
Facilitate Data Access in OpenOffice.org using ooRexx – Stefan Schmid Page 1

Vienna University of Economics and

Business Administration

BACHELOR THESIS

Title:

Facilitate Data Access in OpenOffice.org using ooRexx

Autor: Stefan Schmid

Matriculation Number: 0252354

Field of Study: J033 526 Bakkalaureat Wirtschaftsinformatik

Course: 1236 Vertiefungskurs VI/Bakkalaureatsarbeit -

 Electronic Commerce

Text Language: English

Tutor: ao. Univ.Prof. Dr. Rony G. Flatscher

Date: 2007-02-06

I assure

 that I have composed this bachelor thesis independently.

 that I have only used quoted resources and no other unauthorized help.

 that I have not submitted this thesis (whether at home nor abroad) to any judge for marking so far.

 that this thesis is consistent with the marked thesis from the tutor.

 Date Signature

Facilitate Data Access in OpenOffice.org using ooRexx – Stefan Schmid Page 2

Table of Contents

1. Introduction..5

1.1 Abstract..5

1.2 Research Question..5

1.3 Snippet Definition..5

2 Databases..7

2.1 Terms and Definitions ...7

2.2 Entity Relationship Diagram..9

2.3 Used Databases..10

2.3.1 MySQL...10

2.3.2 Adabas D...11

3 The technical environment...13

3.1 The Scripting Language Open Object Rexx..13

3.1.1 History..13

3.1.2 Overview..14

3.1.3 Syntax..14

3.2 The Bean Scripting Framework for Rexx ... 16

3.2.1 BSF..16

3.2.2 BSF4Rexx..17

3.2.2.1 History..17

3.2.2.2 Usage...17

3.3 OpenOffice.org..20

3.3.1 History..20

3.3.2 Overview..21

3.3.3 Architecture...22

3.3.3.1 UNO – The Base Component Technology................................22

3.3.3.2 UNO Service Components..23

3.3.3.2.1 Service Manager and Service Objects......................23

3.3.3.2.2 Interfaces...24

Facilitate Data Access in OpenOffice.org using ooRexx – Stefan Schmid Page 3

3.4 Overall Concept...27

4 Database Access...29

4.1 DatabaseContext...29

4.2 DataSources..31

4.2.1 Adding a Adabas D data source to the database context...................... 32

4.2.2 Adding a MySQL data source to the database context.......................... 36

4.2.3 Adding other data sources to the database context............................... 38

4.3 Connections...39

4.3.1 Connection through a registered data source.. 39

4.3.2 Connecting using the DriverManager...42

4.4 Manipulate and Query Data..43

4.4.1 The statement object...44

4.4.2 The RowSet Service ...50

5 Additional Database Snippet...54

5.1 Query Definition...54

5.1.1 Store a Query Definition..54

5.1.2 Execute a Query Definition...57

6 Forms..60

6.1 Create a New Form...60

6.1.1 Create a new Writer document...67

6.1.2 Create Components Inside the Master Form..68

6.1.3 Bind Forms to the Database..72

6.1.4 Create Components inside the Sub Form...73

6.1.5 Switch to the Live Mode..75

6.2 Add Form to the Database Document...77

7 Conclusion..80

8 List of Snippets...81

9 List of Illustrations..82

Facilitate Data Access in OpenOffice.org using ooRexx – Stefan Schmid Page 4

10 Bibliography...84

Facilitate Data Access in OpenOffice.org using ooRexx – Stefan Schmid Page 5

1. Introduction

This chapter provides an overview of this paper as well as the research question and

a definition of snippets.

1.1 Abstract

The thesis deals with OpenOffice.org automation in view of data access using the

scripting programming language Open Object Rexx. This data access includes the

communication of OpenOffice.org with external databases, address books and even

the creation of forms.

Firstly some theoretically background is given about databases with an focus on re-

lational databases, since they are used in snippets of this thesis. Furthermore some

installation instructions are given for the used databases.

The next chapter deals witch all the technical prerequisites that are required to ac-

complish an OpenOffice.org automation.

After the theoretically requirements have been presented, the following chapters pro-

vide several snippets regarding to the access of data sources. They also include ex-

amples for automatically creating a predefined query and a form.

1.2 Research Question

How can data sources automatically be accessed inside OpenOffice.org by using

Open Object Rexx?

1.3 Snippet Definition

Since this thesis' aim is to provide several snippets, it is important to know what a

snippet in this context actually is. In this paper a snippet is defined as a short,

runnable program which shows the solution of a specific problem. There is already a

Facilitate Data Access in OpenOffice.org using ooRexx – Stefan Schmid Page 6

project at http://codesnippets.services.openoffice.org/, which contains various snip-

pets for OpenOffice.org. Snippets of this thesis will also be available there.

http://codesnippets.services.openoffice.org/

Facilitate Data Access in OpenOffice.org using ooRexx – Stefan Schmid Page 7

2 Databases

Since this thesis is generally about how to establish connections to databases and

to work with databases within OpenOffice.org it is essential to have some basic

knowledge about databases. This chapter provides at first some terms and defini-

tions concerning databases and is followed by a short explanation about ER-dia-

grams including the presentation of the used data model. Finally there are also in-

structions for the installation of the used databases.

2.1 Terms and Definitions

A database is a central, managed collection of data, which is made usable by appli-

cation depended access methods. The database management system (DBMS) is

a software designed to administrate this collection of data. This includes e.g. the def-

inition of data types, attributes, access rights, etc. Additional, the DBMS enables

multiple users and application a concurrent access to the administrated data collec-

tion. A database system consists of a database, a DBMS and some additional ap-

plications, which facilitate editing, managing and analysis of the saved data.

OpenOffice.org's Base application can be considered as such a database system.

[HaNe05] p.194

A data model describes the structure of databases and the way data is stored.

There are several data models such as the hierarchical model, the network model

and the object database model. Some of them, such as the hierarchical model and

the network model, are old and outdated whereas the object database model is a

rather new concept inspired by the object oriented paradigm. However the most

common data model these days is the relational model and also the databases used

in this thesis follow this model.

The relational model concept was theoretically invented by the IBM employee E. F.

Codd in 1970. However, due to the lack of hardware resources in these days, the

first implementation was made not until 1978. The basic concept of the relational

model is a two-dimensional table consisting of rows and columns whereas a row is

Facilitate Data Access in OpenOffice.org using ooRexx – Stefan Schmid Page 8

sometimes also called “tuple”. In this table data is saved as shown in illustration 2.1.

It presents a table where data of customers are stored. [Geis05]

Relations between tables are established with the use of primary keys and foreign

keys. A primary key must be non-ambiguous so that each tuple is unequivocally

characterized. In the table shown above the primary key would be the data field cus-

tomer id (cid). Using this key it is possible to create relations to other tables.

[Geis05]

Illustration 2.2 shows how the tables customer and sales are connected.

The primary key of the customer table (cid) is the foreign key of the sales table. Fur-

thermore the sales table has a primary key (sid) to provide an unambiguous ID. As a

result a connection between these two tables is created and now it is possible to find

out which customer bought which products, stored under which sales ID.

Illustration 2.1: Customer Table.

Illustration 2.2: Connection of Tables Customer and Sales.

Facilitate Data Access in OpenOffice.org using ooRexx – Stefan Schmid Page 9

2.2 Entity Relationship Diagram

There are several methods and diagrams for modeling databases. One of the most

common notations for the conceptional description of relational databases is the En-

tity-Relationship-Diagram (ER-Diagram). In this chapter a short introduction of ER-

Diagrams is provided, used to describe the model of a computer shop, which is used

in several snippets below.

Generally a model is used to represent a slice of reality. This is done by abstraction

i.e. to only retain information which is relevant for the modeled problem.

Illustration 2.3 shows an ER-Model of a computer shop.

Basically an ER-Diagram consists of entities (represented by rectangles), holding at-

tributes (represented by ellipses) and connected via relationships (represented by

diamonds). The attribute of an entity which is used as a primary key is underlined

like 'cid'. Additionally ER-Diagrams provide the possibility to indicate the number of

times each entity participates in relationships. E.g. the customer-product relationship

has an cardinality of m:n, which means that one customer can buy several products

or one product can be bought by several customers. [SKSu02]

A database that conforms to an ER-Diagram can be represented by a collection of

tables. For each entity and for relationships, which have a cardinality of m:n, a table

Illustration 2.3: ER-Diagram of a Computer Shop.

Facilitate Data Access in OpenOffice.org using ooRexx – Stefan Schmid Page 10

with an unique table name is created. These tables consist of multiple columns,

which are equivalent to the attributes of the associated entity. The conversion of the

diagram to the table format is required to implement this model to a database. Illus-

tration 2.4 shows the tables resulting from the transformation.

2.3 Used Databases

In this chapter the installation procedure of the databases used in the snippets is de-

scribed. It is necessary to follow the installation steps in order to get the snippets

work, which use the specified databases.

2.3.1 MySQL

The easiest way to get MySQL run on your system is to download and install

XAMPP1, which is a package containing Apache, MySql, PHP and Perl.

You can download XAMMP here: http://www.apachefriends.org/en/xampp.html

1 XAMPP is provided by Apache Friends a non-profit project to promote the Apache web server.

Illustration 2.4: Table Format of the Computer Shop ER-Diagram.

http://www.apachefriends.org/en/xampp.html

Facilitate Data Access in OpenOffice.org using ooRexx – Stefan Schmid Page 11

Afterwards a JDBC driver has to be installed which is needed by OpenOffice.org to

establish a connection to MySQL. The driver used in the snippets of this thesis is a

Java class called: “com.mysql.jdbc.Driver”. Sometimes in other sources beyond this

thesis the driver “org.gjt.mm.mysql.Driver” is used. This driver was an old imple-

mentation and its name still exists because of backwards compatibility reasons, but it

actually uses the code of the first mentioned driver “com.mysql.jdbc.Driver” now.

A jar package containing this driver can be downloaded here:

http://dev.mysql.com/downloads/connector/j/5.0.html

This jar file has to be registered in OpenOffice.org under Tools → Options →

OpenOffice.org → Java by pressing the button “Class Path...” and afterwards the

button “Add Archive...”.

In the examples of this thesis the MySQL database “test” is used, which comes with

the distribution of XAMPP by default. However, the user “stefan” with the password

“apple” is used in all MySQL snippets. This user can be created by going to the URL

“localhost” in your web browser. Then you have to choose on the left frame “php-

MyAdmin” afterwards “Privileges” and “Add a new user”. Provide the appropriate

data there and select all global privileges. Bear in mind that XAMPP has to run dur-

ing the whole process.

2.3.2 Adabas D
Download the Personal Edition of Adabas D 13. for you operating system and the li-

cense key in ZIP or XML format here:

http://www.softwareag.com/Corporate/products/adabas/adad/download/default.asp

Execute Setup.exe, choose Standard setup and give the required information about

the XML license file. Next create an environment variable named DBROOT and set

as value the path to your installation folder (e.g. C:\Adabas D 13.01). Afterwards

restart OpenOffice.org (also close the Quickstarter).

The distribution of Adabas D already comes with a sample database called “mydb”

which is used in this thesis. This database needs the following data to be accessed:

http://www.softwareag.com/Corporate/products/adabas/adad/download/default.asp
http://dev.mysql.com/downloads/connector/j/5.0.html

Facilitate Data Access in OpenOffice.org using ooRexx – Stefan Schmid Page 12

User: demo

Password: demo

The database service can be started by executing e.g:
C:\Adabas D 13.01\bin>x_start mydb

Facilitate Data Access in OpenOffice.org using ooRexx – Stefan Schmid Page 13

3 The technical environment

This chapter deals with the technical prerequisites that are required to conduct an

OpenOffice.org automation with Open Object Rexx.

3.1 The Scripting Language Open Object Rexx

In the following provides the evolutionary history of Open Object Rexx and shows

some features of this scripting language.

3.1.1 History

Open Object Rexx (ooRexx) has its origin in Rexx, a scripting programming lan-

guage, created by the IBM engineer Mike F. Cowlishaw in 1979. Its purpose was to

replace EXEC II batch language for IBM's mainframes. Over the years Rexx became

the standard scripting language for all IBM's operating systems. [Flat06] p.1

In 1988 a group of IBM engineers started their work to design an object oriented ex-

tension of Rexx. One strong requirement was the backward compatibility with Rexx,

in order that previously developed Rexx programs are still able to work. In 1997 the

commercial version of this project, called Object Rexx, was published. [Flat06] p.4

After IBM had announced to release Object Rexx under the Common Public License

in 2004, the project's source code was handed over to the REXX Language Associa-

tion2. On February, 22, 2005 the first public release of Open Object Rexx was even-

tually announced. [Wiki06-1]

2 „The Rexx Language Association (RexxLA) is an independent, non-profit organization dedicated to promot-
ing the use and understanding of the Rexx programming language.“ [RexxLA06]

Facilitate Data Access in OpenOffice.org using ooRexx – Stefan Schmid Page 14

3.1.2 Overview

This section gives a short overview about the main features of Open Object Rexx.

● An English-like language:

Rexx's command names are oriented to the common English language. In-

structions, such as SAY, PULL, DO, END try to ensure an easy learning of

this scripting language.

● Fewer rules:

Rexx is not case sensitive, one command can stretch across multiple lines

and even keywords (e.g. the above mentioned) are only reserved in context.

● Interpreted, not compiled:

Rexx is, in contrast to Java, an interpreted language and it does not have to

be compiled by a compiler.

● Many useful built-in functions and methods:

Several, very useful functions and methods are available.

● Typeless variables:

In Rexx you do not have to declare the type of a variable.

● Powerful string handling:

Rexx includes a wide range of functionalities for manipulating character

strings.

● Decimal Arithmetic:

Rexx based its arithmetic operations unlike most other programming language

on the decimal arithmetic. In contrast to the widely used binary arithmetic, this

calculation method is more accurate.

● Clear error messages and powerful debugging:

If an error exists, Rexx displays a detail explanation of the error.

[ooRx06]

3.1.3 Syntax

The Syntax of ooRexx is not explained in this thesis. Please refer to [Flat06] p.5 ff,

which gives a very good introduction to the ooRexx syntax. Furthermore [ooRx06-1]

Facilitate Data Access in OpenOffice.org using ooRexx – Stefan Schmid Page 15

provides the complete ooRexx reference and a programming guide, which describes

the syntax and the concepts of ooRexx in detail.

Facilitate Data Access in OpenOffice.org using ooRexx – Stefan Schmid Page 16

3.2 The Bean Scripting Framework for Rexx

The Bean Scripting Framework for Rexx (BSF4Rexx) is needed to create the con-

nection between ooRexx and OpenOffice.org, or more precisely its Java interfaces.

At the beginning of this chapter, the Bean Scripting Framework (BSF) is explained in

general followed by a declaration of the more concrete BSF4Rexx.

3.2.1 BSF
„Bean Scripting Framework (BSF) is a set of Java classes which provides

scripting language support within Java applications, and access to Java ob-

jects and methods from scripting languages.“ [Apac01]

For this thesis the last mentioned case is relevant because we use the scripting lan-

guage ooRexx to access OpenOffice.org's Java interfaces. A similar example would

be to write JSPs3 in a scripting language while having access to the Java class li-

brary.

The BSF architecture consists of two primary components: [Apac02]

● BSF Manager

The BSF Manager is responsible for all the registered scripting execution en-

gines. Additional it maintains the object registry that permits script access to

Java objects.

● BSF Engine

The BSF Engine provides an interface that has to be implemented by a script-

ing language, which wants to use BSF. Through this interface an abstraction

away from the specific scripting language capabilities is reached. As a conse-

quence a generic handling of script execution and object registration, within

the context of the scripting language engine, is provided.

3 JSP stands for Java Server Pages, which is a Java technology that allows to create e.g. HTML content dy-
namically.

Facilitate Data Access in OpenOffice.org using ooRexx – Stefan Schmid Page 17

There are already several BSF Engines existing and each of them supports a specif-

ic scripting languages such as Javascript, NetRexx, Python, Tcl, XSLT Stylesheets.

However, in order to use ooRexx an own BSF engine is needed, called BSF4Rexx.

[Apac01]

3.2.2 BSF4Rexx

BSF4Rexx is the Bean Scripting Language for Rexx. It allows any Java program to

invoke Rexx and, the other way round, Rexx scripts are able to get access to Java

classes and can communicate with Java objects.

3.2.2.1 History

The development of BSF4Rexx started after Peter Kalender, a student of the Uni-

versity of Essen, had carried out a proof of concept in the course of a seminar paper

assigned by Prof. Flatscher. Further development followed by Prof. Flatscher until

the first version of BSF4Rexx called “Essener Version” was born in 2001. This ver-

sion was only able to enable Java to execute Rexx Code. [Flat06-1] p.3

In 2003 the “Augsburger Version” was published. In this version it was possible for

the first time to access Java Classes, objects and methods from ooRexx. This is ac-

tually the functionality we need to establish a connection to OpenOffice.org.

[Flat06-1] p.4

The latest version is the “Vienna Version”, which is still enhanced by Prof. Flatsch-

er. Since this version strict Java type definitions are not necessary anymore and

some handy tools were added such as new functions for working with

OpenOffice.org. The latest release of the Vienna Version is 2.6 and can be down-

loaded at http://wi.wu-wien.ac.at/rgf/rexx/bsf4rexx/current/.

3.2.2.2 Usage

The next short examples show how to get the BSF4Rexx support within an ooRexx

script.

/* print java version using BSF.CLS */

http://wi.wu-wien.ac.at/rgf/rexx/bsf4rexx/current/

Facilitate Data Access in OpenOffice.org using ooRexx – Stefan Schmid Page 18

s = bsf.loadClass('java.lang.System')
jv = s~getProperty('java.version')
say "Used java version: "jv

::requires BSF.CLS /* get BSF support */

Snippet 3.1 – Get the BSF4Rexx support.

Snippet 3.1 prints the version of the currently used Java Runtime Environment. The

last command is a requires directive which calls BSF.CLS.

BSF.CLS provides methods, such as bsf.loadClass(), that give us the possibili-

ty to access Java. With the use of bsf.loadClass() a Java class object can be

addressed, in this case a reference of the java.lang.System class object is

made. The variable “s” represents a Java object now.

Looking at the Java API4 you can see that the java.lang.System class provides

several methods, which can be called now by simply sending a message with the

name of the desired method to the Java object s.

The method getProperty('java.version') returns a string, which can be

printed using the ooRexx method SAY.

All the following snippets in this thesis, including Snippet 3.2, use the directive

::requires UNO.CLS instead of ::requires BSF.CLS. The reason for this is,

that UNO.CLS provides a lot of useful methods for working with OpenOffice.org and

eventually calls BSF.CLS itself.

/* open an empty Writer document using UNO.CLS */

componentLoader = UNO.createDesktop()~XDesktop~XComponentLoader

writerComponent = componentLoader~loadComponentFromURL(-
 "private:factory/swriter", "_blank", 0, .UNO~noProps)

::requires UNO.CLS /* get the UNO support including BSF.CLS */

Snippet 3.2 – Get an empty Writer document.

4 The Java API is available on http://java.sun.com/j2se/1.5.0/docs/api/

Facilitate Data Access in OpenOffice.org using ooRexx – Stefan Schmid Page 19

Snippet 3.2 opens an empty Writer document. The important thing for this snippet to

notice is that UNO.createDesktop() is a method provided by UNO.CLS. The re-

turned service object supports interfaces, which can be easily retrieved by simply

sending the name of the interface to the object

(e.g. ~Xdesktop).

Moreover, important to notice is, that the code runs on all platforms unchanged.

In conclusion UNO.CLS provides a lot of useful standard routines, which make your

code much shorter, while working with OpenOffice.org, as shown in [Burg06] p22 f.

Additionally, in the context of OpenOffice.org automation, the code using ooRexx

and BSF4Rexx including UNO.CLS is more concise than using Java directly.

Facilitate Data Access in OpenOffice.org using ooRexx – Stefan Schmid Page 20

3.3 OpenOffice.org

Mission statement:

„To create, as a community, the leading international office suite that will

run on all major platforms and provide access to all functionality and data

through open-component based APIs and an XML-based file format.“

[Open06-1]

3.3.1 History

OpenOffice.org has its seeds in StarOffice which was developed by a German com-

pany called StarDivision in the mid 80s. In 1999 StarOffice was acquired by Sun

Microsystems and some months later StarOffice 5.2 was released free of charge. In

2000 Sun Microsystems made the source code available for the public and a new

project was born known as OpenOffice.org. [Wiki06] [Open06-1]

Actually StarOffice still exists as the commercial office suite of Sun Microsystems

built on OpenOffice.org's source code. Additionally it includes some licensed-in,

third-party technologies such as certain fonts, an extensive ClipArt Gallery, Flash ex-

port feature, etc. [StarO1]

In October 2005 OpenOffice.org 2.0 was formally released5. This new version was

developed with aims of better performance with improved speed and lower memory

usage, greater scripting capabilities and better integration. Furthermore a new

database front end was designed. Even though it was possible to access data

sources with earlier versions, OpenOffice.org 2.0 provides an own application called

Base6 for that purpose. [Wiki06]

The latest version at the time of writing is OpenOffice.org 2.1 which was released in

December 12th 2006.

5 The first beta version was already released in 2003.
6 See 3.3.2. Overview on page 21 for more information about Base.

Facilitate Data Access in OpenOffice.org using ooRexx – Stefan Schmid Page 21

3.3.2 Overview

OpenOffice.org 2.0 is a multi platform7 office suite, available in many different lan-

guages. It is an open source product and free available including the source code

under the GNU Lesser General Public License (LGPL). One of the project aims is to

provide an alternative to the market dominating office suite Microsoft Office. For that

reason it supports most of the file formats found in Microsoft Office and many other

applications. [Wiki06]

However OpenOffice.org's native file format is the vendor-neutral OASIS8 OpenDoc-

ument file format, which is based on XML. [Open06-1]

OpenOffice.org comprises the following applications: [Open06-2]

● Writer: The word processor (similar to Microsoft Word). The bachelor paper

[Hinz06] deals with the automation of the Writer application.

● Calc: The spreadsheet program (similar to Microsoft Excel). The bachelor pa-

per [Prem06] deals with the automation of the Calc application.

● Impress: The presentation program (similar to Microsoft Power Point).

● Draw: The vector graphics editor.

● Math: A tool for creating and editing formulas.

● Base: (similar to Microsoft Access) Base is a database application. Since this

thesis is about Data Access, this application will be described in more detail.

With Base you can create and modify tables, forms, queries and reports ei-

ther using an external database or the built in HSQL database engine

(HSQLDB). Moreover it supports flat file formats such as CSV and several ad-

7 Multi platform means that it can be deployed on multiple system platforms such as Microsoft Windows,
GNU/Linux, Sun Solaris, Mac OS X and FreeBSD [OpenSR].

8 OASIS stands for “Organization for the Advancement of Structured Information Standards”. It is a global
consortium that drives the development, convergence, and adoption of e-business standards. [OASIS06].

Facilitate Data Access in OpenOffice.org using ooRexx – Stefan Schmid Page 22

dress books like MS Outlook, Mozilla and LDAP9 which can act as data

sources. [Open06-2]

Like the previously mentioned applications Base also has a similar look and

feel to Microsoft's counterpart MS Access. Both have graphical interfaces and

wizards to provide an easy to use database application.

HSQLDB, Base's integrated database, is a relational database management

system written in Java.

3.3.3 Architecture

This chapter describes the architecture of OpenOffice.org, which is needed to know

in order to understand how the automation works.

3.3.3.1 UNO – The Base Component Technology

UNO is an abbreviation for Universal Network Object, which is the interface based

component model of OpenOffice.org. So OpenOffice.org consists of several UNO

components, whereas their interfaces are described in an IDL10 module. One specific

application within OpenOffice.org, for example, the word processor Writer, is simply

a collection of different UNO components. These components are reusable, which

means that a UNO component that is used in the Writer application can also be a

part of the Calc application as shown in illustration 3.1. [Flat05] p.4

9 LDAP stands for Lightweight Directory Access Protocol and is an Internet protocol, which is used by email
applications and other programs to look up information from a server.

10 IDL stands for Interface Description Language. See [ApiO03] for the OpenOffice.org IDL reference.

Facilitate Data Access in OpenOffice.org using ooRexx – Stefan Schmid Page 23

The communication between the UNO components is performed by the UNO remote

protocol (urp), which uses TCP/IP sockets by default. As a consequence it is possi-

ble to run OpenOffice.org as a client-server application over a network on different

machines. [Flat05] p.6

3.3.3.2 UNO Service Components

In this section OpenOffice.org's essential concept of services, interfaces, properties

and attributes will be explained by using, unless otherwise noted, cutouts of

Snippet 4.1.

Each UNO component can be considered as a service which provides additional ser-

vices, interfaces and properties. To create such services, the Service Manager is

needed. [Burg06] p.17

3.3.3.2.1 Service Manager and Service Objects

„UNO introduces the concept of service managers, which can be consid-

ered as factories that create services.“ [Deve05] p.36

Illustration 3.1: Configuring OpenOffice.org Applications from UNO compo-

nents. [Flat05] p.5

Facilitate Data Access in OpenOffice.org using ooRexx – Stefan Schmid Page 24

The following cutout creates a Service Manager. In more detail the method

UNO.connect, provided by UNO.CLS11, is used to get the office component context.

Using the method getServiceManager() of the component context, the Service

Manager can be retrieved. [Deve05] p.37

/* get the service manager */
xContext = UNO.connect()
XMcf = xContext~getServiceManager

With the help of this Service Manager (XMcf) it is possible to create instances of

service components, which offer you access to the complete office functionality

available through the API. The creation of an instance is accomplished by using the

Service Manager's method createInstanceWithContext(), supplying the fully

qualified name of the UNO component and the previously retrieved component con-

text as shown in the following cutout. [Flat05] p.5 f, [Deve05] p.43

/* create a intance of the DatabaseContext service */
databaseContext = xMcf~createInstanceWithContext(-

"com.sun.star.sdb.DatabaseContext", xContext)

In the case mentioned in the cutout an instance of the com.sun.star.sdb.-
DatabaseContext is created. Such an instance is called “service object” but it is

also termed as “service” or just “object”.

In some examples, especially older ones, you might find instead of createIn-
stanceWithContext() the method createInstance(), which is used for cre-

ating an instance of a service component. However, it is recommended to use the

first one because in the method createInstance() the component context is not

passed, which should be used to fill missing parameters. [Deve05] p.92

3.3.3.2.2 Interfaces

„An interface specifies a set of attributes and methods that together define

one single aspect of an object.“ [Deve05] p.39

E.g. the previously instantiated DatabaseContext service supports as shown in

Illustration 3.2 among others the XNameAccess interface.

11 See 3.2.2.2 Usage on page 17 for more information about UNO.CLS.

Facilitate Data Access in OpenOffice.org using ooRexx – Stefan Schmid Page 25

An interface can inherit one or more other interfaces, which makes the reuse of inter-

face specifications possible. Moreover multiple inheritance12 is allowed since

OpenOffice.org 2.0. [Deve05] p.39

The following cutout retrieves the XNameAccess interface of the

DatabaseContext serivce.

/* retrieve the XNameAccess interface of the DatabaseContext */
xNameAccess = databaseContext~XNameAccess

You should consider that interfaces possess a capital 'X' in front of their names

whereas services do not. Furthermore the instances' names of services and inter-

faces always begin with a lowercase letter in this thesis. This will help to distinguish

between interfaces, services and instantiated objects of them.

The retrieval of an interface has a purpose, certainly. We need it to get access to

methods, properties and attributes provided by the interface.

Methods

The following line of code calls a method named hasByName(), provided by the

XNameAccess interface of the DatabaseContext service.

say xNameAccess~hasByName("Bibliography") --returns 1 if it exists

12 In this case multiple inheritance refers to the ability to inherit more than one interface

Illustration 3.2: DatabaseContext's interfaces.

Facilitate Data Access in OpenOffice.org using ooRexx – Stefan Schmid Page 26

Attributes

Attributes are only available at interfaces and describe additional features of an

object. Attributes, unlike properties, can be accessed directly using get- and set-

methods. [Deve05] p.40

For example the XDocumentDataSource interface provides an attribute called

DatabaseDocument. This can easily be retrieved by using the get-method of the

attribute as shown in the following cutout taken from Snippet 4.2.

/* get OfficeDatabaseDocument service via the 'DatabaseDocument'attribute*/
xOfficeDatabaseDocument = xDocumentDataSource~getDatabaseDocument

Properties

Properties are only available via services. Whereas methods and attributes rep-

resent features, which are integral parts of the object, properties define abilities

that are not considered as an integral or structural part of the object. The object

has to support a special interface which allows you to work with properties, which

is usually the XPropertySet interface. [Deve05] p.41

It provides 2 methods to set or get the required Property:

● getPropertyValue(aPropertyName, aValue)

● setPropertyValue(aPropertyName, aValue)

Sometimes the value of a property expect an array comprising several properties

again as shown in the following cutout taken from Snippet 4.3.

props = bsf.createArray(.UNO~propertyValue,1)
props[1] = .UNO~PropertyValue~new
props[1]~Name = "JavaDriverClass"
props[1]~Value = "com.mysql.jdbc.Driver"
xPropertySet~setPropertyValue("Info", props)

The method bsf.createArray(), provided by BSF.CLS, creates an Java ar-

ray, with the length of one.

Facilitate Data Access in OpenOffice.org using ooRexx – Stefan Schmid Page 27

3.4 Overall Concept

In the previous chapters all the single parts, the OpenOffice.org automation is made

up of, are explained. Illustration 3.3 gives an idea about the overall concept and the

way the parts are composed.

The OORexx script calls UNO.CLS, which provides as explained in 3.2.2.2 Usage on

page 17 methods that facilitate working with OpenOffice.org. Within UNO.CLS, BS-

F.CLS is called which can be considered as a bridge between the scripting language

ooRexx and Java.

Next the Universal Network Object (UNO) of OpenOffice.org provide a bridge be-

tween OpenOffice.org and a programming language, which is in this case Java.

The result is an OpenOffice.org automation which allows ooRexx to have access to

all OpenOffice.org objects.

The advantage of this automation way instead of using Java directly is, that the

scripting language ooRexx is very easy to learn and to apply. Additionally UNO.CLS

Illustration 3.3: From ooRexx to OpenOffice.org. [Prem06] p.24

Facilitate Data Access in OpenOffice.org using ooRexx – Stefan Schmid Page 28

provides a lot of features which significantly reduce the lines of code compared to

Java.

Facilitate Data Access in OpenOffice.org using ooRexx – Stefan Schmid Page 29

4 Database Access

Beginning with this chapter snippets are provided for several topics beginning, as

the title of this thesis suggests, with the Database Access.

Regarding the database access in OpenOffice.org, the most

important services are com.sun.star.sdb.DatabaseContext and

com.sun.star.sdb.DataSource.

These services are described blow in more detail.

4.1 DatabaseContext
“A data source contains information how to create a connection to a

database, such as, which database driver should be used, for which user

should a connection be established, etc. The context stores data sources

under a given name.” [ApiO03-1]

Therefore the DatabaseContext, which is a container for data sources, can be

considered as the starting point for applications which aim to connect to data

sources already defined in the OpenOffice API. [Deve05] p.830

The following example (Snippet 4.1) prints all data sources which are registered in

the DatabaseContext (e1_print_registered_data_sources.rex).

/* get the service manager */
xContext = UNO.connect()
XMcf = xContext~getServiceManager

/* create a instance of the DatabaseContext service */
databaseContext = xMcf~createInstanceWithContext(-
"com.sun.star.sdb.DatabaseContext", xContext)

/* retrieve the XNameAccess interface of the DatabaseContext */
xNameAccess = databaseContext~XNameAccess

/* list all datasource names using the the method getElementNames */
DO n OVER xNameAccess~getElementNames
 say n
END

Facilitate Data Access in OpenOffice.org using ooRexx – Stefan Schmid Page 30

say xNameAccess~hasByName("Bibliography") --returns 1 if it exists
say xNameAccess~getByName("Bibliography") --returns the data source

::requires UNO.cls -- get UNO support

Snippet 4.1 - Print registered data sources.

The result of this snippet is, among others, a list of all registered data sources, which

can also be achieved through the menu Tools → Options... → OpenOffice.org Base

→ Databases of any OpenOffice GUI instance. (cf. Illustration 4.1)

The DatabaseContext service holds the registered data sources in a

container. To access this data sources the service implements the

com.sun.star.container.XNameAccess interface which provides the

getElementsNames() method returning a sequence of all element names in this

container. This sequence can be easily enumerated by the ooRexx DO - OVER loop

as you can see in the following cutout.

/* list all data source names using the the method getElementNames */
DO n OVER xNameAccess~getElementNames
 say n
END

Illustration 4.1: Registered Databases.

Facilitate Data Access in OpenOffice.org using ooRexx – Stefan Schmid Page 31

Additionally, the XNameAccess interface possesses the method getByName() to

get a specific data source by its name and the method hasByName() to retrieve in-

formation about the existence of a particular data source. [Deve05] p.53f

say xNameAccess~hasByName("Bibliography") --returns 1 if it exists

To observe the result of these two methods a say command has been written before.

The first method (hasByName()) will probably put a “1” on the monitor because it

asks about the existence of the Bibliography13 database, which is a sample database

delivered with the OpenOffice.org distribution. If you ask for a data source which

does not exist the hasByName()method will return a “0”.

say xNameAccess~getByName("Bibliography") --returns the data source

To obtain a specific data source registered in the OpenOffice DatabaseContext

the getByName() method can be used. The previous line of code will cause an out-

put similar to “$Proxy0@b4168ac2“ which represents nothing more than a Java-Ob-

ject. We will use this Object in later snippets to work with the data source (e.g. es-

tablish a connection). In order to get a description about the object, you can send the

message toString() to the object.

4.2 DataSources
“The com.sun.star.sdb.DataSource service is a factory to establish

database connections.” [APIO03]

It provides several properties (e.g. name, URL, user password) which give informa-

tion about how to connect to a database and which tables should be displayed. Over

its interfaces it is possible to get access to query definitions, forms, reports, etc. [De-

ve05]

If you want to store any data source into the database context, an OpenDocument

Database (odb-File) has to he created at first.

13 The Bibliography database can be used to create and maintain a bibliography in the OpenOffice.org Writer
application. [Open06] p.326 ff

Facilitate Data Access in OpenOffice.org using ooRexx – Stefan Schmid Page 32

A data source registered at the database context has five main aspects: [Deve05]

p.830

● The general information necessary to connect to a data source,

● Settings to control the presentation of tables and queries,

● SQL query definitions,

● Database forms and

● Database reports.

All this information is held in the odb-File. Later there will also be examples which

demonstrate how to connect to data sources, which are not registered at the

database context. These data sources cannot store e.g. query definitions.

The following snippets will explain the procedure of adding data sources of different

databases into the database context.

4.2.1 Adding a Adabas D data source to the database

context

In Snippet 4.2 a Adabas D database will be stored into the database context. For

general information about the Adabas D database see 2.3.2 Adabas D on page 11.

There you can also find setup instructions, which are necessary to get this snippet

work. Since this snippet only saves the information for establishing a connection but

actually does not connect to the database, the database service does not need to

run.

/* get the service manager */
xContext = UNO.connect()
XMcf = xContext~getServiceManager

/* retrieve the DatabaseContext and get its XSingleServiceFactory interface */
xSingleServiceFactory = xMcf~createInstanceWithContext(-
 "com.sun.star.sdb.DatabaseContext", xContext)~XSingleServiceFactory

/* create a new generic data source */
dataSource = xSingleServiceFactory~createInstance

Facilitate Data Access in OpenOffice.org using ooRexx – Stefan Schmid Page 33

/* setting the necessary data source properties */
xPropertySet = dataSource~XPropertySet
/* Adabas D URL */
xPropertySet~setPropertyValue("URL", "sdbc:adabas::MYDB")
/* force password dialog */
xPropertySet~setPropertyValue(-
 "IsPasswordRequired",.bsf~new("java.lang.Boolean","true"))
/* suggest 'demo' as user name */
xPropertySet~setPropertyValue("User", "demo")

/* get the XDocumentDataSource interface of the data source */
xDocumentDataSource = dataSource~XDocumentDataSource

/* get the OfficeDatabaseDocument service via the 'DatabaseDocument' attribute*/
xOfficeDatabaseDocument = xDocumentDataSource~getDatabaseDocument

/* retrieve the XStorable, xClosable, and XModel interface */
xStorable = xOfficeDatabaseDocument~XStorable
xCloseable = xOfficeDatabaseDocument~XCloseable
xModel = xOfficeDatabaseDocument~XModel

/* register it with the database context */
xNamingService = xSingleServiceFactory~XNamingService
url = uno.ConvertToURL("c:/odbfiles/adabas1.odb")
xStorable~storeAsURL(url,xModel~getArgs)
xNamingService~registerObject("adabas-test", dataSource)
say "database document has been stored to '"url"' !"

/* close database */
xCloseable~close(.true)

::requires UNO.cls -- get UNO support

Snippet 4.2 - Adding a Adabas D data source.

As a result of running Snippet 4.2 two events should have occurred:

Illustration 4.2: Output of Snippet 4.2.

Facilitate Data Access in OpenOffice.org using ooRexx – Stefan Schmid Page 34

1) There was an additional entry created in the database context called

adabas-test, which represents the Adabas D database MYDB. You can run

Snippet 4.1 to check this.

2) Furthermore, as you can see in the command line, an odb-File was created in

the specified folder (c:/odbfiles/).

After opening the newly created file, you have direct access to the Adabas D demo

database 'MYDB' (i.e. all change, which will be made affect MYDB) and all the tables

in MYDB are shown. If this is not the case assure that the database service is run-

ning and the the right password has been typed in ('demo').

The Snippet explained in more detail:

xSingleServiceFactory = xMcf~createInstanceWithContext(-
 "com.sun.star.sdb.DatabaseContext", xContext)~XSingleServiceFactory

With the aid of the service manager, the DatabaseConext can be instantiated,

which supports, among others, the XSingleServiceFactory interface.

dataSource = xSingleServiceFactory~createInstance

At first an empty, abstract data source has to be created, using the

createInstance() method, which is supplied by the XSingleServiceFactory

interface.

xPropertySet = dataSource~XPropertySet
/* Adabas D URL */
xPropertySet~setPropertyValue("URL", "sdbc:adabas::MYDB")
/* force password dialog */
xPropertySet~setPropertyValue(-
 "IsPasswordRequired",.bsf~new("java.lang.Boolean","true"))
/* suggest 'demo' as user name */
xPropertySet~setPropertyValue("User", "demo")

This generic data source has to be filled with the appropriate properties14. The value

of the property URL is set to the MYDB database. Furthermore, there is a prefix

(sdbc:adabas) which specifies the type of the data source, in this case it is a Adabas

D database.

14 For more information about properties see 3.3.3.2.2 Interfaces on page 24.

Facilitate Data Access in OpenOffice.org using ooRexx – Stefan Schmid Page 35

The IsPasswordRequired parameter has to be set “true”, because the MYDB

database demands a password. Since the corresponding value must be a Java ob-

ject, .bsf~new is used to instantiate a java.lang.Boolean object with the value true.

Finally a user name can be suggested, which will appear e.g. after entering the cre-

ated data source via the OpenOffice.org Base application.

xDocumentDataSource = dataSource~XDocumentDataSource

/* get the OfficeDatabaseDocument service via the 'DatabaseDocument'attribute*/
xOfficeDatabaseDocument = xDocumentDataSource~getDatabaseDocument

The XDocumentDatasource interface, which is supported by the previously creat-

ed data source, possesses an attribute called DatabaseDocument. This attribute15

provides access to the OfficeDatabaseDocument, which represents a storable

odb-document.

xStorable = xOfficeDatabaseDocument~XStorable
xCloseable = xOfficeDatabaseDocument~XCloseable
xModel = xOfficeDatabaseDocument~XModel

The XStorable, XClosable and XModel interfaces can be retrieved via the Office-

DatabaseDocument and are required, as the names suggest, to store, close and

to provide the arguments of the model.

xNamingService = xSingleServiceFactory~XNamingService
url = uno.ConvertToURL("c:/odbfiles/adabas1.odb")
xStorable~storeAsURL(url,xModel~getArgs)
xNamingService~registerObject("adabasd-test", dataSource)

Before the data source can be registered at the database context it has to be stored

under a certain URL, which is determined in the “url” variable. The method uno.Con-

vertToURL provided by UNO.CLS takes an operating system independent URL and

converts it into a platform independent filename. During this process it also adds a

file:/// prefix, which is demanded by OpenOffice for absolute file URLs. If the speci-

fied folder does not exist, it will be created automatically.

The storeAsURL() method is used to store the data source. The second parame-

ter (beside url) passed to the method, describes several properties of the docu-

15 For more information about attributes see 3.3.3.2.2 Interfaces on page 24.

Facilitate Data Access in OpenOffice.org using ooRexx – Stefan Schmid Page 36

ment16. Afterwards the previously created generic data source can be registered un-

der a certain name (adabasd-test) by the registerObject()s method.

xCloseable~close(.true)

Eventually the document is closed using the close method provided by the

XCloseable interface.

4.2.2 Adding a MySQL data source to the database context

This snipped registers a MySQL database at the database context. To run it suc-

cessfully, follow the MySQL setup instructions explained in 2.3.1 MySQL on page

10.

/* get the service manager */
xContext = UNO.connect()
XMcf = xContext~getServiceManager

/* retrieve the DatabaseContext and get its XSingleServiceFactory interface */
xSingleServiceFactory = xMcf~createInstanceWithContext(-
 "com.sun.star.sdb.DatabaseContext", xContext)~XSingleServiceFactory

/* create a new generic data source */
dataSource = xSingleServiceFactory~createInstance

/* setting the necessary data source properties */
xPropertySet = dataSource~XPropertySet
/* MySQL URL */
xPropertySet~setPropertyValue("URL", "jdbc:mysql://localhost:3306/test")
/* force password dialog */
xPropertySet~setPropertyValue(-
 "IsPasswordRequired",.bsf~new("java.lang.Boolean","true"))
/* suggest 'stefan' as user name */
xPropertySet~setPropertyValue("User", "stefan")

/* determine the JDBC driver */
props = bsf.createArray(.UNO~propertyValue,1)
props[1] = .UNO~PropertyValue~new
props[1]~Name = "JavaDriverClass"
props[1]~Value = "com.mysql.jdbc.Driver"
xPropertySet~setPropertyValue("Info", props)

/* get the XDocumentDataSource interface of the data source */

16 More precisely it is a sequence of PropertyValue, which transports the "where to" and the "how" of the stor-
ing procedure [Deve05] p.833

Facilitate Data Access in OpenOffice.org using ooRexx – Stefan Schmid Page 37

xDocumentDataSource = dataSource~XDocumentDataSource

/* get the OfficeDatabaseDocument service via the 'DatabaseDocument' attribute*/
xOfficeDatabaseDocument = xDocumentDataSource~getDatabaseDocument

/* retrieve the XStorable, xClosable, and XModel interface */
xStorable = xOfficeDatabaseDocument~XStorable
xCloseable = xOfficeDatabaseDocument~XCloseable
xModel = xOfficeDatabaseDocument~XModel

/* register it with the database context */
xNamingService = xSingleServiceFactory~XNamingService
url = uno.ConvertToURL("c:/odbfiles/mysql1.odb")
xStorable~storeAsURL(url,xModel~getArgs)
xNamingService~registerObject("mysql-test", dataSource)
say "database document has been stored to '"url"' !"

/* close database */
xCloseable~close(.true)

::requires UNO.cls -- get UNO support

Snippet 4.3 - Adding a MySQL data source.

This snippet contains almost the same code as Snippet 4.2, shown before. However,

there are some little changes and additional lines of code:

xPropertySet~setPropertyValue("URL", "jdbc:mysql://localhost:3306/test")

At first it is obvious that the URL to the data source is different as well as the prefix.

The MySQL database “test”, delivered with the XAMPP distribution is used.

Here the URL sdbc:mysql:jdbc:localhost:3306/test is used, which creates

a connection of the type “mysql”.

The URL jdbc:mysql://localhost:3306/test could also be used here, but

creates a connection of the type “jdbc”.

Actually both URLs initiate a JDBC bridge to the MySQL database. However, the

first mentioned one cares for some MySQL particularities concerning parameter han-

dling whereas the second one does not. Using the URL for the connection type

“jdbc” will cause problems, when accessing the data source inside a form

(Snippet 6.1 on page 67).

Facilitate Data Access in OpenOffice.org using ooRexx – Stefan Schmid Page 38

props = bsf.createArray(.UNO~propertyValue,1)
props[1] = .UNO~PropertyValue~new
props[1]~Name = "JavaDriverClass"
props[1]~Value = "com.mysql.jdbc.Driver"
xPropertySet~setPropertyValue("Info", props)

In order to connect to a MySQL database an additional property called JavaDriver-

Class is needed. In this property a driver required for connecting to MySQL has to

be specified. This property needs to be passed, packed in a Java-Array, to the Info

property.

4.2.3 Adding other data sources to the database context

Beside the above mentioned databases (Adabas D and MySQL) it is possible to reg-

ister several other data sources at the database context. Table 4.1 shows the val-

ues, the property URL has to be set, in order to add the corresponding data source

to the database context.

Data Source URL

Microsoft Access sdbc:odbc:<Name of a data source defined in the system>

OpenOffice.org Calc (read

only access)
sdbc:calc:<file URL>

Microsoft Outlook address

book (read only access)
sdb:address:outlook

Mozilla address book sdbc:address:mozilla

Derby jdbc:derby:<database URL> (e.g.: jdbc:derby:C:\download\MyDbTest)

HSQL
jdbc:hsqldb:hsql://<database>

(e.g.: jdbc:hsqldb:hsql://localhost/xdb)

Table 4.1: Data Source URLs.

The reader might ask why it is so important to register a data source at the database

context. Actually you can also connect data sources, which are not part of the

database context. However, it is easier to connect to the registered one, because all

the information required to connect is already stored in such a data source. Further-

more Forms (see 6 Forms on page 60) have only access to data sources stored in

the database context.

Facilitate Data Access in OpenOffice.org using ooRexx – Stefan Schmid Page 39

4.3 Connections
“A Connection is an open communication channel to a database.”

[Deve05] p. 852

Connections are used to execute statements, which again return results sets (see

4.4 Manipulate and Query Data on page 43).

In this thesis two different ways to establish a connection to a data source will be ex-

plained:

● Connection through a registered data source17,

● Connection using the DriverManager.

In the following an example for each of this possibilities is presented.

4.3.1 Connection through a registered data source

If the data source, you want to connect to, is registered at the database context,

there is, beside the simple non-interactive login procedure, the additional opportu-

nity of an interactive login procedure. It should be used if a database needs a login

and you do not want to hard code the user and the password. [Deve05] p.854

The following snippet contains both login procedures, whereas the non-interactive

one is not in use. However, you can easily switch between these login procedures by

changing the place of the comments.

/* get the service manager */
xContext = UNO.connect()
XMcf = xContext~getServiceManager

/* retrieve the DatabaseContext and get its XNameAccess interface */
xNameAccess = xMcf~createInstanceWithContext(-
 "com.sun.star.sdb.DatabaseContext", xContext)~XNameAccess

/* we use the mysql-test data sorce */
dataSource = xNameAccess~getByName("mysql-test")

/************ interactive login ************/
17 See 4.2 DataSources on page 31 for how to register a data source at the database context.

Facilitate Data Access in OpenOffice.org using ooRexx – Stefan Schmid Page 40

/* create an InteractionHandler and get its XInteractionHandler interface */
interactionHandler = XMcf~createInstanceWithContext(-
 "com.sun.star.sdb.InteractionHandler", xContext);
xInteractionHandler = interactionHandler~XInteractionHandler

/* query for the XCompletedConnection interface of the data source */
xCompletedConnection = dataSource~XCompletedConnection

/* connect with interactive login */
xConnection = xCompletedConnection~connectWithCompletion(xInteractionHandler);

/************ non-interactive login ************/
/*
/* query for the XDataSource interface of the data source */
xDataSource = dataSource~XDataSource

/* simple way to connect - hard code (usr,pw) */
xConnection = xDataSource~getConnection("stefan","apple");

*/

say "Connection created!"

/* get the XClosable interface and close the connection */
xConnection~XCloseable~close
say "Connection closed!"

::requires UNO.cls -- get UNO support

Snippet 4.4 – Connection through a data source.

The Snippet explained in more detail:

dataSource = xNameAccess~getByName("mysql-test")

Illustration 4.3: Output of Snippet 4.4.

Facilitate Data Access in OpenOffice.org using ooRexx – Stefan Schmid Page 41

After making an instance of the DatabaseContext and retrieving its XNameAc-

cess interface we have access to the container the data sources are registered at.

With the aid of the getByName() method we can retrieve the associated data

source as already mentioned in Snippet 4.1 on page 30.

interactive login:

interactionHandler = XMcf~createInstanceWithContext(-
 "com.sun.star.sdb.InteractionHandler", xContext);
xInteractionHandler = interactionHandler~XInteractionHandler

/* query for the XCompletedConnection interface of the data source */
xCompletedConnection = dataSource~XCompletedConnection

/* connect with interactive login */
xConnection = xCompletedConnection~connectWithCompletion(xInteractionHandler);

To use the interactive login the XCompletedConnection interface

of the data source has to be retrieved. This interface provides the method

connectWithCompletion(). This method is passed the main interface of the pre-

viously created InteractioHandler service. As a result the following window will

be displayed, while running the snippet:

After providing the correct login data a XConnection is returned.

non-interactice login:

/************ non-interactive login ************/
/*
/* query for the XDataSource interface of the data source */
xDataSource = dataSource~XDataSource

/* simple way to connect - hard code (usr,pw) */

Illustration 4.4: Database Login.

Facilitate Data Access in OpenOffice.org using ooRexx – Stefan Schmid Page 42

xConnection = xDataSource~getConnection("stefan","apple");

*/

For the non-interactive login, instead of the XCompletedConnection, we have to

retrieve the XDataSource, which provides the getConnection() method. There,

user name and password are required to receive the XConnection.

xCloseable = xConnection~XCloseable~close

Finally the connection should be closed to release all resources.

4.3.2 Connecting using the DriverManager

If you want to connect to a data source which is not registered at the database con-

text the DriverManager service can be used.

/* get the service manager */
xContext = UNO.connect()
xMcf = xContext~getServiceManager

/* retrieve the DriverManager and get its XDriverManager interface */
xDriverManager = xMcf~createInstanceWithContext(-
 "com.sun.star.sdbc.DriverManager",xContext)~XDriverManager

/* first create the database URL */
url = "jdbc:mysql://localhost:3306/test"

/* create property values for user and password */
props = bsf.createArray(.UNO~propertyValue,3)
props[1] = .UNO~PropertyValue~new
props[1]~Name = "user"
props[1]~Value = "stefan"
props[2] = .UNO~PropertyValue~new
props[2]~Name = "password"
props[2]~Value = "apple"
props[3] = .UNO~PropertyValue~new
props[3]~Name = "JavaDriverClass"
props[3]~Value = "com.mysql.jdbc.Driver"

/* create the connection to mysql */
xConnection = xDriverManager~getConnectionWithInfo(url, props)

say "Connection created by the DriverManager!"

/* get the XClosable interface and close the connection */
xCloseable = xConnection~XCloseable~close

Facilitate Data Access in OpenOffice.org using ooRexx – Stefan Schmid Page 43

say "Connection closed!"

::requires UNO.cls -- get UNO support

Snippet 4.5 – Creating a connection using the DriverManager.

The Snippet explained in more detail:

xDriverManager = xMcf~createInstanceWithContext(-
 "com.sun.star.sdbc.DriverManager",xContext)~XDriverManager

Firstly we have to create an instance of the XDriverManager.

url = "jdbc:mysql://localhost:3306/test"

/* create property values for user and password */
props = bsf.createArray(.UNO~propertyValue,3)
props[1] = .UNO~PropertyValue~new
props[1]~Name = "user"
props[1]~Value = "stefan"
props[2] = .UNO~PropertyValue~new
props[2]~Name = "password"
props[2]~Value = "apple"
props[3] = .UNO~PropertyValue~new
props[3]~Name = "JavaDriverClass"
props[3]~Value = "com.mysql.jdbc.Driver"

/* create the connection to mysql */
xConnection = xDriverManager~getConnectionWithInfo(url, props)

To receive the XConnection the getConnection() method can be used, if there

is no information, except of the URL, needed to be provided to connect to the data

source. However, in the case of the MySQL database test, we have to use the

method getConnectionWithInfo(), which we supply with additional data such

as the user name, password and the Java driver class.

4.4 Manipulate and Query Data

There are two possibilities to manipulate data in a database and to set up queries to

get a result set.

1. The “statement” object.

Facilitate Data Access in OpenOffice.org using ooRexx – Stefan Schmid Page 44

2. The “com.star.sdb.RowSet” service.

The next two chapters provide one example for the he “statement” object and one for

the “com.star.sdb.RowSet” service.

4.4.1 The statement object

Generally, the procedure to communicate with a database using SQL statements is

divided in 4 phases: [Deve05] p.869

1. Get a connection object18, and

2. Let the connection create a statement.

3. This statement executes a query or an update command. Depending on the

command an appropriate method has to be used.

4. If the statement returns a result set, it can be processed.

/* get the service manager */
xContext = UNO.connect()
XMcf = xContext~getServiceManager

/* retrieve the DatabaseContext and get its XNameAccess interface */
xNameAccess = xMcf~createInstanceWithContext(-

"com.sun.star.sdb.DatabaseContext", xContext)~XNameAccess

/* we use the "mysql-test" datasorce */
dataSource = xNameAccess~getByName("mysql-test")

/************ non-interactive login ************/
/* query for the XDataSource interface of the data source */
xDataSource = dataSource~XDataSource
/* simple way to connect - hard code (usr,pw) */
xConnection = xDataSource~getConnection("stefan","apple");

/* the connection creates a statement */
xStatement = xConnection~createStatement

/* execute Updates on the database - the basic way*/

/* create the 'product' table and fill it with data */
xStatement~executeUpdate(-

18 For how to get an connection object see 4.3 Connections on page 39.

Facilitate Data Access in OpenOffice.org using ooRexx – Stefan Schmid Page 45

 "create table product (name varchar(30) primary key, price float)")
xStatement~executeUpdate(-
 "insert into product (name, price) values('Monitor 17inch', 214.90)")
xStatement~executeUpdate(-
 "insert into product (name, price) values('Monitor 19inch', 419.50)")
xStatement~executeUpdate(-
 "insert into product (name, price) values('Monitor 21inch', 759.90)")
xStatement~executeUpdate(-
 "insert into product (name, price) values('Harddisc 160MB', 67.00)")
xStatement~executeUpdate(-
 "insert into product (name, price) values('Sound Card', 43.90)")
xStatement~executeUpdate(-
 "insert into product (name, price) values('SDRAM 1024MB', 156.90)")

say "table 'product' created"

/* create the 'customer' table */
xStatement~executeUpdate(-
 "create table customer (cid int primary key auto_increment, "-
 "firstname varchar(30), lastname varchar(30), birthdate date)")

/* execute Updates on the database - using a prepared statement */

/* create a prepared statement for making inserts in the table customer */
insertCustomerStatement = xConnection~prepareStatement(-
 "insert into customer (firstname, lastname, birthdate) values(?,?,?)")
/* fill the 'customer' table with data */
call insertData insertCustomerStatement, "Tyler", "Durden", "1973-7-2"
call insertData insertCustomerStatement, "Jacob", "Fuller", "1946-9-3"
call insertData insertCustomerStatement, "Mickey", "Knox", "1976-3-17"
call insertData insertCustomerStatement, "Vincent", "Vega", "1963-12-1"
say "table 'customers' created"

/* create the 'sales' table and fill it with data */
xStatement~executeUpdate(-
 "create table sales(sid int primary key auto_increment, cid int,"-
 "name varchar(30), quantity int)")
insertSalesStatement = xConnection~prepareStatement(-
 "insert into sales (cid, name, quantity) values(?,?,?)")

call insertData insertSalesStatement, "1", "Monitor 21inch", "1"
call insertData insertSalesStatement, "2", "Sound Card", "2"
call insertData insertSalesStatement, "2", "Monitor 17inch", "1"
call insertData insertSalesStatement, "3", "Monitor 21inch", "3"
call insertData insertSalesStatement, "3", "Monitor 21inch", "1"
call insertData insertSalesStatement, "4", "Harddisc 160MB", "1"
call insertData insertSalesStatement, "3", "Monitor 19inch", "5"
say "table 'sales' created"

Facilitate Data Access in OpenOffice.org using ooRexx – Stefan Schmid Page 46

say

/* execute Query and retrieve the ResultSet */
xResultSet = xStatement~executeQuery(-
 "select cid, firstname, lastname, birthdate from customer")

say "customer Table: (id | firstname | lastname | date of birth)"
IF xResultSet~isBeforeFirst = 0 THEN
 say "no results!"
ELSE DO
 /* process the ResultSet */
 xRow = xResultSet~XRow
 DO WHILE xResultSet~next <> .false
 cid = xRow~getString(1)
 firstname = xRow~getString(2)
 lastname = xRow~getString(3)
 birthdate = xRow~getString(4)
 say cid "|" firstname "|" lastname "|" birthdate
 END
END

::requires UNO.cls -- get UNO support

/* insert data using a prepared statement */
::ROUTINE insertData
USE ARG preparedStatement, data1, data2, data3
xParameters = preparedStatement~XParameters
xParameters~setString(1, data1)
xParameters~setString(2, data2)
xParameters~setString(3, data3)
preparedStatement~executeUpdate

Snippet 4.6 – Manipulate data using the statement object.

Facilitate Data Access in OpenOffice.org using ooRexx – Stefan Schmid Page 47

The snippet explained in more detail:

xStatement = xConnection~createStatement

The Connection is retrieved as explained in Snippet 4.4 on page 40 as well as in

Snippet 4.5 on page 43. The statement object is created using the

createStatement() method of the Connection. The statement object can now

be used to send SQL statements to the Database Management System (DBMS)19.

The XStatement, which is the main interface of the statement object, provides two

methods for sending SQL commands.

● executeQuery(): use this method for SELECT statements (queries).

● executeUpdate(): use this method for UPDATE, DELETE, INSERT,

DROP, ALTER statements (manipulations).

Now we create some table to build the data structure of a computer shop model20,

which is used in later examples again.

xStatement~executeUpdate(-
 "create table product (name varchar(30) primary key, price float)")

At first the product table is created. For this purpose we use the executeUpdate()
method with the appropriate SQL statement.

xStatement~executeUpdate(-
 "insert into product (name, price) values('Monitor 17inch', 214.90)")

19 See 2.1 Terms and Definitions on page 7 for information about DBMS.
20 An ER-Diagram of the computer shop model is presented in 2.2 Entity Relationship Diagram.

Illustration 4.5: Output of Snippet 4.6.

Facilitate Data Access in OpenOffice.org using ooRexx – Stefan Schmid Page 48

xStatement~executeUpdate(-
 "insert into product (name, price) values('Monitor 19inch', 419.50)")

Furthermore we insert some data into the previously created table. As you can see

the statement object is reused again, rather than creating a new one for each com-

mand. However, each SQL command has to be analyzed and compiled by the

DBMS. If you have a lot of similar statements you want to send to the database, it is

more efficient to use a “PreparedStatement” object. This object represents a precom-

piled SQL statement. During the creation of the “PreparedStatement” an SQL state-

ment including parameters is given, which is sent to the DBMS right away where it

gets compiled. In a next step it can be adjusted, by the parameters provided, and

reused without having the DBMS analyzing and optimizing it again.

insertSalesStatement = xConnection~prepareStatement(-
 "insert into sales (cid, name, quantity) values(?,?,?)")

The “PreparedStatement” object is created, equally to the statement object, by the

Connection. Here a SQL command has to be defined whereas the values, which

need to be adjusted later, have to be replaced by a question mark.

To make the call of a prepared statement very easy a method called

insertData() is written.

::ROUTINE insertData
USE ARG preparedStatement, data1, data2, data3
xParameters = preparedStatement~XParameters
xParameters~setString(1, data1)
xParameters~setString(2, data2)
xParameters~setString(3, data3)
preparedStatement~executeUpdate

At first we ask for the XParameters interface of the passed prepared statement.

There values can be assigned to each of the parameters, which where previously

defined by the question marks. For this purpose we use the setString() method

with the position number of the question mark and the corresponding data. Finally

the prepared statement is sent to the DBMS by method executeUpdate().

call insertData insertSalesStatement, "1", "Monitor 21inch", "1"

This source code cut out calls the described insertData() method.

xResultSet = xStatement~executeQuery(-

Facilitate Data Access in OpenOffice.org using ooRexx – Stefan Schmid Page 49

 "select cid, firstname, lastname, birthdate from customer")

To perform a SELECT statement the executeQuery() method has to be used. It

returns a result set, which contains the results of the query.

IF xResultSet~isBeforeFirst = 0 THEN
 say "no results!"
ELSE DO
 /* process the ResultSet */
 xRow = xResultSet~XRow
 DO WHILE xResultSet~next <> .false
 cid = xRow~getString(1)
 firstname = xRow~getString(2)
 lastname = xRow~getString(3)
 birthdate = xRow~getString(4)
 say cid" | "firstname" | "lastname" | "birthdate
 END
END

“A ResultSet maintains a cursor pointing to its current row of data. Initially

the cursor is positioned before the first row. The 'next' method moves the

cursor to the next row.” [ApiO03-2]

The first thing we do is checking if the result set is empty (i.e. the query did not deliv-

er any results). If there is at least one entry the cursor of the result set has to have

its position before the first entry. Otherwise the result set must be empty. We use the

isBeforeFirst() method to perform this check.

In a second step we retrieve the XRow interface which provides access to the data

collected in a row. It depends on the position of the cursor, which row the XRow in-

terface represents.

In order that the first row becomes the current row the cursor has to be moved using

the next() method of the XResultSet. If the next entry is empty, the value “.false”

is returned, otherwise the result is “.true”. So we can build a DO-WHILE loop around

to traverse all results.

Finally, to get the column values from the current row, we use the getString()
method. This method needs the number of the column, we want to get the value

from.

Facilitate Data Access in OpenOffice.org using ooRexx – Stefan Schmid Page 50

4.4.2 The RowSet Service
The RowSet Service is a client side ResultSet, which combines the charac-

teristics of a Statement and a ResultSet. It acts like a typical bean. Before

you use the RowSet, you have to specify a set of properties like a Data-

Source and a Command and other properties known of Statement.

Afterwards, you can populate the RowSet by its execute method to fill the

set with data. [ApiO03-3]

This means the RowSet service is a kind of short cut to retrieve data compared to

the statement object because you do not have to establish a connection explicitly,

create a statement and finally create the result set. Everything can be handled by

the RowSet service.

/* get the service manager */
xContext = UNO.connect()
xMcf = xContext~getServiceManager

/* create RowSet object */
xRowSet = xMcf~createInstanceWithContext(-
 "com.sun.star.sdb.RowSet",xContext)~XRowSet
say "RowSet created!"

/* set the properties which are needed to connect to a database */
xPropertySet = xRowSet~XPropertySet
xPropertySet~setPropertyValue("DataSourceName", "mysql-test")
xPropertySet~setPropertyValue("User", "stefan")
xPropertySet~setPropertyValue("Password", "apple")

/* choose the CommandType TABLE and set the command */
xPropertySet~setPropertyValue("Command", "test.sales")
xPropertySet~setPropertyValue("CommandType", box(-
 "int",bsf.getStaticValue("com.sun.star.sdb.CommandType", "TABLE")))

/* now execute the previous specified command */
xRowSet~execute
say "RowSet executed!"

/* process the ResultSet */
say "Results:"
xRow = xRowSet~XRow
DO WHILE xRowSet~next <> .false
 name = xRow~getString(1)
 price = xRow~getString(2)

Facilitate Data Access in OpenOffice.org using ooRexx – Stefan Schmid Page 51

 price2 = xRow~getString(3)
 say name"-"price"-"price2
END

say
say "---Infos---"
/* show amount of returned rows*/
say "There are:" xPropertySet~getPropertyValue("RowCount") "rows"
/* show the currently used command */
say "Used Command:" xPropertySet~getPropertyValue("ActiveCommand")
say "-----------"
say

/* destroy the created RowSet */
xComp = xRowSet~XComponent~dispose
say "RowSet destroyed!"

::requires UNO.cls -- get UNO support

Snippet 4.7 - Query data using the RowSet service.

The snipped explained in more detail:

After making an instance of the RowSet service we have to retrieve its

XPropertySet interface to set some properties such as the name of the data

source, the user and the password.

xPropertySet~setPropertyValue("Command", "test.sales")
xPropertySet~setPropertyValue("CommandType", box(-

Illustration 4.6: Output of Snippet 4.7.

Facilitate Data Access in OpenOffice.org using ooRexx – Stefan Schmid Page 52

 "int",bsf.getStaticValue("com.sun.star.sdb.CommandType", "TABLE")))

Additionally it is necessary to choose a CommandType and declare an appropriate

Command.

Concerning the CommandType you have the choice between three different ones,

whereas each expects a different kind of Command: (refer to Table 4.2)

CommandType Command Comment
TABLE a table name Causes the same result as the SQL statement:

select * from <table>
QUERY a predefined

query name

See Snippet 5.1 on page 55 for how to create

a predefined query.
COMMAND a SQL command

Table 4.2: Row Set - Command Types.

In the current snippet the CommandType TABLE is used, thus we have to specify a

table name. In this case the 'sales' table is chosen. Here it is important to add the

name of the database as a prefix: 'test.sales'. The reason for this is that if you con-

nect to an external database, all the tables are stored in a hierarchy under the

database name. You can check this by opening the previously created odb-File21 as

shown in figure Illustration 4.7.

21 The appropriate odb-File was created in Snippet 4.3

Illustration 4.7: Base Tables.

Facilitate Data Access in OpenOffice.org using ooRexx – Stefan Schmid Page 53

xRowSet~execute

Now the RowSet is ready to be executed and as a consequence of executing, it gets

filled with the results. Since the RowSet service includes the ResultSet service, it

acts like a result set and we can use the same methods to process the findings.

/* show amount of returned rows*/
say "There are:" xPropertySet~getPropertyValue("RowCount") "rows"
/* show the currently used command */
say "Used Command:" xPropertySet~getPropertyValue("ActiveCommand")

The XRowSet service comprises properties, which provide some information. The

RowCount property shows the number of rows. Actually, the cursor has to be posi-

tioned after the last entry to get all rows counted. However, since the DO-WHILE

loop has been passed through, the cursor is on the last position.

Furthermore the ActiveCommand property shows the command, which is currently

used. The command line displays as a result of the last line of the cutout's code:

Used Command: SELECT * FROM 'test'.'sales'

As Table 4.2 says using the TABLE CommandType is the same as using the 'select

* from <table>' SQL statement. This is correct here. The TABLE command was con-

verted into the appropriate SQL statement.

xComp = xRowSet~XComponent~disposexComp

The RowSet has to be destroyed.

Facilitate Data Access in OpenOffice.org using ooRexx – Stefan Schmid Page 54

5 Additional Database Snippet

This chapter shows one additional snippet concerning databases, which does not fit

in the chapters above.

5.1 Query Definition

This chapter shows how to insert and execute a QueryDefinition. A query definition

can be explained as a predefined query. It encapsulates a definition of an SQL

statement stored in a database document. The predefined query can be processed

multiple times and is even visible in the GUI of the Base application, where it is also

possible to execute the query definition. [Deve05] p.834

5.1.1 Store a Query Definition

Snippet 5.1 adds a query definition to the in Snippet 4.3 of page 37 created regis-

tered data source “mysql-test”.

/* get the service manager */
xContext = UNO.connect()
XMcf = xContext~getServiceManager

/* retrieve the DatabaseContext and get its XNameAccess interface */
xNameAccess = xMcf~createInstanceWithContext(-
 "com.sun.star.sdb.DatabaseContext", xContext)~XNameAccess

/* let's use the datasource mysql-test */
dataSource = xNameAccess~getByName("mysql-test")

/*create an empty QueryDefinition and request it's XPropertySet interface*/
xQueryDefinitionsSupplier = dataSource~XQueryDefinitionsSupplier
xQDefs = xQueryDefinitionsSupplier~getQueryDefinitions
xSingleServiceFactory = xQDefs~XSingleServiceFactory
xPropertySet = xSingleServiceFactory~createInstance~XPropertySet

/* define the query */
xPropertySet~setPropertyValue("Command",-
 "SELECT firstname, lastname, product.name "-
 "FROM customer, sales, product "-
 "WHERE customer.cid = sales.cid AND sales.name = product.name")

Facilitate Data Access in OpenOffice.org using ooRexx – Stefan Schmid Page 55

xPropertySet~setPropertyValue(-
 "EscapeProcessing",box("BOOL",.true))

/* insert it into the query definition container */
xNameContainer = xQDefs~XNameContainer
queryName = "Query_names+products"
IF xNameContainer~hasByName(queryName) THEN
DO
 say "removing existing query definition...."
 xNameContainer~removeByName(queryName)
END

say "insert Query to the container...."
xNameContainer~insertByName(queryName,xPropertySet)

/* store the database document */

/* retrieve the XDocumentDataSource interface of the data source */
xDocumentDataSource = dataSource~XDocumentDataSource

/* get the attribute 'DatabaseDocument' */
xOfficeDatabaseDocument = xDocumentDataSource~getDatabaseDocument

/* store the database document and with it the query definition */
xStorable = xOfficeDatabaseDocument~XStorable~store
say "storing database document...."

::requires UNO.cls -- get UNO support

Snippet 5.1 – Create and store a query definition.

Illustration 5.1: Output of Snippet 5.1.

Facilitate Data Access in OpenOffice.org using ooRexx – Stefan Schmid Page 56

The snippet explained in more detail:

The query definition will be saved in the underlying database document

(“mysql1.odb”) of the “mysql-test” data source. For that reason we have to retrieve

this data source.

xQueryDefinitionsSupplier = dataSource~XQueryDefinitionsSupplier
xQDefs = xQueryDefinitionsSupplier~getQueryDefinitions
xSingleServiceFactory = xQDefs~XSingleServiceFactory
xPropertySet = xSingleServiceFactory~createInstance~XPropertySet

The XQueryDefinition interface, provided by the data source, is used to receive

the DefinitionContainer (xQDefs). This container comprises all the query defi-

nitions stored so far in the specific data source. Since OpenOffice.org containers

generally support the XNameAccess interface, it is possible to access each stored

query definition or to traverse them using a DO-WILE as explained in Snippet 4.1 on

30.

With the aid of the XSingleServiceFactory and its method

createInstance(), an empty query definition is created. In order to adjust this

query definition we need its XPropertySet interface.

xPropertySet~setPropertyValue("Command",-
 "SELECT firstname, lastname, product.name "-
 "FROM customer, sales, product "-
 "WHERE customer.cid = sales.cid AND sales.name = product.name")

xPropertySet~setPropertyValue(-
 "EscapeProcessing",box("BOOL",.true))

Afterwards two properties are set. First the SQL command and second the Escape-

Processing to “true” because we do not want the built-in SQL parser to touch the

query.

xNameContainer = xQDefs~XNameContainer
queryName = "Query_names+products"
IF xNameContainer~hasByName(queryName) THEN
DO
 say "removing existing query definition...."
 xNameContainer~removeByName(queryName)
END

Facilitate Data Access in OpenOffice.org using ooRexx – Stefan Schmid Page 57

say "insert Query to the container...."
xNameContainer~insertByName(queryName,xPropertySet)

In a next step the query definition has to be added to the DefinitionContainer

(xQDefs). In OpenOffice.org containers, which should provide the ability to add and

remove elements, support the XNameContainer interface. This applies to the Defi-

nitionContainer. The query definition is added using the method insertByName()
and passing a name and the previously retrieved XPropertySet interface, which

represents the query definition. Before we append the query, the existence of the

chosen name is checked. If there is already a query definition with the same name

stored, it will be deleted to avoid an error.

Finally the database document has to be stored. This works the same way as al-

ready shown in snippet Snippet 4.3.

5.1.2 Execute a Query Definition

As there are two possibilities to set up a SQL query (see 4.4 Manipulate and Query

Data on page 43), there are also two possibilities to execute a query definition.

● The RowSet service and

● The XCommandPreparation interface of a connection object

The RowSet Service

In order to execute a query definition using the RowSet service refer to

4.4.2 The RowSet Service on page 50. Set the CommandType to QUERY and pro-

vide the name of the query definition.

The XCommandPreparation interface of a connection object

Snippet 5.2 shows how to execute a query definition using the

XCommandPreparation interface of a connection object.

/* get the service manager */

Facilitate Data Access in OpenOffice.org using ooRexx – Stefan Schmid Page 58

xContext = UNO.connect()
XMcf = xContext~getServiceManager

/* retrieve the DatabaseContext and get its XNameAccess interface */
xNameAccess = xMcf~createInstanceWithContext(-
 "com.sun.star.sdb.DatabaseContext", xContext)~XNameAccess

/* we use the "mysql-test" datasource */
dataSource = xNameAccess~getByName("mysql-test")

/************ non-interactive login ************/
/* query for the XDataSource interface of the data source */
xDataSource = dataSource~XDataSource
/* simple way to connect - hard code (usr,pw) */
xConnection = xDataSource~getConnection("stefan","apple");

/* execute a query definition */
xCommandPreparation = xConnection~XCommandPreparation
xPreparedStatement = xCommandPreparation~prepareCommand(-
 "Query_names+products",-
 bsf.getStaticValue("com.sun.star.sdb.CommandType", "Query"))

xResultSet = xPreparedStatement~executeQuery

xRow = xResultSet~XRow
DO WHILE xResultSet~next <> .false
 firstname = xRow~getString(1)
 lastname = xRow~getString(2)
 product = xRow~getString(3)
 say firstname "|" lastname "|" product
END

::requires UNO.cls -- get UNO support

Snippet 5.2 – Execute a query definition.

Illustration 5.2: Output of Snippet 5.2

Facilitate Data Access in OpenOffice.org using ooRexx – Stefan Schmid Page 59

Snippet 5.2 is very similar to Snippet 4.6 page 46. The new lines of code, which are

responsible for executing the query definition, are shown in the following cutout.

xCommandPreparation = xConnection~XCommandPreparation
xPreparedStatement = xCommandPreparation~prepareCommand(-
 "Query_names+products",-
 bsf.getStaticValue("com.sun.star.sdb.CommandType", "Query"))

xResultSet = xPreparedStatement~executeQuery

As the headline of this snippets suggests, we need the XCommandPreperation in-

terface of a connection object to execute a predefined query. It provides the method

prepareCommand() where the query definition's name has to be passed as well as

the CommandType QUERY. Afterwards the prepared statement can be executed,

which returns a result set.

Facilitate Data Access in OpenOffice.org using ooRexx – Stefan Schmid Page 60

6 Forms

In this chapter a snippet is illustrated which creates a form document. Afterwards the

created form is added into to database document.

6.1 Create a New Form

The in Java written Developers Guide Form-Example, provided by the

OpenOffice.org SDK22, has been taken as a pattern for the development of the fol-

lowing Snippet 6.1. For an easier understanding of forms and how to create them

Snippet 6.1 was simplified in some aspects compared to the SDK Form-Example.

The following form snippet uses the model of the computer shop described in

2.2 Entity Relation Diagram. The aim of this snippet is to create a so-called “data

aware form”. This means that the user can manipulate the data from a database via

this form. The form consists of a master form which gives the information for each

customer and a sub form that provides data of all sales carried out by the currently

shown customer.

22 SDK stands for Software Development Kit. The SDK of OpenOffice.org provides several necessary tools and
documentation for programming the OpenOffice.org API. It is available at
http://download.openoffice.org/2.0.4/sdk.html

http://download.openoffice.org/2.0.4/sdk.html

Facilitate Data Access in OpenOffice.org using ooRexx – Stefan Schmid Page 61

Illustration 6.1 shows how the main form and the sub form are related. The main

form is represented by the blue area, the sub form by the red area. The bottom part

of illustration 6.1 presents the outcome of the snippet. It is possible to switch be-

tween the customers by using the navigation buttons of the “Form Navigation” tool

bar pictured in illustration 6.2. Additionally, you can add new customers and sales di-

rectly into the database by using the text fields and the table.

Illustration 6.2: Form Navigation Toolbar.

Illustration 6.1: Master Form - Sub Form Relation.

Facilitate Data Access in OpenOffice.org using ooRexx – Stefan Schmid Page 62

Since Snippet 6.1 uses the data model of the computer shop, the following two snip-

pets need to be run in the specified order, in order to get Snippet 6.1 work.

1. Snippet 4.3

2. Snippet 4.6

/* get the service manager */
xContext = UNO.connect() --connect to server and retrieve the XContext object
xMcf = xContext~getServiceManager -- retrieve XMultiComponentFactory

oDesktop = UNO.createDesktop() -- get the UNO Desktop service object

/* get componentLoader interface */
xComponentLoader = oDesktop~XDesktop~XComponentLoader

/* create a new Writer file */
url = "private:factory/swriter"
xComponent = xComponentLoader~loadComponentFromURL(-
 url, "_blank", 0, .UNO~noProps)

/* Save some objects which are often used in the following routines into the
directory object '.local'. So they can be accessed from the whole Rexx program
like global variables */
.local~xMcf = xMcf
.local~xContext = xContext
.local~xComponent = xComponent

/************************** create form components **************************/

label1 = createControlAndShape("FixedText", 25, 6, 5, 5)
label1~setPropertyValue("Label", "Customer ID:") --assign the display-text

textfield1 = createControlAndShape("TextField", 25, 6, 35, 5)
textfield1~setPropertyValue("DataField", "cid") --assign to a field in the db
textfield1~setPropertyValue("Name", "cid_textfield") --assign a name

label2 = createControlAndShape("FixedText", 25, 6, 5, 20)
label2~setPropertyValue("Label", "Customer Name:") --assign the display-text

textfield21 = createControlAndShape("TextField", 25, 6, 35, 20)
textfield21~setPropertyValue("DataField", "firstname")
textfield21~setPropertyValue("Name", "firstname_textfield") --assign a name

textfield22 = createControlAndShape("TextField", 25, 6, 70, 20)
textfield22~setPropertyValue("DataField", "lastname")
textfield22~setPropertyValue("Name", "lastname_textfield") --assign a name

Facilitate Data Access in OpenOffice.org using ooRexx – Stefan Schmid Page 63

label3 = createControlAndShape("FixedText", 25, 6, 5, 35)
label3~setPropertyValue("Label", "Date of Birth:") --assign the display-text

textfield3 = createControlAndShape("TextField", 25, 6, 35, 35)
textfield3~setPropertyValue("DataField", "birthdate")
textfield3~setPropertyValue("Name", "birthdate_textfield") --assign a name

/************************** bind MasterForm to the database *****************/

/* get the parent of any control model inserted previously to obtain the
 control model of the form, this form was automaticaly created while inserting
 the first control model of a form component.
 The masterForm is like every form component a 'XPropertySet'
*/

masterForm = label1~XChild~getParent~XPropertySet

masterForm~setPropertyValue("DataSourceName", "mysql-test")
masterForm~setPropertyValue("CommandType", box(-
 "int",bsf.getStaticValue("com.sun.star.sdb.CommandType", "COMMAND")))
masterForm~setPropertyValue("Command", "select * from test.customer")
masterForm~setPropertyValue("Name", "customers_form")

/************************** create sub form (sales) *************************/

/* masterContainer is an XIndexContainer */
masterContainer = masterForm~XIndexContainer
/* create a new form */
salesForm = .xMcf~createInstanceWithContext(-
 "com.sun.star.form.component.DataForm", xContext)
/* insert it into the parentContainer */
masterContainer~insertByIndex(masterContainer~getCount, salesForm)
salesForm~XPropertySet~setPropertyValue("Name", "sales_form")

/************************** bind SubForm to the database ********************/

/* salesFormProps is a XPropertySet */
salesFormProps = salesForm~XPropertySet

salesFormProps~setPropertyValue("DataSourceName", "mysql-test")
salesFormProps~setPropertyValue("CommandType", box("int",bsf.getStaticValue(-
 "com.sun.star.sdb.CommandType", "COMMAND")))

command = "select * from test.sales where cid = :c"
salesFormProps~setPropertyValue("Command",command)

/************************** establish masterForm-SubForm connection**********/

Facilitate Data Access in OpenOffice.org using ooRexx – Stefan Schmid Page 64

strArray = bsf.createArray("String.class", 1)
strArray[1] = "cid"
salesFormProps~setPropertyValue("MasterFields", strArray)
strArray[1] = "c"
salesFormProps~setPropertyValue("DetailFields", strArray)

/* now create the grid model and insert it into the salesContainer*/
/* get the XIndexContainer interface of the salesForm
 salesContainer is a XIndexContainer */
salesContainer = salesForm~XIndexContainer
call createControlAndShape "GridControl", 162, 40, 5, 50, salesContainer
gridControl = result

gridControl~setPropertyValue("Name", "sales_table")

call newGridColumn gridControl, "TextField", "sid", "invoice number"

call newGridColumn gridControl, "ListBox", "name", "product name"
productName = result --save the 'product name' column to set some more props

/* initialize the 'product name' ListBox to provide a choice of product names*/
productName~setPropertyValue("ListSourceType", bsf.getConstant(-
 "com.sun.star.form.ListSourceType","SQL"))
productName~setPropertyValue("BoundColumn", .BSF~new("java.lang.Short","1"))

sListSource = "SELECT product.name, product.name FROM test.product"
strArray[1] = sListSource
productName~setPropertyValue("ListSource", strArray)

call newGridColumn gridControl, "TextField", "quantity", "quantity"

/* switch to live mode */
call toggleFormDesignMode

say "Form Document created!"

/* save form and close document*/
xComponent~XStorable~storeAsURL(-
 uno.ConvertToURL("c:/odbfiles/shop_form.odt"), .UNO~noProps)
xComponent~XCloseable~close(.true)

::requires UNO.cls -- get UNO support

---------------------------------ROUTINEs------------------------------------

/* routine switches between the life-mode and the design mode */
::routine toggleFormDesignMode

Facilitate Data Access in OpenOffice.org using ooRexx – Stefan Schmid Page 65

URL = bsf.import('com.sun.star.util.URL')

aToggleURL = bsf.createArray(URL, 1)
aToggleURL[1] = URL~new
aToggleURL[1]~Complete = ".uno:SwitchControlDesignMode"

--need an URLTransformer
frameDesktop = .xMcf~createInstanceWithContext(-
 "com.sun.star.util.URLTransformer",.xContext)
frameDesktop~XURLTransformer~parseStrict(aToggleURL)

/* get the XController interface of the controller service */
xController = .xComponent~XModel~getCurrentController~XController
--go get the dispatch provider of it's frame
xDispatchProvider = xController~getFrame~XDispatchProvider

xDispatch = xDispatchProvider~queryDispatch(aToggleURL[1],"", 0)
xDispatch~dispatch(aToggleURL[1], .UNO~noProps)

/* creates a control shape, together with a control model, and inserts them
 into the document model */
/* ARG(1) - name: String sQualifiedComponentName (f.e. TextField)
 ARG(2) - width: int Size
 ARG(3) - height: int Size
 ARG(4) - x: int Position - X-axis
 ARG(5) - y: int Position - Y-axis
 ARG(6) - parent: XIndexContainer xParentForm OPTIONAL
*/
::routine createControlAndShape
use arg arg_name, arg_width, arg_height, arg_x, arg_y, arg_parent
/********** create and initialize the shape **********/
/* let the document create a shape */
xDocAsMultiServiceFactory = .xComponent~XMultiServiceFactory
xControlShape = xDocAsMultiServiceFactory~createInstance(-
 "com.sun.star.drawing.ControlShape")~XControlShape

/* set position and size of the shape */
xControlShape~setSize(.bsf~new(-
 "com.sun.star.awt.Size", arg_width*100, arg_height*100)) --in 100th/mm
xControlShape~setPosition(.bsf~new(-
 "com.sun.star.awt.Point", arg_x*100, arg_y*100))

/* adjust the anchor so that the control is tied to the page */
xPropertySet = xControlShape~XPropertySet
xPropertySet~setPropertyValue("AnchorType", bsf.getConstant(-
 "com.sun.star.text.TextContentAnchorType", "AT_PARAGRAPH"))

Facilitate Data Access in OpenOffice.org using ooRexx – Stefan Schmid Page 66

/********** create a control model **********/
/* create the form component (the model of a form control) */
sQualifiedComponentName = "com.sun.star.form.component."arg_name
xControlModel = .xMcf~createInstanceWithContext(-
 sQualifiedComponentName,.xContext)~XControlModel

/* if "ARG(6):xParentForm" is given insert the form component into the
 appropriate location of the form hierarchy
 if the argument is not given the form component is automatically inserted
 into the root form */
IF arg_parent <> "ARG_PARENT" THEN DO
 arg_parent~insertByIndex(arg_parent~getCount, xControlModel)
END

/********** announce the control model to the shape **********/

/* knitt them */
xControlShape~setControl(xControlModel)

/******* insert the shape into the shapes collection of a draw page ********/

/* add the shape to the shapes collection of the document */
xDrawPageSupplier = .xComponent~XDrawPageSupplier
xDrawPageSupplier~getDrawPage~XShapes~add(xControlShape)

/* return the XPropertySet interface of the ControlModel.
 With it it's possible to make several adjustments at the ControlModel */
return xControlModel~XPropertySet

/* creates a new Column inside a 'GridControl' */
/* ARG(1) - container: grid control
 ARG(2) - name: String componentName
 ARG(3) - field: String dataField
 ARG(4) - label: String label
*/
::routine newGridColumn
use arg arg_container, arg_factory, arg_name, arg_field, arg_label
/* query for the container to insert columns into */
xIndexContainer = arg_container~XIndexContainer
/* query for the factory for creating the column models */
xGridColumnFactory = arg_container~XGridColumnFactory

/* create a new column */
newColumn = xGridColumnFactory~createColumn(arg_factory)
xPropertySet= newColumn~XPropertySet
xPropertySet~setPropertyValue("DataField", arg_name)

Facilitate Data Access in OpenOffice.org using ooRexx – Stefan Schmid Page 67

xPropertySet~setPropertyValue("Label", arg_field)
/* insert the column */
xIndexContainer~insertByIndex(xIndexContainer~getCount, newColumn)
return xPropertySet --return the created column

Snippet 6.1 - Create a form.

As you can see the snippet is quit long. For that reason the explanation is divided

into 5 parts. They reflecting the basic procedure of creating a Form:

1. Create a new Writer document.

2. Create Components inside the Master Form.

3. Bind Forms to the Database.

4. Create Components inside the Sub Form.

5. Switch to the Live Mode.

6.1.1 Create a new Writer document

A form document is basically an ordinary OpenOffice.org text document with form

controls (i.e. for example a text field). As a consequence the first step is to create an

empty Writer document.

oDesktop = UNO.createDesktop() -- get the UNO Desktop service object

/* get componentLoader interface */
xComponentLoader = oDesktop~XDesktop~XComponentLoader

/* create a new Writer file */
url = "private:factory/swriter"
xComponent = xComponentLoader~loadComponentFromURL(-
 url, "_blank", 0, .UNO~noProps)

Illustration 6.3: Output of Snippet 6.1.

Facilitate Data Access in OpenOffice.org using ooRexx – Stefan Schmid Page 68

After getting the XContext and the XMultiComponentFactory, which works the

same way as in the previous snippets, the ComponentLoader has to be

created. Its main interface XComponentLoader provides the method

loadComponentFromURL(), which has to be used for loading existing

OpenOffice.org documents or creating new ones. This method needs several param-

eters whereby the specified attributes create a new and empty Writer document. For

more information about creating and loading OpenOffice.org documents refer to

[Aham05] p.27 ff.

.local~xMcf = xMcf

.local~xContext = xContext

.local~xComponent = xComponent

The XMultiComponentFactory, the xContext and the XComponent loader has

to be used very often within this snippet. The first two mentioned are especially

needed for creating instances of services. In order to use them even in routines with-

out importing them each time, the “Directory-object” .local is used. This directory ini-

tially comprises some objects such as the output object (represents the default out-

put stream), but it can also pick up new objects. For storing a new object there, sim-

ply send a message with its name to the Local Environment Object and afterwards it

can be accessed by a dot followed by the specified name. E.g. the xComponent in-

terface can be accessed by .xComponent from now on.

6.1.2 Create Components Inside the Master Form

After a new Writer document has been created we can add form components. To fa-

cilitate the creation of form components a routine called

createControlAndShape() was written. This routine only needs the type of the

component (e.g. “TextField”), the size and the position and adds the specified form

component afterwards to the document. Now the createControlAndShape()
method will be described in more detail:

The basic procedure for the creation of such a form component can be divided in

four steps: [Deve05] p.929

1. Create and initialize a shape,

Facilitate Data Access in OpenOffice.org using ooRexx – Stefan Schmid Page 69

2. Create a control model,

3. Announce the control model to the shape, and

4. Insert the shape into the shapes collection of a draw page.

Create and initialize a shape:

xDocAsMultiServiceFactory = .xComponent~XMultiServiceFactory
xControlShape = xDocAsMultiServiceFactory~createInstance(-
 "com.sun.star.drawing.ControlShape")~XControlShape

To create a new shape inside the document the MultiServiceFactory service of

XComponent, which represents the Writer document, is needed. With the use of this

factory a new instance of the ControlShape service can be created. The control

shape is responsible for setting the size and position for a control model (e.g. a text

field), which can be bound to the control shape later.

/* set position and size of the shape */
xControlShape~setSize(.bsf~new(-
 "com.sun.star.awt.Size", arg_width*100, arg_height*100)) --in 100th/mm
xControlShape~setPosition(.bsf~new(-
 "com.sun.star.awt.Point", arg_x*100, arg_y*100))

/* adjust the anchor so that the control is tied to the page */
xPropertySet = xControlShape~XPropertySet
xPropertySet~setPropertyValue("AnchorType", bsf.getConstant(-
 "com.sun.star.text.TextContentAnchorType", "AT_PARAGRAPH"))

To do this the XControlShape interface, which is the main interface of the

ControlShape service, provides the appropriate methods setSize() and

setPosition(). Additionally the property AnchorType can be specified, which de-

fines how the content of the control shape (i.e. a text field for example) is attached to

its surrounding. The value “AT_PARAGRAPH” sets the anchor of the object at the

top left of the paragraph.

Create a control model:

sQualifiedComponentName = "com.sun.star.form.component."ARG(1)
xControlModel = .xMcf~createInstanceWithContext(-
 sQualifiedComponentName,.xContext)~XControlModel

Facilitate Data Access in OpenOffice.org using ooRexx – Stefan Schmid Page 70

In the next step the form component, which is specified in the first parameter of the

routine call (e.g. “TextField”), is created. There are several types of form compo-

nents provided in OpenOffice.org. Within this snippets the following types are used:

● FixedText: A text which can be displayed but not edited by the user.

● TextField: Allows the input of a text.

● GridControl: A component which can display data in a table-like way.

● ListBox: This component provides a list of several alternatives values from

which a user can make a choice.

Each form component includes the FormControlModel service, which follows the

model-view-paradigma. For that reason a form component is also a control model.

The model-view-paradigm says that for a given element in a document there is ex-

actly one model and an arbitrary number of views. On the one hand the model is

stored in the document file and describes how this element looks like in the view and

how it behaves. On the other hand the view is a visual representation of the model

(i.e. everything the user can see) and only exists if there is an open instance of the

document. If a user wants to insert data into a form document (e.g. a text field) in a

first step only the view gets notified about this action because it is the view that the

user can see and communicate with. In a second step the view is responsible for for-

warding the changes to the model. [Deve05] p.922

IF arg_parent <> "ARG_PARENT" THEN DO
 arg_parent~insertByIndex(arg_parent~getCount, xControlModel)
END

Several forms in one document are organized hierarchically. If there is no informa-

tion given about the location a form component should be inserted to, it will be auto-

matically added to the root form. E.g. if there is also a sub form present in a docu-

ment and form components should be inserted there, this has to be specified as the

previous cutout shows. In that case the form, in which the form component should be

added, has to be passed to the routine as “arg_parent”.

Facilitate Data Access in OpenOffice.org using ooRexx – Stefan Schmid Page 71

Announce the control model to the shape:

xControlShape~setControl(xControlModel)

Now the control model of the form component can be assigned to the shape.

Insert the shape into the shapes collection of a draw page:

xDrawPageSupplier = .xComponent~XDrawPageSupplier
xDrawPageSupplier~getDrawPage~XShapes~add(xControlShape)

Finally, the control shape, which comprises the control model, has to be inserted into

the page of the Writer document. For this reason the DrawPage service is needed,

which actually represents the page containing the drawings. This service can be ob-

tained by the XDrawPageSupplier interface of the Writer document. One of its in-

cluded services provides the XShapes interface, which manages the shapes collec-

tion of this page. Here it is possible to remove or in this case add shapes. As a con-

sequence, the previously created control shape is added here.

In this state the control model has been inserted and is shown in the document.

return xControlModel~XPropertySet

The last command in this routine returns the XPropertySet interface of the control

model. This provides the possibility to make several adjustments to the control mod-

el if necessary. This adjustments are e.g. assigning a name or a data field to the

control model, which is shown in the following cutout.

textfield1 = createControlAndShape("TextField", 25, 6, 35, 5)
textfield1~setPropertyValue("DataField", "cid") --assign to a field in the db
textfield1~setPropertyValue("Name", "cid_textfield") --assign a name

Now the createControlAndShape() routine can be called as the upper cut out

shows. Additionally some properties needs to be set such as the Name and the

DataField. The last mentioned property specifies which data field of the form's result

set should be visible in the text field. How to bind a result set to a form will be ex-

plained in the next chapter. In this case the data field cid (i.e. the customer ID of the

customer table) is shown.

Facilitate Data Access in OpenOffice.org using ooRexx – Stefan Schmid Page 72

6.1.3 Bind Forms to the Database

In order to make a form in OpenOffice.org data aware it has to be associated with a

row set23. This is possible because the DataForm service, which specifies the form

implements the RowSet service.

masterForm = label1~XChild~getParent~XPropertySet

masterForm~setPropertyValue("DataSourceName", "mysql-test")
masterForm~setPropertyValue("CommandType", box(-
 "int",bsf.getStaticValue("com.sun.star.sdb.CommandType", "COMMAND")))
masterForm~setPropertyValue("Command", "select * from test.customer")
masterForm~setPropertyValue("Name", "customers_form")

At first this is done for the master form, which owns several properties for this pur-

pose. However, in order to get access to this property the master form, which is the

root form in the hierarchy of forms in our document, has to be retrieved afore. This

form was created automatically as the first form component was created and inserted

in the page. Each form component provides the method getParent()via its

XChild interface to get the form in which it resides. As a result, the master form can

be retrieved through any form component located there.

The master form is bound to the whole customer table. How to set the properties for

an RowSet to execute such a query has already been explained in Snippet 4.7 on

page 51. Furthermore for clarity reasons the name “customer_form” is assigned to

the master form.

Now the sub form needs to be created.

masterContainer = masterForm~XIndexContainer
/* create a new form */
salesForm = .xMcf~createInstanceWithContext(-
 "com.sun.star.form.component.DataForm", xContext)
/* insert it into the parentContainer */
masterContainer~insertByIndex(masterContainer~getCount, salesForm)

In order to do this, a new instance of the DataForm service has to be created. This

form is added to the container of the master form afterwards. The

insertByIndex() method is used for this purpose whereby the value of the first

23 Row sets have already been explained in 4.4.2 The RowSet Service on page 50.

Facilitate Data Access in OpenOffice.org using ooRexx – Stefan Schmid Page 73

attribute specifies the index of the position inside the container.

masterConatiner~getCount makes sure that the new form is added to the last

position of the container.

This sub form is also bound to the same MySQL database as the master form but

the command looks different of course.

command = "select * from test.sales where cid = :c"

In the sub form the sales made by the customer, who is currently shown in the mas-

ter form, shall be displayed. Consequently, the command of the sub form selects ev-

erything from the sales table where the customer ID (cid) is equal to a parameter

called “c”. This parameter will be used to create the connection between the master

and the sub form.

strArray = bsf.createArray("String.class", 1)
strArray[1] = "cid"
salesFormProps~setPropertyValue("MasterFields", strArray)
strArray[1] = "c"
salesFormProps~setPropertyValue("DetailFields", strArray)

In order to be able to establish the connection between the two forms, a data field

has to be defined for each form which creates finally the association. For the master

form this is the customer ID, for the sub form it is the previously specified

parameter “c”.

6.1.4 Create Components inside the Sub Form

In a next step the components inside the sub form needs to be created.

salesContainer = salesForm~XIndexContainer
call createControlAndShape "GridControl", 162, 40, 5, 50, salesContainer

Here a grid control is added to the container of the sub form. A grid control is a

table-like component, which can comprise several columns of different form compo-

nents. To add a new column to the grid control component the routine newGrid-
Column() is used. This routine is explained in the following cutouts.

/* query for the container to insert columns into */
xIndexContainer = arg_container~XIndexContainer
/* query for the factory for creating the column models */

Facilitate Data Access in OpenOffice.org using ooRexx – Stefan Schmid Page 74

xGridColumnFactory = arg_container~XGridColumnFactory

Firstly the XIndexContainer interface of the grid control, which is the first argu-

ment of the method, is retrieved. With the use of this interface new columns can be

added to the grid control container. Secondly, we ask for the

XGridColumnFactory interface, which can create new columns.

/* create a new column */
newColumn = xGridColumnFactory~createColumn(arg_factory)
xPropertySet= newColumn~XPropertySet
xPropertySet~setPropertyValue("DataField", arg_name)
xPropertySet~setPropertyValue("Label", arg_field)
/* insert the column */
xIndexContainer~insertByIndex(xIndexContainer~getCount, newColumn)

Thirdly, a new column is generated by defining a form component type in

arg_factory. Afterwards the data field and the label of the column are set.

call newGridColumn gridControl, "ListBox", "name", "product name"

Now a new grid column can be created very easily via the newGridColumn()
method as the previous cutout shows.

A special scenario is the adding of a list box. There the method call is followed by

these lines of code:

productName = result --save the 'product name' column to set some more props

/* initialize the 'product name' ListBox to provide a choice of product names*/
productName~setPropertyValue("ListSourceType", bsf.getConstant(-
 "com.sun.star.form.ListSourceType","SQL"))
productName~setPropertyValue("BoundColumn", box("sh","1"))

sListSource = "SELECT product.name, product.name FROM test.product"
strArray[1] = sListSource

productName~setPropertyValue("ListSource", strArray)

The list box provides a choice of product names, if the user wants to add a new sale.

The choice shall be defined through a “select statement”. For that reason the

ListSourceType property has to be set to “SQL”. The property BoundColumn speci-

fies which column of the result set should be used as the value of the component. In

this example the data field where the value should be taken from and the data field

Facilitate Data Access in OpenOffice.org using ooRexx – Stefan Schmid Page 75

where the data should be stored to is the same. Therefore the same data field

(“name”) is selected twice in the select statement.

6.1.5 Switch to the Live Mode

The creation of the form document is now completed. In OpenOffice.org there are

two different view modes. It must be distinguished between the “design mode” and

the “live mode”. The design mode is active during the design process of the form. In

this mode you can insert form components, resize them and modify their properties.

Since the form document has been built so far, the design mode is the current mode

in this example. In order to allow the form to be connected to the database and addi-

tionally let the user interact with the form it has to be switched to the live mode. This

is done by the method toggleFormDesignMode().

URL = bsf.import('com.sun.star.util.URL')

aToggleURL = bsf.createArray(URL, 1)
aToggleURL[1] = URL~new
aToggleURL[1]~Complete = ".uno:SwitchControlDesignMode"

What this method does, is to dispatch the URL “.uno:SwitchControlDesign-
Mode” into the current view. This simulates pressing the “Design Mode On/Off” but-

ton of the “Form Controls” toolbar. The first step is to create an instance of an new

OpenOffice.org URL .

--need an URLTransformer
frameDesktop = .xMcf~createInstanceWithContext(-
 "com.sun.star.util.URLTransformer",.xContext)
xURLTransformer = frameDesktop~XURLTransformer
xURLTransformer~parseStrict(aToggleURL)

Afterwards this URL needs to be parsed by the URLTransformer service.

xController = .xComponent~XModel~getCurrentController~XController
--go get the dispatch provider of it's frame
xDispatchProvider = xController~getFrame~XDispatchProvider

xDispatch = xDispatchProvider~queryDispatch(aToggleURL[1],"", 0)
xDispatch~dispatch(aToggleURL[1], .UNO~noProps)

Facilitate Data Access in OpenOffice.org using ooRexx – Stefan Schmid Page 76

Finally the xDispatch interface is needed to dispatch the previously created URL

and consequently force the form to switch to the live mode. An instance of this inter-

face is provided by the DispatchProvider service.

Facilitate Data Access in OpenOffice.org using ooRexx – Stefan Schmid Page 77

6.2 Add Form to the Database Document

After the form has been created it can be stored into the database document (i.e. the

odb-File). Snippet 6.2 shows how the form can be added.

oDesktop = UNO.createDesktop() -- get the UNO Desktop service object
/* get the database document */
xComponentLoader = oDesktop~XDesktop~XComponentLoader
url = uno.ConvertToURL("c:\odbfiles\mysql1.odb")
xComponent = xComponentLoader~loadComponentFromURL(-
 url, "_blank", 0, .UNO~noProps)

/* get the form container */
xFormDocumentsSupplier = xComponent~XModel~XFormDocumentsSupplier
xHierarchicalNameAccess = xFormDocumentsSupplier~getFormDocuments

/* create a new DocumentDefinition containing the form */
props = bsf.createArray(.UNO~propertyValue,4)
props[1] = .UNO~PropertyValue~new
props[1]~Name = "Name"
props[1]~Value = "test"
props[2] = .UNO~PropertyValue~new
props[2]~Name = "Parent"
props[2]~Value = xHierarchicalNameAccess
props[3] = .UNO~PropertyValue~new
props[3]~Name = "URL"
props[3]~Value = uno.ConvertToURL("c:\odbfiles\shop_form.odt")
props[4] = .UNO~PropertyValue~new
props[4]~Name = "DocumentTitle"
props[4]~Value = "test"

xDocMSF = xHierarchicalNameAccess~XMultiServiceFactory
oDBDocument = xDocMSF~createInstanceWithArguments(-
 "com.sun.star.sdb.DocumentDefinition", props)

/* add the DocumentDefinition to the database document */
xHierarchicalNameContainer = xHierarchicalNameAccess~XHierarchicalNameContainer
xHierarchicalNameContainer~insertByHierarchicalName("shop_form",oDBDocument)

::requires UNO.cls -- get UNO support

Snippet 6.2 – Add Form to the Database Document

As a result the database document contains the form now as shown in

Illustration 6.4.

Facilitate Data Access in OpenOffice.org using ooRexx – Stefan Schmid Page 78

The snippet explained in more detail:

oDesktop = UNO.createDesktop() -- get the UNO Desktop service object
/* get the database document */
xComponentLoader = oDesktop~XDesktop~XComponentLoader
url = uno.ConvertToURL("c:\odbfiles\mysql1.odb")
xComponent = xComponentLoader~loadComponentFromURL(-
 url, "_blank", 0, .UNO~noProps)

The first lines of code load the database document, which should be used to store

the form inside. In this snippet the odb-File, which contains the computer shop

database example from previous examples is taken (mysql1.odb).

xFormDocumentsSupplier = xComponent~XModel~XFormDocumentsSupplier
xHierarchicalNameAccess = xFormDocumentsSupplier~getFormDocuments

Afterwards the container, which holds the forms has to be retrieved. For that propose

the XFormDocumentsSupplier interface posses the method

getFormDocuments. At the same time there exists an interface called

XReportDocumentsSupplier, which supports the method getFormDocuments.

In this case the container with the reports inside is returned. If a report should be

stored into the database document instead of an form, this report container has to be

used equally.

/* create a new DocumentDefinition containing the form */

Illustration 6.4: Added Form.

Facilitate Data Access in OpenOffice.org using ooRexx – Stefan Schmid Page 79

props = bsf.createArray(.UNO~propertyValue,4)
props[1] = .UNO~PropertyValue~new
props[1]~Name = "Name"
props[1]~Value = "test"
props[2] = .UNO~PropertyValue~new
props[2]~Name = "Parent"
props[2]~Value = xHierarchicalNameAccess
props[3] = .UNO~PropertyValue~new
props[3]~Name = "URL"
props[3]~Value = uno.ConvertToURL("c:\odbfiles\shop_form.odt")
props[4] = .UNO~PropertyValue~new
props[4]~Name = "DocumentTitle"
props[4]~Value = "test"

xDocMSF = xHierarchicalNameAccess~XMultiServiceFactory
oDBDocument = xDocMSF~createInstanceWithArguments(-
 "com.sun.star.sdb.DocumentDefinition", props)

The next step is to create a new DocumentDefinition with the form, that should be

stored, inside. This service has to be created by the previously retrieved form con-

tainer. In order to generate the DocumentDefinition an array of four properties needs

to be passed. Important to mention here is the “Parent” parameter, which has to con-

tain the form container. Furthermore the “URL” parameter comprises the URL of the

form document, that should be added to the database document. Here the form doc-

ument which was created in Snippet 6.1 on page 67 is used.

xHierarchicalNameContainer = xHierarchicalNameAccess~XHierarchicalNameContainer
xHierarchicalNameContainer~insertByHierarchicalName("shop_form",oDBDocument)

Finally the DocumentDefinition which represents the form document now, can be

added to the form container.

Facilitate Data Access in OpenOffice.org using ooRexx – Stefan Schmid Page 80

7 Conclusion

The thesis shows how to automate the data source access of OpenOffice.org. Sev-

eral new functions concerning the access to data sources has been introduced in

OpenOffice.org 2.0, which facilitate the work with various databases. One new fea-

ture is the implementation of the Base application, which gives also, even not ad-

vanced users, the possibility to create connections to data sources within

OpenOffice.org. This opportunity will enlarge the usage of OpenOffice.org.

The snippets provided, give an overview about the different possibilities to access

data sources.

The Developers Guide of OpenOffice.org was obviously the first and a very good ref-

erence during the work on this thesis. Unfortunately, regarding to the database ac-

cess some examples are outdated there. Additionally to several topics there could

be more practical examples and a more detail explanation. The snippets of this the-

sis should help for further investigation on automation of the database access mod-

ule.

Although several automation topics are provided in this paper, there is much more

potential behind the automation of OpenOffice.org regarding to data sources.

Facilitate Data Access in OpenOffice.org using ooRexx – Stefan Schmid Page 81

8 List of Snippets
Snippet Name File Name Page

Snippet 4.1 s4.1_print_registered_data_sources.rex 30
Snippet 4.2 s4.2_addingDatasource_adabas_d.rex 33
Snippet 4.3 s4.3_addingDatasources_mysql.rex 37
Snippet 4.4 s4.4_connection_through_a_datasource.rex 40
Snippet 4.5 s4.5_connection_using_DriverManager.rex 43
Snippet 4.6 s4.6_md_statement.rex 46
Snippet 4.7 s4.7_md_rowset.rex 51
Snippet 5.1 s5.1_create_predefined_query.rex 55
Snippet 5.2 s5.2_execute_predefined_query.rex 58
Snippet 6.1 s6.1_create_form.rex 67
Snippet 6.2 s6.2_add_form.rex 77

Facilitate Data Access in OpenOffice.org using ooRexx – Stefan Schmid Page 82

9 List of Illustrations

Illustration Index

Illustration 2.1: Customer Table..8

Illustration 2.2: Connection of Tables Customer and Sales...8

Illustration 2.3: ER-Diagram of a Computer Shop..9

Illustration 2.4: Table Format of the Computer Shop ER-Diagram............................ 10

Illustration 3.1: Configuring OpenOffice.org Applications from UNO components.

[Flat05] p.5..23

Illustration 3.2: DatabaseContext's interfaces..25

Illustration 3.3: From ooRexx to OpenOffice.org. [Prem06] p.24............................... 27

Illustration 4.1: Registered Databases..30

Illustration 4.2: Output of Snippet 4.2...33

Illustration 4.3: Output of Snippet 4.4...40

Illustration 4.4: Database Login..41

Illustration 4.5: Output of Snippet 4.6...47

Illustration 4.6: Output of Snippet 4.7...51

Illustration 4.7: Base Tables...52

Illustration 5.1: Output of Snippet 5.1...55

Illustration 5.2: Output of Snippet 5.2...59

Illustration 6.1: Master Form - Sub Form Relation..61

Facilitate Data Access in OpenOffice.org using ooRexx – Stefan Schmid Page 83

Illustration 6.2: Form Navigation Toolbar... 61

Illustration 6.3: Output of Snippet 6.1...67

Illustration 6.4: Added Form..78

Facilitate Data Access in OpenOffice.org using ooRexx – Stefan Schmid Page 84

10 Bibliography
[Aham05] Andreas Ahammer: OpenOffice.org Automation: Object Model, Scrip-

ting Languages, “Nutshell”-Examples, Bachelor Course Paper, 2005

http://wi.wu-

wien.ac.at/rgf/diplomarbeiten/BakkStuff/2005/200511_OOo-

Ahammer/200511_OOoAutomation.pdf

retrieved on 2007-02-01
[Apac01] Apache Software Foundation: The Apache Jakarta Project – Bean

Scripting Framework

http://jakarta.apache.org/bsf/index.html

retrieved on 2007-02-01
[Apac02] Apache Software Foundation: The Apache Jakarta Project – BSF Ar-

chitectural Overview

http://jakarta.apache.org/bsf/manual.html

retrieved on 2007-02-01
[ApiO03-1] Sun Microsystems, Inc.: OpenOffice.org API – IDL Reference, 2003

http://api.openoffice.org/docs/common/ref/com/sun/star/sdb/Database-

Context.html

retrieved on 2007-02-01
[ApiO03-2] Sun Microsystems, Inc.: OpenOffice.org API – IDL Reference, 2003

http://api.openoffice.org/docs/common/ref/com/sun/star/sdbc/Result-

Set.html

retrieved on 2007-02-01
[ApiO03-3] Sun Microsystems, Inc.: OpenOffice.org API – IDL Reference, 2003

http://api.openoffice.org/docs/common/ref/com/sun/star/sdb/RowSet.ht

ml

retrieved on 2007-02-01

http://api.openoffice.org/docs/common/ref/com/sun/star/module-ix.html
http://api.openoffice.org/docs/common/ref/com/sun/star/module-ix.html
http://api.openoffice.org/docs/common/ref/com/sun/star/module-ix.html
http://api.openoffice.org/docs/common/ref/com/sun/star/module-ix.html
http://api.openoffice.org/docs/common/ref/com/sun/star/module-ix.html
http://api.openoffice.org/docs/common/ref/com/sun/star/module-ix.html
http://www.oorexx.org/docs.html
http://www.oorexx.org/docs.html
http://wi.wu-wien.ac.at/rgf/diplomarbeiten/BakkStuff/2006/200607_Prem/20060724_ooRexxSnippetsOOoWriter_2.1_odt.pdf
http://wi.wu-wien.ac.at/rgf/diplomarbeiten/BakkStuff/2006/200607_Prem/20060724_ooRexxSnippetsOOoWriter_2.1_odt.pdf
http://wi.wu-wien.ac.at/rgf/diplomarbeiten/BakkStuff/2006/200607_Prem/20060724_ooRexxSnippetsOOoWriter_2.1_odt.pdf

Facilitate Data Access in OpenOffice.org using ooRexx – Stefan Schmid Page 85

[Burg06] Martin Burger: OpenOffice.org Automation: OpenOffice.org Automati-

sation with Object Rexx, Bachelor Course Paper, 2006

http://wi.wu-

wien.ac.at/rgf/diplomarbeiten/BakkStuff/2006/200605_Burger/Bakk_Ar

beit_Burger20060519.pdf

retrieved on 2007-02-01
[Deve05] Sun Microsystems, Inc.: OpenOffice.org 2.0 – Developer's Guide,

2005

http://api.openoffice.org/docs/DevelopersGuide/DevelopersGuide.pdf

retrieved on 2007-02-01
[Flat05] Rony G. Flatscher: AUTOMATING OPENOFFICE.ORG WITH OOR-

EXX: ARCHITECTURE, GLUING TO REXX USING BSF4REXX

, 2005, International Rexx Symposium, Austin, Texas, U.S.A.

http://wi.wu-

wien.ac.at/rgf/rexx/orx16/2005_orx16_Gluing2ooRexx_OOo.pdf#searc

h=%22AUTOMATING%20OPENOFFICE.ORG%20WITH%20OOR-

EXX%3A%22

retrieved on 2007-02-01
[Flat06-1] Rony G. Flatscher: The Vienna Version of BSF4Rexx, 2006, Interna-

tional Rexx Symposium, Austin, Texas, U.S.A.

http://wi.wu-wien.ac.at/rgf/rexx/orx17/2006_orx17_BSF_ViennaEd.pdf

retrieved on 2007-02-01
[Flat06] Rony G. Flatscher: Resurrecting REXX, Introducing ObjectRexx, 2006,

Vienna University of Economics and Business Administration, Austria

http://prog.vub.ac.be/%7Ewdmeuter/RDL06/Flatscher.pdf

retrieved on 2007-02-01
[Geis05] Frank Geisler: Datanbanken – Grundlagen und Design, 2005, mitp-

Verlag/Bonn, Germany
[HaNe05] Hansen / Neumann: Wirtschaftsinformatik 1 – Grundlagen und Anwen-

dungen 9.Auflage, 2005, Lucius&Lucius, Stuttgart

http://prog.vub.ac.be/~wdmeuter/RDL06/Flatscher.pdf
http://www.oorexx.org/docs.html
http://www.oorexx.org/docs.html
http://www.oorexx.org/docs.html
http://www.oorexx.org/docs.html
http://api.openoffice.org/docs/DevelopersGuide/DevelopersGuide.pdf
http://wi.wu-wien.ac.at/rgf/diplomarbeiten/BakkStuff/2006/200607_Prem/20060724_ooRexxSnippetsOOoWriter_2.1_odt.pdf
http://wi.wu-wien.ac.at/rgf/diplomarbeiten/BakkStuff/2006/200607_Prem/20060724_ooRexxSnippetsOOoWriter_2.1_odt.pdf
http://wi.wu-wien.ac.at/rgf/diplomarbeiten/BakkStuff/2006/200607_Prem/20060724_ooRexxSnippetsOOoWriter_2.1_odt.pdf

Facilitate Data Access in OpenOffice.org using ooRexx – Stefan Schmid Page 86

[Hinz06] Michael Hinz: OpenOffice.org Calc Automation Using ooRexx, Bache-

lor Course Paper, 2006

http://wi.wu-

wien.ac.at/rgf/diplomarbeiten/BakkStuff/2006/200607_Hinz/20060712

_OOo_calc_automation.pdf

retrieved on 2007-02-01
[OASIS06] OASIS – About OASIS

http://www.oasis-open.org/who/

retrieved on 2007-02-01
[ooRx06-1] Rexx Language Association: Open Object Rexx - Programming Guide,

2006

http://www.oorexx.org/rexxpg/book1.htm

retrieved on 2007-02-01
[ooRx06] Rexx Language Association – Open Object Rexx, 2006

http://www.oorexx.org/

retrieved on 2007-02-01
[Open06-1] Sun Microsystems, Inc.: OpenOffice.org – About Us, 2006

http://about.openoffice.org/index.html

retrieved on 2007-02-01
[Open06-2] Sun Microsystems, Inc.: OpenOffice.org – Product Description

http://www.openoffice.org/product/

retrieved on 2007-02-01
[Open06] OpenOffice.org – Writer Guide Second Edition, 2006

http://documentation.openoffice.org/manuals/oooauthors2/0200WG-

WriterGuide.pdf

retrieved on 2007-02-01

[OpenSR] Sun Microsystems, Inc.: OpenOffice.org – System Requirements for

OpenOffice.org

http://www.openoffice.org/dev_docs/source/sys_reqs.html

retrieved on 2007-02-01

http://about.openoffice.org/index.html
http://documentation.openoffice.org/manuals/oooauthors2/0200WG-WriterGuide.pdf
http://documentation.openoffice.org/manuals/oooauthors2/0200WG-WriterGuide.pdf
http://www.openoffice.org/product/
http://about.openoffice.org/index.html
http://www.oorexx.org/
http://www.oorexx.org/docs.html
http://www.oasis-open.org/who/
http://wi.wu-wien.ac.at/rgf/diplomarbeiten/BakkStuff/2006/200607_Prem/20060724_ooRexxSnippetsOOoWriter_2.1_odt.pdf
http://wi.wu-wien.ac.at/rgf/diplomarbeiten/BakkStuff/2006/200607_Prem/20060724_ooRexxSnippetsOOoWriter_2.1_odt.pdf
http://wi.wu-wien.ac.at/rgf/diplomarbeiten/BakkStuff/2006/200607_Prem/20060724_ooRexxSnippetsOOoWriter_2.1_odt.pdf

Facilitate Data Access in OpenOffice.org using ooRexx – Stefan Schmid Page 87

[Prem06] Matthias Prem: ooRexx Snippets for OpenOffice.org Writer, Bachelor

Course Paper, 2006

http://wi.wu-

wien.ac.at/rgf/diplomarbeiten/BakkStuff/2006/200607_Prem/20060724

_ooRexxSnippetsOOoWriter_2.1_odt.pdf

retrieved on 2007-02-01
[RexxLA06] Rexx Language Association - The Rexx Language Association, 2006

http://www.rexxla.org/

retrieved on 2007-02-01
[SKSu02] Abraham Silberschatz, Henry F. Korth, S. Sudarshan: Database Sys-

tem Concepts - 4th Edition, 2002, McGrawl-Hill, New York
[StarO1] Sun Microsystems, Inc.: StarOffice 8 – Tech FAQs

http://www.sun.com/software/star/staroffice/faqs/technical.jsp

retrieved on 2007-02-01
[Wiki06-1] Wikipedia – REXX, 2006

http://en.wikipedia.org/wiki/Rexx

retrieved on 2007-02-01

http://en.wikipedia.org/wiki/Openoffice
http://www.sun.com/software/star/staroffice/faqs/technical.jsp
http://www.rexxla.org/
http://wi.wu-wien.ac.at/rgf/diplomarbeiten/BakkStuff/2006/200607_Prem/20060724_ooRexxSnippetsOOoWriter_2.1_odt.pdf
http://wi.wu-wien.ac.at/rgf/diplomarbeiten/BakkStuff/2006/200607_Prem/20060724_ooRexxSnippetsOOoWriter_2.1_odt.pdf
http://wi.wu-wien.ac.at/rgf/diplomarbeiten/BakkStuff/2006/200607_Prem/20060724_ooRexxSnippetsOOoWriter_2.1_odt.pdf

	1. Introduction
	1.1 Abstract
	1.2 Research Question
	1.3 Snippet Definition

	2 Databases
	2.1 Terms and Definitions
	2.2 Entity Relationship Diagram
	2.3 Used Databases
	2.3.1 MySQL
	2.3.2 Adabas D

	3 The technical environment
	3.1 The Scripting Language Open Object Rexx
	3.1.1 History
	3.1.2 Overview
	3.1.3 Syntax

	3.2 The Bean Scripting Framework for Rexx
	3.2.1 BSF
	3.2.2 BSF4Rexx
	3.2.2.1 History
	3.2.2.2 Usage

	3.3 OpenOffice.org
	3.3.1 History
	3.3.2 Overview
	3.3.3 Architecture
	3.3.3.1 UNO – The Base Component Technology
	3.3.3.2 UNO Service Components
	3.3.3.2.1 Service Manager and Service Objects
	3.3.3.2.2 Interfaces
	Methods
	Attributes
	Properties

	3.4 Overall Concept

	4 Database Access
	4.1 DatabaseContext
	4.2 DataSources
	4.2.1 Adding a Adabas D data source to the database context
	4.2.2 Adding a MySQL data source to the database context
	4.2.3 Adding other data sources to the database context

	4.3 Connections
	4.3.1 Connection through a registered data source
	4.3.2 Connecting using the DriverManager

	4.4 Manipulate and Query Data
	4.4.1 The statement object
	The snippet explained in more detail:
	The Connection is retrieved as explained in Snippet 4.4 on page 40 as well as in Snippet 4.5 on page 43. The statement object is created using the createStatement() method of the Connection. The statement object can now be used to send SQL statements to the Database Management System (DBMS)19.

	4.4.2 The RowSet Service

	5 Additional Database Snippet
	5.1 Query Definition
	5.1.1 Store a Query Definition
	5.1.2 Execute a Query Definition
	The RowSet Service
	The XCommandPreparation interface of a connection object

	6 Forms
	6.1 Create a New Form
	6.1.1 Create a new Writer document
	6.1.2 Create Components Inside the Master Form
	6.1.3 Bind Forms to the Database
	6.1.4 Create Components inside the Sub Form
	6.1.5 Switch to the Live Mode

	6.2 Add Form to the Database Document

	7 Conclusion
	8 List of Snippets
	9 List of Illustrations
	10 Bibliography

