
OpenOffice.org Automatisation Page 1

OpenOffice.org Automatisation with Object Rexx
Martin Burger

Vienna University of Economics and Business Administration

Reg. No. 0251293

E-Mail h0251293@wu-wien.ac.at

Mai 19, 2006

Bachelor Course Paper

Departement of Business Informatics

Prof. Dr. Rony G.Flatscher

mailto:h0251293@wu-wien.ac.at

OpenOffice.org Automatisation Page 2

Table of Contents

1 Introduction..6

1.1 Abstract...6

1.2 Problem Discussion.. 6

1.3 Approach...6

1.4 Keywords.. 6

2 Description of the Main Elements... 7

2.1 Definition of „Open Source“.. 7

2.2 Open Object Rexx.. 8

2.2.1 History..8

2.2.2 Open Object Rexx..9

2.2.3 Syntax Examples..10

2.3 OpenOffice.org... 11

2.3.1 History..11

2.3.2 The OpenOffice Product.. 12

2.4 The Bean Scripting Framework..13

2.4.1 History..13

2.4.2 Technical Concept... 13

2.5 BSF4Rexx...14

2.6 The Architecture of OpenOffice.org...15

2.6.1 Universal Network Object Concept .. 16

2.6.2 UNO Service Components...17

2.6.2.1 Service Manager..17
2.6.2.2 Services, Interfaces and Properties..22
2.6.2.3 UNO Java Access..23

3 Interaction of Elements..24

3.1 UNO.CLS... 24

3.1.1 Java: ObjectRexx... 25

3.1.2 UNO.CLS.. 26

4 Installation Guide...27

5 Examples .. 29

5.1 Wordprocessor („swriter“) Examples...30

5.1.1 Example 01 – Hello World.. 32

5.1.2 Example 02 – Insert Texttable... 33

5.1.3 Example 03 – Cursor Show... 37

5.1.4 Example 04 – Page Counter...39

OpenOffice.org Automatisation Page 3

5.1.5 Example 05 – Insert Different Shapes... 40

5.1.6 Example 06 - Sending E-Mail with Attachement43

5.1.7 Example 07 – Using Internet Explorer for Tracking Web-Sites (Windows-
only)... 47

5.1.8 Example 08 – Using a Search Descriptor.. 50

5.2 „scalc“ Examples..53

5.2.1 Example 09 - „Hello World“... 58

5.2.2 Example 10 - Insert Values and Formulas...59

5.2.3 Example 11 - Copy Cell Ranges..61

5.2.4 Example 12 - Merging Cells..63

5.2.5 Example 13 - Identify Row Differences.. 64

5.2.6 Example 14 - Chart Show..66

5.2.7 Example 15 - Using a Replace Descriptor ..68

5.2.8 Example 16 - Inserting a Shape .. 69

5.2.9 Example 17 – Changing the Cell Format ..71

5.3 „simpress“ and „sdraw“ Examples... 72

5.3.1 Example 18 - Using Different Shapes .. 73

5.3.2 Example 19 - Organigram..76

5.3.3 Example 20 - Using Layer for Shapes... 78

5.3.4 Example 21 - Creating a Master Page..80

5.3.5 Example 22 - Insert Chart ... 83

5.3.6 Example 23 - Animations and Click Actions.. 86

5.4 General Examples ..89

5.4.1 Example 24 - Access Internal Database...89

5.4.2 Example 25 - Printing Different Documents .. 92

6 Conclusion.. 95

7 References..96

OpenOffice.org Automatisation Page 4

Figures

Figure 1: architectural overview, [Hane05]...13

Figure 2: BSF interaction with ObjectRexx and Java, [Flat06].......................................14

Figure 3: components of OOo [Flat05]... 15

Figure 4: communication between UNO components [Flat05].......................................16

Figure 5: Service Manager [Augu05].. 21

Figure 6: services [Open05, p.42]..22

Figure 7: Java Adapter [Flat05]...23

Figure 8: overall concept [Augu05]...24

Figure 9: ooRexxMakros... 28

Figure 10: Text Document Model, [Open05, p.503]...30

Figure 11: Hello World..32

Figure 12: Insert Text Table.. 35

Figure 13: Cursor Show...38

Figure 14: Page Counter.. 40

Figure 15: Insert Different Shapes...42

Figure 16: confirm request ..44

Figure 17: received mail.. 45

Figure 18: e-mail button.. 46

Figure 19: loading web sites.. 48

Figure 20: Using a Search Descriptor..51

Figure 21: Hello World „scalc“... 58

Figure 22: Insert Values and Formulas..60

Figure 23: Copy Cell Ranges...62

Figure 24: Merging Cells...64

Figure 25: Identify Row Differences... 65

Figure 26: Chart Show...67

Figure 27: Using a Replace Descriptor..69

Figure 28: Inserting a Shape.. 70

Figure 29: Changing the Cell Format.. 71

Figure 30: Drawing and Impress Model [Open05]..73

Figure 31: Using Different Shapes.. 75

Figure 32: Organigram...78

Figure 33: Using Layer for Shapes.. 80

Figure 34: Creating a Master Page.. 82

OpenOffice.org Automatisation Page 5

Figure 35: Insert Chart...85

Figure 36: Animation and Click Actions...88

Figure 37: select type of external adress book...90

Figure 38: Confirm Box...91

OpenOffice.org Automatisation Page 6

1 Introduction

The Introduction chapter will give a short overview of the structure, the main problem
and the approach of this work.

1.1 Abstract

This paper discuses how different technical components can work together to support
business processes. These technical components are Open Source and freely available
through downloading them from the Internet. The main focus will be Open Object
Rexx, OpenOffice.org and the Bean Scripting Framework for Open Object Rexx.

After explaining the main components of the system, some examples should show how
these elements are working together and which gains are possible by using them. The
next step is to create small nutshell examples which are supported through the interact-
ing technical components mentioned above. At the end the concluding part should sum-
marise the main aspects of this paper.

1.2 Problem Discussion

Software is generally expensive to buy, especially commercial applications for firms and
other organisations. In addition, it is often not independent from the operating system.
These arguments bring up the question, if there are other possibilities to use software
which supports working processes.

The first step toward a more independent way of using software is to identify ap-
proaches which can answer this question.

1.3 Approach

The approach of this paper suggests to use Open Source Software to answer the problem
discussion due to several reasons. Open Source Software programs offer the possibility
to save expensive licences and maintain independence from big market share holders. In
addition, the required automatisation of working processes can be achieved as described
later on.

1.4 Keywords

Open Source Software, Open Object Rexx, OpenOffice.org, Bean Scripting Framework
for Object Rexx, Automatisation

OpenOffice.org Automatisation Page 7

2 Description of the Main Elements

In this chapter all used elements, including general definitions and software elements
will be described. This is necessary to build up an appropriate context of knowledge to
understand this issue in a more comprehensive way.

2.1 Definition of „Open Source“

Open Source can be described by the following criteria referring to different sources1.

1. Source Code

The source code must be available for each Open Source Software. In addition,
the code must be accessible in compiled form. This is necessary to assure the
possibility to modify and develop efficient Software.

2. Derived Works

This point simply means that modifications and derived works must be allowed.

3. Integrity of the Author's Source Code

 Therefore „patch files“ must be allowed which modify the program at build time.
The reason for this possibility of using Open Source license is to make „unoffi-
cial“ changes available and protecting the original source code. In this way,
the reputation of the original authors can be saved.

4. No Discrimination against Persons of Groups

Open Source Software projects try to gain a maximum of benefits for all parti-
cipants and users. This aspect could be endangered through forbidding per-
sons to contribute work afford.

5. No Discrimination against Fields of Endeavour

It is forbidden to restrict the Field of Endeavour, for example to forbid com-
mercial usage.

6. Distribution of License

The rights for the software pass over to all persons who are receiving the pro-
gram. It is forbidden that a person has to buy additional licenses to use the Soft-
ware.

1 [Osat06][Osorg06]

OpenOffice.org Automatisation Page 8

7. License must not be specific to a Product (Note: this argument is not always true)

The rights must not apply for a special software package. Parts of the package
have the same rights then the whole product.

8. License must not restrict other Software

The license must not influence the rights on other software which are distributed
on the same media.

To know these criteria is important for using Open Source Software. Especially for this
paper, due to the fact that only Open Source programs will be analysed and applied.

2.2 Open Object Rexx

Open Object Rexx is the name of a freely available scripting language2. In the following
section, general aspects and syntax examples of this programming language will give
an introduction to the world of Open Object Rexx.

2.2.1 History3

Rexx was originally designed and implemented as a scripting language between 1979
and 1982 by Mike Cowlishaw from IBM. Within some years, IBM made Rexx available
for all of his operating systems like Windows, Java and Linux. In 1984/5 the first non-
IBM version was written by Charles Daney for PC-DOS. In addition, versions for Atari,
Amiga, Unix, Solaris, DEC, Windows CE, Pocket PC, MS-DOS, Palm OS, QNX, OS/2,
Linux, BeOS, EPOC32, AtheOS, OpenVMS, Open Edition, Macintosh, and Mac OS x
were developed too.

In 1992 two very important Open Source approaches to Rexx appeared. Ian Collier's
REXX/imc for Unix and Anders Christensen's Regina for Windows and Linux were re-
leased. This two versions of Rexx are very popular and widely used.

In 1996 ANSI4 published a standard named ANSI X3.274-1996 „Information Techno-
logy – Programming Language REXX“

The latest versions of Rexx are NetRexx and Object Rexx.

Object Rexx is object-oriented5 and upwards-compatible with Rexx. Further informa-
tion on this version will be provided in the next chapter.

2 Scripting programming languages are computer programming languages which are rather interpreted
than compiled.

3 [WikiREXX06]
4 The American National Standard Institute is a non-profit organization for standardization work in the

United States.
5 Object-Oriented programming is a programming paradigm using objects which are communicating

through messages.

OpenOffice.org Automatisation Page 9

2.2.2 Open Object Rexx6

Open Object Rexx is an Open Source Project managed by RexxLA7 and is distributed
under the Common Public License (CPL) v1.08. This license includes the criteria men-
tioned above in chapter 2.1. Open Source Definition.

Object Rexx can be characterized as follows:

An English-like statement:

That means that Rexx uses names for instructions which have a similar se-
mantics in the English language. For example SAY, IF....THEN..Else,
Do..End, and EXIT. This makes the usage of this programming language a lot
easier.

Fewer Rules:

In Rexx it is possible to write one instruction in several lines or several in struc-
tions in one line. The language is not case sensitive, for this reason it doesn't
matter if code is written in lowercase or uppercase letters. Furthermore one can
keep spaces between lines which will cause no troubles during running the pro-
gram. Finally it is possible to name variables like built in functions which
have the same name. The interpreter of Rexx will use the right function based
on the context.

Interpreted not compiled:

Object Rexx is a scripting language that interprets the statements.

Built in functions and methods:

Built in functions and methods are providing different functionalities which are
already implemented in the language.

Typeless variables:

In Rexx one does not have to declare variables, for example numbers or strings,
due to the fact that variables can hold any kind of object.

6 [Oorex05]
7 The Rexx Language Association tries to support the understanding and use of the Rexx programming

language and consist of volunteers throughout the world.
8 [Osorg06]

OpenOffice.org Automatisation Page 10

String handling:

Rexx offers a powerful functionality for manipulating strings. This is an ad-
vantage if the aim is to create programs which have to separate characters,
numbers, and mixed input.

Decimal Arithmetic:

Rexx bases it's arithmetic operations on decimal arithmetic and not on binary
arithmetic, which is used in many other programming languages.

Clear error messages and powerful debugging:

This point simply means that error messages of Rexx provide a full and
meaningful explanation. In addition, the TRACE instruction offers a powerful
debugging tool.

2.2.3 Syntax Examples

In Object Rexx every value is an object and is created as a string by default. Even nu-
meric values are saved as strings. In the following examples code snippet are shown
which are needed for some of the nutshell examples.

The first example shows how variables are used in Object Rexx.. The || operator as-
sembles two strings.

a = “ab “

b = 123

SAY a b /*->“abc 123“ */

SAY a || b /*->“abc 123“ */

The second example shows a loop:

DO i = 1 TO 3

i

END

The next code snippet shows the „requires“ statement which is needed to make the UN-
O.CLS module available. Within the UNO.CLS different routines are implemented
which makes the using of the Universal Network Object concept easier. The UNO
concept will be described in chapter 2.6.1 Universal Network Object Concept, p.16.

::requires UNO.CLS

For using methods within Object Rexx the „Twiddle“ is needed. An example is shown
below. The Twiddle can be compared with the „.“ command in Java and is used in the
same way. If two Twiddles are used, (~~) the object itself will be returned.

Object1~method1

OpenOffice.org Automatisation Page 11

The next code snippet shows how a procedure is created. For this, the routine statement
is used. The arguments a, b and c can be used in the instruction part. The variable d will
be returned.

::routine name

use arg a, b, c

[instructions]

return d

2.3 OpenOffice.org

In this chapter the first section describes the most important steps of the development of
OpenOffice.org. After this OpenOffice.org is described as a product to show for which
tasks this software can be used.

2.3.1 History9

In Germany in 1884 at the age of 16 Macro Börries founded a company named Star Di-
vision. This firm created star office, an office suite10 which was sold 25 million times. In
1999 Sun Microsystems11 bought Star Division for 70 million dollars. Since that time a
free version of Star Office was made available via downloading it from the Internet. In
the year 2000 Sun announced the OpenOffice.org project. Several months later the
OpenOffice.org website went online with the possibility to download the Source Code
of Star Office 6.0. At this time the software had 400 MegaByte and 7.500.000 lines of
C++12 code.

The first running version was finished in October 2001 named Build 638c. The next ver-
sion named OpenOffice.org 1.1 was published in September 2003. In September 2005
OpenOffice.org 1.1.5 was available followed by the latest version OpenOffice.org 2.0 in
October 2005.

Star Office is still commercially available nowadays and is based on OpenOffice.org.
Star Office Version 6.0 Sun uses the sources of the OpenOffice.org project, including
the source code, API's, file formats and reference implementation. In return Sun contin-
ues to sponsor the development of OpenOffice.org and contributes code for the project.

The difference between these two products are some additional features of Star Office
added by Sun.

9 [WikiOOo06][OOo06]
10 Office Suite is a package of programs which can support usual office task's like writer letters or create

presentations.
11 Sun Microssystems is the name of a company which is producing computers and software in Silicon

Valley and is creater of Java.
12 A programming language which is machine-oriented and efficient.

OpenOffice.org Automatisation Page 12

2.3.2 The OpenOffice Product13

As mentioned above, Open Office is an integrated package of programs which can sup-
port common office work. This package includes the following programs:

– Writer

This program is similar to the Office Word14 program from Microsoft. It allows
for writing simple letters or a whole book. There are many styles and formatting
options, the AutoCorrect15 dictionary, different wizards and many other features.

– Calc

The Calc program offers the possibility to create spreadsheets which can be used
for many different tasks. This program is similar to the Excel program from
Microsoft.

– Impress

This part of the package can be used to create presentations. It includes a wide
range of tools for designing and formatting. There are many similarities to the
Microsoft program Power Point.

– Draw

Draw is a program for drawing different graphics like diagrams and complex
plans.

– Base

In the Base program one can develop Databases like in the Microsoft Office
program Access. It is possible create and modify tables, forms, queries and
reports. In addition, there are wizards, SQL and other functionalities.

– Math

Math is the OpenOffice.org component for designing mathematical equations.

Finally it is important to note that OpenOffice.org allows to import and export MS Of-
fice documents.

13 [OOo06]
14 The Office Word programm is a part of a office suite from Microsoft.
15 AutoCorrect means that the program is checking and correcting your spelling as you are typing.

OpenOffice.org Automatisation Page 13

2.4 The Bean Scripting Framework

„Bean Scripting Framework (BSF) is a set of Java classes which provides
scripting language support within Java applications, and access to Java objects
and methods from scripting languages........“ [Ajp05]

This statement means, that a Bean Scripting Framework allows scripting languages ac-
cess to Java objects and methods. Further information on the concept of this technology
will be given in chapter 2.4.2. Technical Concept, p.12.

2.4.1 History

In 1999 BSF started as an Open Source research project in the Watson Research Center
of IBM. Initially the task was to provide access to Java Beans from scripting language
environments. Soon the interest for this technology grew in and outside of IBM. This
circumstances led to the publication of the project to IBM's developer Works site, where
BSF could operate as an Open Source project. In 2002 BSF was integrated as a subpro-
ject of Jakarta16. Since this time many improvements were made and led to the current
version 2.3.[Ajp05]

2.4.2 Technical Concept17

The main components are named BSFManager and BSFEngine shown in the technical
context in Figure.1.

16 The Jakarta Project offers a diverse set of Open Source Java solutions and is part of the Apache Soft-
ware Foundation.

17 [Ajp05]

Figure 1: architectural overview, [Hane05].

OpenOffice.org Automatisation Page 14

The BSF Manager is responsible for all scripting execution engines running under its
control. In addition it maintains the object registry that permits script access to Java ob-
jects.

The BSF Engine provides an interface that offers an abstraction of the scripting lan-
guage's capabilities that permits generic handling of script execution and object registra-
tion within the execution context of the scripting language engine. The interface must be
implemented for a language to be used by BSF.

2.5 BSF4Rexx18

As mentioned above, a Bean Scripting Framework offers the possibility for scripting
languages to use Java objects and methods. BSF4Rexx provides this functionality for
the scripting language Rexx.

The first proof of concept of BSF4Rexx, named Essener Version1, was developed by
the student Peter Kalender in the year 2000/2001 according to the seminar task assign-
ment by Prof. Flatscher, who later developed the full version of BSF4Rexx.

The second version of the Rexx Bean Scripting Framework, called Augsburger Version,
was developed in the year 2003/2004. Using this framework, it was now possible,
among other improvements, to start Java from Rexx. In the former Version this was not
possible.

The latest version which is available at the time of writing (February 2006) is called Vi-
enna Version. The Vienna Version offers type less variables and additional methods
among many other improvements. [Flat06]

18 [BSF4Rexx]

Figure 2: BSF interaction with ObjectRexx and Java, [Flat06].

OpenOffice.org Automatisation Page 15

In Figure.2 the architecture of BSF4Rexx is shown. In the following Open Source ex-
ample the usage of this technology is demonstrated:

.bsf~new('java.awt.Frame', 'Hallo, liebe Welt - von Object Rexx aus.') ~show

call SysSleep 10 -– sleep 10 seconds

::requires BSF.cls

[Flat06]

First the BSF module is loaded with the „requires“ statement. After that BSF is used to
create a new java.awt.Frame and adds the string „Hallo, liebe Welt – von Object Rexx
aus“. In the same line the Java Frame is set visible using the method show. Finally, the
program stops for ten seconds.

2.6 The Architecture of OpenOffice.org19

OpenOffice.org was designed as a client server architecture which is interacting via
TCP/IP sockets. Furthermore OOo is based on components which provide different
functionalities. This means that all applications of OOo consist of different components
which offer together, for example, a swriter or scalc program.

Figure.3 shows different components which are combined to provide an application. In
some cases one UNO component is used for several programs. So it is possible to save
lines of Open Source and to use automatisation knowledge for different applications.

All these components are implemented as UNO objects. The UNO concept will be de-
scribed in the next section.

19 [OOo06] [Flat05]

Figure 3: components of OOo [Flat05].

OpenOffice.org Automatisation Page 16

2.6.1 Universal Network Object Concept

Each component is described in the interface description language (IDL) module20. The
UNO Interfaces Description Language Modules can be described as following:

„...IDL modules may contain nested IDL modules, where the structure repres-
ents a hierarchy having a root module. Identifying a type in this hierarchy of
modules is therefore easy, one starts out at the root module and names all nes
ted modules one needs to traverse, leading in and separating the names with
double colons (::, c-style) or separating them with a dot only (Java style). Hence
the type named "XPrintable" has the fully qualified name
"::com::sun::star::view::XPrintable" (C++) or "com.sun.star.view.XPrintable"
(Java)....“ [Flat05]

In the statement above, it can be seen that UNO components can be implemented in dif-
ferent programming languages.

In Figure.4 communication between UNO components is shown. For communication,
TCP/IP21 sockets are used, which make it possible to run OpenOffice.org on different
computer systems connected via a network. Furthermore the UNO remote protocol is
used which is comparable to CORBA22 (Common Object Request Broker
Architecture).[Flat05]

Through using UNO components the following advantages can be achieved:

– different programming languages

As described above different programming languages can be used to automatise
and extend OpenOffice.org. It is only necessary to have a UNO language binding

20 The UNO IDL allows the definition of types (classes, components), structures („struct“) consisting of
fields only, exceptions, constants, and enumerations.

21 TCP/IP (Transmission Control Protocol / Internet Protocol) is a communication protocol for connecting
computers through the internet.

22 The OOo developer's guide [Open05] describes the communalities and differences.

Figure 4: communication between UNO components [Flat05].

OpenOffice.org Automatisation Page 17

– different operating systems

OpenOffice.org can be used on different operating systems like Windows, Linux
or Solaris. In the context of OOo automatisation one should consider that the
programming language used is also platform independent.

– different networks

As mentioned above all components are communicating via TCP/IP. Normally
the client and the server component are installed on the same computer. Using
the UNO technology it is possible that the client component interacts with
the server component over a network. This offers the possibility to run
OpenOffice.org clients on different computer systems. [Open05]

2.6.2 UNO Service Components

Each UNO component usually represents a service which consists of additional services,
interfaces and properties. In order to create services, the Service Manager is needed.

2.6.2.1 Service Manager

„UNO introduces the concept of service managers, which can be considered as
factories that create services.“ [Open05, p.36]

The service manager in Figure.5 is responsible to create services which represent UNO
objects. Each service manager exists in a component context. A component context de-
scribes a set of components which are combined to run an application like the swriter. In
Figure 3 each box is described as a component context.

Figure 5: Service Manager [Augu05]

OpenOffice.org Automatisation Page 18

For example, a service manager provides the following services23:

– com.sun.star.frame.Desktop:

maintains loaded documents: is used to load documents, to get the current
document, and access all loaded documents

– com.sun.star.configuration.ConfigurationProvider:

yields access to the OpenOffice.org configuration, for instance the settings in the
Tools - Options dialog

– com.sun.star.sdb.DatabaseContext:

holds databases registered with OpenOffice.org

– com.sun.star.system.SystemShellExecute:

executes system commands or documents registered for an application on the
current platform

– com.sun.star.text.GlobalSettings:

manages global view and prints settings for text documents

While creating the nutshell examples, the desktop service will be the most important
service. As described above this service enables users to load and access documents.
The desktop service will be described in more detail later on in this paper.

To create an instance of service components one has to use the method
„createInstance()“ or „createInstanceWithArguments()“ passing the fully qualified name
of the UNO component. The returned object is called „service object“ and can now be
used for automation.[Flat05]

The next step will be to explain the terms services, interfaces and properties in more de-
tail.

23 [Open05, p.36]

OpenOffice.org Automatisation Page 19

2.6.2.2 Services, Interfaces and Properties

„Services describe objects by combining interfaces and properties into an
abstract object specification.“[Open05, p.69]

Most objects in OpenOffice.org are called services. In Figure.6 the TextDocument ser-
vice is described in UML notation, which includes the OfficeDocument service. Both
services offer different interfaces. In OpenOffice.org the first letter of an interface name
is always an „X“. In this case the interfaces XPrintable, XStoreable and XModel are
provided from the OfficeDocument service. This service is implemented in every docu-
ment type of OOo and represents a component which is used for different applications.

[Open05]

The TextDocument Service offers the interfaces XTextDocument, XSearchable and
XRefreshable.

„An interface is a set of methods and attributes that together define one single
aspect of an object.“[Open05, p.39]

Each interface includes different methods and optional arguments. For Example, the
XTextDocument interface provides the methods getText and reformat. Interfaces and
services often include properties which can be described as following:

Figure 6: services [Open05, p.42]

OpenOffice.org Automatisation Page 20

„A property is a feature of a service which is not considered an integral or
structural part of the service and therefore is handled through generic get-
PropertyValue() / setPropertyValue() methods instead of specialised get
methods... .“ [Open05, p.41]

Generally, properties allow the storage and retrieving of information. If one wants to
identify properties it is necessary to study the OpenOffice.org API24

2.6.2.3 UNO Java Access
Since Sun bought Star Office Java adapters were implemented. These Java adapters al-
low us to use UNO components like native Java components. In addition it is possible to
implement UNO components in Java. [Flat05]

24 The OpenOffice.org API defines the interface for accessing office functionalaty independently from
certain programming languages. [OOo06]

Figure 7: Java Adapter [Flat05]

OpenOffice.org Automatisation Page 21

3 Interaction of Elements

In chapter two „Description of the main elements“ (p.7), all components of the
OpenOffice.org automatisation were described. Now it is important to show how these
different technologies are working together to build a bridge from OpenOffice.org to
Object Rexx.

In Figure.8 all components of the OpenOffice.org automatisation are shown. As de-
scribed in section 2.6 OpenOffice.org (p.15) is based on UNO components. These UNO
components can be accessed through Java using the Java Adapter. The BSF4Rexx can
now build a bridge between Java and Object Rexx.

It would also be possible to build this bridge for other scripting languages as well using
BSF for this purpose. But, as mentioned above, it is important that a programming lan-
guage is also operating system independent like OpenOffice.org. ObjectRexx full fills
this criterion and offers additional advantages which were already listed in chapter 2.2.2
Aspects of Object Rexx (p.8).

In addition to these features BSF4Rexx provides modules which make the access to
UNO components easier. The newest module which can be used is named UNO.CLS
and will be described in the following chapter.

3.1 UNO.CLS

The UNO.CLS module supports the interaction with Open Office.org using Open Ob-
ject Rexx. The module can save several lines of Open Sources due to different function-
alities which automate common steps. The advantages can be seen through comparing
the source code of two examples programmed in Open Object Rexx. The first one is
translated directly from Java to Object Rexx without using the UNO.CLS module. The
second one uses UNO.CLS. The result is shown and commented in the next two sec-
tions.

Figure 8: overall concept [Augu05]

OpenOffice.org Automatisation Page 22

3.1.1 Java: ObjectRexx25

The source code below shows ObjectRexx code which initialises an XMultiServiceFact-
ory (the blue lines). The lines in red in the first paragraph create a desktop service inter-
face. During the next step the XComponentLoader interface is created which makes it
possible to open a new text document. This can be done with the method loadCompon-
entFromURL() which needs a Property Array created in the black lines.

/*Beginning of the blue marked part*/

/* initialize connection to server, get its Desktop-service and XComponentLoader inter-
face */

sComponentContext = .bsf~new("com.sun.star.comp.helper.Bootstrap") -

 ~createInitialComponentContext(.nil)

unoRuntime = .bsf~new("com.sun.star.uno.UnoRuntime")

sUrlResolver = sComponentContext~getServiceManager() -

 ~createInstanceWithContext("com.sun.star.bridge.UnoUrlResolver", sComponentContext)

XUnoUrlResolver = .bsf4rexx~Class.class~forName("com.sun.star.bridge.XUnoUrlResolver")

oUrlResolver = unoRuntime~queryInterface(XUnoUrlResolver, sUrlResolver)

unoUrl = "uno:socket,host=localhost,port=8100;urp;StarOffice.NamingService"

oInitialObject = oUrlResolver~resolve(unoUrl)

XNamingService = .bsf4rexx~Class.class~forName("com.sun.star.uno.XNamingService")

sNamingService = unoRuntime~queryInterface(XNamingService, oInitialObject)

oServiceManager = sNamingService~getRegisteredObject("StarOffice.ServiceManager")

XMSFactory = .bsf4rexx~Class.class~forName("com.sun.star.lang.XMultiServiceFactory")

sMSFactory = unoRuntime~queryInterface(XMSFactory, oServiceManager)

/*End of the blue marked part*/

/*Beginning of the marked red part*/

-- Retrieve the Desktop object, we need its XComponentLoader interface

-- to load a new document

sDesktop = sMSFactory~createInstance("com.sun.star.frame.Desktop")

XDesktop = .bsf4rexx~Class.class~forName("com.sun.star.frame.XDesktop")

oDesktop = unoRuntime~queryInterface(XDesktop, sDesktop)

XComponentLoaderName = .bsf4rexx -

 ~Class.class~forName("com.sun.star.frame.XComponentLoader")

sComponentLoader = unoRuntime~queryInterface(XComponentLoaderName, oDesktop)

/*End of the red marked part*/

/*Beginning of the black marked part, until end*/

/* Open a blank text document */

/* No properties needed */

propertyValueName = .bsf4rexx~Class.class~forName("com.sun.star.beans.PropertyValue")

loadProps = .bsf~createArray(propertyValueName, 0)

/* 0=no elements, i.e. empty Java array */

/*End of the black marked part*/

/* load an empty text document */

oWriterComponent = sComponentLoader -

~loadComponentFromURL("private:factory/swriter", "_blank", 0, loadProps)

::requires BSF.cls

25 [Flat06]

OpenOffice.org Automatisation Page 23

3.1.2 UNO.CLS26

Many steps which are described above in the first example are now automated by the
UNO.CLS module. This saves the code of the whole blue marked part, which requests
the XMultiServiceFactory. Furthermore the red marked part of the first example, which
initialises the desktop service interface and the XCompenentLoader, is now reduced to
only two lines of code commented with „get the OOo desktop service object“ and „get
componentLoader interface“. In addition an empty array for loading a new document
like the one above can be easily created through the .UNO~noProps statement.

oDesktop = UNO.createDesktop() -- get the OOo Desktop service object

xComponentLoader = oDesktop~XDesktop~XComponentLoader -- get componentLoader interface

/* open the blank *.sxw - file */

xWriterComponent = xComponentLoader -

~loadComponentFromURL("private:factory/swriter",- "_blank", 0, .UNO~noProps)

::requires UNO.cls -- get UNO support

Finally one has to note that the UNO.CLS module offers many more functionalities
which will partly be shown in the following nutshell examples.

26 [Flat06]

OpenOffice.org Automatisation Page 24

4 Installation Guide
1. Downloading OpenOffice.org

Download the newest version of OpenOffice.org. For the following nutshell
examples OpenOffice.org 2.1 is used. The latest version of OOo can be down-
loaded at the OpenOffice.org homepage27.

2. Downloading Java

The next step is to download java from the Sun homepage28. Before doing
this it should be checked if Java is already installed.

3. Downloading Open Object Rexx

Open Object Rexx can be downloaded from the Open Object Rexx homepage29

4. Downloading BSF4rexx

At the time of writing the latest version of BSF4Rexx can be retrieved from the
Vienna University of Economics and Business Administration homepage30.

All steps needed for the installation can be found in the readmeBSF4Rexx.txt
file.

5. Differences between English and German OpenOffice.org versions

As mentioned above all steps for installing BSF4Rexx are described in the
readme file. To make some steps clearer the following comments can be used in
addition.

For adding the ScriptProviderForooRexx.jar file the PackageManager is used.
The Package Manager can be found following the steps listed below:

(De) Extras--> Package Manager
(En) Tools--> PackageManager

After the file is added OpenOffice.org has to be closed including the Quick-
starter. Then open OOo again. Now it is possible to create own Macros using
the Macro Organiser (Figure.9).

27 [OOo06]
28 [Sun06]
29 [Oorex05]
30 [BSF4Rexx]

OpenOffice.org Automatisation Page 25

(De) Extras--> Makros--> Makros verwalten--> ooRexx
(En) Tools--> Macros--> Organise Macros --> ooRexx

Figure 9: ooRexxMakros

OpenOffice.org Automatisation Page 26

5 Examples

In this chapter different nutshell examples are shown and described. The nutshell ex-
amples should show how different UNO components can be accessed using the techno-
logies described above. In writing these examples, the following objectives were con-
sidered:

– Gain some understanding of the UNO component concept

The UNO component concept is very complex and not easy to understand. If one
has read the first part of this paper it should now be possible to get a quick over-
view by analysing the examples below. Without any examples it takes a long
time to translate theoretical knowledge into useful source code.

– Create a database with code snippets which can be used for further automatisation

The source code presented in this chapter can be reused easily through copy
and paste. Every code part will be described and documented in detail.

– Make OpenOffice.org more attractive in view of competitive Office packages

This statement means that it is always necessary to have competition on markets
which results in better products and lower prices.

– Support independent Open Source technologies for daily business processes

It is always necessary to automate some steps of daily business processes to be
more efficient. Due to the fact that OpenOffice.org is based on a Client/Server
system, creative IT-Infrastructure architectures are possible. This and other as-
pects allow us to offer work place environments which support business pro-
cesses in an efficient way.

Objectives

• gain the understanding of the UNO component concept,
• create a set of code snippets which could be used for further automatisation,
• make OpenOffice.org more attractive in view of competitive office packages,
• support independent OpenSource technologies for daily business processes.

OpenOffice.org Automatisation Page 27

5.1 Wordprocessor („swriter“) Examples

The text document model is able to handle text contents. The document itself can be
stored and printed to make the result of the work a permanent resource. The term „Mod-
el“ in this context stands for data that form the basis of a document. It is organized in a
way which allows us to work independently from the visual presentation. [Open05]

The Text Document Model is illustrated in Figure.10:

Figure 10: Text Document Model, [Open05, p.503]

OpenOffice.org Automatisation Page 28

The text document model consists of the following five major architectural areas:

• text,

• service manager,

• draw page,

• text content suppliers,

• objects for styling and numbering.

The text document model consists of character strings grouped into paragraphs and oth-
er text contents.

The service manager of the document model creates all text contents for the model. Ex-
amples for such text contents are text tables, text fields, drawing shapes, text frames or
graphic objects. It is important to notice that this Service Manager is different from the
main Service Manager. Each document model has its own Service Manager.

All text contents mentioned above can be retrieved from text content suppliers. Only for
drawing shapes the draw page is used. This can be seen in section 5.1.5, Example 05
(p.37).

For styling and structuring of text, different services can be used. These services
provide, for example, style family suppliers for paragraphs, characters, pages and num-
bering patterns, and suppliers for line and outline numbering [Open05, p 503].

OpenOffice.org Automatisation Page 29

5.1.1 Example 01 – Hello World

This example inserts a string into a new swriter document.

xScriptContext = uno.getScriptContext() -- wrap first argument into an UNO-proxy object

oDesktop=xScriptContext~getDesktop -- get the desktop (an XDesktop object)

xComponentLoader=oDesktop~XDesktop~XComponentLoader --get componentLoader interface

/* open the blank *.sxw - file */

url = "private:factory/swriter"

xWriterComponent = xComponentLoader~loadComponentFromURL(url, "_blank", 0,.UNO~noProps)

/* create the TextObject */

xWriterDocument = xWriterComponent~XTextDocument

xText = xWriterDocument~getText()

/*insert text */

xText~insertString(xText~End(), "HelloWorld!", false)

::requires UNO.CLS -- load UNO support for OpenOffice.org

The result can be seen in Figure.11.

The lines of code in more detail:

During the first steps an XDesktop object will be requested with the following statement
(cutout.1):

Cutout.1

oDesktop=xScriptContext~getDesktop

In the next code selection the XDesktop and XDocumentLoader interface are initialised
(cutout 2). It is no longer necessary to use the queryInterface() method to get an inter-
face due to the UNO.CLS support which is described in chapter 3.1 UNO.CLS (p.20).

Cutout 2

xComponentLoader = oDesktop~XDesktop~XComponentLoader -- get componentLoader interface

Figure 11: Hello World

OpenOffice.org Automatisation Page 30

If one wants to know more about the XDesktop Service a look into the OpenOffice.org
Api31 may be helpful.

In this context (cutout.3) the XComponentLoader is required which offers the method
loadComponentFromURL(URL, TargetFrameName, SearchFlag, PropertyValue).

The URL is an important attribute for the following examples and should be explained
in more detail. The URL contains a string which can have the following values:

URL

url = „privat:factor/swriter“ --opens a new swriter document
url = „privat:factor/scalc“ --opens a new scalc document
url = „privat:factor/simpress“ --opens a new simpress document
url = „privat:factor/sdraw“ --opens a new sdraw document
url = „http://api.openoffice.org/“ --opens an html document from the passed URL
url = „file:///c:/originaldoc.odt“ --opens an existing document from the passed URL

Cutout 3

xWriterComponent = xComponentLoader~loadComponentFromURL(url, "_blank", 0,.UNO~noProps)

To get more information on this interface have a look into the OpenOffice.org Api32.

In cutout 4 the XTextDocument interface and its getText() method are used. The
XTextDocument was already explained in chapter 2.6.2.2 Services, Interfaces and Prop-
erties (p.18).

Cutout 4

xWriterDocument = xWriterComponent~XTextDocument

xText = xWriterDocument~getText()

/*insert text */

xText~insertString(xText~End(), "HelloWorld!", false)

In cutout.4 the insertstring() method is used which requires two attributes. The first
passes a textrange with the end position of the text element. The last attribute defines if
the inserted text should overwrite the current text or not. For more detailed information
use the OpenOffice.org Api33.

31 [Api06a]
32 [Api06a]
33 [Api06b]

http://api.openoffice.org/

OpenOffice.org Automatisation Page 31

5.1.2 Example 02 – Insert Texttable

This example inserts a Texttable and formats it.

xScriptContext = uno.getScriptContext() -- wrap first argument into an UNO-proxy object

oDesktop=xScriptContext~getDesktop -- get the desktop (an XDesktop object)

xComponentLoader=oDesktop~XDesktop~XComponentLoader --get componentLoader interface

/* open the blank *.sxw - file */

url = "private:factory/swriter"

xWriterComponent = xComponentLoader~loadComponentFromURL(url, "_blank", 0,.UNO~noProps)

/* create the TextObject and the TextCursor */

xTextDocument = xWriterComponent~XTextDocument

xText = XTextDocument~getText

xTextCursor = xText~createTextCursor

/* create the MulitServiceFactory from the current document */

/* (otherwise the created objects cannot be inserted into the document) */

xDMsf = xTextDocument~XMultiServiceFactory

/* create the TextTable */

xTextTable = xDMsf~createInstance("com.sun.star.text.TextTable")~XTextTable

xTextTable~initialize(3,3)

/* insert TextTable in the Text */

xText~insertTextContent(xTextCursor, xTextTable, .false)

/* insert Text in the first row of the table */

xCellText = xTextTable~getCellByName("A1")~XText

xCellText~setString("first column")

xCellText = xTextTable~getCellByName("B1")~XText

xCellText~setString("second column")

xCellText = xTextTable~getCellByName("C1")~XText

xCellText~setString("third column")

/*insert values into the table*/

xTextTable~getCellByName("A2")~setValue(random(0,500))

xTextTable~getCellByName("B2")~setValue(random(0,500))

xTextTable~getCellByName("C2")~setValue(random(0,500))

xTextTable~getCellByName("A3")~setValue(random(0,500))

xTextTable~getCellByName("B3")~setValue(random(0,500))

xTextTable~getCellByName("C3")~setValue(random(0,500))

call syssleep 2

/*insert an additional row*/

xTextRows = xTextTable~getRows

xTextRows~insertByIndex(3,2)

/*set values into the new row*/

xTextTable~getCellByName("A4")~setValue(random(0,500))

xTextTable~getCellByName("B4")~setValue(random(0,500))

xTextTable~getCellByName("C4")~setValue(random(0,500))

call syssleep 2

/*set formulas into the last row*/

xTextTable~getCellByName("A5")~setFormula("mean <A2:A4>")

xTextTable~getCellByName("B5")~setFormula("mean <B2:B4>")

xTextTable~getCellByName("C5")~setFormula("mean <C2:C4>")

OpenOffice.org Automatisation Page 32

/*set style properties of the table*/

xTableRow = xTextRows~getbyIndex(0)

xProbRow = xTableRow~xPropertySet

xProbRow~setPropertyValue("BackColor", box("int", "e6e6fa"x ~c2d))

xTableRow = xTextRows~getbyIndex(4)

xProbRow = xTableRow~xPropertySet

xProbRow~setPropertyValue("BackColor", box("int", "66cdaa"x ~c2d))

::requires UNO.cls -- get UNO support

The result can be seen in Figure.12.

About the Texttable:

Simply speaking, a text table is a set of rows and columns of text...Each column
is labelled alphapetically starting with the letter A...each row is lablled numer-
ically starting with the number 1. The object method getCellByName() uses this
name to return the specified cell. A similar object method, getCellByPosition(),
returns the cell based on the column and number. The column and row number
are zero-based numbers, so requesting (1,2) returns the cell named
„B3“.[Pito04] (Chapter 13, Writer Documents, p.308)

Figure 12: Insert Text Table

OpenOffice.org Automatisation Page 33

The table below shows the names and index numbers which can be used to address the
cells:

A1 (0,0) B1 (1,0) C1 (2,0) ...

A2 (0,1) B2 (1,1) C2 (2,1) ...

...

The lines of code explained in more detail:

First a new swriter document will be initialised. All steps which are necessary for this
were already described in Example 01 (p.30).

Cutout.1

xTextDocument = xWriterComponent~XTextDocument

xText = XTextDocument~getText

xTextCursor = xText~createTextCursor

Furthermore a TextCursor is needed (cutout.1) to traverse the text object and to place
the Texttable which will be created in the following lines of code (cutout.2):

Cutout.2

xDMsf = xTextDocument~XMultiServiceFactory

xTextTable = xDMsf~createInstance("com.sun.star.text.TextTable")~XTextTable

xTextTable~initialize(3,3)

The next step initialises a XMultiServiceFactory which was already described in the be-
ginning of this chapter. Using this factory it is now possible to create a text content
named Texttable. The passed attributes used from the method initialize() specify the
number of columns and rows (cutout.2)

Cutout.3

xText~insertTextContent(xTextCursor, xTextTable, .false)

Using the statement above, the Texttable will be inserted into the text (cutout.3). For
this the TextCursor is used to place the table. The last attribute defines if the current text
will be overwritten or not.

Cutout.4

xCellText = xTextTable~getCellByName("A1")~XText

xCellText~setString("first column")

Inserting text the XCell interface has to be requested. For this the method getCellby-
Name() is used described in the previous section „About the Texttable“.

Cutout.5

xTextTable~getCellByName("A2")~setValue(random(0,500))

In the previous lines of code (cutout.5) random values are inserted. For initialising the
cells the method getCellByName() is used described in the lines above. Now the values
can be set with setValue(). The passed values are random numbers created from a rexx
routine.

OpenOffice.org Automatisation Page 34

Cutout 6

xTextRows = xTextTable~getRows

xTextRows~insertByIndex(3,2)

An additional row can be inserted (cutout.6) using the XTextRows interface which of-
fers the method insertByIndex().

Cutout 7

xTextTable~getCellByName("A5")~setFormula("mean <A2:A4>")

For setting new formulas (cutout.7) into the Texttable the setFormula() method is used
passing the name and range of the formula using a string.

Cutout.8

xTableRow = xTextRows~getbyIndex(4)

xProbRow = xTableRow~xPropertySet

xProbRow~setPropertyValue("BackColor", box("int", "66cdaa"x ~c2d))

In the last paragraph (cutout.8) of the source code the style properties of two rows are
set. For this the XRow interface is initialised. Afterwards the XPropertySet interface
will be requested which allows us to pass property values. The method setProperty-
Value() requires the name of the property and an integer value which specifies the col-
our. As described in section 2.2.3 Syntax Examples (p.10) Object Rexx uses only strings
for variables. This makes it necessary to use the box routine which creates an integer
class containing the stated value. This class will be passed and makes it possible for
OpenOffice.org to identify the value.

5.1.3 Example 03 – Cursor Show

In this example, different cursors are created and used to set text and to change the view
on the current document.

xScriptContext = uno.getScriptContext() -- wrap first argument into an UNO-proxy object

oDesktop=xScriptContext~getDesktop -- get the desktop (an XDesktop object)

xComponentLoader = oDesktop~XDesktop~XComponentLoader -- get componentLoader interface

/* open the blank *.sxw - file */

url = "file:///c:/originaldoc.odt"

xWriterComponent = xComponentLoader~loadComponentFromURL(url, "_blank", 0,.UNO~noProps)

/* create the TextObject */

xTextDocument = xWriterComponent~XTextDocument

xText = XTextDocument~getText

/*create a text corsur*/

xTextCursor = xText~createTextCursor

/*create a word corsur*/

xSentenceCursor = xTextCursor~xSentenceCursor

/* create a Screen Cursor */

xScreenCursor=xTextDocument~XModel~getCurrentController -

~XtextViewCursorSupplier~getViewCursor~XPropertySet~XScreenCursor

/* create a Page Cursor */

xPageCursor=xTextDocument~XModel~getCurrentController -

~XTextViewCursorSupplier~getViewCursor~XPropertySet~XPageCursor

OpenOffice.org Automatisation Page 35

/*create the cursor property*/

xTextCursorProps = xTextCursor~xPropertySet

xTextCursorProps~setPropertyValue("CharBackColor", box("int", "e6e6fa"x ~c2d))

Call syssleep 2

xTextCursor~gotoStart(.false)

xText~insertString(xTextCursor, "Additional Text ", .false)

Call syssleep 2

xSentenceCursor~gotonextSentence(.false)

xText~insertString(xSentenceCursor,"This is page number ", .false)

xSentenceCursor~gotoEndOfSentence(.false)

xText~insertString(xTextCursor, xPageCursor~getPage, .false)

Call syssleep 2

/*move the screen down*/

xScreenCursor~screenDown

Call syssleep 2

/*move the screen up*/

xScreenCursor~screenUp

xSentenceCursor~gotonextSentence(.false)

xText~insertString(xSentenceCursor,"Back again", .false)

::requires UNO.CLS -- load UNO support for OpenOffice.org

The result can be seen in Figure 13.

Figure 13: Cursor Show

OpenOffice.org Automatisation Page 36

About cursors:

„The view cursor knows how the data is displayed, but doesn't know about the
data itself. Text cursors (non-view cursors), however, know a lot about the data
but very little about how it is displayed. For example, view cursors do not know
about words or paragraphs, and text cursors do not know about lines, screens
or pages.“ [Pito04] (Chapter 13, Writer Documents, p.283)

The lines of code explained in more detail:

First, an existing swriter document is loaded. In contrast to the examples presented be-
fore, the passed URL addresses an existing document.

Cutout.1

/*create a text corsur*/

xTextCursor = xText~createTextCursor

/*create a word corsur*/

xSentenceCursor = xTextCursor~xSentenceCursor

/* create a Screen Cursor */

xScreenCursor=xTextDocument~XModel~getCurrentController -

~XtextViewCursorSupplier~getViewCursor~XPropertySet~XScreenCursor

/* create a Page Cursor */

xPageCursor=xTextDocument~XModel~getCurrentController -

~XTextViewCursorSupplier~getViewCursor~XPropertySet~XPageCursor

In the first part of the source code (cutout.1) cursors are created. The XTextCursor and
the XSentenceCursor are called text (non-view) cursors and are used to traverse text.
The XScreenCursor and the XPageCursor represent view cursors which are used to sup-
port commands that are directly related to viewing (See: „About cursors" p.35).

Cutout.2

xTextCursorProps = xTextCursor~xPropertySet

xTextCursorProps~setPropertyValue("CharBackColor", box("int", "e6e6fa"x ~c2d))

Generally it is possible to set property values for TextCursors as shown in the code lines
above (cutout.2). If one uses the cursor for inserting text, the set style will be adopted.

In the code lines after setting the cursor properties, the text cursors are used to traverse
the text and to insert strings.

Cutout.3

xText~insertString(xTextCursor, xPageCursor~getPage, .false)

In cutout.3 a method of the XPageCursor is used to get the current Page number.

Cutout.4

xScreenCursor~screenDown

xScreenCursor~screenUp

At the end of the example (cutout.4) the XScreenCursor is used to move the screen up
and down. As described above („About cursors“, p.35) view cursors can only be used
for commands related to viewing. They can not be used to work on the text object.

OpenOffice.org Automatisation Page 37

5.1.4 Example 04 – Page Counter

This example shows how the page cursor can be used to count the number of pages of
any swriter document.

xScriptContext = uno.getScriptContext() -- wrap first argument into an UNO-proxy object

oDesktop=xScriptContext~getDesktop -- get the desktop (an XDesktop object)

xComponentLoader = oDesktop~XDesktop~XComponentLoader -- get componentLoader interface

/* open the blank *.sxw - file */

url = "file:///c:/mydocument.odt"

xWriterComponent = xComponentLoader-

~loadComponentFromURL(url, "_blank", 0, .UNO~noProps)

/*get the text of the document*/

xTextDocument = xWriterComponent~XTextDocument

xText = XTextDocument~getText

/*Creating a page cursor*/

xPageCursor=xTextDocument~XModel~getCurrentController ~XtextViewCursorSupplier -

~getViewCursor~XPropertySet~XPageCursor

/*Creating a text cursor*/

xTextCursor = xText~createTextCursor

/*counts the number of pages*/

page = 1

Do While xPageCursor~jumpToNextPage = 1

 page = page + 1

End

xTextcursor~gotoEnd(.false)

xText~insertString(xTextcursor, " This document has " || page || " pages", .false)

::requires UNO.CLS -- load UNO support for OpenOffice.org

The result of this example can be seen in Figure 14.

Figure 14: Page Counter

OpenOffice.org Automatisation Page 38

The lines of code explained in more detail:

First, an existing document is loaded, in this example it is named mydocument. After-
wards a Page Cursor is created like in the example before (Example 03, p.34)

Cutout.1

page = 1

Do While xPageCursor~jumpToNextPage = 1

 page = page + 1

End

The do while loop shown in cutout.1 uses the Rexx variable page. This variable is ini-
tialised with one because the page cursor resides at the first page at the beginning. Dur-
ing every loop the XPageCursor jumps to the next page and the counter is raised by one.
If there are no more pages the jumpToNextPage() method returns zero and the loop will
be interrupted.

Cutout.2

xTextcursor~gotoEnd(.false)

xText~insertString(xTextcursor, " This document has " page " pages", .false)

At the end of the example (cutout.2) the page counter is added to the end of the docu-
ment.

5.1.5 Example 05 – Insert Different Shapes

This example shows how different shapes can be inserted into a text document.

xScriptContext = uno.getScriptContext() -- wrap first argument into an UNO-proxy object

oDesktop=xScriptContext~getDesktop -- get the desktop (an XDesktop object)

oDoc=xScriptContext~getDocument -- get the document service (an XModel object)

xComponentLoader = oDesktop~XDesktop~XComponentLoader -- get componentLoader interface

/* open the blank *.sxw - file */

url = "private:factory/swriter"

xWriterComponent = xComponentLoader~loadComponentFromURL(url, "_blank", 0,.UNO~noProps)

/* create the TextObject and the TextCursor */

xTextDocument = xWriterComponent~XTextDocument

xText = XTextDocument~getText

xTextCursor = xText~createTextCursor

/* create the MulitServiceFactory from the current document */

/* (otherwise the created objects cannot be inserted into the document) */

xDMsf = xTextDocument~XMultiServiceFactory

/* create a RectangleShape */

Shape = xDMsf~createInstance("com.sun.star.drawing.RectangleShape")

xShape = Shape~xShape

size = .bsf~new("com.sun.star.awt.Size")

size~Height = 2500

size~Width = 8000

xShape~setSize(size)

xPropertySet=xShape~xPropertySet

xPropertySet~setPropertyValue("FillColor", box("int", "C0 C0 C0"x ~c2d))

xTextContentShape = Shape~xTextContent

/*insert the shape*/

OpenOffice.org Automatisation Page 39

xText~insertTextContent(xText~getEnd, xTextContentShape, .false)

/*insert text into the shape*/

xShapeText = Shape~xText

xShapeText~setString("The components of OpenOffice.org:")

/*create a GraphicObjectShape with picture*/

oGraph = xDMsf~createInstance("com.sun.star.drawing.GraphicObjectShape")

xGraph = oGraph~xShape

size = .bsf~new("com.sun.star.awt.Size")

size~Height = 2500

size~Width = 8000

xGraph~setSize(size)

xPropertySet=xGraph~xPropertySet

xPropertySet~setPropertyValue("GraphicURL", "file:///C:/OpenOffice.bmp")

xTextContentShape2 = oGraph~xTextContent

/*Shape*/

xText~insertTextContent(xText~getEnd,xTextContentShape2 , .false)

::requires UNO.CLS -- load UNO support for OpenOffice.org

The result of this example can be seen in Figure.14.

The lines of code explained in more detail:

First, a new text document is opened in the same way as in the examples above. Addi-
tionally, the XMultiServiceFactory is needed to create instances of different shapes.

Cutout.1

Shape = xDMsf~createInstance("com.sun.star.drawing.RectangleShape")

xShape = Shape~xShape

In cutout.1 a rectangle shape is created. To set needed values like size and position the
XShape interface will be requested.

Figure 15: Insert Different Shapes

OpenOffice.org Automatisation Page 40

Cutout.2

size = .bsf~new("com.sun.star.awt.Size")

size~Height = 2500

size~Width = 8000

xShape~setSize(size)

Next a com.sun.star.Size structure is needed which contains two integer values named
Height and Weight. For this BSF is used as shown in chapter 2.5 BSF4Rexx, p.13. After
adding these two variables the size structure is fitted to the shape using the setSize()
method (cutout.2).

Cutout.3

xPropertySet=xShape~xPropertySet

xPropertySet~setPropertyValue("FillColor", box("int", "C0 C0 C0"x ~c2d))

As shown in cutout.3 the XShape inteface includes an XPropertySet interface which al-
lows to set properties like already done for an XTableRow interface in Example 02,
cutout.8 (p.34) or in Example 03, cutout.2 (p.36) for an XTextCorsur interface.

Cutout.4

xTextContentShape = Shape~xTextContent

To insert the shape into the text the XTextContent interface is needed (cutout.4). This
interface enables objects to be inserted into a text and provides their location in the text
once they are inserted.

Cutout.5

xText~insertTextContent(xText~getEnd, xTextContentShape, .false)

A similar statement was already explained in Example 02, cutout.3 (p.33). Only the in-
serted object is different.

Cutout.5

xShapeText = Shape~xText

xShapeText~setString("The components of OpenOffice.org:")

The Shape object includes an XText interface which can be used like in Example 01,
cutout.4 (p.30).

Cutout 6

oGraph = xDMsf~createInstance("com.sun.star.drawing.GraphicObjectShape")

xPropertySet~setPropertyValue("GraphicURL", "file:///C:/OpenOffice.bmp")

The second inserted object is a com.sun.star.drawing.GraphicObjectShape which can be
filled with a graphic object. For this the GraphicURL property has to be set.

OpenOffice.org Automatisation Page 41

5.1.6 Example 06 - Sending E-Mail with Attachment

This program demonstrates how a text document can be attached to an e-mail which
will be sent to a specific mail address.

/*NOTE! This example is tested with Thunderbird and Windows XP */

xScriptContext = uno.getScriptContext() -- wrap first argument into an UNO-proxy object

oDesktop=xScriptContext~getDesktop -- get the desktop (an XDesktop object)

oContext=xScriptContext~getComponentContext

 -- get the context(an XComponentContext object)

/*get xMultiComponentFactory*/

xMcf = oContext~getServiceManager

xComponentLoader=oDesktop~XDesktop~XComponentLoader -- get componentLoader interface

/* open the blank *.sxw - file */

url = "private:factory/swriter"

xWriterComponent=xComponentLoader~loadComponentFromURL(url, "_blank", 0, .UNO~noProps)

/* create the TextObject and the TextCursor */

xTextDocument = xWriterComponent~XTextDocument

xText = XTextDocument~getText

xTextCursor = xText~createTextCursor

/*design a document*/

/*create TextFields to insert date and time*/

xDmsf = xTextDocument~xMultiServiceFactory

xTextFieldTime1 = xDMsf~createInstance("com.sun.star.text.TextField.DateTime") -

~xTextField

xTextFieldTime2 = xDMsf~createInstance("com.sun.star.text.TextField.DateTime") -

~xTextField

xTextFieldTime1~XPropertySet~setPropertyValue("IsDate", box("boolean", .true))

xText~insertString(xTextCursor,"This is an attachement sent from Martin, ", .false)

xText~insertTextContent(xTextCursor, xTextFieldTime1, .false)

xText~insertString(xTextCursor, " at ", .false)

xText~insertTextContent(xTextCursor, xTextFieldTime2, .false)

/*save the document*/

xWriterComponent~xStorable~storeAsURL("file:///c:/attachement.odt", .UNO~noProps)

/*create xSimpleMailClient(for sending) and SimpleMailMessage(for adding Subject, Re-
cipient and Attachement)*/

SimpleMailSystem=xMcf~ -

createInstancewithContext("com.sun.star.system.SimpleSystemMail", oContext)

XSimpleMailClientSupplier = SimpleMailSystem~XSimpleMailClientSupplier

XSimpleMailClient = XSimpleMailClientSupplier~querySimpleMailClient

mail = XSimpleMailClient~createSimpleMailMessage

/*set Recipient and Subject*/

mail~setRecipient("h0251293@wu-wien.ac.at")

mail~setSubject("mail from OpenOffice.org 2.0")

/*setAttachement*/

attach = bsf.createArray(.bsf4rexx~string.class, 1)

attach[1] = "file:///c:/attachement.odt"

mail~setAttachement(attach)

flag=bsf.getConstant("com.sun.star.system.SimpleMailClientFlags", "NO_USER_INTERFACE")

XsimpleMailClient~sendSimpleMailMessage(mail, flag)

::requires UNO.CLS -- load UNO support for OpenOffice.org

OpenOffice.org Automatisation Page 42

In Figure.16 the Thunderbird e-mail program requests if the mail should be sent. This
happens while running the program.

In Figure.17 the sent e-mail is shown with all added values and attachments.

Figure 16: confirm request

Figure 17: received mail

OpenOffice.org Automatisation Page 43

The lines of code explained in more detail:

Cutout.1

oContext=xScriptContext~getComponentContext

-- get the context(an XComponentContext object)

xMcf = oContext~getServiceManager

In addition to the XDesktop object the XComponentContext object is required. The
XComponentContext can be requested to get the XMultiComponentFactory (cutout.1)
which will be needed later to create a mail instance.

In the following lines of code an XTextDocument is created like in the examples above.
Afterwards com.sun.star.text.TextField.DateTime instances are added. Text fields can
be described as following:

A text field is text content that is usually inserted into the existing text, but the actual
content comes from elsewhere-for example, the total number of pages or a database
field. [Pito04] (Chapter 13, Writer Documents, p.312)

Cutout.2

xTextFieldTime1 = xDMsf~createInstance("com.sun.star.text.TextField.DateTime") -

~xTextField

xTextFieldTime2 = xDMsf~createInstance("com.sun.star.text.TextField.DateTime")-

~xTextField

xTextFieldTime1~XPropertySet~setPropertyValue("IsDate", box("boolean", .true))

In our example the property „IsDate“ of text field number one is set true. This means
that it will contain the current date and not the time like the text field number two
(cutout.2).

Cutout.3

xWriterComponent~xStorable~storeAsURL("file:///c:/attachement.odt", .UNO~noProps)

Afterwards, the document is saved using the XStoreable interface (cutout.3).

Cutout.4

SimpleMailSystem=xMcf -

~createInstancewithContext("com.sun.star.system.SimpleSystemMail",- oContext)

XSimpleMailClientSupplier = SimpleMailSystem~XSimpleMailClientSupplier

XSimpleMailClient = XSimpleMailClientSupplier~querySimpleMailClient

mail = XsimpleMailClient~createSimpleMailMessage

Figure 18: e-mail button

OpenOffice.org Automatisation Page 44

In cutout.4 the XMultiComponentFactory interface is used to create a com.sun.star.sys-
tem.SimpleSystemMail instance. This service would be used also if the e-mail button of
the swriter application would be clicked, shown in Figure.18.

Now different methods are used to initialise an XSimpleMailMessage which offers
methods to set recipient and subject (cutout.5).

Cutout.5

mail~setRecipient("h0251293@wu-wien.ac.at")

mail~setSubject("mail from OpenOffice.org 2.0")

In cutout.6 a string array containing the URL of the attachment is created and passed to
the interface.

Cutout.6

attach = bsf.createArray(.bsf4rexx~string.class, 1)

attach[1] = "file:///c:/attachement.odt"

mail~setAttachement(attach)

For sending the e-mail the constant SimpleMailClientFlag is defined with
„NO_USER_INTERFACE“ (cutout.7). Using this definition no user interaction will be
necessary to sent the mail.

Cutout.7

flag =bsf.getConstant("com.sun.star.system.SimpleMailClientFlags", "NO_USER_INTERFACE")

XSimpleMailClient~sendSimpleMailMessage(mail, flag)

5.1.7 Example 07 – Using Internet Explorer for Tracking Web-Sites

(Windows-only)

This example shows how Microsoft Internet Explorer can be used to load web sites and
request data. The requested information will be inserted in a Texttable which shows the
actual loading status, the URL and the title.

/* Internet Tracker */

xScriptContext = uno.getScriptContext() -- wrap first argument into an UNO-proxy object

oDesktop=xScriptContext~getDesktop -- get the desktop (an XDesktop object)

oContext=xScriptContext~getComponentContext

-- get the context(an XComponentContext object)

xComponentLoader = oDesktop~XDesktop~XComponentLoader

-- get componentLoader interface

/* open the blank *.sxw - file */

url = "private:factory/swriter"

xWriterComponent = xComponentLoader~loadComponentFromURL(url, "_blank", 0,.UNO~noProps)

/* create the TextObject and the TextCursor */

xTextDocument = xWriterComponent~XTextDocument

xText = XTextDocument~getText

xTextCursor = xText~createTextCursor

/* create and insert TextTable*/

xDMsf = xTextDocument~XMultiServiceFactory

xTextTable = xDMsf~createInstance("com.sun.star.text.TextTable")~XTextTable

xTextTable~initialize(1,3)

xText~insertTextContent(xTextCursor, xTextTable, .false)

OpenOffice.org Automatisation Page 45

/*creating xTextRows service, needed later for properties*/

xTextRows = xTextTable~getRows

xCellText = xTextTable~getCellByName("A1")~XText

xCellText~setString("Title")

xCellText = xTextTable~getCellByName("B1")~XText

xCellText~setString("URL")

xCellText = xTextTable~getCellByName("C1")~XText

xCellText~setString("loading status")

xTableRow = xTextRows~getbyIndex(0)

xProbRow = xTableRow~xPropertySet

xProbRow~setPropertyValue("BackColor", box("int", "e6e6fa"x ~c2d))

/*creating Internet Explorer*/

myIE = .OlEObject~New("InternetExplorer.Application.1")

myIE~Width= 1000

myIE~Height= 250

myIE~Visible= .true

myIE~Statusbar= .false

myIE~menubar= .false

myIE~toolbar= .false

Call loading myIE, xTextTable, "1", "http://www.OpenOffice.org"

Call loading myIE, xTextTable, "2", "http://www.oorexx.org"

Call loading myIE, xTextTable, "3", "http://www.ibm.com"

Call loading myIE, xTextTable, "4", "http://www.apache.org"

Call loading myIE, xTextTable, "5", "http://www.wu-wien.ac.at"

::requires UNO.CLS -- load UNO support for OpenOffice.org

::routine loading

use arg myIE, xTextTable, rownr, url

xTextRows = xTextTable~getRows

xTextRows~insertByIndex(rownr ,1)

myIE~Navigate(url)

DO WHILE myIE~Busy = .true

 CALL syssleep 0.01

 xCell = xTextTable~getCellByName("C" || rownr+1)

 xCellText = xCell~XText

 xCellText~setString("loading.....")

 xCellProbs = xCell~xPropertySet

 xCellProbs~setPropertyValue("BackColor", box("int", "ff0000"x ~c2d))

END

xCell = xTextTable~getCellByName("C" || rownr+1)

xCellText = xCell~XText

xCellText~setString("fertig")

xCellProbs = xCell~xPropertySet

xCellProbs~setPropertyValue("BackColor", box("int", "adff2f"x ~c2d))

title = myIE~document~title

url = myIE~document~url

xCellText = xTextTable~getCellByName("A" || rownr+1)~XText

xCellText~setString(title)

xCellText = xTextTable~getCellByName("B" || rownr+1)~XText

xCellText~setString(url)

http://www.wu-wien.ac.at/
http://www.apache.org/
http://www.ibm.com/
http://www.oorexx.org/
http://www.OpenOffice.org/

OpenOffice.org Automatisation Page 46

In Figure.19 it can be seen how the „Internet Tracker“ loads and shows different web
sites.

In the first part of the example a new swriter document is created. Afterwards a text
table is inserted which provides for each tracked web site a row divided into three
columns named loading status, url and title.

About OLE Object:

OLE Objects (Objects Linking and Embedding) are based on the Microsoft developed
Component Object Model (COM).

Microsoft COM (Component Object Model) technology in the Microsoft Win
dows-family of Operating Systems enables software components to communic-
ate. COM is used by developers to create re-usable software components, link
components together to build applications, and take advantage of Windows
services. The family of COM technologies includes COM+, Distributed COM
(DCOM) and ActiveX® Controls.[IBM06]

A Microsoft ActiveX control is essentially a simple OLE object that supports the
IUnknown interface.[IBM06]

Summarising the statements above OLE(ActiveX) can be described as COM based in-
terface providing the possibility to link different programs34.

34 The usage of the COM technologiy with OpenObjectRexx is explained in more detail in the [Flat06]
course slides.

Figure 19: loading web sites

file:///library/en-us/com/htm/cmi_q2z_9dwu.asp

OpenOffice.org Automatisation Page 47

The lines of code explained in more detail:

In our example ObjectRexx uses Java which is able to access Windows applications us-
ing the technology described in the paragraph „About OLE Object“.

Cutout.1

myIE = .OlEObject~New("InternetExplorer.Application.1")

myIE~Width= 1000

myIE~Height= 250

myIE~Visible= .true

myIE~Statusbar= .false

myIE~menubar= .false

myIE~toolbar= .false

In cutout.1 a new OLEObject instance named myIE is created. Afterwards attributes are
set to define the window appearance.

After opening the Internet Explorer the loading routine is used. This implements the fol-
lowing functionalities:

Cutout.2/loading routine.1

xTextRows = xTextTable~getRows

xTextRows~insertByIndex(rownr ,1)

Before initialising the loop a new row is created an added to the table
(cutout.2/loading routine.1).

Cutout.3/loading routine.2

DO WHILE myIE~Busy = .true

 CALL syssleep 0.01

 xCell = xTextTable~getCellByName("C" || rownr)

 xCellText = xCell~XText

 xCellText~setString("loading.....")

 xCellProbs = xCell~xPropertySet

 xCellProbs~setPropertyValue("BackColor", box("int", "ff0000"x ~c2d))

END

Afterwards the Do While loop checks if the Internet Explorer is still loading the
web site until the busy method returns false (cutout.3/loading routine.2). During
the last step values, which are requested from the IE instance, are inserted into
the new row.

OpenOffice.org Automatisation Page 48

5.1.8 Example 08 – Using a Search Descriptor

The example of this section demonstrates how a search descriptor can be used to tra-
verse text and mark all occurrences of a specified word.

xScriptContext = uno.getScriptContext() -- wrap first argument into an UNO-proxy object

oDesktop=xScriptContext~getDesktop -- get the desktop (an XDesktop object)

xComponentLoader = oDesktop~XDesktop~XComponentLoader

-- get componentLoader interface

/* open the blank *.odt - file */

url = "file:///c:/articel.odt"

xWriterComponent = xComponentLoader~loadComponentFromURL(url, "_blank", 0,.UNO~noProps)

/* create the TextObject and the TextCursor */

xTextDocument = xWriterComponent~XTextDocument

xText = XTextDocument~getText

xTextCursor = xText~createTextCursor

/* create SearchDescriptor*/

xSearchabel = xTextDocument~xSearchable

xSearchDescriptor = xSearchabel~createSearchDescriptor

xSearchDescriptor~setSearchString("OpenOffice.org")

xFound = xSearchabel~findFirst(xSearchDescriptor)

if xFound = .nil

then

xText~insertstring(xText~End, "nothing found", .false)

else

xFoundProbs = xFound~xPropertySet

xFoundProbs~setPropertyValue("CharWeight", -

box("float", bsf.getConstant("com.sun.star.awt.FontWeight", "BOLD")))

found = "true"

counter = 1

DO WHILE found = "true"

xFound = xSearchabel~findNext(xFound, xSearchDescriptor)

 if xFound = .nil

 then do

 found = "false"

 leave

 end

 else

do

 found = "true"

 xFoundProbs = xFound~xPropertySet

xFoundProbs~setPropertyValue("CharWeight", -

box("float", bsf.getConstant("com.sun.star.awt.FontWeight","BOLD")))

counter = counter + 1

end

END

xText~insertString(xText~ -

 End, "In this text part " || counter || " occurrences of "|| xSearchDescriptor~ -

 getSearchString || " could be found" , .false)

::requires UNO.CLS -- load UNO support for OpenOffice.org

OpenOffice.org Automatisation Page 49

In Figure.20 the output of this program can be seen.

The lines of code explained in more detail:

During the first steps an existing word document containing an articel is opened. After-
wards the XTextDocument is requested for the XSearchable interface stated in cutout.1.

Cutout.1

xSearchabel = xTextDocument~xSearchable

Now a search descriptor is created (cutout.2). A search descriptor can be described as
following:

„..A search descriptor supports the string property SearchString, which repres
ents the string to search. The xSearchDescriptor interface defines the meth
ods getSearchString() and setSearchString() to get and set the property....“
[Pito04] (Chapter 13, Writer Documents, p.296)

Cutout.2

xSearchDescriptor = xSearchabel~createSearchDescriptor

xSearchDescriptor~setSearchString("OpenOffice.org")

Then the method findFirst() is used to check if any occurrences of the word
„OpenOffice.org“ can be found. If not, the string „nothing found“ is added to the end of
the text. Otherwise the found variable is set true to initialise the Do While loop. In addi-
tion the found expression is set bold.

The Do While loop uses the method findnext() to find the next occurrence of the
searched string. If no new occurrence is found, the loop is interrupted using the leave

Figure 20: Using a Search Descriptor

OpenOffice.org Automatisation Page 50

statement. In the case the XFound variable returns an object it is marked bold. Further-
more the counter is increased by one. In the last lines of code a string is set at the end of
the traversed text including the counter and SearchString.

5.2 „scalc“ Examples

The Spreadsheet Document Model is structured similarly as the Writer Document Mod-
el. The definition of a model was already given in chapter 5.1 swriter, p.27. This defini-
tion can be understood in the same way for this context.

Figure 21: Spreadscheet Document Model [Open05, p.584]

OpenOffice.org Automatisation Page 51

The Spreadsheet Document Model consists of five major architectural areas:

• spreadsheet container

• service manager (document internal)

• drawPages

• content properties

• objects for Styling

The core of the spreadsheet document model are the spreadsheets contained in the
spreadsheet container.

The service manager of the spreadsheet document model can be used to create shape ob-
jects, text fields and controls which can be added to the spreadsheet.

Each sheet in a spreadsheet document can have a drawpage which is used for drawing
contents.

Different contents, like ranges, can be accessed through content properties at the docu-
ment model. In contrast to the text documents no suppliers are provided.

Finally, there are services which allow for the styling and structuring of spreadsheet
documents.

In addition to the five main architectural areas, document and calculation aspects
provided from the spreadsheet document model can be found. They are shown in the
bottom left corner of Figure.21.

5.2.1 Example 09 - „Hello World“

In this example a simple string is inserted.

xScriptContext = uno.getScriptContext() -- wrap first argument into an UNO-proxy object

 oDesktop=xScriptContext~getDesktop -- get the desktop (an XDesktop object)

xComponentLoader = oDesktop~XDesktop~XComponentLoader

-- get componentLoader interface

/* open the blank *.sxw - file */

url = "private:factory/scalc"

xCalcComponent = xComponentLoader~loadComponentFromURL(url, "_blank", 0,.UNO~noProps)

/* get first sheet in spreadsheet */

xSheet=xCalcComponent~XSpreadSheetDocument~getSheets~XIndexAccess~getByIndex(0) -

~XSpreadSheet

/* insert values into tables*/

CALL UNO.setCell xSheet, 0, 0, "Hello World"

::requires UNO.cls -- get UNO support

OpenOffice.org Automatisation Page 52

The result of this program can be seen in Figure.22.

About the data structure of scalc documents:

The primary purpose of a spreadsheet document is to act as a container for
individual sheets through the xSpreadsheetDocument interface. The
xSpreadsheetDocument interface defines the single method getSheetcollecting()
that returns Spreadsheet objects used to manipulate the individual sheets.
[Pito04] (Chapter 14, Calc Documents, p.326)

A spreadsheet document consists of individual sheets that are composed of rows
and columns of cells. Each column is labled alphabetically starting with the
letter A, and each row is labelled numerically starting with the number 1. A cell
can be identified by its name, which uses the column letter an the row number,
or by its position. The upper-left cell is „A1“ at position (0,0) and cell „B3“
is at location (1,2). [Pito04] (Chapter 14, Calc Documents, p.327)

The lines of code explained in more detail:

Cutout.1

url = "private:factory/scalc"

xCalcComponent = xComponentLoader~loadComponentFromURL(url, "_blank", 0,.UNO~noProps)

First a new scalc document is created in the same way like the swriter document
(cutout.1).

Cutout.2

xSheet=xCalcComponent~XSpreadSheetDocument~getSheets~XIndexAccess~getByIndex(0) -
~XSpreadSheet

Now the XSpreadSheetContainer, described above is requested for the spreadsheet with
index number zero, which is the first element (cutout.2).

Cutout.3

CALL UNO.setCell xSheet, 0, 0, "Hello World"

Now the UNO module is used to set the „Hello World“ string. For this the spreadsheet
document and the cell coordinates are passed (cutout.3).

Figure 22: Hello World „scalc“

OpenOffice.org Automatisation Page 53

5.2.2 Example 10 - Insert Values and Formulas

This example inserts different values and a formula which summaries them.
/* basic cell operations */

xScriptContext = uno.getScriptContext() -- wrap first argument into an UNO-proxy object

 oDesktop=xScriptContext~getDesktop -- get the desktop (an XDesktop object)

xComponentLoader = oDesktop~XDesktop~XComponentLoader

-- get componentLoader interface

/* open the blank *.sxw - file */

url = "private:factory/scalc"

xCalcComponent = xComponentLoader~loadComponentFromURL(url, "_blank", 0,.UNO~noProps)

/* get first sheet in spreadsheet */

xSheet = xCalcComponent~XSpreadSheetDocument~getSheets~XIndexAccess~getByIndex(0) -

~XSpreadSheet

/* insert values into tables*/

CALL UNO.setCell xSheet, 0, 0, "4"

CALL UNO.setCell xSheet, 0, 1, "1"

CALL UNO.setCell xSheet, 0, 2, "5"

CALL UNO.setCell xSheet, 0, 3, "11"

CALL UNO.setCell xSheet, 0, 4, "55"

/*insert formula into table*/

xCell = xSheet~getCellByPosition(0, 5)

xCell~setFormula("=sum(A1:A5)")

/*set Property values*/

xCell~XPropertySet~setPropertyValue("CellBackColor", box("int", "ff 00 00"x ~c2d))

::requires UNO.cls -- get UNO support

In Figure.23 the resulting spreadsheet of this program can be seen.

Figure 23: Insert Values and Formulas

OpenOffice.org Automatisation Page 54

About cell data:

A cell can contain four types of data named „empty“, „value“, „text“ and „formula“. For
example, using the text type it would be possible to insert a text field which contains the
current date. In our example a new formula is inserted. The formula type can be de-
scribed as following:

„...A cell can contain a formula. The methods getFormula() and setFormula()
get and set a cell's formula....when setting a cell's formula, you must include the
leading equals (=) and the formula must be in English....“ [Pito04] (Chapter
14, Calc Documents, p.328)

The lines of code explained in more detail:

First different values are inserted like in Example 09, cutout.3 (p.52).

Cutout.1

xCell~setFormula("=sum(A1:A5)")

xCell~XPropertySet~setPropertyValue("CellBackColor", box("int", "ff 00 00"x ~c2d))

In the last cell, a formula is inserted which adds up the cell values inserted before. Fur-
thermore the CellBackColor is set red (cutout.1).

5.2.3 Example 11 - Copy Cell Ranges

This example copies a cell range and inserts it into a second sheet.

/* setting and using cell area */

xScriptContext = uno.getScriptContext() -- wrap first argument into an UNO-proxy object

 oDesktop=xScriptContext~getDesktop -- get the desktop (an XDesktop object)

xComponentLoader = oDesktop~XDesktop~XComponentLoader

-- get componentLoader interface

/* open the blank *.sxw - file */

url = "private:factory/scalc"

xCalcComponent = xComponentLoader~loadComponentFromURL(url, "_blank", 0, .UNO~noProps)

/* get first sheet in spreadsheet */

xSheet = xCalcComponent~XSpreadSheetDocument~getSheets~XIndexAccess~getByIndex(0) -

~XSpreadSheet

/* insert values into tables*/

CALL UNO.setCell xSheet, 0, 0, "original"

xCell = xSheet~getCellByPosition(0, 0)

xCell~xPropertySet~setPropertyValue("CellBackColor", box("int", "000080"x ~c2d))

CALL UNO.setCell xSheet, 0, 1, "1"

CALL UNO.setCell xSheet, 0, 2, "5"

CALL UNO.setCell xSheet, 0, 3, "11"

CALL UNO.setCell xSheet, 0, 4, "55"

CALL syssleep 1

/*working with secound sheet*/

xSheet2 = xCalcComponent~XSpreadSheetDocument~getSheets~XIndexAccess~getByIndex(1) -

~XSpreadSheet

OpenOffice.org Automatisation Page 55

xSheetview=xCalcComponent~XSpreadSheetDocument~XModel~getCurrentController -

~xSpreadsheetView

xSheetview~setActiveSheet(xSheet2)

/*coping cell ranges*/

CALL UNO.setCell xSheet2, 0, 0, "copied"

xCell = xSheet2~getCellByPosition(0, 0)

xCell~xPropertySet~setPropertyValue("CellBackColor", box("int", "000080"x ~c2d))

xCellRange = xSheet~xCellRange~getCellRangeByName("A2:A6")

rangeaddress = xCellRange~XCellRangeAddressable~getRangeAddress

xCell = xSheet2~getCellByPosition(0, 1)

celladdress = xCell~xCellAddressable~getCellAddress

xMovement = xSheet2~xCellRangeMovement

xMovement~copyRange(celladdress, rangeaddress)

::requires UNO.CLS -- load UNO support for OpenOffice.org

In Figure.24 the result of this example can be seen.

About cell ranges:

„....In Writer documents, continuous text can be grouped in a text range. In a
spreadsheet, cells can be grouped in rectangular regions with a Sheet
CellRange. Grouping cells together allows multiple cells to be operated on
at one time. The SheetCellRange service supports many of the same interfaces
and properties as a SheetCell.....“ [Pito04] (Chapter 14, Calc Documents,
p.333)

About cell's adress:

„....a cell's address is specified by the sheet that contains the cell, and the row
and column in which the cell is located....“ [Pito04] (Chapter 14, Calc Docu-
ments, p.328)

Figure 24: Copy Cell Ranges

OpenOffice.org Automatisation Page 56

About the XCellRangeMovement interface:

„...The interface com.sun.star.sheet.XCellRangeMovement of the Spreadsheet
service supports inserting and removing cells from a spreadsheet, and copying
and moving cell contents....“ [Open05, p.609]

The lines of code explained in more detail:

In the first part of the example a new spreadsheet document is created. Then different
values are inserted into the first sheet.

Cutout.1

xSheetview=xCalcComponent~XSpreadSheetDocument~XModel~getCurrentController -

~xSpreadsheetView

xSheetview~setActiveSheet(xSheet2)

After the second sheet was requested, the code lines above initialise the current control-
ler (cutout.1). The current controller provides access to the current view status and
makes it possible to change the view using the XSpreadsheetView interface and the
method setActiveSheet(). In this case the view is set to the second sheet.

Cutout.2

xCellRange = xSheet~xCellRange~getCellRangeByName("A2:A6")

rangeaddress = xCellRange~XCellRangeAddressable~getRangeAddress

In cutout.2 first a cell range is defined representing a group of cells. Now it is possible
to get the address object of the cells which is needed for the copyRange() method.

Cutout.3

xCell = xSheet2~getCellByPosition(0, 1)

celladdress = xCell~xCellAddressable~getCellAddress

Furthermore a cell adress for inserting the copied range is needed (cutout.3).

Cutout.4

xMovement = xSheet2~xCellRangeMovement

xMovement~copyRange(celladdress, rangeaddress)

In cutout.4 the XCellRangeMovement interface provides the method copyRange()
which is used to copy the range passing the cell address.

5.2.4 Example 12 - Merging Cells

In this example different cells are merged to show the different functionalities of XCell
Ranges.

/* mergin cells */

xScriptContext = uno.getScriptContext() -- wrap first argument into an UNO-proxy object

 oDesktop=xScriptContext~getDesktop -- get the desktop (an XDesktop object)

xComponentLoader = oDesktop~XDesktop~XComponentLoader

 -- get componentLoader interface

/* open the blank *.sxw - file */

url = "private:factory/scalc"

xCalcComponent = xComponentLoader~loadComponentFromURL(url, "_blank", 0,.UNO~noProps)

/* get first sheet in spreadsheet */

xSheet=xCalcComponent~XSpreadSheetDocument~getSheets~XIndexAccess~getByIndex(0) -

~XSpreadSheet

OpenOffice.org Automatisation Page 57

/* insert values into tables*/

CALL UNO.setCell xSheet, 0, 0, "merging"

xCell = xSheet~getCellByPosition(0, 0)

xCell~xPropertySet~setPropertyValue("CellBackColor", box("int", "000080"x ~c2d))

CALL UNO.setCell xSheet, 0, 1, "1"

CALL UNO.setCell xSheet, 0, 2, "5"

CALL UNO.setCell xSheet, 0, 3, "11"

CALL UNO.setCell xSheet, 0, 4, "55"

CALL syssleep 2

/*mergin cells*/

xCellRange = xSheet~xCellRange~getCellRangeByName("A2:A5")

xMergRang = xCellRange~xMergeable

xMergRang~merge(.true)

::requires UNO.CLS -- load UNO support for OpenOffice.org

In Figure.25 the result of this code snippet can be seen.

About merging cells:

„A range of cells can be merged and unmerged using the merge (Boolean)
method – merge(True) merges the range merge(False) unmerges the
range...merging cells causes the top-left cell to use the entire merged area.“
[Pito04] (Chapter 14, Calc Documents, p.342)

The lines of code explained in more detail:

After creating a new Spreadsheet document different values are inserted like in Example
09, cutout.3 (p.52).

Cutout.1

xCellRange = xSheet~xCellRange~getCellRangeByName("A2:A5")

xMergRang = xCellRange~xMergeable

xMergRang~merge(.true)

Using the XMergeable interface for a defined range it is possible to merge all cells of
the XCellRange (cutout.1).

Figure 25: Merging Cells

OpenOffice.org Automatisation Page 58

5.2.5 Example 13 - Identify Row Differences

This example loads an existing spreadsheet document with already inserted values. First
a cell range is defined. From this cell range a XCellRangesQuery interface is requested.
This interface provides different query statements like the queryColumnDifferences()
method. [Api06c]

/* comparing rows */

xScriptContext = uno.getScriptContext() -- wrap first argument into an UNO-proxy object

 oDesktop=xScriptContext~getDesktop -- get the desktop (an XDesktop object)

xComponentLoader = oDesktop~XDesktop~XComponentLoader

 -- get componentLoader interface

/* open the blank *.sxw - file */

url = "file:///c:/compare.ods"

xCalcComponent = xComponentLoader~loadComponentFromURL(url, "_blank", 0,.UNO~noProps)

/* get first sheet in spreadsheet */

xSheet=xCalcComponent~XSpreadSheetDocument~getSheets~XIndexAccess~getByIndex(0) -

~XSpreadSheet

xCellRange = xSheet~xCellRange~getCellRangeByName("A1:C4")

xCell = xSheet~getCellByPosition(4,1)

xAdress = xCell~xCellAddressable~getCellAddress

xCellQuery = xCellRange~XCellRangesQuery

differentCells = xCellQuery~queryColumnDifferences(xAdress)

adresses = differentCells~getCells

enum = adresses~createEnumeration

CALL UNO.setCell xSheet, 0, 6, differentCells~getRangeAddressesAsString

DO WHILE enum~hasMoreElements

 xCell = enum~nextElement

 xCell~xPropertySet~setPropertyValue("CellBackColor", box("int", "ff0000"x ~c2d))

END

::requires UNO.CLS -- load UNO support for OpenOffice.org

Figure 26: Identify Row Differences

OpenOffice.org Automatisation Page 59

In Figure.26 the result of this example can be seen.

The lines of code explained in more detail:

Cutout.1

adresses = differentCells~getCells

enum = adresses~createEnumeration

In cutout.1 the returned object of the method createEnumeration() is a XEnumeration-
Access container which can be traversed through using the XEnumeration interface used
in a loop as follows (cutout.2):

Cutout.2

DO WHILE enum~hasMoreElements

 xCell = enum~nextElement

 xCell~xPropertySet~setPropertyValue("CellBackColor", box("int", "ff0000"x~c2d))

END

The loop shown above traverses all XCell objects of the container and marks them red
through setting the property „CellBackColor“.

5.2.6 Example 14 - Chart Show

In this example an existing spreadsheet document providing data for a chart is opened.
Afterwards a rectangular shape is created which is needed to insert the chart into the
document. In addition an XCellRange is defined which covers the data used for the
chart.

/* inserting different charts */

xScriptContext = uno.getScriptContext() -- wrap first argument into an UNO-proxy object

 oDesktop=xScriptContext~getDesktop -- get the desktop (an XDesktop object)

xComponentLoader = oDesktop~XDesktop~XComponentLoader -- get componentLoader interface

/* open the blank *.sxw - file */

url = "file:///c:/chartbase.ods"

xCalcComponent = xComponentLoader~loadComponentFromURL(url, "_blank", 0,.UNO~noProps)

/* get first sheet in spreadsheet */

xSheet=xCalcComponent~XSpreadSheetDocument~getSheets~XIndexAccess~getByIndex(0) -

~XSpreadSheet

oRect = .bsf~new("com.sun.star.awt.Rectangle")

oRect~X = 300

oRect~Y = 5000

oRect~Width = 10000

oRect~Height = 8000

xCellRange = xSheet~xCellRange~getCellRangeByName("A1:C5")

Addr = xCellRange~xCellRangeAddressable~getRangeAddress

CALL UNO.loadClass "com.sun.star.table.CellRangeAddress"

oAddr = bsf.createArray(.UNO~CellRangeAddress, 1)

oAddr[1] = Addr

xTableCharts = xSheet~xTableChartsSupplier~getCharts

xTableCharts~addNewByName("FirstChart", oRect, oAddr, .true, .true)

OpenOffice.org Automatisation Page 60

xChartObj = xTableCharts~xNameAccess~getByName("FirstChart")

xChart = xChartObj~xTableChart

xComponent = xChart~xEmbeddedObjectSupplier~getEmbeddedObject

xChartDocument = xComponent~XChartDocument

xMsf = xChartDocument~XMultiserviceFactory

CALL syssleep 2

xDiagram = xMsf~createInstance("com.sun.star.chart.PieDiagram")~xDiagram

xChartDocument~setDiagram(xDiagram)

CALL syssleep 2

xDiagram = xMsf~createInstance("com.sun.star.chart.LineDiagram")~xDiagram

xChartDocument~setDiagram(xDiagram)

CALL syssleep 2

xDiagram = xMsf~createInstance("com.sun.star.chart.AreaDiagram")~xDiagram

xChartDocument~setDiagram(xDiagram)

CALL UNO.setCell xSheet, 0, 7, "fertig"

::requires UNO.CLS -- load UNO support for OpenOffice.org

Figure.27 shows the result of this example.

The lines of code explained in more detail:

Cutout.1

xTableCharts = xSheet~xTableChartsSupplier~getCharts

xTableCharts~addNewByName("FirstChart", oRect, oAddr, .true, .true)

In cutout.1 the XTableCharts container is requested. Using the method addNewBy-
Name() a new chart provided from the XTableCharts interface is created. For creating a
chart different attributes are needed.

Figure 27: Chart Show

OpenOffice.org Automatisation Page 61

The first attribute contains a string representing the name. Furthermore the rectangle
shape and the address of the text range defined above are passed. [Api06d]

Cutout.2

xChartObj = xTableCharts~xNameAccess~getByName("FirstChart")

xChart = xChartObj~xTableChart

xComponent = xChart~xEmbeddedObjectSupplier~getEmbeddedObject

xChartDocument = xComponent~XChartDocument

xMsf = xChartDocument~XMultiserviceFactory

In cutout.2 the Service Manager of the chart document created before is initialised. Us-
ing the XMultiServiceFactory, it is possible to create different diagram types.

Cutout.3

xDiagram = xMsf~createInstance("com.sun.star.chart.PieDiagram")~xDiagram

xChartDocument~setDiagram(xDiagram)

Using the method setDiagram() the newly created diagram type can be set for the chart
(cutout.3). In the example this is done several times by always using the same data base.

5.2.7 Example 15 - Using a Replace Descriptor

This example creates a Replace Descriptor to search and replace values in cells.

/* setting and using cell area */

xScriptContext = uno.getScriptContext() -- wrap first argument into an UNO-proxy object

 oDesktop=xScriptContext~getDesktop -- get the desktop (an XDesktop object)

xComponentLoader = oDesktop~XDesktop~XComponentLoader -- get componentLoader interface

/* open the blank *.sxw - file */

url = "private:factory/scalc"

xCalcComponent = xComponentLoader~loadComponentFromURL(url, "_blank", 0, .UNO~noProps)

/* get first sheet in spreadsheet */

xSheet=xCalcComponent~XSpreadSheetDocument~getSheets~XIndexAccess~getByIndex(0) -

~XSpreadSheet

CALL UNO.setCell xSheet, 0, 0, "33"

CALL UNO.setCell xSheet, 0, 1, "44"

CALL UNO.setCell xSheet, 0, 2, "66"

CALL UNO.setCell xSheet, 0, 3, "23"

CALL UNO.setCell xSheet, 0, 4, "0"

CALL UNO.setCell xSheet, 0, 5, "67"

xCellRange = xSheet~xCellRange~getCellRangeByName("A1:A6")

Replace = xCellRange~XReplaceable

xReplaceDescriptor = Replace~createReplaceDescriptor

xReplaceDescriptor~setSearchString("0")

xReplaceDescriptor~setReplaceString("zero")

Replace~replaceAll(xReplaceDescriptor)

CALL UNO.setCell xSheet, 0, 6, "fertig"

::requires UNO.CLS -- load UNO support for OpenOffice.org

OpenOffice.org Automatisation Page 62

Figure.28 shows the result of this example.

About searching and replacing in a spreadsheet document:

„The thing that I find most interesting about searching in a spreadsheet docu-
ment is that searching is not supported by the document object. Cell objects
and cell range objects support searching, however....“ [Pito04] (Chapter 14,
Calc Documents, p.341)

The lines of code explained in more detail:

In this example a simple new spreadsheet document is created and different values are
inserted. These values are traversed using a Replace Descriptor which replace a specific
value with a defined string.

For this an XCellRange has to be defined to cover the data and make searching and re-
placing possible. This range is used to create a Replace Descriptor (cutout.1).

Cutout.1

xReplaceDescriptor~setSearchString("0")

xReplaceDescriptor~setReplaceString("zero")

Replace~replaceAll(xReplaceDescript)

Now the search and replace string are set and the replace query is executed (cutout.1).

5.2.8 Example 16 - Inserting a Shape

In this example a rectangular shape is inserted into a spreadsheet document.

/* setting and using cell area */

xScriptContext = uno.getScriptContext() -- wrap first argument into an UNO-proxy object

 oDesktop=xScriptContext~getDesktop -- get the desktop (an XDesktop object)

xComponentLoader = oDesktop~XDesktop~XComponentLoader -- get componentLoader interface

/* open the blank *.sxw - file */

url = "private:factory/scalc"

xCalcComponent = xComponentLoader~loadComponentFromURL(url, "_blank", 0,.UNO~noProps)

/* get first sheet in spreadsheet */

xSheet=xCalcComponent~XSpreadSheetDocument~getSheets~XIndexAccess~getByIndex(0) -

~XspreadSheet

Figure 28: Using a Replace Descriptor

OpenOffice.org Automatisation Page 63

/*creating Multi Service Factory*/

xCalcFactory = xCalcComponent~xMultiServiceFactory

/*creating draw page*/

xDrawPages = xSheet~xDrawPageSupplier

xDrawPage = xDrawPages~getDrawPage~xDrawPage

/*creating scalc shape*/

calcShape = xCalcFactory~createInstance("com.sun.star.drawing.RectangleShape")

xcalcShape = calcShape~xShape

size = .bsf~new("com.sun.star.awt.Size")

point = .bsf~new("com.sun.star.awt.Point")

size~Height = 2500

size~Width = 8000

point~x = 1000

point~y= 1000

xcalcShape~setSize(size)

xcalcShape~setPosition(point)

xPropertySet=xcalcShape~xPropertySet

xPropertySet~setPropertyValue("FillColor", box("int", "C0 C0 C0"x ~c2d))

xDrawPage~add(xCalcShape)

textShape = calcShape~xText

textShape~setString("This is a Rectangle Shape")

::requires UNO.CLS -- load UNO support for OpenOffice.org

In Figure.29 the result of this code snippet can be seen.

The lines of code explained in more detail:

In this example, first it is necessary to get the Service Manager of the current document,
as shown in cutout.1.

Cutout.1

xCalcFactory = xCalcComponent~xMultiServiceFactory

xDrawPages = xSheet~xDrawPageSupplier

xDrawPage = xDrawPages~getDrawPage~xDrawPage

Figure 29: Inserting a Shape

OpenOffice.org Automatisation Page 64

During the introduction of scalc documents it was already mentioned that the DrawPage
is needed to insert shapes (5.2 scalc examples, p.48). For this the XDrawPageSupplier is
used.

After initialising a shape using the XMultiServiceFactory the rectangle is added to the
draw page.

At the end of the example some text is inserted into the shape using its XText interface.

5.2.9 Example 17 – Changing the Cell Format

The next example shows how a cell format can be changed.

xScriptContext = uno.getScriptContext() -- wrap first argument into an UNO-proxy object

oDesktop=xScriptContext~getDesktop -- get the desktop (an XDesktop object)

xComponentLoader = oDesktop~XDesktop~XComponentLoader -- get componentLoader interface

/* open the blank *.sxw - file */

url = "private:factory/scalc"

xCalcComponent = xComponentLoader~loadComponentFromURL(url, "_blank", 0,.UNO~noProps)

/* get first sheet in spreadsheet */

xSheet=xCalcComponent~XSpreadSheetDocument~getSheets~XIndexAccess~getByIndex(0) -

~XSpreadSheet

/*change cell type*/

xCell = xSheet~getCellByPosition(0, 0)

CALL UNO.setCell xSheet, 0, 0, "38748"

xCell~xPropertySet~setPropertyValue("CellBackColor", box("int", "000080"x ~c2d))

Call syssleep 3

xCell~xPropertySet~setPropertyValue("NumberFormat", box("short", 84))

xCell~xPropertySet~setPropertyValue("CellBackColor", box("int", "ff7f50"x ~c2d))

::requires UNO.CLS -- load UNO support for OpenOffice.org

In Figure.30 the original and the cell with the changed format can be seen.

In this example, first the value „38748“ is inserted. This value can represent a date with-
in OpenOffice.org which can be seen after changing the format.

Figure 30: Changing the Cell Format

OpenOffice.org Automatisation Page 65

Cutout.1

xCell~xPropertySet~setPropertyValue("NumberFormat", box("short", 84))

For changing the format of a cell the PropertyValue „NumberFormat“ has to be set. In
cutout.1 the format is changed to the date format of ISO 850135.

To find out which value is needed to set a specified format two ways are possible:

The easiest way to get the value is to format the cell manually first. Afterwards
one can request the property using the method getPropertyValue().

The more professional way would be to use the XNumberFormats service. A
describtion of this theme can be found in chapter 6.2.5 NumberFormats in the
Developers Guide [Open05, p.472].

35ISO (International Organization for Standardization) describes an international organisation for standard-
ization which defined a standard for dates called ISO 8501. For more detailed information use following
link: http://www.w3.org/TR/NOTE-datetime

OpenOffice.org Automatisation Page 66

5.3 „simpress“ and „sdraw“ Examples

„Simpress“ and „sdraw“ are vector oriented applications which can create drawings and
presentations. Both programs have similar abilities to create different shape types, such
as rectangles, text, curves, or graphical shapes. In contrast to the draw application, sim-
press offers additional presentation functionalities like enhanced page structure, present-
ation objects, slide transition and object effects. Figure.31 shows the impress and draw
document structure:

The box in the bottom left corner of the drawing model in Figure.31 represents the addi-
tional presentation aspects of the impress model.[Open05, p.692]

Figure 31: Drawing and Impress Model [Open05]

OpenOffice.org Automatisation Page 67

5.3.1 Example 18 - Using Different Shapes

In this example a new draw page document is opened first. Afterwards different shapes
are inserted.

/* Inserting Graph */

xScriptContext = uno.getScriptContext() -- wrap first argument into an UNO-proxy object

oDesktop=xScriptContext~getDesktop -- get the desktop (an XDesktop object)

xComponentLoader = oDesktop~XDesktop~XComponentLoader

-- get componentLoader interface

/* open the blank *.sxd - file */

url = "private:factory/sdraw"

xDrawComponent = xComponentLoader~loadComponentFromURL(url, "_blank", 0,.UNO~noProps)

xDMsf = xDrawComponent~XMultiServiceFactory

/* get draw page by index */

xDrawPage=xDrawComponent~XDrawPagesSupplier~getDrawPages~getByIndex(0) -

~XDrawPage

oGraph = xDMsf~createInstance("com.sun.star.drawing.RectangleShape")

xGraph = oGraph~xShape

size = .bsf~new("com.sun.star.awt.Size")

point = .bsf~new("com.sun.star.awt.Point")

size~Height = 6000

size~Width = 8000

point~x = 6000

point~y= 3000

xGraph~setSize(size)

xGraph~setPosition(point)

xPropertySet=xGraph~xPropertySet

xPropertySet~setPropertyValue("FillColor", box("int", "C0C0C0"x ~c2d))

xPropertySet~setPropertyValue("LineColor", box("int", "FFFF99"x ~c2d))

xDrawPage~add(xGraph)

oGraph = xDMsf~createInstance("com.sun.star.drawing.EllipseShape")

xGraph2 = oGraph~xShape

size = .bsf~new("com.sun.star.awt.Size")

point = .bsf~new("com.sun.star.awt.Point")

size~Height = 2500

size~Width = 2500

point~x = 9000

point~y= 5000

xGraph2~setSize(size)

xGraph2~setPosition(point)

xPropertySet=xGraph2~xPropertySet

xDrawPage~add(xGraph2)

GraphText2 = xGraph2~xText

xShapeProps2 = xGraph2~XPropertySet

constant = bsf.getConstant("com.sun.star.drawing.CircleKind", "SECTION")

xShapeProps2~setPropertyValue("CircleKind", constant)

xShapeProps2~setPropertyValue("CircleStartAngle", box("int", 9000))

xShapeProps2~setPropertyValue("CircleEndAngle", box("int", 18000))

xShapeProps2~setPropertyValue("FillColor", box("int", "FFFFFF"x ~c2d))

oGraph = xDMsf~createInstance("com.sun.star.drawing.TextShape")

xGraph3 = oGraph~xShape

size = .bsf~new("com.sun.star.awt.Size")

point = .bsf~new("com.sun.star.awt.Point")

size~Height = 2500

size~Width = 2500

point~x = 9000

point~y= 5000

OpenOffice.org Automatisation Page 68

xGraph3~setSize(size)

xGraph3~setPosition(point)

xDrawPage~add(xGraph3)

graphtext3 = xGraph3~xText

xShapeProps3 = xGraph3~xPropertySet

constant = bsf.getConstant("com.sun.star.drawing.TextFitToSizeType", "PROPORTIONAL")

xShapeProps3~setPropertyValue("TextFitToSize", constant)

graphtext3~setString("1")

call syssleep 1

xShapeProps2~setPropertyValue("CircleStartAngle", box("int", 9000))

xShapeProps2~setPropertyValue("CircleEndAngle", box("int", 27000))

xShapeProps2~setPropertyValue("FillColor", box("int", "FFFFFF"x ~c2d))

xDrawPage~add(xGraph2)

graphtext3~setString("2")

call syssleep 1

xShapeProps2~setPropertyValue("CircleStartAngle", box("int", 9000))

xShapeProps2~setPropertyValue("CircleEndAngle", box("int", 36000))

xShapeProps2~setPropertyValue("FillColor", box("int", "FFFFFF"x ~c2d))

xDrawPage~add(xGraph2)

graphtext3~setString("3")

call syssleep 1

constant = bsf.getConstant("com.sun.star.drawing.CircleKind", "FULL")

xShapeProps2~setPropertyValue("CircleKind", constant)

xDrawPage~add(xGraph2)

graphtext3~setString("4")

call syssleep 1

xDrawPage~remove(xGraph2)

xDrawPage~remove(xGraph3)

/* set the properties of the rectangle shape */

xShapeProps = xGraph~XPropertySet

constant = bsf.getConstant("com.sun.star.drawing.TextAnimationKind", "SCROLL")

xShapeProps~setPropertyValue("TextAnimationKind", constant)

graphtext = xGraph~xText

graphtext~setString("This was created with a Text Shape and a Ellipse Shape")

::requires UNO.CLS -- load UNO support for OpenOffice.org

Figure 32: Using Different Shapes

OpenOffice.org Automatisation Page 69

In Figure.32 a screen shot of the running program can be seen.

The lines of code explained in more detail:

The interesting part of this program will be to set different properties for the shapes.

Cutout.1

constant = bsf.getConstant("com.sun.star.drawing.TextFitToSizeType", "PROPORTIONAL")

xShapeProps3~setPropertyValue("TextFitToSize", constant)

As shown in cutout.1 the property value „TextFitToSize“ is set „PROPORTIONAL“ us-
ing a bsf routine to get the correct constant type. The value „PROPORTIONAL“ defines
that if the shape is scaled, the text character size is scaled proportionally.

Moreover the following properties are set during executing the code:

Cutout.2

xShapeProps2~setPropertyValue("CircleStartAngle", box("int", 9000))

xShapeProps2~setPropertyValue("CircleEndAngle", box("int", 27000))

In cutout.2 integer values are passed defining the start and end point of the circle shape.

Cutout.3

bsf.getConstant("com.sun.star.drawing.CircleKind", "FULL"))

bsf.getConstant("com.sun.star.drawing.TextAnimationKind", "SCROLL"))

In cutout.3 the first line sets the com.sun.star.drawing.CircelKind property, the second
adds a text animation named scroll to the rectangle shape.

5.3.2 Example 19 - Organigram

This example shows how Connector Shapes can be set to connect shapes.

/* Inserting Pictures */

xScriptContext = uno.getScriptContext() -- wrap first argument into an UNO-proxy object

oDesktop=xScriptContext~getDesktop -- get the desktop (an XDesktop object)

xComponentLoader = oDesktop~XDesktop~XComponentLoader

-- get componentLoader interface

/* open the blank *.sxd - file */

url = "private:factory/sdraw"

xDrawComponent = xComponentLoader~loadComponentFromURL(url, "_blank", 0,.UNO~noProps)

xDMsf = xDrawComponent~XMultiServiceFactory

/* get draw page by index */

xDrawPage=xDrawComponent~XDrawPagesSupplier~getDrawPages~getByIndex(0) -

~XDrawPage

oGraph = xDMsf~createInstance("com.sun.star.drawing.GraphicObjectShape")

xGraph = oGraph~xShape

size = .bsf~new("com.sun.star.awt.Size")

point = .bsf~new("com.sun.star.awt.Point")

size~Height = 6000

size~Width = 8000

point~x = 5000

point~y= 3000

xGraph~setSize(size)

xGraph~setPosition(point)

xPropertySet=xGraph~xPropertySet

OpenOffice.org Automatisation Page 70

xPropertySet~setPropertyValue("GraphicURL", "file:///C:/OpenOffice.org_01.gif")

xDrawPage~add(xGraph)

Call syssleep 2

/*set transparency*/

xPropertySet~setPropertyValue("Transparency", box("short", 50))

xGraphText = xGraph~xText

xGraphText~setString("OpenOffice.org - Automatisierung")

oGraph = xDMsf~createInstance("com.sun.star.drawing.GraphicObjectShape")

xGraph2 = oGraph~xShape

size = .bsf~new("com.sun.star.awt.Size")

point = .bsf~new("com.sun.star.awt.Point")

size~Height = 3000

size~Width = 4000

point~x = 3000

point~y= 12000

xGraph2~setSize(size)

xGraph2~setPosition(point)

xPropertySet=xGraph2~xPropertySet

xPropertySet~setPropertyValue("GraphicURL", "file:///C:/oorexx.gif")

xDrawPage~add(xGraph2)

oGraph = xDMsf~createInstance("com.sun.star.drawing.ConnectorShape")

xGraphconn = oGraph~xShape

oGraph2 = xDMsf~createInstance("com.sun.star.drawing.ConnectorShape")

xGraphconn2 = oGraph2~xShape

xDrawPage~add(xGraphconn)

xDrawPage~add(xGraphconn2)

oGraph = xDMsf~createInstance("com.sun.star.drawing.GraphicObjectShape")

xGraph3 = oGraph~xShape

size = .bsf~new("com.sun.star.awt.Size")

point = .bsf~new("com.sun.star.awt.Point")

size~Height = 3000

size~Width = 4000

point~x = 11000

point~y= 12000

xGraph3~setSize(size)

xGraph3~setPosition(point)

xPropertySet=xGraph3~xPropertySet

xPropertySet~setPropertyValue("GraphicURL", "file:///C:/bsf_logo.jpg")

xDrawPage~add(xGraph3)

xConnProps = xGraphconn~xPropertySet

xConnProps2 = xGraphconn2~xPropertySet

xConnProps~setPropertyValue("StartShape", xGraph)

xConnProps~setPropertyValue("StartGluePointIndex", box("int", 2))

xConnProps~setPropertyValue("EndShape", xGraph2)

xConnProps~setPropertyValue("EndGluePointIndex", box("int", 4))

xConnProps2~setPropertyValue("StartShape", xGraph)

xConnProps2~setPropertyValue("StartGluePointIndex", box("int", 2))

xConnProps2~setPropertyValue("EndShape", xGraph3)

xConnProps2~setPropertyValue("EndGluePointIndex", box("int", 4))

::requires UNO.CLS -- load UNO support for OpenOffice.org

OpenOffice.org Automatisation Page 71

The result of this example can be seen in Figure.33.

The lines of code explained in more detail:

First the header shape is inserted. After a short break it is set transparent and all other
shapes are added.

Cutout.1

xConnProps~setPropertyValue("StartShape", xGraph)

xConnProps~setPropertyValue("StartGluePointIndex", box("int", 2))

xConnProps~setPropertyValue("EndShape", xGraph2)

xConnProps~setPropertyValue("EndGluePointIndex", box("int", 4))

In cutout.1 the start and end shape are defined. Next the glue points are set which are
available by default through the properties StartGluePointIndex and EndGluePointIndex
passing an index number. The Glue Points define the connecting position of the Con-
nector Shape and the Start or End Shape. The four index numbers represent a top, bot-
tom, left and right placed glue point of the shape. [Open05, p.728]

5.3.3 Example 20 - Using Layer for Shapes

This example shows how layers can be created and added to a shape. In Draw and Im-
press, each shape uses exactly one layer. This layer has different properties which define
if the shape is visible, printable or editable.

/*use Layer for sdraw documents*/

xScriptContext = uno.getScriptContext() -- wrap first argument into an UNO-proxy object

oDesktop=xScriptContext~getDesktop -- get the desktop (an XDesktop object)

xComponentLoader = oDesktop~XDesktop~XComponentLoader -- get componentLoader interface

/* open the blank *.sxd - file */

url = "private:factory/sdraw"

xDrawComponent = xComponentLoader~loadComponentFromURL(url, "_blank", 0,.UNO~noProps)

Figure 33: Organigram

OpenOffice.org Automatisation Page 72

xDMsf = xDrawComponent~XMultiServiceFactory

/* get draw page by index */

xDrawPage=xDrawComponent~XDrawPagesSupplier~getDrawPages~getByIndex(0) -

~XDrawPage

oGraph = xDMsf~createInstance("com.sun.star.drawing.GraphicObjectShape")

xGraph = oGraph~xShape

size = .bsf~new("com.sun.star.awt.Size")

point = .bsf~new("com.sun.star.awt.Point")

size~Height = 6000

size~Width = 8000

point~x = 5000

point~y= 3000

xGraph~setSize(size)

xGraph~setPosition(point)

xPropertySet=xGraph~xPropertySet

xPropertySet~setPropertyValue("GraphicURL", "file:///C:/OpenOffice.org_01.gif")

oGraph = xDMsf~createInstance("com.sun.star.drawing.RectangleShape")

xGraphtext = oGraph~xShape

size = .bsf~new("com.sun.star.awt.Size")

point = .bsf~new("com.sun.star.awt.Point")

size~Height = 1000

size~Width = 8000

point~x = 6000

point~y= 10000

xGraphtext~setSize(size)

xGraphtext~setPosition(point)

xDrawPage~add(xGraph)

xDrawPage~add(xGraphtext)

layersupplier = xDrawComponent~xLayerSupplier

xNameAccess = layersupplier~getLayerManager

xLayerManager = xNameAccess~XLayerManager

/*Layer 1*/

xNotVisibleAndEditable = xLayerManager~insertNewByIndex(xLayerManager~getCount)

xPropsLay = xNotVisibleAndEditable~XPropertySet

xPropsLay~setPropertyValue("Name", "NotVisibleAndEditable")

xPropsLay~setPropertyValue("IsVisible", box(boolean, false))

xPropsLay~setPropertyValue("IsLocked", box(boolean, true))

/*Layer 2*/

xNotEditable = xLayerManager~insertNewByIndex(xLayerManager~getCount)

xPropsLay = xNotEditable~XPropertySet

xPropsLay~setPropertyValue("Name", "NotEditable")

xPropsLay~setPropertyValue("IsVisible", box(boolean, true))

xPropsLay~setPropertyValue("IsLocked", box(boolean, true))

xLayerManager~attachShapeToLayer(xGraph, xNotVisibleAndEditable)

xGraphText = xGraphtext~xText

xGraphText~setString("NotVisibleAndEditable")

Call syssleep 2

xLayerManager~attachShapeToLayer(xGraph, xNotEditable);

xPropertySet~setPropertyValue("Transparency", box("short", 50))

xGraphText~setString("NotEditable")

::requires UNO.CLS -- load UNO support for OpenOffice.org

OpenOffice.org Automatisation Page 73

In Figure.34 The result of this example can be seen.

The lines of code explained in more detail:

The Layer can be accessed through using the com.sun.star.drawing.XLayerSupplier giv-
ing access to the XLayerManager interface.

Cutout.1

layersupplier = xDrawComponent~xLayerSupplier

xNameAccess = layersupplier~getLayerManager

xLayerManager = xNameAccess~XLayerManager

In cutout.1 the XLayer Manager is initialised.

Cutout.2

xNotVisibleAndEditable = xLayerManager~insertNewByIndex(xLayerManager~getCount)

xPropsLay = xNotVisibleAndEditable~XPropertySet

xPropsLay~setPropertyValue("Name", "NotVisibleAndEditable")

xPropsLay~setPropertyValue("IsVisible", box(boolean, false))

xPropsLay~setPropertyValue("IsLocked", box(boolean, true))

Next, a new Layer is created. As mentioned above it is now possible to set different
properties. In this example two layers are created and set (cutout.2).

Figure 34: Using Layer for Shapes

OpenOffice.org Automatisation Page 74

5.3.4 Example 21 - Creating a Master Page

In this example first a master page36 is created, into which different contents are inser-
ted. To show that these contents are used for all linked draw pages a new slide is added
afterwards.

xScriptContext = uno.getScriptContext() -- wrap first argument into an UNO-proxy object

oDesktop=xScriptContext~getDesktop -- get the desktop (an XDesktop object)

-- Retrieve the Desktop object, we need its XComponentLoader interface to load

-- a new document

xComponentLoader = oDesktop~XDesktop~XComponentLoader -- get componentLoader interface

/* open the blank *.sxw - file */

url = "private:factory/simpress"

xImpressComponent = xComponentLoader~loadComponentFromURL(url, "_blank",0,.UNO~noProps)

-- need document's factory to be able to insert created objects

xImprFactory = xImpressComponent~XMultiServiceFactory

/*creating a master Page*/

xMasterPagesSupplier = xImpressComponent~XMasterPagesSupplier

xMasterPages = xMasterPagesSupplier~getMasterPages

xMasterPage = xMasterPages~getByIndex(0)~XDrawPage

/*create a GraphicObjectShape with picture*/

oGraph = xImprFactory~createInstance("com.sun.star.drawing.GraphicObjectShape")

xGraph = oGraph~xShape

xGraph = setshape(xGraph, 2500, 8000, 1000, 1000)

xPropertySet = xGraph~xPropertySet

xPropertySet~setPropertyValue("GraphicURL", "file:///C:/OpenOffice.org_02.jpg")

oGraph = xImprFactory~createInstance("com.sun.star.drawing.TextShape")

xGraph4 = oGraph~xShape

xGraph4 = setshape(xGraph4, 1800, 21000, 4500, 9500)

props4 = xGraph4~xPropertySet

constant = bsf.getConstant("com.sun.star.drawing.TextFitToSizeType", "PROPORTIONAL")

props4~setPropertyValue("TextFitToSize", constant)

xMasterPage~add(xGraph4)

graphtext = xGraph4~xText

graphtext~setString("This is the Master Slide")

xMasterPage~add(xGraph)

xTFP=xImprFactory~createInstance("com.sun.star.text.TextField.PageNumber")~XTextField

oGraph = xImprFactory~createInstance("com.sun.star.drawing.TextShape")

xGraph3 = oGraph~xShape

xGraph4 = setshape(xGraph3, 5000, 5000, 23000, 19000)

graphtext3 = xGraph3~xText

xMasterPage~add(xGraph3)

TextCursor = graphtext3~createTextCursor

graphtext3~insertString(TextCursor, "Folie Nr.: ", .false)

graphtext3~insertTextContent(TextCursor, xTFP, .false)

/*Inserting Text Shapes into documents*/

xDrawPagesSupplier = xImpressComponent~XDrawPagesSupplier

xDrawPages = xDrawPagesSupplier~getDrawPages

xDrawPage0 = xDrawPages~insertNewByIndex(0)~XDrawPage

xSlideProps = xDrawPage0~xPropertySet

36 A master page in this context describes a slide of a „simpress“ presentation which design is added to
other draw pages linked with it.

OpenOffice.org Automatisation Page 75

constant = bsf.getConstant("com.sun.star.presentation.FadeEffect", "RANDOM")

xSlideProps~setPropertyValue("Effect", constant)

constant = bsf.getConstant("com.sun.star.presentation.AnimationSpeed", "MEDIUM")

xSlideProps~setPropertyValue("Speed", constant)

oGraph = xImprFactory~createInstance("com.sun.star.drawing.TextShape")

xGraph5 = oGraph~xShape

xGraph5 = setshape(xGraph5, 1800, 21000, 4000, 8000)

props = xGraph5~xPropertySet

constant = bsf.getConstant("com.sun.star.drawing.TextFitToSizeType", "PROPORTIONAL")

props~setPropertyValue("TextFitToSize", constant)

xDrawPage0~add(xGraph5)

graphtext = xGraph5~xText

graphtext~setString("This is an example DrawPage")

/* start the presentation */

xPresentation = xImpressComponent~XPresentationSupplier~getPresentation

-- "start" is a method in ooRexx class "Object", hence using message

-- "bsf.invoke()" to dispatch "start" on the Java sid

xPresentation~bsf.invoke("start")

::requires UNO.CLS -- load UNO support for OpenOffice.org

::routine setshape

use arg xGraph, h, w, x, y

size = .bsf~new("com.sun.star.awt.Size")

point = .bsf~new("com.sun.star.awt.Point")

size~Height = h

size~Width = w

point~x = x

point~y= y

xGraph~setPosition(point)

xGraph~setSize(size)

return xGraph

In Figure.35 a draw page using the master page can be seen.

Figure 35: Creating a Master Page

OpenOffice.org Automatisation Page 76

About impress documents:

„The PresentationDocument service implements the DrawingDocument service.
This means that every presentation document looks like a drawing document. To
distinguish between the two document types, you must first check for a
presentation (Impress) document and then check for a drawing document.....

• A master page, unlike a regular draw page, may not link to a master page

• A master page may not be removed from a document if any draw page links
to it

• Modifications made to a master page are immediately visible on every draw
page that uses that master page.....“ [Pito04] (Chapter 15, Calc Documents,
p.375)

The lines of code explained in more detail:

Cutout.1

xMasterPagesSupplier = xImpressComponent~XMasterPagesSupplier

xMasterPages = xMasterPagesSupplier~getMasterPages

xMasterPage = xMasterPages~getByIndex(0)~XDrawPage

In cutout.1 the XMasterPageSupplier is requested and used to retrieve the master page.
Now it is possible to use the method getMasterPages() which returns an indexed con-
tainer accessible with the service XMasterPages. This service can be used like the
XDrawPages interface. Furthermore the XDrawPage interface can be requested and
used to design the MasterPage.

In this program different shapes and text fields are added, which was already shown in
Example.19 and 20.

Cutout.2

xDrawPagesSupplier = xImpressComponent~XDrawPagesSupplier

xDrawPages = xDrawPagesSupplier~getDrawPages

xDrawPage0 = xDrawPages~insertNewByIndex(0)~XDrawPage

The XDrawPages of the Impress document are used like the DrawPages of the Draw
document, which can be seen in cutout.2.

At the end of the example some additional text is inserted to show that the last slide is a
Draw Page using the Master slide.

OpenOffice.org Automatisation Page 77

5.3.5 Example 22 - Insert Chart

In this example an existing chart from a scalc document is inserted into an impress doc-
ument. For this an ole2shape object is used. This means that this example works only on
a Windows operating system.

xScriptContext = uno.getScriptContext() -- wrap first argument into an UNO-proxy object

oDesktop=xScriptContext~getDesktop -- get the desktop (an XDesktop object)

-- Retrieve the Desktop object, we need its XComponentLoader interface to load

-- a new document

xComponentLoader = oDesktop~XDesktop~XComponentLoader -- get componentLoader interface

/* open the blank *.sxw - file */

url = "private:factory/simpress"

xImpressComponent = xComponentLoader~loadComponentFromURL(url, "_blank",0,.UNO~noProps)

/* open the blank *.sxw - file */

url = "file:///c:/chartbase_impress.ods"

props = bsf.createArray(.UNO~propertyValue, 1)

props[1] = .UNO~PropertyValue~new

props[1]~Name = "Hidden"

props[1]~Value = box("boolean", .true)

xCalcComponent = xComponentLoader~loadComponentFromURL(url, "_blank", 0, props)

/* get first sheet in spreadsheet */

xSheet=xCalcComponent~XSpreadSheetDocument~getSheets~XIndexAccess~getByIndex(0) -

~XSpreadSheet

xTableCharts = xSheet~xTableChartsSupplier~getCharts

xChartObj = xTableCharts~xIndexAccess~getByIndex(0)

xChart = xChartObj~xTableChart

xComponent = xChart~xEmbeddedObjectSupplier~getEmbeddedObject

xDiagram = xComponent~XChartDocument~getData

-- need document's factory to be able to insert created objects

xImpressFactory = xImpressComponent~XMultiServiceFactory

xDrawPagesSupplier = xImpressComponent~XDrawPagesSupplier

xDrawPages = xDrawPagesSupplier~getDrawPages

xDrawPage = xDrawPages~getByIndex(0)~XDrawPage

ole2shape = xImpressFactory~createInstance("com.sun.star.drawing.OLE2Shape")~xShape

xDrawPage~add(ole2shape)

size = .bsf~new("com.sun.star.awt.Size")

point = .bsf~new("com.sun.star.awt.Point")

size~Height = 14000

size~Width = 18000

point~x = 6000

point~y= 3000

ole2shape~setSize(size)

ole2shape~setPosition(point)

msChartClassID = "12dcae26-281f-416f-a234-c3086127382e"

oleShapeProps = ole2shape~xPropertySet

oleShapeProps~setPropertyValue("CLSID", msChartClassID)

model = oleShapeProps~getPropertyValue("Model")

xChartDocument = model~xChartDocument

xChartDocument~attachdata(xDiagram)

::requires UNO.CLS -- load UNO support for OpenOffice.org

OpenOffice.org Automatisation Page 78

In Figure.36 the inserted chart can be seen.

The lines of code explained in more detail:

First the scalc document is opened using a property array (cutout.1).

Cutout.1

props = bsf.createArray(.UNO~propertyValue, 1)

props[1] = .UNO~PropertyValue~new

props[1]~Name = "Hidden"

props[1]~Value = box("boolean", .true)

In the former examples, an empty array was passed. In the lines above the property
value „Hidden“ is set true (cutout.1). For this, the scalc document is not visible.

Cutout.2

xTableCharts = xSheet~xTableChartsSupplier~getCharts

xChartObj = xTableCharts~xIndexAccess~getByIndex(0)

xChart = xChartObj~xTableChart

Now the XTableCharts container is accessed like in Example 14, cutout.2 (p.60). In the
second line it would be possible as well to use the interface XNameAccess providing
the method getByName().

Cutout.3

xComponent = xChart~xEmbeddedObjectSupplier~getEmbeddedObject

xDiagram = xComponent~XChartDocument~getData

In cutout.3 the XChartDocument interface is accessed which provides the method get-
Data().

Figure 36: Insert Chart

OpenOffice.org Automatisation Page 79

After retrieving the diagram data of the chart an sdraw document is opened. Using the
Service Manager of this document an ole2shape object is created. To use this shape for
charts it is necessary to set a unique class-id.[Open05, p.749]

Cutout.4

msChartClassID = "12dcae26-281f-416f-a234-c3086127382e"

The class id of chart objects is shown above set as a string value (cutout.4).

Cutout.5

oleShapeProps = ole2shape~xPropertySet

oleShapeProps~setPropertyValue("CLSID", msChartClassID)

The class id is simply passed using the setPropertyValue() method (cutout.5).

Cutout.6

model = oleShapeProps~getPropertyValue("Model")

xChartDocument = model~xChartDocument

Now we need the XChartDocument of the chart used in the ole2shape object (cutout.6).
Afterwards the data from the chart document opened before is set (cutout.7).

Cutout.7

xChartDocument~attachdata(xDiagram)

5.3.6 Example 23 - Animations and Click Actions

In this example different shapes are created with animation effects and onClick actions.

/* Presentation Events */

xScriptContext = uno.getScriptContext() -- wrap first argument into an UNO-proxy object

oDesktop=xScriptContext~getDesktop -- get the desktop (an XDesktop object)

-- Retrieve the Desktop object, we need its XComponentLoader interface to load

-- a new document

xComponentLoader = oDesktop~XDesktop~XComponentLoader -- get componentLoader interface

/* open the blank *.sxw - file */

url = "private:factory/simpress"

xImpressComponent = xComponentLoader~loadComponentFromURL(url, "_blank",0,.UNO~noProps)

-- need document's factory to be able to insert created objects

xImpressFactory = xImpressComponent~XMultiServiceFactory

xDrawPagesSupplier = xImpressComponent~XDrawPagesSupplier

xDrawPages = xDrawPagesSupplier~getDrawPages

DO WHILE xDrawPages~getCount < 3

 xDrawPages~insertNewByIndex(0)

END

xDrawPage0 = xDrawPages~getByIndex(0)~xDrawPage

oGraph = xImpressFactory~createInstance("com.sun.star.drawing.RectangleShape")

xGraph = oGraph~xShape

xGraph = setshape(xGraph, 5000, 5000, 1000, 1000)

xDrawPage0~add(xGraph)

xSlideProps = xGraph~xPropertySet

c =bsf.getConstant("com.sun.star.presentation.AnimationEffect", "WAVYLINE_FROM_BOTTOM")

xSlideProps~setPropertyValue("Effect", c)

OpenOffice.org Automatisation Page 80

xSlideProps~setPropertyValue("DimHide", box(boolean, .false))

xSlideProps~setPropertyValue("DimPrevious", box(boolean, true))

xSlideProps~setPropertyValue("DimColor", box("int", "C0 C0 C0"x ~c2d))

xDrawPage0 = xDrawPages~getByIndex(1)~xDrawPage

oGraph = xImpressFactory~createInstance("com.sun.star.drawing.EllipseShape")

xGraph = oGraph~xShape

xGraph = setshape(xGraph, 5000, 5000, 21000, 15000)

xDrawPage0~add(xGraph)

xSlideProps = xGraph~xPropertySet

constant = bsf.getConstant("com.sun.star.presentation.AnimationEffect", "HIDE")

xSlideProps~setPropertyValue("Effect", constant)

xDrawPage0 = xDrawPages~getByIndex(2)~xDrawPage

oGraph = xImpressFactory~createInstance("com.sun.star.drawing.EllipseShape")

xGraph = oGraph~xShape

xGraph = setshape(xGraph, 5000, 5000, 1000, 8000)

xDrawPage0~add(xGraph)

xSlideProps = xGraph~xPropertySet

c = bsf.getConstant("com.sun.star.presentation.AnimationEffect", "FADE_FROM_BOTTOM")

xSlideProps~setPropertyValue("Effect", c)

constant = bsf.getConstant("com.sun.star.presentation.ClickAction", "FIRSTPAGE")

xSlideProps~setPropertyValue("OnClick", constant)

xDrawPage0 = xDrawPages~getByIndex(2)~xDrawPage

oGraph = xImpressFactory~createInstance("com.sun.star.drawing.RectangleShape")

xGraph = oGraph~xShape

xGraph = setshape(xGraph, 5000, 5000, 22000, 8000)

xDrawPage0~add(xGraph)

xSlideProps = xGraph~xPropertySet

c = bsf.getConstant("com.sun.star.presentation.AnimationEffect", "FADE_FROM_BOTTOM")

xSlideProps~setPropertyValue("Effect", c)

c = bsf.getConstant("com.sun.star.presentation.ClickAction", "BOOKMARK")

xSlideProps~setPropertyValue("OnClick", c)

xNamed = xDrawPages~getbyIndex(1)~xNamed

xNamed~setName("page - two")

xSlideProps~setPropertyValue("Bookmark", xNamed~getName)

::requires UNO.CLS -- load UNO support for OpenOffice.org

::routine setshape

use arg xGraph, h, w, x, y

size = .bsf~new("com.sun.star.awt.Size")

point = .bsf~new("com.sun.star.awt.Point")

size~Height = h

size~Width = w

point~x = x

point~y= y

xGraph~setPosition(point)

xGraph~setSize(size)

return xGraph

OpenOffice.org Automatisation Page 81

The resulting slides of this program can be seen in Figure.37

About presentation shapes:

„Shapes contained in Impress documents differ from shapes in Draw docu-
ments in that they support the com.sun.star.presentation.Shape service. The
presentation Shape service provides properties that define special behaviour to
enhance presentations.“ [Pito04] (Chapter 15, Draw and Impress, p.403)

In this example the following two properties are used:

– OnClick, Specify an action if the user clicks on the shape

– Effect, Animation effect for this shape

The lines of code explained in more detail:

In the example three draw pages are created first. Afterwards in the first slide a shape is
inserted to add some animation effects.

Cutout.1

xSlideProps = xGraph~xPropertySet

c =bsf.getConstant("com.sun.star.presentation.AnimationEffect", "WAVYLINE_FROM_BOTTOM")

xSlideProps~setPropertyValue("Effect", c)

xSlideProps~setPropertyValue("DimHide", box(boolean, .false))

xSlideProps~setPropertyValue("DimPrevious", box(boolean, true))

xSlideProps~setPropertyValue("DimColor", box("int", "C0 C0 C0"x ~c2d))

In cutout.1 an animation effect is added through setting properties. Afterwards an ellipse
shape, again with animation effect, is inserted into the second draw page.

Figure 37: Animation and Click Actions

OpenOffice.org Automatisation Page 82

To the third draw page two shapes are set with the following properties (cutout.2):

Cutout.2

c = bsf.getConstant("com.sun.star.presentation.AnimationEffect", "FADE_FROM_BOTTOM")

xSlideProps~setPropertyValue("Effect", c)

c = bsf.getConstant("com.sun.star.presentation.ClickAction", "FIRSTPAGE")

xSlideProps~setPropertyValue("OnClick", c)

c = bsf.getConstant("com.sun.star.presentation.AnimationEffect", "FADE_FROM_BOTTOM")

xSlideProps~setPropertyValue("Effect", c)

c = bsf.getConstant("com.sun.star.presentation.ClickAction", "BOOKMARK")

xSlideProps~setPropertyValue("OnClick", c)

xNamed = xDrawPages~getbyIndex(1)~xNamed

xNamed~setName("page - two")

xSlideProps~setPropertyValue("Bookmark", xNamed~getName)

The code shows how to add animation effects and click actions. The first shape points to
the first page if the click action is triggered. A bookmark referring to the second page is
set as click action to the second shape.

OpenOffice.org Automatisation Page 83

5.4 General Examples

The following examples can not be dedicated to a specific document structure like the
examples before. In contrast they show general functionalities provided by
OpenOffice.org. First a database example will be described, followed by a printing pro-
gram.

5.4.1 Example 24 - Access Internal Database

In this example first the Thunderbird address book is imported into OpenOffice.org.
After doing this the macro requests data using an SQL statement. In the following this
data is used to send e-mails.

xScriptContext = uno.getScriptContext() -- wrap first argument into an UNO-proxy object

xContext=xScriptContext~getComponentContext

 -- get the context(an XComponentContext object)

XMcf = xContext~getServiceManager -- retrieve XMultiComponentFactory

-- first we create our RowSet object and get its XRowSet interface

oRowSet = xMcf~createInstanceWithContext("com.sun.star.sdbc.RowSet", xContext)

xRowSet = oRowSet~XRowSet

-- set the properties needed to connect to a database

xProp = xRowSet~XPropertySet

-- the DataSourceName can be a data source registered with [PRODUCTNAME],

-- among other possibilities

xProp~setPropertyValue("DataSourceName", "addresses")

-- the CommandType must be TABLE, QUERY or COMMAND - here we use COMMAND

xProp~setPropertyValue("CommandType", -

 box("int", bsf.getStaticValue("com.sun.star.sdb.CommandType", "COMMAND")))

-- the Command could be a table or query name or a SQL command, depending on

-- the CommandType

xProp~setPropertyValue("Command", 'SELECT' ' "E-mail" ' 'FROM addressmozilla')

xRowSet~execute -- prepare the XRow interface for column access

xRow = oRowSet~XRow

/*sending e-mail to every address listed in the table addressmozilla*/

SimpleMailSystem=XMcf -

~createInstancewithContext("com.sun.star.system.SimpleSystemMail", xContext)

XSimpleMailClientSupplier = SimpleMailSystem~XSimpleMailClientSupplier

XSimpleMailClient = XSimpleMailClientSupplier~querySimpleMailClient

con = bsf.getConstant("com.sun.star.system.SimpleMailClientFlags", "NO_USER_INTERFACE")

DO WHILE xRowSet~next > 0

 email = xRow~getString(1)

 mail = XSimpleMailClient~createSimpleMailMessage

 /*set Recipient and Subject*/

 mail~setRecipient(email)

 mail~setSubject("mail from OpenOffice.org 2.0")

 XsimpleMailClient~sendSimpleMailMessage(mail, con)

END

::requires UNO.CLS -- load UNO support for OpenOffice.org

OpenOffice.org Automatisation Page 84

First one has to import the Thunderbird address book into OpenOffice.org. For this open
the Address Data Source assistent (which can be found in File/Wizards/Address Data
Source...). There one has to choose Thunderbird, as shown in Figure.38.

Now it is possible to choose an address book to load into OpenOffice.org. Next one has
to define a name for the database. In this example the data source is named “addresses”.
Now just press finish and the new data source is available.

To access the data source the service RowSet is used. The RowSet is described as fol-
lowing:

„RowSet is a client side ResultSet, which combines the characteristics of a
Statement and a ResultSet...Before you use the RowSet, you have to specify a set
of properties like a DataSource and a Command and other properties known
Statement. Afterwards, you can populate the RowSet by its execute method to fill
the set with data....can be used to retrieve the data of a DataSource....“
[Api06e]

The lines of code explained in more detail:

As described above, RowSet needs different properties for requesting a data source.
First the Name of the data source has to be set as a property. This is done by using the
setPropertyValue() method (cutout.1):

Cutout.1

xProp~setPropertyValue("DataSourceName", "adresses")

The command, in this case an SQL-statement, is set in the same way (cutout.2):

Cutout.2

xProp~setPropertyValue("Command", 'SELECT' ' "E-Mail" ' 'FROM addressmozilla')

Figure 38: select type of external adress book

OpenOffice.org Automatisation Page 85

After executing the query a row of data is returned containing all e-mail addresses of the
accessed address book. At the end of the example, this row is traversed using a loop
which sends an e-mail to every address. Before the e-mail is sent, a message box (Fig-
ure.39) asks the user to confirm the process.

5.4.2 Example 25 - Printing Different Documents

In this example different document types are printed.

/* Printing Files */

xScriptContext = uno.getScriptContext() -- wrap first argument into an UNO-proxy object

oDesktop=xScriptContext~getDesktop -- get the desktop (an XDesktop object)

xComponentLoader = oDesktop~XDesktop~XComponentLoader

-- get componentLoader interface

/*printing swriter file*/

/* open the swriter - file */

url = "file:///C:/articel.odt" -- get the document from the current folder

props = bsf.createArray(.UNO~propertyValue, 1)

props[1] = .UNO~propertyValue~new

props[1]~Name = "Hidden"

props[1]~Value = box("boolean", .true)

xWriterComponent = xComponentLoader~loadComponentFromURL(url, "_blank", 0, props)

/* set the printer */

xPrintable = xWriterComponent~XPrintable

props[1]~Name = "Name"

props[1]~Value = "Brother HL-5030 series" -- the name of your printer

xPrintable~setPrinter(props1)

/* set the print-options */

props[1]~Name = "Pages"

props[1]~Value = "1"

/* print current file */

xPrintable~print(props2)

Figure 39: Confirm Box

http://www.ooRexx.org/

OpenOffice.org Automatisation Page 86

/*Printing scalc-File*/

url = "file:///C:/compare.ods" -- get the document from the current folder

props[1] = .UNO~propertyValue~new

props[1]~Name = "Hidden"

props[1]~Value = box("boolean", .true)

xCalcComponent = xComponentLoader~loadComponentFromURL(url, "_blank", 0, props)

xSheet=xCalcComponent~XSpreadSheetDocument~getSheets~XIndexAccess~getByIndex(0)-

~XSpreadSheet

/* create a cell range, then get the CellRangeAddress */

myRange = xSheet~XCellRange~getCellRangeByName("A1:C5")

myAddr = myRange~XCellRangeAddressable~getRangeAddress

CALL UNO.loadClass "com.sun.star.table.CellRangeAddress"

oAddr = bsf.createArray(.UNO~CellRangeAddress, 1) -- create Java array

oAddr[1] = myAddr -- assign CellRangeAddress

xSheet~XPrintAreas~setPrintAreas(oAddr) -- set PrintAreas

xPrintable = xCalcComponent~XPrintable

xPrintable~setPrinter(props1)

xPrintable~print(props2)

/*modifying props*/

props = bsf.createArray(.UNO~propertyValue, 2)

props[1] = .UNO~propertyValue~new

props[1]~Name = "Hidden"

props[1]~Value = box("boolean", .false)

props[2] = .UNO~propertyValue~new

props[2]~Name = "IsPrintHandout"

props[2]~Value = box("boolean", .true)

url="file:///c:/handout.odp"

xImpressComponent = xComponentLoader~loadComponentFromURL(url, "_blank", 0, props)

xDrawPagesSupplier = xImpressComponent~XDrawPagesSupplier

xDrawPages = xDrawPagesSupplier~getDrawPages

xPrintable = xImpressComponent~XPrintable

xPrintable~setPrinter(props1)

props = bsf.createArray(.UNO~propertyValue, 2)

props[1] = .UNO~propertyValue~new

props[1]~Name = "IsPrintHandout"

props[1]~Value = box("boolean", .true)

props[2] = .UNO~propertyValue~new

props[2]~Name = "Pages"

props[2]~Value = "1-" || xDrawPages~getCount

xPrintable~print(props)

::requires UNO.CLS -- load UNO support for OpenOffice

The lines of code explained in more detail:

First a swriter document is opened hidden. Afterwards the XPrintable interface is re-
quested which offers the method setprinter() and print(). The setprinter() method allows
to define a printer. This method requires a property array which contains the name. Af-
terwards, the printer() function can be used to print the file. The number of pages can be
set passing the property value page.

Cutout.1

xSheet~XPrintAreas~setPrintAreas(oAddr)

OpenOffice.org Automatisation Page 87

Next a scalc document is printed. For this it is necessary to set printAreas, shown in
cutout.1. The method setPrintAreas() uses a cell range adress. The next steps for print-
ing are the same as described above for the swriter document.

At the end of the example an impress presentation is printed. For this it is necessary to
find out how many documents are used within the presentation to cover all slides. For
this two ways are possible. First, one can open the file and look how many slides are
within the presentation. Maybe this way is not really efficient in the context of automat-
isation. The second way is used in this example and can be seen in the line below, where
the getCount() method returns the number of documents contained in the XDrawPages
container (cutout.2). This value is inserted into the PropertyArray which is passed for
the printing.

Cutout.2

xDrawPages~getCount

OpenOffice.org Automatisation Page 88

6 Conclusion

At the beginning of this paper, the following questions were defined:

„Software is generally expensive to buy, especially commercial applications for
firms and other organisations. In addition, software is often not independent
from the operating system. These arguments bring up the question, if there are
other possibilities to use software which supports working processes.

The first step toward a more independent way of using software is to identify
approaches which can answer this question.“(1.2 Problem Discussion, p.6).

These questions were answered by the explanation of software elements and examples
which were used in this work. These parts form the approach which is supposed to an-
swer the problem.

In more detail, all components of the introduced architecture are freely available and
thus there clearly is a more cost effective way to solve business problems than commer-
cial software. Different examples underline the ability of this architecture to support
working processes efficiently.

The last two paragraphs should give a short overview of some experiences made by the
author:

Sometimes it was not easy to find the information needed to create the examples. The
main information resources (Api Project homepage[Ajp05], Developer's Guide
[Open05], Macros Explained [Pito04]) were very helpful, but would provide better sup-
port if some aspects would be considered in more detail. Especially the Api Project
homepage often describes interfaces or other objects only in a short way. In addition, it
was often difficult to find out the sequence of interfaces which one has to retrieve to get
the interface needed.

Finally, there seems to be a great potential for further developments on this issue, and
thus students and other people who will deal with this context. The author hopes to
provide some helpful findings for them.

OpenOffice.org Automatisation Page 89

7 References
[Ajp05] Apache Jakarta Project homepage, URL (2006-01-18):
 http://jakarta.apache.org/bsf/

[ApiOOo06] Api Project homepage, URL (2005-01-16):
http://api.openoffice.org/

[Api06a] Api Project homepage, URL (2005-01-16):
http://api.openoffice.org/docs/common/ref/com/sun/star/frame/-
XComponentLoader

[Api06b] Api Project homepage, URL (2005-01-16):
http://api.openoffice.org/docs/common/ref/com/sun/star/text/XText.html

[Api06c] Api Project homepage, URL (2005-01-16):
http://api.openoffice.org/docs/common/ref/com/sun/star/sheet/-
XCellRangesQuery.html

[Api06d] Api Project homepage, URL (2005-01-16):
http://api.openoffice.org/docs/common/ref/com/sun/star/table/-
XTableCharts.html

[Api06e] Api Project homepage, URL (2005-01-16):
http://api.openoffice.org/docs/common/ref/com/sun/star/sdb/-
RowSet.html

[Augu05] Augustin, Walter: Examples for Open Office Automation with Scripting
Languages (2005),
http://wi.wu-wien.ac.at/Studium/LVA-
Unterlagen/rgf/autojava/bsf.ooffice/
retrieved on 2005-11-10

[BSF4Rexx] BSF4Rexx home, URL (2006-03-13):
http://wi.wu-wien.ac.at/rgf/rexx/bsf4rexx/current/

[Flat06] Flatscher, Rony G.: Java Automation - Course slides (in German),
http://wwwi.wu-wien.ac.at/Studium/LVA-
Unterlagen/rgf/autojava/folien/
2004; retrieved on 2005-11-10

[Flat05] Flatscher, Rony G.: “Automating OpenOffice.org with OORexx:
OORexx nutshell exmaples for write and calc”,
http://wi.wu-wien.ac.at/rgf/rexx/orx16/2005_orx16_NutShell_OOo.pdf;
retrieved on 2005-11-10

http://wi.wu-wien.ac.at/rgf/rexx/orx16/2005_orx16_NutShell_OOo.pdf
http://wwwi.wu-wien.ac.at/Studium/LVA-Unterlagen/rgf/autojava/folien/
http://wwwi.wu-wien.ac.at/Studium/LVA-
http://wi.wu-wien.ac.at/Studium/LVA-Unterlagen/rgf/autojava/bsf.ooffice/
http://wi.wu-wien.ac.at/Studium/LVA-
http://wi.wu-wien.ac.at/Studium/LVA-Unterlagen/rgf/autojava/bsf.ooffice/
http://api.openoffice.org/docs/common/ref/com/sun/star/sdb/RowSet.html
http://api.openoffice.org/docs/common/ref/com/sun/star/sdb/-
http://api.openoffice.org/docs/common/ref/com/sun/star/table/XTableCharts.html
http://api.openoffice.org/docs/common/ref/com/sun/star/table/
http://api.openoffice.org/docs/common/ref/com/sun/star/table/-
http://api.openoffice.org/docs/common/ref/com/sun/star/table/
http://api.openoffice.org/docs/common/ref/com/sun/star/sheet/XCellRangesQuery.html
http://api.openoffice.org/docs/common/ref/com/sun/star/sheet/-
http://api.openoffice.org/docs/common/ref/com/sun/star/text/XText.html
http://api.openoffice.org/docs/common/ref/com/sun/star/frame/XComponentLoader
http://api.openoffice.org/docs/common/ref/com/sun/star/frame/-
http://api.openoffice.org/docs/common/ref/com/sun/star/frame/-
http://api.openoffice.org/
http://jakarta.apache.org/bsf/

OpenOffice.org Automatisation Page 90

[Hane05] Hahnekamp, Rainer: Extending the scripting abilities of OpenOffice.org
with BSF and JSR-223; course paper, Vienna University of
Economics and Business Administration, Information Systems and
Operations (Flatscher, Rony G.); January, 2005

[IBM06] Microsoft homepage, URL (2006-01-22):
http://www.microsoft.com/com/default.mspx

[OOo06] OpenOffice.org homepage, URL (2006-01-18):
 http://www.openoffice.org/

[Open05] OpenOffice.org: OpenOffice.org 1.1 - Developer's Guide,
http://api.openoffice.org/DevelopersGuide/DevelopersGuide.html
retrieved on 2005-11-10

[Oorex05] OpenObjectRexx homepage, URL (2006-01-18):
 http://www.oorexx.org/

[Osat06] OpenSource.co.at homepage, URL (2006-01-18):
http://www.opensource.co.at/content.php?cid=5

[Osorg06] OpenSource.org homepage, URL (2006-01-18):
 http://opensource.org/

[Pito04] Pitonyak, Andrew: OpenOffice.org Macros Explained (2004)

[Sun06] Sun homepage, URL (2006-01-18)
http://java.sun.com/

[Wiki06] Wikipedia homepage, URL (2006-01-18):
 http://de.wikipedia.org/wiki/Rexx

[WikiOOo06] Wikipedia homape, URL (2006-01-18):
 http://de.wikipedia.org/wiki/OpenOffice.org

http://de.wikipedia.org/wiki/OpenOffice.org
http://de.wikipedia.org/wiki/Rexx
http://opensource.org/
http://www.opensource.co.at/content.php?cid=5
http://www.oorexx.org/
http://api.openoffice.org/DevelopersGuide/DevelopersGuide.html
http://www.openoffice.org/
http://www.microsoft.com/com/default.mspx

	1 Introduction
	1.1 Abstract
	1.2 Problem Discussion
	1.3 Approach
	1.4 Keywords

	2 Description of the Main Elements
	2.1 Definition of „Open Source“
	2.2 Open Object Rexx
	2.2.1 History3
	2.2.2 Open Object Rexx6
	2.2.3 Syntax Examples

	2.3 OpenOffice.org
	2.3.1 History9
	2.3.2 The OpenOffice Product13

	2.4 The Bean Scripting Framework
	2.4.1 History
	2.4.2 Technical Concept17

	2.5 BSF4Rexx18
	2.6 The Architecture of OpenOffice.org19
	2.6.1 Universal Network Object Concept
	2.6.2 UNO Service Components
	2.6.2.1 Service Manager
	2.6.2.2 Services, Interfaces and Properties
	2.6.2.3 UNO Java Access

	3 Interaction of Elements
	3.1 UNO.CLS
	3.1.1 Java: ObjectRexx25
	3.1.2 UNO.CLS26

	4 Installation Guide
	5 Examples
	5.1 Wordprocessor („swriter“) Examples
	5.1.1 Example 01 – Hello World
	5.1.2 Example 02 – Insert Texttable
	5.1.3 Example 03 – Cursor Show
	5.1.4 Example 04 – Page Counter
	5.1.5 Example 05 – Insert Different Shapes
	5.1.6 Example 06 - Sending E-Mail with Attachment
	5.1.7 Example 07 – Using Internet Explorer for Tracking Web-Sites (Windows-only)
	5.1.8 Example 08 – Using a Search Descriptor

	5.2 „scalc“ Examples
	5.2.1 Example 09 - „Hello World“
	5.2.2 Example 10 - Insert Values and Formulas
	5.2.3 Example 11 - Copy Cell Ranges
	5.2.4 Example 12 - Merging Cells
	5.2.5 Example 13 - Identify Row Differences
	5.2.6 Example 14 - Chart Show
	5.2.7 Example 15 - Using a Replace Descriptor
	5.2.8 Example 16 - Inserting a Shape
	5.2.9 Example 17 – Changing the Cell Format

	5.3 „simpress“ and „sdraw“ Examples
	5.3.1 Example 18 - Using Different Shapes
	5.3.2 Example 19 - Organigram
	5.3.3 Example 20 - Using Layer for Shapes
	5.3.4 Example 21 - Creating a Master Page
	5.3.5 Example 22 - Insert Chart
	5.3.6 Example 23 - Animations and Click Actions

	5.4 General Examples
	5.4.1 Example 24 - Access Internal Database
	5.4.2 Example 25 - Printing Different Documents

	6 Conclusion
	7 References

