
WIRTSCHAFTSUNIVERSITÄT WIEN
BAKKALAUREATSARBEIT

Titel der Bakkalaureatsarbeit:

Apache Velocity

Englischer Titel der Bakkalaureatsarbeit:

Apache Velocity

Verfasserin/Verfasser: Markus Auchmann

Matrikel-Nr.: 0451493

Studienrichtung: J033 526 Bakkalaureat Wirtschaftsinformatik

Kurs: 1526 Projektseminar

Textsprache: Englisch

Betreuerin/Betreuer: Ao. Univ. Prof. Dr. Rony G. Flatscher

Ich versichere:

dass ich die Bakkalaureatsarbeit selbstständig verfasst, andere als die angegebenen Quellen und
Hilfsmittel nicht benutzt und mich auch sonst keiner unerlaubten Hilfe bedient habe.

dass ich die Ausarbeitung zu dem obigen Thema bisher weder im In- noch im Ausland (einer
Beurteilerin/ einem Beurteiler zur Begutachtung) in irgendeiner Form als Prüfungsarbeit vorgelegt
habe.

dass diese Arbeit mit der vom Betreuer beurteilten Arbeit übereinstimmt.

 Datum Unterschrift

Apache Velocity

Table of Contents

1 Introduction...1

1.1 About this paper ...1

1.2 Terms and Definitions ..1

1.2.1 Template Engine..1

1.2.2 Web Template Engine ...2

1.2.3 Model View Controller..3

2 Web Template Engines ..4

2.1 Motivation ...4

2.2 Smarty – PHP...4

2.2.1 Features...5

2.2.2 Sample...6

2.2.3 Summary ...7

2.3 Contemplate – ASP, PHP, Perl ..7

2.3.1 Features...8

2.3.2 Sample...8

2.3.3 Summary ...10

2.4 Cheetah – Python...11

2.4.1 Features...11

2.4.2 Sample...12

2.4.3 Summary ...12

2.5 Embperl – Perl..13

2.5.1 Features...13

2.5.2 Sample...14

2.5.3 Summary ...15

2.6 FreeMarker – Java ...16

2.6.1 Features...16

2.6.2 Sample...17

2.6.3 Summary ...20

3 Apache Velocity ..21

3.1 History ..21

3.2 Introduction...21

Apache Velocity

3.3 Features ...21

3.4 How it works – Hello World!..22

3.4.1 Fundamentals ..22

3.4.2 View...23

3.4.3 Context ..24

3.4.4 Controller ...25

3.4.5 Initialize Velocity and merge ..25

3.4.6 Output ..28

4 Velocity Template Language ...30

4.1 References ...30

4.1.1 Variables..30

4.1.2 Methods ...31

4.1.3 Properties ..33

4.1.4 Quiet notations...34

4.2 Directives..35

4.2.1 #set ..35

4.2.2 #if ...37

4.2.3 #else ..39

4.2.4 #elseif ..39

4.2.5 #foreach...40

4.2.6 #include ...41

4.2.7 #parse..42

4.2.8 #stop..43

4.3 Velocimacros..43

5 Sample Applications ..46

5.1 Parsing XML...46

5.1.1 Model ...46

5.1.2 View...47

5.1.3 Controller ...48

5.1.4 Output ..49

5.2 Using the Bean Scripting Framework ...50

5.2.1 Jacl – Tcl..50

5.2.2 Rhino – JavaScript...52

Apache Velocity

5.2.3 BSF4Rexx – ObjectRexx ...54

5.3 Guestbook using Servlets...58

5.3.1 Create a web application in Tomcat...58

5.3.2 VelocityViewServlet ...59

5.3.3 Planning process ...60

5.3.4 Controller ...61

5.3.5 Model ...62

5.3.6 View...65

5.4 Powering Ajax Applications ..68

5.4.1 Fundamentals ..68

5.4.2 Controller ...68

5.4.3 Toolbox ..69

5.4.4 View...69

5.4.5 The velocity.properties configuration file......................................70

5.4.6 Output ..70

6 Summary ...71

7 List of references..72

8 Appendix: ..75

8.1 Setting up Velocity..75

8.2 Setting up ant ...75

8.3 Ant script for creating web app archives...76

Apache Velocity

Figures

[Figure 01]: Template engine, dreftymac, GNU License

[Figure 02]: Model-View-Controller, Sun Microsystems Inc.

[Figure 03]: Contemplate directory structure, Markus Auchmann

[Figure 04]: Contemplate assembler call, Markus Auchmann

[Figure 05]: Freemarker Data Model Tree, FreeMarker project

[Figure 06]: Velocity MVC, Markus Auchmann

[Figure 07]: HelloWorld example output, Markus Auchmann

[Figure 08]: VTL variables output, Markus Auchmann

[Figure 09]: VTL methods output, Markus Auchmann

[Figure 10]: VTL properties output, Markus Auchmann

[Figure 11]: VTL quiet notations, Markus Auchmann

[Figure 12]: VTL set output, Markus Auchmann

[Figure 13]: VTL if output, Markus Auchmann

[Figure 14]: VTL powerful if output, Markus Auchmann

[Figure 15]: VTL else output, Markus Auchmann

[Figure 16]: VTL elseif output, Markus Auchmann

[Figure 17]: VTL foreach output, Markus Auchmann

[Figure 18]: VTL include output, Markus Auchmann

[Figure 19]: VTL parse output, Markus Auchmann

[Figure 20]: VTL stop output, Markus Auchmann

[Figure 21]: VTL macro output, Markus Auchmann

Apache Velocity

[Figure 22]: parsing XML MVC, Markus Auchmann

[Figure 23]: parsing XML output, Markus Auchmann

[Figure 24]: BSF Tcl output, Markus Auchmann

[Figure 25]: BSF JavaScript output, Markus Auchmann

[Figure 26]: BSF4Rexx example MVC, Markus Auchmann

[Figure 27]: BSF4Rexx example MySQL structure, Markus Auchmann

[Figure 28]: BSF4Rexx example output, Markus Auchmann

[Figure 29]: Tomcat directory structure, Markus Auchmann

[Figure 30]: Guestbook MySQL, Markus Auchmann

[Figure 31]: Guestbook Vector design, Markus Auchmann

[Figure 32]: Guestbook Form, Markus Auchmann

[Figure 33]: Guestbook application look and feel, Markus Auchmann

[Figure 34]: Ajax output 1, Markus Auchmann

[Figure 35]: Ajax output 2, Markus Auchmann

Apache Velocity Page 1

1 Introduction

1.1 About this paper

This paper is about the Velocity Engine project by Apache and should give you

an overview about how a Template Engine works and what the benefits and

disadvantages are. As mentioned this paper will focus on the Velocity Engine

project by Apache. At first you’ll get an introduction about Template Engines

and competing projects of Velocity. Afterwards you’ll find a short introduction

about Velocity and detailed code examples how to use it. The next points are

some sample applications with Velocity in different application areas.

1.2 Terms and Definitions

1.2.1 Template Engine

“A template engine is a code generator that emits text using templates embed-

ded with actions or data references. Engines generally espouse a model-view

pattern in an attempt to separate the data source and template.” [Antl06]

Template Engines encourage clean separation of content, graphic design, and

program code. This leads to more modular, flexible, and reusable site architec-

tures, shorter development time, and code that is easier to understand and

maintain. Template Engines facilitate the construction of various formatted

documents by allowing a static template to contain placeholders for dynamic

output.

A Template processing system has several elements, but needs at least these:

• A data model which can be a Database, like MySQL, or a simple text file.

• A source template, which is the general layout of the result document

without any data in. The data, which should be inserted in the result

document, is described in an appropriate programming language.

Apache Velocity Page 2

• A Template Engine which is responsible for connecting to the data

model, processing the code specified in the template and creating the re-

sult document.

• The result document is the Template file, merged by the Template En-

gine, with the data model. The result document can either be a web site,

some code fragments, SQL source code or any other format specified in

the template.

The general process of creating a result file is described in the figure below.

[Figure 1, Template Engine]

1.2.2 Web Template Engine

Web Template Engines are designed to produce web pages or web documents

to be delivered over the internet.

Apache Velocity Page 3

1.2.3 Model View Controller

„By applying the Model-View-Controller (MVC) architecture to a JavaTM 2 Plat-

form, Enterprise Edition (J2EETM) application, you separate core business model

functionality from the presentation and control logic that uses this functionality.

Such separation allows multiple views to share the same enterprise data model,

which makes supporting multiple clients easier to implement, test, and main-

tain.“ [Sun06]

[Figure 02, MVC]

The blueprint for the Model-View-Controller in Figure 02 is specific to Java Plat-

forms. In other applications it could differ if it comes to the dependencies be-

tween the different layers. In general the Model View Controller is used to sepa-

rate the three layers from each other to create code that is easy to maintain and

also more difficult to break.

Apache Velocity Page 4

2 Web Template Engines

2.1 Motivation

The primary goal of Template Engines is the separation of application code

from the presentation. The application code is created by programmers, who

focus on the business logic. On the other hand designers work on the presenta-

tion to give the application a good look and feel. As designers are not familiar

with the application code, separating the application code from the presentation

prevents the breaking of the application by some unexperienced designers.

Furthermore designers don’t want to mess around with coding the application.

When using a Template, they can focus on the presentation of the application.

In many Web Template Engines, designers just have to set some markers

where the Template Engine inserts the desired data. In more sophisticated ones

the designers can use loops and different data types to manipulate the output.

Every Template Engine supports one or more programming language, which it

is able to interpret. Therefore the selection of a Template Engine depends on

which programming language is used. In the next chapter Template Engines for

the most popular web programming languages are introduced, except Velocity

which will be described in more detail in Chapter 3.

2.2 Smarty – PHP

Smarty is a template and presentation framework written in Hypertext Preproc-

essor (PHP). “Its focus is on quick and painless development and deployment of

your application, while maintaining high-performance, scalability, security and

future growth.” [Smat06] It lets the template and application designer share in-

formation of interest over an object. The Smarty framework is released under

the LGPL1, which means that users are allowed to receive the source code, dis-

1 GNU - Lesser General Public License

Apache Velocity Page 5

tribute copies and change pieces of Smarty.

[SGNU06]

2.2.1 Features

• Smarty provides a caching feature, which allows the programmer to

choose if a section of a web page should be cached or not.

• It is possible to assign variables pulled from a configuration file. These

variables are not accessible from the application code and therefore de-

signers can store variables over several templates without the interven-

tion from the programmer.

• While executing the template, designers have the opportunity to modify

the variables with predefined functions, such as display all variables in

upper-case, formatting dates or add spaces between characters. Fur-

thermore there are predefined HTML generation functions, such as gen-

erating dropdowns, tables or lists. Smarty can also handle arrays in tem-

plate files as it is possible to loop over them.

• Smarty has an easy to use plugin function, which allows programmers to

create their own functions and use them either in the template or in the

application code.

• A so called ‘debugging console’ is provided by Smarty which allows tem-

plate designers to see all of the assigned variables and the programmer

is able to investigate the rendering speed of the template.

[Smat06]

Apache Velocity Page 6

2.2.2 Sample

To use Smarty in an PHP application, the Smarty class file has to be included

which should be downloaded from the official Smarty web page2. The next step

is to create an instance of this class to get a Smarty Object. This Object can be

filled with data, to access it from the Template. The Code in Listing 1 shows a

simple implementation of the Smarty Object. In Line 7 the method assign of the

Smarty object is used, to make the string hello world available to the Tem-

plate. This String can be queried by using the identifier hello which is the first

argument of this method. The next step is to tell the Smarty framework which

Template file to use. In this case the file index.tpl is used, which, in our

case, is in the same directory as the application code.

[Listing 1]

The appropriate Template file is shown in Listing 2. The placeholder for vari-

ables stored in the Smarty objects must be written between angle brackets fol-

lowed by a dollar sign. In Line 4 we query the variable hello, which we as-

signed to the Smarty object beforehand.

2 http://smarty.php.net

1 include('Smarty.class.php');
2
3 // create object
4 $smarty = new Smarty;
5
6 // assign some content
7 $smarty->assign('hello', 'Hello World');
8
9 // display it
10 $smarty->display('index.tpl');

Apache Velocity Page 7

[Listing 2]

The output of this application is shown in Listing 3.

[Listing 3]

2.2.3 Summary

The big advantage of Smarty is the simple implementation, as you just need the

Smarty classes in your PHP application. Furthermore the Smarty framework

can be customized easily because of the powerful plugins. The template lan-

guage is not very intuitive, but can be learned easily as it does not provide

many options.

2.3 Contemplate – ASP, PHP, Perl

Contemplate is a Web Templating System which is able to run on server plat-

forms which either are able to execute Active Server Pages (ASP), Hypertext

Preprocessor (PHP) or Perl. “Contemplate assembles text content, page lay-

outs, and server-side or client-side scripts into dynamically generated or pre-

compiled web pages based on arguments you pass into each page.“ [Cont06]

Contemplate is distributed under the Apache Software License, which provides

free distribution and use for any purpose. Users do not have direct access to

1 <html>
2 <body>
3 <p>
4 Hello World!
5 </p>
6 </body>
7 </html>

1 <html>
2 <body>
3 <p>
4 {$hello}!
5 </p>
6 </body>
7 </html>

Apache Velocity Page 8

the development source code, but are allowed to modify the source for their

own purpose.

2.3.1 Features

• Contemplate adds the idea of a person which is responsible for just cre-

ating the content. This person is called a content editor and is able to fill

an extern content file with his contents.

• Furthermore these content pieces can be used in many templates, as the

content file is accessible for all of them.

• Contemplate is compatible with many programming languages as listed

beforehand and there is no need for an external database.

• Always a page is requested not the Template or the application code is

invoked, but the so called assembler script of Contemplate is passed the

arguments to create the requested page.

• It is possible to use server-side scripts such as PHP in Contemplate

template files. This gives the designer the opportunity to use scripts to

empower his design.

[Cont06]

2.3.2 Sample

To run Contemplate the first step is to download the software from the official

contemplate web page3. Contemplate needs a specific folder structure in order

to find the desired content and templates. The folder contemplate, shown in

Figure 03, you find the source code of the Contemplate Templating System,

the folder content contains HTML content files and the folder templates is filled

with the HTML Templates.

3 http://www.typea.net/software/contemplate/assembled/home.html

Apache Velocity Page 9

[Figure 03, Contemplate directory structure]

A content editor now creates a HTML file where he stores the text, which should

later be displayed in our output file. In this case the content file is called

quotes.html. Therefore a table has to be created with two cells. The first one

holds the identifier (Line 5) and the second one the text (Line 8), like shown in

Listing 4. This is one out of several ways a content editor can create his content

files.

[Listing 4]

The designer has to create his HTML Template files in the templates directory.

Here he can use a so called “embed tag” to access the data from the content

files. These tags have a specific notation, which is “<!--#embed identifier

-->“. According to Listing 5, the template designer created a blank HTML file

with an identifier called main and some static text which comes directly from

the Template.

[Listing 5]

1 <html>
2 <body>
3 <p>This is a static text<p>
4
5 <p>This not: <!--#embed main --><p>
6 </body>
7 </html>

1 <html>
2 <body>
3 <table>
4 <tr><td>
5 ##hello
6 </tr></td>
7 <tr><td>
8 Hello World!
9 </tr></td>
10 </table>
11 </body>
12 </html>

Apache Velocity Page 10

What is really specific to Contemplate is the fact, that the reference to a tem-

plate file is not “hard-coded” in the application code, but it is passed to the page

through a url4 parameter. Every page is created by requesting the assembler, in

our case the assembler.php. The first parameter, called template, specifies the

url to the HTML file where the Template is stored. This file is called de-

fault.htm and is stored in the templates directory. The next parameter tells

the assembler, that the identifier main is a field which should be filled with

some text out of the quotes.html, and which belongs to the identifier hello.

[Figure 04, Contemplate assembler call]

The assembler now creates the main variable which we specified in Listing 5.

The output of this specific page is shown in Listing 6.

[Listing 6]

2.3.3 Summary

A big advantage of Contemplate is the fact, that it runs on platforms which ei-

ther support PHP, ASP or Perl. Contemplate is a Web Template System which

does not fully separate the application code from the designing part. It stores

the application logic as well as the visual parts in the template files, which is

counterproductive, as Template Engines should separate these. But Contem-

plate uses the idea of the Content Editor to provide a very useful feature for dy-

namically creating content files which can be accessed from various Templates.

This speeds up the performance of this Web Template Engine.

4 Uniform Resource Locator

1 <html>
2 <body>
3 <p>This is a static text<p>
4
5 <p>This not: Hello World!<p>
6 </body>
7 </html>

Apache Velocity Page 11

2.4 Cheetah – Python

Cheetah5 is a Python powered Template Engine that can generate any text-

based format. “It can be used stand alone or combined with other tools and

frameworks. Web development is its principle use, but Cheetah is very flexible

and is also being used to generate C++ game code, Java, sql, form emails and

even Python code.” [Chee06] Cheetah runs under an open source license pro-

vided by the Open Source Initiative6. [Open06]

2.4.1 Features

• Cheetah is supported by every web framework which uses Python.

• It enriches the Python language with a simple to understand template

language.

• “Cheetah gives template authors full access to any Python data struc-

ture, module, function, object, or method in their templates.“ [Chee06]

But coders can restrict Template authors to access certain Python fea-

tures.

• To make code reuse easy, Cheetah provides an object-oriented interface

to templates that is accessible from the controller code or other Tem-

plates.

• Templates can consist of other Templates or parts of them.

• Cheetah supports caching mechanisms out of the box.

• Cheetah does not prevent architectures from using a Model View Con-

troller pattern.

[Chee06]

5 http://www.cheetahtemplate.org/
6 http://www.opensource.org/

Apache Velocity Page 12

2.4.2 Sample

To use Cheetah Templates a minimum amount of code is needed. As shown in

Listing 7 the controller code first creates a list of items in line 1. In this list we

assign the string Hello World to the identifier hello. Next the necessary

classes are imported and a template is instantiated. This happens in line 4

where the method Template is called which needs the template file and the

object which should be shared. This object is the list which was created in line

1. Cheetah treats Templates as objects which can be queried for attributes,

methods and so on.

[Listing 7]

To make this application as simple as possible the template file (Listing 8) con-

sists of one line, which is the placeholder for the identifier hello.

[Listing 8]

The output of this little application is shown in Listing 9.

[Listing 9]

[ONLa06]

2.4.3 Summary

As Cheetah treats Templates as objects there are many ways of working with

them. This is definitely something which silhouettes Cheetah against other

1 Hello World!

1 $hello

1 DataModel = {'hello': 'Hello World! '}
2
3 from Cheetah.Template import Template
4 t = Template(file="HelloWorld.tmpl", searchList=[DataModel])

Apache Velocity Page 13

Template Engines. On the other hand, Template designer are able to access all

Python features which does not support the Model View Controller pattern. This

can lead to problems for both, the Template designer and the controller pro-

grammer.

2.5 Embperl – Perl

Embperl7 is a framework for building web sites with Perl, which is a program-

ming language close to C and shell scripting. “It delivers several features that

ease the task of creating a websites, including dynamic tables, formfield-

processing, escaping/unescaping, session handling, caching and more.“

[EmbP06]

Embperl is directly integrated with Apache and mod_perl and so can achieve

the best performance. It is optimized for delivering dynamic content online and

therefore scales and performs very well for high end solutions. It can be used

under the terms of either the GNU General Public License or the Artistic Li-

cense8. [EmbP06]

2.5.1 Features

• Embperl lets you embed Perl code into HTML, XML or other text docu-

ments. The Perl code is evaluated at the server side by using for exam-

ple Apaches mod_perl. The result is a fully rendered HTML file, which is

displayable for all common browsers.

• It is possible to build reusable components, also in an object-oriented

way, which can use components themselves.

• Embperl supports building Model-View-Controller applications as the ap-

plication logic can be moved into an application object. The View is rep-

resented by the Templates.

7 http://perl.apache.org/embperl/
8 http://www.opensource.org/licenses/artistic-license.php

Apache Velocity Page 14

• Furthermore Embperl is able to interact with several Apache applications

like PHP, JSP or CGI scripts.

• The output generation process is divided in steps which are handled by

so called “pluggable providers”. Every provider can be configured to be-

have in a specific way

[EmbP06]

2.5.2 Sample

It is possible to use Embperl in many different ways, like including a requested

HTML file in your script or create modular files. In this example we are using a

way which is called “global variables”. If we want to assign a global variable we

have to use the Embperl Object which can be filled with variables. Every time a

request to a document is made a so called Request Object is generated, which

will be destroyed after the request is done.

First we have to create a file containing the main template and the assignment

of the global variable. This file must be named base.epl as the Embperl en-

gine is looking for a so called file every time a request is made. Now we can use

the Request Object to store variables, which we want to share between the

documents on our web site. The base.epl is shown in Listing 10.

[Listing 10]

This file represents the basic structure of the output file. In Line 3 the Request

Object is stored in the variable $req. It is retrieved by using the shift statement,

which gets it from the stack. In Line 4 the String World! is stored in the Re-

quest object.

1 <HTML>
2 [-
3 $req = shift;
4 $req->{hello} = 'World!'
5 -]
6 <BODY>
7 [- Execute ('*') -]
8 </BODY>
9 </HTML>

Apache Velocity Page 15

Every time a request to a random HTML file is made, Embperl looks for a file

called base.epl. Therefore the Statement in Line 7 tells Embperl to execute the

HTML file which was originally requested by the Browser.

The corresponding HTML file must be located in the same directory as the

base.epl script. Once again the Request Object has to be retrieved in the

HTML file, which is shown in Listing 11. In Line 2 the variable hello is queried

from the mentioned Object.

[Listing 11]

The output of this simple application is shown in Listing 12.

[Listing 12]

[Perl06]

2.5.3 Summary

Embperl is a very powerful tool as it is directly integrated into the Apache web

server, when using mod_perl. It gives you the opportunity of working in an “ob-

ject-oriented” way when creating your own components. Once more there is the

possibility to embed existing perl code to your code to enhance your web appli-

cation. As you have the full perl power in your application, the “TIMTOWTDI”9

motto of perl may confuse new programmers at the beginning.

9 there is more than one way to do it

1 <HTML>
6 <BODY>
7 Hello World!
8 </BODY>
9 </HTML>

1 [- $req = shift; -]
2 Hello [+ $req ->{hello} +]!

Apache Velocity Page 16

2.6 FreeMarker – Java

“FreeMarker is a ‘template engine’; a generic tool to generate text output (any-

thing from HTML to auto generated source code) based on templates. It's a

Java package, a class library for Java programmers.” [Free06]

FreeMarker10 follows the Model View Controller approach, which strictly distin-

guishes between the application logic code and the presentation of the applica-

tion. The tool is totally written in Java and uses Java for programming the appli-

cation logic. To use FreeMarker in web applications, a servlet based Framework

is needed to display FreeMarker created files (e.g. Struts11). FreeMarker is dis-

tributed under a BSD-style license. It is OSI Certified Open Source Software,

which is a certification mark of the Open Source Initiative. [Free06]

2.6.1 Features

• With the use of FreeMarker any kind of text files can be created, like

HTML, XML or Java source code.

• FreeMarker uses its own template language which provides usual direc-

tives (if/else/elseif), name-spaces and operations for specific data types

like strings (uppercase, escaping …) or looping through arrays.

• FreeMarker can be used in servlets to replace JSP sites, but it also sup-

ports the JSP taglibs.

• It is possible to parse XML files within a template, using the XML proc-

essing capabilities. This feature lets FreeMarker be an alternative to

XSLT transformations.

• The objects generated in the Controller code are available to the Tem-

plate as variables through pluggable object wrappers. This helps the

10 http://freemarker.sourceforge.net/
11 http://struts.apache.org/

Apache Velocity Page 17

template designer to easily use the objects without bothering him with

technical details.

[Free06]

2.6.2 Sample

Before making use of FreeMarker, you have to be sure that you have at least

the J2SE 1.2 or higher.

First we can create our data model which is represented as a tree. This tree can

either be filled with variables which represent a value (scalars) or variables

which hold other subvariables (hashes). The topmost object is called the root

object, where you can start to access the data model and go down along the

edges to access other objects.

[Figure 05, FreeMarker data model tree]

According to Figure 05 we want to create a data model which looks like Listing

13, where we have a hash helloWorld. This hash holds two scalars, one

scalar called hello with the value Hello and another scalar called world

with the value World!.

[Listing 13]

1 (root)
2 |
3 +- helloWorld
4 |
5 + - hello = "Hello"
6 |
7 + - world = "World!"

Apache Velocity Page 18

The controller code has to be written in Java and is shown in Listing 14. First we

have to import the freemarker engine (Line 1) and other utilities in order to cre-

ate our data model and print out the result (Line 2 & 3). To make the Java code

executable a class is needed. In our case we create the class HelloWorld.

Therefore the filename of this Java application has to be HelloWorld.java.

Line 7 tells the Java interpreter that this method should be executed whenever

this application is invoked.

First of all a configuration instance has to be retrieved from FreeMarker.

“The configuration instance is a central place to store the application level

settings of FreeMarker.” [Free06] We have to tell this instance where we store

our Template files. In this case Line 11 tells the configuration instance that

we store our Templates in a directory called templates. Furthermore an Ob-

jectWrapper has to be passed to the configuration instance. This speci-

fies how Templates will see the data model. This process is normally done only

once in the whole application life cycle.

The next step is to get a Template instance from the just created configura-

tion instance. This happens in Line 15 where we specify helloWorld.txt

as our Template file.

The creation of the data model happens in Line 18 to 24 of Listing 14, where we

create a Hashmap root which holds our data model. This Hashmap holds an-

other Hashmap called helloWorld where the scalars are stored. This way it is

possible to create a tree which looks like Figure 05.

As we have our data model and an instance of our Template, the next step is to

merge these two together, to create the output. This happens in Line 23 where

the function process of the template instance is called. It needs two parame-

ters, the data model and the Writer, which tells the template how to show the

result. In this case we will display the output in the console.

Apache Velocity Page 19

[Listing 14]

The controller code is ready to process our template, which is shown in Listing

15. The data model can be accessed by using a dollar sign and two angle

brackets.

[Listing 15]

The output of this sample is shown in Listing 16.

[Listing 16]

[JFre06]

1 Hello World!

1 ${helloWorld.hello} ${helloWorld.world}

1 import freemarker.template.*;
2 import java.util.*;
3 import java.io.*;
4
5 public class HelloWorld {
6
7 public static void main(String[] args) {
8
9 Configuration cfg = new Configuration();
10 cfg.setDirectoryForTemplateLoading(
11 new File("/templates"));
12 cfg.setObjectWrapper(new DefaultObjectWrapper());
13
14 /* Get a template from the configuration instance */
15 Template temp = cfg.getTemplate("helloWorld.txt");
16
17 /* Create the data model */
18 Map root = new HashMap();
19
20 Map helloWorld = new HashMap();
21 helloWorld.put("hello", "Hello");
22 helloWorld.put("world", "World!");
23
24 root.put("helloWorld", helloWorld);
25
26
27 /* Merge it together */
28 Writer out = new OutputStreamWriter(System.out);
29 temp.process(root, out);
30 out.flush();
31 }
32 }

Apache Velocity Page 20

2.6.3 Summary

FreeMarker is indeed the strongest rival of Velocity as both products use Java

as controller code. What could be pointed out from Freemarker is the fact, that it

is possible to use the JSP library in FreeMarker Templates. To find out the dif-

ferences between Velocity and Freemarker, feel free to read on!

Apache Velocity Page 21

3 Apache Velocity

3.1 History

The first beta Version of Jakarta Velocity was introduced in March 2001 under

the umbrella of Jakarta projects. Since then the Velocity team has made many

releases. The current stable version is Velocity 1.4, which is used in this thesis.

Since October 2006 Velocity has been promoted by the Apache Software

Foundation into an Apache Top Level Project (TLP). So Jakarta Velocity has

now become Apache Velocity.

3.2 Introduction

“Velocity is a Java-based template engine. It permits anyone to use a simple yet

powerful template language to reference objects defined in Java code.” As Ve-

locity provides a simple template language for designers, Velocity enforces a

clear separation between the view, the model and the controller. Velocity acts

as a bridge between these 3 entities and therefore provides a collection of Java-

based classes. In web applications Velocity separates Java code from the web

pages and provides an alternative to Java Server Pages or PHP.

[Velo06]

Velocity is distributed under the Apache License Version 2.012.

3.3 Features

• Using the VelocityViewServlet, creating web applications becomes quite

easy. On the other hand Velocity is often used as controller code in web

12 http://jakarta.apache.org/velocity/docs/license.html

Apache Velocity Page 22

frameworks as you can see in the impressive list of projects which use

Velocity13.

• Velocity can be used to generate output files in any format. This let Ve-

locity act as a source code generator for Java, SQL or PostScript code.

• Velocity provides a Template language which is easy to use but never-

theless powerful.

• Velocity enables you to directly access Java objects of the controller

code.

[Velo06]

3.4 How it works – Hello World!

3.4.1 Fundamentals

Velocity uses the Model View Controller concept to separate the View from the

other components. In order to let the Controller share information with the View,

an object called “context” exists, which acts like a broker. According to Figure

06 the View can access the Context using the Velocity Template Language.

The controller is able to set or retrieve values from the Context using the pro-

vided Java classes. As the controller is written in Java code, he is able to ac-

cess the model, which could be a SQL database. Note that the Model is not a

part of Velocity itself, but is intended in the Model View Controller concept.

13 http://wiki.apache.org/jakarta-velocity/PoweredByVelocity

Apache Velocity Page 23

[Figure 06, Velocity MVC]

In the following a Hello World applications is created, while explaining this con-

cepts in detail. Let’s consider that in our team there are working 2 people, the

designer, which is responsible for the view component, and the programmer,

which will take care of programming the controller. These 2 people will create

our Hello World example.

3.4.2 View

First the designer begins to create the look and feel of the page. As we just

want to create a quite simple application, he creates a HTML file. This file is the

view or Template for our application, which is shown in Listing 17. The view can

be any file format which is required, for example they could agree on creating a

text file as view. There are no special requirements to Templates for Velocity.

[Listing 17]

The designer decides that the $hello should display the text which comes

from the Context. The designer is now done with his work and therefore meets

the guy, who creates the Controller code.

1 <HTML>
2 <BODY>
3 $hello
4 </BODY>
5 </HTML>

Apache Velocity Page 24

3.4.3 Context

The meeting won’t last long as the designer tells the programmer that the Con-

text should hold a variable hello with the text for our application.

„The idea is that the context is a 'carrier' of data between the Java layer (or you

the programmer) and the template layer (or the designer). You as the program-

mer will gather objects of various types, whatever your application calls for, and

place them in the context. To the designer, these objects, and their methods

and properties, will become accessable via template elements called refer-

ences.“ [VDev06]

The Context object, which is a hashtable that provides get and set methods for

retrieving and setting objects, gives the designer the possibility to retrieve a ob-

ject which is inserted by the programmer. But the designer is also able to insert

objects into the Context or modify the Context. The context stores objects of

type java.lang.Object keyed by objects of type java.lang.string.

[Velo06]

Therefore the Context, which is defined as an interface in

org.apache.velocity.context, provides five methods which are briefly

described below:

• boolean containsKey(java.lang.Object key) returns true or

false if a key exists in the Context or not.

• java.lang.Object get(java.lang.String key) returns the Ob-

ject to the corresponding key.

• java.lang.Object[] getKeys() returns a list of all keys which are

currently stored in the Context.

• java.lang.Object put(java.lang.String key,

java.lang.Object value) lets the programmer insert a key, which

is a string, and a corresponding Object.

Apache Velocity Page 25

• java.lang.Object remove(java.lang.Object key) removes a

object stored in the Context by the corresponding key.

[VApi06]

3.4.4 Controller

As the programmer now has his task, he can start to create the Controller code.

As our programmer is very experienced, he will easily be able to create a String

with the value Hello World! as the designer wished for. This code is shown

in Listing 18.

[Listing 18]

3.4.5 Initialize Velocity and merge

As the designer and the programmer have now done their job, Velocity comes

into play. The programmer has to initialize Velocity and create the Context to

merge the pieces they have created. The full code for this application is shown

in Listing 19 and the major parts are described below.

1 String hello = "Hello World!";

Apache Velocity Page 26

[Listing 19]

First of all the programmer has to import the necessary classes for Velocity and

his application. Afterwards he creates a class including a main method, which

will be called when the application starts. Note that the general sequence of

Velocity applications consists out of six steps.

1 import org.apache.velocity.app.Velocity;
2 import org.apache.velocity.VelocityContext;
3 import org.apache.velocity.Template;
4 import org.apache.velocity.exception.*;
5
6 import java.io.*;
7 import java.util.*;
8
9 public class Example {
10 public static void main (String[] args) {
11 try {
12
13 //init Velocity
14 Velocity.init();
15 } catch(Exception x) {
16 System.err.println("init failed: " + x);
17 System.exit (1);
18 }
19
20 //obtain a template
21 Template template = null;
22 try {
23 template = Velocity.getTemplate("helloworld.vm");
24 } catch (ResourceNotFoundException e2) {
25 System.out.println ("no template found");
26 } catch (ParseErrorException e) {
27 System.out.println("Parse Error: " + e);
28 } catch (Exception ee) {
29 System.out.println("Exception: " + ee);
30 }
31
32 //create the context
33 VelocityContext context = new VelocityContext();
34
35 //put something into the context
36 context.put("hello", "Hello World!");
37
38 //create a string writer to merge template and context
39 StringWriter writer = new StringWriter();
40
41 try {
42 template.merge(context, writer);
43 } catch (Exception x) {
44 System.err.println("Failed to merge:" + x);
45 System.exit(1);
46 }
47
48 System.out.println (writer.toString());
49 }
50 }

Apache Velocity Page 27

[Listing 20]

The first step is to initialize Velocity like we did in Listing 20. This initialization

represents the Singleton model, which means that there is only one instance of

the Velocity engine in the JVM that is shared by all parts of our application. The

other possibility would be to create several instances of the Velocity engine.

[Listing 21]

The second step is to create a Template instance. This happens by invoking the

method getTemplate of the Velocity class, which returns an instance of our

Template. In this case we already tell Velocity where to find our Template file

which is called helloworld.vm. The name of the file does not have to be .vm,

it could be any file extension you would like to have.

[Listing 22]

According to Listing 22, the next step is to create the Context. This happens by

retrieving an instance of the Context from the Context class.

[Listing 23]

Step number 4 is to fill the Context with the objects of desire. This is possible by

calling the method put, which stores our Hello World string keyed by a

String named hello.

36 context.put("hello", "Hello World!");

33 VelocityContext context = new VelocityContext();

21 Template template = null;
22 try {
23 template = Velocity.getTemplate("helloworld.vm");
24 }

14 Velocity.init();

Apache Velocity Page 28

[Listing 24]

Step number 5 needs two things to do. First we have to create an instance of a

writer which enables us to store the output of the merge process. The next

step is to merge the template with the Context. Therefore the method merge of

our template instance has to be called, which needs two arguments. The first

argument is the context object of our application, represented by the variable

context. The second one is an Object which tells Velocity where the Template

should be outputted. In this case we decided to output the result to the

StringWriter.

The merge process now processes the template. This means “if Velocity en-

counters a reference in your VTL template to $hello, it will search the Context

for a corresponding value. “[VUse06] In this case $hello will be replaced by

our corresponding String Hello World!, if there is no entry in the Context the

output would be $hello.

[Listing 25]

Now as the merge is done by Velocity, the last step is to show the output to the

console. This is done in Listing 25.

Keep this pattern in mind, as we will use it for the most of our examples.

3.4.6 Output

Now as the application is ready there are just 2 steps missing to our first up and

running example. All we have to do now is to compile our application using the

Java compiler. Then we have to invoke the application, and the output tells us

48 System.out.println (writer.toString());

39 StringWriter writer = new StringWriter();
40
41 try {
42 template.merge(context, writer);
43 }

Apache Velocity Page 29

that everything worked out fine. The placeholder $hello was replaced by the

String Hello World!. (Figure 07)

[Figure 07, HelloWorld example output]

Apache Velocity Page 30

4 Velocity Template Language

“The Velocity Template Language (VTL) is meant to provide the easiest, sim-

plest, and cleanest way to incorporate dynamic content in a web page. Even a

web page developer with little or no programming experience should soon be

capable of using VTL to incorporate dynamic content in a web site.” [VUse06]

The Velocity Template Language is grouped in three types of notations, called

references, directives and macros.

Note that for all examples the code of Listing 19 is used to initialize Velocity and

merge the Template with the Context. The only thing which differs is the Tem-

plate itself and the objects stored in the Context.

4.1 References
“There are three types of references in the VTL: variables, properties and meth-

ods. As a designer using the VTL, you and your engineers must come to an

agreement on the specific names of references so you can use them correctly

in your templates.“ [VUse06]

References have a quite easy syntax, which is shown in Listing 26. The syntax

is a dollar sign followed by the identifier, in this case a variable called refer-

enceName.

[Listing 26]

4.1.1 Variables

Variables represent objects which are stored in the Context. “Everything com-

ing to and from a reference is treated as a String object. If there is an object that

represents $foo (such as an Integer object), then Velocity will call its .toString()

method to resolve the object into a String.“ [VUse06] According to this let’s

create a Context which stores different Object types. In Listing 27 three Object

1 $referenceName

Apache Velocity Page 31

types are stored in the Context, a Java Object, a Integer with the value 99 and a

String with the value String.

[Listing 27]

To retrieve these values from the Context, the VTL provides the syntax shown

in Listing 28, which is a dollar sign followed by the key in the Context.

[Listing 28]

As Velocity calls the toString() method of each object the output of the Java

Object is his name. The values of the Integer and the String are displayed cor-

rectly, as both provide a toString() method which prints their values.

[Figure 08, VTL variables output]

4.1.2 Methods

“A method is defined in the Java code and is capable of doing something useful,

like running a calculation or arriving at a decision. “ [VUse06] To call a method

of a class, an instance of the class has to be added to the context. This hap-

pens in Listing 29 where the Class Friend is created. This class has 3 meth-

1 Object:
2 $object
3
4 Integer:
5 $integer
6
7 String:
8 $string

1 context.put("object", new Object());
2 context.put("integer", new Integer(99));
3 context.put("string", new String("String"));

Apache Velocity Page 32

ods which are called setName, setAge and getFriend. To access the class

Friend the programmer decided to use the identifier friend in the Context.

[Listing 29]

As the class is now exposed to the Template, we can simply call the methods

like we do in Java. First the identifier has to be called as usual and the method

is simply added after a dot. To send an argument to the method, the argument

has to be between two brackets. In Listing 30 we call the method setName and

setAge and pass arguments to them. The method in line 5 should return a

String with the details we passed to the class before. When calling a method in

VTL nothing is displayed where the method was placed.

[Listing 30]

The output of this example is shown in Figure 09 where the correct String is

returned from the class and displayed at the last line.

1 Set the name of my friend ... $friend.setName("Christoph Huber")
2
3 Set the age of my friend ... $friend.setAge(25)
4
5 $friend.getFriend()

1 public static class Friend {
2
3 private String name;
4 private Integer age;
5
6 public void setName (String name) {
7 this.name = name;
8 }
9
10 public void setAge (Integer age) {
11 this.age = age;
12 }
13
14 public String getFriend() {
15 return ("The name of my friend is "+name+" and he is
16 "+age+" years old!");
17 }
18 }
19
20 [...]
21
22 context.put("friend", new Friend());

Apache Velocity Page 33

[Figure 09, VTL methods output]

4.1.3 Properties

Another possibility to access methods is the use of properties.

[Listing 31]

To make use of properties we created two more methods in Listing 31 where

we just return the values of age and name.

When using Properties the notation is once again a dollar sign, the identifier, a

dot and then the method you want to call. Note that when using properties the

name of the method in Java has to begin with get or set followed by the identi-

fier. For example when calling $friend.name in Line 1 Velocity will look if

there is a method called getName() or a map called friend with a key called

1 public static class Friend {
2
3 private String name;
4 private Integer age;
5
6 public void setName (String name) {
7 this.name = name;
8 }
9
10 public void setAge (Integer age) {
11 this.age = age;
12 }
13
14 public String getName() {
15 return name;
16 }
17
18 public Integer getAge() {
19 return age;
20 }
21 }
22
23 [...]
24
25 context.put("friend", new Friend());

Apache Velocity Page 34

name. Note that Velocity is not case sensitive in this case $friend.Age also

refers to the method getAge().

[Listing 32]

The output, after merging the Template in Listing 32 and the Controller code in

Listing 31, is shown in Figure10.

[Figure 10, VTL properties output]

4.1.4 Quiet notations

If we process the template in Listing 33 and we do not put anything into the

Context, Velocity can’t resolve the variables. To avoid that these variables are

shown in the output we can use quiet notations. Quiet notations do not show up

if there is no corresponding entry in the Context. Quiet notations must have an

exclamation point between the dollar sign and the identifier.

[Listing 33]

So the output when processing this template is shown in Figure 11.

1 $welcomeText
2 $!hello how are you today?

1 Set the name of my friend ... $friend.setName("Christoph Huber")
2
3 Set the age of my friend ... $friend.setAge(25)
4
5 The name of my friend is $friend.name and he is $friend.Age
6 years old!

Apache Velocity Page 35

[Figure 11, VTL quiet notations]

4.2 Directives

“References allow template designers to generate dynamic content for web

sites, while directives -- easy to use script elements that can be used to crea-

tively manipulate the output of Java code -- permit web designers to truly take

charge of the appearance and content of the web site.”

[VUse06]

4.2.1 #set

The set directive let the designer put objects into the Context. Therefore we add

a value to the context in the controller code.

[Listing 34]

When a value is added using the set directive the Context is updated immedi-

ately. To show this, Listing 35 shows the values of the variable $newValue and

$value before using the set directives. The first variable does not exist at this

moment and the other one was added to the Context in Listing 34. In Line 5 the

variable $newValue is added to the Context. Note that there is no need for ini-

tializing a variable. In Line 6 the value of the variable $value is modified.

1 context.put("value", "a value added by java");

Apache Velocity Page 36

[Listing 35]

The output of this example is shown in Figure 12.

[Figure 12, VTL set output]

Strings are not the only objects which can be added with the set directive. It is

possible to set the following objects:

• Variable reference

• String literal

• Property reference

• Method reference

• Number literal

• Array List

As variable (at the left hand side of the set directive) a variable reference or a

property reference can be used.

1 Before we use the set directive:
2 new value: $newValue
3 old value: $value
4
5 #set($newValue = "a new value added by VTL")
6 #set($value = "a value modified by VTL")
7 After the use of the set directive:
8 new value: $newValue
9 old value: $value

Apache Velocity Page 37

4.2.2 #if

„The #if directive in Velocity allows for text to be included when the web page is

generated, on the conditional that the if statement is true.“ [VUse06]

A condition becomes true if it either is a Boolean data type which is set to true,

or a reference that corresponds to a non null value. In these examples there is

no need to put something to the context using the controller code, as we will

add the values to the context using the set directive.

The use of the if directive is quite easy, as it begins with the #if statement and

ends with an #end statement. The code between these two statements is being

processed, if the condition turns out to be true. In Listing 36 we first create a

variable called condition, which once is true and once not.

[Listing 36]

The output of this example is shown in Figure 12, where the first block is proc-

essed (as the condition is true) and the second not (as the condition is false).

[Figure 13, VTL if output]

But the VTL provides much more powerful operators which are quite similar to

Java. Listing 37 shows a set of various relational and logical operators. Accord-

ing to the output, shown in Figure 13, Line 5 shows that the block is processed

if a String variable is set compared to Line 9 where a non existing variable turns

1 #set($condition = true)
2 #if($condition)
3 I am true! :)
4 #end
5
6 #set($condition = false)
7 #if($condition)
8 I am not true! :(
9 #end

Apache Velocity Page 38

out false. The lines 13 and 17 show the use of the logical operators OR, AND

and NOT.

Furthermore at Line 22 some more operators are introduced, which are also

similar to Java. Line 22 shows the lesser than, line 24 the greater than, line 26

the lesser or equal than, line 28 the greater or equal than, line 30 the equal and

line 32 once again the lesser than, which is the only one that is false.

[Listing 37]

[Figure 14, VTL powerful if output]

1 #set($aString = "some text")
2 #set($trueCondition = true)
3 #set($falseCondition = false)
4
5 #if($aString)
6 1 - $aString
7 #end
8
9 #if($nonExistingVariable)
10 2 - hello?
11 #end
12
13 #if($trueCondition || $falseCondition)
14 3 - true
15 #end
16
17 #if(($trueCondition && !$trueCondition) || $falseCondition)
18 4 - false
19 #end
20
22 #if (0 < 1) 0 lesser than 1 #end
23
24 #if (1 > 0) 1 greater than 0 #end
25
26 #if (1 <= 1) 1 lesser or equal than 1 #end
27
28 #if (1 >= 1) 1 greater or equal than 1 #end
29
30 #if (1 == 1) 1 equals 1 #end
31
32 #if (1 < 1) 1 lesser than 1 #end

Apache Velocity Page 39

4.2.3 #else

The else directive provides the possibility to jump into a block which is proc-

essed when the condition turns out to be false. Listing 38 shows that the #else

statement has to be between the #if and the #end statement.

[Listing 38]

According to the output shown in Figure 14 the first directives jumps into the

first block, as it is true, and the second into the else block, as it is false.

[Figure 15, VTL else output]

4.2.4 #elseif

The elseif directive adds the possibility of letting another condition to be

checked, before jumping into the else block. This happens by adding an #el-

seif statement between the #if and the #else statement. Listing 39 shows a

sample application for this. In line 1 a variable is set to 1. In the following if block

it is checked whether the variable is 1, 2 or not. Depending on the value, the

block is processed or not. After a block is processed i.e. a condition is true, Ve-

locity stops processing the other statements. In this example every time a con-

dition becomes true, the value of the variable is changed.

1 #set($condition = true)
2 #if($condition)
3 1 - I am true! :)
4 #else
5 2 - I am false! :(
6 #end
7
8 #set($condition = false)
9 #if($condition)
10 3 - I am true! :)
11 #else
12 4 - I am false! :(
13 #end

Apache Velocity Page 40

[Listing 39]

Figure 15 shows the result of this application.

[Figure 16, VTL elseif output]

4.2.5 #foreach

The foreach directive allows looping over elements which are arrays,

hashtables, vectors or objects that implement a collection, enumeration, iterator

or map interface. In this example we create a Vector in our Java code which we

fill with some names. We put this Vector to our Context with the identifier vec-

tor, shown in Listing 40.

1 #set($condition = 1)
2
3 #if($condition == 1)
4 1 - Condition is 1 #set($condition = 2)
5 #elseif($condition == 2)
6 2 - Condition is 2
7 #else
8 3 - Condition is not 1 or 2
9 #end
10
11 #if($condition == 1)
12 4 - Condition is 1
13 #elseif($condition == 2)
14 5 - Condition is 2 #set($condition = 3)
15 #else
16 6 - Condition is not 1 or 2
17 #end
18
19 #if($condition == 1)
20 7 - Condition is 1
21 #elseif($condition == 2)
22 8 - Condition is 2
23 #else
24 9 - Condition is not 1 or 2
25 #end

Apache Velocity Page 41

[Listing 40]

In the Template we can easily loop over this element by the use of the foreach

directive. This directive needs two arguments separated by the word in. The

first argument is a variable in which Velocity stores the current value of the

looped element. The second one is the element that the foreach directive

should access. In the foreach block we can easily query the value of the cur-

rent element by using the first argument we specified in the foreach state-

ment. The variable $velocityCount stores the current loop counter.

[Listing 41]

The output of this foreach directive is shown in Figure 16.

[Figure 17, VTL foreach output]

4.2.6 #include

„The #include script element allows the template designer to import a local file,

which is then inserted into the location where the #include directive is defined.

The contents of the file are not rendered through the template engine.“

[VUse06]

1 Looping over the friends Vector:
2 #foreach($element in $vector)
3 $velocityCount $element is my friend!
4 #end

1 Vector vec = new Vector();
2 vec.add("Christoph Huber");
3 vec.add("Niki Lauda");
4 vec.add("Heidi Klum");
5
6 context.put("vector", vec);

Apache Velocity Page 42

The file which is included must be in the same directory as the Template file.

Let’s create a text file with some text and a variable, to test if the variable will be

resolved or not. The text file (test1.txt) is shown in Listing 42.

[Listing 42]

The corresponding Template file is shown in Listing 43. First we create a vari-

able with the value Hello World. Next we output this variable following some

text. Afterwards we use the include directive to get the text from the

test1.txt text file.

[Listing 43]

The output in Figure 16 shows, that the first hello variable in the Template file

has been rendered and the variable from the text file not.

[Figure 18, VTL include output]

4.2.7 #parse

The parse directive also includes a file, but renders it. Let’s just change the in-

clude of Listing 43 to parse. The parsed file is rendered and the variable

$hello is changed to Hello World. The output is shown in Figure 16.

1 #set($hello = "Hello World")
2 $hello from the Template file!
3
4 #include("test1.txt")

1 $hello from test1.txt

Apache Velocity Page 43

[Figure 19, VTL parse output]

4.2.8 #stop

The stop directive simply stops the processing of the Template. Listing 44

shows some text before and some text after the stop directive.

[Listing 44]

The output in Figure 16 shows that the processing stops at Line 3.

[Figure 20, VTL stop output]

4.3 Velocimacros

„The #macro script element allows template designers to define a repeated

segment of a VTL template. Velocimacros are very useful in a wide range of

scenarios both simple and complex.“ [VUse06]

A macro can be defined using the #macro syntax. After that a bracket is follow-

ing with at least one argument. The first argument defines the name of the

macro and the following argument(s) define the name(s) of the variables which

can be passed to this macro.

Listing 45 shows a simple implementation of macros. In line 2 a macro with the

name hello is created. To this macro it is possible to pass one variable, which is

1 #set($text = "Here is some text")
2 $text - before the stop
3 #stop
4 $text - after the stop

Apache Velocity Page 44

available in the macro under the name $hello. This macro can be called like

shown in Line 7. The call to a macro looks like a call to any other directive, but

the name of the macro stands after the hash. Line 6 shows another macro,

called test which is able to receive four arguments. When this macro is proc-

essed it calls another macro in Line 7, which proofs that it is possible to call

macros out of macros. It is possible to pass the following objects to macros as

arguments:

• References

• String literals

• Number literals

• Integer ranges

• Arrays

• Boolean values

For example in this macro an array is passed and it is processed in line 13.

[Listing 45]

The output of this example is shown in Figure 18.

1
2 #macro(hello $who)
3 Hello $who!
4 #end
5
6 #macro(test $string $integer $boolean $array)
7 #hello("Markus")
8 String: $string
9 Integer: $integer
10 Boolean: $boolean
11
12 Array:
13 #foreach($entry in $array) $entry #end
14 #end
15
16 #test("Markus" 21 true ["entry1", "entry2", "entry3"])

Apache Velocity Page 45

[Figure 21, VTL macro output]

To create a macro which is accessible from any template file, it is possible to

insert it into a global macro file. This global macro file must be named

VM_global_library.vm and it must be in the same directory as the Tem-

plates are. But it is possible to change the name and directory of the global

macro file in the Velocity properties.

Apache Velocity Page 46

5 Sample Applications

5.1 Parsing XML

Parsing an XML file in Velocity is more a Java related topic. This application is a

good example for understanding the Model View Controller. Our View will be a

Velocity Template which will output Text. The controller is, as usual, our Java

code and the model will be an XML file. As we already know, the view is able to

access the Context by using the VTL and the Controller can access the Context

by using the appropriate Java classes. The Controller will be able to access our

Model by using the Document Object Model.

[Figure 22, parsing XML MVC]

5.1.1 Model

In this case the Model is our XML file, which is filled with a dataset of friends.

„Extensible Markup Language (XML) is a simple, very flexible text format de-

rived from SGML (ISO 8879). Originally designed to meet the challenges of

large-scale electronic publishing, XML is also playing an increasingly important

role in the exchange of a wide variety of data on the Web and elsewhere.“

[W3cX06]

Apache Velocity Page 47

[Listing 46]

5.1.2 View

The designer has the task to output all entries of the XML document, which

have been put into the Context. Therefore he talks with the Controller program-

mer and they both agree that the entries will be in a vector. This vector has to

have a specific format which is:

• The name of the person

• The age of the person

• The string "break"

The designer decided to separate the entries by the string break in order to be

able to create breaks between the different people. As he now has all the infor-

mation about what the Controller programmer will do, he can start to write the

View which is shown in Listing 47.

1 <?xml version='1.0' encoding='utf-8'?>
2 <Friends>
3 <Friend>
4 <Name>Christoph Huber</Name>
5 <Age>21</Age>
6 </Friend>
7
8 <Friend>
9 <Name>Niki Lauda</Name>
10 <Age>57</Age>
11 </Friend>
12
13 <Friend>
14 <Name>Heidi Klum</Name>
15 <Age>33</Age>
16 </Friend>
17 </Friends>

Apache Velocity Page 48

[Listing 47]

In the second Line the foreach directive is used to access the Vector and put

the current element into the variable $element. In line 3 the if directive is used

to check if the current element is the break element. If this is the case, a break

is added in line 4. If this is not the case, the else directive is used to output the

current element.

5.1.3 Controller

The Controller programmer has now the task to create the Vector in the format

he agreed on with the designer. To parse the XML document we use the

Document Object Model class org.w3c.dom. “The Document Object Model is

a platform- and language-neutral interface that will allow programs and scripts

to dynamically access and update the content, structure and style of docu-

ments. The document can be further processed and the results of that process-

ing can be incorporated back into the presented page.“ [W3cD06]

Note that the general code still is the same as in Listing 19 of the Hello World

example. Now we just input something into the Context, but the pattern of initial-

izing Velocity and merging stays the same.

Listing 48 shows how to use the org.w3c.dom in order to parse our XML file

shown in Listing 46. In line 3 a new instance of the DocumentBuilderFac-

tory has to be created, to get an instance of the DocumentBuilder from it.

This DocumentBuilder can be used to parse our XML file. This happens in

Line 7 and the parse method delivers a document object. This object can be

queried for several nodes of the XML file. In Line 9 a so called NodeList is

created which stores all nodes with the name "Name". In Line 10 the same

thing happens with all nodes with the name "Age".

1 My friends are:
2 #foreach($element in $Vector)
3 #if("break" == $element)
4
5 #else
6 $element
7 #end
8 #end

Apache Velocity Page 49

The next step is to create the Vector where all entries should be added. We

can now iterate through the Node Lists to do so. In Line 14 a for directive is cre-

ated which goes through the Node List step by step. In Line 15 we create a

Node object which holds the value of the node (in our case the text). In Line 16

we are now able to get a String out of this node by using the getNodeValue()

method. In Line 18 and 19 we do the same for the Age node, which provides us

the second String we need.

We are now able to put both Strings into the Vector and we can add afterwards

the break String. This will be carried out for all Nodes in the XML file.

Finally we can put the Vector into the Context.

[Listing 48]

5.1.4 Output

The output for this example is shown in Figure 19.

1 try {
2
3 DocumentBuilderFactory factory =
4 DocumentBuilderFactory.newInstance();
5 DocumentBuilder builder =
6 factory.newDocumentBuilder();
7 Document document = builder.parse(new File("myFriends.xml"));
8
9 NodeList ndListName = document.getElementsByTagName("Name");
10 NodeList ndListAge = document.getElementsByTagName("Age");
11
12 Vector friendsVector = new Vector();
13
14 for(int i=0; i<ndListName.getLength(); i++) {
15 Node nodeDataName = ndListName.item(i).getFirstChild();
16 String sDataName = nodeDataName.getNodeValue();
17
18 Node nodeDataAge = ndListAge.item(i).getFirstChild();
19 String sDataAge = nodeDataAge.getNodeValue();
20
21 friendsVector.add(sDataName);
22 friendsVector.add(sDataAge);
23 friendsVector.add("break");
24 }
25 }
26
27 context.put("Vector", friendsVector);

Apache Velocity Page 50

[Figure 23, parsing XML output]

5.2 Using the Bean Scripting Framework

“Bean Scripting Framework (BSF) is a set of Java classes which provides

scripting language support within Java applications, and access to Java objects

and methods from scripting languages. BSF allows one to write JSPs in lan-

guages other than Java while providing access to the Java class library. In addi-

tion, BSF permits any Java application to be implemented in part (or dynami-

cally extended) by a language that is embedded within it. This is achieved by

providing an API that permits calling scripting language engines from within

Java, as well as an object registry that exposes Java objects to these scripting

language engines.” [JBSF06]

In this chapter three different nutshell examples of how to use BSF are pro-

vided. The used programming languages are the Tool Command Language

(Tcl), Java Script and IBM’s Restructured eXtended eXecutor (Rexx). There will

be two simple examples for Tcl and JavaScript and a more sophisticated one

for BSF4Rexx.

5.2.1 Jacl – Tcl

To let the Bean Scripting Framework understand this programming language,

Jacl has to be used. Jacl provides the “translation” of the Tcl commands for the

Bean Scripting Framework. It can be downloaded at the official Jacl webpage14.

14 http://tcljava.sourceforge.net/docs/website/index.html

Apache Velocity Page 51

In this example we will execute a Tcl script out of Java without assigning the

result to our Template. This lets us see how Velocity behaves when an output is

coming directly from the controller code.

In Listing 49 we have a Tcl code which assigns a number to a variable (line 1),

prints a String (line 3) and at least prints another string including a variable (line

4).

[Listing 49]

The Template code is shown in Listing 50. It just outputs a small message that

this text is coming from Velocity.

[Listing 50]

The code for executing the script is shown in Listing 51. First we have to create

an instance of the BSFManager, which handles all scripting execution engines

running under its control. The next step is to read in the whole script using the

File Reader. In Line 5 the getStringFromReader returns a String containing

the script. This script can be passed to the exec method which just executes

the script. The first argument is the name of the scripting language, the second

one the source file, the third and the fourth are the line and the column numbers

in the source for expressions. The last argument is the String with the script

which we read in before. The script is now executed by the BSFManager.

[JBSF06]

1 This is Velocity speaking!

1 set number 5
2
3 puts "greets from Tcl via Jacl supported by BSF"
4 puts "the number is: $number"

Apache Velocity Page 52

[Listing 51]

The output is shown in Figure 20, where we can see that first the Velocity Tem-

plate is executed and afterwards the Tcl code.

[Figure 24, BSF Tcl output]

5.2.2 Rhino – JavaScript

To use JavaScript in the Bean Scripting Framework Rhino has to be used,

which can be downloaded from the official Rhino webpage15. “Rhino is an open-

source implementation of JavaScript written entirely in Java. It is typically em-

bedded into Java applications to provide scripting to end users.” [Rhin06]

In this example we will evaluate a JavaScript script which is shown in Listing 52.

This script calls a function which adds 1 to the argument it received. After that it

returns the sum.

[Listing 52]

15 http://www.mozilla.org/rhino

1 function f(x){
2 return x+1
3 }
4
5 f(99)

1 BSFManager mgr = new BSFManager ();
2
3 try {
4 FileReader in = new FileReader("test.jacl");
5 String script = IOUtils.getStringFromReader(in);
6 mgr.exec("jacl", "test.jacl", -1, -1, script);
7 }

Apache Velocity Page 53

As we can see in Listing 53 our Template file requires a variable called calc in

the Context, which should represent the result of the JavaScript.

[Listing 53]

To evaluate a JavaScript the first thing we have to do is to create and enter a

Context (note: this has nothing to do with the Velocity Context) as shown in List-

ing 54 – Line 1. The Context stores information about the execution environ-

ment of a script. Next we have to initialize the Standard Object which we have

to use later. The next steps (Line 5-6) are similar to Listing 51 as we just put the

JavaScript file into a String. In Line 8 the Context is used to evaluate a string.

The scope is the Object where Rhino looks for variables. The second argument

is our JavaScript and the third argument tells Rhino where to output errors. The

fourth argument tells Rhino at which line number the error output should start.

Now the script is evaluated and we store the result in an object. This object is

converted into a String and inserted into the Velocity Context by the identifier

calc.

[Listing 54]

The output of this example is shown in Figure 21.

1 Context cx = Context.enter();
2 Scriptable scope = cx.initStandardObjects();
3
4 try {
5 FileReader in = new FileReader ("test.js");
6 String script = IOUtils.getStringFromReader (in);
7
8 Object result = cx.evaluateString
9 (scope, script, "<cmd>", 1, null);
10
11 context.put("calc", cx.toString(result));
12 }

1 This is Velocity speaking!
2
3 JavaScript calculated: 99 + 1 = $calc

Apache Velocity Page 54

[Figure 25, BSF JavaScript output]

5.2.3 BSF4Rexx – ObjectRexx

BSF4Rexx is the Bean Scripting Framework for ObjectRexx. In this example

ObjectRexx is used to be the model code of our application. To grant Ob-

jectRexx access to a database once again the BSF4Rexx engine is used. „Be-

cause OpenOffice.org provides a Java interface (the JavaUNO) and Ob-

jectRexx can be interpreted to Java via BSF4Rexx, ObjectRexx can be used for

OpenOffice.org automation.“ [Aham05]

OpenOffice provides the possibility to connect to databases. The way this works

is not explained in this thesis, so please refer to the bachelor thesis of Stefan

Schmid16.

In this application we want to retrieve a value of a MySQL table and ouput it in

the Template. The model code should be able to be called with arguments, so

that we can choose which row to query. Figure 22 shows the way we would like

to create our application. As explained we will use BSF4Rexx in the Controller

to run the Model code which is written in ObjectRexx. ObjectRexx itself will then

use BSF4Rexx to get access to the database with the OpenOffice API.

16 [Stef06]

Apache Velocity Page 55

[Figure 26, BSF4Rexx example MVC]

In this example a MySQL database is used which is called test and has a

structure shown in Figure 23.

[Figure 27, BSF4Rexx example MySQL structure]

The necessary ObjectRexx code to retrieve the text attribute by the correspond-

ing ID is shown in Listing 55. The code will be explained very sparsely so, once

again, if you are interested in automating OpenOffice via BSF4Rexx please re-

fer to the works of Mr. Ahammer and Mr. Schmid. [Aham05, Stef06]

Important for this application is Line 26 where the query is build. We query the

table test for the attribute text where the first argument which we provided to

this script matches the ID column. At Line 40 the result of this query is returned.

Apache Velocity Page 56

[Listing 55]

The Controller code now has the task to call the ObjectRexx script and pass the

ID we want to query. The appropriate code is shown in Listing 56. In Line 2 and

3 the BSF4Rexx engine is initialized. After that a Vector is created which holds

the arguments we want to pass to the ObjectRexx script. In this case we decide

to pass “3” to the ObjectRexx script. Afterwards we put the whole script of List-

ing 55 into a String. In Line 12 the apply method of the BSF4Rexx Engine is

called which runs the script and passes it the arguments Vector. This method

returns an Object which should hold the result of the query. In Line 15 we put

1 xContext = UNO.connect() -- connect to server and retrieve the
2 XContext object
3 XMcf = xContext~getServiceManager
4
5 oDriverManager = -
6 xMcf~createInstanceWithContext(-
7 "com.sun.star.sdbc.DriverManager", xContext)
8 xDriverManager = oDriverManager~XDriverManager
9
10 URL = "jdbc:mysql://localhost:3306/test"
11
12 props = bsf.createArray(.UNO~PropertyValue, 3)
13 props[1] = .UNO~PropertyValue~new
14 props[1]~Name = "user"
15 props[1]~Value = "root"
16 props[2] = .UNO~PropertyValue~new
17 props[2]~Name = "xXxXxX"
18 props[2]~Value = "goforit"
19 props[3] = .UNO~PropertyValue~new
20 props[3]~Name = "JavaDriverClass"
21 props[3]~Value = "org.gjt.mm.mysql.Driver"
22
23 xConnection = xDriverManager~getConnectionWithInfo(url, props)
24 xStatement = xConnection~createStatement
25
26 query = "SELECT text FROM test WHERE ID = "arg(1)
27
28 xResult = xStatement~executeQuery(query)
29 xRow = xResult~XRow
30
31 result = ""
32
33 IF xResult~isBeforeFirst = 0 THEN
34 result = "no results!"
35 ELSE DO
36 DO WHILE xResult~next > 0
37 result = xRow~getString(1)
38 END
39 END
40 return result
41 ::requires UNO.CLS

Apache Velocity Page 57

this Object into the context, as Velocity uses the toString method the result

should be displayed in the Template.

[Listing 56]

The Template which outputs the result is shown in Listing 57.

[Listing 57]

The output of this example is shown in Figure 24. Indeed the correct result of

the query was added to our Context and outputted in the Template file.

[Figure 28, BSF4Rexx example output]

1 This is the velociy template
2
3 $RexxValue

1 try {
2 BSFManager mgr = new BSFManager();
3 BSFEngine rexxViaBSF = mgr.loadScriptingEngine("rexx");
4
5 Vector vArgs = new Vector();
6
7 vArgs.add("3");
8
9 FileReader in = new FileReader("select.rex");
10 String script = IOUtils.getStringFromReader(in);
11
12 Object obj = rexxViaBSF.apply(null, 0, 0, script, null,
13 vArgs);
14
15 context.put("RexxValue", obj);
16 }

Apache Velocity Page 58

5.3 Guestbook using Servlets

This example shows how to use Velocity in web applications. The target of this

example is to create a Guestbook using Velocity. To do so you need to have a

servlet engine installed. In this example the servlet engine Tomcat17 is used.

For hints how to install and run tomcat please refer to the provided Tomcat

website. In the following the steps to create this web application are described.

5.3.1 Create a web application in Tomcat

The folder structure of a web application in Tomcat has to have the same one

as shown in Figure 25. The _css, _img and META-INF folders are optional. In

the root of the application (/guestbook/) the Template file is located. The

WEB-INF directory has sub directories. In the source directory we have to put

the Java source code, in the lib directory necessary libraries have to be put and

in the classes directory we have to put the compiled Java classes.

[Figure 29, Tomcat directory structure]

In the WEB-INF directory itself we have to put the web.xml. This xml file is

needed by Tomcat to know how the servlet is composed. It is shown in Listing

58. In line 5 we tell Tomcat that we will use the VelocityViewServlet for process-

ing our servlet requests. It will be discussed in the next chapter. In line 8 we tell

the VelocityViewServelt to load the toolbox.xml which is located in the WEB-INF

directory. This is part of the VelocityViewServlet and will be described as well in

the next chapter. The load-on-startup in line 11 means that the servlet will be

loaded initially when the server starts and not when the client requests it.

Apache Velocity Page 59

Now Tomcat has to know what we want to display if someone requests our ap-

plication. This is shown in line 13 where we map Tomcat to the .vm files in the

root directory. When the user first requests the application he will be forwarded

to the index.vm which we defined in line 18.

[Listing 58]

To run a web application it is possible to create a web archive. This web archive

holds all information about our servlet, including the web.xml and all libraries

which we want to use. If you are interested in trying this example yourself, you

can use the provided ant code in the appendix.

5.3.2 VelocityViewServlet

In this example we will use the VelocityViewServlet, which is provided in the

VelocityTools18, which are not part of the Velocity core. “VelocityView provides

support for rapidly and cleanly building web applications using Velocity tem-

plates as the view layer. The project is designed with the Pull-MVC Model in

mind and works well in conjunction with web application frameworks that act as

17 http://tomcat.apache.org/
18 http://jakarta.apache.org/velocity/tools/index.html

1 <web-app>
2 <servlet>
3 <servlet-name>velocity</servlet-name>
4 <servlet-class>
5 org.apache.velocity.tools.view.servlet.VelocityViewServlet
6 </servlet-class>
7 <init-param>
8 <param-name>org.apache.velocity.toolbox</param-name>
9 <param-value>/WEB-INF/toolbox.xml</param-value>
10 </init-param>
11 <load-on-startup>10</load-on-startup>
12 </servlet>
13 <servlet-mapping>
14 <servlet-name>velocity</servlet-name>
15 <url-pattern>*.vm</url-pattern>
16 </servlet-mapping>
17 <welcome-file-list>
18 <welcome-file>index.vm</welcome-file>
19 </welcome-file-list>
20 </web-app>

Apache Velocity Page 60

the controller (e.g. Struts), but can be used quite effectively on its own for those

creating simpler applications.“ [VVie06]

“The Pull-MVC Model entails the ability to create an object that is able to "pull"

the required information out at execution time within the template.“ [Turb06]

We will use the VelocityViewServlet as a stand alone application. In this case

we do not have to add any details about the Template or Context in the Control-

ler code. All we have to do is to add the whole Controller code class to the Con-

text of the servlet. In the VelocityViewServlet the Context is configured in the

toolbox.xml.

So let’s take a closer look at this file, which is shown in Listing 59. To let the

View access the Controller class we have to create a new tool. This tool has a

key which is the identifier in the Context, a scope (could be application, session

or request) which determines the lifecycle of the tool and the class. The class

property is the same as we have to use in our Controller code. A big advantage

of the VelocityViewServlet is the possibility to implement tools. In this case we

use the ParameterParser written by Nathan Bubna to get the POST array or the

GET data.

[Listing 59]

5.3.3 Planning process

Let’s consider we have three people involved in our project. According to the

MVC concept we have a designer who will code the View, a Java programmer

1 <toolbox>
2 <tool>
3 <key>guestbook</key>
4 <scope>request</scope>
5 <class>Guestbook</class>
6 </tool>
7 <tool>
8 <key>params</key>
9 <scope>request</scope>
10 <class>
11 org.apache.velocity.tools.view.tools.ParameterParser
12 </class>
13 </tool>
14 </toolbox>

Apache Velocity Page 61

who will create the Controller code and a Java programmer who will create the

code for accessing the Model. In a meeting they agree on which methods to use

and what they have to return in order to guarantee a smooth workflow.

5.3.4 Controller

The programmer has to create the Guestbook class which is shown in Listing

60. In Line 5 the programmer creates a method which returns the result Vector

of the database query. In Line 9 the method newEntry receives the data from

the View and sends it to the Model code. This is a perfect example for what the

Controller code has to do. It is the bridge between the View and the Model and

has the task to respond to actions made in the View. On the other hand it is also

used to provide some functions to the View. This is shown in Line 20 where a

method is created which tells the View if a new entry was successfully added or

not.

[Listing 60]

The Controller code is very short as we don’t have to make complex calcula-

tions for the Guestbook example.

1 public class Guestbook {
2
3 private boolean falseNewEntry;
4
5 public Vector getEntries() {
6 return select();
7 }
8
9 public void newEntry(String name, String mail,
10 String homepage, String text) {
11 text = text.replace("\r\n", "
");
12
13 insert(name, mail, homepage, text);
14 }
15
16 public void setfalseNewEntry(boolean falseNewEntry) {
17 this.falseNewEntry = falseNewEntry;
18 }
19
20 public boolean getfalseNewEntry() {
21 if (this.falseNewEntry) {
22 return true;
23 } else {
24 this.falseNewEntry = true;
25 return false;
26 }
27 }

Apache Velocity Page 62

5.3.5 Model

In this example a MySQL database is used which is shown in Figure 26. There

are five fields which will be filled with the Guestbook entries. The primary key is

the ID which increments automatically. This is the basis for the Model pro-

grammer. His task is now to create methods which are able to insert data into

the database and query data from the database.

[Figure 30, Guestbook MySQL]

The Model programmer has to use the methods he agreed on with the Control-

ler programmer. In order to establish a connection to the database, a database

Driver is needed. It can be easily downloaded from the MySQL webpage19. In

Listing 61 the code for inserting a new entry is shown. Important for this applica-

tion is that this piece of code is able to insert the new entry into the database.

Therefore the Controller programmer passes the necessary data to this method.

In Line 13 to 15 the SQL statement is created which inserts the data. As long as

this piece of code works, all other people involved in this project don’t have to

have any idea about accessing a database from Java.

19 http://www.mysql.com

Apache Velocity Page 63

[Listing 61]

Just for reasons of completeness the code for querying the database is shown

in Listing 62. Once again; the reason why someone uses Velocity in his project

is to separate the Model, Controller and the View code. So in this case it is not

important for Velocity how accessing the database works. Therefore the Model

code is not discussed in detail. Important for us is that this method returns a

Vector which itself holds Hashmaps. These Hashmaps are filled with the differ-

ent entries which are coming from the database.

1 public void insert(String name, String mail,
2 String homepage, String text) {
3
4 Connection con;
5 Statement stm;
6
7 try {
8 DriverManager.registerDriver(new com.mysql.jdbc.Driver());
9 con = DriverManager.getConnection(
10 "jdbc:mysql://localhost:3306/guestbook", "root", "pw");
11 stm = con.createStatement();
12
13 stm.executeUpdate("INSERT INTO guestbook VALUES(DEFAULT,
14 '"+ name +"','"+ homepage +"','"+ mail +"',
15 '"+ text +"')");
16
17 } catch (Exception x) {
18 System.out.println("Error: "+x);
19 }
20
21 }

Apache Velocity Page 64

[Listing 62]

To illustrate this Figure 27 shows the design of this Vector. This is the only thing

the View programmer has to know, as he has to work with the Vector object.

[Figure 31, Guestbook Vector design]

1 public Vector select() {
2
3 Connection con;
4 Statement stm;
5 String message = "";
6
7 Vector result = new Vector();
8
9 try {
10 DriverManager.registerDriver(new com.mysql.jdbc.Driver());
11 con = DriverManager.getConnection(
12 "jdbc:mysql://localhost:3306/guestbook", "root", "pw");
13 stm = con.createStatement();
14
15 ResultSet rset = stm.executeQuery(
16 "select * from guestbook");
17
18 while (rset.next()) {
19 Map dbResult = new HashMap();
20 dbResult.put("id", rset.getString("ID"));
22 dbResult.put("name", rset.getString("name"));
23 dbResult.put("homepage", rset.getString("homepage"));
24 dbResult.put("mail", rset.getString("mail"));
25 dbResult.put("text", rset.getString("text"));
26 result.add(dbResult);
27 }
28 } catch (Exception x) {
29 System.out.println("Error: "+x);
30 }
31
32 return result;
33 }

Apache Velocity Page 65

5.3.6 View

Let’s review what happened so far. The Controller programmer and the Model

programmer have done their job. But the designer don’t has to care about how

they did it, he just has to have the following information:

• If he wants to get all entries he has to call the method getEntries of

the guestbook class. This returns him a Vector which includes many

Hashmaps, which themselves represent the entries.

• If he wants to insert a new entry he has to call the method getEntry of

the guestbook class.

• If he wants to know if the insert was successful or not, he has to call the

method getfalseNewEntry of the guestbook class, which returns him

a Boolean value.

With this information he can now begin to create the View code. In the following

Listings only the VTL is discussed. The look and feel of the application is not as

important as discussing it at this point. Listing 63 shows how to get the entries

out of the guestbook and how to display them. In Line 1 the Vector which holds

the HashMaps is accessed and in Lines 2 to 6 we get the values out of the

HashMaps by directly querying the values by their keys.

[Listing 63]

To add new entries the designer decides to create a nice looking form which is

shown in Figure 28. It lets the user input all necessary data to create a new

guestbook entry. When the user hits the submit button the data he inputted is

POSTed to the next site.

1 #foreach($item in $guestbook.getEntries())
2 ID: $item.id
3 Name: $item.name
4 Homepage: $item.homepage
5 Mail: $item.mail
6 Text: $item.text
7 #end

Apache Velocity Page 66

[Figure 32, Guestbook Form]

This site is called newEntry.vm and its task is to add new entries to the corre-

sponding method. As the data in this form is POSTed, we have to access the

POST array to get the values. This is the point where the Designer can use the

ParameterParser tool. Listing 64 shows the code of the newEntry.vm. First the

Designer checks if the name and the text fields have been filled out by the user.

If not he sets the addEntry variable to false. This has the effect that the

newEntry method of the guestbook class is not called. This is to avoid that

user type in nothing and that an empty guestbook entry is inserted in the data-

base. If these two values are filled with some content, the newEntry method is

called in line 12 and the parameters of the ParameterParser are passed. The

ParameterParser uses the variable params to let the Designer access the

POST array. In Line 19 the file which shows the guestbook entries is parsed so

that the new entry is displayed.

Apache Velocity Page 67

[Listing 64]

The whole look and feel of this application is shown in Figure 29.

[Figure 33, Guestbook application look and feel]

1 #set($addEntry = true)
2
3 #if($params.name == "" || !$params.name)
4 #set($addEntry = false)
5 #end
6
7 #if($params.text == "" || !$params.text)
8 #set($addEntry = false)
9 #end
10
11 #if($addEntry)
12 $guestbook.newEntry($!params.name,
13 $!params.mail, $!params.homepage,
14 $!params.text)
15 #else
16 $guestbook.setfalseNewEntry(true)
17 #end
18
19 #parse("index.vm")

Apache Velocity Page 68

5.4 Powering Ajax Applications

5.4.1 Fundamentals

Ajax is short for Asynchronous JavaScript and XML. Ajax isn’t a single technol-

ogy; rather it is a collection of four technologies that complement one another.

• JavaScript is the language in which Ajax applications are written.

• Cascading Style Sheets are used to style the application.

• “The XMLHttpRequest allows web programmers to retrieve data from the

web server as a background activity. The data format is typically XML.”

[Ajax06]

• The Document Object Model is used to parse the XML file retrieved from

the web server.

Ajax is used to retrieve data from the Server without reloading the whole page,

using the XMLHttpRequest object. Ajax applications need a XML document to

deliver the necessary data from the server to the client. That’s where Velocity

comes into play.

Velocity is able to create any file format, so it is possible to create XML files. In

order to make these files available to the Ajax application a Tomcat server is

needed. In this example we are using once again the VelocityViewServlet to

generate the output files. As this example is only a proof of concept it is very

simple, but can be extended easily.

[Ajax06]

5.4.2 Controller

To see that the creation of the XML file is dynamic, every time the method

getResponse is called a random number is returned.

Apache Velocity Page 69

[Listing 65]

5.4.3 Toolbox

The toolbox exposes the class created in the controller to the Template by the

name easyAjax. Furthermore it holds a String called message with the text

This is Velocity speaking.

[Listing 66]

5.4.4 View

The view is our XML file, so it is called index.xml. In Line 4 the Node number

node has the text which should show the output from Velocity, by calling the

method getResponse from the easyAjax class.

[Listing 67]

1 <?xml version='1.0' encoding='ISO-8859-1' ?>
2 <document>
3 <number>
4 $message - your number is: $easyAjax.getResponse()
5 </number>
6 </document>

1 <tool>
2 <key>easyAjax</key>
3 <scope>request</scope>
4 <class>easyAjax</class>
5 </tool>
6 <data type="string">
7 <key>message</key>
8 <value>This is Velocity speaking</value>
9 </data>

1 public class easyAjax {
2
3 public Integer getResponse(){
4 Random generator = new Random();
5 int number = generator.nextInt(6) + 1;
6 return number;
7 }
8 }

Apache Velocity Page 70

5.4.5 The velocity.properties configuration file

The only thing which has to be modified is the content Type of the xml docu-

ment, as it is text/html by standard. Therefore a file named veloc-

ity.properties in the WEB-INF directory has to be created which is shown

in Listing 68. It just sets the default Content Type of our documents to text/xml,

so the Document Object Model, which is used to parse XML files in JavaScript,

can now do his work.

[Listing 68]

5.4.6 Output

The output of 2 separate calls to this file is shown in Figure 29 and Figure 30.

[Figure 34, Ajax output 1]

[Figure 35, Ajax output 2]

1 default.contentType = text/xml

Apache Velocity Page 71

6 Summary

Velocity is an easy to use tool which is widely accepted in the community. The

Velocity Template Language perfectly meets the needs of Designer which can

use this easy to learn language, to access the Context. In web applications Ve-

locity performs very well using the VelocityViewServlet. Another big advantage

of Velocity compared to other Templating engines is the fact, that it uses Java.

This lets the programmer open up new dimensions compared to scripting lan-

guages.

Velocity becomes reasonable even if it handles small projects. But Velocity can

be much more powerful when it comes to big applications, where hundreds of

people are involved. In this case Velocity can help the developers to make the

maintenance of their code much easier. But today the probability to find devel-

opers who are familiar with Velocity is not very high.

Therefore Velocity is a good approach, but needs to get promoted better to in-

crease the acceptance.

Apache Velocity Page 72

7 List of references

[Aham05] Andreas Ahammer: OpenOffice.org Automation, Bachelor Course

Paper, Department of Business Informatics (Prof. Dr. Rony G.

Flatscher), Vienna University of Economics and Business Admini-

stration, November 06, 2005

[Ajax06] Dave Crane, Eric Pascarello: Ajax in Action, Manning, 2006

[Antl06] Terence Parr, University of San Francisco: Java Template Engine,

http://www.antlr.org/stringtemplate/index.tml, retrieved on 2006-

10-26

[Chee06] Cheetah, http://www.cheetahtemplate.org/, retrieved on 2006-10-

31

[Cont06] Contemplate Web Templating System

http://www.typea.net/software/contemplate/assembled/home.html,

retrieved on 2006-10-30

[EmbP06] Embperl, http://perl.apache.org/embperl/, retrieved on 2006-11-04

[Free06] Freemarker, http://freemarker.sourceforge.net/, retrieved on 2006-

11-29

[JBSF06] Bean Scripting Framework, http://jakarta.apache.org/bsf/, retrieved

on 2006-25-12

[JFre06] Vincent Dibartolo: FreeMarker: An open alternative to JSP,

www.javaworld.com/javaworld/jw-01-2001/jw-0119-

freemarker.html, retrieved on 2006-11-29

[ONLa06] Andrew Glover: Python-Powered Templates with Cheetah,

http://www.onlamp.com/pub/a/python/2005/01/13/cheetah.html, re-

trieved on 2006-10-31

[Open06] Open Source Initiative, http://www.opensource.org/, retrieved on

2006-10-31

Apache Velocity Page 73

[Perl06] Neil Gunton: Creating Modular Weg Pages With EmbPerl,

http://www.perl.com/pub/a/2001/03/embperl.html, retrieved on

2006-11-04

[Rhin06] Rhino: JavaScript for Java, http://www.mozilla.org/rhino/, retrieved

on 2006-25-12

[SGNU06] Smarty GNU, http://www.gnu.org/copyleft/lesser.html#SEC1, re-

trieved on 2006-11-20

[Smar06] Smarty Template Engine, http://smarty.php.net/, retrieved on

2006-10-30

[Stef06] Stefan Schmid: OpenOffice.org Database, Bachelor Course Pa-

per, Department of Business Informatics (Prof. Dr. Rony G.

Flatscher), Vienna University of Economics and Business Admini-

stration, 2006

[Sun06] Sun Microsystems Inc., Java Blueprints, Model-View-Controller,

http://java.sun.com/blueprints/patterns/MVC-detailed.html, re-

trieved on 2006-10-26

[Turb06] Turbine: Pull vs. Push, http://jakarta.apache.org/turbine/further-

reading/pullmodel.html, retrieved on 2006-12-27

[VApi06] Apache Velocity API,

http://jakarta.apache.org/velocity/docs/api/index.html, retrieved be-

tween 2006-10 and 2007-01

[VDev06] Apache Velocity Developer Guide,

http://jakarta.apache.org/velocity/docs/developer-guide.html, re-

trieved between 2006-10 and 2007-01

[Velo06] Apache Velocity, http://jakarta.apache.org/velocity/index.html, re-

trieved between 2006-10 and 2007-01

Apache Velocity Page 74

[VUse06] Apache Velocity User Guide,

http://jakarta.apache.org/velocity/docs/user-guide.html, retrieved

between 2006-10 and 2007-01

[VVie06] VelocityView, http://jakarta.apache.org/velocity/tools/view, re-

trieved on 2006-12-27

[W3cD06] World Wide Web Consortium: Document Object Model,

http://www.w3.org/DOM/, retrieved on 2006-12-12

[W3cX06] World Wide Web Consortium: Extensible Markup Language,

http://www.w3.org/XML/, retrieved on 2006-12-12

Apache Velocity Page 75

8 Appendix:

8.1 Setting up Velocity

To get the newest Version of Velocity go to the Velocity web page20. Download

the latest version and unzip into a folder you like. Please note that it is recom-

mended to choose a directory without spaces.

Velocity requires a Java development kit and a Java platform, which can both

be downloaded from the sun page.

• If you want to build Velocity by yourself you need the tool ant. Go to the

build directory ant type ant jar, to create a Java archive file. This can

then be included into your classpath.

• If you use the binary version of Velocity just insert the classpath located

in the root directory into your classpath.

If you have any problems please refer to the Velocity manual.

8.2 Setting up ant

Ant is needed to build Velocity form the source. If you want to do so go to the

web page of ant and download the current version (http://ant.apache.org).

• Unzip the archive to a directory of your choice

• Add a new path called ANT_HOME to your pathes:
set ANT_HOME=c:\ant_directory

• Add a new path called JAVA_HOME to your pathes which points to your

Java development kit:
set JAVA_HOME=c:\path_to_java\jdk1.5.x

Apache Velocity Page 76

• Add the bin directory of the ant directory to your path:
set PATH=%PATH%;%ANT_MOE&\bin

If you have any problems please refer to the ant manual

8.3 Ant script for creating web app archives

If you want to use ant to create a web application archive file for tomcat, put this

script into the root directory of your webapp under the name build.xml.

[build.xml]

20 http://jakarta.apache.org/velocity/

<project name="Guestbook powered by Velocity" default="war"
basedir=".">

 <property name="SRC" value="${basedir}/WEB-INF/src"/>
 <property name="CLASSES" value="${basedir}/WEB-INF/classes"/>
 <property name="LIB" value="${basedir}/WEB-INF/lib"/>

 <!-- Construct compile and javadoc classpath -->
 <path id="classpath">
 <fileset dir="${LIB}">
 <include name="*.jar"/>
 </fileset>
 </path>

 <target name="compile">
 <mkdir dir="${CLASSES}"/>
 <!-- Compile the java code from ${SRC} into ${CLASSES} -->
 <javac srcdir="${SRC}"
 includes="*/**"
 destdir="${CLASSES}">
 <classpath refid="classpath"/>
 </javac>
 </target>

 <target name="war" depends="compile">
 <jar jarfile="${basedir}/../guestbook.war"
 basedir="${basedir}"
 excludes="**/MANIFEST.MF,**/servlet.jar"/>

 </target>

 <target name="clean">
 <!-- remove old class files -->
 <delete dir="${CLASSES}"/>
 </target>

</project>

Apache Velocity Page 77

If you have the same folder structure as described in this thesis, just type ant in

the root directory of your webapp to let ant create a web application archive file.

