications by a

large number of non-expert users on the Internet” [Culs97]. Developers were

looking for “a way of combining the richness of SGML with the simplicity of

HTML for publishing and accessing documents online” [Culs97].

This is where XML comes in.

2.1.4 XML is Born

In the summer of 1996 the World Wide Web Consortium (W3C) has created an

SGML Working Group (originally called the "SGML Editorial Review Board") to

formulate a set of specifications in order to make it easy and straightforward to

use the beneficial features of SGML on the WWW [John99].

SGML had its passionate supporters as well as its equally passionate detrac-

tors. In order to emphasize its difference from HTML and not to burden the new

technology’s name with SGML’s history, the working group decided to turn

7 Only the W3C could extend HTML's set of tags properly [Frete98].

XML Page 22

SGML into something new and named it Extensible Markup Language

[Frete98].

The working group members quickly set a schedule in which to specify the fea-

tures of XML. They planned their work in three phases [Frete98]:

1. XML: the syntax itself.

2. XLL (Extensible Link Language): the linking semantics of XML.

3. XSL (Extensible Stylesheet Language): the presentation of XML.

Finally, the XML 1.0 standard was approved and published by the W3C on

February 10th, 1998 [Fret98].

2.1.5 XML’s Goals

XML aims to be a simple, open, self describing format, capable of expressing

varied types of information.

The XML specification names ten design goals for XML [BrPa00]:

1. “XML shall be straightforwardly usable over the Internet,

2. XML shall support a wide variety of applications,

3. XML shall be compatible with SGML,

4. it shall be easy to write programs which process XML documents,

5. the number of optional features in XML is to be kept to the absolute mini-

mum, ideally zero,

6. XML documents should be human-legible and reasonably clear,

7. the XML design should be prepared quickly,

8. the design of XML shall be formal and concise,

9. XML documents shall be easy to create,

10. terseness in XML markup is of minimal importance”.

XML Page 23

2.1.6 XML Principles

XML is a subset (i.e. a restricted form) of SGML whose “goal is to enable gener-

ic SGML to be served, received and processed on the Web [...]. XML has been

designed for ease of implementation and for interoperability with both SGML

and HTML” [BrPa04a]. In other words, XML improves “the functionality of the

Web by providing more flexible and adaptable information identification” [Fly-

n02].

XML is called extensible because it is not a fixed format (as HTML is). XML is a

metalanguage (see chapter 2.1.2, p. 17) which lets one design one's own cus-

tomized markup languages “for limitless different types of documents” [Flyn02].

According to W3C, “XML documents are conforming SGML documents” [Br-

Pa04a].

2.1.7 XML Usage

XML can be used for various applications. Trying to set up an almost complete

list of specific XML applications would by far burst the scope of this paper.

Therefore, the potential uses of XML will be discussed in a broader and more

general sense, that is to say inter-application data exchange. Furthermore, a

brief discussion on XHTML will be provided at the end of this sub chapter.

2.1.7.1 Inter-application Data Exchange

In organizations there have been a lot of different applications which could not

easily communicate with each other. Consequently, much time and effort “is

wasted on duplicate data entry and data integrity checking” [Claß01b].

With the Internet there exists a “world-wide infrastructure for communicating be-

tween applications [...] and users” [Claß01b] (e.g. for exchanging XML docu-

ments between different applications).

As XML documents “represent both metadata and data” [GoPr05] applications

can process the XML document and either

• parse the XML document in order to extract the original data,

XML Page 24

• or render the XML document in order to present it in a physical medium

that humans can perceive,

• or process the XML document as plain text without parsing (e.g. cut parts

of the XML document and paste it into other XML documents) [GoPr05].

Hence, there “is an endless spectrum of application opportunities” [GoPr05] as

XML provides an application- and platform-independent way of data exchange.

2.1.7.2 Excursus: XHTML

In January 2000, W3C released the recommendation for XHTML 1.0 which was

“a reformulation of HTML 4 as an XML 1.0 application” [PeAu02]. XHTML in

general is referred to as “a family of current and future document types and

modules that reproduce, subset, and extend HTML, reformulated in XML” [Pem-

b06]. All documents that belong to the XHTML family are XML documents.

XHTML is intended to be the successor to HTML.

As XHTML documents are conforming XML documents, there are significant

benefits:

• XHTML documents can be “readily viewed, edited, and validated with

standard XML tools” [Pemb06].

• Due to the fact that XHTML is an XML application, it is “relatively easy to

introduce new elements or additional element attributes” [PeAu02].

• XHTML documents can “include bits of other markup languages” [Pem-

b04], such as MathML8, SMIL9 or SVG10.

Furthermore, as “alternate ways of accessing the Internet are constantly being

introduced” [PeAu02] XHTML is designed for “general user agent11 interoper-

ability” [PeAu02]. Consequently, Websites in XHTML shall be accessible with

8 MathML stands for Mathematical Markup Language. For further information please refer to
the W3C specification available at [CaIo03].

9 SMIL stands for Synchronized Multimedia Integration Language. For further information
please refer to the W3C specification available at [BuZu05].

10 SVG stands for Scalable Vector Graphics. For further information please refer to the W3C
specification available at [FeJa03].

11 A user agent is “any software that retrieves and renders Web content for users” [JaGu02].

XML Page 25

non-PC devices such as PDAs12, mobile phones, television or even refrigerators

[Pemb04].

As a detailed discussion about XHTML is outside the scope of this thesis, the

reader is asked to refer for further information to W3C's Website on XHTML

available at [Pemb06].

2.2 XML Basics

This sub chapter provides an introduction to the structure of XML documents as

well as a discussion about markup that can be used with XML.

2.2.1 Simple Example

The following text show in listing 2-1 represents a simple XML document which

describes this paper. All examples presented in this chapter are available for

download from the author's Web site [Hein06].

2.2.2 Structure of an XML document

According to the XML specification, “each XML document has both a logical and

a physical structure” [BrPa04a]. Physically, an XML document “may consist of

one or many storage units” [BrPa04a]. These storage units are called entities

12 A personal digital assistant (PDA) is a battery operated pocket PC which is primarily used for
mobile personal information management (PIM) [cf. HaNe02, 65].

<?xml version="1.0"?>
<!-- A simple document -->
<thesis>
 <title>XML, Servlets & JavaServer Pages</title>
 <author id="9603480">
 <name>Florian Heinisch</name>
 <department>Information Systems and New Media</department>
 <email>florian@heinisch.cc</email>
 </author>
 <year>2005</year>
 <pages>170</pages>
 <abstract>This paper introduces the reader to XML, Servlets and
 JavaServer Pages. Each chapter is supplied with examples. In the
 end these technologies are combined to build to a web
 application.
 </abstract>
</thesis>

Listing 2-1: A simple XML-document “thesis.xml”.

XML Page 26

(e.g. such an entity can be a file). Each XML document “has one entity called

the document entity, which serves as the starting point for the XML processor13

and may contain the whole document” [BrPa04a]. In other words, the document

entity is the entity that “contains the main body of the document” [Brow06]. Enti-

ties will be discussed in detail in chapter 2.2.3.7 (p. 30).

The logical structure of an XML document is defined by the elements and by the

relationships between those elements within the XML document. Elements will

be discussed in more detail in chapter 2.2.3.1 (p. 27).

Figure 2-1 illustrates the logical structure of the XML document thesis.xml
(see listing 2-1, p. 25).

The element that contains all the other elements is known as the root element

(e.g. <thesis>, see listing 2-1, p. 25). The root element is also referred to as

the document element because it holds the entire logical document within it.

The elements that are contained within the root element are called its subele-

ments (e.g. <author>). They may contain subelements themselves. If they do,

they are called branches (e.g. <name>). If they do not, they are leaves (e.g.

<title>XML, Servlets & JavaServer Pages</title>) [Gold00].

13 An XML processor (also called parser) is referred to as a software module that “is used to
read XML documents and provide access to their content and structure” [BrPa04a].

Figure 2-1: Logical (or tree) structure of the XML document “thesis.xml”.

thesis

title year abstractpagesauthor

department emailname

... root element (document element)

... subelement (branch)

... subelement (leaf)

XML Page 27

2.2.3 Markup

XML documents consist only of character data (i.e. content) and markup. Ac-

cording to the XML specification, “markup takes the form of start-tags, end-tags,

empty-element tags, entity references, character references, comments, CDA-

TA section delimiters, document type declarations, processing instructions, XML

declarations, text declarations, and any white space that is at the top level of the

document entity” [BrPa04a]. Consequently, all text that is not markup consti-

tutes the XML document's character data.

2.2.3.1 Elements

Elements are pairs of start (e.g. <title>) and end tags (e.g. </title>). They

identify the content they surround. The start tag consists of an opening angle

bracket “<” followed by a name. The start tag may contain attributes (see chap-

ter 2.2.3.1.1, p. 28) which are separated by white space. The start tag's end is

marked by a closing angle bracket “>” (e.g. <title>). The end tag consists of

an opening angle bracket “<” followed by a slash “/”, the element's name and a

closing bracket “>”. The end tag must exactly match the start tag's name

[Ray01].

Empty elements are elements that do not enclose any content. They can be ab-

breviated with a “/” before the closing angle bracket “>”: <EmptyTag/>.

An element's name has to start with a letter or an underscore “_”. The name

“can contain any number of letters, numbers, hyphens, periods, and under-

scores” [Ray01]. Between the opening angle bracket “<” and the element's

name there must be no space. However, extra space anywhere else in the ele-

ment's tag is allowed. Following example

<author id="9603480" >
 Florian Heinisch
</author >

is a conforming XML element.

In XML, all space characters are preserved by default. This includes the white-

space characters space, tab and new line [Ray01].

XML Page 28

Furthermore, XML tags are case sensitive, so for example <emtpytag/>,

<Emptytag/> and <EmptyTag/> are three different elements.

XML elements must be nested properly: the end tag must be positioned after

the start tag and an element's start and end tag must both reside within the

same parent element. For example, this is not allowed as the end tag of the

<title> element is positioned outside its parent element:

<thesis>
 <title>XML, Servlets & JavaServer Pages</thesis>
 </title>

2.2.3.1.1 Attributes

Attributes are name-value pairs that can be added to a start tag as in <author
id="9603480">Florian Heinisch</author>. They provide extra infor-

mation about elements (this is the element author with the attribute id which

has the value 9603480). An element can have limitless attributes as long as

each attribute has a unique name. Attributes are separated by white space and

can be in any order. An attribute's value has to be in single or in double quotes

[Gold00], [Ray01].

2.2.3.2 Comments

Comments begin with <!-- and end with --> (see listing 2-1, p. 25). Com-

ments may appear anywhere in a XML document outside other markup [Br-

Pa04a].

2.2.3.3 CDATA Sections

Character data (CDATA) sections are used “to escape blocks of text containing

characters which otherwise would be recognized as markup” [BrPa04a] (i.e. the

content of CDATA section will not be interpreted by the XML-processor). CDA-

TA sections begin with the string “<![CDATA[” and end with the string “]]>”.

The only character data that cannot be placed inside a CDATA section is the

ending delimiter “]]>”. CDATA sections cannot be nested [BrPa04a].

XML Page 29

2.2.3.4 Processing Instructions

Processing Instructions (PI) are used to provide an application with information.

PIs are passed to the application using the parser. PIs begin with “<?” and end

with “?>”. A PI is used to identify the application to which the instruction is di-

rected and has to be placed after the “<?”. E.g. <?word textfile="chap-
ter_3.doc" ?>

Processing instructions beginning with “xml” or “XML” have been reserved for

standardization in the XML Version 1.0 specification and onwards. PIs must not

be nested [Cagl00].

2.2.3.5 XML Declaration

The XML specification for XML 1.0 [BrPa04a] states that an XML document

should (but does not have to) begin with an XML declaration. The XML specifi-

cation for XML 1.1 [BrPa04b] states that an XML must begin with an XML decla-

ration. Therefore, an XML document without a declaration is an XML 1.0 docu-

ment.

The XML declaration starts with “<?xml”, followed by the required property defi-

nition version and two optional property definitions encoding and stan-
dalone. The declaration ends with “?>” [BrPa04a]. For example:

<?xml version="1.0" encoding="UTF-8" standalone="yes"?>

These three properties can be set as follows [Ray01], [Ogbu04]:

1. version: Sets the version number. It is used to tell the XML processor

which version to use. Possible values are “1.0” or “1.1”, e.g.

version="1.0" (see listing 2-1, p. 25).

2. encoding: Sets the character encoding used in the XML document. If

the encoding is not set, the XML processor assumes that the encoding is

UTF-8 or UTF-16.

XML Page 30

3. standalone: indicates to the XML processor if there are any other files

(which contain external markup) to load. Possible values are “yes” or

“no”.

If the property encoding is set, it has to follow the property version. If the

property standalone is set, it has to follow the last property definition [Og-

bu04].

2.2.3.6 Document Type Declaration

The document type declaration is optional markup that – if present – must be

placed between the XML declaration and the root element. The document type

declaration contains the document type definition (DTD, see chapter 2.3.1, p.

35) which can be defined in the internal subset and/or an external subset

[Bray98]. The DTD for an XML document “consists of both subsets taken to-

gether” [BrPa04a].

The document type declaration starts with “<!DOCTYPE” followed by the root el-

ement. If there is an external subset the document type declaration should point

to, the root element is followed by a special external entity declaration. If there

is an internal subset, the internal subset begins with a opening square bracket

“[” and ends with a closing square bracket “]”. The document type declaration

ends with “>” [BrPa04a]. Examples are provided in listing 2-3, p. 38 and listing

2-4, p. 39.

2.2.3.7 Entities

As mentioned in chapter 2.2.2, “an XML document can be divided in sections

called entities” [Brow06]. Entities can be thought of as placeholders for content

which are declared once and then can be referenced in the XML document

[Ray01].

The two major entity types are general entities and parameter entities as they

“use different forms of reference and are recognized in different contexts” [Br-

Pa04a] (see chapter 2.2.3.8). A general entity and a parameter entity “with the

same name are two distinct entities” [BrPa04a]. A general entity can be a

XML Page 31

parsed or unparsed entity, whereas a parameter entity can be a parsed entity

only [BrPa04a]:

• Parsed entity: consists of character data. An XML processor “locates, de-

codes, and imports the contents of each parsed entity as replacement text

that replaces references to that entity” [Brow06].

• Unparsed entity: “contains non-XML data of any kind” [Brow06] (e.g.

graphics or sound files) and will not be parsed by the XML processor. An

XML document can refer to the unparsed entity but cannot contain the en-

tity itself. The XML processor does not replace the reference to the un-

parsed entity. The XML processor just “make the identifiers for the entity

[...] available to the application” [BrPa04a].

Furthermore, an entity is either an internal or an external entity [Brow06]:

• External entity: if the entity's declaration identifies the entity's replacement

text by its location or if the entity is unparsed.

• Internal entity: If the entity's declaration includes its replacement text.

To summarize, these are the possible combinations of characteristics for enti-

ties [Bray98]:

• internal parsed general entity,

• internal parsed parameter entity,

• external parsed general entity,

• external parsed parameter entity,

• external unparsed general entity.

An entity has to be declared either in the internal or in an external subset before

it can be referenced in an XML document. If the XML processor parses an entity

reference that has not been declared, the XML processor cannot import the re-

placement text. Such an error prevents the XML document from being well-

formed (see chapter 2.3, p. 34) [Ray01].

XML Page 32

As a detailed explanation of all possible entities exceeds the limits of this thesis,

the discussion will concentrate on general parsed entities. For further informa-

tion concerning unparsed and parameter entities please refer to [BrPa04a].

2.2.3.8 General Entities

General entities are used “at the level of or inside the root element of an XML

document” [Ray01].

General entities are referenced by an ampersand “&”, followed by the entity

name and a semicolon “;”, e.g.: &department;

2.2.3.8.1 Internal Parsed General Entity

Internal parsed general entities are declared in the internal subset of the docu-

ment type declaration (see chapter 2.2.3.6, p. 30) as follows [Watt03]:

<!ENTITY name "entity_value">

For example, the character data of the element <department> of the XML

document thesis.xml (see listing 2-1, p. 25) could be declared as an entity

and then be referenced:

<!DOCTYPE thesis [
 <!ENTITY department "Information Systems and New Media">
]>
<department>&department;</department>

2.2.3.8.2 External Parsed General Entity

An external parsed general entity is “useful for creating a common reference

that can be shared between multiple documents” [Watt03], e.g. to insert repeti-

tious information. Consequently, any changes concerning the repetitious infor-

mation only need to be defined at a single place (i.e. where the entity is defined)

and not at every place where it is used.

An external parsed general entity can be referenced by14 [Brpa04a]:

<!ENTITY name SYSTEM "system-identifier">
14 The XML specification also defines a public identifier to declare an external entity which will

not be discussed in this paper. For further information, please refer to [BrPa04a].

XML Page 33

The system identifier is an URI which is “used to retrieve the entity” [BrPa04a].

For example, the character data of the element <abstract> of the XML docu-

ment thesis.xml (see listing 2-1, p. 25) could be stored in an external text file

abstract.txt:

<!ENTITY abstract SYSTEM "http://www.heinisch.cc/thesis/ab-
stract.txt">

Consequently, the entity abstract can be referenced by:

<abstract>&abstract;</abstract>

2.2.3.8.3 Predefined Entities

Additional to explicit declared general entities, in XML there are predefined enti-

ties. As discussed in chapter 2.2.3, the left angle bracket “<” and the amper-

sand character “&” identify the beginning of markup. These characters are

therefore reserved and are interpreted as characters introducing markup. In or-

der to be able to insert these characters as content into an XML document, enti-

ties are used to represent these special characters.

XML defines five predefined entities, that have to be recognized by all XML pro-

cessors (whether these entities are declared are not), as shown in table 2-1 [Br-

Pa04a].

Entity Entity name Replacement text

Left angle bracket (<) lt &#60;

Right angle bracket (>) gt >

Ampersand (&) amp &#38;

Single quote or apostrophe (') apos '

Double quote (") quot "

Table 2-1: Predefined entities.

XML Page 34

Please note that the characters “<” and “&” in the declarations of lt and amp
“are doubly escaped to meet the requirement that entity replacement be well-

formed” [Bray98].

2.2.3.8.4 Character References

In addition to entity references there are character references which are similar

to entities references in the way that they represent character data. Character

references are intended to allow the insertion of a specified Unicode standard

character directly into an XML document. This is essentially useful if a character

is not available on the keyboard or not portable across applications and operat-

ing systems.

Character references can be inserted by the decimal or hexadecimal represen-

tation of the Unicode character number [Kamt00]:

• Decimal: the character reference begins with “&#”, followed by the digits

up to the terminating “;”.

E.g. the Greek small letter alpha “α” is inserted by the character reference

α

• Hexadecimal: the character reference begins with “&#x”, followed by the

digits and letters up to the terminating “;”.

E.g. the Greek small letter alpha “α” is inserted by the character reference

α

2.3 Well-Formed vs. Validated XML documents

The XML document thesis.xml (see listing 2-1, p. 25) is what is referred to

as a well-formed XML document. A well-formed XML document is “syntactically

correct” [Sun06a]. In order to achieve the status of well-formed, an XML docu-

ment must obey the following rules [SpBu04], [Ray01], [BrPa04a]:

• an XML document must contain one or more elements,

• each element must be nested in the root element,

XML Page 35

• all rules concerning elements and attributes discussed in chapter 2.2.3.1

(p. 27),

• the isolated markup up characters “<” and “&” may not be placed in an ele-

ment's content.

A well-formed XML document can be parsed by any XML processor [Brow06].

Additional to the rules for well-formedness, one can define “custom rules” for

XML documents (e.g. how elements and attributes have to be named or how el-

ements have to be nested). An XML document in which such additional criteria

have been checked is referred to as a valid XML document. This is essentially

useful because it provides the possibility to confirm that XML marked up text fol-

lows a predetermined structure (i.e. it can be validated whether an XML docu-

ment is of a specific type, see chapter 2.1.2.1.2, p. 18). Only then the meaning

of the markup used in an XML document can be shared, be it for human or ap-

plication consumption [Chas03], [SpBu04].

In XML, the criteria for successful validation can be formally stated in a Docu-

ment Type Definition (DTD) or in an XML Schema [SpBu04].

2.3.1 Document Type Definition

The document type definition (DTD) is used to define all markup languages.

With a DTD, it is possible to define the logical structure of an XML document

and to specify a content model for each element [Gorm98].

In employing a DTD, it is possible to define [StSa00]:

• elements and their attributes,

• nesting (which elements are allowed to contain other elements),

• elements’ sequence (i.e. the order of elements),

• whether certain elements are optional or required,

• whether certain elements can occur multiple times,

XML Page 36

• whether elements can contain character data (non-markup),

• default values or fixed values for attributes.

If an XML document includes or references a DTD, validating XML parsers can

detect [StSa00]:

• missing elements (i.e. tags) or attributes,

• misspelled elements or attributes,

• improper nesting of elements,

• incorrect ordering of elements,

• incorrect attribute values from enumerated sets,

• any elements or attributes that are not defined in the DTD.

2.3.1.1 DTD Syntax

The syntax for XML DTDs is based on the syntax of SGML DTDs. However,

XML DTDs inherited a limited syntax from SGML in order “to simplify the syntax

and to make it easier to write processing software” [Flyn06]. The omitted fea-

tures will not be discussed in this thesis. For further information please refer to

[BrPa04a], [Clar97], [Flyn06].

Listing 2-2 shows a DTD for the XML document thesis.xml (see listing 2-1,

p. 25).

<!ELEMENT thesis (title, author, year, pages, abstract)>
<!ELEMENT title (#PCDATA)>
<!ELEMENT author (name, department, email)>
<!ATTLIST author
 id CDATA #REQUIRED>
<!ELEMENT name (#PCDATA)>
<!ELEMENT department (#PCDATA)>
<!ELEMENT email (#PCDATA)>
<!ELEMENT year (#PCDATA)>
<!ELEMENT pages (#PCDATA)>
<!ELEMENT abstract (#PCDATA)>

Listing 2-2: DTD for the XML document “thesis.xml”.

XML Page 37

Listing 2-2 contains nine element declarations and one attribute-list declaration.

An element declaration begins with “<!ELEMENT” followed by the name of the

element which is being declared and a content model. The declaration ends

with “>”. The content model is enclosed in parentheses and specifies what “may

legitimately be contained within it” [SpBu04].

An attribute-list declaration begins with “<!ATTLIST” followed by the concerned

element's name. For each attribute that needs to be declared for the specific el-

ement, the attribute's name, the attribute's data type and a statement which

specifies how an XML processor “should interpret the absence of the attribute”

[SpBu04] have to be declared. The declaration ends with “>” [BrPa04a].

This DTD shown in listing 2-2 is interpreted as follows:

• !ELEMENT thesis defines the thesis element as having five elements:

title, author, year, pages and abstract. These elements have to be placed

in the listed order.

• !ELEMENT title defines the title element to be of the type “#PCDATA”

(the same applies to name, department, email, year, pages, abstract).

#PCDATA is an abbreviation for parsed character data. It means that “the

element being defined may contain any valid character data” [SpBu04].

• !ELEMENT author defines that the author element must nest three ele-

ments: name, department and email (in the listed order).

• !ATTLIST author defines that the element author must include an at-

tribute called id. The attribute's data type is CDATA which implies that the

attribute's value “may contain any valid character data, including spaces

or punctuation marks” [SpBu04]. The last piece of information #REQUIRED
“means that the attribute MUST always be provided” [BrPa04a].

As discussed in chapter 2.2.3.6 (p. 30), DTDs can be defined in the internal

and/or external subset. Listing 2-3 shows the DTD from listing 2-2 (p. 36) being

placed in the internal subset.

XML Page 38

If the DTD is defined in an external subset, the DTD can be referenced with the

following syntax:

<!DOCTYPE root-element SYSTEM "filename">

External DTDs are usually stored in files with the file extension “.dtd”

[BrPa04a]. The XML document in listing 2-4 references the DTD from listing 2-2

(p. 36) declared in the external subset thesis.dtd.

<?xml version="1.0"?>
<!DOCTYPE thesis [
 <!ELEMENT thesis (title, author, year, pages, abstract)>
 <!ELEMENT title (#PCDATA)>
 <!ELEMENT author (name, department, email)>
 <!ATTLIST author
 id CDATA #REQUIRED>
 <!ELEMENT name (#PCDATA)>
 <!ELEMENT department (#PCDATA)>
 <!ELEMENT email (#PCDATA)>
 <!ELEMENT year (#PCDATA)>
 <!ELEMENT pages (#PCDATA)>
 <!ELEMENT abstract (#PCDATA)>
]>
<!-- A simple document -->
<thesis>
 <title>XML, Servlets & JavaServer Pages</title>
 <author id="9603480">
 <name>Florian Heinisch</name>
 <department>Information Systems and New Media</department>
 <email>florian@heinisch.cc</email>
 </author>
 <year>2005</year>
 <pages>170</pages>
 <abstract>This paper introduces the reader to XML, Servlets and
 JavaServer Pages. Each chapter is supplied with examples. In the
 end these technologies are combined to build a web application.
 </abstract>
</thesis>

Listing 2-3: “thesis_int-DTD.xml”.

XML Page 39

2.3.2 XML Schema

XML Schema is an XML-based technology that was designed to describe the

content and structure of XML documents in XML. As DTDs have serious limita-

tions for defining the constraints of an XML document, XML Schema is consid-

ered to be a replacement for DTDs [PaCh05].

2.3.2.1 XML Schema’s Background

With the speedy prevalence of XML, DTD soon became “inadequate to meet

the needs of the wide spectrum of applications” [TuGo99] that have been con-

sidered to use XML (such as metadata interchange, electronic commerce or

document publishing).

Developers were (and still are) faced with following DTD’s limitations:

• DTDs are composed of non-XML syntax,

• DTDs do not support “data types beyond character data” [TuGo99],

• In order to be able to use a namespace, “the entire namespace has to be

defined within the DTD” [ScVa02],

• With DTDs, the validation “always starts with the outermost XML element,

and always validates every element and attribute in the document”

[Sper05]. There is no possibility to validate just parts of the document.

<?xml version="1.0"?>
<!DOCTYPE thesis SYSTEM "thesis.dtd">
<!-- A simple document -->
<thesis>
 <title>XML, Servlets & JavaServer Pages</title>
 <author id="9603480">
 <name>Florian Heinisch</name>
 <department>Information Systems and New Media</department>
 <email>florian@heinisch.cc</email>
 </author>
 <year>2005</year>
 <pages>170</pages>
 <abstract>This paper introduces the reader to XML, Servlets and
 JavaServer Pages. Each chapter is supplied with examples. In the
 end these technologies are combined to build a web application.
 </abstract>
</thesis>

Listing 2-4: “thesis_ext-DTD.xml”.

XML Page 40

Therefore W3C set up a working group in 1999 in order to develop a schema to

compensate for these shortcomings. Finally, W3C published XML Schema

specification as a W3C Recommendation on 3rd May, 2001.

2.3.2.2 Structure of an XML Schema Document

In contrast to DTDs, an XML Schema document is an XML document with pre-

defined elements and attributes describing the structure of another XML docu-

ment [Chas03].

The XML Schema is defined in a separate file and usually stored with the

“.xsd” extension [PaCh05].

Listing 2-5 represents the equivalent XML Schema to the DTD shown in listing

2-2 (p. 36).

<?xml version="1.0"?>
<xsd:schema xmlns:xsd="http://www.w3.org/2001/XMLSchema">
 <xsd:element name="thesis">
 <xsd:complexType>
 <xsd:sequence>
 <xsd:element name="title" type="xsd:string" />
 <xsd:element name="author" type="authorType" />
 <xsd:element name="year" type="yearType" />
 <xsd:element name="pages" type="xsd:integer" />
 <xsd:element name="abstract" type="xsd:string" />
 </xsd:sequence>
 </xsd:complexType>
 </xsd:element>
 <xsd:complexType name="authorType">
 <xsd:sequence>
 <xsd:element name="name" type="xsd:string" />
 <xsd:element name="department" type="xsd:string" />
 <xsd:element name="email" type="xsd:string" />
 </xsd:sequence>
 <xsd:attribute name="id" type="idType" use="required" />
 </xsd:complexType>
 <xsd:simpleType name="yearType">
 <xsd:restriction base="xsd:positiveInteger">
 <xsd:minInclusive value="1970" />
 <xsd:maxInclusive value="2010" />
 </xsd:restriction>
 </xsd:simpleType>
 <xsd:simpleType name="idType">
 <xsd:restriction base="xsd:positiveInteger">
 <xsd:pattern value="[0-9]{7}" />
 </xsd:restriction>
 </xsd:simpleType>
</xsd:schema>

Listing 2-5: XML Schema “thesis.xsd”.

XML Page 41

The thesis.xsd XML schema is itself an XML document. The root element of ev-

ery XML Schema document is an element called schema that belongs to the

http://www.w3.org/2001/XMLSchema namespace.

An XML namespace is a W3C-standard that provides a method for naming ele-

ments and attributes uniquely in an XML document by associating them with

namespaces identified by URI references. This is essentially useful if an XML

document contains element or attribute names from more than one XML vocab-

ulary15, as two (or more) elements or attributes from different DTDs or XML

Schemas can have identical names. The ambiguity between identically named

elements or attributes in an XML document can be resolved in assigning each

XML vocabulary a namespace [BrHo99]16.

As XML is intended to be a self-describing data format, elements are declared

by using an element called element, and the intended name of the element is

specified as a value of an attribute called name. Attributes are declared by using

an element called attribute. The attribute's name is also specified as a value

of the element's attribute name. For example, in listing 2-5 (p. 40), the root ele-

ment is called thesis, the value of the attribute name is thesis.

Elements in an XML Schema can be classified as simple or complex types

[PaCh05].

2.3.2.2.1 Simple and Complex Types

A simple type element cannot contain any attributes or child elements. In listing

2-5 (p. 40), a simple type is declared by the statement

<xsd:element name="thesis">

With complex types it is possible to define which child elements an element may

contain, how often the child elements can occur and in which order they have to

be declared. Complex types are declared by the complexType element. To in-

15 The term XML vocabulary is referred to as a set of elements and attributes defined in a DTD
or an XML Schema [AuPe06].

16 The prefix xsd: in thesis.xsd (see listing 2-5, p. 40) is used by convention to denote the
XML Schema namespace, although any prefix could have be used [FaWa04].

XML Page 42

dicate the element’s order, the sequence element is used (see listing 2-5, p. 40)

[PaCh05].

Consequently, the thesis element declared in listing 2-5 (p. 40) has to contain

five child elements (title, author, year, pages and abstract) which have

to occur in this defined order. The element author has to contain an attribute

called id and three child elements (name, department and email).

2.3.2.2.2 Restricting Data Types

Both simple and complex types can restrict the data type an element may have.

XML Schema provides a wide range of built-in data types. Table 2-2 shows an

excerpt of built-in data types [TuGo99].

Data type Description

string a sequence of characters

boolean true/false

integer numbers without a fractional part

positiveInteger positive whole numbers excluding zero

date string representing date values

uri uniform resource identifier

Table 2-2: Built-in data types17.

If an element shall be limited to a specific data type, the element simply de-

clares the attribute type with the corresponding value, such as:

<xsd:element name="pages" type="xsd:integer" />

This way, the element pages’s data type has to be of the type integer.

Furthermore, XML Schema provides the possibility to control the value of XML

elements and attributes. The allowable values for the data type may be con-

strained by using facets. According to W3C, a facet is “a single defining aspect

17 For a complete list of built-in data types please refer to [BiMa04].

XML Page 43

of a value space” [BiMa04]. W3C XML Schema defines 12 facets for simple

data types18 [PaCh05].

The XML Schema thesis.xsd in listing 2-5 (p. 40) makes use of three facets

[PaCh05]:

• minInclusive: the numeric value of “the data type is greater than or

equal to the value specified” [PaCh05].

• maxInclusive: the numeric value of “the data type is less than or equal

to the value specified” [PaCh05].

• pattern: the value of “the data type is constrained to a specific sequence

of characters that are expressed using regular expressions” [PaCh05].

In order to constrain the data type, the facets are nested with according values

in a restriction element. The restriction tag contains the attribute base that de-

clares a built-in data type. The restriction element again is nested in a simple-
Type element that contains an attribute name. The attribute name’s value is ref-

erenced by the element whose data will be constrained. The following extract

from listing 2-5 (p. 40) shows how to constrain data in an XML Schema:

<xsd:simpleType name="yearType">
 <xsd:restriction base="xsd:positiveInteger">
 <xsd:minInclusive value="1970"/>
 <xsd:maxInclusive value="2010"/>
 </xsd:restriction>
</xsd:simpleType>
<xsd:simpleType name="idType">
 <xsd:restriction base="xsd:positiveInteger">
 <xsd:pattern value="[0-9]{7}"/>
 </xsd:restriction>
</xsd:simpleType>

Consequently, an element’s or attributes value that is assigned the type

yearType has to range between 1970 and 2010 and an element's or attributes

value that is assigned the type idTpye has to be composed of exactly 7 digits.

18 As the explanation of all facets would be beyond the scope of this paper, only three facets
will be discussed to give the reader an idea of how to constrain data values. For further
information on facets please refer to [BiMa04].

XML Page 44

2.3.2.3 Linking the XML Schema

An XML document that has to be validated against an XML Schema either uses

the schemaLocation or the noNamespaceSchemaLocation attribute to link

to the corresponding schema. Strictly speaking, these attributes just provide

“hints [...] to a processor regarding the location of schema documents”

[FaWa04].

The schemaLocation attribute's value “consists of one or more pairs of URI

references” [FaWa04] which are separated by white space. The first member of

such a pair is a namespace name and the second member is a “hint where to

find an appropriate schema document for that namespace” [FaWa04]. The dec-

laration of the schemaLocation attribute requires that the referenced schema

defines a target namespace19 (please note that in the schema thesis.xsd no

target namespace was declared, see listing 2-5 p. 40). By declaring the

schemaLocation attribute, the referenced XML schema will be used to check

the XML document's validity “on a namespace by namespace basis” [FaWa04].

For example, listing 2-6 illustrates how the XML file thesis.xml (see listing 2-

1, p. 25) needs to be modified in order to reference an XML Schema where a

target namespace was declared20.

19 A target namespace enables the distinction “between definitions and declarations from
different vocabularies” [FaWa04], refer to [FaWa04] for further information.

20 The xsi: prefix is used by convention only [FaWa04].

<thesis
 xmlns="http://www.heinisch.cc/thesis"
 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
 xsi:schemaLocation="http://www.heinisch.cc/thesis thesis.xsd">
 <title>XML, Servlets & JavaServer Pages</title>
 <author id="9603480">
 <name>Florian Heinisch</name>
 <department>Information Systems and New Media</department>
 <email>florian@heinisch.cc</email>
 </author>
 <year>2005</year>
 <pages>170</pages>
 <abstract>This paper introduces the reader to XML, Servlets and
 JavaServer Pages. Each chapter is supplied with examples. In the
 end these technologies are combined to build a web
 application.
 </abstract>
</thesis>

Listing 2-6: “thesis_schemaLocation.xml”.

XML Page 45

Listing 2-7 shows the according XML Schema declaring a target namespace.

The noNamespaceSchemaLocation attribute “is used to provide hints for the

locations of schema documents that do not have target namespaces”

[FaWa04]. An XML Schema without a target namespace implies that “the defini-

tions and declarations from that schema [...] are referenced without namespace

qualification” [FaWa04]. That means, there is no “implicit namespace applied to

the reference by default” [FaWa04] (e.g. as opposed to the example provided in

listing 2-6 and listing 2-7 where the implicit namespace

“http://www.heinisch.cc/thesis” is applied to references by default). In

order to be able to validate traditional XML documents which do not use names-

paces at all, an XML Schema with no target namespace must be provided.

<?xml version="1.0"?>
<xsd:schema xmlns:xsd="http://www.w3.org/2001/XMLSchema"
 targetNamespace="http://www.heinisch.cc/thesis"
 xmlns="http://www.heinisch.cc/thesis"
 elementFormDefault="qualified">
 <xsd:element name="thesis">
 <xsd:complexType>
 <xsd:sequence>
 <xsd:element name="title" type="xsd:string"/>
 <xsd:element name="author" type="authorType"/>
 <xsd:element name="year" type="yearType"/>
 <xsd:element name="pages" type="xsd:integer"/>
 <xsd:element name="abstract" type="xsd:string"/>
 </xsd:sequence>
 </xsd:complexType>
 </xsd:element>
 <xsd:complexType name="authorType">
 <xsd:sequence>
 <xsd:element name="name" type="xsd:string"/>
 <xsd:element name="department" type="xsd:string"/>
 <xsd:element name="email" type="xsd:string"/>
 </xsd:sequence>
 <xsd:attribute name="id" type="idType" use="required"/>
 </xsd:complexType>
 <xsd:simpleType name="yearType">
 <xsd:restriction base="xsd:positiveInteger">
 <xsd:minInclusive value="1970"/>
 <xsd:maxInclusive value="2010"/>
 </xsd:restriction>
 </xsd:simpleType>
 <xsd:simpleType name="idType">
 <xsd:restriction base="xsd:positiveInteger">
 <xsd:pattern value="[0-9]{7}"/>
 </xsd:restriction>
 </xsd:simpleType>
</xsd:schema>

Listing 2-7: “thesis_targetNamespace.xsd”.

XML Page 46

Consequently, the XML Schema thesis.xsd is referenced in the XML docu-

ment thesis_noNamespaceSchemaLocation.xml as listing 2-8 illustrates.

2.4 Displaying XML Documents

As discussed in chapter 2.1.6 (p. 23), XML is a metalanguage that's purpose is

to describe information. XML documents do not carry information about how to

display the data. Consequently, most Web browsers will just display the XML

document tree. For example, the XML document thesis.xml (see listing 2-1,

p. 25) displayed in the Web browser Mozilla Firefox [Mozi05a] is illustrated in

figure 2-2.

<thesis
 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
 xsi:noNamespaceSchemaLocation="thesis.xsd">
 <title>XML, Servlets & JavaServer Pages</title>
 <author id="9603480">
 <name>Florian Heinisch</name>
 <department>Information Systems and New Media</department>
 <email>florian@heinisch.cc</email>
 </author>
 <year>2005</year>
 <pages>170</pages>
 <abstract>This paper introduces the reader to XML, Servlets and
 JavaServer Pages. Each chapter is supplied with examples. In the
 end these technologies are combined to build a web
 application.</abstract>
</thesis>

Listing 2-8: “thesis_Schema.xml”.

XML Page 47

2.4.1 Style Sheets

In order to display an XML document’s content in a particular design, the XML

document needs to be supplied with additional “display-information” which can

be provided by style sheets. Style sheets provide the possibility to describe

“how documents are presented on screens, in print, or perhaps how they are

pronounced” [Bos06a]. If style sheets are attached to structured documents on

the Web (such as HTML or XML documents), the presentation of these docu-

ments can be influenced “without sacrificing device-independence” [Bos06a].

Within the scope of this thesis two style sheet languages to present XML docu-

ments will be discussed:

• CSS (Cascading Style Sheets), and

• XSL (eXtensible Stylesheet Language).

In chapter 2.4.1.1 and 2.4.1.2 it will be discussed how to use CSS and XSL to

present XML documents' content in Web browsers.

Figure 2-2: “thesis.xml” displayed in a Web browser.

XML Page 48

2.4.1.1 CSS

The W3C defines CSS as “a simple mechanism for adding style (e.g. fonts, col-

ors, spacing) to Web documents” [Bos06b]. With CSS, it is possible to attach

“style properties to the elements of a source document” [LiBo98]. For example,

following CSS rule sets the text color of the element year of the XML document

thesis.xml (see listing 2-1, p. 25) to green:

year { color: green }

A CSS rule consists of a selector (e.g. “year”) and of one or many declarations

(e.g. “color: green”) which are grouped within curly braces and separated

by semicolons. A declaration has two parts: property (e.g. “color”) and value

(“green”). If several selectors have the same declarations, they can be grouped

into a comma-separated list, such as

department, email {
 display: block;
 font-size: 16px;
}

Listing 2-9 represents a CSS file thats specifies style properties for every ele-

ment in the XML document thesis.xml (see listing 2-1, p. 25).

XML Page 49

In order to display an XML document in a document-like fashion, it must be de-

clared “which elements are inline-level and which are block-level” [BoÇe05]. In

CSS, for each element of the source document an “invisible” rectangular box is

generated21. These boxes belong to a formatting context which “may be block or

inline, but not both simultaneously” [BoÇe05]. According to the CSS specifica-

tion, “block boxes participate in a block formatting context” [BoÇe05] in which

boxes are laid out vertically (i.e. they cause a line break) whereas inline boxes

participate in an inline formatting context” [BoÇe05] in which “boxes are laid out

horizontally” [BoÇe05] (i.e. they do not cause a line break).

As an in depth discussion about CSS would be beyond the scope of this thesis

the reader is asked to refer to [BoÇe05] for further information.

21 This is referred to as the CSS box model which will not be discussed in detail (refer to
[BoÇe05] for further details).

thesis {
 display: block;
 width: 400px;
 border: 5px solid red;
 margin: 10px;
 padding: 5px;
 font-family: Arial, Helvetica, sans-serif;
}
title {
 display: block;
 color: black;
 font-size: 24px;
 margin: 0px 0px 10px 0px;
}
author {
 display: block;
 color: blue;
 font-size: 20px;
}
name {
 display: inline;
}
department, email {
 display: block;
 font-size: 16px;
}
year {
 display: block;
 color: green;
 font-weight: bold;
}
pages, abstract {
 display: block;
}

Listing 2-9: "thesis.css".

XML Page 50

In order to display an XML document with the formatting styles defined in the-
sis.css the CSS document can be referenced by the processing instruction

[Clark99]:

<?xml-stylesheet type="text/css" href="thesis.css"?>

Listing 2-10 shows the modified XML document thesis.xml that references

the CSS document thesis.css.

Figure 2-3 illustrates how the XML document thesis_css.xml is displayed in

a Web browser22.

22 In order to display CSS formatted XML-documents in Web browsers, they must be able to
process XML and CSS. Web browsers that comply with these requirements are: MS Internet
Explorer 5.0+, Netscape 6.0+, Opera 5.12, Mozilla Firefox 1.0+ and Safari 1.2 [Münz01b].

<?xml version="1.0"?>
<?xml-stylesheet type="text/css" href="thesis.css"?>
<thesis>
 <title>XML, Servlets & JavaServer Pages</title>
 <author id="9603480">
 <name>Florian Heinisch</name>
 <department>Information Systems and New Media</department>
 <email>florian@heinisch.cc</email>
 </author>
 <year>2005</year>
 <pages>170</pages>
 <abstract>This paper introduces the reader to XML, Servlets and
 JavaServer Pages. Each chapter is supplied with examples. In the
 end these technologies are combined to build a web application.
 </abstract>
</thesis>

Listing 2-10: "thesis_css.xml".

XML Page 51

2.4.1.2 XSL

The Extensible Stylesheet Language (XSL) is a stylesheet language for defining

how XML documents can be transformed and presented. XSL's syntax is com-

pletely based on XML's syntax, therefore an XLS style sheet is an XML docu-

ment itself. XSL consists of three parts [Quin05]:

1. XSL Transformations (XSLT): Is a language for transforming XML docu-

ments (e.g. into other XML documents, HTML documents, WML-docu-

ments, etc.).

2. XML Path Language (XPath): Is an expression language that is used by

XSLT to “access or refer to parts of an XML document” [Quin05]23.

3. XSL Formatting Objects (XSL-FO): Is an XML vocabulary for formatting

XML documents. XSL-FO provides “facilities to achieve high-quality typo-

graphical output” [Kay04] for XML documents24.

Originally, XSLT was part of XSL. With the ongoing development of XSL the

process of transforming and presenting XML documents turned out to be a dis-

tinct two-stage process. Therefore, XSL was split into XSLT for defining trans-

formations and into XSL-FO for defining formatting [Kay01].

23 XPath will not be discussed in detail in this thesis. For further information please refer to
XPath's W3C specification available at [ClDe99].

24 XSL-FO is outside the scope of this thesis. For further information please refer XSL-FO's
W3C specification available at [AdBe01].

Figure 2-3: The document "thesis_css.xml" displayed in a Web browser.

XML Page 52

The formatting part (XSL-FO) and transformation part (XSLT) work indepen-

dently. So XSL can be considered as two languages. In practice, an XML docu-

ment is often transformed before it is formatted because the transformation pro-

cess lets one add the tags the formatting process requires [Holz00].

XSL is a standard recommended by the World Wide Web Consortium. The first

two components of the language (XSLT and XPath) became a W3C Recom-

mendation in November 1999. The full XSL Recommendation including XSL-FO

became a W3C Recommendation in October 2001 [Quin05].

2.4.1.2.1 Transformation with XSLT

The W3C specification for XSLT defines XSLT as “language for transforming

XML documents into other XML documents” [Clar99b]. Michael Kay extends

this definition by defining XSLT more generally as “a language for transforming

the structure of an XML document” [Kay01]. In fact, with XSLT it is possible to

transform XML documents into other text-based formats than XML, for example

to HTML or to plain text with comma separated values.

XML documents can be transformed in three ways [Holz00]:

• Server-side: a server program (e.g. Java servlet) can use an XSLT

stylesheet to transform a document automatically and serve it to the client.

• Client-side: a client program (e.g. Web browser) can perform the transfor-

mation, reading in the style sheet that is specified with the <?xml-
stylesheet?> processing instruction.

• Separate program: several standalone programs, usually based on Java,

will perform XSLT transformations.

In the XSLT language, a transformation “is expressed as a well-formed XML

document [...] which may include both elements that are defined by XSLT and

elements that are not defined by XSLT” [Clar99b]. XSLT-elements are distin-

guished from non-XSLT-elements by belonging to the XSLT namespace which

has the URI http://www.w3.org/1999/XSL/Transform. The prefix of

XML Page 53

xsl: is used by convention to refer to elements in the XSLT namespace

[Clar99b].

The transformation is done by an XSLT processor. The processor applies an

XSLT stylesheet to an XML document and produces a result document. In fact,

XSLT “relies on a parser [...] to convert the XML document into a tree structure”

[Kay01]. XSLT “takes a tree structure as its input” [Kay05b] and manipulates the

tree representation of the XML document. The tree structure of the XML docu-

ment is referred to as the source tree [Clar99].

XSLT uses XPath to refer to nodes in the source tree. With XPath, it is possible

to access specific nodes “while preserving the hierarchy and structure of the

document” [Kay01].

Each XSLT stylesheet consists of a number of templates rules. A template rule

has a pattern that identifies which nodes in the source tree the template rule ap-

plies to. Additional to the pattern, a template rule describes a template that gets

added to the result document “when the XSLT processor applies that template

to a matched node” [DuCh01].

In the scope of this thesis, Web browser based client-side transformation will be

discussed to demonstrate how to transform XML documents with XSLT. Listing

2-11 shows an XSLT stylesheet to transform the XML document thesis.xml
(see listing 2-1, page 25) to HTML.

XML Page 54

The <xsl:stylesheet> start tag identifies the document as a stylesheet. The

xmlns:xsl attribute indicates that the prefix “xsl:” is used to identify XSLT el-

ements. The attribute version indicates that the stylesheet only uses features

from version 1.0 of the XSLT specification25.

The stylesheet thesis.xsl contains only one template rule which is defined

with the element <xsl:template match="thesis">. The element's at-

tribute match="thesis" describes the template rule's pattern. Its value is an

XPath expression that identifies the node thesis. Consequently, when the ele-

ment <thesis> of the source document is being processed, the template rule

will be applied. The body of the template rule (i.e. the template) describes what

output to generate. All elements, that do not belong to the XSLT namespace

(such as <html>, <style> or <p>) are copied to the result document without

being processed. The element <xsl:value-of> copies the value of a node in

25 At the time of writing this thesis, there is version 2.0 of XSLT in the form of a W3C Candidate
Recommendation available at [Kay05a].

<?xml version="1.0"?>
<xsl:stylesheet version="1.0"
 xmlns:xsl="http://www.w3.org/1999/XSL/Transform">
 <xsl:template match="thesis">
 <html>
 <head>
 <title><xsl:value-of select="title"/></title>
 <style type="text/css">@import "thesis_styles.css";</style>
 </head>
 <body>
 <div id="border">
 <h1><xsl:value-of select="title"/></h1>
 <p id="author">
 Author: <xsl:value-of select="author/name"/>
 (Student ID: <xsl:value-of select="author/@id"/>,
 Email: <xsl:value-of select="author/email"/>)
 </p>
 <p>Department:
 <xsl:value-of select="author/department"/>
 </p>
 <p>Year: <xsl:value-of select="year"/></p>
 <p>Pages: <xsl:value-of select="pages"/></p>
 <p>Abstract:

 <xsl:value-of select="abstract"/>
 </p>
 </div>
 </body>
 </html>
 </xsl:template>
</xsl:stylesheet>

Listing 2-11: “thesis.xsl”.

XML Page 55

the source document to the result document. Its attribute select contains an

XPath expression that specifies the node from which to get the value from. For

example, the XPath expression “title” instructs the XSLT processor to find

the “<title>” element that is a child of “the node that this template rule is cur-

rently processing” [Kay01]. In order to retrieve an attribute's value, the XPath

expression “@attribute” is used, such as “author/@id” in thesis.xsl
(see listing 2-11, p. 54).

The <style> element in thesis.xsl import a CSS stylesheet that is listed in

listing 2-12.

Listing 2-13 shows the XML document thesis_xsl.xml to which the

stylesheet from listing 2-11 (p. 54) is applied to.

The stylesheet thesis.xsl is identified by the processing instruction <?xml-
stylesheet?>. The XML document thesis_xsl.xml from listing 2-13 can

#border {
 width: 700px;
 border: 5px solid red;
 margin: 10px;
 padding: 5px;
 font-family: Arial, Helvetica, sans-serif;
}
#author {
 color: blue;
 font-size: 20px;
}

Listing 2-12: "thesis_styles.css".

<?xml version="1.0"?>
<?xml-stylesheet type="text/xsl" href="thesis.xsl"?>
<thesis>
 <title>XML, Servlets & JavaServer Pages</title>
 <author id="9603480">
 <name>Florian Heinisch</name>
 <department>Information Systems and New Media</department>
 <email>florian@heinisch.cc</email>
 </author>
 <year>2005</year>
 <pages>170</pages>
 <abstract>This paper introduces the reader to XML, Servlets and
 JavaServer Pages. Each chapter is supplied with examples. In the
 end these technologies are combined to build a web application.
 </abstract>
</thesis>

Listing 2-13: "thesis_xsl.xml".

XML Page 56

be invoked in a Web browser with a built-in XSLT processor. For example, the

Web browser Internet Explorer 6.0 from Microsoft is shipped with an XSLT pro-

cessor26 and Mozilla's Web browser Firefox [Mozi05a] is equipped with the

XSLT processor “TransforMiiX”27. Figure 2-4 shows the XML document the-
sis_xsl.xml displayed in the Web browser Firefox.

26 For further information please refer to [Micr06].
27 For further information please refer to [Mozi06].

Figure 2-4: The transformed XML document “thesis_xsl.xml” displayed in a Web browser.

Hypertext Transfer Protocol Page 57

3 Hypertext Transfer Protocol

In this chapter, a discussion about the HTTP protocol is provided. First, the

reader will be introduced to resources on the World Wide Web. Next, a descrip-

tion of HTTP messages such as HTTP request and HTTP response will be giv-

en.

3.1 Introduction

Hypertext Transfer Protocol (HTTP) is the network protocol used to request and

deliver files and other data (which are collectively called resources) on the

World Wide Web, e.g. such as HTML files, image files, PDF-files or query re-

sults [Mars97].

3.1.1 Resources

A resource is a piece of information that can be identified by a Uniform Re-

source Identifier (URI). For example, a resource can be an electronic document

(e.g. an HTML- or PDF-file), an image, a source of information with a consistent

purpose (e.g., "today's weather report for Vienna") or a service (e.g. an HTTP-

to-SMS gateway) [BeFi05].

3.1.2 Uniform Resource Identifier

A Uniform Resource Identifier (URI) is a “compact sequence of characters that

identifies an abstract or physical resource” [BeFi05]. It conforms to a certain

syntax that is codified by the Internet Engineering Task Force (IETF) as RFC

398628.

The URI syntax is a URI scheme name such as “http”, “ftp” or “mailto” that

“refers to a specification for assigning identifiers within that scheme” [BeFi05].

The scheme name is followed by a colon character and a scheme-specific part.

The syntax and semantics of the scheme-specific part are determined by each

scheme’s specification [BeFi05].

28 RFC stands for Request for Comments. For detailed information concerning the URI
standard please refer to RFC 3986 available at [BeFi05].

Hypertext Transfer Protocol Page 58

The general syntax for URIs provides the following template:

<scheme>:<scheme-specific part>

For instance, URIs can take the following forms:

• ftp://ftp.heinisch.cc

• http://www.theserverside.com/news/thread.tss?thread_id=32014

• mailto:florian@heinisch.cc

3.1.2.1 Uniform Resource Locator

Uniform Resource Locators (URLs) are a subset of URIs that “provide a means

of locating a resource by describing its primary access mechanism” [BeFi05]

(e.g. its network location). According to the W3C/IETF URI Planning Interest

Group, “an HTTP URI is a URL” [CoCo01]. Additionally, the contemporary point

of view among the interest group is that the term URL is a context-dependent

aspect of URI and rarely needs to be distinguished [CoCo01].

The general syntax for URL schemes “that involve the direct use of an IP-based

protocol to a specified host on the Internet” [BeMa94] defines the following pat-

tern:

<scheme>://<user>:<password>@<host>:<port>/<url-path>

The scheme-specific part starts with a double slash “to indicate that it complies

with the common Internet scheme syntax” [BeMa94].

The declaration of the parts “<user>:<password>@”, “:<password>”,

“:<port>” and “/<url-path>” is optional. Table 3-1 describes the different

components of a URL [BeMa94].

Hypertext Transfer Protocol Page 59

URL component Description

scheme Defines the name of the scheme being used.

user Is an optional user name that some schemes (e.g. ftp)

allow to be specified.

password Is an optional password that (if present) follows the user

name separated by a colon.

host Is a “fully qualified domain name29 of a network host” or

[BeMa94] an IP address30.

port Indicates the port number to connect to. If the port number

is present it has to be separated from the host by a colon.

url-path Is specific to the scheme. The url-path “supplies the details

of how the specified resource can be accessed” [BeMa94].

Table 3-1: Description of URL components.

In the following sub chapter the HTTP URL scheme will be discussed briefly.

For information on other specific URL schemes the reader is to asked to refer to

RFC 1738 available at [BeMa94].

3.1.2.1.1 HTTP URL Scheme

“The HTTP URL scheme is used to designate Internet resources” [BeMa94] that

are accessible by using HTTP. The HTTP URL scheme takes the form [Be-

Ma94]:

http://<host>:<port>/<path>?<searchpart>

For the definition of <host> and <port> please refer to chapter 3.1.2.1 (p. 58).

If no port is declared the default port is 80. The component <path> is an HTTP

selector and <searchpart> is a query string. Both <path> and <search-
part> are optional [BeMa94].

29 For further information on fully qualified domain names please refer to RFC 1034 available at
[Mock87] and to RFC 1123 available at [Brad89].

30 Such an IP address takes the form as a set of four decimal digit groups that are separated
by dots [BeMa94].

Hypertext Transfer Protocol Page 60

A typical HTTP URL can take the form of:

http://localhost:9080/MusicStore/products.do?select=13

The URL scheme is http, the host is localhost, the port is 9080, the path is

MusicStore/products.do and the searchpart is select=13.

3.1.3 HTTP Defintion

Hypertext Transfer Protocol (HTTP) is an “application-level protocol for distribut-

ed, collaborative, hypermedia information systems” [FiGe99] which usually runs

on top of Transport Control Protocol (TCP) and Internet Protocol (IP)31. It is a

generic and stateless protocol.

The HTTP protocol is based on a request/response paradigm: an HTTP client

(e.g. Web browser) opens a connection and sends a request message to an

HTTP server (e.g. Web server) which returns a response message according to

the received HTTP request. After delivering the response, the server closes the

connection [Mars97].

At the time of writing, the latest HTTP version was 1.1. This version brought an

import improvement: prior to this version a TCP connection was opened and

closed after each request/response transaction. For instance, if an HTML file

with five images was requested this resulted in six requests and consequently in

six TCP connections. HTTP/1.1 introduced persistent connections so one TCP

connection can be used for multiple transfers (provided that the embedded ele-

ments reside on the same server). Nevertheless, the TCP connection will be

closed by the server as HTTP servers usually have some time-out value beyond

which they will no longer maintain an inactive TCP connection [FiGe99], [ReK-

i01].

The following simplified example demonstrates how HTTP works in practice

when a user agent (also referred to as the client, e.g. a Web browser) requests

the URL [Heth97], [cf. HaNe02, 1193]:

31 Please note that HTTP can be “implemented on top of any other protocol on the Internet [...].
HTTP only presumes a reliable transport; any protocol that provides such guarantees can be
used” [FiGe99].

Hypertext Transfer Protocol Page 61

http://localhost:9080/MusicStore/products.do?select=13

1. The client resolves the IP address for localhost32.

2. The client opens a TCP connection to the IP address and to the default

port 80 (as no port was declared).

3. Once the connection is established, the client sends a request (see

chapter 3.2.1).

4. The server processes the request and sends back a response (see chap-

ter 3.2.2, p. 65) over the TCP connection.

3.2 HTTP Messages

Both HTTP request and HTTP response messages consist of a start-line, zero

or more header fields (which are also known as HTTP headers), an empty line

indicating the end of the header fields, and possibly a message-body. Each line

has to be delimited by Carriage Return/Line Feed pairs [FiGe99].

3.2.1 HTTP Request

Figure 3-1 illustrates an HTTP request's format [Fisc01].

According to the simplified example mentioned above the request the client

sends to the server by invoking the URL is shown in figure 3-233.

32 This is accomplished via Domain Name Service (DNS) [cf. HaNe02, 1193]. For further
information on DNS, please refer to RFC 1034 available at [Mock87a] and RFC 1035
available at [Mock87b].

33 The request shown in figure 3-2 was collected by the use of the software
“LiveHTTPHeaders” which is an extension for the Mozilla Firefox or Netscape Web browser
available at [Live05].

Figure 3-1: HTTP request format.

<method><resource identifier><http version><CR-LF>
[<header>:<value>]<CR-LF>
 …
 …
[<header>:<value>]<CR-LF>
 <CR-LF><CR-LF>
[<message-body>]

request line

request
header fields

end of header

message body

Hypertext Transfer Protocol Page 62

In the context of HTTP requests, the start line is called the request line. A re-

quest line has three parts, separated by spaces: an HTTP method name, the lo-

cal path of the requested resource and the version of HTTP being used. Option-

ally, the request line may contain a query that contains parameters. The query

is appended to the path and starts with a question mark [cf. BaSi04, 15].

HTTP Methods

The HTTP/1.1 specification defines eight HTTP methods: OPTIONS, GET,

HEAD, POST, PUT, DELETE, TRACE and CONNECT. As in the context of this

thesis GET and POST methods will be used, the remaining six HTTP methods

will be not be discussed34 [FiGe99].

3.2.1.1.1 GET

GET is the default HTTP method used by Web browsers for invoking URLs

when hyperlinks are clicked by a user or for sending form-data. The GET

method means “retrieve whatever information [...] is identified by the request-

URI” [FiGe99] (i.e. the HTTP URL). The point of GET is to get something (i.e. a

resource) from the specified server. The HTTP request’s message body re-

mains empty as any parameters are included in the query which is appended to

the path in the initial line (i.e. the request line) [FiGe99].

34 For further information about HTTP methods please refer to RFC 2616 available at [FiGe99].

Figure 3-2: Sample HTTP request (GET method).

GET /MusicStore/products.do?select=13 HTTP/1.1
Host: localhost:9080
User-Agent: Mozilla/5.0 (Windows; U; Windows NT
5.1; en-US; rv:1.7.6) Gecko/20050223 Firefox/1.0.1
Accept:
text/xml,application/xml,application/xhtml+xml,text
/html;q=0.9,text/plain;q=0.8,image/png,*/*;q=0.5
Accept-Language: en-us,en;q=0.5
Accept-Encoding: gzip,deflate
Accept-Charset: ISO-8859-1,utf-8;q=0.7,*;q=0.7
Keep-Alive: 300
Connection: keep-alive

request line

response
header fields

path to the resource

protocol version that
the client is requesting

HTTP method

query

Hypertext Transfer Protocol Page 63

The usage of GET implicates the following drawbacks:

• The total amount of characters sent in a request with a GET method is lim-

ited (depends on the Web server). For example, if a user types a long text

into an HTML-form’s textfield the GET might not work.

• The data that is sent with the GET method is appended to the URL (see

figure 3-2, p. 62) in the Web browser bar so this data is exposed.

• The request line is usually stored in Web servers' log-files [W3C95]. As

form data are appended to the URL, that data will be collected and stored

in log-files. For critical data such as user-ids or passwords this might be a

security issue35.

3.2.1.1.2 POST

POST is designed to provide a block of data (such as the result of submitting a

form) to a data handling process. For example, POST is used for posting a

message to a bulletin board, newsgroup, mailing list or for “extending a

database through an append operation” [FiGe99].

The data is enclosed in the request’s message body (in contrast to the GET

method where the data is appended the URL).

The Web application discussed in the appendix (see chapter 7, p. 149) includes

a form where the user needs to enter personal data. This form is shown in fig-

ure 3-336.

35 Professor Flatscher (Vienna University of Economics and Business Administration) provided
this advice.

36 Figure 3-3 was taken as a screenshot from the MusicStore Web application (see chapter 7,
p. 149) which was developed by this thesis' author himself.

Hypertext Transfer Protocol Page 64

The form’s field names are (from top to bottom): gender, firstName, last-
Name, company, street, city, zip, country, phone, fax and email.

If the user enters the personal data illustrated in figure 3-3 in the form located at

http://localhost:9080/MusicStore/checkout.do and subsequently

hits the submit-button, the request the Web browser sends to the Web server

may look as as presented in figure 3-437.

37 The request shown in figure 3-4 was collected by the use of the software
“LiveHTTPHeaders” which is an extension for the Mozilla Firefox or Netscape Web browser
available at [Live05].

Figure 3-3: Order form of the MusicStore Web application.

Hypertext Transfer Protocol Page 65

The request body contains the form data that the user entered. Each form-entry

consists of a name/value-pair (such as firstName=Florian). The name

specifies the form’s field name and the value is the data the user entered. The

name/value-pairs are separated by an ampersand. The form data is delivered to

the server specified in the path for further processing.

3.2.2 HTTP Response

Figure 3-5 illustrates the HTTP response format [Fisc01].

If a client sends the request from figure 3-2 (p. 62) to the server it may get the

response as depicted in figure 3-6.

Figure 3-4: Sample HTTP request (POST method).

Figure 3-5: HTTP response format.

POST /MusicStore/checkout.do HTTP/1.1
Host: localhost:9080
User-Agent: Mozilla/5.0 (Windows; U; Windows NT
5.1; en-US; rv:1.7.6) Gecko/20050223 Firefox/1.0.1
Accept:
text/xml,application/xml,application/xhtml+xml,text
/html;q=0.9,text/plain;q=0.8,image/png,*/*;q=0.5
Accept-Language: en-us,en;q=0.5
Accept-Encoding: gzip,deflate
Accept-Charset: ISO-8859-1,utf-8;q=0.7,*;q=0.7
Keep-Alive: 300
Connection: keep-alive

gender=m&firstName=Florian&lastName=Heinisch&compan
y=&street=SampleStreet&city=Vienna&zip=1234&country
=Austria&phone=+431234567890&fax=&email=florian@hei
nisch.cc

request line

response
header fields

message body

path to the resource

protocol version that
the client is requesting

HTTP method

blank line

<method><resource identifier><http version><CR-LF>
[<header>:<value>]<CR-LF>
 …
 …
[<header>:<value>]<CR-LF>
 <CR-LF><CR-LF>
[<message-body>]

request line

request
header fields

end of header

message body

Hypertext Transfer Protocol Page 66

In the context of an HTTP response the initial line is called the status line. It

consists of the protocol version followed by a numeric status code and its asso-

ciated textual phrase, with each element separated by a blank space [FiGe99].

The response body contains the resource that the client requested (provided

that the URL identified the resource correctly).

3.2.2.1 Status Code

The status code is a three-digit integer and provides the result of the request.

The first digit of the status line identifies the general category of response

[FiGe99]:

• 1xx: Informational (e.g. 100 Continue, 101 Switching Protocols),

• 2xx: Successful (e.g. 200 OK, 201 Created),

• 3xx: Redirection (e.g. 300 Multiple Choices, 301 Moved Permanently),

• 4xx: Client Error (e.g. 400 Bad Request, 404 Not Found),

Figure 3-6: Sample HTTP response.

HTTP/1.x 200 OK
Content-Type: text/html;charset=ISO-8859-1
Content-Length: 7373
Date: Wed, 02 Mar 2005 07:53:40 GMT
Server: Apache-Coyote/1.1

<!DOCTYPE HTML PUBLIC "-//W3C//DTD HTML 4.01
Transitional//EN"
"http://www.w3.org/TR/html4/loose.dtd">
<html>
<head>
<meta http-equiv="Content-Type" content="text/html;
charset=iso-8859-1">
<title>Products</title>
…
…
</html>

status line

response
header fields

response body

status code
text version of the status code

HTTP method

blank line

Hypertext Transfer Protocol Page 67

• 5xx: Server Error (e.g. 500 Internal Server Error, 501 Not Implemented).

The Content-Type field is referred to as MIME-type. MIME stands for Multipur-

pose Internet Mail Extension which is a specification for formatting non-ASCII

messages so that they can be sent over the Internet. There are many prede-

fined MIME types, such as GIF graphics files and PostScript files [FrBo96a].38

The MIME-type relates to the values listed in the HTTP request’s Accept-header

(see figure 3-4, p. 65). The MIME-type indicates what kind of content the client

is going to receive (i.e. which is located in the HTTP response’s body) so the

client knows how to render the content [cf. BaSi04, 17].

38 For further information on MIME, please refer to RFC 2045 available at [FrBo96a], RFC 2046
available at [FrBo96b], RFC 2047 available at [FrBo96c], RFC 2048 available at [FrBo96d]
and RFC 2049 available at [FrBo96e].

Servlets Page 68

4 Servlets

In this chapter, the reader will be introduced to Java servlets. To begin with a

discussion about the Java Servlet API will be given after which the servlet's “life-

cycle” will be explained. In order to enhance the theoretical discussion on

servlets, two sample servlets will be presented. Then, Web applications in gen-

eral will be described. The chapter closes with a short discussion about servlets'

major advantages over CGI.

4.1 Introduction

Servlets are Java technology based server-side software components that are

protocol and platform independent. Servlets are Java classes that are “compiled

to platform neutral bytecode that can be loaded dynamically into and run by a

Java enabled Web server” [cf. Cowa01, 17].

Servlets are not bound to a specific client-server protocol (therefore protocol in-

dependent) but as they are most commonly used with HTTP, the word “servlet”

is often used in the meaning of HttpServlet [Zeig99].

Servlets run inside a Java enabled server or an application server39. On these

servers, servlets are loaded and executed within the server's Java Virtual Ma-

chine (JVM). Servlets are to servers what applets are to browsers (in contrast to

servlets, applets are loaded and executed within the Web client's JVM). As

servlets run inside servers they do not need a graphical user interface (GUI) –

consequently servlets are “faceless objects” [cf. WaFi00, 42].

Considering the functionality of servlets they strongly resemble the Common

Gateway Interface (CGI)40. As with CGI programs, servlets are designed to re-

39 For a list of servers that enable the execution of servlets please refer to [Sun05a].
40 CGI is a “a standard for interfacing external applications with information servers” [NCSA98]

(such as an HTTP server). CGI is not a language, it is a set of rules for the communication
between an HTTP server and an external application (for instance, an external application
could be an external database application). As CGI programs are “executed in real-time”
[NCSA98], they can output dynamic information. CGI programs can be written in “any
language that allows it to be executed on the system” [NCSA98]. The CGI standard is
maintained by the National Center for Supercomputing Applications (NCSA) Software
Development Group (at the University of Illinois at Urbana) [Conn99]. For further information
please refer to [NCSA98].

Servlets Page 69

spond to an HTTP request from the client (e.g. Web browser) and then dynami-

cally construct an HTTP response that is sent back to the client.

4.1.1 Servlet Container

In a broader sense, a servlet container is much like a Web server that's only

task is to handle servlets and no other files. Servlet containers (also called

servlet engines) “are Web server extensions that provide servlet functionality”

[cf. Cowa01, 17]. A servlet container contains and manages servlets through

their whole life-cycle. “Servlets interact with Web clients via a request/response

paradigm” [cf. Cowa01, 17] that is implemented by the Servlet container.

A Servlet container can be implemented in three ways:

1. being directly built into a host Web server,

2. being installed as an add-on component to a Web server,

3. being built into or installed into web-enabled application servers.

4.1.2 A Servlet's Process

Figure 4-1 below demonstrates a typical servlet process flow [cf. Cowa01, 18]:

1. A client (e.g. Web browser) makes an HTTP request to the Web server.

2. The Web server transfers the request to the servlet container, which

sends the request to the appropriate servlet.

3. The servlet dynamically builds a response according to the client's re-

quest and transfers it to the server.

4. The server sends the response back to the client.

Servlets Page 70

4.2 Java Servlet API

The Java Servlet API41 is a Standard Java Extension API. This means, that the

Java Servlet API is not part of the core Java framework but is available as an

add-on set of packages [Sun02a].

The Java Servlet API is a set of Java classes. These classes define a standard

interface42 between the Web client and a servlet. The API consists of two pack-

ages [cf. WaFi00, 43]:

1. javax.servlet: contains classes to support generic protocol-indepen-

dent servlets (servlets can be used for different protocols, such as HTTP

and FTP).

2. javax.servlet.http: contains classes and interfaces that build upon

these generic servlets to provide support for HTTP protocol and HTML

generation.

“The Servlet interface is the central abstraction” [cf. Cowa, 119] of the Java

Servlet API. All servlets must implement the servlet interface

javax.servlet.Servlet which defines methods to initialize a servlet, to

service requests, and to remove a servlet from the server. These methods are

known as “life-cycle methods” [cf. Cowa, 131].

41 API stands for application programming interface. It is the specification how a programmer
who writes an application “accesses the behavior and state of classes and objects”
[Sun02b].

42 This term used in the Java programming language refers to a collection of method definitions
and constant values. The interface can later be implemented “by classes that define this
interface with the implements keyword” [Sun02b].

Figure 4-1: Servlet process flow.

Request

Response

W
eb server

Client
e.g. Web browser

Servlet
container

Servlet 1

Servlet 2

Servlet 3

Servlets Page 71

The servlet interface can be implemented either directly or by extending a class

that implements this interface. The javax.servlet package provides two

classes which implement the Servlet interface [cf. WaFi00, 44], [cf. Cowa01,

21], [BlBo02], [Bodo02b]:

1. GenericServlet: is a simple class which implements the

javax.servlet.Servlet interface and provides all necessary meth-

ods a servlet needs for its whole life-cycle.

2. HttpServlet: provides additional methods for the processing of HTTP

requests.

As servlets are used to demonstrate how to develop Web applications the

servlet’s discussion in this thesis will be limited to this usage of HTTP servlets.

Figure 4-2 depicts a servlet’s class diagram that inherits from HttpServlet
[cf. BaSi04, 98].

Servlets Page 72

4.3 Basic Servlet Structure

Figure 4-3 illustrates a servlet’s basic structure that handles GET requests.

Figure 4-2: A servlet's class diagram.

service(ServletRequest, ServletRespone)
init(ServletConfig)
destroy()
getServletConfig()
getServletInfo()

Servlet

service(ServletRequest, ServletRespone)
init(ServletConfig)
init()
destroy()
getServletConfig()
getServletInfo()
getInitParameter(String)
getInitParameterNames()
getServletContext()
log(String)
log(String, Throwable)

GenericServlet GenericServlet class
(javax.servlet.GenericServlet)

GenericServlet is an abstract
class that implements all
methods defined by the Servlet
interface. Furthermore this
class implements the Servlet-
Config interface.

Servlet Interface
(javax.servlet.Servlet)

The Servlet interface defines
that all Servlets must implement
these five methods.

service(HttpServletRequest, HttpServletRespone)
service(ServletRequest, ServletRespone)
doGet(HttpServletRequest, HttpServletResponse)
doPost(HttpServletRequest, HttpServletResponse)
doHead(HttpServletRequest, HttpServletResponse)
doOptions(HttpServletRequest, HttpServletResponse)
doPut(HttpServletRequest, HttpServletResponse)
doTrace(HttpServletRequest, HttpServletResponse)
doDelete(HttpServletRequest, HttpServletResponse)
getLastModified(HttpServletRequest)

HttpServlet HttpServlet class
(javax.servlet.http.HttpServlet)

HttpServlet is also an abstract
class that additionally imple-
ments a service() method that
takes an HTTP-specific request
and response.

doGet(HttpServletRequest, HttpServletRespone)
doPost(HttpServletRequest, HttpServletRespone)

MyServlet MyServlet class
(cc.heinisch.foo)

This class only overrides the
HTTP methods it needs to
handle.

Servlets Page 73

The servlet’s developer extends the HttpServlet abstract class and conse-

quently inherits all methods needed to handle HTTP requests. According to the

HTTP request’s method, the developer needs to overwrite the specific method

provided by the HttpServlet class. For example, if the HTTP request method

is a GET then doGet() must be overwritten – if it is a POST doPost() must

likewise be overwritten.

All doXxx() methods inherited from the HttpServlet class take an

HttpServletRequest and an HttpServletResponse object as arguments.

The HttpServletRequest object provides methods to read the HTTP re-

quest such as HTTP request headers, parameters appended to the URL or form

data sent in the HTTP request message’s body.

The HttpServletResponse object is intended to specify the HTTP response

that is sent back to the client such as HTTP response headers (e.g. status

code, content-type) and the HTTP response body that contains the resource

that the client requested (please see chapter 4.4.2, p. 76 for further details) [cf.

Hall00a, 22].

Figure 4-3: Basic servlet structure.

import java.io.*;
import javax.servlet.http.*;

public class MyServlet extends HttpServlet {
 public void doGet(HttpServletRequest request,
 HttpServletResponse response)
 throws IOException {

 // the request object is used to read the
 // HTTP request

 // the response object is used to write data
 // the HTTP response object
 }
}

import statements

overwrite doGet()

logic to dynami-
cally generate the
response

extend HttpServlet

Servlets Page 74

4.4 The Servlet's Life-Cycle

Servlets are normal Java classes which are created when needed and de-

stroyed when they are not needed anymore. A client of a servlet-based applica-

tion does not communicate directly with the servlet, this is accomplished via the

Servlet container. The servlet’s life-cycle is always managed and processed by

the Servlet container [Star02].

There are three main stages in the life of a servlet:

1. “Birth”: the servlet is loaded, instantiated and initialized.

2. “Life”: the servlet services requests (in this case HTTP requests).

3. “Death”: the servlet is destroyed and garbage collected.

The servlet's life cycle is expressed in the API by three main methods:

1. init() (→ “Birth”)

2. service() (→ “Life”)

3. destroy() (→ “Death”)

of the javax.servlet.Servlet interface that all servlets must implement di-

rectly, or indirectly (by inheritance) through the GenericServlet or

HttpServlet abstract classes (see chapter 4.2, p. 70). The Web server com-

muni-cates with the servlet through this javax.servlet.Servlet interface.

Every servlet container must adhere to the well-defined servlet life-cycle [cf.

Cowa01, 23].

Figure 4-4 depicts a servlet's life-cycle [cf. BaSi04, 97].

Servlets Page 75

4.4.1 Servlet's “Birth”: Loading, Instantiation and
Initialisation

The servlet’s life starts when the servlet container finds the servlet’s class file.

Therefore, the servlet container must locate the servlet class before a servlet

can be loaded. A servlet class can be located on the local filesystem or on a re-

mote file-system. The servlet container looks for deployed Web applications and

then searches for the servlet’s class file (see chapter 4.6, p. 85 for further de-

tails). As soon as the class file is found the container uses the “usual Java class

loading facilities to load the servlet class into the JVM” [Gibb00].

Once the servlet has been successfully loaded, the servlet container instanti-

ates a single class instance of that particular servlet class. That single instance

handles every request that it is handed to process [HuCr98], [Gibb00].

Figure 4-4: A servlet's life-cycle.

Servlet
container

Instantiate Servlet (constructor runs)

01010110
0101110001
0101011
00101101001
1100010101
01010101010
11010101
0101010101
101011011

Load class

init()

service()

destroy()

MyServlet.class

initialized

initialized

An instance of MyServlet is
created.

The init() method is only
called once in the servlet’s
life before the container can
call the service() method.

Now the servlet can handle
requests.

Called before the servlet is
unloaded so the servlet can
clean up before it gets
garbage collected.

Servlets Page 76

Servlets can be loaded and instantiated in two ways:

1. The servlet container is configured to preload the servlet when the

servlet container starts.

2. The servlet container loads the servlet the first time the servlet is re-

quested.

There is always only one instance of the instantiated servlet. This one instance

handles all browser requests. Once a servlet is initialized, it is kept in memory.

This way every request is transferred to the servlet in memory which then gen-

erates a response. The fact that the servlet is kept in memory, “makes Java

servlets an extremely fast and efficient method” for building Web applications

[Star02].

Strictly speaking a servlet is just a simple object after it was loaded and instan-

tiated: the servlet’s constructor just instantiates a regular object which is not a

servlet in a restricted sense. Immediately after the servlet’s instantiation the

container calls the servlet’s init() method. Then, the servlet is initialized and

can process requests received from clients. Now it can be regarded as a servlet

in a more restricted sense [cf. BaSi04, 103].

A servlet's init() method is called only once in a servlet’s life. In any case,

the init() method is guaranteed to be called by the servlet container before

the servlet handles its first request [Gibb00].

4.4.2 Servlet's “Life”: Request Handling

Once a servlet has been initialized it is ready to handle client requests. The next

listing shows what happens when a client makes a request to a servlet. There-

fore it is assumed that a user (the client) will click a link that has an URL to a

servlet [cf. BaSi04, 42]:

1. The Servlet container accepts the request for a servlet and consequently

creates two objects of the types HttpServletRequest and

HttpServletResponse.

Servlets Page 77

2. The container looks for the correct servlet based on the request’s URL

and creates or allocates a thread for that request. Then the container

calls the servlet’s service() method and passes the HttpServle-
tRequest and the HttpServletResponse objects as arguments.

3. Now the servlet’s service()method by default checks which method

the client’s HTTP request includes. If the request’s method is GET it calls

the servlet’s doGet() method – if the request’s method is POST it calls

the servlet’s doPost() method. For now it is assumed that the re-

quest’s method is GET. So the service() method calls the servlet’s

doGet() method and passes the HttpServletRequest and

HttpServletResponse objects as arguments.

4. The doGet() method generates the dynamic page and puts it into the

HttpServletResponse object.

5. The container converts the HttpServletResponse object into an

HTTP response message and sends it back to the client. The

service() method completes, consequently the thread either dies or

returns to a container-managed thread pool. Afterwards, the

HttpServletRequest and HttpServletResponse objects are delet-

ed.

4.4.2.1 HttpServletRequest Object

HttpServletRequest is an interface that extends the interface ServletRe-
quest. There are no classes in the Java Servlet API that implement these inter-

faces. The implementation of those interfaces is left to the servlet container ven-

dor. The HttpServletRequest object’s purpose is to provide request infor-

mation for HTTP servlets [cf. BaSi, 107].

Figure 4-5 depicts the class diagrams that illustrate the ServletRequest and

HttpServletRequest interfaces43.

43 Due to lack of space the class diagram does not list all methods defined by its interfaces
neither cannot each method’s functionality be explained. For a complete listing and
explanation please see Java™ 2 Plat-form Enterprise Edition, v 1.4 API Specification
available at [J2EE05].

Servlets Page 78

To provide an example of how to use the HttpServletRequest object listing

4-1 shows how to retrieve a parameter’s value according to the HTTP request

from figure 3-2 (p. 62).

The method getParameter() takes a string as argument. This string has to

equal the parameter’s name sent by the HTTP request. The string select gets

the value “13” (see the HTTP request’s path in figure 3-2, p. 62).

4.4.2.2 HttpServletResponse Object

HttpServletResponse is an interface that extends ServletResponse.

Simillar to HttpServletRequest, there are not any classes in the Java

Servlet API that implement these interfaces – the implementation of these inter-

faces is left to the servlet container vendor. The main function of the

Figure 4-5: HttpServletRequest calls diagram.

getAttribute(String)
getContentLength()
getInputStream()
getLocalPort()
getParameter(String)
getParameterNames()
…

ServletRequest

HttpServletRequest interface
(javax.servlet.http.HttpServletRequest)

ServletRequest interface
(javax.servlet.ServletRequest)

ServletRequest

getContextPath()
getCookies()
getHeader(String)
getQueryString()
getSession()
getMethod()
…

…
public void doGet(HttpServlet request,
 HttpServletResponse response)
 throws IOException {

 String selectId = request.getParameter("select");
}
…

Listing 4-1: Get a parameter's value.

Servlets Page 79

HttpServletResponse object is to send data from the server to the client

[Bodo02b].

The class diagrams in figure 4-6 illustrate the ServletResponse and

HttpServletResponse interfaces.

The most commonly used methods of the HttpServletResponse’s objects

are setContentType(String), getWriter() and getOutputStream()
[cf. BaSi, 126].

4.4.2.2.1 Content-type

Before any data is sent to the client, the HTTP response’s content type header

value (i.e. the MIME-type) needs to be set. If it is not set the client (i.e. the Web

browser) will not know how to render the data contained in the HTTP response

message’s body [cf. BaSi04, 130].

Common MIME-types are: text/html, application/pdf, image/jpeg, ap-
plication/x-zip.

The following Java-code demonstrates how to set the content-type:

response.setContentType("text/html");

Figure 4-6: HttpServletResponse class diagram.

getBufferSize()
getLocale()
getOutputStream()
getWriter()
setContentLength(int)
setContentType(String)
…

ServletResponse

HttpServletResponse interface
(javax.servlet.http.HttpServletResponse)

ServletResponse interface
(javax.servlet.ServletResponse)

HttpServletResponse

addCookie(Cookie)
addHeader(String, String)
encodeURL(String)
sendError(int)
sendRedirect(String)
setStatus(int)
…

Servlets Page 80

4.4.2.2.2 Writing Data to the HTTP Request

The ServletResponse interface offers two streams to write data to the HTTP

response message’s body: PrintWriter for character data and

ServletOutputStream for bytes. Only one of these two methods may be

called to write to the body.

PrintWriter

The PrintWriter object (java.io.PrintWriter) is designed to handle

character data. Consequently, it is mainly used to send text (such as

HTML) to the client [cf. BaSi, 132]. The PrintWriter object could be

used as follows:

PrintWriter out = response.getPrintWriter();
out.println("<h1>Hello World!"</h1>");

ServletOutputStream

The ServletOutputStream object provides an output stream for send-

ing binary data to the client such as dynamically generated graphics,

PDF-files or archives (such as a ZIP-file). E.g.:

ServletOutputStream out = response.getOutputStream();
out.write(aByteArray);

4.4.3 Servlet's “Death”: destroy() Method

The servlet interface provides the destroy() method that is called by the

servlet container before it can unload a servlet. For instance, a servlet could use

the destroy() method to update log files or to close database connections be-

fore it will be garbage collected.

4.5 Servlet Examples

The purpose of this section is to present two servlets in order to demonstrate

how the theory explained above is applied in reality. The provided examples

can be downloaded from the author's Web site at [Hein06]. The examples are

Servlets Page 81

packaged in a Web application and available both as a WAR44- and as an

EAR45-file.

4.5.1 Data Servlet

The servlet in figure 4-7 delivers the current date to the client.

As with all servlets that intend to service HTTP request this servlet extends

HttpServlet to obtain the needed HTTP functionality.

The servlet overrides the method doGet() because it expects the HTTP re-

quest’s method to be of type GET. Since getWriter() could throw an IOEx-

44 A WAR (Web ARchive) file is a “JAR archive that contains a Web module” [Sun06b]. A Web
module is defined as “deployable unit that consists of one or more Web components, other
resources, and a Web application deployment descriptor contained in a hierarchy of
directories and files in a standard Web application format” [Sun06b]. For further information
please refer to the Java Servlet specification available at [CoYo03].

45 An EAR (Enterprise ARchive) file is a single JAR archive that contains one or more J2EE
modules. A J2EE module is defined as a “software unit that consists of one or more J2EE
components of the same container type” [Sun06b]. For example, a Web module is a J2EE
module. For further information please refer to the J2EE specification available at [Shan03].

Figure 4-7: "DateServlet.java".

import java.io.IOException;
import java.io.PrintWriter;
import java.util.Date;
import javax.servlet.http.HttpServlet;
import javax.servlet.http.HttpServletRequest;
import javax.servlet.http.HttpServletResponse;

public class DateServlet extends HttpServlet {
 public void doGet(HttpServletRequest request,
 HttpServletResponse response)
 throws IOException {

 response.setContentType("text/html");
 Date date = new Date();
 PrintWriter out = response.getWriter();
 out.println("<html>\n<head>");
 out.println("<title>Current Date</title>");
 out.println("<body>");
 out.println("Today's date: " + date);
 out.println("</body>\n</html>");
 }
}

import statements

overwrite doGet()

get a PrintWriter
and write a String
with current date to
the response

extend HttpServlet

set ContentType

Servlets Page 82

ception, doGet() has to declare the exception (it also could wrap its content

within a try/catch block).

As the servlet wants to write character data to the response, it uses the Print-
writer object for data output. The content that needs to be sent to the client is

simply written in println() statements.

Figure 4-8 illustrates the DateServlet’s output.

4.5.2 Watermark Servlet

The next servlet demonstrates how to send data to the client using the

ServletOutputStream. This example servlet loads an image from the server

and places a string into the image’s center. In practice a servlet such as this

could be used to dynamically put a watermark or copyright notice on photos.

Figure 4-8: DateServlet displayed in a Web browser.

Servlets Page 83

The servlet overrides doGet() as it is intended to service HTTP requests of

type GET. The servlet’s logic is divided into three parts:

1. Load the image: therefore an URL that points to the photo is created.

Based on that URL a BufferedImage (this class allows off-screen

drawing) is created using the ImageIO class’s read() method to read

in the image data. Then the photo’s dimensions are elicited.

2. Perform graphic operations: the string that will be placed into the photo is

declared. The BufferedImage class provides a graphics context that

can be drawn upon, which is obtained by calling createGraphics().

import java.awt.*;
import java.awt.image.BufferedImage;
import java.io.IOException;
import java.io.OutputStream;
import java.net.URL;
import javax.imageio.ImageIO;
import javax.servlet.http.*;
public class WatermarkServlet extends HttpServlet {
 public void doGet(HttpServletRequest request,
 HttpServletResponse response)
 throws IOException {
 StringBuffer path = request.getRequestURL();
 path.replace(path.indexOf(request.getRequestURI()), path.length(),
 request.getContextPath());
 URL imgUrl = new URL (path + "/images/seaside.jpg");
 BufferedImage bufferedImg = ImageIO.read(imgUrl);
 final int WIDTH = bufferedImg.getWidth();
 final int HEIGHT = bufferedImg.getHeight();
 String s = "Copyright by Florian Heinisch";
 Graphics2D g = bufferedImg.createGraphics();
 Font font = new Font("Sans-Serif", Font.PLAIN, 45);
 FontMetrics fontMetrics = g.getFontMetrics(font);
 int sWidth = fontMetrics.stringWidth(s);
 int sAscent = fontMetrics.getAscent();
 int sDescent = fontMetrics.getDescent();
 g.setPaint(Color. getHSBColor(240f, 100f, 0f));
 g.setFont(font);
 g.setRenderingHint(RenderingHints.KEY_ANTIALIASING,
 RenderingHints.VALUE_ANTIALIAS_ON);
 g.drawString(s, (WIDTH-sWidth)/2, (HEIGHT+sAscent-sDescent)/2);

 response.setContentType("image/jpeg");
 OutputStream out = response.getOutputStream();
 ImageIO.write(bufferedImg, "jpg", out);
 out.close();
 }
}

Listing 4-2: A servlet that watermarks a picture.

Servlets Page 84

Next the font to display the string is instantiated. In order to place the

string into the middle of the image (both horizontally and vertically) get-
FontMetrics(font) is called so the string’s width and height can be

measured. Consequently the x and y position is calculated in order to

place the string approximately in the photo’s center. Afterwards, the col-

or, font and antialiasing is set. Then, the string is drawn upon the

Graphics2D object.

3. Send the modified photo to the client: before any data is sent to the

client, the content-type needs to be set which in this case is

image/jpeg. Then an OutputStream is obtained by calling getOut-
putStream() on the response object. The class ImageIO provides a

very convenient method with which to write the BufferedImage object

to the servlet’s OutputStream. Finally, close() on the Output-
Stream is called so any system resources associated with this stream

are released.

Figure 4-9 depicts the result when the WatermarkServlet gets executed.

Servlets Page 85

4.6 Deploying Servlets

In order to be able to deploy servlets to a servlet container, the developer needs

to know how Java Web applications have to be structured.

4.6.1 Definition of a Web Application

The Java™ Servlet Specification defines the concepts of Web applications. Ac-

cording to the specification “a Web application is a collection of servlets, HTML

pages, classes, and other resources that make up a complete application on a

Web server” [cf. CoYo03, 68]. Such resources are commonly referred to as

Web components.

The following items may be included in a Web application [cf. CoYo03, 69]:

• Servlets,

• JavaServer Pages™,

Figure 4-9: WatermarkServlet displayed in a Web browser.

Servlets Page 86

• utility classes (e.g. database logic),

• static documents (e.g. HTML-files, cascading style sheets, images,

sounds),

• client side classes (e.g. applets),

• descriptive meta information that ties all of the above elements together

(e.g. XML-files).

4.6.2 Directory Structure

Web applications exist as a structured hierarchy of directories which is defined

in the Servlet specification46. This clearly defined directory structure makes the

Web application portable to any servlet container.

Figure 4-10 illustrates a sample Web application directory structure [cf. BaSi04,

73].

46 Since the release of Java Servlet Specification 2.2 Servlet, containers have to accept a Web
application in a standard format. Prior to version 2.2, “there was little consistency between
server platforms” [Apac02].

Servlets Page 87

The figure is divided into three parts:

1. Container vendor specific part: it depends on the servlet container ven-

dor where to place the Web application on the Web server.

2. Servlets specification specific part: the directory structure of this part has

to be the same for all Web applications (defined by the Servlet specifica-

tion).

3. Application specific part: this part mainly consists of compiled Java class-

es (although other files such as property or configuration files may be

Figure 4-10: Web application directory structure.

webapp

WEB-INF

classes lib

foo

com

modelservlets

<html>
<body>
 ...
<html>

<%
 ...
%>

<html>
<body>
 ...
<html>

index.html form.jsp

web.xml

<%
 ...
%>

form.jsp

0110101
1001101
0101010
1011010

Some.class

<%
 ...
%>

Another.class

0110101
1001101
0101010
1011010

Container vendor specific

Defined by the
Servlets specification

Application specific

Servlets Page 88

placed here). It is up to the Web developer(s) how to structure (or “pack-

age”) this part of the Web application.

The directory webapp is the root directory for the Web application which “serves

as the document root for all files that are part of the Web application” [cf. CoY-

o03, 69]. Usually static HTML files, images, cascading style sheets, JavaScript

files and JSPs are placed into the root directory.

In the document root there is a special directory named WEB-INF. The WEB-
INF directory’s content “is not part of the public document tree of the applica-

tion” [cf. CoYo03, 70]. No file contained in the WEB-INF directory can be served

directly to a client by the container.

The contents of the WEB-INF directory are:

• The XML-file web.xml: this is the deployment descriptor that configures

the Web application.

• The directory classes where servlets and utility classes are placed. If the

Java classes are organized in the form of packages, the package names

are subdirectories in the classes directory.

• The directory lib for Java archive files (*.jar files) that are used by the

Web application (such as third party class libraries, JDBC drivers and JSP

tag libraries).

Java classes may be located in the WEB-INF’s classes or lib directory. The

class loader checks first in the classes directory. If it does not find the class

there it looks for the class in the lib directory [cf. CoYo03, 71].

The Web application can be deployed to the Web server in two ways [cf. Bea04,

1-3]:

• As an “exploded” directory format which is recommended primarily for use

while developing the Web application.

• As a Web application archive file (*.war): Web applications can be pack-

aged into a Web ARchive format (WAR) file using the standard Java

Servlets Page 89

archive tools (e.g. with the command jar -cvf mywebapp.war *.*).

This format is mainly recommended for production environments [cf. CoY-

o03, 71].

4.6.3 Deployment Descriptor

The deployment descriptor is an XML-file named web.xml that is located in the

WEB-INF directory. It describes configuration information for the entire Web ap-

plication and may include the following elements47 [cf. CoYo03, 103]:

• ServletContext Init Parameter,

• Session Configuration,

• Servlet Declaration,

• Servlet Mappings,

• MIME Type Mappings,

• Welcome File list,

• Error Pages.

The deployment descriptor is a powerful tool to configure the Web application

such as mapping URLs to servlets, defining error pages and configuring secu-

rity roles. As this chapter’s main topic concerns servlets only, the configuration

of the deployment descriptor for servlets will be discussed. Any other issues will

be treated in the appropriate context.

According to the Servlet specification, the servlet’s classes reside in the we-
bapp/WEB-INF/classes directory. As HTTP servlets are invoked via an URL,

the servlet container needs to know where to find the servlet classes. Therefore

the web.xml file contains XML elements that map URLs to the servlets’ classes

[cf. BaSi04, 48].

47 The listing is not complete. The web.xml elements depend on the Web components used in
the Web application (e.g. if no sessions are used no session properties need to be
configured in the web.xml).

Servlets Page 90

4.6.3.1 Sample web.xml File

Listing 4-3 illustrates the web.xml file that was created to deploy the servlets

DateServlet and WatermarkServlet to the servlet container.

The root element of the deployment descriptor is always <web-app>. A servlet

deployment descriptor has to indicate the XML schema by using the J2EE

namespace xmlns="http://java.sun.com/xml/ns/j2ee" and has to in-

dicate the version of the schema as follows:

<?xml version="1.0" encoding="ISO-8859-1"?>
<web-app xmlns="http://java.sun.com/xml/ns/j2ee"
 xmlns:xsi="http://www.w3c.org/2001/XMLSchema-instance"
 xsi:schemaLocation="..."
 version="2.4">
...
</web-app>

The indication of the XML schema’s published version using the

xsi:schemaLocation attribute is not obligatory, nevertheless it is commonly

used [cf. CoYo03, 108].

<?xml version="1.0" encoding="ISO-8859-1"?>
<web-app xmlns="http://java.sun.com/xml/ns/j2ee"
 xmlns:xsi="http://www.w3c.org/2001/XMLSchema-instance"
 xsi:schemaLocation="http://java.sun.com/xml/ns/j2ee/web-app_2_4.xsd"
 version="2.4">

 <display-name>thesis</display-name>

 <servlet>
 <servlet-name>DateServlet</servlet-name>
 <servlet-class>cc.heinisch.thesis.DateServlet</servlet-class>
 </servlet>
 <servlet>
 <servlet-name>WatermarkServlet</servlet-name>
 <servlet-class>cc.heinisch.thesis.WatermarkServlet</servlet-class>
 </servlet>

 <servlet-mapping>
 <servlet-name>DateServlet</servlet-name>
 <url-pattern>/Date</url-pattern>
 </servlet-mapping>
 <servlet-mapping>
 <servlet-name>WatermarkServlet</servlet-name>
 <url-pattern>/Watermark</url-pattern>
 </servlet-mapping>

</web-app>
Listing 4-3: "web.xml" deployment descriptor.

Servlets Page 91

The two elements needed for URL mapping in the deployment descriptor are

[cf. BaSi04, 48]:

1. <servlet> maps the internal name to the fully qualified class name.

2. <servlet-mapping> maps the internal name to a public URL name.

The <servlet> element has two child elements:

1. <servlet-name> contains an internal name which is used to link a

<servlet> element to a specific <servlet-mapping> element. The

client never sees the <servlet-name> value – it is only used within the

deployment descriptor.

2. <servlet-class> contains the fully qualified servlet’s class name (ex-

cluding the .class extension).

The <servlet-mapping> element also has two child elements:

1. <servlet-name> is used to link the <servlet-mapping> element to

the corresponding <servlet> element.

2. <url-pattern> is the servlet’s “pseudonym”: this is a made-up name

the client uses to get to the servlet, e.g. a hyperlink in an HTML-file could

look like this: click here.

For example, a user clicks the hyperlink click
here. The servlet container receives the request and looks at runtime in

the web.xml file within the <servlet-mapping> elements for the <url-
pattern> element with the value /Watermark. Once found, it gets the

<servlet-name> value WatermarkServlet and looks within the

<servlet> elements for the same <servlet-name> value. Finally, it finds

the fully qualified servlet’s class name in order to invoke the servlet.

Servlets Page 92

4.7 Servlets vs. CGI

To conclude the discussion of servlets, this subchapter discusses the serlvet’s

major advantages over CGI.

4.7.1 Efficiency

Common Gateway Interface (CGI) is a traditional way to handle web-to-

database applications. A CGI program needs to create a separate process for

each user request. This process will be terminated as soon as the data transfer

is completed. Spawning a separate program instance for each client request

takes extra time. The operating system has to load the program, allocate mem-

ory for the program, and then deallocate and unload the program from the

memory. If the CGI program is relatively short, the overhead of starting the pro-

cess can take longer then the execution time [WuWa00].

When using servlets, the JVM continues to run and handles each request using

a Java thread – instead of a complete operating system process as CGI does.

For every request to the CGI program the code for the CGI program is loaded

into memory. That means that for e.g. 10 requests to a particular CGI program,

the code will be loaded into memory 10 times. Servlets in contrast, would have

10 threads for 10 requests but only a single copy of the servlet class. In addi-

tion, as a CGI program is unloaded from memory when it finishes, optimization

“that relies on persistent data” [cf. Hall00, 7] cannot be issued. However,

servlets can remain in memory after they have completed a response and so

they can store complex data between requests.

4.7.2 Portability

As servlets are written in Java and follow a standard API servlets can run virtu-

ally unchanged on every server that provides a servlet engine. As a matter of

fact, “servlets are supported directly or by a plug-in on virtually every major Web

server” [cf. Hall00, 8].

JavaServer Pages™ Page 93

5 JavaServer Pages™

This chapter will introduce the reader to JavaServer Pages™. Therefore, the

JSP's “life-cyle” and JSP elements will be explained. Next, the development of

“script-free” JSP pages will be described. Finally, it will be demonstrated how to

develop ones own custom tags. The presented theory will be endorsed by short

and simple examples.

5.1 Introduction

JavaServer Pages (JSP) technology provides the possibility to “create Web

content that has both static and dynamic content” [Bodo02a]. JSP technology

features all the dynamic capabilities of Java Servlet technology and furthermore

provides “a more natural approach for creating static content” [Bodo02a]. The

JSP-technology allows mixing static HTML/XML with “dynamically generated

content from servlets” [cf. Hall00, 231].

JSP technology was developed by Sun Microsystems. The JSP specification is

a standard extension defined on top of the Servlet API in order “to separate the

development of dynamic Web page content from static HTML page design” [cf.

WaFi00, 96].

A JSP page is a text-based document that contains two types of text [Bodo02a]:

1. static template data which can be expressed in any text-based format,

such as HTML, SVG, WML, and XML,

2. JSP elements, which construct dynamic content.

5.1.1 Simple JSP Example

The examples provided in this chapter are available for download at the au-

thor's Web site [Hein06] in the form a WAR- or EAR-file. Figure 5-1 shows a

JSP that delivers the same content to the client as the servlet listed in figure 4-7

(p. 81).

JavaServer Pages™ Page 94

The JSP date.jsp demonstrates that JSPs provide a more convenient way to

build dynamic Web sites (i.e. Web applications) compared to servlets.

5.2 JSP Container

Similar to the Servlet container the JSP container is a Web server extension

that provides JSP functionality. The JSP container is responsible for capturing

requests for JSP pages. The JSP container is often implemented as a servlet

which is configured to handle all requests for JSP pages. In fact, the Servlet

container and the JSP container are usually combined in one package by the

name Web container [Berg02].

5.2.1 JSP Advantages over Competing Technologies

The approach used by JavaServer Pages provides several advantages over

competing technologies (such as CGI, ASP and PHP). In a nutshell, these ad-

vantages are:

1. JSP are widely supported and therefore do not lock developers into a

particular operating system or Web server.

2. JSP provide “full access to Servlet and Java technology” [cf. Hall00,

231].

5.3 JSP's Life-Cycle

A JSP is made operable by having its contents (i.e. HTML tags, JSP tags and

scriptlets) “translated into a servlet by the JSP container” [cf. WaFi00, 97]. Both

dynamic and static elements that are declared within the JSP file are translated

Figure 5-1: "date.jsp".

<html>
 <head>
 <title>Current Date</title>
 </head>
 <body>
 Today's date: <%= new java.util.Date() %>
 </body>
<html>

template data

template data

JSP element

JavaServer Pages™ Page 95

into Java servlet code. The JSP container delivers the translated contents

“through the Web server output stream to the browser” [cf. WaFi00, 97].

JSPs go through two phases: a translation phase, and a request phase. The

translation phase is carried out once per page (unless the JSP page changes).

The request phase is carried out once per request [cf. PeRo03, xxxiii].

Figure 5-2 outlines the tasks performed on a JSP file on the first invocation of

the file [cf. WaFi00, 97].

Translation phase

1. The Web server gets a request from a Web browser for a JavaServer

Page. The Web server transfers the request to the JSP container.

2. Then the JSP container parses the content of the JSP page. JSP tags

are translated into Java source code; static HTML-code is converted into

Java strings (which is written unchanged to the servlet’s output stream);

scripting elements are taken over unchanged.

3. Depending on the content of the JSP page, the JSP container creates a

temporary servlet source code (i.e. a Java file).

4. Then the servlet source code is compiled into a servlet class file. The re-

sult is a JSP page implementation class file that implements the servlet

interface. Once the JSP page implementation class file exists, the servlet

Figure 5-2: Translation and request phase.

Client

<%
 …
%>

class {
 …
}

0110101
1001101
0101010
1011010

1. GET /date.jsp

6. HTTP 1.1 200

JSP Container

2. read JSP

3. generate *.java

5. execute

date.jsp

_date.java

4. compile

_date.class

translation phase

request phase

JavaServer Pages™ Page 96

is instantiated (the result is a JSP page object) and the servlet's init()
method is called.

Request phase

5. The servlet's service() method is called, and the servlet logic is exe-

cuted. The service() method “is dispatched on a separate thread by

the [...] container in processing concurrent client requests” [Shesh00].

6. The dynamically generated Web content is sent to the Web browser

“through the output stream of the servlet’s response object” [cf. WaFi00,

97].

As long as the underlying JSP file remains unchanged all requests are directly

transferred to the service() method of the servlet that was created in the

translation phase to deliver the content to the Web browser. If the JSP file was

changed the translation phase has to be repeated – a new JSP page imple-

mentation class file will be created by the JSP container. The servlet remains in

service until the JSP container is stopped or the servlet is manually unloaded

[cf. WaFi00, 98].

As the translation phase might take some time, the first client to request a JSP

page will notice a slight delay. Therefore, the JSP specification defines precom-

pilation of JSP pages so the translation phase can be initiated explicitly. As a re-

sult, the first client will not be faced with this slight delay caused by the transla-

tion phase [Berg02].

5.3.1 The Generated Servlet Java-file

The concrete implementation of the servlet source file (i.e. the generated Java-

file) depends on the JSP container vendor. Usually, there is no need to look at

the container-generated code but it certainly helps to understand JSP thorough-

ly. Listing 5-1 shows the servlet source file that was generated by the IBM Web-

sphere Application Server 6.0 when it translated the JSP date.jsp into a

servlet.

JavaServer Pages™ Page 97

package com.ibm._jsp;
import javax.servlet.*;
import javax.servlet.http.*;
import javax.servlet.jsp.*;
public final class _date extends com.ibm.ws.jsp.runtime.HttpJspBase implements
com.ibm.ws.jsp.runtime.JspClassInformation {

 private static String[] _jspx_dependants;
 public String[] getDependants() {
 return _jspx_dependants;
 }

 private static String _jspx_classVersion;
 private static boolean _jspx_isDebugClassFile;
 static {
 _jspx_classVersion = new String("6.0.0.1");
 _jspx_isDebugClassFile = false;
 }

 public String getVersionInformation() {
 return _jspx_classVersion;
 }
 public boolean isDebugClassFile() {
 return _jspx_isDebugClassFile;
 }
 private final static char[] _jsp_string1 = "<html>\r\n<head>\r\n<title>Current
 Date</title>\r\n</head>\r\n<body>\r\nToday's date: ".toCharArray();
 private final static char[] _jsp_string2 = "\r\n</body>\r\n</html>".toCharArray();
 static {}
 private static org.apache.jasper.runtime.ProtectedFunctionMapper _jspx_fnmap = null;
 public void _jspService(HttpServletRequest request, HttpServletResponse response)
 throws java.io.IOException, ServletException {
 JspFactory _jspxFactory = null;
 PageContext pageContext = null;
 HttpSession session = null;
 ServletContext application = null;
 ServletConfig config = null;
 JspWriter out = null;
 Object page = this;
 JspWriter _jspx_out = null;
 try {
 _jspxFactory = JspFactory.getDefaultFactory();
 response.setContentType("text/html;charset=ISO-8859-1");
 pageContext = _jspxFactory.getPageContext(this, request, response, null, true,
 8192, true);
 application = pageContext.getServletContext();
 config = pageContext.getServletConfig();
 session = pageContext.getSession();
 out = pageContext.getOut();
 _jspx_out = out;

 out.write(_jsp_string1);
 out.print(new java.util.Date());
 out.write(_jsp_string2);
 } catch (Throwable t) {
 if (!(t instanceof javax.servlet.jsp.SkipPageException)){
 out = _jspx_out;
 if (out != null && out.getBufferSize() != 0)
 out.clearBuffer();
 if (pageContext != null) pageContext.handlePageException(t);
 }
 } finally {
 if (_jspxFactory != null) _jspxFactory.releasePageContext(pageContext);
 }
 }
}

Listing 5-1: Auto-generated "servlet_date.java".

JavaServer Pages™ Page 98

As most of the class and interface types of the generated servlets are vendor-

specific only the relevant parts (in bold) which are needed to understand the

translation phase will be discussed:

The JSP’s template data (see figure 5-1, p.94) is put into char-arrays

_jsp_string1 and _jsp_string2. The service method’s actual name

is _jspService() which is called by the servlet’s superclass overrid-

den service() method and receives the HttpServletRequest and

HttpServletResponse objects as arguments [cf. BaSi04, 294].

Finally, the char-arrays and the current date are written to the servlet’s output-

stream.

5.4 JSP's Components

A JSP page consists of elements and template data:

• “An element is an instance of an element type known to the JSP contain-

er” [cf. PeRo03, 1-10].

• Template data is anything that is not an element, i.e. “anything that the

JSP translator does not know about” [cf. PeRo03, 1-10].

There are three types of elements:

• Directive elements

A JSP directive is a global definition that is sent to the JSP container. It re-

mains valid “regardless of any specific requests made to the JSP page”

[cf. WaFi00, 99]. Directives do not produce any visible output, they pro-

vide information to the container for the translation phase [cf. PeRo03, 1-

10). In other words, directives “control the overall structure of the resulting

servlet” [cf. Hall00, 233]. There are three types of directives:

1. page,

2. include,

JavaServer Pages™ Page 99

3. taglib.

• Scripting elements

Scripting elements are Java code that will become part of the resultant

servlet. There are three types of scripting elements [cf. Pele01, 35]:

declarations,

scriptlets,

expressions.

• Action elements

Actions provide information for the request phase. The interpretation of an

action depends on the “details of the specific request received by the JSP

page” [cf. Pele01, 35]. In other words, actions let the developer “specify

existing components that should be used and otherwise control the be-

havior of the JSP engine” (i.e. the JSP container) [cf. Hall00, 233]

5.4.1 Directive Elements

JSP directives affect “the overall structure of the servlet that results from the

JSP page” [cf. Hall00, 247].

The syntax of a directive is: <%@ directive attribute="value" %>

5.4.1.1 Page Directive

The page directive defines page dependent attributes to the JSP container. A

directive always appears on the top of the JSP file, before any other JSP tags.

Any number of page directives can be defined within a JSP page, as long as

each attribute-value pair is unique. Attributes or values that are not recognized

by the JSP container result in a translation error [Sesh00].

Example: <%@ page import="java.util.Date" %>

JavaServer Pages™ Page 100

This page directive imports the class Date from the package java.util. So

this class is made available to the scripting environment within the JSP. The im-

port statement import java.util.Date; will be placed in the resulting

servlet beneath the servlet’s default import statements:

package com.ibm._jsp;
import javax.servlet.*;
import javax.servlet.http.*;
import javax.servlet.jsp.*;
import java.util.Date;
public final class _date extends
com.ibm.ws.jsp.runtime.HttpJspBase implements
com.ibm.ws.jsp.runtime.JspClassInformation {

...

For a complete listing of the available attributes and their functions please refer

to the latest JSP specification which is available at [PeRo03]48.

5.4.1.2 Include Directive

The include directive is used “to include a file in the main JSP document at the

time the document is translated into a servlet” [cf. Hall00, 268]. It is placed in

the document at the point at which the file must be inserted.

Example: <%@ include file="header.html" %>

In applying the include directive, elements (e.g. navigation elements, headers,

footers) can be reused in multiple pages. The included document is inserted be-

fore the JSP page is parsed and compiled into a servlet. In other words, it is just

as if the code of the included file will has been duplicated into the JSP – except

that the JSP container does this at translation time [cf. BaSi04, 402].

Listing 5-2 shows the included file header.html.

48 Please note that this is the latest JSP specification at the time of writing this thesis.

Florian Heinisch's personal Website

Listing 5-2: The included file "header.html".

JavaServer Pages™ Page 101

If the file is included in a JSP, the JSP container simply places the head-
er.html’s content into the resulting servlet at the time of translation:

private final static char[] _jsp_string2 = "<img
src=\"images/florian.jpg\">\r\nFlorian Heinisch's personal
Website".toCharArray();

This char-array is written to the servlet’s outputstream:

out.write(_jsp_string2);

If the included document is changed, the JSP has to be retranslated otherwise

the changes will not be reflected49 [cf. Hall00, 267].

5.4.1.3 Taglib Directive

The taglib directive in a JSP page declares that the page uses a tag library.

The taglib directive “uniquely identifies the tag library using a URI, and asso-

ciates a tag prefix that will distinguish usage of the actions in the library” [cf.

Pele01, 52].

The usage of tag libraries will be discussed in detail in chapter 5.5.2 (p. 130).

5.4.2 Scripting Elements

Scripting elements are used to manipulate objects.

Each scripting element has a “<%”-based syntax as follows:

<%! this is a declaration %>

<% this is a scriptlet %>

<%= this is an expression %>

5.4.2.1 Declarations

Declarations are used to declare variables and methods that are available to all

other scripting elements. According to the JSP specification, “a declaration

49 Most of the newer JSP containers detect if the included file has been changed and
retranslate the included file automatically. Nevertheless, this automatic retranslation is not
guaranteed by the JSP specification [cf. BaSi04, 402].

JavaServer Pages™ Page 102

should be a complete declarative statement” [cf. Pele01, 56]. A declaration is

initialized when the JSP page is initialized and is “made available to other decla-

rations, scriptlets and expressions” [cf. Pele01, 56]. As declarations do not gen-

erate any output, they are normally used in conjunction with JSP expressions or

scriptlets [cf. Hall00, 242].

A declaration is always placed inside the servlet’s class but outside the ser-
vice() method [cf. BaSi04, 293].

The following example declares an integer global to the page (the integer’s val-

ue will be persistent throughout multiple requests until the servlet has been be

unloaded or recompiled):

<%! int count = 0; %>

5.4.2.2 Scriptlets

Scriptlets are used to embed code blocks within the JSP page. Scriptlets are

executed at request-processing time and are inserted into the servlet’s ser-
vice() method [cf. Pele01, 57].

These code blocks can be used for e.g. setting response headers and status

codes, invoking side effects (writing to log-files or updating a database), or exe-

cuting code that contains loops [cf. Hall00, 238].

The listing 5-3 shows a JSP with an embedded scriptlet.

JavaServer Pages™ Page 103

5.4.2.3 Expressions

Expressions are used to insert values directly into the output. They are evaluat-

ed at HTTP processing time, converted to a string and inserted at the according

position in the JSP file [cf. Pele01, 58].

Example: <%= new java.util.Date() %>

This expression inserts the current time.

Expressions become the argument to an out.print() statement. The JSP

container takes every character between <%= and %> and puts it as the argu-

ment to the PrintWriter out object [cf. BaSi04, 287]:

out.print(new java.util.Date());

For this reason an expression must never end with a semicolon! For example,

the following expression

<% new java.util.Date(); %>

results in

out.print(new java.util.Date(););

this will never compile.

<%@ page import="java.util.Calendar" %>
<html>
 <head>
 <title>AM/PM</title>
 </head>
 <body>
 <%
 if (Calendar.getInstance().get(Calendar.AM_PM) == Calendar.AM) {
 %>
 Good morning!
 <% } else { %>
 Good afternoon!
 <% } %>
 </body>
</html>

Listing 5-3: "AM_PM.jsp".

JavaServer Pages™ Page 104

5.4.2.4 Excursus: Bean Scripting Framework

Additionally to the above discussed scripting elements, JSPs can include scripts

written in non-Java programming languages with the aid of the Bean Scripting

Framework (BSF). Generally, the BSF is “a set of Java classes which provides

scripting language support within Java applications [not only within JSPs], and

access to Java objects and methods from scripting languages” [Bsf05a]. The

BSF provides “an API that permits calling scripting languages from within Java

as well as an object registry that exposes Java objects to these scripting lan-

guages engines” [BSF05a].

Initially, the BSF was an opensource IBM alphaworks project [IBM99]. In 2002,

IBM donated the entire project to the Jakarta project of the Apache organiza-

tion. At that time, the BSF project got released with the version number “BSF

2.3”. Since then, no further updates of the BSF project have been publicly avail-

able [Flat03], [BSF05a].

At the time of writing this thesis, BSF supplies the following scripting language

engines [BSF05a]:

• Javascript (using Rhino ECMAScript, from the Mozilla project),

• Python (using either Jython or JPython),

• Tcl (using Jacl),

• NetRexx (an extension of the IBM REXX scripting language in Java),

• XSLT Stylesheets (as a component of Apache XML project's Xalan and

Xerces).

In addition, at least the following languages are supported with their own BSF

engines [BSF05a], [Flat03]:

• ooRexx (using BSF4Rexx),

• Java (using BeanShell, from the BeanShell project),

• JRuby,

JavaServer Pages™ Page 105

• JudoScript,

• Groovy,

• ObjectScript.

As a complete demonstration of the BSF’s usage for its supported scripting lan-

guages would be far beyond this thesis’ scope the discussion will be limited to

how to include JavaScript and ooRexx programs into a JSP. Primarily, BSF’s

architecture will be discussed.

5.4.2.5 BSF’s Architecture

BSF primarily consists of two components:

• BSFManager: it handles “all scripting engines that run under its control

and maintains the object registry that permits scripts access to Java ob-

jects” [BSF05a].

• BSFEngine: it provides “an interface that must be implemented for the lan-

guage that the developer wants to use with BSF” [BSF05a] (for the above

mentioned programming languages this interface was already implement-

ed). The interface “provides an abstraction of the scripting language's ca-

pabilities that permits generic handling of script execution and object reg-

istration within the execution context of the scripting language engine”

[BSF05a].

5.4.2.5.1 Executing JavaScript inside a JSP

In order to be able to execute JavaScript within a JSP, the developer needs to

add the jars bsf.jar (available at [BSF05a]) and js.jar (available at [Moz-

i05b])50 to the Web application‘s lib directory.

Listing 5-4 shows a JSP with embedded JavaScript code.

50 Please note that the current release of Rhino cannot be used because the Apache BSF
project has “not yet released an official version incorporating all the necessary changes to
work with Rhino 1.5R4 or later” [Mozi05b]. This fact was confirmed by tests done on
Apache's Tomcat Servlet/JSP Container 5.5.7 [Tomc04], IBM's Websphere Application
Server 6.0 [IBM05b] and BEA's Weblogic Server 9.1 [Bea06].

JavaServer Pages™ Page 106

Firstly, a new instance of BSFManager is created. Secondly, the JSP’s path is

obtained that will be needed to pass as argument to execute the JavaScript.

Next, the implicit object out (see chapter 5.4.4, p. 121) is registered with the

BSFManager object in order to be able to print the script’s result to the JSP.

The string script contains the actual JavaScript that needs to be executed.

Then the BSFEngine scripting engine for JavaScript is loaded and finally the

JavaScript is executed which prints the current week day to the JSP.

5.4.2.5.2 Executing Object Rexx inside a JSP

The execution of Object Rexx (ooRexx) is not by default supported by the Bean

Scripting Framework. In order to be able to use ooRexx within a Web applica-

tion, the system on which the Web server is running needs to have a supported

<%@page contentType="text/html"%>
<%@page import="org.apache.bsf.BSFEngine" %>
<%@page import="org.apache.bsf.BSFException" %>
<%@page import="org.apache.bsf.BSFManager" %>
<html>
 <head>
 <title>BSF JavaScript example</title>
 </head>
 <body>
 <%
 BSFManager mgr = new BSFManager();
 String pathInfo = (request.getPathInfo() != null) ?
 request.getPathInfo() : "";
 String path = request.getContextPath() +
 request.getServletPath() + pathInfo;

 try {
 mgr.declareBean("out", out, out.getClass());
 String script = "var date = new Date();\n" +
 "var day = date.getDay();\n" +
 "var weekday = new Array('Sunday', 'Monday', " +
 "'Tuesday', 'Wednesday', 'Thursday', 'Friday', " +
 "'Saturday');\n" +
 "out.println(weekday[day]);";

 BSFEngine engine = mgr.loadScriptingEngine("javascript");
 engine.exec(path, 1, 0, script);
 }
 catch(BSFException ex) {
 ex.printStackTrace();
 }
 %>
 </body>
</html>

Listing 5-4: "bsf_javascript.jsp".

JavaServer Pages™ Page 107

Rexx interpreter installed51. Furthermore, the developer needs to obtain the BS-

F4Rexx software package which allows BSF to deploy ooRexx as an additional

scripting language for Java (the latest distribution is available at [BSF406]). The

BSF4Rexx software package primarily consists of two Java class libraries

(bsf-rexx-engine.jar and bsf-v205-20060203.jar52) and a compiled

C++ programm53. The libraries bsf-rexx-engine.jar and bsf-v205-
20060203.jar need to be added to the Web application‘s lib directory.

Listing 5-5 shows a JSP with embedded ooRexx code.

51 For further information on how to install an ooRexx interpreter on your system please refer to
[ooRe06].

52 Please note that the name of this jar-file might vary with upcoming releases.
53 As a detailed description of the BSF4Rexx’s architecture and installation is far beyond the

scope of this thesis, the reader is asked to refer to the documentation at [Flat03], [Flat04]
and [Flat06].

<%@page contentType="text/html"%>
<%@page pageEncoding="UTF-8"%>
<%@page import="org.apache.bsf.BSFEngine" %>
<%@page import="org.apache.bsf.BSFException" %>
<%@page import="org.apache.bsf.BSFManager" %>
<html>
 <head>
 <title>BSF ooRexx example</title>
 </head>
 <body>
 <%
 BSFManager mgr = new BSFManager();

 try {
 mgr.declareBean("out", out, out.getClass());

 BSFEngine engine = mgr.loadScriptingEngine("rexx");
 String script =
 "out=bsf.lookupBean('out') \n" +
 "directions=.array~of('North', 'South', 'East', 'West') \n" +
 "do entry over directions \n" +
 " out~write(entry'
') \n" +
 "end \n" +
 "::requires BSF.CLS \n" ;
 engine.eval("rexx", 0, 0, script);
 }
 catch(BSFException ex) {
 ex.printStackTrace();
 }
 %>

 </body>
</html>

Listing 5-5: “bsf_oorexx.jsp”.

JavaServer Pages™ Page 108

Similar to the JSP with embedded JavaScript (see listing 5-4, p. 106) a new in-

stance of BSFManager is created. Again, the implicit object out is registered

with the BSFManager object. The string script contains the actual ooRexx

code that needs to be executed. In the first line of the script a reference to the

implicit Java object out is obtained. The ooRexx object out now represents the

Java object out and allows the developer to call (within the ooRexx script) the

Java object’s methods on the proxy ooRexx object out. Next, an ooRexx array

with four values is created. In line three to five the script iterates over the array.

In line four the method write() is called on the ooRexx object out in order to

print the array’s values to the JSP. With the last line of the ooRexx script sup-

port for Object Rexx is loaded [Flat04].

5.4.3 Action Elements

Actions provide the possibility “to perform sophisticated tasks like instantiating

objects and communicating with server-side resources without requiring Java

coding” [Sesh00]. Even though the same objective can be achieved with

scriptlets, using action tags endorses “reusability of [...] components and en-

hances the maintainability of applications” [Sesh00]. With actions, files can be

inserted dynamically, JavaBeans can be reused, the user can be forwarded to

another page, or HTML for the Java plugin can be generated. Available actions

include [Hall00b]54:

• <jsp:useBean> – find or instantiate a JavaBean,

• <jsp:getProperty> – insert the property of a JavaBean into the out-

put,

• <jsp:setProperty> – set the property of a JavaBean,

• <jsp:include> – include a file at the time the page is requested,

• <jsp:forward> – forward the requester to a new page,

54 Only common Action elements will be discussed. For a complete listing please refer to the
current JavaServer Pages™ 2.0 specification available at [PeRo03].

JavaServer Pages™ Page 109

• <jsp:plugin> – generate browser-specific code that makes an <ob-
ject> or <embed> tag for the Java plugin.

5.4.3.1 jsp:useBean

This action provides the possibility to load in a JavaBean to be used in the JSP

page.

5.4.3.1.1 JavaBean - Definition

“The JavaBeans API provides a standard format for Java classes” [cf. Hall00,

287]. A JavaBean is often referred to simply as a Bean. A Bean is a “reusable

software component55 that is written in Java programming language” [Stear00].

Visual composition/manipulation tools can automatically discover information

about classes that follow this format and can then create and manipulate the

classes without having to write any code [Stear00].

Listing 5-6 shows the JavaBean UserBean.java.

55 “Software components are self-contained, reusable software units” [Stear00].

public class UserBean {
 private String name;
 private int id;
 private String email;
 public String getEmail() {
 return email;
 }
 public void setEmail(String email) {
 this.email = email;
 }
 public int getId() {
 return id;
 }
 public void setId(int id) {
 this.id = id;
 }
 public String getName() {
 return name;
 }
 public void setName(String name) {
 this.name = name;
 }
}

Listing 5-6: “UserBean.java”.

JavaServer Pages™ Page 110

Detailed explanation of JavaBeans would go beyond the scope of this thesis.

For further information and documentation concerning JavaBeans please refer

to Sun Microsystem’s JavaBean Web site at [Bean05].

5.4.3.1.2 Basic Bean Use

Before a Bean can be accessed within a JSP page, it is necessary to identify

the Bean and obtain a reference to it.

The syntax for inserting a JavaBean is:

<jsp:useBean id="beanInstanceName" class="bean class"
scope = "page | request | session |application" />

When the <jsp:useBean> tag is processed, the JSP container “performs a

lookup of the specified given Java object using the values specified in the id
and scope attributes. If the object is not found, it will attempt to create it using

the values specified in the scope and class attributes” [cf. WaFi00, 111].

Table 5-1 lists the <jsp:useBean> attributes [Hall00b].

JavaServer Pages™ Page 111

Attribute Description

id Assigns “a name to the variable that will reference the bean. A

previous bean object is used instead of instantiating a new one if

one can be found with the same id and scope” [Hall00b].

class Indicates the “fully qualified name of the class that defines the

implementation of the object” [cf. PeRo03, 1-104].

scope “Indicates the context in which the Bean should be made avail-

able” [Hall00b]. There are four possible values:

1. page: the bean is accessible only within the page where it

was created,

2. request: “the bean is only available for the current client

request” [Hall00b],

3. session: the bean “is available to all pages during the life

of the current HttpSession” [Hall00b],

4. application: the bean “is available to all pages that

share the same ServletContext” [Hall00b].

The scope attribute is important because “a jsp:useBean
entry will only result in a new object being instantiated if there is

no previous object with the same id and scope” [Hall00b].

type Defines “the type of the variable that will refer to the object”

[Hall00b]. The type must be ”either the class itself, a superclass

of the class, or an interface implemented by the class specified”

[cf. PeRo03, 1-105].

beanName This is the “name of a bean, as expected by the instantiate
method of the java.beans.Beans class” [cf. PeRo03, 1-104].

Table 5-1: "jsp:useBean” attributes.

Example: <jsp:useBean id="user" class="thesis.UserBean" />

JavaServer Pages™ Page 112

This example tries to locate an instance of the UserBean class. If no instance

exists, a new instance will be created. The instance can then be accessed with-

in the JSP page using the specified id (in this example user) of UserBean.

The equivalent scriptlet to that <jsp:useBean> action tag would be:

<% thesis.UserBean user = new thesis.UserBean (); %>

5.4.3.2 jsp:getProperty

As soon as a Bean has been declared with <jsp:useBean>, its properties can

be accessed through the <jsp:getProperty> tag [cf. WaFi00, 113].

The syntax for the tag <jsp:getProperty> is:

<jsp:getProperty
 name="beanInstanceName"
 property="propertyName"
/>

Table 5-2 lists <jsp:getProperty> attributes [cf. WaFi00, 114], [Hall00b].

Attribute Description

name This required attribute specifies “the name (id) of the bean

instance specified in the jsp:useBean tag” [cf. WaFi00, 114].

property This required attribute indicates the name of the bean's property

to be obtained.

Table 5-2: "jsp:getProperty" attributes.

Example:

<jsp:getProperty name="user" property="id" />

The JavaBean user’s property id will be printed to the output.

5.4.3.3 jsp:setProperty

The <jsp:setProperty> tag is used to set values “to properties of Beans

that have been referenced earlier” [Hall00b]. This can be done in two contexts:

JavaServer Pages™ Page 113

1. <jsp:setProperty> can be used outside of the corresponding

<jsp:useBean> element. In this case, the <jsp:setProperty> “is

executed regardless of whether a new Bean was instantiated or an exist-

ing Bean was found” [Hall00b].

2. <jsp:setProperty> can be placed inside the body of a <jsp:use-
Bean> element. The <jsp:setProperty> “is executed only if a new

object [i.e. a bean] was instantiated [by the surrounding <jsp:use-
Bean> action element], not if an existing one was found” [Hall00b]. That

means, that if the bean referenced by <jsp:useBean> already existed,

the <jsp:setProperty> action will not be executed (i.e. it is condition-

al), consequently the existing bean's property value will not be reset.

The syntax for the <jsp:setProperty> tag is:

<jsp:setProperty name="beanInstanceName" prop_expr />

Table 5-3 lists <jsp:setProperty> attributes [Hall00b], [cf. PeRo03, 1-105].

JavaServer Pages™ Page 114

Attribute Description

name This required attribute specifies “the name (id) of the bean

instance specified in the jsp:useBean tag” [cf. WaFi00, 115].

“The bean instance must contain the property” [cf. PeRo03, 1-

107] that is intended to be set.

property This required attribute indicates the property that is intended to

be set. If a value of “*” is set, “all request parameters whose

names match Bean property names will be passed to the

appropriate setter methods” [Hall00b].

value This optional attribute sets the value of the defined property. It

“can accept a request-time attribute expression as a value” [cf.

PeRo03, 1-107]. An action may not have both param and value
attributes.

param This optional attribute defines “the name of a request parameter

whose value is given to a bean property” [cf. PeRo03, 1-107]. If

param is omitted, “the request parameter name is assumed to be

the same as the Bean property name” [cf. PeRo03, 1-107].

Table 5-3: "jsp:setProperty" attributes.

Example:

<jsp:setProperty name="user" property="email"
value="florian@heinisch.cc" />

5.4.3.4 jsp:include

The jsp:include action includes a file at request time. So the JSP page does

not have to be retranslated into a servlet (in contrast to the include directive)

when the included file is changed [cf. Hall00, 270].

The page that is included can not set HTTP headers (such as setting the HTTP

response status code). Any attempts to set HTTP header will be simply ignored

[PeRo03, 1-109].

The syntax for the <jsp:include> tag is:

JavaServer Pages™ Page 115

<jsp:include page="UrlSpec" flush="true|false" />

Table 5-4 lists <jsp:include> attributes [cf. Hall00, 271], [cf. PeRo03, 1-109].

Attribute Description

page A relative URL (i.e. relative to the current JSP page) referencing

the file that has to be included.

flush Optional boolean attribute which controls flushing. If the value is

true, the buffer is flushed prior to the inclusion (presuming that

the page output is buffered)56. The default value is false.

Table 5-4: "jsp:include" attributes.

Example:

<jsp:include page="header.html" />

In contrast to the include directive where the source code of the included file is

simply copied (see chapter 5.4.1.2, p. 100), the include action inserts the re-

sponse of the included file at runtime. In the resulting servlet the include direc-

tive is translated into following statement (in bold) and placed within the ser-
vice method at the according place [cf. BaSi04, 402]:

…
out.write(_jsp_string1);
org.apache.jasper.runtime.JspRuntimeLibrary.include(request, re-
sponse, "header.html", out, false);
out.write(_jsp_string2);
…

5.4.3.5 jsp:forward

The jsp:forward element “allows the runtime dispatch of the current request

to a static resource, a JSP page or a Java servlet class in the same context as

the current page. A jsp:forward tag effectively terminates the execution of

the current page” [cf. Pele01, 79].

The syntax for the jsp:forward tag is:

56 The output of a JSP page can be buffered. Buffering is outside the scope of this thesis. For
further information please refer to [PeRo03, 1-46].

JavaServer Pages™ Page 116

<jsp:forward page="relativeURLspec" />

Example:

<jsp:forward page="shopping_cart.jsp" />

5.4.3.6 jsp:plugin

The jsp:plugin action provides the possibility to insert the Web browser-spe-

cific OBJECT or EMBED element that is needed to be declared in order to embed

an applet in a Web browser [cf. Pele01, 81].

The syntax for the <jsp:plugin> tag is:

<jsp:plugin type="bean|applet" code="objectCode" />

The attributes of the <jsp:plugin> tag supplies “configuration data for the

presentation of the element” [cf. Pele01, 81]. The most commonly used at-

tributes57 are listed in table 5-5 [cf. Hall00, 275].

Attribute Description

type Identifies the type of the component: a Bean or an Applet.

code Specifies “the top-level applet class file that extends Applet or

JApplet”.

width Specifies “the width in pixels to be reserved for the applet”

[Hall00b]. “Accepts a run-time expression value” [cf. PeRo03, 1-

115].

height Specifies “the height in pixels to be reserved for the applet”

[Hall00b]. “Accepts a run-time expression value.” [cf. PeRo03, 1-

114].

Table 5-5: "jsp:plugin" attributes.

57 For a complete listing of the <jsp:plugin> attributes please refer to the JavaServer
Pages™ 2.0 specification available at [PeRo03].

JavaServer Pages™ Page 117

5.4.3.7 Example: JSP Using a JavaBean

This example shall demonstrate how to use standard actions in order to create

a JavaBean, store an HTML-form’s data in the JavaBean and finally display the

JavaBean’s properties to the user.

Therefore created two files were created:

1. userForm.html: contains a simple HTML-form where the user enters

his name, his id and his email address (see listing 5-7).

2. userBean.jsp: creates a JavaBean, assigns the form-data to the ac-

cording JavaBean properties and displays the data to the user (see list-

ing 5-8).

The HTML tag <form method="post" action="userBean.jsp"> indi-

cates that the form-data will be transmitted via the HTTP method POST to be

processed by the file userBean.jsp, as shown in listing 5-8.

<html>
 <head>
 <title>User Form</title>
 </head>
 <body>
 <h1>User Form</h1>
 <form method="post" action="userBean.jsp">
 Name

 <input name="name" type="text" id="name" size="20">

 ID

 <input name="id" type="text" id="id" size="20">

 Email

 <input name="email" type="text" id="email" size="20">

 <input name="submit" type="submit" value="Submit">
 </form>
 </body>
</html>

Listing 5-7: "userForm.html".

JavaServer Pages™ Page 118

The userForm.html’s filled out form displayed in a Web browser looks as

shown in figure 5-3.

As explained in chapter 5.4.3.1 (p. 109), the action <jsp:useBean /> causes

the JSP container to look for a Java object specified by the attribute id in the

specified scope. If there is no scope attribute, the default scope is page. If the

container cannot find the referenced JavaBean in the specified scope (based on

the attributes id and scope) it will create a new instance of the class that is

specified in the class attribute. In this example, the container does not find an

instance of UserBean referenced by id="user" in the scope session so it

creates a new instance and assigns it to the scope session.

Figure 5-3: "userForm.html" displayed in a Web browser.

<html>
 <head>
 <title>User Bean</title>
 </head>
 <body>
 <h1>User data</h1>
 <jsp:useBean id="user" class="cc.heinisch.thesis.UserBean"
 scope="session">
 <jsp:setProperty name="user" property="*" />
 </jsp:useBean>
 Name: <jsp:getProperty name="user" property="name" />

 ID: <jsp:getProperty name="user" property="id" />

 Email: <jsp:getProperty name="user" property="email" />

 </body>
</html>

Listing 5-8: "userBean.jsp".

JavaServer Pages™ Page 119

Next, the nested <jsp:setProperty name="user" property="*" />
tag will pass all request parameters (i.e. name, id and email) to the according

setter methods of the JavaBean UserBean (see chapter 5.4.3.3, p. 112). Con-

sequently, the JavaBean is populated with the form-data.

The next step is to retrieve the JavaBean’s properties. Since the scope of the

JavaBean was assigned the value session, the JavaBean’s instance will be

accessible as long as the session remains valid. In order to retrieve one of the

JavaBean’s properties, the statement <jsp:getProperty name="user"
property="name" /> is used in the JSP where the property shall be dis-

played. The attribute name references the JavaBean instance that was speci-

fied by the id attribute within the <jsp:useBean id="user" … /> tag and

the attribute property defines the JavaBean’s property that shall be retrieved.

If the form's button “Submit” of the file userForm.html (see 5-3, p. 118) is hit,

the page as shown in figure 5-4 is displayed.

If scriptlets and expressions were used instead of actions the JSP user-
Bean.jsp would like as shown in listing 5-9.

Figure 5-4: "userBean.jsp" diplayed in a Web browser.

JavaServer Pages™ Page 120

First, a new UserBean instance is instantiated and assigned it to the implicit ob-

ject (see chapter 5.4.4, p. 121) session.

In order to set the form field's data to according bean properties, the corre-

sponding JavaBean’s setter method is called and the field’s data (which is ob-

tained by the statement getParameter("fieldname")) is passed as the ar-

gument. As the retrieved form-data are of type string and the JavaBean’s prop-

erty id is of type int, it needs to be converted to int before it can be passed as

an argument to the setId() setter method. The <jsp:setProperty /> tag

converts primitive properties automatically which makes the populating of

JavaBeans very convenient [cf. BaSi04, 361].

Finally, the JavaBean’s properties are displayed with expressions by calling the

according JavaBean’s getter methods.

As the JavaBean was assigned the scope session, the JavaBean’s properties

can be retrieved in any other JSP as long as the session is still active. With ac-

tions, such a property can simply be retrieved by

<jsp:getProperty name="user" property="name" />

If scriptlets and expressions are used, this is not as simple as with actions:

<html>
 <head>
 <title>User Bean Scriptlet</title>
 </head>
 <body>
 <h1>User data</h1>
 <%
 cc.heinisch.thesis.UserBean user =
 new cc.heinisch.thesis.UserBean();
 session.setAttribute("user", user);
 user.setName(request.getParameter("name"));
 user.setId(Integer.parseInt(request.getParameter("id")));
 user.setEmail(request.getParameter("email"));
 %>
 Name: <%= user.getName() %>

 ID: <%= user.getId() %>

 Email: <%= user.getEmail() %>

 </body>
</html>

Listing 5-9: "userBean_scriptlet.jsp".

JavaServer Pages™ Page 121

<%
cc.heinisch.thesis.UserBean user =
(cc.heinisch.thesis.UserBean)session.getAttribute("user");
%>
Name: <%= user.getName() %>

At first, the JavaBean needs to be referenced. Because the statement ses-
sion.getAttribute("user") returns a object of type Object it needs to

be casted to the required type (in this case UserBean). Then the according get-

ter method can be called.

5.4.4 Implicit Objects

When the JSP container translates the JSP into a servlet, it declares and as-

signs implicit objects at the beginning of the service() method. With implicit

objects, developers can “access container-provided services and resources”

[Gabh03b]. These objects are called implicit because developers do not have to

explicitly declare them. As they are declared automatically by the container, de-

velopers only need to use the reference variable associated with the implicit ob-

ject to begin calling methods on it [cf. BaSi04, 296].

In listing 5-1 (see p. 97), the following implicit objects are declared:

PageContext pageContext = null;
HttpSession session = null;
ServletContext application = null;
ServletConfig config = null;
JspWriter out = null;
Object page = this;

Implicit objects are “always available for use within scriptlets and scriptlet ex-

pressions” whereas “each implicit object has a class or interface type that is de-

fined in a core Java technology or in the Java Servlet API package” [cf. PeR-

o03, 1-40].

According to the JSP Specification, there are nine implicit objects. Table 5-6

provides a brief description of each one’s function and the according Java type

[Gabh03b], [cf. PeRo03, 1-41].

JavaServer Pages™ Page 122

Variable
name

Type Description

application javax.servlet.ServletContext “Allows the JSP page's
servlet and any Web
components contained
in the same application
to share information”
[Gabh03b].

config javax.servlet.ServletConfig “Allows initialization data
to be passed to a JSP
page's servlet”
[Gabh03b].

exeption java.lang.Throwable Contains “exception
data that can be
accessed only by
designated JSP error
pages” [Gabh03b].

out javax.servlet.jsp.JspWriter “Provides access to the
servlet's output stream”
[Gabh03b].

page java.lang.Object “Is the instance of the
JSP page's servlet
processing the current
request58” [Gabh03b].

pageContext javax.servlet.jsp.PageContext Provides access to the
pageContext object
for this JSP page.

request javax.servlet.http.HttpServletRequest “Provides access to
HTTP request data”
[Gabh03b].

response javax.servlet.http.HttpServletResponse Provides “direct access
to the
HTTPServletRespons
e object” [Gabh03b].

session javax.servlet.http.HttpSession Is a reference to “the
session object created
for the requesting client
(if any)” [cf. PeRo03, 1-
41].

Table 5-6: Implicit objects.

58 page is a synonym for this in the body of the page [cf. PeRo03, 1-41].

JavaServer Pages™ Page 123

5.5 Script-free JSP Pages

Although scriptlets provide a fast and convenient way to add dynamic content to

a JSP, scriptlets “introduce more long-term complexity [to JSP pages] than they

offer in terms of short-term benefit” [McLa03]. Scriptlets pose the following prob-

lems [McLa03]:

• As scriptlets mix HTML with Java code, authoring and debugging be-

comes problematic.

• Scriptlets are not reusable. As a consequence, if the same scriptlet is

needed in different JSP pages, the scriptlet has to be placed into each

JSP page which “results in multiple versions of the same Java code”

[McLa03].

• Since scriptlets have no clean-cut way to display script errors, they make

error reporting difficult.

In chapter 5.4.3 (p. 108) JSP standard actions were introduced which provide a

way to reduce the usage of scriptlets. But usually, developers need more func-

tionality than the JSP standard actions offer. However, there is no need to re-

sort to scripting: since JSP 1.1 it is possible to create ones own JSP actions in

the form of custom tags (which are extensions of the JSP language).

Fortunately, there is a standard library of custom tags known as the JSP Stan-

dard Tag Library (JSTL 1.1) which offers a wide range of common functionality

so that there should be no need to develop ones own custom tags in order to

produce script-less JSPs [cf. BaSi04, 435].

JSTL makes extensive use of the JSP expression language (EL). But as the ex-

pression language is now part of the JSP Specification (since version 2.0) it will

be discussed separately before moving to the discussion of how to use custom

tags, how to use the JSTL libraries and how to create ones own custom tags.

JavaServer Pages™ Page 124

5.5.1 Expression Language

The JSP Specification 2.0 came up with an important new feature: the JSP ex-

pression language (EL). The concept of the expression language was primarily

introduced with the JSP Standard Tag Library (JSTL) but its use was limited to

the JSTL tags only (see chapter 5.5.3, p. 132). However, since JSP 2.0 was fi-

nalized, the expression language is supported throughout JSP pages [Thom05].

5.5.1.1 Expression Language Definition

The Expression Language (EL) is “inspired by [...] the ECMAScript and the

XPath expression languages” [cf. PeRo03, 1-64]. It provides a way to simplify

expressions in JSP. The expression language can be used in attribute values

for standard and custom actions as well as within template text. The expression

language is invoked consistently via the construct ${expr} (expr stands for a

valid expression). Consequently, EL expressions are always contained within

curly braces and prefixed with the dollar sign.

5.5.1.2 Valid Expressions

Valid expressions can include variables (i.e. object references), literals and op-

erators, reserved words or predefined implicit objects [Thom05].

5.5.1.2.1 Variables for Object Access

The data of a Web application in a JSP usually consists of objects that “comply

with the JavaBeans specification, or that represent collections such as lists,

maps or arrays” [cf. Deli03, p. 15].

Therefore, “a core concept in the EL is the evaluation of a variable name into an

object” [cf. PeRo03, p.1-75]: the EL evaluates the variable name “by looking up

its value as an attribute” [cf. PeRo03, p.1-75]. For example:

${user}

This expression looks for the attribute named user by “searching the page, re-

quest, session and application scopes” [cf. PeRo03, p. 1-75]. If it finds the ob-

ject it will return its value – if not, null is returned. But if the variable name

JavaServer Pages™ Page 125

matches one of the implicit objects (see chapter 5.4.4, p. 121), the implicit ob-

ject instead of the variable value will be returned. Consequently, the variable

name in an expression is either an implicit object or an attribute in one of the

four scopes.

Furthermore, the EL provides two operators in order to access the data that are

encapsulated in the returned object: “.” and “[]”.

The dot operator

The dot operator can be used to access properties of a JavaBean or values of a

map (this is valid for both implicit objects or attributes). For example:

${user.name}

If the EL expression contains a variable followed by a dot there are three rules:

1. the variable must be a map or JavaBean,

2. the identifier after the dot “must be a map key or a Bean property” [cf.

BaSi04, p. 368],

3. the identifier after the dot “must follow normal Java naming rules for iden-

tifiers” [cf. BaSi04, p. 368].

The variable in the expression above is either a JavaBean that has the property

name and the according getter- and setter-methods (i.e. getName(), set-
Name()) or a map that has a key name [cf. BaSi04, p. 368].

The expression ${user.name} produces the same result as the JSP action

<jsp:getProperty name="user" property="name" /> that was used

in the example to demonstrate the usage of actions (see chapter 5.4.3.7, p.

117).

The bracket operator

The bracket [] operator can be used to access JavaBeans’ properties, map

values (as with the dot-operator) and also to access lists and arrays. Addition-

ally, the characters within the brackets do not have to follow Java naming rules

JavaServer Pages™ Page 126

for identifiers. JavaBean properties or map values are simply accessed by plac-

ing the property’s name or the map’s key as a string literal into the brackets [cf.

BaSi04, p. 370]. For example:

$user["name"]

This expression produces the same result as ${user.name}.

The EL for accessing an array or a list is the same. For example:

$array[0]

Provided that array is an array (or a list) who’s first value has the index 0 this

expression returns the array’s first value. The following expression produces the

same result:

$array["0"]

If the characters within the brackets (i.e. the index) are a string literal then “the

index is coerced to an int” [cf. BaSi04, p. 372].

5.5.1.2.2 Arithmetic, Logical and Relational Operators

EL expression may also contain calculations and logic. The following sections

list the available operators.

Arithmetic Operators

Arithmetic operators are provided “to act on integer [...] and floating point [...]

values” [cf. PeRo03, p. 1-69]. There are five operators :

• Addition: +

• Subtraction: -

• Multiplication: *

• Division: / and div

• Remainder: % and mod

JavaServer Pages™ Page 127

Logical Operators

There are three logical operators [cf. PeRo03, p. 1-73]:

• AND: && and and

• OR: || and or

• NOT: ! and not

Relational Operators

There are six relational operators [cf. PeRo03, p. 1-71]:

• Equals: == and eq

• Not equals: != and ne

• Less than: < and lt

• Greater than: > and gt

• Less than or equal to: <= and le

• Greater than or equal to: >= and ge

5.5.1.2.3 Reserved Words

There are currently 16 reserved words defined by the JSP Specification that

“should not be used as identifiers” [cf. PeRo03, p. 1-75]. Eleven of these words

were already introduced in chapter 5.5.1.2.2, p. 126 (i.e. div, mod, and, or,

not, eq, ne, lt, gt, le, ge). Although the JSP Specification 2.0 states that

“many of these words are not in the language now but they may be in the fu-

ture” [cf. PeRo03, p. 1-75] only one word is not in the language at the time of

writing. Table 5-7 lists the remaining five reserved words.

JavaServer Pages™ Page 128

Reserved word Description

empty An operator to see if something is null or empty. E.g.

${empty user} returns null if user is empty or null.

false Boolean literal.

instanceof Currently not defined.

null Simply means null.

true Boolean literal.

Table 5-7: Reserved words.

5.5.1.2.4 Implicit Objects

The expression language defines a set of eleven implicit objects – but these are

not the same as the JSP implicit objects (except for the pageContext object).

All but one (the pageContext object) are simple Maps [cf. BaSi04, p. 381].

Table 5-8 provides an overview and a description of the EL implicit objects [cf.

PeRo03, p. 1-66].

JavaServer Pages™ Page 129

EL implicit object Description

pageContext This is the context for the JSP page which can be

used to access the JSP implicit objects (such as

request, response).

param “A map that maps parameter names to a single String

parameter value” [cf. PeRo03, p. 1-66].

paramValues “A map that maps parameter names to a String[]
[i.e. a String array] of all values to that parameter” [cf.

PeRo03, p. 1-66].

header “A map that maps header names to a single String

header value” [cf. PeRo03, p. 1-66].

headerValues “A map that maps header names to a String[] [i.e.

a String array] of all values for that header” [cf.

PeRo03, p. 1-66].

cookie “A map that maps cookie names to a single Cookie

object” [cf. PeRo03, p. 1-66].

initParam “A map that maps context initialization parameter

names to their String parameter value” [cf. PeRo03, p.

1-67].

pageScope “A map that maps page-scoped attribute names to

their values” [cf. PeRo03, p. 1-66].

requestScope “A map that maps request-scoped attribute names to

their values” [cf. PeRo03, p. 1-66].

sessionScope “A map that maps session-scoped attribute names to

their values” [cf. PeRo03, p. 1-66].

appliciationScope “A map that maps application-scoped attribute names

to their values” [cf. PeRo03, p. 1-66].

Table 5-8: EL implicit objects.

JavaServer Pages™ Page 130

Examples:

${pageContext.request.method} returns the HTTP request’s method.

${param.id} is equivalent to <%= request.getParameter("id") %>

${header.host} is equivalent to <%= request.getHeader("host") %>

${sessionScope.user.name} only looks for a Map or a JavaBean in the

scope session (if sessionScope is omitted then the expression would look in

all four scopes).

5.5.2 Using Customs Tags

“Custom tags are user-defined JSP language elements” [ArBa04] (i.e. actions)

that encapsulate a specific functionality. Custom tags accomplish the same goal

as JSP standard actions: complex code is encapsulated into a simple and ac-

cessible form that is available for (re)use [cf. Hall00, 309].

Custom tags “do not offer more functionality than scriptlets, they simply provide

better packaging” [Mahm01] of source code in order to “improve the separation

of business logic and presentation logic” [Mahm01]. The core benefits of custom

tags are:

• Scriptlets can be reduced or rather eliminated: consequently, the syntax of

the JSP page is kept clean and simple.

• Custom tags are reusable: consequently, “they save development and

testing time” [Mahm01].

Custom tags are distributed in a tag library which contains two components that

work together [Spiel01]:

• Tag handlers: a Tag handler is a Java class that contains the functional

logic for a custom tag.

• Tag library descriptor (TLD): the TLD is an XML document that describes

the library. It contains “information about the library as a whole and about

each tag contained in the library” [Spiel01].

JavaServer Pages™ Page 131

In order to use a custom tag in a JSP, the developer must [ArBa04]:

• declare the tag library that contains the tag,

• “make the tag library implementation available to the Web application” [Ar-

Ba04].

5.5.2.1 Syntax

There are two types of custom tags and both can have attributes [ArBa04]:

• Bodyless custom tags: a bodyless tag is an empty element. It has the syn-

tax:

<prefix:tag attr1="value" ... attrN="value" />

• Custom tags with a body: a custom tag with a body has a start tag and a

matching end tag. It has the syntax:

<prefix:tag attr1="value" ... attrN="value" >
 body
</prefix:tag>

prefix distinguishes tags for a library, tag identifies the library’s tag and

attri1 ... attriN are attributes that modify the behavior of a tag.

5.5.2.2 Declaring the Tag Library

In order to declare that a JSP page will use tags defined in a tag library, the de-

veloper must include a taglib directive in the JSP “before any custom tag from

that library is used” [ArBa04]:

<%@ taglib prefix="tt" uri="URI" %>

The attribute prefix is used to define the prefix that “distinguishes the tags de-

fined by a given tag library from those provided by other tag libraries” and “the

attribute uri refers to a URI that uniquely identifies the tag library descriptor

(TLD)” [ArBa04].

JavaServer Pages™ Page 132

5.5.2.3 Including the Tag Library Implementation

Finally, in order to be able to use custom tags in ones JSP, the developer “must

make the tag library implementation available to the Web application” [ArBa04].

The tag library can be included in an unpacked or packed format:

• Unpacked format: the TLD-file has to be placed either directly in the

/WEB-INF directory or inside a sub-directory of /WEB-INF (e.g. /WEB-
INF/tld). The tag handlers have to be packaged in the /WEB-
INF/classes directory.

• Packed Format: the tag library is packaged into a JAR-file59 and simply

has to be included in the /WEB-INF/lib directory.

5.5.3 Java Standard Tag Library (JSTL)

There are many development teams that “implemented a set of custom tag li-

braries to accomplish basic Java Bean manipulation and conditional logic func-

tionality” [cf. Holm04, 333] for their projects. Even though many of these imple-

mentations are quite similar, each is a little different in the scope of functionality

and each uses different names for its tags and attributes. Due to the “duplica-

tion of effort across multiple projects, the need arose for a common, standard-

ized set of tag libraries that can be used universally” [cf. Holm04, 333]. Further-

more, a standardized set of tags eliminates “the need to learn the details of dif-

ferent tag libraries” [cf. Holm04, 333]. Therefore, the JSP Standard Tag Library

(JSTL) was created.

The JSTL’s tag libraries provide “a set of tags that implement general-purpose

functionality for

• iteration and conditional processing,

• data formatting and localization,

• XML manipulation,

• database access” [cf. Holm04, 333],

59 For detailed information on JARs please refer to [Sun05b].

JavaServer Pages™ Page 133

• String manipulation [cf. Deli03, 2].

5.5.3.1 JSTL Tag Libaries

The JSTL’s tag libraries “offer the base functionality needed by most applica-

tions” [cf. Holm04, 337]. Like any other JSP tag libraries, the JSTL tag libraries

work “with the added functionality of the expression language for tag attribute

values” [cf. Holm04, 337].

Table 5-9 lists each of the JSTL tag libraries.

Library Prefix Description

Core c “Provides tags for conditional logic, loops, output, vari-

able creation, text imports and URL manipulation” [cf.

Holm04, 337].

Format fmt “Provides tags for formatting dates, numbers, localizing

text messages” [cf. Holm04, 337].

SQL sql “Provides tags for making SQL queries to databases”

[cf. Holm04, 337].

XML x “Provides tags for parsing of XML documents, selection

of XML fragments, flow control based on XML, XLST

transformation” [cf. Holm04, 337].

Functions fn Provides tags for getting a Collection’s size and for

string manipulation [cf. Deli03, 167].

Table 5-9: JSTL tag libraries.

JavaServer Pages™ Page 134

5.5.3.2 Using JSTL Tag Libraries

In order to use JSTL in JSPs, JSTL-files (i.e. jstl.jar and standard.jar)60

need to be added to the Web applications library directory (i.e. /WEB-INF/lib,

see chapter 4.6, p. 85) and the Tag Library Descriptors (TLDs) have to be refer-

enced from the JSP. Since JSP 2.0, referencing the Tag Library Descriptor is

done by simply placing a taglib directive (see chapter 5.4.1.3, p. 101) at the be-

ginning of the JSP, such as [cf. Holm04, 340], [cf. BaSi04, 475]:

<%@
taglib prefix="c" uri=" http://java.sun.com/jsp/jstl/core"
%>

Table 5-10 lists the URI for each of the JSTL libraries [cf. Holm04, 340], [cf.

Deli03, 2].

Library Prefix URI

Core c http://java.sun.com/jsp/jstl/core

Format fmt http://java.sun.com/jsp/jstl/fmt

SQL sql http://java.sun.com/jsp/jstl/sql

XML x http://java.sun.com/jsp/jstl/xml

Functions fn http://java.sun.com/jsp/jstl/functions

Table 5-10: JSTL URIs.

The URI is just a unique name for the tag library and not any actual location

(such as a path or an URL). The JSP container will not “try to request some-

thing from the URI” [cf. BaSi04, 474]. It is a convention Sun Microsystems uses

for the URI in order “to help ensure that it is a unique name” [cf. BaSi04, 474].

This chapter does not cover every JSTL tag. Only the usage of a few tags from

the Core library will be discussed to give the reader an idea how to use the JSP

Standard Tag Library. Please refer to the reference pages at [Sun05c] for a

complete list of the JSTL tags and their attributes.

60 These jars are available at [JSTL04].

JavaServer Pages™ Page 135

5.5.3.2.1 Conditional Tags

The core library provides two different conditionalization tags: <c:if> and

<c:choose>.

<c:if> “simply evaluates a single test expression and then processes its body

content only if that expression evaluates to true” [Kolb03]. If not, the tag's body

content is simply ignored. Listing 5-10 shows the syntax for <c:if>.

Listing 5-10 shows that <c:if> can “optionally assign the result of the test to a

scoped variable through its var and scope attributes” [Kolb03]. This can be es-

pecially useful “if the test is expensive: the result can be cached in a scoped

variable and retrieved in subsequent calls to <c:if> or other JSTL tags” [Kol-

b03].

In chapter 5.4.3.7 (p. 117), an explanation of how to use a JavaBean was pro-

vided. The JavaBean is stored in session scope so the user’s data can be dis-

played in every JSP as long as the session remains valid. If the session is not

valid any more the Java Bean’s data will not be accessible. Therefore, any JSP

trying to display the user’s data should test whether the data is still available, as

depicted in listing 5-11.

<c:if test="expression" var="name" scope="scope">
 body content
</c:if>

Listing 5-10: Syntax for the <c:if> action.

<%@ taglib uri="http://java.sun.com/jsp/jstl/core" prefix="c"%>
<html>
 <head>
 <title>User data</title>
 </head>
 <body>
 <h1>User data</h1>
 <c:if test="${user != null}">
 Name: ${user.name}

 ID: ${user.id}

 Email: ${user.email}

 </c:if>
 </body>
</html>

Listing 5-11: "userInfo1.jsp".

JavaServer Pages™ Page 136

userInfo1.jsp performs a simple conditional test whether the user’s data

can be accessed using the JSTL’s <c:if> tag. The attribute test does the

conditional testing using an expression language statement: so if the variable

user is not null then the content within the <c:if> tags will be displayed –

otherwise it simply will be ignored.

Listing 5-11 demonstrates that the <c:if> tag provides a compact notation for

simple cases of conditionalized content. The second conditionalization tag pro-

vided by the JSTL core library <c:choose> is for cases “in which mutually ex-

clusive tests are required to determine what content should be displayed” [Kol-

b03]. Listing 5-12 shows the syntax for the <c:choose> action.

“Each condition that has to be tested is represented by a corresponding

<c:when> tag” [Kolb03]. There can be several <c:when> tags but there must

be at least one. The body content of the first <c:when> tag whose test evalu-

ates to true will be processed. If none of the <c:when> tests return true then

the body content of the <c:otherwise> tag will be processed.

Listing 5-13 shows an example using the <c:choose> tag. In the case that the

session is not valid any more and consequently the user’s data cannot be dis-

played, the JSP displays an according error message.

<c:choose>
 <c:when test="expression">
 body content
 </c:when>
 ...
 <c:otherwise>
 body content
 </c:otherwise>
</c:choose>

Listing 5-12: Syntax for the <c:choose> action.

JavaServer Pages™ Page 137

5.5.4 Creating Custom Tags

If JSP standard actions and the JSP Standard Tag Library (or any other tag li-

brary) do not provide the functionality needed in a JSP, there is still the possi-

bility to create ones own custom tags.

In this chapter it will be demonstrated how to implement a simple custom tag

date that is intended to display the current date. Additionally this custom tag

can include the attribute format that provides the possibility to format the date

by declaring a date pattern, such as:

<simple:date format="d/MM/yyyy" />

The following steps are necessary, to implement a custom tag [cf. BaSi04, 503]:

• write the tag handler class,

• create the tag library descriptor,

• deploy the tag handler and the tag library descriptor,

• write a JSP that uses the tag.

<%@ taglib uri="http://java.sun.com/jsp/jstl/core" prefix="c"%>
<html>
 <head>
 <title>User data</title>
 </head>
 <body>
 <h1>User data</h1>
 <c:choose>
 <c:when test="${sessionScope.user != null}">
 Name: ${user.name}

 ID: ${user.id}

 Email: ${user.email}

 </c:when>
 <c:otherwise>
 The user's data can not be accessed!
 </c:otherwise>
 </c:choose>
 </body>
</html>

Listing 5-13: "userInfo2.jsp".

JavaServer Pages™ Page 138

5.5.4.1 Tag Handler Class

The tag handler class determines what to do when a tag is referenced. The

functionality of a custom tag is packaged within this class. It is “invoked by the

JSP runtime to evaluate the custom tag during the execution of a JSP page that

references the tag” [Mahm01].

The JSP Specification defines two different types of tag handlers:

• Simple tag handlers: “can be used only for tags that do not use scripting

elements in attribute values or the tag body” [ArBa04].

• Classic tag handlers: “must be used if scripting elements are required” [Ar-

Ba04].

Simple tag handlers were introduced with JSP 2.0. Compared to classic tag

handlers (which were introduced with JSP 1.1) whose API and invocation pro-

tocol is rather complex, simple tag handlers provide “an easier way to imple-

ment custom actions” [Thom05].

As the purpose of this thesis is to provide an overview of JSP, the discussion

will be limited to the development of simple tag handlers without bodies. For fur-

ther information concerning the development of custom tags please refer to

[Sun05d].

A simple tag handler must implement the SimpleTag interface. A convenient

way to do so is to extend the SimpleTagSupport class that provides a default

implementation for all methods in SimpleTag. The class diagram in figure 5-5

the SimpleTag interface and the convenience class SimpleTagSupport.

JavaServer Pages™ Page 139

The “core” of the simple tag handler is the method doTag() which gets called

when the tag’s end element is encountered. Please note, that the default imple-

mentation of the doTag() method of the SimpleTagSupport class does not

do anything. Therefore, this method needs to be overwritten.

The simple tag handler class has access to the JSP context object

javax.serlvlet.jsp.JspContext that “allows it to communicate with the

JSP page” [ArBa04]. As the PageContext class extends the JspContext
class, those classes provide access to all implicit objects (see chapter 5.4.4, p.

121) that are accessible from within a JSP page (such as request, session,

and application) [ArBa04].

Listing 5-14 shows the simple tag handler DateTag.java that encapsulates

the functionality to display a formatted date.

Figure 5-5: SimpleTag class diagram.

void doTag()
JspTag getParent()
void setJspBody(JspFragment)
void setJspContext(JspContext)
void setParent(JspTag parent)
setContentType(String)

SimpleTag

SimpleTagSupport class
(javax.servlet.jsp.tagext.SimpleTagSupport)

SimpleTag interface
(javax.servlet.jsp.tagext.SimpleTag)

SimpleTagSupport

void doTag()
JspTag findAncestorWithClass(JspTag, Class)
JspFragment getJspBody()
JspContext getJspContext()
JspTag getParent()
void setJspBody(JspFragment)
void setJspContext(JspContext)
void setParent(JspTag parent)
setContentType(String)

JavaServer Pages™ Page 140

If a custom tag needs attributes the developer has to provide “a Bean-style set-

ter method in the tag handler class for each attribute. If the tag invocation in-

cludes attributes, the [JSP] container invokes [the according] setter method for

each attribute” [cf. BaSi04, 511].

As the custom tag date can include one attribute called format, the tag han-

dler declares the private member variable format and the corresponding set-
Format() method. In the event that no attribute is included, the string format
is initialized with a default pattern.

The method doTag() contains the tag’s functionality. In order to format the cur-

rent date, an object of type DateFormat is instantiated, passing the string for-

mat as argument to the constructor. Next, a JspContext reference is obtained

by calling getJspContext(). The JspContext object provides access to the

implicit object JspWriter by calling getOut(). Finally, the formatted date is

printed to the servlet’s (i.e. the translated JSP) output-stream.

5.5.4.2 Tag Library Descriptor (TLD)

In order to be able to implement the custom tag, the tag handler must be de-

clared in a tag library descriptor (TLD). As pointed out in chapter 5.5.2 (p. 130),

a TLD is an XML document that “includes documentation on the tag library as a

import java.io.IOException;
import java.text.DateFormat;
import java.text.SimpleDateFormat;
import java.util.Date;
import javax.servlet.jsp.JspException;
import javax.servlet.jsp.tagext.SimpleTagSupport;
public class DateTag extends SimpleTagSupport {
 private String format = "MMMM d, yyyy";
 public void setFormat(String format) {
 this.format = format;
 }

 public void doTag() throws JspException, IOException {
 DateFormat formatter = new SimpleDateFormat(format);
 getJspContext().getOut().print(formatter.format(new Date()));
 }
}

Listing 5-14: Simple tag handler "DateTag.java".

JavaServer Pages™ Page 141

whole and on its individual tags” [cf. PeRo03, 1-160]. The custom tag's TLD “is

used by the JSP container to interpret pages that include taglib directives re-

ferring to that tag library [cf. PeRo03, 1-160].

The TLD-files names must have the extension .tld. If a tag library is deployed

inside a JAR-file, the TLD must be in the META-INF directory or a subdirectory

of it. The tag library can also be directly deployed to the Web application.

Please see chapter 5.5.2.3 (p. 132) for details [ArBa04].

A TLD-file must begin with the root element taglib that specifies the XML

Schema and the required JSP version:

<taglib xmlns="http://java.sun.com/xml/ns/j2ee"
 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
 xsi:schemaLocation="http://java.sun.com/xml/ns/j2ee/web-
 jsptaglibrary_2_0.xsd"
 version="2.0">

Table 5-11 lists the subelements61 of the taglib element [ArBa04].

Element Description

tlib-version Indicates the tag library's version.

uri This is the URI that “uniquely identifies the tag library”

[ArBa04]. It is used by the taglib directive’s attribute uri
to refer to a specific tag library.

tag For each custom tag in the library there must be a tag
element (which contains other subelements) declaring the

custom tag.

Table 5-11: Subelements of the taglib element.

Each custom tag must be declared in the TLD with a tag element. The tag ele-

ment provides the tag name, the class of its tag handler and information on the

tag's attributes.

61 Only those elements needed to implement a simple custom tag will be discussed. For all
possible subelements please refer to the JSP Specification 2.0 available at [PeRo03].

JavaServer Pages™ Page 142

Table 5-12 lists the tag element’s subelements62 [ArBa04].

Element Description

description Indicates “a description of the tag” [ArBa04] (optional).

name The unique tag name that is used to reference the tag from

within the JSP page (e.g. <simple:date>).

tag-class Indicates “the fully qualified name of the tag handler class”

[ArBa04].

body-content Used “to specify the type of body that is valid for a tag”

[ArBa04]. There are three possible values: tagdependent,

empty, and scriptless.

attribute For each attribute that a custom tag can/must have, there

must be an attribute element (which contains other

subelements) declaring the attribute.

Table 5-12: The tag element's subelements.

Each attribute that a custom tag may or must include has to be declared with

the attribute element (that is nested in the tag element). For every attribute,

the custom tag developer must specify the attribute’s name, whether the at-

tribute is required and whether the value can be determined by a runtime value.

Table 5-13 lists the attribute element’s subelements [ArBa04], [cf. BaSi04,

470].

62 Only those elements needed to implement a simple custom tag will be discussed. For all
possible subelements please refer to the JSP Specification 2.0 available at [PeRo03].

JavaServer Pages™ Page 143

Element Description

description Indicates “a description of the attribute” [ArBa04] (optional).

name Indicates the attribute’s unique name.

required Indicates “whether the attribute is required” [ArBa04]

(optional, the default value is false).

rtexprvalue63 This element is optional. It defines whether the attribute's

value is evaluated at translation or runtime. The default

value is false. If the value is false, then only a string literal

as that attribute’s value is possible. If it is true, EL

expressions and scripting expressions can be used for the

attribute’s value.

Table 5-13: The attribute element's subelements.

Listing 5-15 shows the TLD-file simple.tld that describes the tag library

simple and the custom tag date.

63 The abbriviation rtexprvalue stands for RunTime EXPRession value [cf. BaSi04, 467].

JavaServer Pages™ Page 144

The TLD-file simple.tld describes one tag: the tag date must not have a

body and can include the attribute format whose value must not be a runtime

expression.

5.5.4.3 Using the Custom Tag

After deploying the tag library (i.e. the tag handler DateTag.class and the

TLD simple.tld) to a Web application (see chapter 5.5.2.3, p. 132) the cus-

tom tag can be used in any JSP.

Listing 5-16 shows a JSP that uses the custom tag date to display the current

date.

<?xml version="1.0" encoding="ISO-8859-1" ?>
<taglib xmlns="http://java.sun.com/xml/ns/j2ee"
 xmlns:xsi="http://www.w3c.org/2001/XMLSchema-instance"
 xsi:schemaLocation="http://java.sun.com/xml/ns/j2ee/web-
 jsptaglibrary_2_0.xsd"
 version="2.0">

 <tlib-version>1.2</tlib-version>
 <uri>simpleTags</uri>
 <tag>
 <description>demonstration how to use Simple Tags</description>
 <name>date</name>
 <tag-class>cc.heinisch.thesis.tags.DateTag</tag-class>
 <body-content>empty</body-content>
 <attribute>
 <description>
 The value has to comply with the Java date and time
 pattern strings.
 </description>
 <name>format</name>
 <required>false</required>
 <rtexprvalue>false</rtexprvalue>
 </attribute>
 </tag>
</taglib>

Listing 5-15: TLD "simple.tld".

<%@ taglib prefix="simple" uri="simpleTags" %>
<html>
 <head>
 <title>Current Date</title>
 </head>
 <body>
 Today's date: <simple:date format="d/MM/yyyy" />
 </body>
</html>

Listing 5-16: "simpleTag.jsp" using the custom tag date.

JavaServer Pages™ Page 145

The JSP declares a taglib directive. As the uri attribute’s value exactly

matches the uri element’s value in simple.tld, the prefix simple will refer-

ence tags from this TLD. As the tag does not include any attribute, it will display

the current date formatted with the default pattern as shown in figure 5-6.

If the custom tag in simpleTag.jsp includes an attribute as

Today's date: <simple:date format="d/MM/yyyy" />

the date is formatted according to the defined pattern as shown in figure 5-7.

It is evident that the custom tag date provides a convenient way to display the

current date in any format without the need to use scripting elements.

Figure 5-6: "simpleTag.jsp" using a custom tag (default pattern).

Figure 5-7: "simpleTag.jsp" using a custom tag with an attribute.

Roundup and Outlook Page 146

6 Roundup and Outlook

The main goal of the thesis was to provide an introduction to XML, Servlets and

JavaServer Pages™. By now, the reader should be familiar with the basics of

these technologies.

In the first part, the mother tongue of all markup languages, SGML, was intro-

duced. Before the discussion of XML began, the benefits as well as the draw-

backs of HTML were explained to highlight the need for an extensible markup

language. The discussion about XML progressed to a look at its design and de-

velopment. As XHTML is intended to be HTML's successor, it was only dis-

cussed briefly in the context of possible XML applications. By the means of a

sample XML file, the structure of XML documents and the basic rules of how to

create well-formed XML documents were presented. In order to familiarize the

reader with the concept of document type definitions and valid XML documents,

the discussion was led on to DTDs and XML schema. With the help of simple

examples, it was demonstrated how to validate XML documents with these two

technologies. As XML itself does not carry information of how to display its con-

tent, the discussion of XML concluded with the demonstration of how to use

Cascading Style Sheets (CSS) and the Extensible Stylesheet Language (XSL)

to format and display XML documents in a Web browser.

The second part intended to introduce the reader to the concepts of the Hyper-

text Transfer Protocol (HTTP). It was shown that resources on the Internet are

generally addressed by the use of Uniform Resource Identifiers (URI). As all ex-

amples used in this thesis are accessed by HTTP, the Uniform Resource Loca-

tor (URL) was discussed in more detail. It was shown that the HTTP protocol is

based on a request/response paradigm where a client sends an HTTP message

to an HTTP server which in return sends back an HTTP message according to

the request the client made. The reader was presented with both the HTTP re-

quest's format and the HTTP response's format, accompanied by HTTP request

and HTTP response examples.

The third section concentrated on the discussion about servlets which are serv-

er-side software components written in Java. Subsequently, the servlet's appli-

Roundup and Outlook Page 147

cation programming interface (API) was presented. Then, the servlet's basic

structure was explained to the reader before its life-cycle was elaborated in de-

tail. The provided theory was clarified by the use of two examples: the first ex-

ample demonstrated how to dynamically build a Web page that displays the cur-

rent date in a Web browser. The second example servlet showed how to manip-

ulate a picture dynamically and send the modified picture as binary data to the

client that made the request. In order to understand how a servlet has to be de-

ployed to a servlet container, the reader was introduced to the concept of Java

Web applications. Finally, as servlets are similar to the Common Gateway Inter-

face (CGI), but all together more efficient, the chapter closes with a comparison

of these two technologies.

The last part was dedicated to the discussion of JavaServer Pages™ (JSP).

Technically, a JSP is translated into a servlet by the JSP container. This pro-

cess of transformation, as well as the phase of servicing requests, was ex-

plained comprehensively. To further enhance understanding of a JSP life-cycle,

the automatically generated servlet Java-file resulting from an example JSP

was presented and explained. Then, the reader was given an overview of the

elements a JSP may include. Due to the limits of this thesis, not every element

could be discussed in detail. As the Bean Scripting Framework provides the

possibility to include non-Java scripts within a JSP, an excursus was provided

on how to execute scripts written in Javascript and in ooRexx within a JSP. The

last section of this chapter introduced the idea of script-free pages by the

means of custom tags. Therefore, the JSP expression language was presented

as an entry point to this topic before the discussion continued of how to include

tag libraries in a Web application and how to reference and use custom tags in

a JSP. Subsequently, a standardized set of custom tags, the JSP Standard Tag

Library (JSTL), was introduced briefly. At the end, an example was presented of

how to develop ones own custom tags, for the case that the JSTL or any other

tag library did not provide for a specific functionality needed in a JSP.

In the appendix, the Web application MusicStore developed by the thesis' au-

thor was presented. The MusicStore is a simple Web shop that was developed

to demonstrate how XML, Servlets and JavaServer Pages can be used together

for building powerful Web applications. As the MusicStore application is based

Roundup and Outlook Page 148

upon the model-view-controller (MVC) pattern, the reader was given a basic in-

troduction on the MVC pattern that is needed to understand Struts. Struts is an

implementation of the MVC pattern that was chosen as the underlying applica-

tion-framework for the MusicStore application. After a short explanation of

Struts, the components of the MusicStore architecture were discussed. As not

every file that is part of the application can be listed in the appendix due to lack

of space, the MusicStore application can be downloaded from the author's Web

site at [Hein06]. Furthermore, the reader was given detailed instruction of how

to install the MusicStore Web application for both the IBM Websphere Applica-

tion Server as well as the Apache Tomcat Servlet/JSP Container.

As a piece of work within the boundaries of a thesis, the subjects of XML,

Servlets and JavaServer Pages™ have merely been touched upon. However,

the numerous fields of discussion on these subjects far exceed the scope of this

thesis. Nevertheless, as the reader should now have a fundamental knowledge

of these subjects, this thesis may serve as an overture to further research into

this particularly extensive area.

Appendix: Music Store Page 149

7 Appendix: Music Store

The primary goal of this thesis was to introduce the reader to XML, Servlets and

to JavaServer Pages™.

In order to demonstrate how to build powerful Web applications by combining

XML, Servlets and JavaServer Pages, a simple shopping cart Web application

(titled MusicStore) that uses these three technologies extensively was devel-

oped by the thesis' author.

The MusicStore application is a simple Web shop where music instruments can

be bought. The user can browse through the offered products, add them to the

shopping cart and order the products. For simplicity’s sake, the user does not

have to create an account. To place an order, the user simply provides personal

data via an HTML-form.

Before moving on to the discussion of the Web application’s architecture, direc-

tory structure and installation, the next sections provide the theory needed to

understand the Web application’s underlying architecture.

7.1 Model-View-Controller (MVC) Pattern

The JSP specification provides two approaches for building Web applications

using JSP pages: JSP Model 1 and Model 2 architectures. Model 2 (which is to-

day most commonly referred to as “Model-View-Controller”) provides a “clear

separation of application responsibilities” [cf. Holm04, 6], as figure 7-1 illus-

trates.

Figure 7-1: Model-View-Controller Architecture.

Client

View (JSP)

Controller (Servlet)

Model

Request Processing

Business Logic
Data manipulation

Response
generation

Request

Response

Database/Services

Appendix: Music Store Page 150

A central servlet (which is usually known as the controller) “receives the re-

quests for the application” [cf. Holm04, 6]. It processes the requests and works

with the model to prepare any data requested by the client. The controller for-

wards the data to the view (which is usually a JSP). Then the JSP uses the data

to generate a response to the client.

As figure 7-1 illustrates, the MVC architecture breaks a Web application into

three basic tiers [cf. Holm04, 7]:

• Model Components

“Model components provide an interface to the data” [cf. Holm04, 7] (or

services) needed by an application. They provide “the business logic to

the application” [cf. Holm04, 7]. Consequently, there is no need for the

controller components to “embed code for manipulating an application’s

data” [cf. Holm04, 7]. The controller components “communicate with the

model components that perform the data access and manipulation” [cf.

Holm04, 7].

• View Components

“View components are used to generate the response” [cf. Holm04, 7] to

the client. In other words, a view component provides what the user sees.

In the case of the MusicStore application, the view components are com-

prised of JSPs. However, any other view technology (such as WML or a

Swing application) could be used “without impacting the model” [cf.

Holm04, 7] tier of the application.

• Controller Components

Controller components are “the core of the MVC architecture” [cf. Holm04,

7]. The controller usually is “a servlet that receives requests for the appli-

cation and manages the flow of data between the model [...] and the view”

[cf. Holm04, 7].

The MVC pattern is a powerful architecture for building Web applications. “The

code for each screen in the application consists of a model and a view. Neither

Appendix: Music Store Page 151

of these components has explicit knowledge of the other’s existence” as “they

are decoupled via the controller” [cf. CaHa04, 42]. “This clean decoupling of the

business and presentation logic” [cf. CaHa04, 42] facilitates Web development

enormously since new functionality can be added to the application “by writing a

model [component] and a view [component] and then registering these items to

the controller of the application” [cf. CaHa04, 42].

As pointed out, a MVC-based architecture offers a very “flexible mechanism for

building Web applications” [ShMa03]. However, developing the MVC infrastruc-

ture framework for ones Web application requires a lot of time and effort. Fortu-

nately, today various implementations of a MVC-framework exist, that a devel-

oper can choose from. For the underlying Web application, the Struts develop-

ment framework [Strut05] was chosen. Struts “is a full-blown implementation of

the MVC pattern” [cf. CaHa04, 43] as the underlying framework for the Music-

Store Web application.

7.2 Struts

The Struts development framework was initially designed “by Craig R. McClana-

han and then donated to the Jakarta project of the Apache Software Foundation

(ASF) in 2000” [cf. Holm04, 8]. With Craig’s donation, Struts became open

source software. Since then, many developers have contributed to the project

and “Struts has flourished” [cf. Holm04, 8]. By now, “Struts has become the de

facto standard for building Web applications in Java and has been embraced

throughout the Java community” [cf. Holm04, 8].

7.2.1 Basic Components of Struts

“The Struts framework is a rich collection of Java libraries and can be broken

down into the following major pieces” [cf. Holm04, 9]:

• Base framework

“The base framework provides the core MVC functionality” [cf. Holm04, 9].

The controller servlet is at the core of this framework: ActionServlet.

“The rest of the base framework is comprised of base classes [that the de-

Appendix: Music Store Page 152

veloper will extend] and several utility classes” [cf. Holm04, 9]. The most

important base classes are the Action and the ActionForm classes.

Action classes are used by the ActionServlet to process incoming re-

quests. ActionForm classes “are used to capture data from HTML forms

and to be a conduit of data” [cf. Holm04, 9] that is sent back to the view

tier for page generation.

• JSP tag libraries

Struts provides “several JSP tag libraries64 for assisting with programming

the view logic in JSPs” [cf. Holm04, 9].

• Tiles plugin

“Tiles is a rich JSP templating framework that facilitates the reuse of pre-

sentation [i.e. HTML] code”.

• Validator plugin

The “Validator plugin provides a rich framework for performing data vali-

dation on both the server side and client side [...]. Each validation is con-

figured in an [...] XML file so that validations can easily be added to and

removed from the Web application declaratively” [cf. Holm04, 9].

7.2.2 Struts Workflow

Above the basics of the MVC pattern on which the Struts framework is based

were discussed. Now the workflow that occurs when a user makes a request to

a Struts-based Web application will be explained. Figure 7-2 illustrates that

workflow [cf. CaHa04, 44].

64 For a listing of these tag libraries please refer to [Stru05].

Appendix: Music Store Page 153

A Web page can usually contain a “variety of actions that the user may ask the

[Web] application to undertake” [cf. CaHa04, 45]. Such actions may include

clicking a hyperlink or an image that takes the user to another page, or submit-

ting an HTML-form “that is to be processed by the application. All actions that

are to be processed by the Struts framework will have a unique [...] file exten-

sion” [cf. CaHa04, 45] which is *.do (see the MusicStore’s deployment descrip-

tor in listing 7-2, p. 172). This file extension “is used by the servlet container to

map all the requests over to the Struts ActionServlet” [cf. CaHa04, 45].

The Struts ActionServlet “will take the incoming user request [see step one

in figure 7-2] and map it to an action mapping defined in the struts-con-
fig.xml file” [cf. CaHa04, 45]. The struts-config.xml file (see listing 7-3,

p. 174) contains the entire configuration “needed by the Struts framework to

process a user’s request” [cf. CaHa04, 45]. Action mappings are declared with

the <action> tag that provides the ActionServlet with the following infor-

mation:

Figure 7-2: Struts workflow.

Controller

ControllerModel

0110101
1001101
0101010
1011010

ActionServlet

0110101
1001101
0101010
1011010

View

Action Class

JSP Page

<%
 …
%>

<?xml>
…
…

struts-config.xml

Client

Request

1.

2.

3.

4.

Appendix: Music Store Page 154

• “The Action class that is going to undertake the [...] user’s request” [cf.

CaHa04, 45]. An Action class is a Struts class that the application devel-

oper extends. The Action class’s primary task is “to contain all of the log-

ic that is necessary to process an [...] user’s request” [cf. CaHa04, 45]

(see listing 7-4, p. 175).

• An ActionForm class contains “any form data that is submitted by the

[...] user” [cf. CaHa04, 45]. As with the Action class, it is also extended

by the developer. Please note “that not every action in a Struts application

requires an ActionForm class” [cf. CaHa04, 45]. An ActionForm class

will have getter- and setter-methods “to retrieve each of the pieces of the

form data” [cf. CaHa04, 45] (see listing 7-5, p. 176).

• “Where the users have to be forwarded to after their request has been

processed by the Action class” [cf. CaHa04, 45]. Since there “can be

multiple outcomes from an [...] user’s request [...] an action mapping can

contain multiple forward paths” [cf. CaHa04, 45]. A forward path is indicat-

ed by the <forward> tag and “is used by the Struts ActionServlet to

direct the user to a specific JSP page or to another action mapping in the

struts-config.xml file” [cf. CaHa04, 45] (see listing 7-3, p. 174).

As soon as the controller has fetched the information from the corresponding

“<action> element for the request, it will process the [...] user’s request” [cf.

CaHa04, 45]. Therefore, “the ActionServlet will forward the user’s request

to the Action class defined by the action mapping” [cf. CaHa04, 46] (see step

2 in figure 7-2). The Action class provides three public methods and several

protected methods. For the purpose of the MusicStore application, only the the

execute() method of the Action class will be discussed. This method has to

be overridden by the application developer. It “contains the entire business logic

necessary to carry out the [...] user’s request” [cf. CaHa04, 46] (see listing 7-4,

p. 175).

When the Action has completed processing the request, “it will indicate to the

ActionServlet where the user is to be forwarded” [cf. CaHa04, 46]. Usually,

the user will be forwarded to a JSP that will display the request’s result (see

Appendix: Music Store Page 155

step 3 in figure 7-2). “The JSP will render the data returned from the model as

an HTML page that is displayed to the [...] user” [cf. CaHa04, 46] (see step 4 in

figure 7-2).

To conclude the discussion on Struts, a typical Web screen that is based on the

Struts development framework consists of the following:

• “An action that represents the code that will be executed when the user’s

request will be processed. Each action in the Web page will map to exact-

ly one <action> element that is defined in the struts-config.xml
file” [cf. CaHa04, 46] (see listing 7-3, p. 174). Such an action that is re-

quested by a user is embedded in a JSP as a hyperlink or “as an action

attribute inside a <form> tag” [cf. CaHa04, 46].

• An <action> element that defines which Action class “will be used to

process the [...] user’s request” [cf. CaHa04, 46].

• A JSP that will be used to “render a response to the user’s request” [cf.

CaHa04, 46]. Inside the <action> element there is a <forward> ele-

ment defined that is used to tell the ActionServlet which JSP will be

used to render the response (see listing 7-3, p. 174).

7.3 Architecture of the MusicStore Web
Application

This section illustrates and explains the various layers, patterns and technolo-

gies which together form the architecture of the MusicStore Web application.

Figure 7-3 illustrates the Web application’s architecture.

Appendix: Music Store Page 156

As mentioned above, the Struts Action class contains all of the logic that is

necessary to process the user’s request. Nevertheless, any concrete business

logic should not be coded within the Action class (to enhance code re-use)

[Stru06]. As a result, the challenge was to build the MusicStore application in

Figure 7-3: MusicStore architecture.

View

Controller

Model

<%
 …
%>

<%
 …
%>

<%
 …
%> JSPs

ActionServlet

Struts Actions

Business Objects

Data Access Objects

Transfer
Objects

Transfer
Objects

Transfer
Objects

Object Relational
Mapping Framework

(IBATIS)

Database
(MySQL)

Appendix: Music Store Page 157

such a way that the business logic for the application becomes independent of

the actual Struts framework. The Action classes of a Struts application shall

only be a “plug-in point” for the business logic [cf. CaHa04, 161].

Therefore, the model-tier is divided into three layers:

• Business Logic Layer,

• Data Access Layer,

• Persistent Data Store Layer.

7.3.1 Business Logic Layer

The business logic layer was implemented with Business Objects. Business Ob-

jects (BO) “encapsulate and manage business data, behavior and persistence”

[cf. AlCr03, 375]. For the MusicStore application, the Business Objects were im-

plemented as Plain Old Java Objects (POJOs) which each represents a single

domain model object.

In the MusicStore application there are following domains:

• Category: contains the logic to assemble the category tree to browse

through products.

• Manufacturer: contains the logic to set up the manufacturer drop down list.

• Order: contains all the logic needed to process an order.

• Product: contains the logic to list and display products.

• Shoppingcart: contains the logic to add products to the shopping cart,

delete products or update the shopping cart.

7.3.2 Data Access Layer

All interactions with the MusicStore database will be done through a set of Data

Access Objects (DAOs). “DAO is a core J2EE design pattern that completely

Appendix: Music Store Page 158

abstracts the Create, Retrieve, Update and Delete (CRUD) logic” [cf. CaHa04,

216] that is needed to retrieve and manipulate the data.

The MusicStore database is a relational database which is row oriented and

does not “map well into an object-oriented environment as Java” [cf. CaHa04,

217] is. Even with the use of DAOs, there is still the problem of passing “row-ori-

ented Java objects, such as the ResultSet class, back and forth” [cf. CaHa04,

217] between the application’s layers.

The solution to this is to use the Data Transfer Object (DTO) pattern to map the

data that are “retrieved and sent to the relational database to a set of Java

classes” [cf. CaHa04, 217]. DTOs “wrap the retrieved data behind simple

get() and set() methods and minimize the exposure of the physical imple-

mentation details of the underlying database tables” [cf. CaHa04, 217]. Conse-

quently, “the underlying database structure can be changed or even moved to

an entirely different platform with a very small risk of breaking any applications

consuming the data” [cf. CaHa04, 217].

The DAOs never communicate directly with the MusicStore database. Alterna-

tively, all the database access is done through an Object Relational Mapping

tool. The usage of such a tool “is significantly time saving” as it enables the de-

veloper “to define declaratively, rather than programmatically, how data is to be

mapped to and from [the DTOs] in the application” [cf. CaHa04, 218]. In using

an Object Relational Mapping tool it was not necessary to write JDBC code to

retrieve the MusicStore data.

There is a huge offer on open source Object Relational Mapping tools. It was

decided to use Ibatis SQL Maps framework [Ibat04] which seemed to much

easier to use and integrate compared to other tools such as Hibernate [Hibe04]

or ObjectRelationalBridge (OJB) [OJB04]. Additionally, Ibatis also offers a DAO

Framework which neatly integrates its SQL Map software.

Appendix: Music Store Page 159

7.3.3 Persistent Data Store Layer

As the design of a data model for a shopping cart software is far beyond the

scope of this thesis, the data model of the open source e-commerce solution

osCommerce [Osco04], which uses MySQL as its database server, was used.

7.4 MusicStore Directory Structure

Figure 7-4 illustrates the directory layout of the MusicStore Web application.

Please note that the src-directory’s subdirectories was not expanded as its

sub-directory-tree is exactly the same as the classes’ subdirectory-tree.

Table 7-1 lists each directory’s file(s). The files of the src-directory (and its sub-

directories) were not listed as these files are the corresponding Java source

files to the Java classes listed in classes and its subdirectories.

Figure 7-4: The MusicStore directory layout.

Appendix: Music Store Page 160

Directory Files

MusicStore styles.css

MusicStore/images note.gif

MusicStore/images/categories acustic_basses.jpg
acustic_guitars.jpg
basses.jpg
drums.jpg
electric_basses.jpg
electric_guitars.jpg
guitars.jpg
keyboards.jpg
piano.jpg
synthesizer.jpg
synthesizer_76.jpg
synthesizer_88.jpg

MusicStore/images/products AEB10.jpg
bg29.jpg
cg7_natural.jpg
D-18.jpg
deluxe_active_jazz_bassV.jpg
fantom-x8.jpg
FP-5.jpg
les_paul_classic.jpg
ludwig_maple.jpg
motif8.jpg
motifes7.jpg
p250.jpg
PA1XPRO.jpg
pearl_forum.jpg
s90.jpg
sg_standard.jpg
SP300.jpg
sr500.jpg
sr900.jpg
srx750.jpg
standard_jazz_bass.jpg
standard_precision_bass.jpg
standard_strat_hh.jpg
standard_stratocaster.jpg
standard_telecaster.jpg
SWOMGT.jpg
tama_superstar_custom.jpg
triton_le.jpg
x-plorer.jpg

MusicStore/images/tree blankSpace.gif
collapsedLastNode.gif
collapsedMidNode.gif
expandedLastNode.gif
expandedMidNode.gif
noChildrenLastNode.gif
noChildrenMidNode.gif
verticalLine.gif

MusicStore/META-INF MANIFEST.MF

MusicStore/WEB-INF struts-config.xml
validation.xml
validator-rules.xml
web.xml

Appendix: Music Store Page 161

Directory Files

MusicStore/WEB-INF/classes log4j.properties

MusicStore/WEB-
INF/classes/cc/heinisch/joscommerce/business/domain

CategoryBO.class
ManufacturerBO.class
OrderBO.class
ProductBO.class
ShoppingCartBO.class

MusicStore/WEB-
INF/classes/cc/heinisch/joscommerce/dataaccess

dao.xml
DaoConfig.class
ICategoryDao.class
IManufacturerDao.class
IOrderDao.class
IProductDao.class

MusicStore/WEB-
INF/classes/cc/heinisch/joscommerce/dataaccess/ibatis

BaseDao.class
CategoryDao.class
ManufacturerDao.class
OrderDao.class
ProductDao.class

MusicStore/WEB-
INF/classes/cc/heinisch/joscommerce/datatransfer

CategoryDTO.class
CountryDTO.class
CustomerDTO.class
ManufacturerDTO.class
OrderDTO.class
OrderProductsDTO.class
ProductDTO.class
ShoppingCartDTO.class
ShoppingCartItemDTO.class

MusicStore/WEB-
INF/classes/cc/heinisch/joscommerce/persistence

CategorySQL.xml
database.properties
ManufacturerSQL.xml
OrderSQL.xml
ProductSQL.xml
sql-map-config.xml

MusicStore/WEB-
INF/classes/cc/heinisch/joscommerce/resources

ApplicationResources.properties

MusicStore/WEB-
INF/classes/cc/heinisch/joscommerce/struts/action

CategoriesAction.class
ConfirmOrderAction.class
ManufacturerAction.class
OrderAction.class
ProductAction.class
ProductDetailAction.class
ReviewOrderAction.class
ShoppingCartAction.class
ShoppingCartEditAction.class

MusicStore/WEB-
INF/classes/cc/heinisch/joscommerce/struts/bean

CustomerForm.class
ManufacturerForm.class
ShoppingCartForm.class

MusicStore/WEB-
INF/classes/cc/heinisch/joscommerce/util

FormatPrice.class
ResizeImageServlet.class

MusicStore/WEB-INF/lib commons-beanutils.jar
commons-collections.jar
commons-digester.jar
commons-fileupload.jar
commons-lang.jar
commons-logging.jar

Appendix: Music Store Page 162

Directory Files

commons-validator.jar
ibatis-common-2.jar
ibatis-dao-2.jar
ibatis-sqlmap-2.jar
jakarta-oro.jar
jenkov-prizetags-bin-v.2.1.5.jar
jstl.jar
log4j-1.2.8.jar
mysql-connector-java-3.0.15-ga-
bin.jar
standard.jar
struts.jar
struts-el.jar

MusicStore/WEB-INF/pages cart.jsp
categories.jsp
confirmation.jsp
footer.jsp
header.jsp
index.jsp
manufacturer.jsp
order.jsp
product.jsp
products.jsp
review.jsp
sessionTimedOut.jsp
shoppingCart.jsp

MusicStore/WEB-INF/tld c.tld
struts-bean.tld
struts-html.tld
struts-html-el.tld
struts-logic.tld
treetag.tld

Table 7-1: Files contained in the MusicStore application.

7.5 Installing the Web Application

The MusicStore Web application is designed to run in a Servlet/JSP Container

and to use MySQL as the back-end database.

The MusicStore Web application was deployed to both the IBM Websphere Ap-

plication Server 6.0 and to the Apache Jakarta Tomcat Servlet/JSP container.

The Web application was tested on both servers.

In this section it will be explained how to install the MusicStore database and

how to deploy the Web application to the IBM Websphere Application Server

and to the Apache Tomcat Server. The explanation of how to install the

database server, the IBM Websphere Application Server and the Apache Tom-

cat Server is outwith the scope of this paper. However, it will be explicated

Appendix: Music Store Page 163

where the software can be downloaded. For any details on the respective instal-

lation the reader is asked to refer to the software’s documentation.

Additionally, you need to have a current JDK installed. The MusicStore Web ap-

plication relies on JVM version 1.4 or higher, so please make sure that the JDK

is compatible.

All files regarding the MusicStore Web application can be downloaded from the

authors Web site at [Hein06].

7.5.1 Installing the MusicStore Database

The MusicStore application uses MySQL as the data store. For the MusicStore

application the MySQL Database Server 4.1 was used. If you do not already

have the MySQL database server, then you need to obtain the version applica-

ble to your platform which is available at [Mysl04a].

The next two steps are to install the MusicStore database and to create a

MySQL user. The necessary sql-scripts can be downloaded from [Hein06]

packed in a zip file name MusicStore.zip.

The zip-file contains two sql-scripts:

• musicStore.sql,

• user_setup.sql.

Please unpack the zip-file and store the two sql-files to your local hard disk.

1. Installing the MusicStore database

To install the MusicStore database you have to run the musicStore.sql
script by using the command prompt (alternatively, you can use the MySQL Ad-

ministrator [Mysl04b]). The script will automatically create the database (called

oscommerce) and all the tables as well as populating the tables with data65:

Log in as root by typing in

65 This is the syntax to login if a password for the user root was set. If there is no password,
you can login with the command: mysql -–user=root

Appendix: Music Store Page 164

mysql -–user=root –p

MySQL will prompt you for the password.

Next, type in the following command using the correct script path for your envi-

ronment:

\. d:\Thesis\Java\MusicStore\musicStore.sql

The script will create the MusicStore database, the tables in it and the data for

those tables.

2. Creating the MySQL user

To create a MySQL user, type

\. d:\Thesis\Java\MusicStore\user_setup.sql

This script will create the user “oscommerce” with the password “oscommerce”

used by the MusicStore application to connect to MySQL.

To verify that the scripts succeeded, swap to the MusicStore database which is

named “oscommerce” by using the following command:

use oscommerce;

Now you can verify that the tables were created using the following command:

show tables;

This should show the 46 tables from listing 7-166.

66 Please note that not all tables are used by the MusicStore web application. In order to not
break the data model the unused tables were not removed.

Appendix: Music Store Page 165

To make sure that the MusicStore user account was created in MySQL, run the

following commands:

use mysql;

select user from user where user = 'oscommerce';

address_book
address_format
banners
banners_history
categories
categories_description
configuration
configuration_group
counter
counter_history
countries
currencies
customers
customers_basket
customers_basket_attributes
customers_info
geo_zones
languages
manufacturers
manufacturers_info
newsletters
orders
orders_products
orders_products_attributes
orders_products_download
orders_status
orders_status_history
orders_total
products
products_attributes
products_attributes_download
products_description
products_notifications
products_options
products_options_values
products_options_values_to_products_options
products_to_categories
reviews
reviews_description
sessions
specials
tax_class
tax_rates
whos_online
zones
zones_to_geo_zones

Listing 7-1: SQL tables in the MusicStore database.

Appendix: Music Store Page 166

If this command returns zero results, then the user account is missing and you

should run the user_setup.sql script again.

7.5.2 Deploying MusicStore to IBM WAS

If you do not already have the IBM Webphere Application Server 6.0 installed,

you can download a trial version at [IBM05b]. If you do not have an account at

www.ibm.com you will need to register to be able to download the trial version.

Once the IBM WAS is running, you can deploy the MusicStore Web application

to it. Therefore, download the file MusicStore.ear from [Hein06].

Please follow the next steps to deploy the MusicStore.ear file to the applica-

tion server:

1. Log in to the Websphere Administrative Console. Please make sure that

your browser accepts cookies. Otherwise the login will fail. The default

link for the console is

http://localhost:9060/ibm/console/

2. In the menu, click on Applications and then on Install New Application.

3. In the field Specify path, select the MusicStore.ear file you download-

ed from your local hard disk. The field Context root field is left empty.

Then click the button Next (see figure 7-5).

Appendix: Music Store Page 167

4. On this page you should just have to hit the button Next as by default the

settings should be set as needed. Please verify that the checkbox Gen-

erate Default Bindings is not checked, so that in the form Override the ra-

dio box Do not override existing bindings is selected and that in the form

Virtual Host none of the radio boxes is selected. The field Specifiy bind-

ing file is left empty (see figure 7-6).

Figure 7-5: Deploying to IBM WAS: Step 3.

Appendix: Music Store Page 168

5. On this page you just have to change the entry in the field Application

name from MusicStoreEAR to MusicStore. Then click next (see figure 7-

7).

Figure 7-6: Deploying to IBM WAS: Step 4.

Appendix: Music Store Page 169

6. On the next page Map modules to servers, just click the button Next.

7. On the next page Map virtual hosts for Web modules, just click the button

Next.

8. This page shows you the summary. Please click the button Finish. The

Server now installs the Web application which should only take a few

seconds. If the installation succeeded, the server displays Application

MusicStoreEAR installed successfully. Next, click on the link Save to

Master Configuration. The server will display a new page where you sim-

ply have to click the button Save.

9. Finally, you just have to start the application. To do so, click on the link

Enterprise Applications in the menu on the left hand side of the page.

The server will display the list of installed Web applications where you

Figure 7-7: Deploying to IBM WAS: Step 5.

Appendix: Music Store Page 170

should see the MusicStore application. Check the MusicStore’s check-

box and click the button Start.

Now, the MusicStore Web application can be invoked in the browser by the

URL: http://localhost:9080/MusicStore/

which should display the a screen shown in figure 7-8.

In order to browse through the MusicStore Web application your browser must

accept cookies as the IBM Websphere Application Server does not enable URL

rewriting by default.

7.5.3 Deploying MusicStore to Apache Tomcat

The MusicStore Web application was tested on the Apache Tomcat Servlet/JSP

Container version 5.28. If you do not already have Tomcat installed, you can

download the software at [Tomc04].

Figure 7-8: The MusicStore Web application displayed in a browser.

Appendix: Music Store Page 171

Once the Tomcat Container is installed on your machine, you can deploy the

Web application to it. Compared to the deployment on the IBM Websphere Ap-

plication Server, the deployment to the Tomcat Container is rather simple and

straightforward.

Please download the file MusicStore.war from [Hein06].

Next, you just have to copy the file MusicStore.war into the Apache Tom-

cat’s webapps directory which is located at

\your_local_path\tomcat_root\webapps

If the Tomcat Container has not been started already, start it now. The Music-

Store Web application will be accessible by the URL

http://localhost:8080/MusicStore/

which should produce the same result as shown in figure 7-8 (p. 170).

7.6 Listings

Due to lack of space the content of each file contained in the MusicStore Web

application will not be listed. Even if only the Java and JSP files (which are 51

files) were listed, this paper would become far too large. Therefore, only the

files that are referenced from within the appendix are listed. To view all files, the

reader is asked to download the entire MusicStore application from the author's

Web site at [Hein06].

Appendix: Music Store Page 172

<?xml version="1.0" encoding="ISO-8859-1"?>
<!DOCTYPE web-app
 PUBLIC "-//Sun Microsystems, Inc.//DTD Web Application 2.3//EN"
 "http://java.sun.com/dtd/web-app_2_3.dtd">

<web-app>
 <display-name>MusicStore</display-name>
 <!-- Standard Action Servlet Configuration (with debugging) -->
 <servlet>
 <servlet-name>action</servlet-name>
 <servlet-class>org.apache.struts.action.ActionServlet</servlet-class>
 <init-param>
 <param-name>config</param-name>
 <param-value>/WEB-INF/struts-config.xml</param-value>
 </init-param>
 <init-param>
 <param-name>debug</param-name>
 <param-value>2</param-value>
 </init-param>
 <init-param>
 <param-name>detail</param-name>
 <param-value>2</param-value>
 </init-param>
 <load-on-startup>2</load-on-startup>
 </servlet>
 <!-- ImageResizeServlet Configuration -->
 <servlet>
 <servlet-name>ImageResizeServlet</servlet-name>
 <servlet-class>cc.heinisch.joscommerce.util.ResizeImageServlet</servlet-class>
 </servlet>
 <!-- Standard Action Servlet Mapping -->
 <servlet-mapping>
 <servlet-name>action</servlet-name>
 <url-pattern>*.do</url-pattern>
 </servlet-mapping>
 <!-- ImageResizeServlet Mapping -->
 <servlet-mapping>
 <servlet-name>ImageResizeServlet</servlet-name>
 <url-pattern>/resizeImage.do</url-pattern>
 </servlet-mapping>
 <!-- Session configuration -->
 <session-config>
 <session-timeout>20</session-timeout>
 </session-config>
 <!-- The Welcome File configuration -->
 <welcome-file-list>
 <welcome-file>/WEB-INF/pages/index.jsp</welcome-file>
 </welcome-file-list>
 <!-- Tag Library Descriptors -->
 <taglib>
 <taglib-uri>/tags/struts-bean</taglib-uri>
 <taglib-location>/WEB-INF/tld/struts-bean.tld</taglib-location>
 </taglib>
 <taglib>
 <taglib-uri>/tags/struts-html</taglib-uri>
 <taglib-location>/WEB-INF/tld/struts-html.tld</taglib-location>
 </taglib>
 <taglib>
 <taglib-uri>/tags/struts-logic</taglib-uri>
 <taglib-location>/WEB-INF/tld/struts-logic.tld</taglib-location>
 </taglib>
 <taglib>
 <taglib-uri>/tags/struts-html-el</taglib-uri>
 <taglib-location>/WEB-INF/tld/struts-html-el.tld</taglib-location>
 </taglib>
 <taglib>
 <taglib-uri>/tags/jenkov-treetag</taglib-uri>
 <taglib-location>/WEB-INF/tld/treetag.tld</taglib-location>
 </taglib>
 <taglib>
 <taglib-uri>/tags/jstl-c</taglib-uri>
 <taglib-location>/WEB-INF/tld/c.tld</taglib-location>
 </taglib>
</web-app>

Listing 7-2: "web.xml".

Appendix: Music Store Page 173

<?xml version="1.0" encoding="ISO-8859-1" ?>
<!DOCTYPE struts-config PUBLIC
 "-//Apache Software Foundation//DTD Struts Configuration 1.1//EN"
 "http://jakarta.apache.org/struts/dtds/struts-config_1_1.dtd">

<struts-config>
 <!-- Form Bean Definitions -->
 <form-beans>
 <form-bean name="manufacturerForm"
 type="cc.heinisch.joscommerce.struts.bean.ManufacturerForm" />
 <form-bean name="customerForm"
 type="cc.heinisch.joscommerce.struts.bean.CustomerForm" />
 <form-bean name="shoppingCartForm"
 type="cc.heinisch.joscommerce.struts.bean.ShoppingCartForm" />
 </form-beans>
 <!-- Global Forward Definitions -->
 <global-forwards>
 <forward name="sessionTimedOut" path="/WEB-INF/pages/sessionTimedOut.jsp" />
 </global-forwards>
 <!-- Action Mapping Definitions -->
 <action-mappings>
 <action path="/index"
 type="org.apache.struts.actions.ForwardAction"
 name="manufacturerForm"
 validate="false"
 parameter="/WEB-INF/pages/index.jsp" />
 <action path="/categories"
 type="cc.heinisch.joscommerce.struts.action.CategoriesAction"
 name="manufacturerForm"
 validate="false"
 scope="request">
 <forward name="showCategories" path="/WEB-INF/pages/categories.jsp" />
 </action>
 <action path="/checkout"
 type="cc.heinisch.joscommerce.struts.action.OrderAction"
 name="customerForm"
 validate="false"
 scope="request">
 <forward name="success" path="/WEB-INF/pages/order.jsp" />
 </action>
 <action path="/confirmOrder"
 type="cc.heinisch.joscommerce.struts.action.ConfirmOrderAction">
 <forward name="success" path="/WEB-INF/pages/confirmation.jsp" />
 </action>
 <action path="/products"
 type="cc.heinisch.joscommerce.struts.action.ProductAction"
 name="manufacturerForm"
 validate="false"
 scope="request">
 <forward name="products" path="/WEB-INF/pages/products.jsp" />
 </action>
 <action path="/productDetail"
 type="cc.heinisch.joscommerce.struts.action.ProductDetailAction">
 <forward name="success" path="/WEB-INF/pages/product.jsp" />
 </action>
 <action path="/productsByManufacturer"
 type="cc.heinisch.joscommerce.struts.action.ManufacturerAction"
 name="manufacturerForm"
 validate="false"
 scope="request">
 <forward name="products" path="/WEB-INF/pages/products.jsp" />
 </action>
 <action path="/review"
 type="cc.heinisch.joscommerce.struts.action.ReviewOrderAction"
 name="customerForm"
 input="/checkout.do"
 validate="true"
 scope="request">
 <forward name="success" path="/WEB-INF/pages/review.jsp" />
 </action>
 <action path="/shoppingCart"
 type="cc.heinisch.joscommerce.struts.action.ShoppingCartAction"
 name="shoppingCartForm"
 validate="false" scope="request">
 <forward name="success" path="/WEB-INF/pages/shoppingCart.jsp"/>
 </action>

Appendix: Music Store Page 174

 <action path="/shoppingCartEdit"
 type="cc.heinisch.joscommerce.struts.action.ShoppingCartEditAction"
 name="shoppingCartForm"
 parameter="function"
 scope="request">
 <forward name="shoppingCart" path="/shoppingCart.do" redirect="true" />
 </action>
 </action-mappings>
 <!-- Message Resources Definitions -->
 <message-resources
 parameter="cc.heinisch.joscommerce.resources.ApplicationResources"/>
 <!-- Plug Ins Configuration -->
 <!-- Validator PlugiIn Configuration -->
 <plug-in className="org.apache.struts.validator.ValidatorPlugIn">
 <set-property property="pathnames"
 value="/WEB-INF/validator-rules.xml,/WEB-INF/validation.xml"/>
 </plug-in>
</struts-config>

Listing 7-3: "struts-config.xml".

Appendix: Music Store Page 175

package cc.heinisch.joscommerce.struts.action;
import java.util.List;
import javax.servlet.http.HttpServletRequest;
import javax.servlet.http.HttpServletResponse;
import javax.servlet.http.HttpSession;
import org.apache.commons.logging.Log;
import org.apache.commons.logging.LogFactory;
import org.apache.struts.action.Action;
import org.apache.struts.action.ActionError;
import org.apache.struts.action.ActionErrors;
import org.apache.struts.action.ActionForm;
import org.apache.struts.action.ActionForward;
import org.apache.struts.action.ActionMapping;
import cc.heinisch.joscommerce.business.domain.OrderBO;
public class OrderAction extends Action {
 public static Log log = LogFactory.getLog(OrderAction.class);
 public ActionForward execute(
 ActionMapping mapping,
 ActionForm form,
 HttpServletRequest request,
 HttpServletResponse response)
 throws Exception {
 ActionErrors errors = new ActionErrors();
 ActionForward forward = new ActionForward(); // return value
 HttpSession session = request.getSession();

 // Check whether Object intance initialized exists in session scope
 // If not, user is redirected to a specific error page
 if(session.getAttribute("initialized") == null) {
 return mapping.findForward("sessionTimedOut");
 }

 try {
 OrderBO orderBO = OrderBO.getInstance();
 List countryList = orderBO.getCountriesList();
 request.setAttribute("countries", countryList);
 }
 catch (Exception e) {
 // Report the error using the appropriate name and ID.
 errors.add("name", new ActionError("id"));
 log.debug("Some error occured: " + e);
 }

 // Finish with
 return (mapping.findForward("success"));
 }
}

Listing 7-4: "OrderAction.java".

Appendix: Music Store Page 176

package cc.heinisch.joscommerce.struts.bean;
import org.apache.struts.action.ActionForm;
public class ManufacturerForm extends ActionForm {
 private String manufacturerId;
 public String getManufacturerId() {
 return manufacturerId;
 }

 public void setManufacturerId(String string) {
 manufacturerId = string;
 }

}

Listing 7-5: "ManufacturerForm.java".

References Page 177

8 References

[AbPr98] Abrahamson, David; Price, Roger: User's Guide to ISO/IEC

15445:1998 HyperText Markup Language (HTML).

http://xml.coverpages.org/cd15445UG.html, 1998, request on

2005-11-30.

[AdBe97] Adler, Sharon; Berglund, Anders et al.: A Proposal for XSL.

http://www.w3.org/TR/NOTE-XSL.html, 1997-08-27, requested on

2006-03-10.

[AdBe01] Adler, Sharon; Berglund, Anders et al.: Extensible Stylesheet

Language (XSL) Version 1.0. http://www.w3.org/TR/xsl/, 2001,

requested on 2002-05-12.

[AlCr03] Alur, Deepak; Crupi, John et al.: Core J2EE Patterns – Best

Practices and Design Strategies. Second Edition, Prentice Hall,

Upper Saddle River 2004.

[Alle01] Allen, Mark: Document Type Definition (DTD) Introduction.

http://ctdp.tripod.com/independent/web/dtd/, 2001-02-11,

requested on 2001-10-02.

[Apac02] The Apache Jakarta Project: Application Developer's Guide.

http://jakarta.apache.org/tomcat/tomcat-4.1-

doc/appdev/deployment.html, 2002, requested on 2005-03-11.

[ArBa04] Armstrong, Eric; Ball, Jennifer et al.: The J2EE™ 1.4 Tutorial.

http://java.sun.com/j2ee/1.4/docs/tutorial/doc/index.html, 2004,

requested on 2005-03-10.

[AuPe06] Austin, Daniel; Peruvemba, Subramanian et al.: XHTML™

Modularization 1.1. http://www.w3.org/TR/2006/PR-xhtml-

modularization-20060213/, 2006-02-13, requested on 2006-03-02.

[AvAy00] Avedal, Karl; Ayers, Danny et al.: Professional JSP: Using

JavaServer Pages, Servlets, EJB, JNDI, JDBC, XML, XSLT, and

WML. http://stardeveloper.com:8080/asp_bk_projsp_1.asp, 2000,

References Page 178

requested on 2002-07-06.

[BaSi04] Basham, Bryan; Sierra, Kathy et al.: Head First Servlets & JSP™

– Passing the Sun Certified Web Component Developer Exam.

First Edition, O’Reilly, Sebastopol 2004.

[Bea04] Bea Systems: BEAWebLogic Server™: Assembling and

Configuring Web Applications. http://e-

docs.bea.com/wls/docs70/pdf/webapp.pdf, 2004, requested on

2005-03-11.

[Bea06] Bea Systems: Download of the Weblogic Server 9.1.

http://commerce.bea.com/index.jsp, requested on 2006-03-22.

[Bean05] Sun Microsystems Web site on JavaBeans.

http://java.sun.com/products/javabeans/, requested on 2005-05-

06.

[BeFi96] Berners-Lee, Tim; Fielding Roy et al.: Hypertext Transfer Protocol

-- HTTP/1.1. http://www.w3c.org/Protocols/HTTP/1.1/spec.html,

1996, requested on 2005-02-26.

[BeFi99] Berners-Lee, Tim; Fieldung Roy et al.: Hypertext Transfer Protocol

-- HTTP/1.1. http://www.w3c.org/Protocols/rfc2616/rfc2616.html,

1999, requested on 2005-02-28.

[BeFi05] Berners-Lee, Tim; Fielding, Roy et al.: RFC 3986: Uniform

Resource Identifier (URI): Generic Syntax.

http://www.ietf.org/rfc/rfc3986.txt, 2005-01, requested on 2005-02-

27.

[BeMa94] Berners-Lee, Tim; Masinter, Larry et al.: RFC 1738: Uniform

Resource Locators (URL). http://www.ietf.org/rfc/rfc1738.txt, 1994-

12, requested on 2006-03-14.

[Berg02] Bergsten, Hans: JavaServer Pages, 2nd Edition.

http://www.oreilly.com/catalog/jserverpages2/chapter/index.html,

2002, requested on 2005-03-21.

References Page 179

[Bern96] Berners-Lee, Tim: The World Wide Web: Past, Present and

Future. http://www.w3c.org/People/Berners-Lee/1996/ppf.html,

1996-08, requested on 2001-09-13.

[BlBo02] Bloch, Cynthia; Bodoff, Stephanie: Overview of Servlets.

http://java.sun.com/docs/books/tutorial/servlets/overview/architect

ure.html, requested on 2002-06-07.

[BiMa04] Biron, Paul V.; Malhotra, Ashok: XML Schema Part 2: Datatypes

Second Edition. http://www.w3.org/TR/xmlschema-2/, 2004,

requested on 2005-03-29.

[BoÇe05] Bos, Bert; Çelik, Tantek et al.: Cascading Style Sheets, level 2

revision 1 - CSS 2.1 Specification. http://www.w3.org/TR/CSS21/,

2005-06-13, requested on 2006-03-07.

[Bodo00b] Bodoff, Stephanie: Custom Tags in JSP Pages.

http://java.sun.com/webservices/docs/ea1/tutorial/doc/JSPTags.ht

ml, 2000, requested on 2002-07-16.

[Bodo02a] Bodoff, Stephanie: JavaServer Pages Technology.

http://java.sun.com/j2ee/tutorial/1_3-fcs/doc/JSPIntro.html,

requested on 2002-07-06.

[Bodo02b] Bodoff, Stephanie: Java Servlet Technology.

http://java.sun.com/webservices/docs/ea2/tutorial/doc/Servlets.ht

ml, requested on 2002-06-07.

[BoLi98] Bos, Bert; Lie, Håkon Wium et al.: Cascading Style Sheets, level 2

- CSS2 Specification. http://www.w3.org/TR/CSS2/, 1998-05-12,

requested on 2006-03-07.

[Bos99] Bos, Bert: CSS & XSL. http://www.w3.org/Style/CSS-vs-XSL,

1999-07-22, requested on 2006-03-07.

[Bos00] Bos, Bert: How to add style to XML.

http://www.w3.org/Style/styling-XML, 2000-02-29, requested on

2006-03-07.

References Page 180

[Bos01] Bos, Bert: XML in 10 points. http://www.w3.org/XML/1999/XML-in-

10-points, 2001-07-02, requested on 2001-09-14.

[Bos06a] Bos, Bert: Web Style Sheets home page.

http://www.w3.org/Style/, 2006-02-09, requested on 2006-03-07.

[Bos06b] Bos, Bert: Cascading Style Sheets home page.

http://www.w3.org/Style/CSS/, 2006-02-09, requested on 2006-03-

07.

[Bosa97] Bosak, Jon: XML, Java, and the future of the Web.

http://www.ibiblio.org/pub/sun-

info/standards/xml/why/xmlapps.html, 1997-03-10, requested on

2001-09-13.

[Bour05] Bourret, Ronald: XML Namespaces FAQ.

http://www.rpbourret.com/xml/NamespacesFAQ.htm, 2005,

requested on 2006-03-04.

[Brad89] Braden, R.: RFC 1123: Requirements for Internet Hosts --

Application and Support. http://www.ietf.org/rfc/rfc1123.txt, 1989-

10, requested on 2006-03-14.

[Bray98] Bray, Tim: The Annotated XML Specification.

http://www.xml.com/axml/testaxml.htm, 1998-02-10, requested on

2006-02-22.

[BrDu00] Britt, James; Duynstee, Teun.: Doing XPath and XSLT with Style!.

http://www.topxml.com/xsl/articles/xpath_xsl_style/, 2000,

requested on 2002-05-12.

[BrHo99] Bray, Tim; Hollander, Dave et al.: Namespace in XML.

http://www.w3.org/TR/REC-xml-names/, 1999, requested on

2005-03-28.

[Brow06] Brown, Mike J.: The skew.org XML Tutorial.

http://skew.org/xml/tutorial/, 2006-01-21, requested on 2006-02-

21.

References Page 181

[BrPa00] Bray, Tim; Paoli, Jean et al.: Extensible Markup Language (XML)

1.0 (Second Edition), W3C Recommendation.

http://www.w3.org/TR/REC-xml, 2000-10-06, requested on 2001-

09-13.

[BrPa04a] Bray, Tim; Paoli, Jean et al.: Extensible Markup Language (XML)

1.0 (Third Edition), W3C Recommandation.

http://www.w3.org/TR/2004/REC-xml11-20040204/, 2004-02-04,

requested on 2005-12-19.

[BrPa04b] Bray, Tim; Paoli, Jean et al.: Extensible Markup Language (XML)

1.1, W3C Recommendation. http://www.w3.org/TR/2004/REC-

xml11-20040204/, 2004-04-15, requested on 2005-12-19.

[BSF05a] Bean Scripting Framework. http://jakarta.apache.org/bsf/,

requested on 2006-03-20.

[BSF05b] BSF Tag Library. http://jakarta.apache.org/taglibs/doc/bsf-

doc/intro.html, request on 2005-09-17.

[BSF406] Current version of BSF4Rexx. http://wi.wu-

wien.ac.at/rgf/rexx/bsf4rexx/current/, requested on 2006-03-21.

[BuZu05] Bulterman, Dick; Zucker, Daniel: Synchronized Multimedia

Integration Language (SMIL 2.1).

http://www.w3.org/TR/2005/REC-SMIL2-20051213/, 2005-12-13,

requested on 2006-03-14.

[Cagl00] Cagle, K.: Beginning XML.

http://www.vbip.com/books/1861003412/pub.asp, 2000-06,

requested on 2001-09-18.

[CaHa04] Carnell, John; Harrop, Rob: Pro Jakarta Struts. Second Edition,

Apress, New York 2004.

[CaIo03] Carlisle, David; Ion, Patrick et al.: Mathematical Markup Language

(MathML) Version 2.0 (Second Edition),

http://www.w3.org/TR/MathML2/, 2003-10-21, requested on 2006-

03-14.

References Page 182

[Cera01] Cerami, Ethan: Servlets: The Servelt Life Cycle.

http://www.ecerami.com/applied_fall_2001/, 2001, requested on

2002-06-17.

[Chas03] Chase, Nicholas: Validating XML. http://www-

106.ibm.com/developerworks/edu/x-dw-xvalid-i.html, 2003,

requested on 2005-03-28.

[Clar97] Clark, James: Comparison of SGML and XML.

http://www.w3.org/TR/NOTE-sgml-xml-971215, 1997-12-15,

requested on 2006-02-27.

[Clar99b] Clark, James: XSL Transformations (XSLT) Version 1.0.

http://www.w3.org/TR/xslt, 1999-11-16, requested on 2006-03-12.

[Clar99a] Clark, James: Associating Style Sheets with XML documents

Version 1.0. http://www.w3.org/TR/xml-stylesheet/, 1999-06-29,

requested on 2006-03-07.

[Claß01a] Claßen, Michael: XML, the better HTML?.

http://www.webreference.com/xml/column1/ 2001, requested on

2001-09-13.

[Claß01b] Claßen, Michael: XML, what for?.

http://www.webreference.com/xml/column19/, 2001, requested on

2005-03-23.

[ClDe99] Clark, James; DeRose, Steve: XML Path Language (XPath)

Version 1.0. http://www.w3.org/TR/xpath, 1999-11-16, requested

on 2006-03-10.

[CoCo01] Coates, Tony; Connolly, Dan et al.: URIs, URLs, and URNs:

Clarifications and Recommendations 1.0.

http://www.w3.org/TR/uri-clarification/, 2001, requested on 2005-

02-27.

[Conn99] Connolly, Dan: CGI: Common Gateway Interface.

http://www.w3.org/CGI/, 1999, requested on 2006-03-16.

References Page 183

[Cost01] Costello, Roger L.: XML Schemas. http://www.xfront.com/xml-

schema.html, 2001, requested on 2001-10-17.

[Cove01] Cover, Robin: XML Schemas.

http://xml.coverpages.org/schemas.html, 2001-10-08, requested

on 2001-10-16.

[Cowa01] Coward, Danny: Java™ Servlet Specification Version 2.3.

http://java.sun.com/products/servlet/download.html, 2001,

requested on 2001-06-18.

[CoYo03] Coward, Danny; Yoshida, Yutaka: Java™ Servlet Specification

Version 2.4.

http://jcp.org/aboutJava/communityprocess/final/jsr154/index.html,

2003, requested on 2005-03-10.

[CSS02] Cascading Style Sheets. http://www.w3.org/Style/CSS/, requested

on 2002-05-06.

[Culs97] Culshaw, Stuart: Solving the problem of publishing online

documents.

http://xml.coverpages.org/culshawSunserverXML.html, requested

on 2005-12-18.

[Deli03] Delisle, Pierre: JavaServer Pages™ Standard Tag Library Version

1.1.

http://jcp.org/aboutJava/communityprocess/final/jsr052/index2.htm

l, 2003, requested on 2005-04-09.

[Day00] Day, Don: Hands-on XSL. http://www-

106.ibm.com/developerworks/library/hands-on-xsl/, 2000,

requested on 2002-05-10.

[DuCh01] DuCharme, Bob: XSLT Quickly.

http://www.topxml.com/xsl/articles/xsltquickly/, 2001, requested on

2002-05-11.

[Duck01] Duckett, Jon.: Professional XML Schemas.

http://www.topxml.com/schema/articles/xmlschemas/default.asp,

References Page 184

2001-07, requested on 2001-10-17.

[Extr01] Extropia: Introduction to XML for Web Developers.

http://www.extropia.com/tutorials/xml/comments.html, requested

on 2001-09-18.

[Fall01] Fallside, David C.: XML Schema Part 0: Primer,

http://www.w3.org/TR/xmlschema-0/, 2001-05-02, requested on

2001-10-16.

[FaWa04] Fallside, David; Walmsley, Priscilla: XML Schema Part 0: Primer

Second Edition. http://www.w3.org/TR/xmlschema-0/, 2004,

requested on 2005-03-29.

[FeJa03] Ferraiolo, Jon; Jackson, Dean et al.: Scalable Vector Graphics

(SVG) 1.1 Specification. http://www.w3.org/TR/SVG11/, 2003-01-

14, requested on 2006-03-14.

[FiGe99] Fielding, R.; Gettys, J. et al.: RFC 2616: Hypertext Transfer

Protocol – HTTP/1.1. http://www.ietf.org/rfc/rfc2616.txt, 1999-06,

requested on 2006-03-15.

[Fisc01] Fischer, Stefan: Verteilte Systeme – Kapitel 5: Standard-

Internetanwendungen. http://www.ibr.cs.tu-

bs.de/lehre/ws0102/vs/VS-0102-Kap05-InternetAnwendungen-

1S.pdf, 2001, requested on 2005-02-26.

[Flat03] Flatscher, Rony G.: The Augsburg Version of BSF4REXX.

http://wi.wu-wien.ac.at/rgf/rexx/orx14/orx14_bsf4rexx-av.pdf,

2003, requested on 2005-09-13.

[Flat04] Flatscher, Rony G.: Camouflaging Java as Object Rexx.

http://wi.wu-wien.ac.at/rgf/rexx/orx15/2004_orx15_bsf-orx-

layer.pdf, 2004, requested on 2005-09-15.

[Flat06] The Website for BSF4Rexx. http://wi.wu-

wien.ac.at/rgf/rexx/bsf4rexx/, requested on 2006-03-20.

References Page 185

[Flyn02] Flynn, Peter: The XML FAQ (v. 2.1).

http://xml.coverpages.org/FAQv21-200201.html, 2002-01-01,

requested on 2005-12-19.

[Flyn06] Flynn, Peter: The XML FAQ (v. 4.51). http://xml.silmaril.ie/, 2006-

02-28, requested on 2006-02-28.

[FrBo96a] Freed, N.; Borenstein, N.: RFC 2045: Multipurpose Internet Mail

Extensions (MIME) Part One: Format of Internet Message Bodies.

http://www.ietf.org/rfc/rfc2045.txt, 1996-10, requested on 2006-03-

15.

[FrBo96b] Freed, N.; Borenstein, N.: RFC 2046: Multipurpose Internet Mail

Extensions (MIME) Part Two: Media Types.

http://www.ietf.org/rfc/rfc2046.txt, 1996-10, requested on 2006-03-

15.

[FrBo96c] Freed, N.; Borenstein, N.: RFC 2047: Multipurpose Internet Mail

Extensions (MIME) Part Three: Message Header Extensions for

Non-ASCII Text. http://www.ietf.org/rfc/rfc2047.txt, 1996-10,

requested on 2006-03-15.

[FrBo96d] Freed, N.; Borenstein, N.: RFC 2048: Multipurpose Internet Mail

Extensions (MIME) Part Four: Registration Procedures.

http://www.ietf.org/rfc/rfc2048.txt, 1996-10, requested on 2006-03-

15.

[FrBo96e] Freed, N.; Borenstein, N.: RFC 2049: Multipurpose Internet Mail

Extensions (MIME) Part Five: Conformance Criteria and

Examples. http://www.ietf.org/rfc/rfc2049.txt, 1996-10, requested

on 2006-03-15.

[Fret98a] Freter, Todd: XML: Mastering Information on the Web.

http://www.sun.com/980310/xml/ 1998-03-10, requested on 2001-

09-13.

[Fret98b] Freter, Todd: XML: Document and Information Management.

http://www.sun.com/980908/xml/, 1998-09-08, requested on 2001-

References Page 186

09-17.

[Gabh03a] Gabhart, Kyle: J2EE pathfinder: Create and manage stateful Web

apps. http://www-106.ibm.com/developerworks/java/library/j-

pj2ee6.html, 2003, requested on 2005-03-10.

[Gabh03b] Gabhart, Kyle: J2EE pathfinder: The many uses of implicit objects.

http://www-106.ibm.com/developerworks/java/library/j-pj2ee7.html,

2003, requested on 2005-04-04.

[Gabh03c] Gabhart, Kyle: Implement JSP custom tags in five easy steps.

http://www-128.ibm.com/developerworks/java/library/j-

pj2ee8/index.html, 2003, requested on 2005-04-14.

[Gibb00] Gibbon, Cleveland: Servlet Tutorial.

http://www.acknowledge.co.uk/java/tutorial/servlet_tutorial/servlets

/index.html, 2000, requested on 2002-07-05.

[Gold96] Goldfarb, Charles F.: The Roots of SGML -- A Personal

Recollection. http://www.sgmlsource.com/history/roots.htm,

requested on 2005-11-29.

[Gold00] Goldfarb, Charles F.: Just enough XML.

http://www.xmltimes.com/knowledge/xmlhandbook/2/, 2000,

requested on 2001-09-17.

[Goog06] Google Internet Search Engine. http://www.google.com, requested

on 2006-03-20.

[Gorm98] Gorman, Trisha: 20 Questions on XML.

http://builder.cnet.com/webbuilding/pages/Authoring/Xml20/ss05.h

tml, 1998-10-03, requested on 2001-10-02.

[GoPr05] Goldfarb, Charles F.; Prescod, Paul: XML Handbook™, Fifth

Edition. http://www.xmlhandbook.com/04c-real.pdf, requested on

2006-02-20.

[Hall00a] Hall, Marty: Core Servlets and JavaServer Pages™. First Edition,

References Page 187

Prentice Hall, Santa Clara 2000.

[Hall00b] Hall, Marty: JavaServer Pages (JSP) 1.0.

http://www.apl.jhu.edu/~hall/java/Servlet-Tutorial/Servlet-Tutorial-

JSP.html, 1999, requested on 2002-07-14.

[HaNe02] Hansen, Hans Robert; Neumann, Gustaf: Wirtschaftsinformatik I.

Eigth Edition, Lucius & Lucius, Stuttgart 2002.

[Hein06] The author's Website for this thesis.

http://www.heinisch.cc/thesis/, 2006, requested on 2006-03-21.

[Heth97] Hethmon, Paul S.: Illustrated Guide to HTTP. http://www.manning-

source.com/books/hethmon/hethmon_ch02.zip, 1997, requested

on 2006-03-15.

[Hibe04] Download of Hibernate Object Relational Mapping software.

http://www.hibernate.org/, requested on 2004-09-07.

[High04] Hightower, Rick: Mastering JSP custom tags. http://www-

128.ibm.com/developerworks/edu/j-dw-java-custom-i.html, 2004,

requested on 2005-04-14.

[Holm04] Holmes, James: Struts: The Complete Reference. First Edition,

McGraw-Hill/Osborne, Emeryville 2004.

[Holz00] Holzner, Steven: Inside XML.

http://www.topxml.com/xsl/articles/xsl_transformations/default.asp,

2000, requested on 2002-05-11.

[HuCr98] Hunter, Jason; Crawford, William: Java Servlet Programming.

http://www.oreilly.com/catalog/jservlet/chapter/ch03.html, 1998,

requested on 2002-07-02.

[Holz05] Holzschlag, Molly: XHTML 1.0: Marking up a new dawn.

http://www-128.ibm.com/developerworks/web/library/w-xhtml.html,

2005-02-09, requested on 2006-03-14.

[HTML99a] SGML declaration for HTML 4.01.

http://www.w3.org/TR/html4/sgml/sgmldecl.html, requested on

References Page 188

2005-12-18.

[HTML99b] HTML 4.01 document type definitions.

http://www.w3.org/TR/html4/struct/global.html#h-7.2, requested on

2005-12-18.

[Ibat04] Download of Ibatis Object Relational Mapping software.

http://www.ibatis.com/, requested on 2004-09-17.

[IBM99] Website of IBM’s alphaWorks BSF project.

http://www.alphaworks.ibm.com/tech/bsf, 1999, requested on

2005-09-13.

[IBM05b] Download of IBM Websphere Application Server. http://www-

128.ibm.com/developerworks/downloads/ws/was/index.html,

requested on 2005-03-16.

[Idri00] Idris, Nazmul: Introduction to threads.

http://developerlife.com/lessons/threadsintro/default.htm, 2000,

requested on 2002-06-10.

[J2EE05] JavaTM 2 Platform Enterprise Edition, v 1.4 API Specification.

http://java.sun.com/j2ee/1.4/docs/api/index.html, requested on

2005-05-06.

[JaGu02] Jacobs, Ian; Gunderson, Jon et al.: User Agent Accessibility

Guidelines 1.0. http://www.w3.org/TR/WAI-USERAGENT/, 2002-

12-17, requested on 2006-03-14.

[Jell00] Jelliffle, Rick: The XML Schema Specification in Context.

http://www.ascc.net/~ricko/XMLSchemaInContext.html, 2000-02-

24, requested on 2001-10-16.

[John99] Johnson, Mark: XML for the absolute beginner.

http://www.javaworld.com/javaworld/jw-04-1999/jw-04-xml.html,

requested on 2001-09-13.

[John00] Johnson, Mark: Script JavaBeans with the Bean Scripting

Framework - Add scripts to your JavaBeans or JavaBeans to your

References Page 189

scripts. http://www.javaworld.com/javaworld/jw-03-2000/jw-03-

beans.html, 2000, requested on 2005-09-13.

[John01] Johnson, Mark: Elementary Entity Terminology.

http://www.itworld.com/nl/xml_prac/04122001/, 2001, requested

on 2005-03-24.

[Kamt00] Kamthan, Pankaj: XML Entities and their Applications.

http://tech.irt.org/articles/js212/, 2000-05-21, requested on 2001-

09-17.

[Kay01] Kay, Michael: XSLT Programmer’s Reference.

http://www.topxml.com/xsl/articles/xslt_what_about/, 2001,

requested on 2002-05-12.

[Kay02] Kay, Michael: XSL Transformations (XSLT) Version 2.0.

http://www.w3.org/TR/xslt20/, 2002, requested on 2002-05-12.

[Kay04] Kay, Michael: XSLT 2.0 Programmer's Reference, 3rd Edition.

http://media.wiley.com/product_data/excerpt/90/07645690/076456

9090.pdf, 2004-08, requested on 2006-03-12.

[Kay05a] Kay, Michael: XSL Transformations (XSLT) Version 2.0.

http://www.w3.org/TR/xslt20/, 2005-11-03, requested on 2006-03-

12.

[Kay05b] Kay, Michael: What kind of language is XSLT?. http://www-

128.ibm.com/developerworks/library/x-xslt/, 2005-04-20,

requested on 2006-03-13.

[Kolb03] Kolb, Marc A.: A JSTL primer, Part 2: Getting down to the core.

http://www-128.ibm.com/developerworks/java/library/j-

jstl0318/index.html, 2003, requested on 2005-04-18.

[Koo01] Koo, J.: Extensible Markup Language, XML.

http://www.stanford.edu/class/msande234/HWsubmission/xml/ie2

75/, 2001-04-20 requested on 2001-10-17.

[Kyrn00a] Kyrnin, Jennifer: DTDs and Markup Languages.

References Page 190

http://html.about.com/library/weekly/aa092500a.htm, 2000-09-25,

requested on 2001-10-08.

[Kyrn00b] Kyrnin, Jennifer: What is a DTD.

http://html.about.com/library/weekly/aa101700a.htm. 2000-10-17,

requested on 2001-10-08.

[LiBo98] Lie, Håkon; Bos, Bert: Using XSL and CSS together.

http://www.w3.org/TR/NOTE-XSL-and-CSS, 1998-09-11,

requested on 2006-03-07.

[Live05] Download of LiveHTTPHeaders.

http://livehttpheaders.mozdev.org/, requested on 2005-02-25.

[McLa03] McLaughlin, Brett: JSP best practices: Intro to taglibs. http://www-

106.ibm.com/developerworks/java/library/j-jsp07233.html, 2003,

requested on 2005-04-14.

[Mage99] Fundamentals of Java Servlets Introduction.

http://developer.java.sun.com/developer/onlineTraining/Servlets/F

undamentals/servlets.html, 1999, requested on 2002-07-05.

[Mahm01] Mahmoud, Qusay: Web Application Development with JSPTM and

XML: Part III Developing JSP Custom Tags.

http://java.sun.com/developer/technicalArticles/xml/WebAppDev3/,

2001, requested on 2002-07-14.

[Mari04] Marinacci, Joshua: Java Sketchbook: Getting Started With

Scripting.

http://today.java.net/pub/a/today/2004/09/20/javascript.html, 2004,

requested on 2005-09-13.

[Mars97] Marshall, James: HTTP Made Really Easy.

http://www.jmarshall.com/easy/http/, 1997-08-17, requested on

2005-02-26.

[McGr02] McGrath, Sean: XML IN PRACTICE.

http://www.propylon.com/news/ctoarticles/XML_is_Just_a_Tree_N

References Page 191

ot20020117.html, 2002, requested on 2005-03-24.

[Megg98] Megginson, David: The SGML FAQ.

http://math.albany.edu:8800/hm/sgml/cts-faq.html, 1998-09-16,

requested on 2006-02-28.

[Meye02] Meyer, A.: Servlets - Eine Einführung. http://www.independent-

web.de/advanced/java/servlets.html, requested on 2002-06-06.

[Micro06] Microsoft Corporation: Microsoft XML Parser 4.0 B2 and Windows

XP. http://msdn.microsoft.com/library/default.asp?url=/library/en-

us/dnmsxml/html/dnmsxmlfusion.asp, requested on 2006-003-12.

[Mock87a] Mockapetris, Paul: RFC 1034: Domain Names – Concepts and

Facilities. http://www.ietf.org/rfc/rfc1034.txt, 1987-11, requested on

2006-03-14.

[Mock87b] Mockapetris, Paul: RFC 1035: Domain Names – Implementation

and Specification. http://www.ietf.org/rfc/rfc1035.txt, 1987-11,

requested on 2006-03-15.

[Morg01] Morgenthal, JP.: What is XML Schema?

http://www.xml.gov/xmlschemapart1/index.htm, 2001-03-14,

requested on 2001-10-17.

[MoRo00] Monson-Haefel, Richard; Rohaly, Tim: Enterprise

JavaBeansTM(EJB) Technology Fundamentals.

http://developer.java.sun.com/developer/onlineTraining/EJBIntro/E

JBIntro.html, 2000, requested on 2002-07-05.

[Mozi05a] Download of Mozilla Firefox web browser.

http://www.mozilla.org/products/firefox/, requested on 2004-09-01.

[Mozi05b] Mozilla’s Website for Rhino JavaScript for Java.

http://www.mozilla.org/rhino/, requested on 2005-09-13.

[Mozi06] Mozilla: XSL Transformations (XSLT) in Mozilla.

http://www.mozilla.org/projects/xslt/, requested on 2006-03-12.

[Münz98] Münz, Stefan: Selfhtml (7.0 Edition).

References Page 192

http://www.teamone.de/selfhtml/tbad.htm, 1998-04-27, requested

on 2001-09-13.

[Münz01a] Münz, Stefan: CSS Stylesheets und HTML.

http://selfhtml.teamone.de/css/intro.htm, 2001, requested on

2002-05-06.

[Münz01b] Münz, Stefan: XML-Darstellung mit CSS Stylesheets.

http://selfhtml.teamone.de/xml/darstellung/css.htm, 2001,

requested on 2002-05-08.

[Münz01c] Münz, Stefan: Grundlagen von XLS/XSLT.

http://selfhtml.teamone.de/xml/darstellung/xslgrundlagen.htm,

2001, requested on 2002-05-11.

[Muny00] Munyati, M.: XML Toolkit Overview.

http://www.oneworld.org/thinktank/iktools/xmltutorial/index.html,

2000-02, requested on 2001-09-18.

[Mysl04a] Download of MySQL Database Server.

http://www.mysql.com/products/mysql/, requested on 2005-01-10.

[Mysl04b] Download of MySQL Administrator.

http://www.mysql.com/products/administrator/, requested on 2005-

01-10.

[Naja00] Najafi, Larry: From XML content to HTML display. http://www-

106.ibm.com/developerworks/web/library/web-xml/?dwzone=web,

2000, requested on 2002-05-10.

[NCSA98] National Center for Supercomputing Applications' Web site on

CGI: The Common Gateway Interface.

http://hoohoo.ncsa.uiuc.edu/cgi/overview.html, 1998, requested on

2006-03-16.

[Ogbu04] Ogbuji, Uche: Tip: Always use an XML declaration. http://www-

128.ibm.com/developerworks/webservices/library/x-tipdecl.html,

2004-4-30, requested on 2006-02-20.

References Page 193

[OJB04] Download of ObJectRelationalBridge Object Relational Mapping

software. http://db.apache.org/ojb/, requested on 2004-09-03.

[ooRe06] Website of Object Rexx. http://www.oorexx.org/, requested on

2006-03-20.

[Osco04] osCommerce: Open Source E-Commerce Solutions.

http://www.oscommerce.com/, requested on 2004-09-22.

[PaCh05] Padmanaban, Hari Vignesh; Chopra, Pradeep: IBM XML

certification success, Part 1. http://www-

106.ibm.com/developerworks/edu/x-dw-x-cert1-i.html, 2005,

requested on 2005-03-27.

[PeAu02] Pemberton, Steven; Austin, Daniel et al.: XHTML™ 1.0 The

Extensible HyperText Markup Language (Second Edition).

http://www.w3.org/TR/xhtml1/, 2002-08-01, requested on 2006-03-

14.

[Pele01] Pelegrí-Llopart, Eduardo: JavaServer Pages™ Specification.

http://www.jcp.org/aboutJava/communityprocess/final/jsr053/,

2001, requested on 2006-03-18.

[Pemb04] Pemberton, Steven: HTML and XHTML Frequently Answered

Questions. http://www.w3.org/MarkUp/2004/xhtml-faq, 2004-07-

21, requested on 2006-03-14.

[Pemb06] Pemberton, Steven: HyperText Markup Language (HTML) Home

Page. http://www.w3.org/MarkUp/, 2006-02-26, requested on

2006-03-14.

[PeRo03] Pelegrí-Llopart, Eduardo; Roth, Mark: JavaServer Pages™

Specification Version 2.0.

http://jcp.org/aboutJava/communityprocess/final/jsr152/index.html,

2003, requested on 2005-03-11.

[Quin05] Quin, Liam: The Extensible Stylesheet Language Family (XSL).

http://www.w3.org/Style/XSL/, 2005, requested on 2005-03-30.

References Page 194

[RaLe99] Raggett, Dave; Le Hors, Arnaud et al.: HTML 4.01 Specification -

W3C Recommendation 24 December 1999.

http://www.w3.org/TR/REC-html40/cover.html, 1999, requested on

2005-12-13.

[Ray01] Ray, Erik T.: Learning XML – (Guide to) Creating Self-Describing

Data. http://www.oreilly.com/catalog/learnxml/chapter/ch02.html,

2001, requested on 2006-02-18.

[ReKi01] Reif, Gerald; Kirda, Egin: Hypertext Transfer Protocol (HTTP)

Tutorial. http://www.dslab.tuwien.ac.at/Task_Description/http.html,

2001, requested on 2005-02-26.

[Reum04] Struttin’ with Struts. http://www.reumann.net/struts/main.do,

requested on 2005-03-8.

[Roy02] Roy, Tracey: XSLT & Xpath Tutorial.

http://www.topxml.com/xsl/tutorials/intro/default.asp, requested on

2002-05-12.

[ScVa02] Schmelzer, Ron; Vandersypen, Travis et al.: XML and Web

Services Unleashed, Chapter 3: Validating XML with the

Document Type Definition (DTD).

http://www.worldofdotnet.net/internalcontent/0672323419/067232

3419_ch03.html, 2002, requested on 2005-03-27.

[Sesh00] Seshadri, Govind: JavaServer Pages Fundamentals.

http://developer.java.sun.com/developer/onlineTraining/JSPIntro/,

2000, requested on 2001-09-01.

[SGML90] SGML Users' Group: A Brief History of the Development of SGML.

http://www.sgmlsource.com/history/sgmlhist.htm, 1990, requested

on 2005-11-29.

[Shan03] Shannon, Bill: Java™ 2 Platform Enterprise Edition Specification,

v1.4. http://java.sun.com/j2ee/j2ee-1_4-fr-spec.pdf, 2003,

requested on 2005-03-04.

[ShMa03] Shenoy, Srikanth; Mallya, Nithin: Integrating Struts, Tiles, and

References Page 195

JavaServer Faces. http://www-

128.ibm.com/developerworks/library/j-integrate/, 2003-09-23,

requested on 2006-03-19.

[Smit01] Smith, Donald: Understanding W3C Schema Complex Types.

http://www.xml.com/pub/a/2001/08/22/easyschema.html, 2001-08-

22, requested on 2006-03-02.

[SpBu94] Sperberg-McQueen, C.M.; Burnard, Lou: A Gentle Introduction to

SGML. http://www.tei-c.org/Papers/gentleguide.pdf, 1994,

requested on 2005-11-28.

[SpBu04] Sperberg-McQueen, C.M.; Burnard, Lou: A Gentle Introduction to

XML. http://www.tei-c.org/P4X/SG.html, 2004, requested on 2005-

12-19.

[Sper05] Sperberg-McQueen, C.M.: How schema-validity is different from

being married, 2005, requested on 2006-03-01.

[Spiel01] Spielman, Sue: Designing JSP Custom Tag Libraries.

http://www.onjava.com/pub/a/onjava/2000/12/15/jsp_custom_tags.

html, 2001, requested on 2005-04-18.

[Star02] Introduction to Servlets.

http://www.stardeveloper.com:8080/articles/061701-1.shtml,

requested on 2002-06-09.

[Stear00] Stears, Beth: JavaBeansTM 101, Part I.

http://developer.java.sun.com/developer/onlineTraining/Beans/bea

n01/index.html, 2000, requested on 2002-07-14.

[Stru05] Struts. http://struts.apache.org/, requested on 2005-05-11.

[Stru06] Struts: Action Framework User Guide.

http://struts.apache.org/struts-action/userGuide/index.html, 2006-

03-11, requested on 2006-03-19.

[StSa00] St. Laurent, Simon; Sall, Ken et al.: DTDs vs. XML Schemas for

Data-centric Java™ Technology-baded Applications.

References Page 196

http://www.cen.com/ng-html/xml/schema/DTD-vs-Schema-NASA-

TEAS.pdf, 2000-06-20, requested on 2001-10-17.

[Sun02a] Sun Microsystems, Inc.: Java Servlet Technology: White Paper.

http://java.sun.com/products/servlet/whitepaper.html, 2002,

requested on 2002-06-07.

[Sun02b] Sun Microsystems, Inc.: Glossary of Java™ technology-related

terms. http://java.sun.com/docs/glossary.html, 2002, requested on

2002-06-07.

[Sun05a] Sun Microsystems, Inc.: Java Servlet Technology Industry

Momentum. http://java.sun.com/products/servlet/industry.html,

requested on 2005-05-06.

[Sun05b] Sun Microsystems, Inc.: Trail: JAR Files.

http://java.sun.com/docs/books/tutorial/jar/, requested on 2005-05-

06.

[Sun05c] Sun Microsystems, Inc: JSPs Standard Tag Library 1.1 Tag

Reference.

http://java.sun.com/products/jsp/jstl/1.1/docs/tlddocs/index.html,

requested on 2005-05-06.

[Sun05d] Sun Microsystems, Inc: JavaServer Pages™ Technology.

http://java.sun.com/products/jsp/, requested on 2005-05-06.

[Sun06a] Sun's XML Glossary.

http://java.sun.com/webservices/jaxp/dist/1.1/docs/tutorial/glossar

y.html, requested on 2006-02-23.

[Sun06b] Sun's J2EE 1.4 Glossary.

http://java.sun.com/j2ee/1.4/docs/glossary.html, requested on

2006-03-17.

[ThBe04] Thompson, Henry S.; Beech, David et al.: XML Schema Part 1:

Structures Second Edition. http://www.w3.org/TR/xmlschema-1/,

2004-10-28, requested on 2006-03-01.

References Page 197

[Thom05] Thomas, Dilip: Understanding the New Features of JSP 2.0.

http://www.oracle.com/technology/sample_code/tutorials/jsp20/toc

.html, 2005, requested on 2005-04-19.

[Tomc05] Download of Apache Jakarta Servlet/JSP Container.

http://jakarta.apache.org/tomcat/, requested on 2005-09-21

[TuGo99] Tun, Zar Zar; Goodchild, Andrew et al.: Introduction to XML

Schema.

http://www.dstc.edu.au/Research/Projects/Titanium/papers/XMLS

chema/Intro-to-XMLSchema.html, 1999-10-04, requested on

2001-10-17.

[Vali06] Validome HTML / XHTML / WML / XML Validator.

http://www.validome.org/validate, requested on 2006-02-28.

[Vlis01] van der Vlist, Eric: Using W3C XML Schema.

http://www.xml.com/pub/a/2000/11/29/schemas/part1.html?page=

1, 2001-10-17, requested on 2001-10-16.

[W3C95] W3C: Logging Control In W3C httpd.

http://www.w3.org/Daemon/User/Config/Logging.html, 1995-07,

requested on 2006-03-15.

[W3sc01a] W3 Schools: Introduction to XML.

http://www.w3schools.com/xml/xml_whatis.asp, requested on

2001-09-13.

[W3sc01b] W3 Schools: Introduction to XML.

http://www.w3schools.com/xml/xml_usedfor.asp, requested on

2001-09-14.

[W3sc01c] W3 Schools: Introduction to XML.

http://www.w3schools.com/xml/xml_syntax.asp, 2001, requested

on 2001-09-18.

[W3sc01d] W3 Schools: Introduction to DTD.

http://www.w3schools.com/dtd/dtd_intro.asp, 2001, requested on

2001-10-08.

References Page 198

[WaFi00] Wahli, Ueli; Fielding, Mitch et al.: Servlet and JSP Programming

with IBM WebSphere Studio and Visual Age for Java.

http://ibm.com/redbooks, 2001, requested on 2001-06-19.

[Wals98] Walsh, Norman: A Technical Introduction to XML.

http://www.xml.com/pub/a/axml/axmlintro.html, 1998-10-03,

requested on 2001-09-13.

[Watt03] Wattle Software: The XML Guide.

http://xmlwriter.net/resources/xml_guide.shtml, 2003-01-15,

requested on 2006-02-24.

[WuWa00] Wu, Amanda W.; Wang, Haibo et al.: Performance Comparison of

Alternative Solutions For Web-To-Database Applications.

http://citeseer.nj.nec.com/cache/papers/cs/20879/http:zSzzSzrain.

vislab.olemiss.eduzSz~ww1zSzSlide_Show_ImageszSzSCC_Am

andazSzSCC_Amanda.pdf/performance-comparison-of-

alternative.pdf, 2000, requested on 2002-06-10.

[Zeig99] Zeiger, Stefan: Servlet Essentials.

http://www.novocode.com/doc/servlet-essentials/index.html, 1999,

requested on 2002-06-06.

Resources and Utilities Page 199

9 Resources and Utilities

[Ecli04] Download of Eclipse IDE. http://www.eclipse.org/, requested on

2004-08-10.

[IBM04] Download of IBM WebSphere Studio Application Developer -

Download. http://www-

306.ibm.com/software/awdtools/studioappdev/, requested on

2004-09-06.

[IBM05a] Download of IBM Rational Application Developer for WebSphere

Software. http://www-

128.ibm.com/developerworks/rational/products/rad/, requested on

2005-04-06.

[IBM06] Download of IBM Rational Web Developer for Websphere

Software. http://www-

128.ibm.com/developerworks/rational/products/rad/, requested on

2006-03-20.

[Java06] JavaRanch Big Moose Saloon – a forum for all sort of Java

questions. http://saloon.javaranch.com/cgi-bin/ubb/ultimatebb.cgi,

requested on 2006-02-28.

[Jenk04] Download of JSP Tree Tag from Jenkov Development.

http://www.jenkov.com/index.tmpl, requested on 2004-10-25.

[JSTL04] Download of JSP Standard Tag Library.

http://jakarta.apache.org/site/downloads/downloads_taglibs-

standard.cgi, requested on 2004-10-25.

[Leo06] LEO. Link everything online – English/German and

German/English dictionary. An Online Service by Informatik der

Technischen Universität München. http://dict.leo.org/, requested

on 2006-03-21.

[Mysl04c] Download of MySQL Query Browser.

http://www.mysql.com/products/query-browser/, requested on

Resources and Utilities Page 200

2005-01-10.

	1Introduction
	2XML
	2.1Overview
	2.1.1Definition
	2.1.1.1Markup Language

	2.1.2SGML
	2.1.2.1Characteristics of SGML
	2.1.2.1.1Descriptive Markup
	2.1.2.1.2Document Type Concept
	2.1.2.1.3Data Independence

	2.1.2.2SGML Applications

	2.1.3HTML
	2.1.4XML is Born
	2.1.5XML’s Goals
	2.1.6XML Principles
	2.1.7XML Usage
	2.1.7.1Inter-application Data Exchange
	2.1.7.2Excursus: XHTML

	2.2XML Basics
	2.2.1Simple Example
	2.2.2Structure of an XML document
	2.2.3Markup
	2.2.3.1Elements
	2.2.3.1.1Attributes

	2.2.3.2Comments
	2.2.3.3CDATA Sections
	2.2.3.4Processing Instructions
	2.2.3.5XML Declaration
	2.2.3.6Document Type Declaration
	2.2.3.7Entities
	2.2.3.8General Entities
	2.2.3.8.1Internal Parsed General Entity
	2.2.3.8.2External Parsed General Entity
	2.2.3.8.3Predefined Entities
	2.2.3.8.4Character References

	2.3Well-Formed vs. Validated XML documents
	2.3.1Document Type Definition
	2.3.1.1DTD Syntax

	2.3.2XML Schema
	2.3.2.1XML Schema’s Background
	2.3.2.2Structure of an XML Schema Document
	2.3.2.2.1Simple and Complex Types
	2.3.2.2.2Restricting Data Types

	2.3.2.3Linking the XML Schema

	2.4Displaying XML Documents
	2.4.1Style Sheets
	2.4.1.1CSS
	2.4.1.2XSL
	2.4.1.2.1Transformation with XSLT

	3Hypertext Transfer Protocol
	3.1Introduction
	3.1.1Resources
	3.1.2Uniform Resource Identifier
	3.1.2.1Uniform Resource Locator
	3.1.2.1.1HTTP URL Scheme

	3.1.3HTTP Defintion

	3.2HTTP Messages
	3.2.1HTTP Request
	HTTP Methods
	3.2.1.1.1GET
	3.2.1.1.2POST

	3.2.2HTTP Response
	3.2.2.1Status Code

	4Servlets
	4.1Introduction
	4.1.1Servlet Container
	4.1.2A Servlet's Process

	4.2Java Servlet API
	4.3Basic Servlet Structure
	4.4The Servlet's Life-Cycle
	4.4.1Servlet's “Birth”: Loading, Instantiation and Initialisation
	4.4.2Servlet's “Life”: Request Handling
	4.4.2.1HttpServletRequest Object
	4.4.2.2HttpServletResponse Object
	4.4.2.2.1Content-type
	4.4.2.2.2Writing Data to the HTTP Request

	4.4.3Servlet's “Death”: destroy() Method

	4.5Servlet Examples
	4.5.1Data Servlet
	4.5.2Watermark Servlet

	4.6Deploying Servlets
	4.6.1Definition of a Web Application
	4.6.2Directory Structure
	4.6.3Deployment Descriptor
	4.6.3.1Sample web.xml File

	4.7Servlets vs. CGI
	4.7.1Efficiency
	4.7.2Portability

	5JavaServer Pages™
	5.1Introduction
	5.1.1Simple JSP Example

	5.2JSP Container
	5.2.1JSP Advantages over Competing Technologies

	5.3JSP's Life-Cycle
	5.3.1The Generated Servlet Java-file

	5.4JSP's Components
	5.4.1Directive Elements
	5.4.1.1Page Directive
	5.4.1.2Include Directive
	5.4.1.3Taglib Directive

	5.4.2Scripting Elements
	5.4.2.1Declarations
	5.4.2.2Scriptlets
	5.4.2.3Expressions
	5.4.2.4Excursus: Bean Scripting Framework
	5.4.2.5BSF’s Architecture
	5.4.2.5.1Executing JavaScript inside a JSP
	5.4.2.5.2Executing Object Rexx inside a JSP

	5.4.3Action Elements
	5.4.3.1jsp:useBean
	5.4.3.1.1JavaBean - Definition
	5.4.3.1.2Basic Bean Use

	5.4.3.2jsp:getProperty
	5.4.3.3jsp:setProperty
	5.4.3.4jsp:include
	5.4.3.5jsp:forward
	5.4.3.6jsp:plugin
	5.4.3.7Example: JSP Using a JavaBean

	5.4.4Implicit Objects

	5.5Script-free JSP Pages
	5.5.1Expression Language
	5.5.1.1Expression Language Definition
	5.5.1.2Valid Expressions
	5.5.1.2.1Variables for Object Access
	5.5.1.2.2Arithmetic, Logical and Relational Operators
	5.5.1.2.3Reserved Words
	5.5.1.2.4Implicit Objects

	5.5.2Using Customs Tags
	5.5.2.1Syntax
	5.5.2.2Declaring the Tag Library
	5.5.2.3Including the Tag Library Implementation

	5.5.3Java Standard Tag Library (JSTL)
	5.5.3.1JSTL Tag Libaries
	5.5.3.2Using JSTL Tag Libraries
	5.5.3.2.1Conditional Tags

	5.5.4Creating Custom Tags
	5.5.4.1Tag Handler Class
	5.5.4.2Tag Library Descriptor (TLD)
	5.5.4.3Using the Custom Tag

	6Roundup and Outlook
	7Appendix: Music Store
	7.1Model-View-Controller (MVC) Pattern
	7.2Struts
	7.2.1Basic Components of Struts
	7.2.2Struts Workflow

	7.3Architecture of the MusicStore Web Application
	7.3.1Business Logic Layer
	7.3.2Data Access Layer
	7.3.3Persistent Data Store Layer

	7.4MusicStore Directory Structure
	7.5Installing the Web Application
	7.5.1Installing the MusicStore Database
	7.5.2Deploying MusicStore to IBM WAS
	7.5.3Deploying MusicStore to Apache Tomcat

	7.6Listings

	8References
	9Resources and Utilities

