
WIRTSCHAFTSUNIVERSITÄT WIEN
BAKKALAUREATSARBEIT

Titel der Bakkalaureatsarbeit:

Datenverarbeitungs Automatisierung mit OpenOffice.org

Englischer Titel der Bakkalaureatsarbeit:

Flexible Word Processing Automation with OpenOffice.org

Verfasserin/Verfasser: Kauril Michael

Matrikel-Nr.: 0251728

Studienrichtung: J033 526 Bakkalaureat Wirtschaftsinformatik

Kurs: 1526 Vertiefungskurs VI / Bakkalaureatsarbeit –
 Electronic Commerce

Textsprache: Englisch

Betreuerin/Betreuer: Ao. Univ. Prof. Dr. Rony G. Flatscher

Ich versichere:

dass ich die Bakkalaureatsarbeit selbstständig verfasst, andere als die angegebenen Quellen und Hilfsmittel nicht
benutzt und mich auch sonst keiner unerlaubten Hilfe bedient habe.

dass ich die Ausarbeitung zu dem obigen Thema bisher weder im In- noch im Ausland (einer Beurteilerin/ einem
Beurteiler zur Begutachtung) in irgendeiner Form als Prüfungsarbeit vorgelegt habe.

dass diese Arbeit mit der vom Betreuer beurteilten Arbeit übereinstimmt.

Datum Unterschrift

Flexible Word Processing Automation with OpenOffice.org

Table of Contents
1 Introduction... 5

1.1 Abstract..5
1.2 Project Definition..5

2 System Requirements... 6
2.1 OpenOffice.org..6

2.1.1 History...6
2.1.2 Overview...7
2.1.3 Automation...8
2.1.4 Implementation Languages..9
2.1.5 API..10

2.1.6 Architecture of OOo ...10
2.1.6.1 UNO Concept..10
2.1.6.2 UNO Service Components..12
2.1.6.3 Service Manager...12
2.1.6.4 Component Context..13
2.1.6.5 Objects..14
2.1.6.6 Services...14
2.1.6.7 Interfaces...15
2.1.6.8 Structs...16
2.1.6.9 Properties..16

2.2 Object REXX (Restructured extended executor) .. 16
2.2.1 History..16
2.2.2 Overview...17
2.2.3 Syntax Overview...18

2.3 BSF4Rexx..20
2.4 Text Documents ..22

2.4.1 Overview...22
2.4.2 Handling Text Content..25
2.4.3 Cursor ...27

2.4.3.1 ViewCursor ..27
2.4.3.2 TextCursor..28

2.4.4 Loading documents..29
2.4.5 Closing documents...30
2.4.6 Saving documents..30
2.4.7 Printing documents...31
2.4.8 Search&Replace of text content...31
2.4.9 Control of Shapes...32
2.4.10 Dispatch Process...32

2.5 Software Requirements...33
2.5.1 Java ..33
2.5.2 OpenOffice.org ..33
2.5.3 Object Rexx..34
2.5.4 BSF4Rexx..34

3 Realisation.. 35
3.1 Overview..35

Page - 2

Flexible Word Processing Automation with OpenOffice.org

3.2 Sourcecode Documentation..37
3.2.1 Initialisation...37
3.2.2 Routine create_gui...38
3.2.3 Routine main_new..45
3.2.4 Routine main_old...56
3.2.5 Routine state_window..59
3.2.6 Routine switch_design_mode..62
3.2.7 Routine textsection...63
3.2.8 Routine create_form...64

4 Conclusion.. 66
5 List of References... 67
6 Appendix... 69

6.1 Sourcecode..69

List of Figures
Figure 1: Java UNO Support [FLAT05].. 9
Figure 2: Client-/Server-Communications with UNO Components [FLAT05].................................12
Figure 3: Service Manager [OPEN05]... 14
Figure 4: ComponentContext [OPEN05]... 15
Figure 5: Inheritance of interfaces in OOo [OPEN05]...16
Figure 6: Architecture of BSF4Rexx [FLAT06-2]...22
Figure 7: Interfacing Java without BSF.cls [FLAT06-2]... 23
Figure 8: Interfacing Java with BSF.cls [FLAT06-2].. 23
Figure 9: Text Document Model [OPEN05].. 24
Figure 10: TextDocument interfaces [OPEN05].. 26
Figure 11: URL parameters [OPEN05]..31
Figure 12: Main menu template handling tool... 38
Figure 13: Code Snippet - Java classes import...39
Figure 14: Code Snippet - Routine create_gui... 40
Figure 15: Code Snippet - Set JWindow position.. 41
Figure 16: Code Snippet - Eventlistener.. 41
Figure 17: Code Snippet - Procedure setnew... 42
Figure 18: Historical document menu.. 43
Figure 19: Code Snippet - Procedure setold...44
Figure 20: Code Snippet - Get position and set eventlistener.. 45
Figure 21: Code Snippet - Procedure set, open and shutdown...46
Figure 22: Code Snippet - Routine main_new... 47
Figure 23: Code Snippet - Interface initialisation.. 47
Figure 24: Code Snippet – Loop for content extraction... 49
Figure 25: Sample document with inserted forms..50
Figure 26: Code Snippet - New document creation... 51

Page - 3

Flexible Word Processing Automation with OpenOffice.org

Figure 27: Code Snippet - Textfield insertion..52
Figure 28: Code Snippet - Content replace.. 53
Figure 29: Code Snippet - Procedure main_finish... 54
Figure 30: Code Snippet – Exporting and printing a document...55
Figure 31: Sample content document... 55
Figure 32: Code Snippet – Creation of a content file... 56
Figure 33: JWindow message box..56
Figure 34: Code Snippet - Message box...57
Figure 35: Code Snippet - Routine main_old...58
Figure 36: Code Snippet - Loop for content extraction..59
Figure 37: Code Snippet - Loop for content replace.. 59
Figure 38: Code Snippet - Finalizing the historical document...60
Figure 39: Info JWindow with control buttons.. 60
Figure 40: Code Snippet - Routine state_window..61
Figure 41: Code Snippet - Setting the jwindow... 62
Figure 42: Code Snippet - Eventlistener and procedures... 62
Figure 43: Code Snippet - Routine switch_design_mode.. 63
Figure 44: Code Snippet - URL dispatching.. 64
Figure 45: Code Snippet - Routine textsection...64
Figure 46: Code Snippet - Routine create_form...65
Figure 47: Code Snippet - Setting the xControlshape.. 66
Figure 48: Code Snippet - Adding the shape..66
Figure 49: Sourcecode of the Template Handling Tool... 81

List of tables
Table 1: Methods offered by the XText interface [PITO04 page 286].. 27
Table 2: Methods offered by the XTextRange interface [PITO04 page 286].................................... 28

Page - 4

Flexible Word Processing Automation with OpenOffice.org

1 Introduction
The work is carried out in cooperation with the MA 14, responsible for the whole

Information and Communication Technology in Vienna, and the MA 22, responsible for

environment protection. The reason for this project is that the city of Vienna is trying to

switch from commercial software to open source software. To increase the

accomplishment of this changeover the MA 14 is trying to create automation processes in

the new open source environment to decrease the number of manual processes and to

improve the convenience of the new system. This automation is carried out within the

context of OpenOffice.org, when talking about this open source office suite we are refering

to it also as OOo.

1.1 Abstract
The work gives a detailed description of the realisation of the automation project of open

source office software conducted in cooperation with the MA 14 and MA 22. It provides a

theoretical background in order to get a better understanding of the implementation part of

the work. The chapters concerned with theoretic concepts describe the design of

OpenOffice.org and gives information about the API of OOo and the used programming

language. It also gives information about the system requirements concerning installed

software. The practical part describes in detail the realisation and gives explanations to

every part of the programming code.

1.2 Project Definition
The main focus of these bachelor thesis is the automation of template handling in Open

Office, accomplished with the use of a scripting language. The aim of the project is to

produce a macro which automates the template handling of the MA 22. The MA 22 has

many manual processes concerning the office staff, especially considering

correspondency. Within this process the clerk has to search for the current template, open,

edit, and finally save and print it. The problem which arises in this matter is that the

templates, which are used to provide a cooperative identity, are changing on a regulary

base. On this account there exists the risk to pick a wrong and outdated template. The

whole process is very slow because it is done manually and carried out very often.

Page - 5

Flexible Word Processing Automation with OpenOffice.org

Furthermore there is a high usage of memory space, because every document is saved

seperately as “PDF” and “Open Office Document”. To solve all these problems the macro

should be able to pick the right template, load already finished documents, save content

seperately from the template, export the document in “PDF” and print it. Regarding the

realisation the MA gave no boundaries how and in which programming language to

dissolve the problem. By reason of this fact the first step which was done was to get an

overview of the design of Open Office and choose the appropriate scripting language.

2 System Requirements
This main part of the work provides a theoretic overview of the technical requirements to

the system and about the concepts which lie behind the used technologies for the

realisation.

2.1 OpenOffice.org
Office applications are one of the most widespread applications, the reason for this is that

they are very multifunctional and that everyone has to use them for work-related or

personal stuff. Such programs offer the user a wide range of features for instance to write

letters, to conduct calculations in spreadsheets, to make multimedia presentations or to

create a database. On the market there are a high number of products offered, like MS-

Office, Star Office, OpenOffice.org or WordPerfect Office, the most well known is

Microsofts Office Suite which has become a “quasi standard”.

[OPEN06]

2.1.1 History
The sourcecode of OpenOffice.org is based on the StarOffice suite which was produced

by StarDivision, a software firm founded in Germany in the mid 1980s. 1999 Sun

Microsystem took over the company and made the source code of OpenOffice.org, which

was a new version of Star Office, available in 2000. Since this time the office suite is

Page - 6

Flexible Word Processing Automation with OpenOffice.org

developed continously and its popularity is rising. This can be seen by the many linux

distributions which integrate OpenOffice.org within their installation and many public

institutions who are migrating from proprietary office applications, for example the “LiMux”

project of the city of munich or the “Wienux” project of the city of vienna. Another

interesting development in this area is that google and sun microsystems joined a strategic

partnership in 2005 to support the spread of OpenOffice.org.

[OPEN06]

2.1.2 Overview
OpenOffice.org is an open source office suite by Sun Microsystems that is freely available

under the GNU Lesser General Puplic License (LGPL). The current release 2.1 is currently

downloadable on the Webpage “http://download.openoffice.org/index.html”. The mission

statement gives an very good idea what the whole project is about and what idea lies

behind it:

"To create, as a community, the leading international office suite that will run on all major

platforms and provide access to all functionality and data through open-component based

APIs and an XML-based file format." [OPEN06]

The advantages of this open source project are that it is an international office suite which

is available on all major operating systems, therefore it is vendor-neutral and can make

usage of next-stage architecture. Furthermore all functionalities and data can be accessed

using the APIs, which are open component based, and a file format that is vendor-neutral

by the use of XML.

The office suite consists of six different components:

 Writer application

This application is a fully equipped word processor that has every feature a writing

tool needs like for the creation of professional documents, memos or even booklets.

Page - 7

http://www.openoffice.org/

Flexible Word Processing Automation with OpenOffice.org

 Calc application

This is the spreadsheet programm for the professional working with data. It can be

used for tasks like calculation, analysation or presentation.

 Math application

The Math component is an equation editor for text documents but can also be used

stand-alone.

 Draw application

Draw is an application which gives the user tools to edit graphics and diagrams.

 Impress application

Impress is a tool that can be used to create multimedia presentations.

 Base application

This component offers the ability to manipulate databases in OpenOffice.org.

[OPEN06]

2.1.3 Automation
The process of automation means that a small programm fullfills a set of tasks, very often

linked together, in a minimum amount of time by taking control of other programs and

applications. Such a program is normally called “macro”. In our context the process of

automation means to take control over one application of the office suite by using a

programming language.

“A Macro is used to automate task in OpenOffice.org. A macro can automate actions that

otherwise require exhausting error-prone manual labor. Currently, the automatic actions

are most easily created by writing Macros in Ooo Basic. The new scripting framework in

OOo version 2 should ease the use of other languages, but Basic is still the most easiest

to use. ...” [PITO06]

Page - 8

Flexible Word Processing Automation with OpenOffice.org

2.1.4 Implementation Languages
There are different ways and possible programming languages which can be used to

automate OpenOffice. Except the integrated scritpting language all other languages are

using the UNO technology, which is an interface to OOo and will be discussed later.

 OpenOffice.org Basic (also called Star Basic)

OOo Basic is a macro language which is very similar to Visual Basic and is included in

OpenOffice.org. It cooperates with the UNO interface so that it is possible to write

UNO programs directly inside the office suite. Even so this language is very easy to

use and it is very powerful because of its implemented features. Compared to the

other possibilities of automating Ooo this scripting language has less features and

isn't capable to communicate with other languages. Supplementary it has to be

started from inside of OpenOffice.org and isn't executeable from the shell.

 Java

This programming language is very powerful esspecially compared to scripting

languages. The API of OpenOffice.org includes an interface so called “Java UNO”

which offers the user the ability to use Java to automate Ooo, displayed in figure 1.

This gives programmers the possibility to create and implement UNO

components completley in Java, as well as the use of the Java standard library with

a large set of features.

Page - 9

Figure 1: Java UNO Support [FLAT05]

Flexible Word Processing Automation with OpenOffice.org

 C++

C++ like Java has a huge API to script the open source office suite although it is not

very easy to use and has a higher level of complexity. Because OpenOffice.org was

developed in C++ it offers the fastest way to communicate with the application.

 Object Rexx

Object Rexx is a very easy to use scripting language which is even capable of taking

advantage of the Java API by using BSF4Rexx. Therefore the user is able to

automate OpenOffice.org with an easy to use scripting language and the use of Java

features.

[OPEN06]

2.1.5 API
The API of OpenOffice.org was made to support any common programming language.

The reason behind this approach is to make the internal implementation exchangeable so

that it is easy for developers to extend the functionalities by new solutions or features,

without being bound to any specific language. To reach this target OpenOffice.org was

split into a lot of components which are combined to deliver their functionality. The concept

of working with components simplifies the working with the API and make them more

manageable because they are like building blocks that interact with each other to offer

high level functionalities. With this concepts it is easy to exchange them with different

implementations that provide similar functionality. The description of the interaction of the

components will be given in one of the next chapters. The API reference make use of so

called UNOIDL data types which are specific for the OpenOffice.org API and are needed

to map to the different types of any language that is supported.

[OPEN05]

Page - 10

Flexible Word Processing Automation with OpenOffice.org

2.2 Architecture of OOo

2.2.1.1 UNO Concept
The Universal Network Object of OpenOffice.org is a powerful interface to get a

connection by the use of many programming languages. The Developers Guide of OOo

gives a very good description of UNO:

“UNO (pronounced ['ju:nou]) stands for Universal Network Objects and is the base

component technology for OpenOffice.org. You can utilize and write components that

interact across languages, component technologies, computer platforms, and networks.”

[OPEN05]

UNO is avaible like OpenOffice.org for many platforms like Linux, Windows or Mac OS X,

so it is platform independent. It supports the programming languages Java, C++ and

Basic. In addition it can be accessed through Microsofts COM technology by other

languages and has a language binding for Python. Versions of OpenOffice.org higher than

2.0 are able to be programmed with .NET languages by using the Common Language

Infrastructure binding. Furthermore the new scripting framework makes it possible to use

the API through scripting languages, like Beanshell, Javascript or Jython. The concept of

UNO is client/server based, therefore there has to be a connection between the server and

the client via TCP/IP to be initialised. This gives the opportunity that the server and the

client don't need to be on the same computer. For example they could also establish a

connection via the internet for example. The communication between client and server is

described in figure 2:

[OPEN05]

Page - 11

Flexible Word Processing Automation with OpenOffice.org

The term CORBA within the figure 2 means Common Object Request Broker Architecture.

All applications of OpenOffice.org include specific components as well as common

components that can be used by every application or foreign components from other

applications. Specific components are for example the text document of the Writer

application or the spreadsheet of the Calc application which are used esspecially by one

specific program. In contrast to these exist common components such as printer settings.

One feature which is part of every component is very amazing, its the provision of equally

interfaces through which the system becomes very flexible and modifiable.

[OPEN05]

2.2.1.2 UNO Service Components
The architecture of OpenOffice.org consits basicly of service managers, a certain

component context, objects, services, interfaces and properties. Generally every UNO

component is represented by a specific service, which includes additional services,

properties and interfaces.

[OPEN05]

2.2.1.3 Service Manager
The Service Manager is one of the most important parts of the UNO concept, it can be

described as a “factory” which is producing services, illustrated in figure 3. Therefore it is

the root component within the concept and has to be started before all the others. This

component can be seen as an entry point for any application of UNO because it is

responsible for the establishment of connections to UNO. The services created by the

Page - 12

Figure 2: Client-/Server-Communications with UNO Components
[FLAT05]

Flexible Word Processing Automation with OpenOffice.org

Service Manager are objects of UNO that have specific abilities and tasks. Such a Service

always exists in a component context which is composed of the Service Manager and the

data used by the service. The central service manager of all UNO applications is the

com.sun.star.lang.ServiceManager which is described by the following quote:

 [OPEN05]

“The com.sun.star.lang.ServiceManager is the main factory in every UNO application. It

instantiates services by their service name, to enumerate all implementations of a certain

service, and to add or remove factories for a certain service at runtime. The service

manager is passed to every UNO component during instantiation.”

[OPEN05 page 88]

Additional to the main “factory” there exist a main interface that is used by service

managers, the com.sun.star.XMultiServiceFactory. This interface provides three methods,

the createInstance() method that instantiates a default service, the

createInstanceWithArguments() which creates a service instance consisting of

supplementary parameters and the getAvailableServiceNames() method used to get all

supported servicenames by the service manager.

[OPEN05]

Page - 13

Flexible Word Processing Automation with OpenOffice.org

2.2.1.4 Component Context
The service manager is the main factory as descripted before and is passed to every

instantiated service. The weakness of this concept is that in many cases the deployed

component has the need for more exchangeable functionality or information and the

service manager is limited in this respect. For that reason the component context was

introduced, which will become the main object in every application. Generally spoken the

component context is a read-only container providing named values, as for example the

service manager. Simply spoken it consists of the service manager as well as other data

which is used by the services. This concept can be described as an environment in which

components are living that have relationships, illustrated in figure 4. It is passed to a

component during the process of instantiation and supports only the

com.sun.star.uno.XComponentContext interface with the two methods getValueByName()

and getServiceManager().

[OPEN05]

Page - 14

Figure 3: Service Manager [OPEN05]

Flexible Word Processing Automation with OpenOffice.org

2.2.1.5 Objects
“In UNO, an object is a software artifact that has methods that you can call and attributes

that you can get and set. Exactly what methods and attributes an object offers is specified

by the set of interfaces it supports.” [OPEN05 page 39]

Objects are very important for the whole concept because they are required to work with

OOo, new objects are created by the service managers. They can for example represent

an opened document or they can even hand out other objects. The specification, which

gives information about the methods and attributes, of an object is defined by the set of

interfaces it contains.

[OPEN05]

2.2.1.6 Services
Services provide a description of objects by an abstract object specification that consists of

a set of interfaces and properties. In the context of Services the API of OpenOffice.org

makes use of single- and multiple-inheritance. By reason of the fact that normaly objects

are having many aspects, and a single-inheritanced interface provide only a description of

one aspect, UNO makes use of multiple-inheritance services and interfaces to give an

entire specification of objects. This is achieved by grouping all various aspects of an object

in one multiple-inheritance interface type. Figure 5 gives an overview of how a language

Page - 15

Figure 4: ComponentContext [OPEN05]

Flexible Word Processing Automation with OpenOffice.org

dependent service makes use of the interfaces of an language independent service with a

lot of services. In this case the language dependent service only needs to support one

multiple-inheritance interface to inherit all of the other interfaces. This should give an idea

how the relationship between services and interfaces is working in OOo.

[OPEN05]

2.2.1.7 Interfaces
An Interface is one single part of an object and consists of a set of methods and attributes.

Interfaces have the possibility to inherit one or more other interfaces, so that the reuse of

an interface specification is possible. Since version 2.0 of OOo there is the possibility of

multiple inheritences. Interface attributes are included in UNO to give extra support

because of the widespread concept of setting and getting values. Furthermore interfaces

give the designer more possibilities to express small differences between object features,

for example features that are not integral parts of an object.

[OPEN05]

Page - 16

Figure 5: Inheritance of interfaces in OOo [OPEN05]

Flexible Word Processing Automation with OpenOffice.org

2.2.1.8 Properties
A property is a feature of a service, but it is not an integral or structural part of it. Thats the

reason why the general methods getPropertyValue() and setPropertyValue() of the

interface XPropertySet are used to manage properties. Every interface that supports the

interface com.sun.star.beans.XPropertySet, which is the most basic interface for handling

properties, can make use of the two methods. There are also other interfaces existing, like

com.sun.star.beans.XMultiPropertySet, that also support the handling of properties.

[OPEN05]

2.2.1.9 Structs
A struct consists of several related properties and are similar to Java classes that are only

including public member variables. In the API of OpenOffice.org they are used for the

creation of compound UNO types. They are initialised using the message operator, for

instance in Java the “.” (dot) operator or in ooRexx the “~” operator.

[OPEN05]

2.3 Object REXX (Restructured extended executor)

2.3.1 History
Object REXX is an object orientated scripting language based on Smalltalk which was

created by IBM. It was released in 1997 as the successor of Rexx, which has a syntax that

is simple and easy to learn. The roots of Object REXX are situated in the 80'ies, in which

companies who were using IBM mainframes and REXX started to use IBMs OS/2

operating system. In that time there was starting a huge object-oriented movement, so that

IBM has to deliver a user interface capable of the new requirements. For this, engineers of

IBM started to create an object orientated version of REXX. To fullfill this task they worked

in cooperation with IBM user groups, especially with the so called “SHARE” special

interest group (=SIG). The goal of the venture was to get a version of REXX with true

object orientated features and the ability to be backwardly compatible to the predecessor

REXX. In the year 1996 NetRexx was developed which has the same syntax as the

original version of REXX but generates internally a Java code. The current version is

Page - 17

Flexible Word Processing Automation with OpenOffice.org

OpenObjectRexx which is an open source project of Rexx Language Association (RexxLA)

, that offers a free utilisation of Object REXX.

[FLAT06-1]

[OORE06]

2.3.2 Overview
As mentioned before Object REXX is mainly based on Smalltalk and slightly on C++. It is

completly compatible with the original version of Rexx and operates in an object orientated

way. Internally commands are translated from procedural to object orientated. The object

model is very powerful, it makes use of an interpreter and doesn't compile the code. The

goal of Object REXX is to offer the user a powerful language which is easy to learn and

use because of a human orientated syntax. ooRexx is available for a high number of

operating systems, for instance Windows, Linux, MAC/OS or OS/2. The range of

possibilities which is given through this scripting language can be best described by the

following quote:

[OORE06]

“ooRexx allows defining (meta-)classes, using reflection, creating one-off objects,

mandating the use of explicit message operators for sending messages to objects,

that look for methods by the name of the received message, as well as creating

"floating" methods and employing a runtime environment that is realized as a stack of at

least four directory objects being looked up on behalf of ooRexx programs, as

well as being able to execute objects in a multithreaded manner.”

[FLAT06-1 page 5-6]

As the quote points out ooRexx offers single and mutiple inheritances, classes, objects

and methods as well as messaging and polymorphism. It has included a set of very useful

classes arranged in a flat classification tree, for instance the “Array”, “Message”, “Stem” or

“String” class. The most important features of ooRexx are that it is a human orientated

language based on english, so many of the provided instructions are meaningful like

“SAY”, “REQUIRES” or “EXIT”. There are no strict rules about the formatting of the

sourcecode, like in other languages, and it is not case-sensitive. Another important feature

Page - 18

Flexible Word Processing Automation with OpenOffice.org

is that it makes use of typeless variables, so there is no strict type definition. Furthermore it

offers meaningful error messages and explanations when an error happens while

interpreting the sourcecode.

[FLAT06-1]

2.3.3 Syntax Overview
This paragraph provides a short introduction to the syntax of Object REXX, it should give

the user a better understanding to be capable of reading the sourcecode of the work.

There are two possible ways to write comments, the first is used to make a comment just

in one line, for example “-- word”. The second is used if an annotation takes more than one

line, at the start and the end there must be set a special character like /* word */. As

mentioned above ooRexx has no strict typing, this means that variables are defined only

by assigning a value of any type to it, for instance “a = 23”. The keyword “SAY” is

responsible for printing a value of any kind in the command line, like “SAY a” or “SAY

Hello”. A block in Object REXX is an instruction which includes a not defined number of

instructions, it starts with the keyword “DO” and ends with the keyword “END”. The IF

instruction is realised similary to other programming languages, IF condition THEN

instruction ELSE instruction. Loops are also realised in a very easy and common way like

this example:

i=0

DO WHILE i < 10

instruction

i = i + 2

END

Also the creation of arrays is very easy to fullfill with the ooRexx syntax:

Creation of an new array: array = .array~new

Inserting of values into the array: array[1] = value

Different to other programming languages Object REXX is using the “~” character as the

message operator, for example the creating of an object would look like this:

Page - 19

Flexible Word Processing Automation with OpenOffice.org

object~new(“name”)

There also exists the possibility to use the message creator to create cascaded messages

by inserting the “~” character two times. With the help of cascading it is possible to call

several methods at the same time like displayed beneath.

object~~method_1()~~method_2()

On the left side of the message operator stands the object where the message is sent to

and the right side represents the message which is transmitted to the object. If the

message is for example a method which includes arguments, then after the message

name round parenthesis are added that contain these arguments. When the message is

sent and the object has received it, it is looking for a matching method starting from the

class of the instantiated object searching every superclass until finally the root class, the

so called “Object” is reached. The searching is finished when the first found method is

called by the object or when the method can't be found.

Procedures can be created by using directives, like using the keyword ::ROUTINE or by

writing the name of the routine followed by one colon, for example procedure:. The

keyword CALL is needed to invoke procedures and also for the execution of built-in

functions.

Directives are very important components of ooRexx, they are defined by two colons “::”

and used for classes and their methods. It instructs the ooRexx interpreter to start them,

before the rest of the program is carried out. This is a very good way to assure that before

a program is executed all required resources are made available by the interpreter. A very

good example in the context of OpenOffice.org is the UNO interface which is implemented

by ::REQUIRES UNO.cls. This class file is a helper class of ooRexx that is responsible for

the automation of common steps. For instance it has the ability to sum up a set of method

calls to get a connection to OpenOffice.org and the component context service. At the time

of creation a method called “init”, which has the purpose to operate as a constructor, is

Page - 20

Flexible Word Processing Automation with OpenOffice.org

invoked. This means that every message which is sent to the “new” method is forwarded

to the constructor.

2.4 BSF4Rexx
BSF4Rexx is the “Bean Scripting Framework” for Object REXX, it was made at the

university of Essen by Prof. Flatscher and the student Peter Kalender. It is based on the

“Bean Scripting Framework” which is an open source project of IBM. BSF gives scripting

languages the possibility to operate within Java applications and to use on Java

components like objects and functions. It consists mainly of the BSFManager and the

BSFEngine.

 The “BSFManager” deals with all scripting execution engines that are running under

its control. It sustains the object registry which provides scripts access to Java

objects. With the use of this component Java applications are able to get access to

scripting services by creating an instance of the “BSFManager”.

 The “BSFEngine” offers an interface which has to be implemented for a language

that make use of BSF. The provided interfaces by “BSF4Rexx” are used to get a

connection between Java and scripting languages. The engine uses a common

interface for all supported scripting languages.

Since its introduction there were three versions of BSF4Rexx, the first one was the

“Essener version” which gave Java developers the possibility to use Object REXX as a

scripting language. The second version called “Augsburger version” from 2003 provides

programmers with the advantage of handling Java classes from Object REXX. The newest

version is the “Wiener version” which doesn't request strict typing and offers a lot of new

functions to automate OpenOffice.org. Figure 6 shows the architecture of the “Vienna

Version”, esspecially the communication between ooRexx and Java using the BSF.cls.

[FLAT06-2]

Page - 21

Flexible Word Processing Automation with OpenOffice.org

Two important modules of BSF4Rexx should be mentioned, one is the UNO.cls and the

other one the BSF.cls.

The UNO.cls class supports the UNO component model. It is responsible for the

communication with OpenOffice.org and it makes the automation of common steps with

the help of the BSF.cls much easier.

The BSF.cls file provides the bridge to access Java for example within a scripting

language like ooRexx. The public class BSF is the ooRexx proxy class responsible for the

representation of Java classes. A high number of the BSF4Rexx subfunctions can be

called through the public class BSF as class or instance methods, like bsf.createArray().

The initialitsation of the UNO.cls or the BSF.cls is achieved through using the “CALL” or

the “::REQUIRES” statement. The newest version of BSF4Rexx provide a lot of new

functions that make it possible to reduce the amount of code by the factor 3. Figure 7

Page - 22

Figure 6: Architecture of BSF4Rexx [FLAT06-2]

Flexible Word Processing Automation with OpenOffice.org

shows a code example without using BSF.cls and figure 8 an example which uses

BSF.cls. The comparison of this two code samples gives an idea how big the amount of

code reduction is.

[FLAT06-2]

2.5 Text Documents
Due to the fact that the programming part deals exclusively with the Writer application and

therefore with text documents this chapter gives an overview of the architecture of such

documents in OpenOffice.org. Furthermore it will give a description of special components

of the Writer application that have been used inside the program and that are important to

be mentioned from my point of view. This should give a better understanding of the

sourcecode explanations.

Page - 23

Figure 7: Interfacing Java without BSF.cls [FLAT06-2]

Figure 8: Interfacing Java with BSF.cls [FLAT06-2]

Flexible Word Processing Automation with OpenOffice.org

2.5.1 Overview
Developers of OpenOffice.org are working directly with the text document model, which

has a controller object that allows to manipulate the visual presentation of the text

document.

The controller serves two purposes, the first is to move through the text document via a

visible text cursor or changing the zoom. The second is to get information about the

current view status, like the current selection, page, total line count or page count. The

model generaly consists of five major areas, illustrated in figure 9.

The five architectural parts are “text”, “service manager”, “draw page”, “text content

Page - 24

Figure 9: Text Document Model [OPEN05]

Flexible Word Processing Automation with OpenOffice.org

suppliers” and “objects for styling and numbering”.

 Text

The main element of the Text Document Model is the Text, that consists of

character strings that are arranged in paragraphs and other possible text contents.

 Service Manager

The Service Manager is responsible for the creation of all text contents that are not

included into the Text area, for instance text tables, text frames or graphic objects.

The architecture of OpenOffice.org is designed to offer each document model its

own Service Manager, thats why this manager is different to the main Service

Manager. It is very important not to confound this two different forms of Service

Managers.

 Text Content

The text contents which are created by the Service Manager can be recalled by the

Text Content Supplier.

 DrawPage

The DrawPage lies above the text because it is a transparent layer with contents

that have the ability to change the underlying text. For example it has the ability to

force the text to wrap around parts of the DrawPage. The DrawPage is also able to

retrieve content of its layer which can't be done by the Text Content Supplier.

 Objects for Styling and Numbering

The last point are objects for styling and numbering, they are services used for

styling and structuring the text content.

[OPEN05]

Page - 25

Flexible Word Processing Automation with OpenOffice.org

An UML chart of the OpenOffice.org API that gives an overview of the

com.sun.star.text.TextDocument service and its interfaces is shown in figure 10. Additional

the relationship to the com.sun.star.document.OfficeDocument service is illustrated which

offers interfaces that every TextDocument must include. The whole chart shows the basic

obligatory elements of a TextDocument. This means that the TextDocument includes text,

it consits of a model with an URL and a controller, is searchable, refreshable, modifiable,

printable and storable.

[OPEN05]

Page - 26

Figure 10: TextDocument interfaces [OPEN05]

Flexible Word Processing Automation with OpenOffice.org

2.5.2 Handling Text Content
The com.sun.star.text.XText is the primary text content interface, this means that every

text content is implemented with the help of the XText interface by using its methods. “The

primary purpose of a text object is to contain text content, create text cursors to move

through text, insert text, and remove text.”

[PITO04 page 286]

Table 1 gives an overview of the set of methods offered by this interface, it has to be

pointed out that the first four method are offered through the XSimpleText interface and

only are available because their interface is extended by the Xtext interface.

Method Description
createTextCursor() Return a TextCursor service used to

traverse the text object.
createTextCursorByRange(XTextRange) Return a TextCursor that is located at the

specified TextRange.
insertString(XTextRange, String, boolean) Insert a string of characters into the text at

the specified text range.
insertControlCharacter(XTextRange, Short,
boolean)

Insert a control character, such as a
paragraph break or a hard space, into the
text.

insertTextContent(XTextRange,
XTextContent, boolean)

Insert text content sucha as a text table, text
frame, or text field.

removeTextContent(XTextContent) Remove the specified text content from the
text object.

Table 1: Methods offered by the XText interface [PITO04 page 286]

Another interface which is used to describe the position of objects within the text is also

very important for handling the content within the text. This interface is called

com.sun.star.text.XTextRange and with its help the position of objects are specified

through a text range that has a certain beginning and end. It is very important for the Xtext

interface to be able to insert or retrieve text content from a specified position of the text.

The included methods are displayed in table 2:

Page - 27

Flexible Word Processing Automation with OpenOffice.org

Method Description
getText() Return the Xtext interface that contains the

text range.
getStart() A text range has a start and end position.

The getStart() method returns a text range
that contains only the start position of this
text range.

getEnd() A text range has a start and end position.
The getEnd() method returns a text range
that contains only the end position of this
text range.

setString(String) The setString() method replaces all of the
text between the start and end positions
with the argumet string.

getString() Return a string that represents the text in
this text range.

Table 2: Methods offered by the XTextRange interface [PITO04 page 286]

2.5.3 Cursor
Cursors of a text document are used to access the content of the text, in OpenOffice.org

there exist two kind of cursors the ViewCursors and the TextCursors.

2.5.3.1 ViewCursor
These kind of cursor, as the name implies, are dealing with visible cursors within a text

document. In the work only the XtextViewCursor is used to retrieve information about the

position of text contents, to give a better overview all available forms are mentioned.

 XviewCursor – com.sun.star.view.XViewCursor

This interface provides the simplest view cursor which is only able to move up,

down, left and right within the text as well as tables.

 XTextViewCursor – com.sun.star.text.XTextViewCursor

The XtextViewCursor offers a cursor that is positioned in a view of a text document.

It is able to be set visible or hidden and retrieve its current position through the set

of methods that is offered.

Page - 28

Flexible Word Processing Automation with OpenOffice.org

 XLineCursor – com.sun.star.view.XLineCursor

The interface enables the visible cursor to move line by line throught the text.

 XPageCursor – com.sun.star.text.XPageCursor

The set of provided methods gives the cursor the opportunity to move between

pages.

 XScreenCursor – com.sun.star.view.XScreenCursor

This interface enables the cursor to move through the document by visible pages.

[PITO04]

2.5.3.2 TextCursor
The TextCursor is a main element which is used very often during the whole work for

accessing the content of the documents that are dealed with. It must be mentioned that in

contrast to the view cursors these type of cursors are only used to access the data but has

no information about its presentation. The service includes the interface XTextrange,

responsible for the accessing of the string content. Additionally there are many exported

interfaces, the most important in our case are the XTextCursor, XWordCursor,

XsentenceCursor and the XParagraphCursor interface.

 XTextCursor - com.sun.star.text.XTextCursor

The interface describes the position of an object within the text with the help of the

 XTextRange interface that specifies the position. Certain methods give the

possibility to move the Cursor character by character through the text.

 XWordCursor - com.sun.star.text.XWordCursor

The XwordCursor is similary to the XtextCursor interface, the difference is that the

methods given through this interface let the cursor move word by word.

Page - 29

Flexible Word Processing Automation with OpenOffice.org

 XSentenceCursor - com.sun.star.text.XSentenceCursor

This cursor interface is also equally to the two interfaces before in some respect,

with it the cursor is able to move from sentence to sentence with the help of several

methods.

 XParagraphCursor - com.sun.star.text.XParagraphCursor

The last cursor interface is used like the name indicates to move through

paragraphs and provide methods which can be used to fulfill this task.

[PITO04]

[OOAP06-1]

2.5.4 Loading documents
The loading of documents is achieved with the interface

com.sun.star.frame.XComponentLoader which is implemented by the Desktop service of

OpenOffice.org. This interface includes only one method the loadComponentFromURL()

which is used to load documents from a specified URL. When this method is called it gets

a sequence of com.sun.star.beans.PropertyValue. This sequence is send by a parameter

who is implementing the service com.sun.star.document.MediaDescriptor. The

MediaDescriptor is very important for the loading of documents because it specifies the

information from where a resource should be loaded and includes properties that are able

to specify the way documents should be loaded or saved. The usage of the

loadComponentURL() is returning a com.sun.star.lang.XComponent interface. For the

loading of empty documents there exists the parameter URL that is a parameter for the

loadComponentFromURL() which overrides all properties passed to the MediaDescriptor.

Figure 11 gives an overview of all available URL parameters.

Page - 30

Flexible Word Processing Automation with OpenOffice.org

2.5.5 Closing documents
As described before after loading a document there is the com.sun.star.lang.XComponent

interface available which is used to control UNO objects. This interface includes a method

called disposal() which is used to close the document. There exist also other methods and

even interfaces that are dealing with closing operation, for example the

com.sun.star.util.XCloseable interface which is used for frames and models.

[OPEN05]

2.5.6 Saving documents
After the loading of documents they are accessed using special interfaces typically for the

used application, in our case it would be the com.sun.star.text.XTextDocument interface.

This interface like all other office components is supporting the

com.sun.star.frame.XStorable interface. The Xstorable interface includes the store(),

storeAsURL() and storeToURL() method for saving documents. The store() method just

stores the file to the location where it was loaded from, the storeAsURL() saves the file to

the specified URL and makes the URL to the new location of the object. The storeToURL()

stores the file to an URL but doesn't change the location of the object. The last two

methods makes use of the MediaDescriptor for setting storing specifications.

[OPEN05]

Page - 31

Figure 11: URL parameters [OPEN05]

Flexible Word Processing Automation with OpenOffice.org

2.5.7 Printing documents
The printing functionality is a very common functionality and is supported by every

component within OpenOffice.org. For that reason text documents support the

com.sun.star.view.XPrintable interface that provides methods to modify the printer settings

and is able to start printing jobs. The methods for modifiying the printer is the getPrinter()

and the setPrinter() method. The printer is set with the help of the properties of the

com.sun.star.view.PrinterDescriptor interface. The print job is started by the method print().

[OPEN05]

2.5.8 Search&Replace of text content
The com.sun.star.util.XSearchable interface is supported by the writer model and is used

for searching the content with provided methods. First of all a SearchDescriptor is created

to be able to search the document, after that it is possible to set the searchstring with

methods of the XSearchDescriptor interface. Next the com.sun.star.util.XSearchDescriptor

is used in combination with the Xsearchable interface and enables through the two

methods getSearchString() and setSearchString the getting and setting of the string which

has to be searched for. Finally the search process is realised by the one of the find

methods, findAll(), findFirst() or findNext().

The interface com.sun.star.util.XReplaceable is used for the replacing of certain strings

included in the text. It includes the methods createReplaceDescriptor() and replaceAll()

and its functionality is similary to the one of the Xsearchable. The interface provides the

possibility to search after a string and replace it with a specified string. Therefore it can use

the methods of the XSearchDescriptor to set for example a SearchString. Similary to the

XSearchDescriptor interface the com.sun.star.util.XReplaceDescriptor provides methods

to set and get the ReplaceDescriptor, which are called getReplaceString() and

setReplaceString(). After setting of the search and replace descriptor the process is

started by calling the replaceAll() method.

[OPEN05]

Page - 32

Flexible Word Processing Automation with OpenOffice.org

2.5.9 Control of Shapes
A main part of the program deals with the insertion of forms in the text document, to be

able to do this the control of the shape which is going to be inserted is needed. This is

achieved by using the services Shape and Controlshape. ControlShape services are tied

to control models and they are able to insert form control models to a document. The

service com.sun.star.drawing.ControlShape includes the service Shape which specifies all

characteristics of Shapes. The exported interface XControlShape is needed to get access

to the controls model. It includes the method getControl() which returns the control model

of the current shape, as well as the setControl() method that is setting the control model

for a shape. The XControlShape interface can also make use of the methods of the

XShape interface and therefore set the characteristics of the shape like size or position

with the methods setsize() and setposition() of the XShape interface for instance.

[OPEN05]

2.5.10 Dispatch Process
This Dispatch framework is in generaly used for the communication between an office

component and an user interface by handling command executions and the provision of

attribute information from office components. All interactions of user are commands which

are executable and can be called within the framework using the command URL from the

struct com.sun.star.util.URL. Such URLs are string values that are following a certain

scheme, like file: or http:. In our case the command for switching a button of the control

model of a form shape is assigned to a URL. The URL is handled by the

XDispatchProvider, before this can be done the URL has to be parsed with the help of the

com.sun.star.util.URLTransformer service. After this task the URL is syntactly complete

and ready to be executed. The method queryDispatch() of the XDispatchProvider helps to

get the dispatch object for commands by looking for executable commands under the

specified URL. The interface also implements com.sun.star.frame.XDispatch which

includes the dispatch() method that is finally used to dispatch the certain URL and in our

case is switching the button.

[OPEN05]

Page - 33

Flexible Word Processing Automation with OpenOffice.org

2.6 Software Requirements
The macro was built to be executeable under Windows and Linux. Concerning the

software requirements it needs a Java, OpenOffice.org, Object REXX and BSF4Rexx to

be installed on the system. The macro was tested under the current version 6 of Java,

version 2.1 of OpenOffice.org, version 3.1.1 of ooRexx and the “Wiener” version of

BSF4Rexx. It was also tested with some of the former versions and should be backwardly

compatible. All of the mentioned applications are available for Windows and Linux. One

important thing to do when installing is to make sure that the classpath and the pathes are

set corecctly.

2.6.1 Java
The current version of Java is at the moment in december 2006 version 6.0 and can be

downloaded for free on the official webpage http://java.sun.com. Normaly it isn't needed to

set a classpath or a path to the directory but if there are any errors occuring concerning

Java it is recommended to set them. Insert the classpath for the main directory of Java and

the path to the Java Virtual Machine.

2.6.2 OpenOffice.org
The office suite is downloadable for free on the offical website http://www.openoffice.org,

the current version in december 2006 which was used for the automation is

OpenOffice.org 2.1. One important thing which has to be done after the installation before

it is possible to automate OpenOffice.org via ooRexx is to install the OpenOffice.org

support of BSF4Rexx and to set the required classpathes to the required “JAR” files of

OpenOffice.org. The classpath can be set manual or by executing the

setEnvironment4OOo of BSF4Rexx and then copying the output into the classpath of the

system.

Page - 34

http://www.openoffice.org/
http://java.sun.com/

Flexible Word Processing Automation with OpenOffice.org

2.6.3 Object Rexx
Since Object Rexx has become open source it is freely available on its webpage

http://www.oorexx.org. The current version is 3.1.1 and there should be no need of setting

classpathes like in Java. However if there are any problems set classpathes for the main

directory of Object Rexx and the OODialog directory within the main directory.

2.6.4 BSF4Rexx
Because of the reason that the versions of BSF4Rexx are changing frequently, it is

advised to be very carefully when choosing the right version. The current version can be

downloaded under the following url http://wi.wu-wien.ac.at/rgf/rexx/bsf4rexx/current/. There

you get a directory with different files including the installation files, the sourcecode and

additional reading material. Download the BSF4Rexx_Install.zip file unzip the archiv and

follow the instructions in the two textfiles readmeBSF4Rexx.txt and readmeOOo.txt very

carefully to install BSF4Rexx correctly.

When all of the above software installations are completed and the test scripts of

BSF4Rexx are executeable without any error the system is ready to execute the macro

script.

Page - 35

http://wi.wu-wien.ac.at/rgf/rexx/bsf4rexx/current/
http://www.oorexx.org/

Flexible Word Processing Automation with OpenOffice.org

3 Realisation
The target of the project was to deliver a macro script that is able to handle templates. Due

to the reason that all used technonlogies for the solution are available under windows and

under linux, the script is able to work on both systems, only the file pathes within the script

have to be changed.

3.1 Overview
The developed solution works as follows: The user gets a graphical interface using Java

Swing to control the macro. This is needed because at the beginning of the macro the user

is able to choose between creating a new document with the latest template or to load a

historical one.

The first case is activated when the user chooses the creation of a new document. In this

case the script searches for the latest template within a specified directory, opens the

template, searches for special keywords that include the information at which position to

set the textboxes. After that a textsection with content protection is inserted to protect the

document against any changes of the user excepted the content of the textboxes. After the

creation of the new document the macro stops and creates another graphic interface that

informs the user that the macro is in holding position. The user is now able to insert the

content into the document. After the finalisation of the input the user can reactivate the

macro by pressing a button which is provided by the graphic interface. The macro saves

the name of the template and the inserted content of the textboxes to a new Writer file,

than it sets the borders of the textboxes invisible, exports the document to PDF and print it

to the standard printer of the workstation. After all of these steps the creation of the new

document is finished and the user gets a notification.

The second case that can be chosen is used for loading historical documents and to

merge them, so that the user is able to use them. When the user is pressing the historical

button a new graphic interface is opened which gives an overview of all existing

documents. The user has to choose the needed document to open it by pressing the

button beside the name of the document. The script opens the content file and searches

Page - 36

Flexible Word Processing Automation with OpenOffice.org

for the name of the template and the content. The final step is to open the template, to

insert the textboxes and the content so that it is possible to work with the document.

The program starts as mentioned before with a Java Swing JWindow that gives the user

the option to choose between two possibilities which were described before. The rest of

the script consists of routines which are called within the program to get a better control of

the work flow and to get a structur into the sourcecode. The used routines are:

 Routine main_new: It is responsible for the opening of the current template, for

the preparing of the document, as well as for the saving, exporting and printing.

 Routine main_old: This routine is used for the retrieving of a historical document,

esspecially for the assembling of the content with the right template.

 Routine state_window: The state window is used for turning the macro into

holding position, so that the user has time to insert the content to the document.

The JWindow also includes a continue button which is used to finish the program

and for closing the JWindow.

 Routine switch_design_mode: It is needed for the switching of the design mode of

the form control from design to live mode, so that the form can't be changed any

longer.

 Routine textsection: The textsection as the name indicates creates a protected

textsection across the whole document to protect it againt changes from the user.

 Routine create_form: This routine is used for creating and intializing a shape for

the document and to be able to insert textfiels.

Page - 37

Flexible Word Processing Automation with OpenOffice.org

3.2 Sourcecode Documentation
This part of the work gives a detailed documentation of the sourcecode as well as

explanations and the provision of background information.

3.2.1 Initialisation
The programm makes use of many Java classes to provide the user a graphical interface

to control the macro, which is shown in figure 12.

Therefore at the beginning of the program all of the needed Java classes are imported with

the help of the bsf.import() class method of BSF, illustrated below in figure 13. In the first

part of the script the create_gui routine is called and all of the needed classes are loaded

to be available at the beginning of the script, with the help of the ::Requires keyword. The

script makes use of the BSF.cls , the UNO.cls and the RXREGEXP.cls support. The rest of

the script is handeled with routines that are called within the main part starting out from the

first JWindow.

Page - 38

Figure 12: Main menu template handling tool

Flexible Word Processing Automation with OpenOffice.org

-- Import of all needed Java classes
.bsf~bsf.import("java.awt.GridLayout","GridLayout")
.bsf~bsf.import("java.awt.GridBagLayout","GridBagLayout")
.bsf~bsf.import("java.awt.Toolkit","Toolkit")
.bsf~bsf.import("java.awt.ScrollPane","ScrollPane")
.bsf~bsf.import("java.awt.FlowLayout","FlowLayout")
.bsf~bsf.import("java.awt.GraphicsEnvironment", "GraphicsEnvironment")
.bsf~bsf.import("javax.swing.JFrame","JFrame")
.bsf~bsf.import("javax.swing.JLabel","JLabel")
.bsf~bsf.import("javax.swing.JRadioButton","JRadio")
.bsf~bsf.import("javax.swing.ImageIcon","Icon")
.bsf~bsf.import("javax.swing.JWindow","JWindow")
.bsf~bsf.import("javax.swing.JPanel","JPanel")
.bsf~bsf.import("javax.swing.JButton","JButton")
.bsf~bsf.import("javax.swing.JOptionPane", "JOptionPane")
.bsf~bsf.import("javax.swing.border.BevelBorder", "BevelBorder")
.bsf~bsf.import("javax.swing.border.EtchedBorder", "EtchedBorder")

Call create_gui

::Requires BSF.CLS -- Make oo-like BSF4Rexx support available
::Requires UNO.CLS -- Get UNO support
::Requires RXREGEXP.CLS -- Get the support of regular expressions
::Routine makeUrl -- operating system independent
Return ConvertToURL(stream(arg(1), "c", "query exists"))
Exit

Figure 13: Code Snippet - Java classes import

3.2.2 Routine create_gui
The first routine of the script deals with the creation of a Java swing JWindow which allows

the user to choose between the creation of a new document and the loading of a historical

document. The JWindow is filled with JPanels that include JLabels with text and

JRadiobuttons. The user can make a decision by clicking one of the JButtons.

The code part in figure 14 shows the creation of the Java objects and the setting of the

Layout of the JLabels, all accomplished using Java methods. The Java objects are created

with the function new(), the layout is set with the setLayout() and the objects are added

with the add() method.

Page - 39

Flexible Word Processing Automation with OpenOffice.org

::Routine create_gui
-- Create a java swing menu with radiobuttons
-- Create java swing objects
label = .JLabel~new("BITTE TREFFEN SIE EINE AUSWAHL:");
label2 = .JLabel~new("--")
label3 = .JLabel~new("Klicken Sie 'AKTUELL' zum Erstellen eines neuen Dokumentes");
label4 = .JLabel~new("Klicken Sie 'HISTORISCH' zum Laden eines alten Dokumentes");
window = .JWindow~new();
labelp = .JPanel~new();
buttonp1 = .JPanel~new();
jbutton1 = .JButton~new("AKTUELL");
jbutton2 = .JButton~new("HISTORISCH");
jbutton3 = .JButton~new("ABBRECHEN");
buttonp2 = .JPanel~new();
bevelborder = .BevelBorder~new(0)
-- Set the Layout and add objects to jpanels
labelp~setLayout(.FlowLayout~new())
labelp~~add(label)~~add(label2)~~add(label3)~~add(label4)
buttonp1~setLayout(.FlowLayout~new())
buttonp1~~add(jbutton1)~~add(jbutton2)
buttonp2~setLayout(.FlowLayout~new())
buttonp2~~add(jbutton3)

Figure 14: Code Snippet - Routine create_gui

The next task is to set the location of the JWindow according to different screen

resolutions that the graphic interface adapts automatically to different screen settings,

shown in figure 15. This is accomplished with the use of the Java Toolkit class that

includes the method getScreenSize() which returns a dimension object that includes the

current screen resolution in pixels. The access to the default toolkit of the superclass is

achieved through the method getDefaultToolkit(). The width and height values of the object

are retrieved calling width() and height(). They are used to calculate the exact centered

position of the JWindow on the screen. The size of the JWindow is also fixed to a minimum

level and the possibility to rise if a higher screen resolution is used. This is accomblished

by fixing the variable size to the screen resolution.

The contentPane for the window is retrieved by the method getContentPane() of the

jwindow class, this step allows now the adding of JLapels and the setting of the Layout.

Furthermore the location, size and visibility is set with the methods setLocation(),

setSize() and setVisible(). The window should be always on top this is achieved by using

the method setAlwaysOnTop().

Page - 40

Flexible Word Processing Automation with OpenOffice.org

-- Set the position of the jwindow to the center of the screen
toolkit=.Toolkit~getDefaultToolkit()
screenSize = Toolkit~getScreenSize()
wx = screenSize~width()/3.2
wy = screenSize~height()/4
Parse var wx wx '.'
Parse var wy wy '.'
If wx<400 then wx=400
If wy<256 then wy=256
w_x = wx/2
w_y = wy/2
Parse var w_x w_x'.'
Parse var w_y w_y'.'
scx = screenSize~width()/2-w_x
scy = screenSize~height()/2-w_y

-- Set the layout of the jwindow and add the jpanels
window~getContentPane()~setLayout(.GridLayout~new(3,1));
window~getContentPane()~setBorder(bevelborder);
window~getContentPane()~~add(labelp)~~add(buttonp1)~~add(buttonp2);
-- Set the location, size and visibility of the jwindow
window~~setLocation(scx,scy)~~setSize(wx,wy)~~setVisible(.true)-
~~setAlwaysOnTop(.true)

Figure 15: Code Snippet - Set JWindow position

After the creation of the JWindow two eventlistener are added, using the

bsf.addEventListener() instance method of BSF, to the JButtons to execute actions by

clicking them. A neverending loop is looking for any messages from the eventlistener and

executes them as a rexx programm. The actions are advised to call procedures

responsible for the further progression of the script, which can be seen in figure 16.
-- Add eventlisteners to the jbuttons
jbutton1~bsf.addEventListener("action", "", "Call setnew")
jbutton2~bsf.addEventListener("action", "", "Call setold")
jbutton3~bsf.addEventListener("action", "", "Exit")

/* A never ending loop which execute the messages from the
 eventhandler as a rexx program*/
Do forever
 event = bsf("pollEventText")
 interpret event
End
Exit

Figure 16: Code Snippet - Eventlistener

The first procedure is called setnew and is responsible for the retrieving of the latest

template and the creation of a new document based on it. The code to this procedure is

shown in figure 17. To get the latest template the SysFileTree function of the REXX

Page - 41

Flexible Word Processing Automation with OpenOffice.org

Utilities (RexxUtil) Dynamic Link Library package of ooRexx is used to get an array of the

system file tree of a specified destination. The content of the array is parsed to extract the

date information of the template which is included in each filename.

If the date is included at the beginning of the filename the last position of the array

includes the latest template because the function SysFileTree is reading out the filenames

as they are ordered in the file system. But if thats not the case a “Do” loop gets the actual

date by the comparison of all available objects inside of the array and saving the array

position of the latest template to the variable f.

The filename of the current template which is retrieved of the array is saved to the local

environment, it would look like this example “.local~filename = value”. Through this it

becomes a constant value which is available in the whole program like a global variable. It

can be retrieved by the environment symbol which starts with a point followed by the name

of the variable, in our case it would look like this: “.filename”. After that the main routine for

the creation of a new document is called by the ooRexx Call keyword.
-- Procedure which gets the latest template and opens it
-- It is called from the eventhandler by pressing the jbutton "newb"
setnew:
 window~dispose() -- Close the open jwindow
 CALL SysFileTree "C:_templates*.*", "file", "O"
 -- Creation of a stem(="array") of the system file tree of the specified folder

 Do i=1 TO file.0
 PARSE VAR file.i prefix.i =15 filename.i =23 subfix.i
 -- Extraction of the date information out of the full path of the file
 End
 i=2
 e=1
 f=0

-- Comparison of the Dates to find out the latest one
 Do Until i > file.0
 If filename.e>filename.i Then e=e-1;
 If filename.e>filename.i Then f=e;
 Else f=i;
 e=e+1
 i=i+1
 End

.local~filename = filename.f""subfix.f
 Call main_new
Exit

Figure 17: Code Snippet - Procedure setnew

Page - 42

Flexible Word Processing Automation with OpenOffice.org

The second procedure which is activated by pressing the historic JRadiobutton is used for

loading a historical document. Before the document is loaded another JWindow is created

that also uses the SysFileTree function to save all historical documents within a stem,

shown in figure 18.

The script generates a JRadiobutton for each document which is inserted into a

ScrollPanel with the help of a loop shown in figure 19. The JWindow is designed the same

way as the first JWindow except the use of a ScrollPanel which is needed because the

number of historical documents is unknown and therefore the size of the panel can't be

fixed. Every JRadiobutton of a historical document includes, like before, an eventlistener

but in this case there are two of them. One is used to set a variable to tell the eventlistener

that the button was pressed and the other one saves the number of the jbutton within the

loop to a variable so that it is possible to load the right document.

At the end a JPanel with Text and the ScrollPanel is added to the JWindow and the

window is initialised the same way as the first one before. An old document is loaded by

activating one JRadioButton and than pressing the “OK” button, which is executed by the

use of the open procedure. The second JButton called “ABBRECHEN” is used to call the

create_gui routine and simultaneously closing the current JWindow, so that the user can

move back to the main menu.

Page - 43

Figure 18: Historical document menu

Flexible Word Processing Automation with OpenOffice.org

/* Procedure which opens a new jwindow with a scrollpanel to chose an already created document
 It is called from the eventhandler by pressing the jbutton "oldb" */
setold:
 window~dispose() -- Close the open jwindow
 CALL SysFileTree "C:_old*.*", "file", "O" -- Creation of a
 -- stem(="array") of the system file tree of the specified folder

 Do i=1 To file.0
 PARSE VAR file.i prefix.i =9 filename.i -- Extraction of the date
 -- information out of the full path of the file
 End
 -- Create java Swing objects
 label = .JLabel~new("ÜBERSICHT HISTORISCHER DOKUMENTE");
 label2 = .JLabel~new("--");
 label3 = .JLabel~new("Bitte wählen Sie ein historisches Dokument aus!");
 window = .JWindow~new();
 scrollp = .ScrollPane~new()
 jpanel = .JPanel~new()
 jpanel2 = .JPanel~new()
 mainp = .JPanel~new()
 jbutton1 = .JButton~new("OK");
 jbutton2 = .JButton~new("ABBRECHEN");
 buttonp = .JPanel~new();
 bevelborder = .BevelBorder~new(0)
 -- Set the Layout and add objects to the jpanels

 Do i=1 To file.0
 jpanel~setLayout(.GridLayout~new(i,2));
 jbutton.i = .JRadio~new(filename.i);
 jpanel~~add(jbutton.i)
 jbutton.i~bsf.addEventListener("action", "", t"=".true)
 jbutton.i~bsf.addEventListener("action", "", f"="i)
 End
 jpanel2~setLayout(.FlowLayout~new());
 jpanel2~~add(label)~~add(label2)~~add(label3)
 scrollp~~add(jpanel) -- Add the jpanel to the scrollpanel
 buttonp~setLayout(.FlowLayout~new())
 buttonp~~add(jbutton1)~~add(jbutton2)
 mainp~setLayout(.GridLayout~new())
 mainp~add(jpanel2)~add(buttonp)

 -- Set the Gridlayout for the jwindow and add the jpanel and the scrollpanel
 window~getContentPane()~setLayout(.GridLayout~new(2,1));
 window~getContentPane()~setBorder(bevelborder);
 window~getContentPane()~~add(scrollp)~~add(mainp);

Figure 19: Code Snippet - Procedure setold

Page - 44

Flexible Word Processing Automation with OpenOffice.org

The next code snipped of figure 20 shows the calculation of the position of the jwindow like
the first one before.
 -- Get the centered position of the jwindow depending on the screenresolution
 toolkit=.Toolkit~getDefaultToolkit()
 screenSize=Toolkit~getScreenSize()

 wx = screenSize~width()/3.4
 wy = screenSize~height()/3.4
 Parse var wx wx '.'
 Parse var wy wy '.'
 If wx<376 Then wx=376
 If wy<301 Then wy=301
 w_x = wx/2
 w_y = wy/2
 Parse var w_x w_x'.'
 Parse var w_y w_y'.'
 scx = screenSize~width()/2-w_x
 scy = screenSize~height()/2-w_y
 -- Set the location and size of the jwindow
 window~~setLocation(scx,scy)~~setSize(wx,wy)~~setVisible(.true)~~setAlwaysOnTop(.true)
 jbutton1~bsf.addEventListener("action", "", "Call open")
 jbutton2~bsf.addEventListener("action", "", "Call create_gui")
 jbutton2~bsf.addEventListener("action", "", "window~dispose()")
 /* A never ending loop which execute the messages from the eventhandler
 as a rexx program*/
 Do Forever
 event = bsf("pollEventText")
 interpret event
 Call set
 End
Exit

Figure 20: Code Snippet - Get position and set eventlistener

Procedure set is loaded by pressing a JRadioButton and is responsible for disabling all

other JRadioButtons which may be selected so that only the current one is activated,

shown in the code snippet of figure 21. This is achived using a “Do” loop and an “If”

instruction. The procedure open is responsible for saving the filename of the historical

document to a global variable and to execute the routine main_old which is the main

routine for the loading of historical documents. At the end the shutdown procedure is used

for closing the window by pressing the “ABBRECHEN” button within the JWindow.

Page - 45

Flexible Word Processing Automation with OpenOffice.org

set:

Do e=1 To file.0
 if jbutton.e <> jbutton.f Then jbutton.e~setSelected(.false);
End
return
Exit
open:
 window~dispose() -- Close the open jwindow
 .local~filename = filename.f
 if t=.true Then Call main_old
 Else Call setold -- Start routine main_old
Exit

shutdown:
--window~dispose() -- Close the open jwindow
Exit

Figure 21: Code Snippet - Procedure set, open and shutdown

3.2.3 Routine main_new
The code snippet of figure 22 opens the template with the filename of the global variable

which was retrieved before from the filesystem. First of all the Desktop service object of

UNO is retrieved, with this object it is possible to get the XComponentLoader interface

through the XDesktop interface. An URL is created with the makeUrl() method to set the

complete path of the file. While automating OpenOffice.org arrays are used to set

properties, therefore in this case an array is created and the new property value “Hidden”

is inserted and set to true. The document is now opened in hidden mode with the use of

the loadComponentFromURL() method of the XComponentLoader interface, so that the

user gets no notice of any interaction.

After the creation of the document, the main interface is initialised, the access to the text is

created by the getText() method. The model of the textdocument is retrieved by the

initalisation of the XModel interface to be able to get a controller of the current model with

the getCurrentController() method.

Page - 46

Flexible Word Processing Automation with OpenOffice.org

::Routine main_new
-- Main routine that opens a new template, save the content, export it to pdf and print it

 -- Open the newest template file
 oDesktop = UNO.createDesktop() -- Get the UNO Desktop service object
 xComponentLoader = oDesktop~XDesktop~XComponentLoader -- Get the XcomponentLoader interface

 -- Open the document with the property value hidden
 url = makeUrl("C:_templates\".local~filename) -- Get the template
 props = bsf.createArray(.UNO~propertyValue,1)
 props[1] = .UNO~PropertyValue~new
 props[1]~Name = "Hidden"
 props[1]~Value = box("boolean", .true)
 xWriterComponent = xComponentLoader~loadComponentFromURL(url, "_blank", 0, props)
 -- Load the document with specified properties

 xWriterDocument = xWriterComponent~XTextDocument -- Get the main interface
 xText = xWriterDocument~getText() -- Get the text of the document
 xModel = xWriterDocument~XModel -- Get the model from the textdocument
 xController = xModel~getCurrentController() -- Get the controller for the model

Figure 22: Code Snippet - Routine main_new

The controller is now needed to create a TextViewCursor which is used to move within the

document, illustrated in figure 23. Additionally the Xsearchable interface is used with the

included methodes createSearchDescriptor(),setSearchString(),findFirst() and findNext()

among other ones for searching the document for special keywords. The search is

supported through a “Do While” loop which continues the searching while keywords can be

retrieved. The end of the loop is reached when a .nil object appears which is equivalent

with the nonexistence of an object. The location of every found searchstring is saved to a

stem variable.
-- With the help of the controller and XTextViewCursorSupplier we get the TextViewCursor
xViewCursorSupplier=xController~XTextViewCursorSupplier
xViewCursor = XViewCursorSupplier~getViewCursor
-- The XSearchable Interface gives the textdocument the possibility to search the content
xSearchabel = xWriterDocument~XSearchable
xSearchDescriptor = xSearchabel~createSearchDescriptor()
xSearchDescriptor~setSearchString("insert") -- Set the search string for the searchdescriptor
i=1
xFound = xSearchabel~findFirst(xSearchDescriptor) -- Find the first with the searchdescriptor
matching content
xFound.i = xFound
-- Loop which is searching for the searchstring until all matching strings are found
-- It saves the found strings to a stem (=array) variable
Do While xfound <> .nil
 .local~i=i
 i=i+1
 xFound = xSearchabel~findNext(xFound, xSearchDescriptor)
 xFound.i = xFound
End
i=i-1

Figure 23: Code Snippet - Interface initialisation

Page - 47

Flexible Word Processing Automation with OpenOffice.org

The next loop, displayed in figure 24, gets the information which is written after the

searchstring, it is used to set the size, font and other aspects of the textfields which will be

inserted. This gives the user of the template handling tool the possibility to change every

aspect of the textfield without being forced to change the code of the macro script. For the

retrieving of the information a TextCursor, a WordCursor, a SentenceCursor and a

TextViewCursor is needed. First of all the found object of the Xsearchable interface

initalises a XtextRange interface and gets the interface of the text in which the text position

is stored with the getText() method. To get the position of the beginning of the retrieved

TextRange the getStart() method is used. Now it is possible to create a TextCursor at the

position of the found keyword with the help of the method createTextCursorByRange().

After that the TextViewCursor is moved to the position of the TextCursor and a

WordCursor is created.

The Word Cursor is now used to jump from word to word by the method gotonextWord()

and saves the information to variables of a stem using the two methods gotoendofWord(),

used for marking the word, and getString() to get the string content. A SentenceCursor is

needed because there is also information that is consisting of more than just one word, like

the font. The procedure of retrieving the sentence is the same as getting a word out of the

content, the only difference is that the method gotoendofSentence() is used to mark the

sentence.

An “If” instruction saves the number of the textfield which contains the so called

“Geschäftsnummer” to a global variable. The number is needed later on for the saving of

the document because the name partial consists of that value. Finally the method

getPosition() of the TextViewCursor is used for getting the exact position of the keyword

within the template. This method returns a dimension object which includes the x and y

coordinates of the position starting out from the upper left corner of the document. At the

end of the searching process the document is closed.

Page - 48

Flexible Word Processing Automation with OpenOffice.org

-- Loop which gets the content that is positioned after the searchstring
 Do While i > 0
 -- Get the textrange of each searchstring
 xmodel = xFound.i~XTextRange~getText()
 xposition = xFound.i~XTextRange~getStart()
 xTextCursor = xmodel~createTextCursorByRange(xposition)
 xViewCursor~gotoRange(xTextCursor,.false)
 xWordCursor = xTextCursor~XWordCursor()
 xWordCursor~gotoendofWord(.true)
 xWordCursor~gotonextWord(.false)
 xWordCursor~gotoendofWord(.true)
 width.i=xWordCursor~getString() -- Get the width of the textbox
 xWordCursor~gotonextWord(.false)
 xWordCursor~gotoendofWord(.true)
 height.i=xWordCursor~getString() -- Get the height of the textbox
 xWordCursor~gotonextWord(.false)
 xWordCursor~gotoendofWord(.true)
 text.i=xWordCursor~getString() -- Get the text of the textbox
 xWordCursor~gotonextWord(.false)
 xWordCursor~gotoendofWord(.true)
 f_height.i=xWordCursor~getString() -- Get the font height of the textbox
 xWordCursor~gotonextWord(.false)
 xSentenceCursor = xWordCursor~XSentenceCursor()
 xSentenceCursor~gotoendofSentence(.true)
 font.i=xSentenceCursor~getString() -- Get the font of the textbox
 if text.i = "Geschäftsnummer" then .local~number=i
 f.i=xViewCursor~getPosition() -- Get the coordinates of the searchstring
 i=i-1
 End
 xWriterComponent~dispose()

Figure 24: Code Snippet – Loop for content extraction

After the previous steps the exact position of the document and the description of the

textfields are retrieved. So the next big step is to create a new document which is based

on the template and includes the textfields at the right position with the right formating as

demonstrated in figure 25.

Page - 49

Flexible Word Processing Automation with OpenOffice.org

First the XContext object is retrieved which is needed for getting the

XMultiComponentFactory by the method getServiceManager(). The new document is

created with the help of an URL, which describes the resource that should be loaded,

which can be seen in figure 26. In our case we need an empty Writer component, the

specified URL for it looks like this: "private:factory/swriter". In this case the method

“loadComponentFromURL()” of the XcomponentLoader interface includes no properties

because the new document need no specifications, which is realised with the setting

“.UNO~noProps”. The next step is to get the interface to the document as well as the

service manager. All of the created objects are saved as “.local” variables because they

will be needed also outside of the routine.

Page - 50

Figure 25: Sample document with inserted forms

Flexible Word Processing Automation with OpenOffice.org

 -- Open a new document to insert forms and content
 xContext = UNO.connect() -- Connect to the server and retrieve the XContext object
 xMCF = xContext~getServiceManager -- Get the XMultiComponentFactory
 oDesktop = UNO.createDesktop() -- Create an UNO Desktop service object
 xComponentLoader = oDesktop~XDesktop~XComponentLoader -- Get the componentLoader interface
 from the desktop object

 -- create a new Writer document
 url = "private:factory/swriter"
 xWriterComponent = xComponentLoader~loadComponentFromURL(-
 url, "_blank", 0, .UNO~noProps)
 xWriterDocument = xWriterComponent~XTextDocument
 xText = xWriterDocument~getText()
 xServiceManager = xWriterDocument~XMultiServiceFactory -- Get the service manager of the
 textdocument

 /* Save objects that are often used in the program as '.local' variables.
 With this they can be accessed like global variables in the program. */
 .local~Context = xContext
 .local~MCF = xMCF
 .local~ServiceManager = xServiceManager
 .local~WriterComponent = xWriterComponent
 .local~Text = xText

Figure 26: Code Snippet - New document creation

The next loop of figure 27 is used for the creation of the textfields, it runs while the variable

i, which is the number of the found keywords, is bigger than zero. For the creation of the

textfields the routine create_form is used which will be described in detail later on. The

found parameters beside the keywords are assigned to each textfield with the help of this

routine. For the description of the font a FontDescriptor has to be created using

com.sun.star.awt.FontDescriptor. This descriptor includes structs that can be set with the

message operator “~” of ooRexx like variables are initiated.

After the loop is finished the program creates a TextCursor which is saved as a “.local”

variable. With the use of the XDocumentInsertable and the insertDocumentFromURL()

method the content of the used template is added to the new document. The model and

the controller of the document are retrieved to be able to create a TextViewCursor who as

well is assigned to a “.local” variable.

Page - 51

Flexible Word Processing Automation with OpenOffice.org

 i = .i
 /* Loop that creates textboxes at the position of the searchstrings
 with the specified properties out of the content of the template.*/
 Do While i>0
 textbox.i = create_form("TextField", width.i, height.i, f.i) -- Create a textbox
 textbox.i~setPropertyValue("Text", text.i) -- Assign text to the textbox
 textbox.i~setPropertyValue("MultiLine", box("boolean", .true)) -- Set multiline
 -- Create a fontdescriptor
 FontDescriptor = .bsf~new("com.sun.star.awt.FontDescriptor")
 FontDescriptor~Height = f_height.i
 FontDescriptor~Name = font.i
 textbox.i~setPropertyValue("FontDescriptor", FontDescriptor) -- Assign the
 fontdescriptor to control the font
 i=i-1
 End

 xTextCursor = xText~createTextCursor() -- Create a TextCursor within the document
 .local~TextCursor = xTextCursor
 xTextCursor~XDocumentInsertable~insertDocumentFromURL(-
 "file:///C:/_templates/".local~filename,.UNO~noProps)
 xModel = xWriterDocument~XModel -- Get model from the textcomponent
 xController = xModel~getCurrentController() -- Get the controller of the textdocument
 -- Get the XViewCursor with the help of the controller and the XTextViewCursorSupplier
 xViewCursorSupplier = xController~XTextViewCursorSupplier
 xViewCursor = XViewCursorSupplier~getViewCursor()
 .local~ViewCursor = xViewCursor

Figure 27: Code Snippet - Textfield insertion

After the loop is finished the program creates a TextCursor which is saved as a “.local”

variable, shown in figure 28. With the use of the XDocumentInsertable and the

insertDocumentFromURL() method the content of the used template is added to the new

document. The model and the controller of the document are retrieved to be able to create

a TextViewCursor who as well is assigned to a “.local” variable. Due to the reason that the

keywords are still inside the textdocument the next loop is responsible for searching and

deleting them with the use of the XReplaceable interface. The interface makes use of the

createReplaceDescriptor() method to create the replace descriptor, and the

setSearchString(), setReplaceString() and replaceAll() method to replace all matchings.

With the help of the CALL function the routines switch_design_mode, textsection and

state_window are called. The switch_design_mode routine switches the shape control

from design to live mode, the routine textsection creates a textsection and the routine

state_window initialises a jwindow with information for the user. They will be discussed in

detail later. At the end of this code part an “If” instruction checks if the “ABBRECHEN”

button of the state_window JWindow was pressed and aborts if thats the case.

Page - 52

Flexible Word Processing Automation with OpenOffice.org

 xTextCursor = xText~createTextCursor() -- Create a TextCursor within the document
 .local~TextCursor = xTextCursor
 xTextCursor~XDocumentInsertable~insertDocumentFromURL(-
 "file:///C:/_templates/".local~filename,.UNO~noProps)
 xModel = xWriterDocument~XModel -- Get model from the textcomponent
 xController = xModel~getCurrentController() -- Get the controller of the textdocument
 -- Get the XViewCursor with the help of the controller and the XTextViewCursorSupplier
 xViewCursorSupplier = xController~XTextViewCursorSupplier
 xViewCursor = XViewCursorSupplier~getViewCursor()
 .local~ViewCursor = xViewCursor
 i=.i
 -- Loop which replaces all keywords of the template used for inserting textboxes
 Do While i > 0
 xReplaceable = xWriterDocument~XReplaceable
 -- Create the replacedescriptor with the XReplaceable interface
 xReplaceDescriptor = xReplaceable~createReplaceDescriptor()
 xReplaceDescriptor~~setSearchString("insert "width.i" "height.i" "text.i"
 "f_height.i" "font.i)~~setReplaceString("") -- Set search and replace string
 xReplaceable~replaceAll(xReplaceDescriptor) -- Replace all strings matching the
 searchstring
 i=i-1
 End

Call switch_design_mode -- Switch the design mode from design to live mode
Call textsection -- Insert a protected textsection
Call state_window -- Open the state info window of the macro

If .c<>true Then Call main_finish

Exit

Figure 28: Code Snippet - Content replace

After the initialising of the state_window routine the macro is in holding position until the

user presses the “next” JButton inside the JWindow, illustrated in figure 29. When the

button is activated the macro can continue and loads the main_finish procedure. This

procedure is used to finish the new created document, it starts out with the saving of all

content of the textfields to variables of a stem.

The macro finishes the document starting with the switching of the design mode of the

shape to design and another loop is changing the border property value of all textfields to

invisible and the content to readonly. This is needed for the export in pdf because the

content would be able to be changed afterwards inside the PDF file and the borders of the

textfields would also be visible.

Page - 53

Flexible Word Processing Automation with OpenOffice.org

 /* Procedure that finalise the macro after the content is inserted
 and the user has pushed the "FORTSETZEN" button.*/
 main_finish:
 i=.i
 -- Loop that gets all textcontent out of the textboxes
 Do While i > 0
 tb.i = textbox.i~getPropertyValue("Text")
 i=i-1
 End

 Call switch_design_mode
 i=.i
 -- Loop which changes properties of the textboxes
 Do While i > 0
 textbox.i~setPropertyValue("Border", box("short",0)) -- Set the border invisible
 textbox.i~setPropertyValue("ReadOnly", box("boolean",.true)) -- Set the content
 ReadOnly
 i=i-1
 end

Figure 29: Code Snippet - Procedure main_finish

Now the document is exported into pdf using the XStorable interface, shown in figure 30.

There is not much difference between saving a file into pdf or another format. The property

value of the interface has to be set correctly using an array. The “Filtername” has to be set

to “writer_pdf_Export” and the “CompressMode” must be set. The filename of the

document consists of the current date and the “Geschäftsnummer”. The date can be get

by using the built-in date() function of ooRexx and the number is retrieved with by getting

access to the right textfield. The file is saved using the storeToUrl() method with the preset

storing properties.

The next point is to print the document using the XPrintable interface. The method print()

of the interface is using the property value .UNO~noProps so that the standard printer of

the workstatioon is used. After that the RexxUtil function SysSleep is called to give OOo

time for printing because the document is closed right afterwards.

Page - 54

Flexible Word Processing Automation with OpenOffice.org

 -- Set the storing properties
 xStorable = .WriterComponent~XStorable
 storeprops = bsf.createArray(.UNO~propertyValue, 3)
 storeprops[1] = .UNO~PropertyValue~new
 storeprops[1]~Name = "FilterName"
 storeprops[1]~Value = "writer_pdf_Export"
 storeprops[2] = .UNO~PropertyValue~new
 storeprops[2]~Name = "CompressMode"
 storeprops[2]~Value = 2
 xWriterDocument = .WriterComponent~XTextDocument -- Loading of textdocument
 xText = xWriterDocument~getText() -- Get the content of the document
 date=date("S")
 e=.local~number
 file=date"_"tb.e
 .local~file=file
 xStorable~storeToUrl("file:///C:/"file".pdf", storeprops) -- Store the document to the
 specified url

 xPrintable = xWriterComponent~XPrintable
 xPrintable~print(.UNO~noProps)
 CALL SysSleep 1

 xWriterComponent~dispose() -- Closing of the Document

Figure 30: Code Snippet – Exporting and printing a document

The last important task of the routine is to save the content into a new textdocument

without any properties, illustrated in figure 31.

Page - 55

Figure 31: Sample content document

Flexible Word Processing Automation with OpenOffice.org

The first thing which is done is the creation of a new document illustrated in figure 32, the

retrieving of the interface, the text and the creation of a TextCursor. Within the first line the

name of the template which was used to create the document is inserted from a “.local”

variable. Then a loop is creating a paragraphbreak for each textfield and inserts the

content of them. When the loop is finished the document is stored to OpenOffice.org “odt”

file without any properties, using the XStorable interface and the storeToUrl() method like

before and closed after that.
 oDesktop = UNO.createDesktop() -- Create an UNO Desktop service object
 xComponentLoader = oDesktop~XDesktop~XComponentLoader -- Get the componentloader interface
 -- Open a new Writer document in hidden mode
 url = "private:factory/swriter"
 props = bsf.createArray(.UNO~propertyValue,1)
 props[1] = .UNO~PropertyValue~new
 props[1]~Name = "Hidden"
 props[1]~Value = box("boolean", .true)
 xWriterComponent = xComponentLoader~loadComponentFromURL(url, "_blank", 0, props)
 -- Load the document with specified properties

 xWriterDocument = xWriterComponent~XTextDocument -- Get the main interface
 xText = xWriterDocument~getText() -- Get the text of the document
 xTextCursor = xText~createTextCursor() -- Create a TextCursor

 xText~getEnd()~setstring(.filename)
 i=.i
 e=1
 -- Loop that insert the text of the textboxes and a paragraph breaks per textbox into the
 new document
 Do While e <= i
 xText~insertControlCharacter(xTextCursor,bsf.getConstant(-
 "com.sun.star.text.ControlCharacter","PARAGRAPH_BREAK"),.false)
 xText~getEnd()~setstring(tb.e)
 e=e+1
 End

 -- Store the created document to a specified location
 xStorable = xWriterComponent~XStorable
 xStorable~storeToUrl("file:///C:/_old/".file".odt", .UNO~noProps)
 xWriterDocument~dispose()

Figure 32: Code Snippet – Creation of a content file

At the end of the routine the user gets an information notification that the macro has

finished and saved the file. This is done like the JWindows which were created before, the

output is shown in figure 33. The program holds and is finished when the user presses the

“Ok” JButton of the window.

Page - 56

Figure 33: JWindow message box

Flexible Word Processing Automation with OpenOffice.org

The creation of the information JWindow is shown in figure 34 and is similary to the ones

before.
 -- MessageDialog who informs the user that the macro was completed successfully
 window = .JWindow~new()
 jpanel1 = .JPanel~new()
 jpanel2 = .JPanel~new()
 jlabel = .Jlabel~new(-
 "Das Dokument mit der Bezeichnung '".file"' wurde erfolgreich erstellt")
 jbutton = .JButton~new("OK");
 bevelborder = .BevelBorder~new(0)
 jpanel1~~add(jlabel)
 jpanel2~~add(jbutton)
 window~getContentPane()~setLayout(.GridLayout~new(2,1));
 window~getContentPane()~setBorder(bevelborder);
 window~getContentPane()~~add(jpanel1)~~add(jpanel2)
 window~~setLocationRelativeTo(window)~~setVisible(.true)~~setAlwaysOnTop(.true)
 jbutton~bsf.addEventListener('action', '', 'call next')
 Do Forever
 event = bsf("pollEventText")
 interpret event
 End

 next:

 Exit

Figure 34: Code Snippet - Message box

3.2.4 Routine main_old
The second main routine is called main_old and is used for the merging of the content file

and the template file which is illustrated in figure 35. Most of the script code of this routine

equals the code of the main_new routine. Therefore in this chapter only the code parts

which are different to the main_new routine are described.

The first part of the routine is different, it is used to load the document in hidden mode that

the user has chosen within the graphical interface at the beginning. The name of the file

was assigned to a “.local” variable which is used for the makeUrl() method to open the

right document. Next a TextCursor, a WordCursor and a ParagraphCursor are initialised

which are used to retrieve the content out of the document. As described before the

content is structured into paragraphs, because of this matter the ParagraphCursor can be

utilised to get each content of a paragraph. This is realised by a loop which jumps to the

next paragraph with the method gotonextParagraph() of the XparagraphCursor interface

Page - 57

Flexible Word Processing Automation with OpenOffice.org

and marks the paragraph with the gotoendofParagraph() method. The WordCursor within

the loop is needed to verify with the help of the isEndofWord() method if the loop has

reached the end of the document. At the end all contents are saved to a stem and the

document is closed. After this the retrieved template file is opened, which is done equally

to routine main_new.
::Routine main_old -- Routine responsible for loading old documents
 oDesktop = UNO.createDesktop() -- Create an UNO Desktop service object
 xComponentLoader = oDesktop~XDesktop~XComponentLoader -- Get the componentloader interface
 -- Open the content file of an old document in hidden mode
 url = makeUrl("C:_old\".filename) -- Get the document
 props = bsf.createArray(.UNO~propertyValue,1)
 props[1] = .UNO~PropertyValue~new
 props[1]~Name = "Hidden"
 props[1]~Value = box("boolean", .true)
 xWriterComponent = xComponentLoader~loadComponentFromURL(url, "_blank", 0, props)
 xWriterDocument = xWriterComponent~XTextDocument -- Get the main interface
 xText = xWriterDocument~getText() -- Get the text of the document

 xParagraphCursor~gotoendofParagraph(.true)
 .local~file = xParagraphCursor~getString()

 -- Loop that save each paragraph of the document to a variable
 a = 0
 i = 1
 Do While a = 0
 xParagraphCursor~gotonextParagraph(.false)
 a = xWordCursor~isEndofWord()
 xParagraphCursor~gotoendofParagraph(.true)
 text.i = xTextCursor~getString()
 i=i+1
 End
 xWriterComponent~dispose() -- Close the document

Figure 35: Code Snippet - Routine main_old

The loop in figure 36 for getting the information used for the textfields is principally equally

except of the text.i variable which is named text2.i and is not used for inserting text into the

textfields, but only for the deleting of the keyword data. The reason for that is that the

content is inserted from the data which was retrieved before out of the content document.

Page - 58

Flexible Word Processing Automation with OpenOffice.org

 i=i-1
 -- Loop which gets the content that is positioned after the searchstring
 Do While i > 0
 xmodel = xFound.i~XTextRange~getText() -- Get the textrange
 xposition = xFound.i~XTextRange~getStart()
 xTextCursor = xmodel~createTextCursorByRange(xposition)
 xViewCursor~gotoRange(xTextCursor,.false)
 xWordCursor = xTextCursor~XWordCursor()
 xWordCursor~gotoendofWord(.true)
 xWordCursor~gotonextWord(.false)
 xWordCursor~gotoendofWord(.true)
 width.i=xWordCursor~getString() -- Get the width of the textbox
 xWordCursor~gotonextWord(.false)
 xWordCursor~gotoendofWord(.true)
 height.i=xWordCursor~getString() -- Get the height of the textbox
 xWordCursor~gotonextWord(.false)
 xWordCursor~gotoendofWord(.true)
 text2.i=xWordCursor~getString() -- Get the text of the textbox
 xWordCursor~gotonextWord(.false)
 xWordCursor~gotoendofWord(.true)
 f_height.i=xWordCursor~getString() -- Get the font height of the textbox
 xWordCursor~gotonextWord(.false)
 xSentenceCursor = xWordCursor~XSentenceCursor()
 xSentenceCursor~gotoendofSentence(.true)
 font.i=xSentenceCursor~getString() -- Get the font of the textbox
 if text.i = "Geschäftsnummer" then .local~number=i
 f.i=xViewCursor~getPosition() -- Get the coordinates of the searchstring
 i=i-1
 End

 xWriterComponent~dispose() -- Close the document

Figure 36: Code Snippet - Loop for content extraction

The only difference between the loop in figure 37 and the one of the routine before is that

the searchstring of the replacedescriptor includes text2.i in contrast to text.i.
 i=.i
 -- Loop which replaces all keywords of the template used for inserting textboxes
 Do While i > 0
 xReplaceable = xWriterDocument~XReplaceable
 xReplaceDescriptor = xReplaceable~createReplaceDescriptor() -- Create the
 replacedescriptor with the XReplaceable interface
 xReplaceDescriptor~~setSearchString("insert "width.i" "height.i" "text2.i"-
 "f_height.i" "font.i)~~setReplaceString("") -- Set search and replace string
 xReplaceable~replaceAll(xReplaceDescriptor) -- Replace all strings matching the
 searchstring
 i=i-1
 End

Figure 37: Code Snippet - Loop for content replace

In this part, displayed in figure 38, the difference is that the state_window is not initialised.

Furthermore the borders of the textfields are set to invisible and the text content is set to

readonly before the user can make changes to the textfields. The reason for that is the

user should not be able to change historical documents. Also there is no saving, exporting

Page - 59

Flexible Word Processing Automation with OpenOffice.org

and printing of the document.
 Call textsection -- Insert a protected textsection
 i=.i
 -- Loop which changes properties of the textboxes
 Do While i > 0
 textbox.i~setPropertyValue("Border", box("short",0)) -- Set the border invisible
 textbox.i~setPropertyValue("ReadOnly", box("boolean",.true)) -- Set ReadOnly
 i=i-1
 End
 Call switch_design_mode -- Switch the design mode from design to live mode

Figure 38: Code Snippet - Finalizing the historical document

3.2.5 Routine state_window
This routine is used to open a JWindow that is pausing the macro, the output can be seen

in figure 39.

First of all like the other windows all of the objects are initialised and the layout of the

JPanels and the window are set, the sourcecode is shown in figure 40. The button and the

labels are added to the JPanels and they are added to the window .

Page - 60

Figure 39: Info JWindow with control buttons

Flexible Word Processing Automation with OpenOffice.org

::Routine state_window -- Routine that opens a jwindow which is pausing the macro

 -- create java swing objects
 label = .JLabel~new("")
 label2 = .JLabel~new("MAKRO ANGEHALTEN",0)
 label3 = .JLabel~new("-------------------------------",0)
 label4 = .JLabel~new("Bitte Inhalt eingeben!",0)
 label5 = .JLabel~new("Um Makro fortzusetzen,",0)
 label6 = .JLabel~new("bitte auf FORTSETZEN klicken!",0)
 window = .JWindow~new();
 next = .JButton~new("FORTSETZEN");
 cancel = .JButton~new("ABBRECHEN");
 icon = .Icon~new("ma.png");
 jbuttonp = .JPanel~new();
 panel1 = .JPanel~new();
 panel2 = .JPanel~new();
 etchedborder = .EtchedBorder~new(0)

 -- set the layout for the jpanels and add objects
 jbuttonp~setLayout(.GridLayout~new(2,1))
 jbuttonp~~add(next)~~add(cancel);
 panel1~setLayout(.GridLayout~new(5,1))
 panel1~~add(label2)~~add(label3)~~add(label4)~~add(label5)~~add(label6)
 panel2~~add(label);

 -- Set the jwindow to use the GridBagLayout and add objects
 window~getContentPane()~setLayout(.GridBagLayout~new());
 window~getContentPane()~setBorder(etchedborder);
 window~getContentPane()~~add(panel1)~~add(jbuttonp)~~add(panel2);

Figure 40: Code Snippet - Routine state_window

The next step sets the size of the box like the JWindows before and calculates the exact

position on the screen in the right lower corner above the task bar, shown in figure 41. This

is accomplished by using the GraphicsEnvironment class which includes a method called

getMaximumWindowBounds() that is able to calculate the screen resolution without the

taskbar, so it is possible to set the window to the right position no matter what screen

resolution or height of the taskbar is set. The width and the height can be retrieved by

using width() and height() out of the GraphicsEnvironment object. The positon is set by

substraction of the screen resolution minus the window size. Furthermore the location, size

and visibility of the window is set, also an icon is added to a label of the window, like in the

other examples described before.

Page - 61

Flexible Word Processing Automation with OpenOffice.org

 -- Set the size of the jwindow
 toolkit=.Toolkit~getDefaultToolkit()
 screenSize = Toolkit~getScreenSize()
 boxw = screenSize~width()/3
 boxh = screenSize~height()/7
 Parse var boxw boxw '.'
 Parse var boxh boxh '.'

 If boxw<426 Then boxw=426
 If boxh<146 Then boxh=146
 -- Get the Size of the screen without the task bar
 ge = .GraphicsEnvironment~getLocalGraphicsEnvironment()
 maximumWindowBounds = ge~getMaximumWindowBounds();
 resx= maximumWindowBounds~width()
 resy= maximumWindowBounds~height()
 -- Get the position of the jwindow in the right corner of the screen
 boxpx = resx - boxw
 boxp = resy – boxh

 -- Set the location, size and visibility of the jwindow
 window~~pack()~~setLocation(boxpx,boxp)~~setSize(boxw,boxh)-
 ~~setVisible(.true)~~setAlwaysOnTop(.true)
 label~setIcon(icon);

Figure 41: Code Snippet - Setting the jwindow

Finally an eventlister is added to the JButton which closes the window by pressing the

button and let the macro continue, illustrated in figure 42. The procedure next closes the

JWindow and allows the script to continue and the cancel procedure let the user return to

the main menu by closing the window and the document.
 - Add eventhandling to the jbutton
 next~bsf.addEventListener('action', '', 'Call next')
 cancel~bsf.addEventListener('action', '', ".local~c= true")
 cancel~bsf.addEventListener('action', '', 'Call cancel')

 /* A never ending loop which execute the messages from the
 eventhandler as a rexx program */
 Do Forever
 event = bsf("pollEventText")
 interpret event
 End
 Exit

 next:
 window~dispose()
 Exit

 cancel:
 window~dispose()
 .WriterComponent~dispose()
 Call create_gui
 Exit

Figure 42: Code Snippet - Eventlistener and procedures

Page - 62

Flexible Word Processing Automation with OpenOffice.org

3.2.6 Routine switch_design_mode
This routine is used to switch the design mode of the document shape from design to live

mode, which can be seen in figure 43. Unfortunately OpenOffice.org provides no

parameters for switching or triggering buttons, that is why in this case a dispatcher is

needed to solve the task. First of all the com.sun.star.util.URL class is loaded with the BSF

loadClass() method. An array is created which should contain one URL.class object, in this

array a new object of the mentioned class is instanciated and to the element Complete of

the struct URL the value .uno:SwitchControlDesignMode is assigned. According to the API

of OpenOffice.org “Complete” which is a field value of the complete URL representation of

a string.

The next task is to get the model of the document to be able to retrieve the current

controller of the document. With the controller it is possible to get the XDispatchProvider

interface. The method getFrame() from the XController interface is needed to get the

current frame of the controller and the initialisation of the XDispatchProvider provides the

dispatch provider of the frame.
::Routine switch_design_mode -- Routine to switch the design mode from design to live mode
 url = bsf.loadClass("com.sun.star.util.URL") -- Load the class URL
 aToggleURL = bsf.createArray(url, 1) -- Create an array to store the URL object
 aToggleURL[1] = .bsf~new("com.sun.star.util.URL")
 aToggleURL[1]~Complete = ".uno:SwitchControlDesignMode"

 xmodel = .WriterComponent~XModel -- Get the model of the document
 xController = xmodel~getCurrentController -- Get the current controller
 xDispatchProvider = xController~getFrame~XDispatchProvider -- Get the dispatch provider

Figure 43: Code Snippet - Routine switch_design_mode

Now with the use of the XmultiComponentFactory a new instance of an URLTransformer is

initialised by the method createInstanceWithContext() which is illustrated in figure 44. This

component supports the services of the current factory. Because the URL which was

created before has to be parsed the XURLTransformer interface of the URLTransformer

service is created. With the support of this interface it is possible to parse the string of the

url to a syntactically correct URL with the method parseStrict().

After the url is complete the XDispatchProvider uses the queryDispatch() method to get

the dispatch object. The XDispatch object supports the interface XDispatch which provides

Page - 63

Flexible Word Processing Automation with OpenOffice.org

among others the method dispatch(). This method is used to execute the parsed URL

asynchronously.
 -- Use an URLTransformer to parse the url
 frameDesktop = .MCF~createInstanceWithContext("com.sun.star.util.URLTransformer",.Context)
 xURLTransformer = frameDesktop~XURLTransformer -- Initialisation of the interface
 xURLTransformer~parseStrict(aToggleURL) -- Parse the url

 -- Get all dispatcher from the specified url
 xDispatcher = xDispatchProvider~queryDispatch(aToggleURL[1],"", 0)
 xDispatcher~dispatch(aToggleURL[1], .UNO~noProps) -- Execute a dispatcher from the url

Figure 44: Code Snippet - URL dispatching

3.2.7 Routine textsection
The routine textsection is used to protect the document against changes, shown in figure

45. The TextViewCursor, which was saved before to a “.local” variable, marks the whole

document as a single TextRange. The global available Servicemanager creates a new

instance of the com.sun.star.text.TextSection to which a name has to be assigned

through the service com.sun.star.container.XNamed and the method setName().

Furthermore the property IsProtected of the textsection is set to the value “true” using the

already known XPropertySet() interface. After the object is prepared for the insertion the

XTextContent() interface is called to enable the textsection object so that it can be inserted

into the text. Finally the section is added to the TextCursor with the method

insertTextContent().
:Routine textsection -- Routine to insert a protected textsection accross the whole document
 .ViewCursor~gotoStart(.false)
 .TextCursor~gotoEnd(.true) -- Mark the whole document as a TextRange
 -- Create an instance of the textsection
 xTextSection = .ServiceManager~createInstance("com.sun.star.text.TextSection")
 xTextSection~XNamed~setName("xTextSection") -- Set a name for the textsection
 xTextSectionprops = xTextSection~XPropertySet()
 xTextSectionprops~setPropertyValue("IsProtected",box("boolean",.true)) -- Set the property
 TextSection = xTextSection~XTextContent()
 .Text~insertTextContent(.TextCursor,TextSection,.true) -- Insert the textsection

Figure 45: Code Snippet - Routine textsection

Page - 64

Flexible Word Processing Automation with OpenOffice.org

3.2.8 Routine create_form
The last routine of the macro script is the create_form shown in figure 46 which is used by

the two main routines for the creation of the shape and the insertion of the textfields. First

the global XWriterComponent is used to get a XMultiServiceFactory which is able to create

an instance of the com.sun.star.drawing.ControlShape. This service makes usage of the

XControlShape interface to get access to the control model.

In our case values must be assigned from outside of this routine which are needed to

create form components. These values include the name of the component, the size and

the location within the shape. To make this possible the built-in argument function ARG()
of ooRexx is used, a number for each value is inserted into this function to create an array.

Each function is set at the exact place where the value is needed. Now the routine is able

to be initialised with assigned values from outside. The code example in figure 46 of the

main routine shows how it is realised by calling create_form().
::Routine create_form -- Routine to create and initialize a shape for the document
 xMSF = .WriterComponent~XMultiServiceFactory
 xControlShape = xMSF~createInstance("com.sun.star.drawing.ControlShape")~XControlShape
 -- Create a control shape

 sQualifiedComponentName = "com.sun.star.form.component."ARG(1) -- Create a form component
 xControlModel =.MCF~createInstanceWithContext(-
 sQualifiedComponentName,.Context)~XControlModel -- Create a control model

 textbox.i = create_form("TextField", width.i, height.i, f.i)

Figure 46: Code Snippet - Routine create_form

The width and height of the form are set by the values which are retrieved out of the

content of the template and then assigned to the routine, illustrated in figure 47. Therefore

for setting the size a new com.sun.star.awt.Size object has to be created using the BSF

function new(). The positon is retrieved from the location of the TextViewCursor which

returns a dimension object, therefore only one argument function is needed. Furthermore

the anchortype is set to AT_PARAGRAPH and with the method setcontrol of the

Xcontrolshape interface the created control model is set to the current shape.

Page - 65

Flexible Word Processing Automation with OpenOffice.org

 -- Set the position and size of the form
 xControlShape~setSize(.bsf~new("com.sun.star.awt.Size", ARG(2)*100, ARG(3)*100))
 -- The size is specified in 100th/mm

 xControlShape~setPosition(ARG(4))
 xPropertySet = xControlShape~XPropertySet -- Get the propertyset of the shape
 xPropertySet~setPropertyValue("AnchorType", bsf.getConstant(-
 "com.sun.star.text.TextContentAnchorType", "AT_PARAGRAPH")) -- Adjust the anchor to the
 paragraph

 xControlShape~setControl(xControlModel) -- Set the ControlModel of the shape

Figure 47: Code Snippet - Setting the xControlshape

The last step is to create a XDrawPageSupplier, to get the current page with the method

getDrawPage(), to initialise the XShapes interface and then add the control shape to the

shapes collection of the textdocument. At the end the command return is inserted to give

the possibility of adjustments to the properties of the control model shown in figure 48.
 -- Add the shape to the shapes of the document
 xDrawPageSupplier = .WriterComponent~XDrawPageSupplier
 xDrawPage = xDrawPageSupplier~getDrawPage()
 xShapes = xDrawPage~XShapes
 xShapes~add(xControlShape)
 return xControlModel~XPropertySet
 -- Returns the XPropertySet interface to give the possibility of adjustments

Figure 48: Code Snippet - Adding the shape

Page - 66

Flexible Word Processing Automation with OpenOffice.org

4 Conclusion
The Resumee to the automation process of OpenOffice.org with the help of ooRexx is

quite positive. Despite the fact that I had never worked with ooRexx BSF4Rexx and the

OpenOffice.org API before, it was apart from a steep learning process at the beginning not

very difficult to get used to the syntax of ooRexx which is quite easy to learn if you are

used to any programming languages. Once the main concepts of this scripting language

are understood the use of the language is quite intuitive which results mainly from the

humanlike syntax and the few rules. Additionally it must be mentioned that the project

could be finished positively within the given time frame. Nevertheless not the whole

programming phase was positiv, there appeared also some problems. Most of them

occured because the syntax had to be translated from Java to ooRexx. The reason for this

is that most of the examples out of the developers guide of OpenOffice.org are written in

ooBasic or Java. Also there exist not many code examples of ooRexx in combination with

OpenOffice.org, so in our case Java was very comfortable to be translated into the ooRexx

syntax because there exist many similarities.

The main part of the problems resulted out of the API of OpenOffice.org which provides

aside from the well documented services, interfaces and properties not enough code

snippet examples to give developers a detailed overview how to use the offered

functionality. OpenOffice.org is offering indeed examples in different programming

language including ooRexx on the so called codesnippetbase website and there exists

also other sources like the OpenOffice.org forum where users of the API are helping each

other to solve problems. However in my opinion the amount of provided code is not

enough to support developers sufficiently. Due to these problems many problems had to

be solved by trial and error which was at the beginning very time consuming.

From my point of view ooRexx is very proper for the automation of OpenOffice.org with the

simplicity of an script language like ooBasic and the powerful possibilities of Java. It is

quite possible that ooRexx will become more important in respect of OpenOffice.org

dependent that more documentation sources for the automation with ooRexx will be

provided to support developers.

Page - 67

Flexible Word Processing Automation with OpenOffice.org

5 List of References

[AHAM05] Andreas Ahammer: Bachelor Course Paper

OpenOffice.org Automation: Object Model, Scripting Languages,

“Nutshell”-Examples

Department of Business Informatics (Prof. Dr. Rony G. Flatscher)

Vienna University of Economics and Business Administration

2006-11-06

[BURG06] Martin Burger: Bachelor Course Paper

OpenOffice.org Automatisation with Object Rexx

Department of Business Informatics (Prof. Dr. Rony G. Flatscher)

Vienna University of Economics and Business Administration

2006-05-19

[FLAT05] Flatscher, Rony G.: Automating OpenOffice.org With OOREXX

Architecture, Gluing To Rexx Using BSF4Rexx

http://wi.wu-wien.ac.at/rgf/rexx/orx16/2005_

 orx16_Gluing2ooRexx_OOo.pdf

retrieved on 2006-11-15

[FLAT06-1] Flatscher, Rony G.: Resurrecting REXX, Introducing Object Rexx

http://prog.vub.ac.be/~wdmeuter/RDL06/Flatscher.pdf

retrieved on 2006-10-25

[FLAT06-2] Flatscher, Rony G.: The Vienna Version of BSF4Rexx

http://wi.wu-wien.ac.at/rgf/rexx/orx17/2006_orx17_BSF_ViennaEd.pdf

retrieved on 2006-11-14

Page - 68

Flexible Word Processing Automation with OpenOffice.org

[OOAP06] OpenOffice.org API: TextCursor

 http://api.openoffice.org/docs/common/ref/com/sun/star/text/
TextCursor.html

retrieved on 2006-11-03

[OORE06] ooRexx: About Open Object Rexx

http://www.oorexx.org/index.html

retrieved on 2006-11-05

[OPEN05] OpenOffice.org: OpenOffice.org 2.0 Developer's Guide

http://api.openoffice.org/docs/DevelopersGuide/DevelopersGuide.pdf

retrieved on 2006-11-01

[OPEN06] OpenOffice.org: About Us: OpenOffice.org

http://about.openoffice.org/index.html

retrieved on 2006-11-20

[PITO06] Pitonyak, Andrew: Useful Macor Information For OpenOffice

http://www.pitonyak.org/AndrewMacro.pdf

retrieved on 2006-11-05

[PITO04] Pitonyak, Andrew: OpenOffice.org Macros Explained

Hentzenwerke Publishing, July 2004

retrieved on 2006-11-29

[PREM06] Matthias Prem: Bachelor Course Paper

ooRexx Snippets for OpenOffice.org Writer

Department of Business Informatics (Prof. Dr. Rony G. Flatscher)

Vienna University of Economics and Business Administration

2006-07-24

Page - 69

Flexible Word Processing Automation with OpenOffice.org

6 Appendix
6.1 Sourcecode
/**/
/**************************TEMPLATE HANDLING TOOL******************************/
/*****************************by Michael Kauril********************************/

-- Import of all needed Java classes
.bsf~bsf.import("java.awt.GridLayout","GridLayout")
.bsf~bsf.import("java.awt.GridBagLayout","GridBagLayout")
.bsf~bsf.import("java.awt.Toolkit","Toolkit")
.bsf~bsf.import("java.awt.ScrollPane","ScrollPane")
.bsf~bsf.import("java.awt.FlowLayout","FlowLayout")
.bsf~bsf.import("java.awt.GraphicsEnvironment", "GraphicsEnvironment")
.bsf~bsf.import("javax.swing.JFrame","JFrame")
.bsf~bsf.import("javax.swing.JLabel","JLabel")
.bsf~bsf.import("javax.swing.JRadioButton","JRadio")
.bsf~bsf.import("javax.swing.ImageIcon","Icon")
.bsf~bsf.import("javax.swing.JWindow","JWindow")
.bsf~bsf.import("javax.swing.JPanel","JPanel")
.bsf~bsf.import("javax.swing.JButton","JButton")
.bsf~bsf.import("javax.swing.JOptionPane", "JOptionPane")
.bsf~bsf.import("javax.swing.border.BevelBorder", "BevelBorder")
.bsf~bsf.import("javax.swing.border.EtchedBorder", "EtchedBorder")

Call create_gui

::Requires BSF.CLS -- Make oo-like BSF4Rexx support available
::Requires UNO.CLS -- Get UNO support
::Requires RXREGEXP.CLS -- Get the support of regular expressions
::Routine makeUrl -- operating system independent
Return ConvertToURL(stream(arg(1), "c", "query exists"))
Exit

/**/
---------------------------------ROUTINES---------------------------------------
/**/

/***************************ROUTINE create_gui*********************************/

::Routine create_gui
-- Create a java swing menu with radiobuttons
-- Create java swing objects
label = .JLabel~new("BITTE TREFFEN SIE EINE AUSWAHL:");
label2 = .JLabel~new("--")
label3 = .JLabel~new("Klicken Sie 'AKTUELL' zum Erstellen eines neuen Dokumentes");
label4 = .JLabel~new("Klicken Sie 'HISTORISCH' zum Laden eines alten Dokumentes");
window = .JWindow~new();
labelp = .JPanel~new();
buttonp1 = .JPanel~new();
jbutton1 = .JButton~new("AKTUELL");
jbutton2 = .JButton~new("HISTORISCH");
jbutton3 = .JButton~new("ABBRECHEN");
buttonp2 = .JPanel~new();
bevelborder = .BevelBorder~new(0)
-- Set the Layout and add objects to jpanels
labelp~setLayout(.FlowLayout~new())
labelp~~add(label)~~add(label2)~~add(label3)~~add(label4)
buttonp1~setLayout(.FlowLayout~new())
buttonp1~~add(jbutton1)~~add(jbutton2)
buttonp2~setLayout(.FlowLayout~new())
buttonp2~~add(jbutton3)

-- Set the position of the jwindow to the center of the screen
toolkit=.Toolkit~getDefaultToolkit()

Page - 70

Flexible Word Processing Automation with OpenOffice.org

screenSize = Toolkit~getScreenSize()
wx = screenSize~width()/3.2
wy = screenSize~height()/4
Parse var wx wx '.'
Parse var wy wy '.'
If wx<400 then wx=400
If wy<256 then wy=256
w_x = wx/2
w_y = wy/2
Parse var w_x w_x'.'
Parse var w_y w_y'.'
scx = screenSize~width()/2-w_x
scy = screenSize~height()/2-w_y
-- Set the layout of the jwindow and add the jpanels
window~getContentPane()~setLayout(.GridLayout~new(3,1));
window~getContentPane()~setBorder(bevelborder);
window~getContentPane()~~add(labelp)~~add(buttonp1)~~add(buttonp2);
-- Set the location, size and visibility of the jwindow
window~~setLocation(scx,scy)~~setSize(wx,wy)~~setVisible(.true)-
~~setAlwaysOnTop(.true)
-- Add eventlisteners to the jbuttons
jbutton1~bsf.addEventListener("action", "", "Call setnew")
jbutton2~bsf.addEventListener("action", "", "Call setold")
jbutton3~bsf.addEventListener("action", "", "Exit")

/* A never ending loop which execute the messages from the
 eventhandler as a rexx program*/
Do forever
 event = bsf("pollEventText")
 interpret event
End
Exit

/* Procedure which gets the latest template and opens it
 It is called from the eventhandler by pressing the jbutton "newb" */

setnew:
 window~dispose() -- Close the open jwindow
 CALL SysFileTree "C:_templates*.*", "file", "O" -- Creation of a
 -- stem(="array") of the system file tree of the specified folder

 Do i=1 TO file.0
 PARSE VAR file.i prefix.i =15 filename.i =23 subfix.i -- Extraction
 -- of the date information out of the full path of the file
 End
 i=2
 e=1
 f=0
 -- Comparison of the Dates to find out the latest one
 Do Until i > file.0
 If filename.e>filename.i Then e=e-1;
 If filename.e>filename.i Then f=e;
 Else f=i;
 e=e+1
 i=i+1
 End
 .local~filename = filename.f""subfix.f
 Call main_new
Exit
/* Procedure which opens a new jwindow with a scrollpanel to chose an already created document
 It is called from the eventhandler by pressing the jbutton "oldb" */
setold:
 window~dispose() -- Close the open jwindow
 CALL SysFileTree "C:_old*.*", "file", "O" -- Creation of a
 -- stem(="array") of the system file tree of the specified folder

 Do i=1 To file.0
 PARSE VAR file.i prefix.i =9 filename.i -- Extraction of the date
 -- information out of the full path of the file
 End

Page - 71

Flexible Word Processing Automation with OpenOffice.org

 -- Create java Swing objects
 label = .JLabel~new("ÜBERSICHT HISTORISCHER DOKUMENTE");
 label2 = .JLabel~new("--");
 label3 = .JLabel~new("Bitte wählen Sie ein historisches Dokument aus!");
 window = .JWindow~new();
 scrollp = .ScrollPane~new()
 jpanel = .JPanel~new()
 jpanel2 = .JPanel~new()
 mainp = .JPanel~new()
 jbutton1 = .JButton~new("OK");
 jbutton2 = .JButton~new("ABBRECHEN");
 buttonp = .JPanel~new();
 bevelborder = .BevelBorder~new(0)
 -- Set the Layout and add objects to the jpanels

 Do i=1 To file.0
 jpanel~setLayout(.GridLayout~new(i,2));
 jbutton.i = .JRadio~new(filename.i);
 jpanel~~add(jbutton.i)
 jbutton.i~bsf.addEventListener("action", "", t"=".true)
 jbutton.i~bsf.addEventListener("action", "", f"="i)
 End
 jpanel2~setLayout(.FlowLayout~new());
 jpanel2~~add(label)~~add(label2)~~add(label3)
 scrollp~~add(jpanel) -- Add the jpanel to the scrollpanel
 buttonp~setLayout(.FlowLayout~new())
 buttonp~~add(jbutton1)~~add(jbutton2)
 mainp~setLayout(.GridLayout~new())
 mainp~add(jpanel2)~add(buttonp)

 -- Set the Gridlayout for the jwindow and add the jpanel and the scrollpanel
 window~getContentPane()~setLayout(.GridLayout~new(2,1));
 window~getContentPane()~setBorder(bevelborder);
 window~getContentPane()~~add(scrollp)~~add(mainp);
 -- Get the centered position of the jwindow depending on the screenresolution
 toolkit=.Toolkit~getDefaultToolkit()
 screenSize=Toolkit~getScreenSize()

 wx = screenSize~width()/3.4
 wy = screenSize~height()/3.4
 Parse var wx wx '.'
 Parse var wy wy '.'
 If wx<376 Then wx=376
 If wy<301 Then wy=301
 w_x = wx/2
 w_y = wy/2
 Parse var w_x w_x'.'
 Parse var w_y w_y'.'
 scx = screenSize~width()/2-w_x
 scy = screenSize~height()/2-w_y
 -- Set the location and size of the jwindow
 window~~setLocation(scx,scy)~~setSize(wx,wy)~~setVisible(.true)~~setAlwaysOnTop(.true)
 jbutton1~bsf.addEventListener("action", "", "Call open")
 jbutton2~bsf.addEventListener("action", "", "Call create_gui")
 jbutton2~bsf.addEventListener("action", "", "window~dispose()")
 /* A never ending loop which execute the messages from the eventhandler
 as a rexx program*/
 Do Forever
 event = bsf("pollEventText")
 interpret event
 Call set
 End
Exit
set:

Do e=1 To file.0
 if jbutton.e <> jbutton.f Then jbutton.e~setSelected(.false);
End
return
Exit

open:

Page - 72

Flexible Word Processing Automation with OpenOffice.org

 window~dispose() -- Close the open jwindow
 .local~filename = filename.f
 if t=.true Then Call main_old
 Else Call setold -- Start routine main_old
Exit
shutdown:
--window~dispose() -- Close the open jwindow
Exit

/******************************ROUTINE main_new********************************/

::Routine main_new -- Main routine that opens a new template, save the content,
 -- export it to pdf and print it

 -- Open the newest template file
 oDesktop = UNO.createDesktop() -- Get the UNO Desktop service object
 xComponentLoader = oDesktop~XDesktop~XComponentLoader -- Get the XComponent-
 -- Loader interface

 -- Open the document with the property value hidden
 url = makeUrl("C:_templates\".local~filename)
 -- Get the template from the specified folder
 props = bsf.createArray(.UNO~propertyValue,1)
 props[1] = .UNO~PropertyValue~new
 props[1]~Name = "Hidden"
 props[1]~Value = box("boolean", .true)
 xWriterComponent = xComponentLoader~loadComponentFromURL(url, "_blank", 0, props)
 -- Load the document with specified properties

 xWriterDocument = xWriterComponent~XTextDocument -- Get the main interface of the textdocument
 xText = xWriterDocument~getText() -- Get the text of the document
 xModel = xWriterDocument~XModel -- Get the model from the textdocument
 xController = xModel~getCurrentController -- Get the controller for the model
 -- With the help of the controller and XTextViewCursorSupplier we get the TextViewCursor
 xViewCursorSupplier=xController~XTextViewCursorSupplier
 xViewCursor = XViewCursorSupplier~getViewCursor
 -- The XSearchable Interface gives the textdocument the possibility to search the content
 xSearchabel = xWriterDocument~XSearchable
 xSearchDescriptor = xSearchabel~createSearchDescriptor()
 xSearchDescriptor~setSearchString("insert") -- Set the search string for the searchdescriptor
 i=1
 xFound = xSearchabel~findFirst(xSearchDescriptor) -- Find the first matching content
 xFound.i = xFound
 /* Loop which is searching for the searchstring until all matching strings
 are found. It saves the found strings to a stem (=array) variable */
 Do While xfound <> .nil
 .local~i=i
 i=i+1
 xFound = xSearchabel~findNext(xFound, xSearchDescriptor)
 xFound.i = xFound
 End
 i=i-1
 -- Loop which gets the content that is positioned after the searchstring
 Do While i > 0
 xmodel = xFound.i~XTextRange~getText() /* Get the textrange
 of each searchstring */
 xposition = xFound.i~XTextRange~getStart()
 xTextCursor = xmodel~createTextCursorByRange(xposition)
 xViewCursor~gotoRange(xTextCursor,.false)
 xWordCursor = xTextCursor~XWordCursor()
 xWordCursor~gotoendofWord(.true)
 xWordCursor~gotonextWord(.false)
 xWordCursor~gotoendofWord(.true)
 width.i=xWordCursor~getString() -- Get the width of the textbox
 xWordCursor~gotonextWord(.false)
 xWordCursor~gotoendofWord(.true)
 height.i=xWordCursor~getString() -- Get the height of the textbox
 xWordCursor~gotonextWord(.false)
 xWordCursor~gotoendofWord(.true)
 text.i=xWordCursor~getString() -- Get the text of the textbox
 xWordCursor~gotonextWord(.false)
 xWordCursor~gotoendofWord(.true)
 f_height.i=xWordCursor~getString() -- Get the font height of the textbox
 xWordCursor~gotonextWord(.false)

Page - 73

Flexible Word Processing Automation with OpenOffice.org

 xSentenceCursor = xWordCursor~XSentenceCursor()
 xSentenceCursor~gotoendofSentence(.true)
 font.i=xSentenceCursor~getString() -- Get the font of the textbox
 if text.i = "Geschäftsnummer" then .local~number=i
 f.i=xViewCursor~getPosition() -- Get the coordinates of the searchstring
 i=i-1
 End
 xWriterComponent~dispose()

 -- Open a new document to insert forms and content

 xContext = UNO.connect()
 -- Get a connection to the server and retrieve the XContext object
 xMCF = xContext~getServiceManager
 -- Get the XMultiComponentFactory
 oDesktop = UNO.createDesktop()
 -- Create an UNO Desktop service object
 xComponentLoader = oDesktop~XDesktop~XComponentLoader
 -- Get the componentLoader interface from the desktop object

 -- create a new Writer document
 url = "private:factory/swriter"
 xWriterComponent = xComponentLoader~loadComponentFromURL(-
 url, "_blank", 0, .UNO~noProps)
 xWriterDocument = xWriterComponent~XTextDocument
 xText = xWriterDocument~getText()
 xServiceManager = xWriterDocument~XMultiServiceFactory
 -- Get the service manager of the textdocument

 /* Save objects that are often used in the program as '.local' variables.
 With this they can be accessed like global variables in the program. */
 .local~Context = xContext
 .local~MCF = xMCF
 .local~ServiceManager = xServiceManager
 .local~WriterComponent = xWriterComponent
 .local~Text = xText

 i = .i
 /* Loop that creates textboxes at the position of the searchstrings
 with the specified properties out of the content of the template.*/
 Do While i>0
 textbox.i = create_form("TextField", width.i, height.i, f.i)
 -- Create a textbox with the routine 'create_form'
 textbox.i~setPropertyValue("Text", text.i)
 -- Assign text to the textbox
 textbox.i~setPropertyValue("MultiLine", box("boolean", .true))
 -- Set the textbox multiline
 FontDescriptor = .bsf~new("com.sun.star.awt.FontDescriptor")
 -- Create a fontdescriptor
 FontDescriptor~Height = f_height.i
 FontDescriptor~Name = font.i
 textbox.i~setPropertyValue("FontDescriptor", FontDescriptor)
 -- Assign the fontdescriptor to control the font
 i=i-1
 End

 xTextCursor = xText~createTextCursor() -- Create a TextCursor within the document
 .local~TextCursor = xTextCursor
 xTextCursor~XDocumentInsertable~insertDocumentFromURL(-
 "file:///C:/_templates/".local~filename,.UNO~noProps)
 xModel = xWriterDocument~XModel -- Get model from the textcomponent
 xController = xModel~getCurrentController()
 -- Get the controller of the textdocument

 -- Get the XViewCursor with the help of the controller and the XTextViewCursorSupplier
 xViewCursorSupplier = xController~XTextViewCursorSupplier
 xViewCursor = XViewCursorSupplier~getViewCursor()
 .local~ViewCursor = xViewCursor
 i=.i
 -- Loop which replaces all keywords of the template used for inserting textboxes
 Do While i > 0
 xReplaceable = xWriterDocument~XReplaceable

Page - 74

Flexible Word Processing Automation with OpenOffice.org

 xReplaceDescriptor = xReplaceable~createReplaceDescriptor()
 -- Create the replacedescriptor with the XReplaceable interface
 xReplaceDescriptor~~setSearchString("insert "width.i" "height.i"-"-
 text.i" "f_height.i" "font.i)~~setReplaceString("")
 -- Set search and replace string
 xReplaceable~replaceAll(xReplaceDescriptor)
 -- Replace all strings matching the searchstring
 i=i-1
 End
 Call switch_design_mode -- Switch the design mode from design to live mode
 Call textsection -- Insert a protected textsection
 Call state_window -- Open the state info window of the macro
 If .c<>true Then Call main_finish
 Exit

 /* Procedure that finalise the macro after the content is inserted
 and the user has pushed the "FORTSETZEN" button.*/
 main_finish:
 i=.i
 -- Loop that gets all textcontent out of the textboxes
 Do While i > 0
 tb.i = textbox.i~getPropertyValue("Text")
 i=i-1
 End
 Call switch_design_mode
 i=.i
 -- Loop which changes properties of the textboxes
 Do While i > 0
 textbox.i~setPropertyValue("Border", box("short",0))
 -- Set the border invisible
 textbox.i~setPropertyValue("ReadOnly", box("boolean",.true))
 -- Set the content ReadOnly
 i=i-1
 end
 /********************Saving the document as PDF************************/

 -- Set the storing properties
 xStorable = .WriterComponent~XStorable
 storeprops = bsf.createArray(.UNO~propertyValue, 3)
 storeprops[1] = .UNO~PropertyValue~new
 storeprops[1]~Name = "FilterName"
 storeprops[1]~Value = "writer_pdf_Export"
 storeprops[2] = .UNO~PropertyValue~new
 storeprops[2]~Name = "CompressMode"
 storeprops[2]~Value = 2
 xWriterDocument = .WriterComponent~XTextDocument -- Loading of textdocument
 xText = xWriterDocument~getText() -- Get the content of the document
 date=date("S")
 e=.number
 file=date"_"tb.e
 .local~file=file
 xStorable~storeToUrl("file:///C:/"file".pdf", storeprops)
 -- Store the document to the specified url

 /********************Printing of the document**************************/

 xPrintable = xWriterComponent~XPrintable
 xPrintable~print(.UNO~noProps)
 CALL SysSleep 1

 xWriterComponent~dispose() -- Closing of the Document

Page - 75

Flexible Word Processing Automation with OpenOffice.org

 /****************Saving the content of the document********************/

 oDesktop = UNO.createDesktop() -- Create an UNO Desktop service object
 xComponentLoader = oDesktop~XDesktop~XComponentLoader
 -- Get the componentloader interface from the desktop object

 -- Open a new Writer document in hidden mode
 url = "private:factory/swriter"
 props = bsf.createArray(.UNO~propertyValue,1)
 props[1] = .UNO~PropertyValue~new
 props[1]~Name = "Hidden"
 props[1]~Value = box("boolean", .true)
 xWriterComponent = xComponentLoader~loadComponentFromURL(-
 url, "_blank", 0, props) -- Load the document with specified properties
 xWriterDocument = xWriterComponent~XTextDocument /* Get the main interface
 of the textdocument */
 xText = xWriterDocument~getText() /* Get the text of the
 document */
 xTextCursor = xText~createTextCursor() /* Create a TextCursor
 within the document */

 xText~getEnd()~setstring(.filename)
 i=.i
 e=1
 /* Loop that insert the text of the textboxes and a paragraph
 breaks per textbox into the new document */
 Do While e <= i
 xText~insertControlCharacter(xTextCursor,bsf.getConstant(-
 "com.sun.star.text.ControlCharacter","PARAGRAPH_BREAK"),.false)
 xText~getEnd()~setstring(tb.e)
 e=e+1
 End
 -- Store the created document to a specified location
 xStorable = xWriterComponent~XStorable
 xStorable~storeToUrl("file:///C:/_old/".file".odt", .UNO~noProps)
 xWriterDocument~dispose()
 -- MessageDialog who informs the user that the macro was completed successfully
 window = .JWindow~new()
 jpanel1 = .JPanel~new()
 jpanel2 = .JPanel~new()
 jlabel = .JLabel~new("Das Dokument mit der Bezeichnung '".file -
 "' wurde erfolgreich erstellt")
 jbutton = .JButton~new("OK");
 bevelborder = .BevelBorder~new(0)
 jpanel1~~add(jlabel)
 jpanel2~~add(jbutton)
 window~getContentPane()~setLayout(.GridLayout~new(2,1));
 window~getContentPane()~setBorder(bevelborder);
 window~getContentPane()~~add(jpanel1)~~add(jpanel2)
 window~~pack()~~setLocationRelativeTo(window)~~setVisible(.true)-
 ~~setAlwaysOnTop(.true)
 jbutton~bsf.addEventListener('action', '', 'call next')
 Do Forever
 event = bsf("pollEventText")
 interpret event
 End

 next:
 window~dispose()
 Exit
 Exit

/****************************ROUTINE main_old**********************************/

::Routine main_old -- Routine responsible for loading old documents
 oDesktop = UNO.createDesktop() -- Create an UNO Desktop service object
 xComponentLoader = oDesktop~XDesktop~XComponentLoader
 -- Get the componentloader interface from the desktop object

Page - 76

Flexible Word Processing Automation with OpenOffice.org

 -- Open the content file of an old document in hidden mode
 url = makeUrl("C:_old\".filename)
 -- Get the document from the specified folder
 props = bsf.createArray(.UNO~propertyValue,1)
 props[1] = .UNO~PropertyValue~new
 props[1]~Name = "Hidden"
 props[1]~Value = box("boolean", .true)
 xWriterComponent = xComponentLoader~loadComponentFromURL(url, "_blank", 0, props)
 xWriterDocument = xWriterComponent~XTextDocument
 -- Get the main interface of the textdocument
 xText = xWriterDocument~getText()
 -- Get the text of the document

 xTextCursor = xText~createTextCursor() -- Create a TextCursor
 xWordCursor = xTextCursor~XWordCursor -- Create a WordCursor
 xParagraphCursor = xTextCursor~XParagraphCursor -- Create a ParagraphCursor
 xParagraphCursor~gotoendofParagraph(.true)
 .local~file = xParagraphCursor~getString()

 -- Loop that save each paragraph of the document to a variable
 a = .false
 i = 1
 Do While a = .false
 xParagraphCursor~gotonextParagraph(.false)
 a = xWordCursor~isEndofWord()
 xParagraphCursor~gotoendofParagraph(.true)
 text.i = xTextCursor~getString()
 i=i+1
 End
 xWriterComponent~dispose() -- Close the document

 -- Open the template file which is specified in the content file

 oDesktop = UNO.createDesktop() -- Create an UNO Desktop service object
 xComponentLoader = oDesktop~XDesktop~XComponentLoader
 -- Get the componentloader interface from the desktop object

 -- Open a template file
 url = makeUrl("C:_templates\".file) -- Get the textdocument from the specified folder
 props = bsf.createArray(.UNO~propertyValue,1)
 props[1] = .UNO~PropertyValue~new
 props[1]~Name = "Hidden"
 props[1]~Value = box("boolean", .true)
 xWriterComponent = xComponentLoader~loadComponentFromURL(url, "_blank", 0, props)
 xWriterDocument = xWriterComponent~XTextDocument /* Get the main interface
 of the textdocument */
 xText = xWriterDocument~getText() -- Get the text of the document
 xModel = xWriterDocument~XModel -- Get the model from the textdocument
 xController = xModel~getCurrentController -- Get the controller for the model
 /* With the help of the controller and XTextViewCursorSupplier
 we get the TextViewCursor */
 xViewCursorSupplier = xController~XTextViewCursorSupplier
 xViewCursor = XViewCursorSupplier~getViewCursor
 /* The XSearchable Interface gives the textdocument the
 possibility to search the content */
 xSearchabel = xWriterDocument~xSearchable
 xSearchDescriptor = xSearchabel~createSearchDescriptor
 xSearchDescriptor~setSearchString("insert")
 i=1
 xFound = xSearchabel~findFirst(xSearchDescriptor)
 xFound.i = xFound
 /* Loop which is searching for the searchstring within
 the document and saving the matchings to variables */
 Do While xfound <> .nil
 .local~i=i
 i=i+1
 xFound = xSearchabel~findNext(xFound, xSearchDescriptor)
 xFound.i = xFound
 End

Page - 77

Flexible Word Processing Automation with OpenOffice.org

 i=i-1
 -- Loop which gets the content that is positioned after the searchstring
 Do While i > 0
 xmodel = xFound.i~XTextRange~getText() /* Get the textrange
 of each searchstring */
 xposition = xFound.i~XTextRange~getStart()
 xTextCursor = xmodel~createTextCursorByRange(xposition)
 xViewCursor~gotoRange(xTextCursor,.false)
 xWordCursor = xTextCursor~XWordCursor()
 xWordCursor~gotoendofWord(.true)
 xWordCursor~gotonextWord(.false)
 xWordCursor~gotoendofWord(.true)
 width.i=xWordCursor~getString() -- Get the width of the textbox
 xWordCursor~gotonextWord(.false)
 xWordCursor~gotoendofWord(.true)
 height.i=xWordCursor~getString() -- Get the height of the textbox
 xWordCursor~gotonextWord(.false)
 xWordCursor~gotoendofWord(.true)
 text2.i=xWordCursor~getString() -- Get the text of the textbox
 xWordCursor~gotonextWord(.false)
 xWordCursor~gotoendofWord(.true)
 f_height.i=xWordCursor~getString() -- Get the font height of the textbox
 xWordCursor~gotonextWord(.false)
 xSentenceCursor = xWordCursor~XSentenceCursor()
 xSentenceCursor~gotoendofSentence(.true)
 font.i=xSentenceCursor~getString() -- Get the font of the textbox
 f.i=xViewCursor~getPosition() -- Get the coordinates of the searchstring
 i=i-1
 End

 xWriterComponent~dispose() -- Close the document

 -- Open a new document to insert forms and content

 xContext = UNO.connect()
 -- Get a connection to the server and retrieve the XContext object
 xMCF = xContext~getServiceManager -- Get the XMultiComponentFactory
 oDesktop = UNO.createDesktop() -- Create an UNO Desktop service object
 xComponentLoader = oDesktop~XDesktop~XComponentLoader
 -- Get the componentLoader interface from the desktop object

 -- create a new Writer document
 url = "private:factory/swriter"
 xWriterComponent = xComponentLoader~loadComponentFromURL(-
 url, "_blank", 0, .UNO~noProps)
 xWriterDocument = xWriterComponent~XTextDocument
 xText = xWriterDocument~getText()
 xServiceManager = xWriterDocument~XMultiServiceFactory
 -- Get the service manager of the textdocument

 /* Save objects that are often used in the program as '.local' variables.
 With this they can be accessed like global variables in the program. */
 .local~Context = xContext
 .local~MCF = xMCF
 .local~ServiceManager = xServiceManager
 .local~WriterComponent = xWriterComponent
 .local~Text = xText

 i = .i
 /* Loop that creates textboxes at the position of the searchstrings
 with the specified properties out of the content of the template.*/
 Do While i>0
 textbox.i = create_form("TextField", width.i, height.i, f.i)
 -- Create a textbox with the routine 'create_form'
 textbox.i~setPropertyValue("Text", text.i) -- Assign text to the textbox
 textbox.i~setPropertyValue("MultiLine", box("boolean", .true))
 -- Set the textbox multiline
 FontDescriptor = .bsf~new("com.sun.star.awt.FontDescriptor")
 -- Create a fontdescriptor
 FontDescriptor~Height = f_height.i
 FontDescriptor~Name = font.i
 textbox.i~setPropertyValue("FontDescriptor", FontDescriptor)
 -- Assign the fontdescriptor to control the font
 i=i-1
 End

Page - 78

Flexible Word Processing Automation with OpenOffice.org

 xTextCursor = xText~createTextCursor()
 -- Create a TextCursor within the document
 .local~TextCursor = xTextCursor
 xTextCursor~XDocumentInsertable~insertDocumentFromURL(-
 "file:///C:/_templates/".file,.UNO~noProps)
 xModel = xWriterDocument~XModel -- Get model from the textcomponent
 xController = xModel~getCurrentController()
 -- Get the controller of the textdocument

 -- Get the XViewCursor with the help of the controller and the XTextViewCursorSupplier
 xViewCursorSupplier = xController~XTextViewCursorSupplier
 xViewCursor = XViewCursorSupplier~getViewCursor()
 .local~ViewCursor = xViewCursor
 i=.i
 -- Loop which replaces all keywords of the template used for inserting textboxes
 Do While i > 0
 xReplaceable = xWriterDocument~XReplaceable
 xReplaceDescriptor = xReplaceable~createReplaceDescriptor()
 -- Create the replacedescriptor with the XReplaceable interface
 xReplaceDescriptor~~setSearchString("insert "width.i" "height.i -
 " "text2.i" "f_height.i" "font.i)~~setReplaceString("")
 -- Set search and replace string
 xReplaceable~replaceAll(xReplaceDescriptor)
 -- Replace all strings matching the searchstring
 i=i-1
 End

 Call textsection -- Insert a protected textsection
 i=.i
 -- Loop which changes properties of the textboxes
 Do While i > 0
 textbox.i~setPropertyValue("Border", box("short",0))
 -- Set the border invisible
 textbox.i~setPropertyValue("ReadOnly", box("boolean",.true))
 -- Set the content ReadOnly
 i=i-1
 End
 Call switch_design_mode -- Switch the design mode from design to live mode
Exit

/****************************ROUTINE state_window******************************/

::Routine state_window -- Routine that opens a jwindow which is pausing the macro

 -- create java swing objects
 label = .JLabel~new("")
 label2 = .JLabel~new("MAKRO ANGEHALTEN",0)
 label3 = .JLabel~new("-------------------------------",0)
 label4 = .JLabel~new("Bitte Inhalt eingeben!",0)
 label5 = .JLabel~new("Um Makro fortzusetzen,",0)
 label6 = .JLabel~new("bitte auf FORTSETZEN klicken!",0)
 window = .JWindow~new();
 next = .JButton~new("FORTSETZEN");
 cancel = .JButton~new("ABBRECHEN");
 icon = .Icon~new("ma.png");
 jbuttonp = .JPanel~new();
 panel1 = .JPanel~new();
 panel2 = .JPanel~new();
 etchedborder = .EtchedBorder~new(0)
 -- set the layout for the jpanels and add objects
 jbuttonp~setLayout(.GridLayout~new(2,1))
 jbuttonp~~add(next)~~add(cancel);
 panel1~setLayout(.GridLayout~new(5,1))
 panel1~~add(label2)~~add(label3)~~add(label4)~~add(label5)~~add(label6)
 panel2~~add(label);

 -- Set the jwindow to use the GridBagLayout and add objects
 window~getContentPane()~setLayout(.GridBagLayout~new());
 window~getContentPane()~setBorder(etchedborder);
 window~getContentPane()~~add(panel1)~~add(jbuttonp)~~add(panel2);
 -- Set the size of the jwindow
 toolkit=.Toolkit~getDefaultToolkit()
 screenSize = Toolkit~getScreenSize()

Page - 79

Flexible Word Processing Automation with OpenOffice.org

 boxw = screenSize~width()/3
 boxh = screenSize~height()/7
 Parse var boxw boxw '.'
 Parse var boxh boxh '.'
 If boxw<426 Then boxw=426
 If boxh<146 Then boxh=146

 -- Get the Size of the screen without the task bar
 ge = .GraphicsEnvironment~getLocalGraphicsEnvironment()
 maximumWindowBounds = ge~getMaximumWindowBounds();
 resx= maximumWindowBounds~width()
 resy= maximumWindowBounds~height()
 -- Get the position of the jwindow in the right corner of the screen
 boxpx = resx - boxw
 boxp = resy - boxh
 -- Set the location, size and visibility of the jwindow
 window~~pack()~~setLocation(boxpx,boxp)~~setSize(boxw,boxh)-
 ~~setVisible(.true)~~setAlwaysOnTop(.true)
 label~setIcon(icon);
 -- Add eventhandling to the jbutton
 next~bsf.addEventListener('action', '', 'Call next')
 cancel~bsf.addEventListener('action', '', ".local~c= true")
 cancel~bsf.addEventListener('action', '', 'Call cancel')

 /* A never ending loop which execute the messages from the
 eventhandler as a rexx program */
 Do Forever
 event = bsf("pollEventText")
 interpret event
 End
 Exit
 next:
 window~dispose()
 Exit
 cancel:
 window~dispose()
 .WriterComponent~dispose()
 Call create_gui
 Exit

/*************************ROUTINE switch_design_mode***************************/

::Routine switch_design_mode -- Routine to switch the design mode from design to live mode
 url = bsf.loadClass("com.sun.star.util.URL") -- Load the class URL
 aToggleURL = bsf.createArray(url, 1) -- Create an array to store the URL object
 aToggleURL[1] = .bsf~new("com.sun.star.util.URL")
 aToggleURL[1]~Complete = ".uno:SwitchControlDesignMode"
 xmodel = .WriterComponent~XModel -- Get the current model of the document
 xController = xmodel~getCurrentController -- Get the XController interface
 xDispatchProvider = xController~getFrame~XDispatchProvider -- Get the dispatch provider
 -- Use an URLTransformer to parse the url
 frameDesktop = .MCF~createInstanceWithContext("com.sun.star.util.URLTransformer",.Context)
 xURLTransformer = frameDesktop~XURLTransformer -- Initialisation of the XURLTransformer interface
 xURLTransformer~parseStrict(aToggleURL) -- Parse the url
 xDispatcher = xDispatchProvider~queryDispatch(aToggleURL[1],"", 0)
 -- Get all dispatcher from the specified url
 xDispatcher~dispatch(aToggleURL[1], .UNO~noProps)
 -- Execute a dispatcher from the given url

/***************************ROUTINE textsection********************************/

::Routine textsection -- Routine to insert a protected textsection accross the whole document
 .ViewCursor~gotoStart(.false)
 .TextCursor~gotoEnd(.true) -- Mark the whole document as a TextRange
 xTextSection = .ServiceManager~createInstance("com.sun.star.text.TextSection")
 -- Create an instance of the textsection

Page - 80

Flexible Word Processing Automation with OpenOffice.org

 xTextSection~XNamed~setName("xTextSection") -- Set a name for the textsection
 xTextSectionprops = xTextSection~XPropertySet()
 xTextSectionprops~setPropertyValue("IsProtected",box("boolean",.true))
 -- Set the property value IsProtected
 TextSection = xTextSection~XTextContent()
 .Text~insertTextContent(.TextCursor,TextSection,.true) -- Insert the textsection

/***************************ROUTINE create_form********************************/

::Routine create_form -- Routine to create and initialize a shape for the document
 xMSF = .WriterComponent~XMultiServiceFactory
 xControlShape = xMSF~createInstance("com.sun.star.drawing.ControlShape")~XControlShape
 -- Create a control shape

 FormComponent = "com.sun.star.form.component."ARG(1) -- Create a form component
 xControlModel = .MCF~createInstanceWithContext(FormComponent,.Context)~XControlModel
 -- Create a control model

 -- Set the position and size of the form
 xControlShape~setSize(.bsf~new("com.sun.star.awt.Size", ARG(2)*100, ARG(3)*100))
 -- The size is specified in 100th/mm
 xControlShape~setPosition(ARG(4)) -- Set the position specified in 100th/mm
 xPropertySet = xControlShape~XPropertySet -- Get the propertyset of the shape
 xPropertySet~setPropertyValue("AnchorType", bsf.getConstant(-
 "com.sun.star.text.TextContentAnchorType", "AT_PARAGRAPH"))
 -- Adjust the anchor to the paragraph

 xControlShape~setControl(xControlModel) -- Set the ControlModel of the shape
 -- Add the shape to the shapes of the document
 xDrawPageSupplier = .WriterComponent~XDrawPageSupplier
 xDrawPage = xDrawPageSupplier~getDrawPage()
 xShapes = xDrawPage~XShapes
 xShapes~add(xControlShape)
 return xControlModel~XPropertySet /* Returns the XPropertySet interface
 to give the possibility of adjustments */

Figure 49: Sourcecode of the Template Handling Tool

Page - 81

	Table of Contents
	1 Introduction
	1.1 Abstract
	1.2 Project Definition

	2 System Requirements
	2.1 OpenOffice.org
	2.1.1 History
	2.1.2 Overview
	2.1.3 Automation
	2.1.4 Implementation Languages
	2.1.5 API

	2.2 Architecture of OOo
	2.2.1.1 UNO Concept
	2.2.1.2 UNO Service Components
	2.2.1.3 Service Manager
	2.2.1.4 Component Context
	2.2.1.5 Objects
	2.2.1.6 Services
	2.2.1.7 Interfaces
	2.2.1.8 Properties
	2.2.1.9 Structs

	2.3 Object REXX (Restructured extended executor)
	2.3.1 History
	2.3.2 Overview
	2.3.3 Syntax Overview

	2.4 BSF4Rexx
	2.5 Text Documents
	2.5.1 Overview
	2.5.2 Handling Text Content
	2.5.3 Cursor
	2.5.3.1 ViewCursor
	2.5.3.2 TextCursor

	2.5.4 Loading documents
	2.5.5 Closing documents
	2.5.6 Saving documents
	2.5.7 Printing documents
	2.5.8 Search&Replace of text content
	2.5.9 Control of Shapes
	2.5.10 Dispatch Process

	2.6 Software Requirements
	2.6.1 Java										
	2.6.2 OpenOffice.org
	2.6.3 Object Rexx
	2.6.4 BSF4Rexx

	3 Realisation
	3.1 Overview
	3.2 Sourcecode Documentation
	3.2.1 Initialisation
	3.2.2 Routine create_gui
	3.2.3 Routine main_new
	3.2.4 Routine main_old
	3.2.5 Routine state_window
	3.2.6 Routine switch_design_mode
	3.2.7 Routine textsection
	3.2.8 Routine create_form

	4 Conclusion
	5 List of References
	6 Appendix
	6.1 Sourcecode

