

Bachelor Thesis

RICH INTERNET
APPLICATION
DEVELOPMENT

Markus Moldaschl

0751916

Thesis advisor: ao. Univ.-Prof. Dr. Rony G. Flatscher

Institute for Management Information Systems

Vienna University of Economics and Business Administration

Abstract page 3

Abstract

This Bachelor thesis introduces the reader to basic concepts of Rich Internet Appli-

cation (RIA) development. It outlines why traditional web applications fail to live up

to expectations of today‘s web clients and describes how Rich Internet Applications

excel in terms of user experience by closing the gap between the web and the

desktop conglomerate.

Furthermore, the project presents selected, leading edge RIA development frame-

works. On the basis of AJAX, Adobe Flex, Microsoft Silverlight and JavaFX distinc-

tive key functionality is discussed in great detail and benefits and weak spots along

with suggested areas of application are highlighted.

In conclusion, the thesis briefly depicts HTML 5 and meets concerns of the ines-

capable question, whether HTML 5 will have a significant impact on proprietary RIA

solutions or even make them obsolete or not.

Keywords: RIA, AJAX, JavaScript, Adobe Flex, Flash, AIR, Microsoft Silverlight,

JavaFX, Java, Java Scripting, BSF, BSF4ooRexx, HTML 5

Table of Contents page 4

Table of Contents

1 Introduction ... 11

1.1 Motivation and Goal .. 11

1.2 Thesis Structure ... 12

2 Overview of Rich Internet Applications .. 13

2.1 The Evolution of Web Applications ... 13

2.2 Functionality and Characteristics of RIAs ... 17

2.2.1 RIA Architecture .. 17

2.2.2 Main Characteristics .. 19

2.3 Emphasize the User Experience (UX) .. 20

2.3.1 RIA as Part of Process Automation ... 22

2.4 Types of RIAs ... 22

2.4.1 Technology study .. 23

3 AJAX ... 27

3.1 Basics of AJAX ... 27

3.1.1 The AJAX Engine .. 27

3.1.2 DHTML .. 29

3.1.3 XML ... 32

3.1.4 XMLHttpRequest ... 33

3.2 Digression: Web Services and Frameworks ... 36

3.2.1 Web Services .. 36

3.2.2 Frameworks ... 40

3.3 Example Application ... 42

4 Adobe Flex .. 49

4.1 Specification ... 49

4.1.1 Runtime Environments .. 49

4.1.2 Language Characteristics .. 50

4.1.3 Deployment ... 53

4.2 Data Binding and Data Validating ... 54

4.3 Remote Service Handling ... 56

4.3.1 Data Service Wizards .. 58

4.3.2 AMF ... 62

Table of Contents page 5

4.4 Interaction with the Environment ... 62

4.5 Adobe Integrated Runtime (AIR) ... 67

5 Microsoft Silverlight ... 71

5.1 Specification ... 71

5.1.1 Runtime Environment .. 72

5.1.2 Language Characteristics .. 72

5.1.3 Deployment .. 74

5.2 Data Binding ... 76

5.3 Remote Service Handling ... 81

5.4 Interaction with the Environment ... 86

5.5 Silverlight Out-of-Browser ... 90

6 JavaFX .. 94

6.1 Specification ... 94

6.1.1 Runtime Environment .. 94

6.1.2 Language Characteristics .. 95

6.1.3 Deployment .. 99

6.2 Data Binding and Triggering.. 103

6.3 Remote Service Handling ... 106

6.4 Interaction with the Environment ... 111

6.4.1 Interaction with JavaScript ... 111

6.4.2 Interaction with Java .. 114

7 Evaluation .. 126

7.1 Evaluation of AJAX ... 126

7.2 Evaluation of Flex ... 129

7.3 Evaluation of Silverlight ... 131

7.4 Evaluation of JavaFX .. 133

7.5 Recommendations .. 136

8 HTML 5 Outlook .. 138

9 Round-up and Outlook... 144

10 References .. 145

Figures page 6

Figures

Figure 1: RIA Combining Advantages from the Web and the Desktop Sphere 15

Figure 2: Evolution of Web applications [DBBO07] ... 16

Figure 3: Caricature on the RIA Evolution ... 16

Figure 4: Typical RIA Architecture ... 18

Figure 5: Job Trends Concerning AJAX, Flex, JavaFX and Silverlight 24

Figure 6: Market Penetration and Usage of Plug-in Based Technologies 24

Figure 7: Plug-in Support Detected on Systems of Visitors of http://riastats.com/ . 25

Figure 8: Classic Synchronous Wait-Refresh-Cycle [DeveAJ] 28

Figure 9: Partial UI Updates and Asynchronous Communication with AJAX

[DeveAJ] .. 28

Figure 10: DOM Example: Initial State .. 31

Figure 11: DOM example: Elements and Styles Manipulated 32

Figure 12: AJAX Process Flow .. 34

Figure 13: Using a Proxy to Obtain Cross Domain Access 37

Figure 14: showLoading Widget in Action.. 44

Figure 15: Auto Completion with jQuery UI Library .. 45

Figure 16: datePicker for Date Input .. 45

Figure 17: Flex Email Validating .. 55

Figure 18: HTTP Service Configuration ... 59

Figure 19: Preview on Service Response Properties ... 60

Figure 20: Flex Data Service Example .. 61

Figures page 7

Figure 21: ExternalInterface Example .. 64

Figure 22: AIR FileSystemTree Control ... 69

Figure 23: Sign AIR application .. 69

Figure 24: AIR Application Installation Process .. 70

Figure 25: Silverlight Binding Scheme ... 77

Figure 26: Silverlight Data Form Entry ... 80

Figure 27: Data Form: Built-In Validating ... 81

Figure 28: Silverlight Service Consumption Example Workflow 83

Figure 29: Reference Service in Silverlight .. 86

Figure 30: Silverlight OOB Setup ... 92

Figure 31: OOB installation .. 92

Figure 32: State dependent User Interfaces .. 93

Figure 33: Applet/Web Start Generation Parameters in NetBeans 100

Figure 34: JavaFX Draggable Applet Example .. 102

Figure 35: JavaFX Weather Widget ... 107

Figure 36: Output of JavaFX-Java-ooRexx Interaction Nutshell 123

Figure 37: HTML 5 vs. RIA Frameworks [Hamm10] .. 142

Listings page 8

Listings

Listing 1: DOM Manipulation of Elements Example ... 31

Listing 2: Function for Processing Server Response Data 35

Listing 3: SOAP Request Structure ... 39

Listing 4: Standard AJAX Processing .. 43

Listing 5: jQuery AJAX Processing .. 43

Listing 6: AJAX Client Application .. 47

Listing 7: doGet() Method of the Java Servlet .. 48

Listing 8: ActionScript 3 Display Example .. 51

Listing 9: Button Creation with MXML .. 52

Listing 10: Button Creation with ActionScript 3 .. 53

Listing 11: Embed Flash Content with JavaScript .. 54

Listing 12: JavaScript Wrapper for Flash Content Applied to HTML 54

Listing 13: Flex Object Value Data Binding .. 55

Listing 14: Flex Metadata Tag Data Binding .. 55

Listing 15: Data Loading with ActionScript 3 .. 56

Listing 16: Data Loading with MXML ... 57

Listing 17: Handling Response Data with E4X ... 57

Listing 18: Connecting to HTTP Service via Flex Wizard 61

Listing 19: RemoteClass for AMF-based Transmition ... 62

Listing 20: Flash Application Calling JavaScript Function 63

Listing 21: HTML File for Interaction with ActionScript ... 64

Listing 22: Flash Policy File ... 65

Listing 23: XAML Example .. 73

Listing 24: Code-Behind Example ... 73

Listings page 9

Listing 25: Deploy Silverlight Application via object Tag ... 75

Listing 26: Reference Silverlight.js in HTML ... 75

Listing 27: Silverlight Plug-in Initialization ... 76

Listing 28: NotifyPropertyChanged method .. 78

Listing 29: Student Class ... 79

Listing 30: StudentRepository Class .. 79

Listing 31: Silverlight DataForm control .. 80

Listing 32: Using WebClient for Resource Request ... 82

Listing 33: Using HttpWebRequest for Resource Request 83

Listing 34: Parse Response Data with XMLReader .. 84

Listing 35: JavaFX Instance Creation via Object Literal ... 96

Listing 36: JavaFX Instance Creation via Java Convention 97

Listing 37: JavaScript Code for Java Applet Deployment 101

Listing 38: Using javafx.stage.AppletStageExtension to Define Dragging

Behavior ... 102

Listing 39: JavaFX Trigger Example .. 106

Listing 40: JavaFX Weather Widget Logic ... 110

Listing 41: JavaFX Weather Widget ZIP Request View 110

Listing 42: JavaFX Weather Widget Response View ... 111

Listing 43: JavaFX Script Function Set Up for Invocation in JavaScript 112

Listing 44: Invoking JavaFX Script Function in JavaScript 113

Listing 45: JavaFX Class Extending Java Interface.. 115

Listing 46: Java Interface for Implementation in JavaFX 117

Listing 47: Java Class Receiving JavaFX Instance and Invoking Method on It 117

Listing 48: JavaFX Class Implementing Java Interface .. 118

Listing 49: JavaFX-Java-ooRexx Interaction via JSR 223 and BSF 2.4 123

Tables page 10

Tables

Table 1: RIA Technologies Deployment .. 26

Table 2: XMLHttpRequest status codes (cf. [Hold08]) ... 35

Table 3: Selected AJAX Frameworks .. 41

Table 4: Flash Player vs. AIR Application [AIRComp] ... 67

Table 5: Selected JavaFX Script Features .. 98

Table 6: Properties of javafx.stage.AppletStageExtension 103

Table 7: JavaFX Binding Capabilites ... 105

Table 8: JavaFX to Java Type Mapping .. 116

Table 9: JavaFX Reflection Use Cases (cf. [CCB09] and [WGCI09]) 125

Introduction page 11

1 Introduction

This very first chapter deals the motivation behind this project work and the goals

set. Additionally, it outlines the structure of the thesis and the topics discussed in

the respective chapters.

1.1 Motivation and Goal

The World Wide Web, although based on the grand vision of Tim Berners-Lee,

used to be a static collection of interlinked text documents to a large extent. The

web rapidly proliferated but left potential untapped. In fact, traditional web sites

could not serve the dynamic demand for collaborative work, adequate distribution of

information, e-commerce and entertainment. The interaction model web sites im-

plemented interfered with working behavior users adopted from the desktop con-

glomerate. Rich Internet Applications basically achieve to get rid of the document-

centric ―click, wait, refresh‖ user interaction paradigm.

Usability has become a central concern in software development. Companies often

fail to engage customers with the online representation of their business. Custom-

ers choose the vendor‘s site which allows them to accomplish their tasks as effec-

tive and reliably as possible.

Equipping your online presence with tools that act as intelligent assistances shiel-

ding the user from complexity and providing context sensitive information in a

transparent way is the key to higher conversion rates, increased sales, longer stays

on sites, more frequent repeat visits and deepened customer relationships. The

Holy Grail is to provide seamless, focused, connected and aware experience con-

tributing to a maximal degree of user satisfaction.

Web applications evolve and adopt (and even improve) artifacts of desktop applica-

tions. RIAs are ubiquitous; think of trailblazers like Amazon or Google Maps. Today

various mature RIA development frameworks exist. They provide APIs for design-

ing user interfaces more efficiently than with plain old GUI libraries like Java Swing;

the outcome is more expressive. The goal is to design fully fledged software sys-

tems with sophisticated graphical user interfaces integrating with data stores and

remote web services.

Introduction page 12

The main goals of this thesis are to:

 Introduce Rich Internet Applications, describe how they work, how beneficial

they can be and how they close the gap between the Web and the desktop.

 Discuss major RIA development frameworks and impart knowledge about

their functionality.

The theoretical part is supported by plenty of nutshells operationalizing presented

concepts and exemplifying certain functionality.

1.2 Thesis Structure

The motivation and goals and the roadmap of the project work are presented in

chapter one. Chapter two outlines the evolution of web applications from simple text

representations to fully functional software systems. It describes the functional as-

set and the benefits of RIA, highlights characteristics web applications should ob-

tain in order to satisfy the needs of clients, depicts how RIAs can contribute to

business goals and categorizes RIA technologies.

After basic information is provided, the trailblazer in RIA development, AJAX, in-

cluding its mechanism for asynchronous communication with the server – the heart

of every RIA, is presented in chapter three. Analogous to AJAX, the leading edge

technologies from the plug-in based technology conglomerate, Adobe Flex, Micro-

soft Silverlight and JavaFX, are covered over the chapters four to six. Subject to

discussion are language characteristics and remote service handling while placing

special emphasis on the interaction with the DHTML conglomerate (especially with

JavaScript) and ultimately with other RIA scripts. Desktop (out-of-browser) capabili-

ties are presented additionally, if available.

Chapter seven tries to highlight the strengths and weaknesses of every single stu-

died development framework and tries to give general recommendations on use

cases.

An outlook on HTML 5 and its expected features is presented in chapter eight. This

chapter also deals with the manifest and latent impact of HTML 5 on the studied

proprietary technologies. The last chapter concludes the thesis with a short com-

pendium of the lessons learned in the previous chapters.

Overview of Rich Internet Applications page 13

2 Overview of Rich Internet Applications

The term Rich Internet Application (RIA) is neither standardized nor is referring to a

specific technology but rather states an umbrella term for applications which are

intended to fill the gap between common web and desktop applications. An intuitive

flexible graphical user interface allowing user gestures like drag and drop and the

ability to retrieve data from the server asynchronously in the background without

interfering with the display and behavior of the existing page are typical characteris-

tics of a RIA.

This chapter discusses standard web applications and their limitations and how to

overcome them. It describes the core functionality of a RIA, e.g. the ability to take

over responsibility for presentation and (re)calculation processes on the client com-

puter. Furthermore, RIAs are sophisticated solutions for challenging e-commerce,

support process automation and contribute to overall business goals.

2.1 The Evolution of Web Applications

The Internet was originally designed for simply transporting documents and infor-

mation. Simple web sites were composed of text documents interconnected

through hyper-links. The main purpose of this static collection of HTML web pages

was to display preformatted text. As the traditional Web relied heavily on a few in-

terface controls, like combo boxes, buttons and forms it offered only a low degree

of interactivity.

Communication with a server in the course of requesting or updating data is limited

to synchronous HTTP calls resulting in a full page refresh. The bulk of business

logic is placed in the middle tier (the server). In typical implementations, the client

elements of traditional browser-based applications are limited to the interface logic

(for example, HTML) with small amounts of script code (such as JavaScript) for

minor data validation and control logic [DVPG05].

Overview of Rich Internet Applications page 14

Classic web applications are often preferred for the following reasons:

 Standardized tags/scripts are easy to develop.

 No installation or updates necessary.

 Applications are accessible from networked computers.

 Applications can run on different operating systems.

 User interface (UI) is simple and standardized.

Nevertheless, seamless interaction has never been the strong suit of HTML appli-

cations. Since a full-page refresh is usually needed to change any part of the dis-

play, the ability of HTML-based applications to offer responsive feedback needed to

deliver a truly seamless experience is limited [Mull03].

 Enhancing the Functionality by Introducing the Application Server

As web sites grow, it becomes very hard to separate presentation from business

logic in a 2-tier model, and the applications thus become cumbersome and hard to

modify with regard to scalability and maintainability. In order to increase quality

attributes such as security, reliability, availability, and scalability, as well as functio-

nality, most of the software has been moved to a separate computer, the applica-

tion server.

Separating the presentation (typically on the web server tier) from the business

logic (on the application server tier) makes it easier to maintain and expand the

software both in terms of customers that can be serviced and services that can be

offered. Customers expect to be able to use web sites without training. Thus, the

software must flow according to the users' expectations, offer only needed informa-

tion, and when needed, provide navigation controls that are clear and obvious

[OfJe02].

Though there has been significant progress in server-side implementations, the

means of rendering information to the end user remained the same. Further, the

inability to handle complex multi-step business workflows was another problem.

The synchronous nature of traditional Internet applications forced back-and-forth

page-flips on users, resulting in a slow and confusing user experience [DBBO07].

The need to incorporate the rich, interactive and responsive features of desktop

applications was felt increasingly.

Overview of Rich Internet Applications page 15

 Desktop applications

In contrast to (classic) web applications desktop applications offer the following ad-

vantages:

• Richer user experiences through immediate and accurate feedback.

• No page reloading necessary to see the results of user interaction.

• Support both online and offline working.

• Great variety of flexible and intuitive interface controls.

On a downside, traditional applications are tethered to your computer. Often, they

are tethered to your operating system, and the file system the operating system

exposes. They require installations that are long and cumbersome, and almost all

the content they generate or consume is stored locally on the computer, making it

difficult to share with others [Treto08].

The Rich Internet Application (RIA) addresses the best elements of both, standard

Web and desktop applications as depicted in figure 1.

Figure 1: RIA Combining Advantages from the Web and the Desktop Sphere

Overview of Rich Internet Applications page 16

RIAs are designed to enable the Web to evolve beyond the page based, document-

centric metaphor commonly associated with the browser approach. Figure 2 shows

the evolution from web application to RIA and the synergies it combines.

Figure 2: Evolution of Web applications [DBBO07]

A caricature in figure 3 illustrates this RIA evolution in the context of the evolution of

humanity.

Figure 3: Caricature on the RIA Evolution
1

1
 http://phptrainingcourses.com/ria-php-ajax-training-institute.html – requested in February 2011

2
 Adobe Systems acquired Macromedia on December 3, 2005 and as of 2010 controls the line of Macro-

Overview of Rich Internet Applications page 17

2.2 Functionality and Characteristics of RIAs

Macromedia
2
 first coined the term Rich Internet Application in 2002 and defines it

as combining the best user interface functionality of desktop software applications

with the broad reach and low-cost deployment of Web applications and the best of

interactive, multimedia communication. The end result: An application providing a

more intuitive, responsive and effective user experience [LRWA08].

Another definition puts emphasis on the shift from a thin client to thick client archi-

tecture, designed not only to render data from the server but also to process data

corresponding to user interaction on the client [BuKo09]:

―Rich Internet Applications (RIAs) are web applications, which use data that

can be processed both by the server and the client. Furthermore, the data

exchange takes place in an asynchronous way so that the client stays res-

ponsive while continuously recalculating or updating parts of the user inter-

face. On the client, RIAs provide a similar look-and-feel as desktop applica-

tions and the word ‗rich‘ means particularly the difference to the earlier gen-

eration of web applications.‖

2.2.1 RIA Architecture

Regardless of the technology framework used to build a RIA the underlying archi-

tecture is basically the same. A web application usually consists of a three layer

model. The first layer hosts the data access, the second the business logic, and the

last one the presentation logic in analogy to the MVC pattern
3
. As mentioned be-

fore, with a traditional web application the browser engine is only responsible for

rendering the provided data from the server according to the HTML markup as all

three layers – presentation layer, business layer and data layer (plus an optional

service layer) reside on the server. In other words, the client‘s web browser is quali-

fied for just displaying the data it receives from the server.

2
 Adobe Systems acquired Macromedia on December 3, 2005 and as of 2010 controls the line of Macro-
media products, e.g. Flash.

3
 http://en.wikipedia.org/wiki/Model-view-controller – requested in November 2010

Overview of Rich Internet Applications page 18

In a RIA architecture the client‘s browser takes over responsibility from the server

as the whole presentation layer and part of the business logic layer move to the

client. Thus, the client‘s browser is aware of the data it needs from the server. As a

consequence the client‘s browser only requests essential data without extra markup

which leads to less complicated server requests and an overall decrease in server

load.

A prerequisite for this intelligent processing is the existence of some kind of MVC

on each side. The client MVC manages interaction between the user and the inter-

face, requests data from the server and controls how data is presented in the view.

The MVC on the server handles requests from the client [Tric08].

Figure 4 provides a holistic view on the layered model. RIAs support rich graphics

and streaming media scenarios, while providing most of the deployment and main-

tainability benefits of a web application.

Figure 4: Typical RIA Architecture
4

4
 http://msdn.microsoft.com/en-us/library/ee658083.aspx – requested in November 2010

Overview of Rich Internet Applications page 19

RIAs may run inside a browser plug-in and utilizes a web infrastructure combined

with a client-side application that handles the presentation. The plug-in provides

library routines for rich graphics support as well as a container that limits access to

local resources for security purposes. The services layer processes the requests

from the client application and delegates actions on the server. This could be sav-

ing data in a database, updating the file system, some kind of analytical processing,

or returning chunks of data to the server. The big differentiation here is that there is

no user interface. Instead of a user interface, the view would be the format of the

data that is being returned to the client application.

2.2.2 Main Characteristics

One of RIA‘s distinctive features is that it consists of a GUI which is able to aggre-

gate and visualize complex data from different sources for intuitive manipulation by

the client. Other characteristics are the asynchronous nature of communication with

the server and the ability to occasionally leverage the volatile and/or persistent re-

sources on the client. This section discusses the elemental features of a RIA.

 Enhanced Graphical User Interface (GUI) Behavior

By leveraging elements from desktop GUI widgets the user interaction becomes

more flexible and intuitive. Many RIA technologies enable the capability to manipu-

late graphics onscreen at runtime. This enables charting and complex data visuali-

zations, and in some cases, even 3D modeling. In addition, intricately related data

from different source can be aggregated on a single screen, which eases complexi-

ty and supports decision-making. A RIA can also integrate multimedia and anima-

tions, e.g. transitions to make task steps visible for the user, and facilitate the use

of drag & drop and context menus.

 Front end use

Service-Oriented Architecture (SOA)
5
 has gained acceptance as an architectural

paradigm to organize and manage enterprise resources as loosely coupled servic-

es that can be orchestrated to business processes. While enterprise business logic

5
 http://en.wikipedia.org/wiki/Service-oriented_architecture – requested in November 2010

Overview of Rich Internet Applications page 20

and data are exposed as business and data services using SOA, RIA helps these

services to reach their intended end users in an interactive and intuitive way.

 Responsiveness and interactivity

The client interface maintains state of the application completely on the client side.

It does not rely on the server to maintain information about what the current user is

doing. This enables simplifying back end logic to be more service oriented and

asynchronous. The user interface also does not need to wait on the back end logic.

Asynchronous data services are performed behind the scenes, while the user inter-

face is still accessible to the user. The user may not even know that a remote ser-

vice method has been invoked. This enables the user to keep using the application

seamlessly, which helps lend to the desktop-application feeling.

Additionally, asynchronous data services typically only contain data, no UI declara-

tions; it is up to the stateful client to determine how the data will be displayed. This

typically reduces the size of the requests back and forth to the server, and often

results in reduced server load and better interface responsiveness. [Treto08].

 Data Distribution

The developer can decide about the distribution and even design an application that

may temporarily be used irrespective of the server. Therefore, a RIA can use the

client‘s persistent and volatile resources. This allows offline usage of the application

Data can be cached and manipulated on the client, and finally sent validated, for-

matted and prepared to the server once the operation has been completed.

2.3 Emphasize the User Experience (UX)

The usability of a design determines how well the users will be able to perform the

supported tasks. The best designs support the task in a way that is simple and nat-

ural for the intended user. For an interactive experience this results in a design that

lets users engage the application directly.

The interface itself becomes transparent and lets the user work without thinking

about the complexities of how. It allows the user to focus exclusively on the data

being manipulating and his/her progress toward the goal [Mull03].

Overview of Rich Internet Applications page 21

A RIA may feature the following characteristics to provide an optimal degree of user

satisfaction:

 Seamless

Interactive software produces a seamless user experience when it provides

immediate responses and smooth transitions between tools, modes, states,

displays, and other focal points within the application. Context is preserved

wherever possible and transparently restored when necessary. The users‘

ability to maintain focus on the work they are trying to accomplish maximizes

their performance and satisfaction with the tool.

 Focused

A focused experience has a purpose that is clearly defined at the outset and

continuously reinforced. Monolithic applications are superseded by SOA

modules which support a narrowly defined set of tasks and information.

Moreover, tools that target a single task are easier to learn, to remember,

and use efficiently.

 Connected

Connected applications will transparently locate and exchange information

with a variety of data sources and communication devices to shield users

from the complexity of having to manage the connections themselves. Ap-

plications will connect to other applications and remote data sources to

transparently exchange information and facilitate users‘ tasks.

 Aware

Applications seem to be aware of what the user is trying to do when they

recognize the current operating context (location, goals, tasks, applications)

and use this information to transparently facilitate user and task needs.

Applications that dynamically adjust their behavior to reduce the user‘s work-

load quickly come to be seen as intelligent assistants rather than just tools.

Filtering their interface elements based on a user and task context can help

designing a workflow which requires repetitive user conformation more effi-

ciently.

Overview of Rich Internet Applications page 22

2.3.1 RIA as Part of Process Automation

In fact, RIAs help Business Process Management (BPM) overcome one of its

greatest challenges: the gap between an organization‘s ability to automate

processes and users‘ readiness to participate in them. As business managers know

all too well, failure to engage staff and customers fully in processes can result in

high attrition, low conversion rates, overloaded customer service centers, lengthy

cycle times and missed opportunities - all things that RIAs can help address

[Wick08].

Streamlined business processes encapsulated in a role-sensitive RIA transform

processes as well as customer experiences and employee productivity by pulling

together all required information into a view that matches the steps of each task.

Creating a user-centric application delivers a variety of substantial business bene-

fits including: higher conversion rates, increased sales, increased brand loyalty,

longer stays on sites, more frequent repeat visits, reduced bandwidth costs, re-

duced support calls, and deepened customer relationships.

2.4 Types of RIAs

Basically Rich Internet Applications can be differentiated by how they integrate with

the browser. They leverage the scripting engine, use a separate runtime or operate

standalone without internet connection. The following three categories exist [Ha-

Go07]:

Browser-based solutions: Developers deliver rich Internet applications using a

browser‘s document object model and scripting engine, along with Ajax frame-

works. Browser-based RIAs install and execute automatically, as long as the

client‘s browser has JavaScript enabled.

Plug-in-based solutions: Using a browser plug-in as a common runtime, devel-

opers can provide the same ability to run across operating systems as a browser-

based solution, but without the ―headaches‖ that individual browsers create for

RIAs. This approach minimizes cross-browser testing issues, but users may not be

willing to update plug-ins or wait for a lengthy install process to complete if they

don‘t already have the latest version.

Overview of Rich Internet Applications page 23

Desktop-based solutions: The third option is to install a set of runtime compo-

nents on the desktop client outside of the browser‘s security constraints. Desktop-

based solutions provide access to local file systems and the ability to persist infor-

mation, even when web connection is interrupted.

2.4.1 Technology study

The aforementioned RIA categories – browser-, plug-in- and desktop-based appli-

cations – are subject to discussion in greater detail over the next four chapters.

They will be analyzed on the basis of the leading development frameworks AJAX,

Adobe Flex, Microsoft Silverlight and JavaFX. These frameworks are chosen for

demonstration because of the broad support of their runtimes (Flash Player and

.NET CLR) and/or due to the fact that they leverage widely accepted (standardized)

technologies like JavaScript and Java.

The study focuses on the following functionality:

 Language characteristics

 Remote services handling and integrating response data into application

 Interaction with environment and other scripts

 Desktop/out-of-browser capabilities (if provided)

This paper is not meant to discuss GUI building capabilities in great detail as all

four technologies (AJAX with the support of widget toolkits) feature a tremendous

rich set of building block libraries. Nevertheless, language specific aspects, e.g. the

efficient way of creating a GUI with a declarative language and outstanding GUI

components are demonstrated and discussed.

 RIA Proliferation

Figure 5 and figure 6 concern the proliferation of the studied technologies. Based

on the number of job listings aggregated on http://www.simplyhired.com/ as

shown in figure 5, AJAX is on the cutting edge when it comes to RIA development.

Overview of Rich Internet Applications page 24

Figure 5: Job Trends Concerning AJAX, Flex, JavaFX and Silverlight
6

Let‘s have a closer look on the three plug-in based technologies. The chart in figure

6 offers clues how Flex, JavaFX and Silverlight compete based on relative market

penetration in the period from January 2010 to December 2010.

Figure 6: Market Penetration and Usage of Plug-in Based Technologies
7

6
 http://www.simplyhired.com/a/jobtrends/trend/q-
ajax%2C+adobe+flex%2C+javafx%2C+microsoft+silverlight – requested in December 2010

7
 http://www.statowl.com/custom_ria_market_penetration.php – requested in December 2010

Overview of Rich Internet Applications page 25

Figure 7 is an extract from http://riastats.com/. This website detects which

plug-ins are installed on the visitor‘s system and displays the results. The site itself

uses the Flash Player plug-in, just as an aside. According to the gathered numbers,

roughly 95% of the client machines have the Flash Player installed, 75% support

Java technology while 70% feature a Silverlight plug-in as of December 2010.

Figure 7: Plug-in Support Detected on Systems of Visitors of http://riastats.com/

Overview of Rich Internet Applications page 26

 Deployment

In terms of a categorization illustrated in table 1, AJAX is the only browser-based

technology purely leveraging standards that are part of web application develop-

ment for many years. Applications built with one of the three other frameworks use

a separate plug-in to run in the browser.

 Browser-based Plug-in-based Desktop-based

AJAX

Adobe Flex

Microsoft Silverlight ~

JavaFX

Table 1: RIA Technologies Deployment

With Adobe Flex and the Adobe Integrated Runtime Environment (AIR) it is also

possible to build applications which achieve to overcome certain restrictions web

applications are facing and look and feel more like desktop applications. For exam-

ple, an AIR application is able to leverage the file system of the client machine and

is able to operate independently of the server offline
8
. Microsoft‘s out-of-browser

(OOB) approach does not build on a separate runtime environment; it still uses Sil-

verlight. Every Silverlight application can simply be configured for OOB. That is

why, the OOB approach appears to be similar to AIR but it has more restrictions

imposed than AIR applications have
9
. In fact, Silverlight OOB applications are iso-

lated from the local file system – they are not allowed to interact with any data not

part of the application on the client machine. So the Silverlight framework is marked

with a tilde in the category ―Desktop-based‖ as a consequence. JavaFX applica-

tions can undock from the browser and camouflage as desktop applications
10

. A

JavaFX application deployed as Java applet and installed on the client machine can

leverage the proven Java security model to access local resources as long as Java

SE Version 6 Update 10 – released on October 15 2008 – is installed.

8
 See chapter 4.5 for detailed information on Adobe Integrated Runtime (AIR).

9
 See chapter 5.5 for detailed information on Silverlight OOB and a brief comparison with AIR.

10
 See the section ―Undock from Browser‖ in chapter 6.1.3 for information on how to drag a JavaFX appl i-
cation onto the desktop.

AJAX page 27

3 AJAX

AJAX builds on the standard repertoire of common web application development,

namely HTML and JavaScript. Early efforts in asynchronous communication with

the server were achieved by using hidden forms with width and height of zero pixels

and later on with the <iframe> tag. The frame served as a communication channel

as response according to submitted form data could be extracted from it. As a re-

sult only the hidden frame and not the whole page had to be updated.

Great advantage was that such an ―iframe‖ could be created on-the-fly using Java-

Script and the DOM. This made asynchronous calls possible without having to plan

a hidden frame in the HTML design (which encourages separation of code and

presentation).

3.1 Basics of AJAX

The name itself is an acronym for Asynchronous JAvaScript and XML, which al-

ready contains two technologies and a technique for loading information. The name

was coined by Jesse James Garrett. AJAX is not a single new technology, but a

combination of standard technologies including HTML, CSS, JavaScript, XML and

DOM which together with the XMLHttpRequest object achieve web application rich-

ness.

AJAX applications work unconditionally in browsers without the need to install any

plug-ins. However, JavaScript implementations are not standardized across brows-

ers and operating systems. This means that programs must be aware of the

browser, the operating system, and their respective versions. Programs must ex-

ecute different code depending on specific combinations thereof.

3.1.1 The AJAX Engine

At the heart of the AJAX method of communication with the server lies the AJAX

engine. This is nothing more than some JavaScript code that instantiates and uses

the XMLHttpRequest object.

AJAX page 28

Instead of loading a webpage, at the start of the session, the browser loads an

AJAX engine — written in JavaScript and usually tucked away in a hidden frame.

This engine is responsible for both rendering the interface the user sees and com-

municating with the server on the user‘s behalf. The AJAX engine allows the user‘s

interaction with the application to happen asynchronously — independent of com-

munication with the server. So the user is never staring at a blank browser window

and an hourglass icon, waiting for the server to respond (cf. figure 8 and figure 9).

Figure 8: Classic Synchronous Wait-Refresh-Cycle [DeveAJ]

Figure 9: Partial UI Updates and Asynchronous Communication with AJAX [DeveAJ]

Every user action that normally would generate an HTTP request takes the form of

a JavaScript call to the AJAX engine instead. Any response to a user action that

does not require a trip back to the server — such as simple data validation or some

navigation — the engine handles on its own.

AJAX page 29

If the engine needs something from the server in order to respond — if it‘s submit-

ting data for processing, loading additional interface code, or retrieving new data —

the engine makes those requests asynchronously, usually using XML, without stal-

ling a user‘s interaction with the application [Garr05].

3.1.2 DHTML

By extending the static nature of HTML with the client-side scripting language Ja-

vaScript and the Document Object Model a certain degree of interactive behavior of

web pages can be achieved without the need to request a server-side page refresh.

For example, page elements can be inserted or removed dynamically or applied

visual effects from Cascading Style Sheets (CSS) can be altered with a JavaScript

function.

 JavaScript

Released in 1995 by Netscape and Sun, JavaScript is an implementation of the

ECMAScript language standard. It is a prototype-based, object oriented, freely

available cross-platform scripting language. Since all sophisticated web browser

support JavaScript, it does not make AJAX applications require a plug-in and is the

de facto standard for dynamic web page development. For example, the technology

can cause a linked page to appear automatically in a popup window or let a mouse

rollover change text or images.

 DOM

The DOM, a W3C standard since 1998, is a platform and language-neutral inter-

face that lets developers create and modify HTML and XML documents as sets of

program objects, which makes it easier to design Web pages that users can mani-

pulate. The DOM grants access to the elements of the currently loaded HTML page

and to the attributes of the page‘s elements, by providing methods and properties

to retrieve, modify, update and delete parts of the document including content,

structure and style
11

 [LRWA08].

11

 For further reading about the Document Object Model please see:
 http://www.w3.org/DOM/ – requested in December 2010

 http://en.wikipedia.org/wiki/Document_object_model – requested in December 2010

AJAX page 30

For instance, in listing 1 the DOM API is used to append a newly created form to an

existing table and to alternate the used styles.

<html>

 <head>

 <meta http-equiv="Content-Type" content="text/html; charset=UTF-8">

 <title>DOM example</title>

 <style type="text/css">

 body {

 font-family: Verdana, Arial, sans-serif;

 }

 table {

 width: 550px;

 padding: 10px;

 background-color: #c5e7e0;

 border-style: solid;

 }

 td {

 padding: 10px;

 }

 </style>

 <script type="text/javascript">

 /* Manipulates the DOM to insert a form into the existing table.

 Removes some style properties and adds a new rule block*/

 function register()

 {

 var regform = document.createElement("form");

 var attr = document.createAttribute("id");

 attr.value = "regform";

 regform.setAttributeNode(attr);

 regform.appendChild(document.createTextNode("First name: "));

 var firstname = document.createElement("input");

 firstname.type = "text";

 firstname.name = "firstname";

 regform.appendChild(firstname);

 regform.appendChild(document.createElement("br"));

 regform.appendChild(document.createTextNode("Last name: "));

 var lastname = document.createElement("input");

 lastname.type = "text";

 lastname.name = "address";

 regform.appendChild(lastname);

 regform.appendChild(document.createElement("br"));

 var regbutton = document.createElement("input");

 regbutton.type = "submit";

 regbutton.value = "Submit";

 regform.appendChild(regbutton);

 var regtable = document.getElementById("regtable");

 var newrow = regtable.insertRow(1);

 var newcell = newrow.insertCell(0);

 newcell.appendChild(regform);

 var styles = document.styleSheets[0].cssRules[1].style;

 styles.removeProperty("background-color");

 styles.removeProperty("border-style");

AJAX page 31

 document.styleSheets[0].insertRule("#regform { \n\

 background-color: #c5e7e0; border-style: solid}", 3);

 }

 /*executed when all window components are loaded

 adds listener for click events on anchor element*/

 function doLoad()

 {

 document.getElementById('reglink').addEventListener('click',

 register, false);

 }

 // listens for the completed page load

 // equals to "window.onload()"

 window.addEventListener('load', doLoad, false);

 </script>

 <body>

 <table id="regtable">

 <tr>

 <td>some Text</td>

 <td>

 Register

 </td>

 </tr>

 </table>

 </body>

</html>

Listing 1: DOM Manipulation of Elements Example

Figure 10 and figure 11 illustrate the initial state of the application and the state

after the register link is clicked.

Figure 10: DOM Example: Initial State

AJAX page 32

Figure 11: DOM example: Elements and Styles Manipulated

3.1.3 XML

XML is used to encode data for transfer between a server and a browser or client

application. It is a markup meta-language that can define a set of languages for use

with structured data in online documents. Any organization can develop an XML-

based language with its own set of markup tags.

XML is recommended but not required for data interchange. That is why JavaScript

Object Notation (JSON) is often used as an alternative format. Though, other for-

mats such as preformatted HTML or plain text can also be used.

 XML vs. JSON

One of the arguments for JSON is that it is lightweight in nature. On average,

JSON requires less characters, and so less bytes, than the same data in XML. Be-

cause it uses JavaScript syntax, it requires less parsing than XML when used in

AJAX applications because it is essentially serialized JavaScript objects. An object

begins with ―{― (left brace) and ends with ―}‖ (right brace). Each name is followed by

―:‖ (colon) and the name/value pairs are separated by ―,‖ (comma)
12

. Basically

eval() can be used to parse JSON objects. However, eval() compiles and ex-

ecutes JavaScript code, that is why, it should only be used for trusted sources to

12

 http://www.json.org/ – requested in December 2010

AJAX page 33

avoid malicious code in input. A better alternative is JSON.parse(), which rejects all

scripts and accepts only JSON text
13

.

Nevertheless, XML works as a good data exchange format for moving data be-

tween similar applications. XML is designed to have a structure that describes its

data, enabling it to provide richer information. XML data is self-describing. XML

supports internationalization of its data. XML is widely adopted by the technology

industry [Hold08].

3.1.4 XMLHttpRequest

The XMLHttpRequest object is the key for instant information updates from the

server without any (visual) interruptions of the user experience. This is a JavaScript

object that allows sending, receiving and processing HTTP requests to and from

the server without refreshing the entire page. While first being implemented as an

interface in Microsoft‘s ActiveX framework for Internet Explorer, it has later become

a native JavaScript object [InterAJ].

Figure 12 illustrates a typical process flow of an AJAX application. The user triggers

an event, which results in a JavaScript call to a function that initializes an

XMLHttpRequest object via var request = new XMLHttpRequest(); and respectively

with Internet Explorer 6.x and older via:

var request = new ActiveXObject('Microsoft.XMLHTTP');

For a request to the server the methods open(), send() and the property onrea-

dystatechange are used. For instance like this:

request.open('GET', URL, true);

request.onreadystatechange = callback;

request.send('');

With open() the request is prepared by assigning the method (either GET or

POST), the URL and a flag for asynchronous communication. The property onrea-

dystatechange listens for a state change of the request and calls the assigned

function, which processes the server response. In case of a POST request optional

data can be given as an argument to send(), which executes the request.

13

 cf. http://www.json.org/js.html – requested in March 2011

AJAX page 34

Figure 12: AJAX Process Flow
14

On the web server, an object such as a servlet or listener handles the request. Data

is retrieved from the data store, and a response is prepared containing the data in

the form of an XML document. Finally, the XMLHttpRequest object receives the

XML data using the callback function assigned to onreadystatechange, processes

it, and updates the HTML DOM and consequently the view to display the page con-

taining the new data.

3.1.4.1 Processing the Response

Once the response data from an XMLHttpRequest is received, it can be parsed and

integrated into a HTML page with several DOM methods.

function parseResponse() {

 /* Is the /readyState/ 4? */

 if (request.readyState == 4) {

 /* Is the /status/ 200? Is the request successfully processed and

 will the output of the request included in the response?*/

 if (request.status == 200) {

 var response = request.responseXML;

 var paramList = response.getElementsByTagName('param');

 var out = '';

 for (i = 0, il = paramList.length; i < il;)

14

 http://netbeans.org/kb/docs/web/ajax-quickstart.html – requested in December 2010

AJAX page 35

 out += '' + paramList[i++].firstChild.nodeValue + '';

 out += '';

 document.getElementById('list').innerHTML = out;

 } else alert('Problem retrieving the data: \n' + request.statusText);

 request = null;

 }

}

Listing 2: Function for Processing Server Response Data

First the state of the request is checked using the rules depicted in table 2.

readyState This property represents the current state that the object is in. It is
an integer that takes one of the following:

 0 = uninitialized (The open() method of the object has not

been called yet.)

 1 = loading (The send() method of the object has not been

called yet.)

 2 = loaded (The send() method has been called, and

header and status information is available.)

 3 = interactive (The responseText property of the object

holds some partial data.)

 4 = complete (The communication between the client and
server is finished.)

Table 2: XMLHttpRequest status codes (cf. [Hold08])

After the transmission is completed and the response was received, understood,

accepted and processed successfully (cf. table 2) the XML data is parsed. The

DOM of the received XML data is traversed node by node to construct an unor-

dered list in the example from listing 2. It is crucial, that the client-side script is

aware of the format and the structure of the server supplied data. In a last step, the

list data is added to the innerHTML property of an element on the HTML page. The

innerHTML property is a proprietary extension from Microsoft and automatically

translates a given string into the DOM of an object. However, it does not check if

the markup is valid or well-formed. innerHTML is W3C DOM compatible and works

basically in combination with all modern browsers
15

.

15

 See http://www.quirksmode.org/dom/w3c_html.html – requested in April 2011 – for innerHTML compa-

tibility checks.

AJAX page 36

3.2 Digression: Web Services and Frameworks

This section aims to provide a theoretical background of web services and applica-

tion frameworks essential for developing sophisticated RIAs. The reader is intro-

duced to different types of web services architecture and web services standards

used to transmit data from the server to the client and vice versa and to define in-

terfaces for communication with the server and for invocation of provided services.

Additionally, this section briefly discusses frameworks concerning how they ease

application development.

3.2.1 Web Services

A Web service is in most cases an API on a remote system accessed via the Inter-

net. Usually it is used to communicate information between systems by delivering a

feed of data with a specific format, e.g. XML, to the requesting system.

Using a web service in an application has the potential to greatly reduce develop-

ment time and speed up application deployment simply by being a resource to use,

instead of having to create it all from scratch. [Hold08]

A script is restricted to communicate with resources from its own domain of origin.

So, the developer is bound to his own server with his own services. But especially

with mash-ups the intent is to aggregate data from a multitude of sources. Although

Internet Explorer 8 introduced the XDomainRequest
16

 property and more or less

cumbersome workarounds exist, the most sophisticated solution is to use a proxy,

for instance a server side PHP script or a Java Servlet that loads the requested

service (cf. figure 13).

16

 http://msdn.microsoft.com/en-us/library/cc288060%28v=VS.85%29.aspx – requested in January 2011

AJAX page 37

Figure 13: Using a Proxy to Obtain Cross Domain Access
17

Furthermore, using such an intermediary frees the client from worrying about the

web service‘s language and data format and, since the server script does the pars-

ing, execution speed on the client improves.

3.2.1.1 Web Service Architectures

Web services are architected in different ways depending on whether the interface

should be suited for a specific procedure or should be wrapped technological neu-

tral or should use the HTTP paradigm. The common web services architectures are

Remote Procedure Call (RPC), Service Oriented Architecture (SOA) and Repre-

sentational State Transfer (REST).

 Remote Procedure Call

Remote Procedure Call (RPC) architecture enables an application to start the

process of an external procedure while being remote to the system that holds it. In

simpler terms, a developer writes code that will call a procedure or subroutine that

could be executed either within the same application or in a remote environment.

The developer does not care about the details of this remote action, only the inter-

face it begins to execute and the results of that execution [Hold08].

17

 http://developer.yahoo.com/javascript/howto-proxy.html – requested in January 2011

AJAX page 38

 Service Oriented Architecture

In contrast to RPC which aims for technology neutral interface wrapping of servic-

es, Service Oriented Architecture (SOA) defines loosely coupled services empha-

sizing a high degree of reusability of business functions (code assets). These ser-

vices communicate using a formal definition that is independent of the application's

programming language and the underlying operating system. The individual servic-

es are accessed without any knowledge of their underlying resource dependencies.

 Representational State Transfer

Representational State Transfer (REST) identifies resources via global identifiers

(URI) and uses a restricted set of methods similar to HTTP. The requester of a ser-

vice uses GET, POST, PUT or DELETE to retrieve representations of resource for ma-

nipulation.

Dr. Roy Fielding coined REST in his doctoral dissertation
18

 as a collection of prin-

ciples that are technology independent, except for the requirement that it be based

on HTTP.

A RESTful system is identified by the following principles [CBB09]:

 All components of the system communicate through interfaces with clearly

defined methods and dynamic, mobile, code.

 Each component is uniquely identified through a hypermedia link.

 A client/server architecture is followed (i.e., Web browser and Web server).

 All communication is stateless.

 The architecture is tiered, and data can be cached at any layer.

The main difference between RPC and REST is that REST uses the HTTP para-

digm to directly address resources, while RPC provides a component-based inter-

face with specialized methods.

18

 http://www.ics.uci.edu/~fielding/pubs/dissertation/rest_arch_style.htm – requested in January 2011

AJAX page 39

3.2.1.2 Web Service Standards

Web service standards are used to ensure well-defined interfaces for language and

platform neutral communication. They provide certain schemes which describe how

data has to look like and how data has to be transmitted.

 Simple Object Access Protocol

Simple Object Access Protocol (SOAP) is an XML-based messaging protocol for

RPC-style operations. It is not tied to any particular operating system or program-

ming language so theoretically the clients and servers in these dialogs can be run-

ning on any platform and written in any language as long as they can formulate and

understand SOAP messages.

Every SOAP request consists of an envelope and a body as shown in listing 3:

<?xml version="1.0">

<soap:Envelope xmlns:soap="http://www.w3.org/2001/12/soap-envelope"

soap:encodingStyle="http://www.w3.org/2001/12/soap-encoding">

 <soap:Header>

 <!-- Header information -->

 </soap:Header>

 <soap:Body>

 <!-- Body Information -->

 </soap:Body>

</soap:Envelope>

Listing 3: SOAP Request Structure

 Web Services Description Language

Web Services Description Language (WSDL) is an XML-based protocol used to

describe web services, what public methods are available to them, and where the

service is located [Hold08].

In contrast to SOAP which describes the data being transferred, WSDL describes

the interface (known as the contract). Although SOAP holds type information,

WSDL is more suitable for auto-generating language and platform independent

proxies for web services. So, use the synergy of the two standards by defining doc-

uments with WSDL for transmission via SOAP.

AJAX page 40

 Universal Discovery, Description, and Integration

UDDI is an open industry initiative, sponsored by the Organization for the Ad-

vancement of Structured Information Standards (OASIS), enabling businesses to

publish service listings and discover each other and define how the services or

software applications interact over the Internet
19

.

UDDI, which is based on XML and SOAP, consists of two main parts: the specifica-

tion for how to hold all of the information and the implementation of the specifica-

tion.

3.2.2 Frameworks

A web application framework consists of reusable class libraries and design pat-

terns to ease the implementation of frequently used functionality.

An important feature of frameworks is that they should work on a generic level so

that they are suited for a multitude of applications. On the Web and the desktop,

frameworks allow developers to concentrate on the application's requirements and

on meeting deadlines, instead of on the mundane but necessary components that

make applications run. [Hold08]

An application framework is not to be confused with an architectural framework,

which is more like a meta-framework and placed on top of an application framework

to impose more structure. Especially the Adobe Flex community pays a lot of atten-

tion to architectural frameworks. The three most popular are Cairngorm
20

, Mate
21

and PureMV
22

.

Application frameworks basically feature event and service maps and ensure that

communication between UI and model is mediated by global objects (singletons).

For instance, the view (UI) of an application is neither aware of the events/services

to call in case of an action nor it knows which kind of data it needs or when data

arrives. This allows a clear separation of development and maintenance work be-

19

 http://en.wikipedia.org/wiki/UDDI – requested in December 2010
20

 http://sourceforge.net/adobe/cairngorm/home/ – requested in February 2011
21

 http://mate.asfusion.com/ – requested in February 2011
22

 http://puremvc.org/ – requested in February 2011

AJAX page 41

tween designers and logic programmers. Discussing architectural frameworks in

detail would go beyond the scope of this paper
23

.

Many open, free available AJAX frameworks and a lot more JavaScript frameworks

exist on the web. For an RIA developer it is important that they simplify the initiali-

zation of an AJAX request and DOM operations, provide a programming model

suited for the MVC pattern and may offer high level GUI widgets.

Table 3 shows a selection of powerful, frequently used AJAX frameworks.

Framework Short Summary

jQuery

http://jquery.com/

 Minimalistic syntax for (challenging) operations

 Good extension integration and thus countless plug-
ins available

 Provides with jQuery UI library for interactions, widgets
and effects

 Bundled with ASP.NET

MooTools

http://mootools.net/

 Strong object orientation

 Effects component, e.g. for transitions

 Many functions for DOM manipulation

Prototype

http://www.prototypejs.org/

 First JavaScript framework which introduced the $()

function (also incorporated in jQuery) to substitute ge-

tElementById() and provides several other short-

cuts

 Uses AJAX.Request() for retrieving data and

AJAX.Updater() for inserting it into the DOM

YUI (Yahoo UI Library)

http://developer.yahoo.com/yui/

 Good API documentation

 Holistic use of CSS selectors as element references

 Cohesive set of widgets

Table 3: Selected AJAX Frameworks

23
 Please see [EDWF10] or http://www.adobe.com/devnet/flex/articles/flex_framework.html – requested in

December 2010 – for more information on architectural frameworks.

AJAX page 42

3.3 Example Application

This section covers a demonstration of AJAX and its underlying technologies in

practice. The application consumes two web services asynchronously via a Java

servlet proxy, utilizes the jQuery framework and certain widgets from the jQuery UI

library.

Application details:

 Consumes RESTful web services

 Implemented with jQuery framework

 Uses jQuery UI widgets to implement:

 A loading animation during AJAX request

 Auto completion of text field inputs

 A pop-up calendar

 Developed with NetBeans IDE 6.9.1
24

 Deployment on Glassfish 3 Server
25

In jQuery the main object or global function is $(). It is mainly used to select docu-

ment element from a specific context and replaces long function calls like getEle-

mentById(). $(document).ready(function()) is similar to window.onload(),

however it also waits for external content like advertisement.

Listing 4 illustrates the standard process for an AJAX request from XMLHttpRequest

object creation, over request initiation to response parsing.

function initRequest() {

 xhr = createRequestObject();

 var from = document.getElementById("from");

 var to = document.getElementById("to");

 var url = "webserviceservlet?action=currency&from=" + from.value +

 "&to=" + to.value;

 xhr.open("GET", url, true);

 xhr.onreadystatechange = parseCurrencyResponse;

24

 http://netbeans.org/ – requested in December 2010
25

 http://glassfish.java.net/ – requested in December 2010

AJAX page 43

 xhr.send(null);

}

//Browser compatibility check

function createRequestObject() {

 if (window.XMLHttpRequest) {

 if (navigator.userAgent.indexOf('MSIE') != -1) {

 isIE = false;

 }

 return new XMLHttpRequest();

 } else if (window.ActiveXObject) {

 isIE = true;

 return new ActiveXObject("Microsoft.XMLHTTP");

 }

}

function parseCurrencyResponse() {

 if ((xhr.readyState == 4) &&(xhr.status == 200)) {

 var response = xhr.responseXML;

 var curelement = response.getElementsByTagName("double")[0];

 var curvalue = curelement.childNodes[0].nodeValue;

 var curdiv = document.getElementById("curdiv");

 curdiv.appendChild(document.createTextNode(curvalue));

 }

}

Listing 4: Standard AJAX Processing

On a contrary to the standard AJAX processing from listing 4, listing 5 shows the

obviously much simpler jQuery equivalent.

$.ajax({

 type: "GET",

 url: "webserviceservlet",

 data: "action=currency&from=" + from + "&to=" + to,

 //expected response datatype

 dataType: "XML",

 /*Callback function:

 Given to $.ajax() as parameter and executed after it.*/

 success: function(data){;

 //DOM manipulation

 $('#curdiv').append("1 " + from + " = " + data + " " + to);

 }

});

Listing 5: jQuery AJAX Processing

AJAX page 44

In order to provide a look & feel and behavior similar to desktop applications, AJAX

applications can leverage the rich jQuery UI libraries.

For instance, the figures 14 to 16 visualize the ability of such plug-ins (not to be

confused with runtime engine plug-ins
26

). For implementation details please see

listing 6, which shows the whole script of the example application.

Figure 14 demonstrates the use of a loading circle plug-in to visualize the state of a

request; loading bars also exist.

Figure 14: showLoading Widget in Action

26

 By definition they are basically the same; both add certain features to a host application. If the browser
encounters references to content not subject to the core functionality of the browser, a third-party plug-
in takes over the processing. E.g. a .swf file cannot be displayed by the browser; the Flash Player

plug-in instead takes care of it. For a clearer separation, one may think of extensions when concerned
with jQuery plug-ins and the like. They are small pieces of code working with existing functions to ex-
tend the usability of a specific program.

AJAX page 45

Auto completion like in figure 15 is one of the most frequently used features in

modern web applications. The data source can be a local array of strings or a URL

providing JSON data.

Figure 15: Auto Completion with jQuery UI Library

Finally, figure 16 shows a pop-up calendar which eases date input.

Figure 16: datePicker for Date Input

AJAX page 46

<script type="text/javascript">

 //jQuery similar to window.onload()

 $(document).ready(function (){

 //binds a new autocomplete widget to the assigned HTML element

 $("#auto").autocomplete({

 source: ["Berlin", "Bonn", "Dortmund", "Dresden", "Frankfurt",

 "Hamburg"]

 });

 //binds a new datepicker widget to the assigned HTML element

 $("#date").datepicker({clickInput: true});

 //changes the style class of the element dynamically on focus

 $("div.wsout").focusin(function(){

 $(this).removeClass().addClass("wsin");

 }).focusout(function(){

 $(this).removeClass().addClass("wsout");

 });

 //binds a click event listener to the assigned HTML element

 $('#curbutton').click(function (event) {

 var from = $('#from').val().toUpperCase();

 var to = $('#to').val().toUpperCase();

 //loading animation

 $('#loadingcur').showLoading();

 //jQuery AJAX function

 $.ajax({

 type: "GET",

 url: "webserviceservlet",

 data: "action=currency&from=" + from + "&to=" + to,

 dataType: "XML",

 /*Callback function:

 Given to $.ajax() as parameter and executed after it. */

 success: function(data){;

 $('#loadingcur').hideLoading();

 //DOM manipulation

 $('#curdiv').append("1 " + from + " = " + data + " " + to);

 }

 });

 event.preventDefault();

 });

 //binds a click event listener to the assigned HTML element

 $('#weatherbutton').click(function (event) {

 //loading animation

 $('#loadingwea').showLoading();

 //jQuery AJAX function

 $.ajax({

 type: "GET",

 url: "webserviceservlet",

 data: "action=weather&city=" + $('#city').val() + "&country=" +

 $('#country').val(),

 dataType: "XML",

AJAX page 47

 /*Callback function:

 Given to $.ajax() as parameter and executed after it.*/

 success: function(xml){

 $('#loadingwea').hideLoading();

 //DOM manipulation

 var temp = $(xml).find('Temperature').text();

 var sky = $(xml).find('SkyConditions').text();

 var wind = $(xml).find('Wind').text();

 $('#weatherdiv').append("Temperature: " + temp + "
");

 $('#weatherdiv').append("Sky condition: " + sky + "
");

 $('#weatherdiv').append("Wind: " + wind);

 }

 });

 event.preventDefault();

 });

 });

</script>

Listing 6: AJAX Client Application

Communication with the two RESTful web services is mediated by a servlet, be-

cause the script itself is only able to call services from its own source domain. To

achieve remote web service invocation, the doGet() method of the servlet has to

be overwritten to resolve parameters from the initial request and to contact the ser-

vice.

The response from the web service is formatted as necessary to syntactically cor-

rect XML and forwarded to the client as in listing 7.

protected void doGet(HttpServletRequest request, HttpServletResponse response)

 throws ServletException, IOException {

 PrintWriter out = response.getWriter();

 StringBuffer sb = new StringBuffer();

 String urlstring = null;

 String action = request.getParameter("action");

 try {

 if (action.equals("currency")) {

 String from = request.getParameter("from");

 String to = request.getParameter("to");

 urlstring = "http://www.webservicex.net/CurrencyConvertor.asmx/" +

 "ConversionRate?FromCurrency=" + from + "&ToCurrency=" + to;

 } else {

 String city = request.getParameter("city");

 String country = request.getParameter("country");

AJAX page 48

 urlstring = "http://www.webservicex.net/globalweather.asmx/" +

 "GetWeather?CityName=" + city + "&CountryName=" + country;

 }

 //Resource calling and reading on remote URL.

 URL url = new URL(urlstring);

 URLConnection urlc = url.openConnection();

 urlc.connect();

 BufferedReader in = new BufferedReader(new InputStreamReader(

 urlc.getInputStream()));

 String inputLine;

 String outputLine;

 //Response formatting, necessary for faultless DOM parsing.

 if (action.equals("weather")) {

 int i = 0;

 while ((inputLine = in.readLine()) != null) {

 i++;

 if(i==2){continue;}

 outputLine = inputLine.replaceAll("<", "<").replaceAll(">",

 ">").replaceAll("</string>", "");

 sb.append(outputLine);

 }

 } else {

 while ((inputLine = in.readLine()) != null) {

 sb.append(inputLine);

 }

 }

 in.close();

 response.setContentType("text/xml");

 response.setHeader("Cache-Control", "no-cache");

 //Sends web service response to initial requester.

 out.write(sb.toString());

 } finally {

 out.close();

 }

}

Listing 7: doGet() Method of the Java Servlet

Adobe Flex page 49

4 Adobe Flex

The Flex ecosystem is a set of libraries, tools, languages and deployment runtimes

that provides an end-to-end framework for designing, developing and deploying

RIAs.
27

 Flex should not be confused with Flash. Flash is the name of the platform

Flex applications are developed for. So Flex has integrated support from other

Flash products. For instance, the UI architect can create the view with special

graphic software like Adobe Catalyst while the programmer is coding the applica-

tion logic with Flash Builder as they share the same project format. Sometimes

Flash also refers to the authoring tool used to develop animation and multimedia

content. While the Flash authoring tool is suited for design tasks, the Flex API pro-

vides rich functionality for both user interface creation and application logic devel-

opment.

4.1 Specification

Since version 3 released on February 25 2008, the Flex SDK is available under

open-source license. The primary IDE for Flex applications is the Flash Builder
28

. It

is based on the Eclipse IDE, features a WYSIWYG-Editor and allows easily con-

necting your application to services. The Flash Builder is free of charge for students

and unemployed developers. A good free, open source alternative is FlashDeve-

lop
29

.

4.1.1 Runtime Environments

Flash applications are executed in three different runtime environments: Flash

Player, Adobe Integrated Runtime (AIR) and Flash Lite. The Flash Player is used to

embed Flash content in a web page while AIR runs installed applications on the

desktop. Flash Lite is intended for the mobile platform and features a subset of the

Flex API. The latest version 4, released on March 22 2010, supports ActionScript 3

and is integrated in Symbian^3
30

.

27

 http://flextutorial.org/2009/07/22/flex-101-with-flash-builder-4-part-1/ – requested in December 2010
28

 http://www.adobe.com/products/flashbuilder/ – requested in December 2010
29

 http://www.flashdevelop.org/wikidocs/index.php?title=Main_Page – requested in December 2010
30

 http://wiki.forum.nokia.com/index.php/Flash_Lite_4_in_Nokia_Symbian%5E3_devices – requested in
December 2010

Adobe Flex page 50

4.1.2 Language Characteristics

Flex offers great freedom concerning the way an application can be coded. Basical-

ly all work can be done with the object-oriented scripting language ActionScript (AS)

but also with the declarative XML-based MXML due to the fact that MXML code is

compiled to AS code.

 ActionScript 3

Since release version 3 released on June 27 2006, ActionScript (AS) is a strongly

typed object-oriented language with similarities to Java and C#. It is a dialect of the

ECMAScript scripting language standard as JavaScript is.

The key features of AS 3 are [Moock07]:

• First-class support for common object-oriented constructs, such as classes,

objects, and interfaces

• Single-threaded execution model

• Runtime type-checking

• Optional compile-time type-checking

• Dynamic features such as runtime creation of new constructor functions and

variables. Instances from classes with the attribute ―dynamic‖ can have in-

stance variables added at runtime

• Runtime exceptions

• Prototyping:

Use the prototype object of a class to share information and behavior among

all instances of the class and instances of descendents.

• Direct support for XML as a built-in data type

• Packages for organizing code libraries

• Namespaces for qualifying identifiers

• Regular expressions

Adobe Flex page 51

Listing 8 shows the structure of an AS class creating graphical elements. In Action-

Script 3 all graphical objects inherit from the DisplayObject class. Every descen-

dent from DisplayObject can be positioned, rotated and sized. To visualize com-

ponents on screen they have to be added to the display list.

The display list is the hierarchy of all graphical objects currently displayed by the

Flash runtime. When a display object is added to the display list and is positioned in

a visible area, the Flash runtime renders the content of that display object to the

screen [Moock07].

The display list is either represented by Sprite or MovieClip. By invoking the add-

Child method of the Sprite class the label objects gets visualized.

package

{

 import flash.display.*;

 import flash.text.*;

 public class Main extends Sprite

 {

 private var label:TextField;

 public function Main()

 {

 label = new TextField();

 label.text = "Some Text";

 label.x = 100;

 label.y = 50;

 label.selectable = false;

 addChild(label);

 }

 }

}

Listing 8: ActionScript 3 Display Example

 MXML

MXML
31

 is an XML-based language with a declarative syntax designed for user in-

terface related tasks. Olof Torgersson, an analyst of declarative languages charac-

terizes them as following: ―From a programmer’s point of view, the basic property is

that programming is lifted to a higher level of abstraction. At this higher level of ab-

31

 Adobe gives no official meaning for the acronym MXML, but it probably is derived from the MX names-
pace Macromedia introduced and consequently stands for ―Macromedia eXtensible Markup Language‖.

Adobe Flex page 52

straction the programmer can concentrate on stating what is to be computed, not

necessarily how it is to be computed‖
32

.

Web developers may find MXML more appealing than ActionScript due to its syntax

similar to that of languages they are already familiar to.

MXML tags have the following structure:

<s:Button x="80" y="50" label="Button"/>

When a tag is inserted, an instance of the appropriate class is created in the back-

ground in ActionScript. Listing 9 and listing 10 contrast the creation of a button and

wiring it up with some event listener in MXML and in AS. It is necessary to write the

event handler function in a <fx:Script> tag, though. The init() method in listing

10 gets called on application startup.

Flex encourages the use of MXML because it has a more human readable syntax

than AS and fewer code lines are needed for certain tasks.

<s:Application>

 <fx:Script>

 <![CDATA[

 import mx.controls.Alert;

 protected function buttonClick(event:MouseEvent):void

 {

 Alert.show("Button Clicked!");

 }

]]>

 </fx:Script>

 <s:Button x="79" y="64" label="Button" click="buttonClick(event)"/>

</s:Application>

Listing 9: Button Creation with MXML

32
 Torgersson, Olof. ―A Note on Declarative Programming Paradigms and the Future of Definitional Pro-

gramming,‖ Chalmers University of Technology and Göteborg University, Göteborg, Sweden.
 http://www.cs.chalmers.se/~oloft/Papers/wm96/wm96.html – requested in December 2010

Package

Class

Instance Variables

Adobe Flex page 53

<s:Application initialize="init()">

 <fx:Script>

 <![CDATA[

 import mx.controls.Alert;

 import mx.controls.Button;

 private var button:Button;

 private function init():void

 {

 button = new Button();

 button.label = "Click Me!";

 button.addEventListener(MouseEvent.CLICK, buttonClick);

 addElement(button);

 }

 private function buttonClick(e:MouseEvent):void

 {

 Alert.show(e.currentTarget.toString());

 }

]]>

 </fx:Script>

</s:Application>

Listing 10: Button Creation with ActionScript 3

4.1.3 Deployment

Human-written AS code is compiled to AS bytecode. This bytecode is wrapped in a

binary container as a .swf file. The .swf file ending refers to the standard format of

every Flash application for execution on a Flash runtime. The only exceptions are

applications destined for the desktop which have the .air format.

Although .swf files can run in the standalone mode of the Flash Player it is more

common to embed them with the <embed> (Netscape-based browsers) or <object>

(Internet Explorer) HTML tag for replay with the browser plug-in Flash Player in a

web page. At first write a JavaScript file that creates the specific tags. Simply apply

the <embed> tag nested within the <object> to ensure holistic compatibility with all

modern browsers (cf. listing 11).

<!-- JsWrapper.js -->

document.write("<object id='FlashApp'

 classid='clsid:D27CDB6E-AE6D-11cf-96B8-444553540000'

 codebase='http://download.macromedia.com/pub/

 shockwave/cabs/flash/swflash.cab#version=9,0,0,0'

 height='200' width='300'>");

document.write("<param name='movie' value='JSInteract.swf'/>");

document.write("<embed name='FlashApp' src='JSInteract.swf'

 plugins-page='http://www.macromedia.com/shockwave/' +

Adobe Flex page 54

 'download/index.cgi?P1_Prod_Version=ShockwaveFlash'

 height='200' width='300'/>");

document.write("</object>");

Listing 11: Embed Flash Content with JavaScript

Subsequently, apply the JavaScript wrapper to a HTML page as in listing 12:

<!-- page.html -->

<html>

 <body>

 <script src="JsWrapper.js"></script>

 </body>

</html>

Listing 12: JavaScript Wrapper for Flash Content Applied to HTML

4.2 Data Binding and Data Validating

One of the most crucial elements of RIA development is the principle of data bind-

ing. Data binding mechanisms allow synchronizing the value/state of one object

(property) to another at runtime without cluttering up your code with complex

change listening scripts or getter and setter methods. Another tool simplifying fre-

quently used routines is data validating. It allows checking input data on the client

side which results in a more responsive application and in a decrease in server

load.

 Data Binding

Data binding can be accomplished by assigning the value of a property of object X

as value of a property of object Y. As an example, depicted in listing 13, the text

property of <s:TextInput> with the id ―textfield‖ will automatically be assigned to the

text property of <s:Label> and updated every time the text property of ―textfield‖

changes. (Note that the text property of ―textfield‖ is initially empty and blanked

until the used makes some input.) Bound data is recognized via curly braces sur-

rounding the bound property.

Adobe Flex page 55

<?xml version="1.0" encoding="utf-8"?>

<s:Application xmlns:s="library://ns.adobe.com/flex/spark"

 minWidth="955" minHeight="600">

 <s:Label x="74" y="52" text="{textfield.text}"/>

 <s:TextInput id="textfield" x="124" y="52"/>

</s:Application>

Listing 13: Flex Object Value Data Binding

Another option is to bind a whole variable. Such a ―bindable‖ variable has to be de-

clared along with the [Bindable] metadata tag. Listing 14 demonstrates how an

array collection containing feed data is bound to a data grid as data provider. The

private variable feed of type ArrayCollection is assigned as value to the data-

Provider property of <mx:DataGrid>, surrounded by curly braces signalizing data

binding. As a consequence, every time the feed is updated the data grid also re-

flects the new data.

[Bindable]

private var feed:ArrayCollection;

<mx:DataGrid x="10" y="40" width="400" height="125" dataProvider="{feed}">

 <mx:columns>

 <mx:DataGridColumn headerText="Title" dataField="title"/>

 <mx:DataGridColumn headerText="Date" dataField="date"/>

 </mx:columns>

</mx:DataGrid>

Listing 14: Flex Metadata Tag Data Binding

 Data Validating

Traditionally, client input data had to be sent to the server for validation and error

feedback was returned if the data was not suitable for processing. The mx package

contains a wealth of data formatters and validators.

For example an EmailValidator as illustrated in figure 17 looks for the existence

of an @ sign and a correct domain.

<mx:EmailValidator id="eVal" valid="eVal_valid(event);"

 invalid="eVal_invalid(event);"

Figure 17: Flex Email Validating

Adobe Flex page 56

When the ―Check‖ button is pressed the validate() function of the validator is

called to verify the text input. In case of valid input (email address is a string with a

single @ sign and a period in the domain) the function specified at the valid prop-

erty of the <mx:EmailValidator> is called, otherwise a certain function from the

invalid property is invoked. In the example from figure 17 the error message the

validation result returns is assigned to the errorString property of the input field,

in case of invalid input.

4.3 Remote Service Handling

Analog to the XMLHttpRequest object from AJAX, discussed in section 3.1.4, Flex

provides functionality to asynchronously send data to a remote server and to re-

ceive data. In addition, the Flex SDK leverages a specialized language for more

comfortable XML data parsing than with standard DOM. Once again, the communi-

cation with the server can be accomplished both with ActionScript and MXML.

As demonstrated in listing 15, the very first step is to create an URLRequest object

with the URL to connect to. Next is the URLLoader object, which actually executes

the request. Finally the URLLoader object is wired up with an event listener and a

callback method before invoking the load() method on urlLoader with the passed

urlRequest.

private function getFeed():void {

 var url:String = “http://localhost/feed.xml”;

 var urlRequest:URLRequest = new URLRequest(url);

 var urlLoader:URLLoader = new URLLoader();

 urlLoader.addEventListener(Event.COMPLETE, feedLoaded);

 urlLoader.load(urlRequest);

}

Listing 15: Data Loading with ActionScript 3

The HTTPService tag in listing 16 is the MXML equivalent to the urlLoader AS ap-

proach from listing 15. It requires a method (GET or POST) and a callback function to

be specified. Use httpService.send() to execute the request formulated with

<mx:HTTPService> and ultimately to load data similar to executing

urlLoader.load(urlRequest).

Adobe Flex page 57

<mx:HTTPService

 id="httpService"

 url="http://localhost/feed.xml"

 method="GET"

 result="feedLoaded" />

Listing 16: Data Loading with MXML

ActionScript 3.0 implements ECMAScript for XML (―E4X‖), an official ECMA-262

language extension for working with XML as a native data type. E4X seeks to im-

prove the usability and flexibility of working with XML in ECMA-262-based languag-

es (including ActionScript and JavaScript). [Woock07]

In previous versions of ActionScript, one had to use childNodes[] and actually drill

down into the XML object in order to find the information one was searching for.

Now in ActionScript 3, one can simply say xml..itemToBeFound, and it automatical-

ly finds that correct item. [KeCh09] The descendant operator (..) returns an XMLList

representing all descendants (not just child nodes but also nodes at any level lower

than the addressed element at the XML hierarchy) that match the identifier ―item-

ToBeFound‖. If there were multiple items, you would build a loop to go through

them.

As demonstrated in listing 17, the title, date of publication and the message proper-

ties of each item in the received feed are parsed and added to an ArrayCollec-

tion. Such an ArrayCollection can be set as the dataProvider property of a Da-

taGrid or the like to present the data in a structured way (cf. the example in section

4.3.1).

private function feedLoaded(e:Event):void {

 var urlLoader:URLLoader = URLLoader(e.target);

 var xml:XML = XML(urlLoader.data);

 feedTitle = String(xml..title[0]);

 feed = new ArrayCollection();

 for each(var item:* in xml..item)

 {

 feed.addItem({

 title:item..title,

 date:item..pubDate,

 content:item..message

 });

 }

}

Listing 17: Handling Response Data with E4X

Adobe Flex page 58

Please note the curly braces ({}) surrounding the variables passed on invocation of

the addItem() function of the ―feed‖ ArrayCollection. The addItem() function

basically only takes one argument. In order to pass multiple variables however, the

variables have to be passed as block statement (sometimes referred to as ―stem

variable‖) enclosed by a pair of curly braces similar to the body of a method or of a

class.

4.3.1 Data Service Wizards

Integrating with an external service can be a time consuming, error prone process.

You have to be aware of the data type and the structure of the response, parse it

accordingly and make use of the returned values in your application. The Flash

Builder – the primary IDE for Flex applications – offers wizards which ease the inte-

gration of external services by auto-generating related client code as long as those

services return XML or JSON data. They auto-detect the return type of the service

by sending a dummy request and encapsulate the returned values as properties of

a class in the background. A user-named operation (function) gives access to these

properties.

The following basic steps are necessary to integrate an HTTP (RESTful) service
33

with a Flash Builder project consuming industry news RSS feeds from

http://finance.yahoo.com/rss/industry via wizard:

 Select Data -> Connect to Data/Service and choose HTTP

 Configure the HTTP service (cf. figure 18):

Name the operation responsible for invoking the service, select the method

(GET or POST) and insert the URL of the service.

Parameters: Define the parameters attached to the request. The number

and names of the parameters must match the API specification.

33
 Please see http://help.adobe.com/en_US/Flex/4.0/AccessingData/WSbde04e3d3e6474c4-

668f02f4120d422cf08-7ffe.html – requested in December 2010 – for a list of all kinds of services Flash

Builder is able to connect to and how to access them.

Adobe Flex page 59

Service Name: Give the service a name later on referred to.

Figure 18: HTTP Service Configuration

 Bind results and configure the return type:

Assign a return value object to the dataProvider property of a structuring

display component like a dataGrid.

Enter valid parameters and call the operation for a dummy request. The re-

sponse data type is auto-detected according to the returned values. In case

of XML, Flash Builder maps the response to a tree-like structure as illu-

strated in figure 19.

Adobe Flex page 60

Figure 19: Preview on Service Response Properties

Non-leaf nodes are marked as arrays. All properties of the selected root property

are displayed as columns in the dataGrid. All properties of the response can be

manually and arbitrarily assigned using the basic property hierarchy notation.

Listing 18 demonstrates the source code of a simple example which calls the en-

capsulated service and displays the results. The lastResult property of the get-

NewsResult object stores the last successfully fetched result.

<?xml version="1.0" encoding="utf-8"?>

<s:Application xmlns:fx="http://ns.adobe.com/mxml/2009"

 xmlns:s="library://ns.adobe.com/flex/spark"

xmlns:mx="library://ns.adobe.com/flex/mx"

minWidth="955" minHeight="600"

xmlns:financenews="services.financenews.*">

 <fx:Script>

 <![CDATA[

 import mx.controls.Alert;

 import mx.events.FlexEvent;

 protected function fetchNews(event:MouseEvent):void

 {

 getNewsResult.token = financeNews.getNews(searchTerms.text);

 }

]]>

Adobe Flex page 61

 </fx:Script>

 <fx:Declarations>

 <s:CallResponder id="getNewsResult"/>

<financenews:FinanceNews id="financeNews"

 fault="Alert.show(event.fault.faultString + '\n' +

 event.fault.faultDetail)" showBusyCursor="true"/>

 </fx:Declarations>

 <s:Label x="65" y="36" text="Search Terms:"/>

 <s:TextInput x="149.55" y="26.1" id="searchTerms"/>

 <s:Button x="294.65" y="26.45" label="Fetch News"

 click="fetchNews(event)"/>

 <mx:DataGrid x="65" y="105" id="dataGrid"

 dataProvider="{getNewsResult.lastResult.channel.item}"

 width="70%" height="50%">

 <mx:columns>

 <mx:DataGridColumn headerText="Title"

 dataField="title" itemRenderer="NewsRenderer"/>

 <mx:DataGridColumn headerText="Link"

 dataField="link"/>

 <mx:DataGridColumn headerText="Publication Date"

 dataField="pubDate"/>

 </mx:columns>

 </mx:DataGrid>

 <s:Label x="65" y="85"

 text="{getNewsResult.lastResult.channel.title}"/>

</s:Application>

Listing 18: Connecting to HTTP Service via Flex Wizard

When the user has entered search terms and clicks on ―Fetch News‖, the dataGrid

is filled and the title property of the getNewsResult.lastResult.channel object

is displayed as headline (cf. figure 20).

Figure 20: Flex Data Service Example

Adobe Flex page 62

4.3.2 AMF

The protocols used for data loading from a remote source and sending data to it

are text-based. So, the received data has to be manually parsed and typed for fur-

ther processing. To avoid these time-consuming tasks, Flex employs the open Ac-

tion Message Format (AMF), which ensures receiving strongly typed data.

AMF is a compact binary format that is used to serialize ActionScript objects into a

sequence of bytes of the class ByteArray, which contains all required information

about the structure of the original object. Because AMF‘s format is open to all,

Adobe as well as third-party developers can implement it in various products to de-

serialize such pieces of binary data into an object in a different VM (Virtual Ma-

chine), which does not have to be Flash Player. [EDWF10]

Placing the [RemoteClass] metadata tag before a class declaration as in listing 19

ensures the ―conservation‖ of a data type:

package

{

 [RemoteClass(alias="com.MyAsDataTypeClass")]

 public class MyAsDataTypeClass{

 }

}

Listing 19: RemoteClass for AMF-based Transmition

4.4 Interaction with the Environment

In large enterprises, usually you don‘t start a new Enterprise Flex project from

scratch without worrying about existing web applications written in JSP, ASP,

AJAX, and the like. More often, enterprise architects gradually introduce Flex into

the existing web fabric of their organizations. Often, they start with adding a new

Flex widget into an existing web page written in HTML and JavaScript, and they

need to establish interaction between JavaScript and ActionScript code. [EDWF10]

The Flex SDK offers three approaches for setting up communication between Ja-

vaScript and AS: ExternalInterface, Flex AJAX Bridge and the flashVars varia-

ble.

Adobe Flex page 63

 ExternalInterface

The ExternalInterface class allows mapping ActionScript and JavaScript func-

tions. Before ActionScript functions can be invoked from JavaScript one has to add

a callback:

ExternalInterface.addCallback("sendDataToFlash", getDataFromJavaScript);

When JavaScript invokes the sendDataToFlash() functions the specified callback

method is invoked. Calling a JavaScript function from within your Flash application

is accomplished with:

var result:Object = ExternalInterface.call("getDataFromFlash", jsArgument);

Listing 20 and listing 21 demonstrate the ExternalInterface principle. The send-

Text() function sends the input text to the external environment by calling the get-

DataFromFlash() function declared in JavaScript.

<?xml version="1.0" encoding="utf-8"?>

<s:Application xmlns:fx="http://ns.adobe.com/mxml/2009"

 xmlns:s="library://ns.adobe.com/flex/spark"

 xmlns:mx="library://ns.adobe.com/flex/mx"

 minWidth="955" minHeight="600"

 >

 <s:Button x="187" y="66" label="Send" id="send_button"

 click="sendText(event)"/>

 <s:TextInput x="37" y="65" id="sending_ti" enabled="true"/>

 <s:Label x="37" y="48" text="Sending to JavaScript" width="122"

 height="22"/>

 <fx:Script>

 <![CDATA[

 import flash.events.Event;

 import flash.external.ExternalInterface;

 public function sendText(event:MouseEvent):void

 {

 var jsArgument:String = sending_ti.text;

 var result:Object =

 ExternalInterface.call("getDataFromFlash",

 jsArgument);

 }

]]>

 </fx:Script>

</s:Application>

Listing 20: Flash Application Calling JavaScript Function

Adobe Flex page 64

<html>

 <head>

 <script>

 function getDataFromFlash(str) {

 document.myForm.receivedField.value = "From Flash: " + str;

 }

 </script>

 </head>

 <body>

 <embed src='JSInteract.swf' height='100' width='550' id='EISample'>

 <div style="margin-left:35px; margin-top:35px;">

 <form name="myForm">

 <p>Received from ActionScript</p>

 <input type="text" name="receivedField">

 </form>

 <div>

 </body>

</html>

Listing 21: HTML File for Interaction with ActionScript

JavaScript receives the passed string and displays it in a form (cf. figure 21).

Figure 21: ExternalInterface Example

ActionScript may block that kind of interaction, depending on the applied security

policy. ActionScript assigns a security status known as a security-type to every

.swf file opened by or loaded into Flash Player. There are four possible security-

types: remote, local-with-filesystem, local-with-networking, and local-

trusted.

Adobe Flex page 65

Each security-type defines a distinct set of rules that governs a .swf file‘s ability to

perform external operations. Specifically, the types of external operations a securi-

ty- type can potentially prohibit include [Moock07]:

• Loading content

• Accessing content as data

• Cross-scripting

• Loading data

• Connecting to a socket

• Sending data to an external URL

• Accessing the user‘s camera and microphone

• Accessing local shared objects

• Uploading or downloading files selected by the user

• Scripting an HTML page from a .swf file and vice versa

• Connecting to a LocalConnection channel

ActionScript assigns the security-type depending on the location from which the

application was loaded and the privileges given to the .swf file. What is more, a

.swf file can be explicitly trusted by granting it local trust
34

. Nevertheless, the re-

source distributor can set up an own policy file. A policy file gives .swf files from its

list of trusted origins access to resources that would otherwise be inaccessible due

to Flash Player‘s security restrictions (cf. listing 22.)

<?xml version="1.0"?>

<!DOCTYPE cross-domain-policy

 SYSTEM "http://www.adobe.com/xml/dtds/cross-domain-policy.dtd">

 <cross-domain-policy>

 <allow-access-from domain="example1.com"/>

 <allow-access-from domain="example2.com"/>

 <allow-access-from domain="example3.com"/>

 </cross-domain-policy>

Listing 22: Flash Policy File

34

 http://www.macromedia.com/support/documentation/en/flashplayer/help/settings_manager04.html –
requested in December 2010

Adobe Flex page 66

 Flex AJAX Bridge

With the Flex AJAX Bridge one can make certain ActionScript classes available to

JavaScript without any additional coding. In contrast to the ExternalInterface, it is

not necessary to write an extra library in which the accessible functionality is speci-

fied. The following code line gives access to the application instance from Java-

Script:

var flexApp = FABridge.flash.root();

Use this instance to call any function declared in the ActionScript file, but also to

pass functions (e.g. event handlers).

 The flashVars Variable

While embedding a .swf file in HTML, Flash Builder includes flashVars parameters

in the tags <Object> and <Embed>. ActionScript code can read them using Applica-

tion.application.parameters [EDWF10].

An auto-generated HTML file contains the JavaScript variable flashVars. Include

parameters in the form of key/value pairs separated by ―&‖. A ―+‖ sign represents a

single blank space. ActionScript can work with such parameters as they were ordi-

nary variables. For example when using an <object> tag for integration of a .swf

file write

<param name=FlashVars value="myNameAsFlashVar=John+Doe">

or when using an <embed> tag write

<embed href="test.swf" FlashVars="myNameAsFlashVar=John+Doe" ></embed>

to include a parameter. In ActionScript subsequently read and assign the set para-

meter to a variable:

var myName:String = Application.application.parameters.myNameAsFlashVar;

Adobe Flex page 67

4.5 Adobe Integrated Runtime (AIR)

An AIR application is a downloadable gadget installed like a standard desktop ap-

plication, which means it does not run in the sandbox of the browser. Hence, an

AIR application is free from security and usability restrictions that limit Flash Player

based RIA applications.

The following comparison in table 4 points out the main differences between a

browser RIA and an AIR RIA.

Feature In the Browser Standalone Application

Installation Only Runtime Environment (Flash

Player) installed.

Install Runtime Environment (AIR)

and application.

Application

updates

Applications are updated by pushing

new content to a website.

Install new version of application

Programming

languages

JavaScript is provided by browsers,

and ActionScript is provided by Flash

Player software.

Integrated JavaScript and Action-

Script virtual machines are compati-

ble with the browser.

Background

capability

Only in a visible browser window. Run in the background or provide

notifications.

Persistence Activity is limited to the browser ses-

sion. When the browser is closed,

information is lost.

Store information locally and operate

offline.

System inte-

gration

Applications are sandboxed, so de-

vice integration is limited.

Applications can access a local file

system and device APIs.

Data storage Limited local storage, which the

browser can destroy.

Unlimited local storage and access

to a local database, plus encrypted

local storage.

Table 4: Flash Player vs. AIR Application [AIRComp]

Adobe Flex page 68

AIR applications can leverage native menus and the system clipboard. Since ver-

sion 2.0, released on November 16 2009, it is also possible to launch and commu-

nicate with native (non-AIR) applications, detect mass storage devices and open

files with default programs.

Although Flex does not have language elements or libraries that can work with a

relational DBMS, AIR comes bundled with a version of SQLite that is installed on

the client and is used to create a local database (a.k.a. local cache) to store appli-

cation data in the disconnected mode [EDWF10].

Imagine a sales representative visiting clients based on daily routes dispatched by

a central corporate database. The agent‘s work does not require any tools except

the application. However, if the connection to the remote server is cut off or the

agent has/wishes to continue working offline, relevant data is stored to the local

database. Next time an available network is detected – AIR automatically can

detect networks – the local database is synchronized with the one of the server.

An AIR application also look like a native window of the underlying OS, due to the

simple fact, that is uses the <s:WindowedApplication> root tag instead of

<s:Application>.

The class flash.filesystem.File is a means of getting access to the files and

directories on the user‘s computer. This class allows creating, moving, copy, or de-

leting files. For read/write operations, use the class FileStream from the package

flash.filesystem [EDWF 10].

The process of writing files, for instance, is very similar to, let‘s say, the Java one:

 Create a stream instance:

var myFileStream4Write: FileStream = new FileStream();

 Open the stream in writing mode with specifying the file :

myFileStream4Write.openAsync(myFile,FileMode.WRITE);

 Write a byte string to the file using a character set:

myFileStream4Write.writeMultiByte(textToWrite, "iso-8859-1");

 Close the stream:

myFileStream4Write.close();

Adobe Flex page 69

The AIR API features some additional controls for file system navigation like the

<mx:FileSystemTree/> tag shown in figure 22.

Figure 22: AIR FileSystemTree Control

Once your application is ready for deployment the .air distribution package can be

created. This file, which is based on .zip compression, contains all data needed to

install AIR applications. But first it has to be signed with a certificate, since AIR ap-

plications enjoy access privileges to the local system. Figure 23 demonstrates the

assignment of a certificate. Select an existing certificate or create a new one with a

password.

Figure 23: Sign AIR application

Adobe Flex page 70

Click the .air file for prompt installation (cf. figure 24). Unless a real digital certifi-

cate is used, the AIR installer warns the user about the unknown identity of the pub-

lisher.

Figure 24: AIR Application Installation Process

The directory of the installed applications contains .swf sources, some manifest

data and an .exe file. Double-click the .air installer or the .exe file to run the ap-

plication.

Microsoft Silverlight page 71

5 Microsoft Silverlight

Silverlight is a cross-platform .NET runtime, cross-browser plug-in, and a set of

Windows-based developer tools for building RIAs. At its heart, Silverlight is an im-

plementation of the concepts and standards from Windows Presentation Founda-

tion (WPF) such as binding, the property system, and Extensible Application Mar-

kup Language (XAML) in a cross platform version of the .NET Common Language

Runtime (CLR) and libraries [Brown10].

5.1 Specification

Silverlight is compatible with today‘s sophisticated web browsers in combination

with Microsoft Windows and Mac OS X. It is also the application development

framework for Windows 7 Phone
35

. Although parts of earlier release versions were

ported to Linux with the open source Moonlight
36

 project, the SDK is still proprietary

as of version 4 released on April 15 2010. The primary IDE for Silverlight applica-

tions (and generally applications targeted for the .NET Platform) is Microsoft‘s Vis-

ual Studio. With Visual Web Developer Express Microsoft offers a free, lightweight

IDE using the Microsoft Essential Library for building Web applications with Visual

Basic or C#
37

.

Silverlight is basically a specialized subset of the .NET Framework and WPF for

developing user-centric applications for the Web. WPF is used to build the Graphi-

cal User Interface of thick desktop and web application clients on the Windows plat-

form. It was initially released as part of .NET Framework 3.0 released on November

06 2006. WPF separates the user interface from the business logic and employs

the declarative XAML. Silverlight consists of two crucial parts: the Presentation

Core and its own implementation of the .NET Framework
38

. While the Presentation

Core includes UI rendering, layout, input handling and a subset of XAML - to name

but a few - .NET for Silverlight includes data parsing and service communication

functionality.

35

 http://www.silverlight.net/getstarted/devices/windows-phone/ – requested in January 2011
36

 http://www.go-mono.com/moonlight/ – requested in January 2011
37

 http://www.microsoft.com/express/Web/ – requested in January 2011
38

 cf. http://msdn.microsoft.com/en-us/library/bb404713%28VS.95%29.aspx – requested in January 2011

Microsoft Silverlight page 72

In contrast to WPF, Silverlight executes on a browser-hosted version of the Com-

mon Language Runtime (CLR).

5.1.1 Runtime Environment

The runtime environment of Silverlight is a derivative of Microsoft‘s CLR, an imple-

mentation of the Common Language Infrastructure (CLI). The CLI defines an infra-

structure that is able to execute multiple high-level languages. The languages are

compiled into the Common Intermediate Language (CIL). The infrastructure allows

assemblies to run without modification on every platform the infrastructure is avail-

able on [LRWA08].

5.1.2 Language Characteristics

Similar to Adobe Flex Microsoft Silverlight utilizes multiple languages for different

proposes. The Graphical User Interfaces is designed with a declarative language

called XAML while one is encouraged to write the application‘s logic in any of the

languages supported by Microsoft‘s .NET framework.

 XAML

The eXtensible Application Markup Language (XAML) was introduced with WPF to

contribute to the MVC pattern. XAML shares great similarity with Flex‘s MXML. The

main purpose is to provide an easy to read and easy to write declarative language

for GUI building tasks. Developing a GUI with markup requires significantly less

code than with a standard object oriented programming language. Furthermore, the

hierarchy of components can be easily visualized (and auto-coded) as it is derived

from the nesting structure may applied to an application. Similar to MXML, XAML

generates no abstract objects. In fact, each XAML element maps to a CLR object

instance and each attribute maps to a CLR property.

XAML uses the root tag <UserControl> to define the content of a page – Silverlight

uses a page-based metaphor – as a whole arbitrary control element as shown in

listing 23.

Microsoft Silverlight page 73

<UserControl x:Class="SilverlightApplication7.MainPage"

 xmlns="http://schemas.microsoft.com/winfx/2006/xaml/presentation"

 xmlns:x="http://schemas.microsoft.com/winfx/2006/xaml"

 xmlns:d="http://schemas.microsoft.com/expression/blend/2008"

 xmlns:mc="http://schemas.openxmlformats.org/markup-compatibility/2006"

 mc:Ignorable="d"

 d:DesignHeight="300" d:DesignWidth="400">

 <Grid x:Name="LayoutRoot" Background="White">

 <Button Content="Click Me!" Height="23" HorizontalAlignment="Left"
 Margin="60,48,0,0" Name="button1" VerticalAlignment="Top"
 Width="75" Click="button1_Click" />

 </Grid>

</UserControl>

Listing 23: XAML Example

Listing 23 also illustrates the x scope namespace. Namespaces in XAML basically

follow the same principal as in MXML: they refer to packages. However this special

namespace is used to join markup pieces of a class and to identify XAML elements

for reference and use in code-behind. For example, in order to join any code-

behind to an XAML file through a partial class (explained later), that class needs to

be named as the x:Class attribute in the root element of the respective XAML file.

 Code-Behind

Silverlight strictly separates view from logic in the development process, too. While

the .xaml file describes the static GUI, all necessary interactivity programming has

to be implemented in a corresponding .xaml.cs file. Also the initialization of the

application takes place in the .xaml.cs file (cf. listing 24).

namespace SilverlightApp

{

 public partial class MainPage : UserControl

 {

 public MainPage()

 {

 InitializeComponent();

 }

 private void button1_Click(object sender, RoutedEventArgs e)

 {

 MessageBox.Show("Clicked!");

 }

 }

}

Listing 24: Code-Behind Example

Microsoft Silverlight page 74

A Silverlight application may feature various partial classes splitting the definition of

a class between different files (e.g. .xaml and .xam.cs). Such partial classes are

assembled on compilation.

The great benefit of Silverlight is that is does not imply the use of a specific lan-

guage for (logic) programming. Silverlight applications can be written in any .NET

supported language like C#, C++, VB or JScript (a.k.a. JavaScript) as all code is

compiled to CIL bytecode before being executed by a Virtual Machine. So, web

developers may leverage their existing code expertise or veteran .NET developers

can create Silverlight applications with their CLI language of choice without being

forced to learn one specific language.

5.1.3 Deployment

The Silverlight application deployment package is a compressed file called the

XAML Application Package (XAP). This file is simply a compressed ZIP archive that

stores mandatory files, such as the application manifest and the main application

DLL, and optional files, such as the auxiliary library DLLs and resource files. The

application manifest file mainly includes a list of assembly files that need to be

downloaded upon application startup [GhSc09].

Every Silverlight application additionally contains an App.xaml file defining re-

sources like styles and brushes. The code-behind file of App.xaml holds startup

instructions, e.g. which .xaml file to show initially. The Silverlight application can

basically be deployed in two ways:

 Surfacing the .xap to the client via some URI by embedding it with the <ob-

ject> tag in a HTML page

 Referencing the JavaScript utility file Silverlight.js and instantiating the

Silverlight plug-in on the web page or within a hosting out-of-browser

process:

 Implementation via HTML object Tag

Listing 25 demonstrates how to embed a Silverlight application in a web page using

the <object> element. The type attribute of the <object> tag identifies the plug-in

and the required MIME type. The mandatory ―source‖ param child element locates

Microsoft Silverlight page 75

the .xap deployment package. onerror specifies a JavaScript exception handler.

The link is only displayed if Silverlight is not installed on the client machine.

<div id="silverlightControlHost">

 <object data="data:application/x-silverlight-2,"

 type="application/x-silverlight-2" width="100%" height="100%">

 <param name="source" value="MySilverlightRIA.xap"/>

 <param name="onerror" value="onSilverlightError" />

 <a href="http://go.microsoft.com/fwlink/?LinkID=141205"

 style="text-decoration: none;">

 <img src="http://go.microsoft.com/fwlink/?LinkId=108181"

 alt="Get Microsoft Silverlight" style="border-style: none"/>

 </object>

</div>

Listing 25: Deploy Silverlight Application via object Tag

 Implementation via Silverlight.js

The Siverlight.js utility file encapsulates methods and variables for embedding a

Silverlight application into a web page. It is an integral part of every Silverlight ap-

plication and is distributed along with the other application files via the .xap archive.

In order to utilize the Silverlight.js utility file, reference it in HTML code of a web

page at first (cf. listing 26).

<html>

 <head>

 <title> My Silverlight Application </title>

 <script type="text/javascript" src="Silverlight.js"> </script>

 </head>

 <body>

 <!-- Initialize Plug-in here. See listing 27.-->

 </body>

</html>

Listing 26: Reference Silverlight.js in HTML

Doing so gives access to the createObjectEx() function of the Silverlight.js

utility file necessary for initialization of the Silverlight application. A <div> element

like in listing 27 acts as the host of the plug-in instance. It is placed inside the

<body> tag of an HTML page with a reference to Silverlight.js like the one from

listing 26. The instantiation function Silverlight.createObjectEx takes three

Microsoft Silverlight page 76

mandatory parameters: source, parentElement and id. source specifies the .xap

packages, parentElement the plug-in instance host and id provides a hook for

HTML DOM access. The properties parameters clarify the initial appearance. If

the Silverlight application is supposed to interact with HTML DOM (see section 5.4)

it is crucial to set enableHtmlAccess to ―true‖. "events" allows specifying onload

and onerror event handler.

<div id="mySilverlightHost" style="height:100%;">

 <script type="text/javascript">

 Silverlight.createObjectEx({ #C

 source: "MySilverlightRIA.xap",

 parentElement: document.getElementById("mySilverlightHost"),

 id: "mySilverlightControl",

 properties: {

 width: "100%",

 height: "100%",

 version: "3.0",

 enableHtmlAccess: "true"

 },

 events: {}

 });

 </script>

</div>

Listing 27: Silverlight Plug-in Initialization

5.2 Data Binding

The ability to bind the state of a property to another is a vital part of the view-logic-

separation paradigm. GUI and business logic can be developed independently. Da-

ta Binding in Silverlight is similar to that one in Flex. If Silverlight data sources (CLR

objects) should propagate a change in state, however, it has to be enhanced with a

change notification.

The basic data binding syntax is the following [CaGh10]:

<object targetPropertyname =

"{Binding sourcePropertyPath, oneOrMoreBindingProperties}" .../>

Every Silverlight binding statement starts with the so-called Binding markup exten-

sion and must specify a source and a target as shown in figure 25.

Microsoft Silverlight page 77

Figure 25: Silverlight Binding Scheme
39

The target needs to be a Dependency Property – a special Silverlight extension to

standard CLR properties. If the source is also a Dependency Property (XAML ob-

ject property), just specify the property to bind and the source object as Element-

Name:

<TextBox Name="txtBindTarget" Text="{Binding Text, ElementName=txtBindSource}"/>

The optional value converter exposes the methods Convert() and ConvertBack()

to modify data as its bound from the source object to the control and vice versa.

CLR object properties of basic data type, though, first require the source object

they belong to being set as DataContext property of the binding target before refe-

rencing it within the binding statement. The DataContext property allows binding

entire collections to a visual control.

Silverlight supports three binding modes for regulating the data flow:

 OneTime: sets the target property only when the source is initialized

 OneWay: default binding mode; the target automatically receives updates

from the source property but not vice versa

 TwoWay: mutual change propagation and updating

As already mentioned, CLR needs a change-notification handler for automatic up-

date broadcasts. A change-notification handler notifies a binding target that a

change has been made.

39

 http://msdn.microsoft.com/en-us/library/cc278072%28v=vs.95%29.aspx#Y798 – requested in January
2011

Microsoft Silverlight page 78

The PropetyChanged event of the INotifyPropertyChanged interface tells the bind-

ing engine that the source has changed so that the binding engine can update the

target value. First declare the PropertyChanged event:

public event PropertyChangedEventHandler PropertyChanged;

Call a method NotifyPropertyChanged() as in listing 28 whenever the property is

updated. If the PropertyChanged event is implemented, pass the name of the

property subject to update as argument on PropertyChanged() invocation.

public void NotifyPropertyChanged(string propertyName)

 {

 if (PropertyChanged != null)

 {

 PropertyChanged(this,

 new PropertyChangedEventArgs(propertyName));

 }

 }

Listing 28: NotifyPropertyChanged method

 Data Form

Examples in chapter 4 demonstrated that data grids are an essential control for

structuring (bound) data. With the data form Silverlight provides a control focusing

not only on the structured representation but especially on the manipulation of indi-

vidual data. The following example is based on an application from [Brown10] and

demonstrates how a collection of data – a student repository - can be efficiently

connected to a UI for presentation to and manipulation by the user. A Student

class like in listing 29 holds information about the students.

public enum AcademicDegree

 {

 None,

 BSc,

 MSc

 }

 public class Student

 {

 [Required]

 public int ID { get; set; }

 public AcademicDegree AcademicDegree { get; set; }

 [Required]

 public string LastName { get; set; }

 [Required]

 public string FirstName { get; set; }

 public bool ReRegistered { get; set; }

Microsoft Silverlight page 79

 public DateTime DateOfBirth { get; set; }

 public string EmailAddress { get; set; }

 }

Listing 29: Student Class

Note the [Required] attribute above some properties. Corresponding fields in the

data form must not be left blank later on. A StudentRepository class creates an

ObserveableCollection and fills it with items of Student type (cf. listing 30).

public class StudentRepository

 {

 private ObservableCollection<Student> _student =

 new ObservableCollection<Student>();

 public ObservableCollection<Student> Student

 {

 get { return _student; }

 }

 public StudentRepository()

 {

 _student.Add(new Student()

 {

 ID = 1234,

 AcademicDegree = AcademicDegree.None,

 FirstName = "John",

 LastName = "Dorian",

 ReRegistered = true,

 DateOfBirth = DateTime.Parse("1975-04-06")

 });

 _student.Add(new Student() {

 ID = 5678,

 AcademicDegree = AcademicDegree.BSc,

 FirstName = "Elliot",

 LastName = "Reid",

 ReRegistered = true,

 DateOfBirth = DateTime.Parse("1976-08-27")

 });

 }

 }

Listing 30: StudentRepository Class

The next step is to create the DataForm and reference and integrate the Student

and the StudentRepository classes.

Microsoft Silverlight page 80

This requires adding the StudentRepository.cs depicted in listing 30 as static re-

source identified via ―repository‖ to the MainPage.xaml of the application:

<UserControl.Resources>
 <local:StudentRepository x:Key="repository" />
</UserControl.Resources>

The newly declared static resource will be assigned to the DataContext property of

the DataForm XAML control while the ItemsSource of the DataForm will be the col-

lection with objects of class ―Student‖ exposed through a property named ―Student‖

from the StudentRepository (cf. listing 31).

 <toolkit:DataForm Name="dataForm1"

 DataContext="{StaticResource repository}"

 ItemsSource="{Binding Student}"

 CurrentIndex="0"

 CommitButtonContent="Save"

 CancelButtonContent="Cancel"/>

Listing 31: Silverlight DataForm control

The DataContext refers to a top-hierarchy object type. It allows binding multiple

containing properties to the UI. ItemsSource defines objects from the DataContext

which can be bound to values of the control. The data form automatically assigns

each property of the ItemsSource to a row in the form and renders it accordingly to

its data type as shown in figure 26. For instance, the DateOfBirth property is ren-

dered with a trailing date picker.

Figure 26: Silverlight Data Form Entry

Microsoft Silverlight page 81

What is more, the data form features some built-in data validating. Alerts are

shown in case of syntactically incorrect input or blank fields marked as required (cf.

figure 27).

Figure 27: Data Form: Built-In Validating

Unfortunately, Silverlight – to be more precise XAML – lacks specialized validator

elements like the <mx:EmailValidator> from the Flex SDK. You are supposed to

write validators on your own. Nevertheless, the Sys-

tem.ComponentModel.DataAnnotations package can be leveraged to set up com-

mon validation rules, e.g. to check input against defined regular expressions.

5.3 Remote Service Handling

In Silverlight external resources on the Web can be basically accessed with two

mechanisms:

 WebClient class:

The WebClient type has a convenient collection of methods that let you

access resources over HTTP. You can use the WebClient class in two basic

modes: uploading/downloading resources as strings and reading from or

writing to streams [CaGh10].

http://msdn.microsoft.com/en-us/library/system.componentmodel.dataannotations%28v=vs.95%29.aspx
http://msdn.microsoft.com/en-us/library/system.componentmodel.dataannotations%28v=vs.95%29.aspx

Microsoft Silverlight page 82

 HttpWebRequest class:

The HttpWebRequest is designed to communicate over the HTTP and

HTTPS protocols. It also supports the POST method along with GET, whe-

reas WebClient only supports GET [GhSc09].

Nevertheless, you are always at liberty to leverage the XMLHttpRequest object of

AJAX trough interaction with JavaScript instead.

To call the service using WebClient, like in listing 32, start with the declaration of a

WebClient object. Then associate the OpenReadCompleted event of the WebClient

with a method for callback. Finally initiate the request with the desired URI.

WebClient client = new WebClient();

/* The event assignment “+=” is a C# feature. It sets (adds) an event hand-
ler for the OpenReadCompleted event. The opposite is “-=” which removes a
certain event handler. */

client.OpenReadCompleted +=
 new OpenReadCompletedEventHandler(client_OpenReadCompleted);

client.OpenReadAsync(new Uri(http://localhost/sampleURI));

void client_OpenReadCompleted(object sender, OpenReadCompletedEventArgs e)

{
 // response parsing

}

Listing 32: Using WebClient for Resource Request

Listing 33 shows the different approach, using HttpWebRequest. An instance of

HttpWebRequest cannot be created directly. The WebRequest class contains a facto-

ry method named Create() that returns an appropriate instance of a WebRequest

inheritor, based on the protocol specified in the URI [GhSc09].

Invoke BeginGetResponse() on the request, pass the callback method as a new

AsyncCallback object with the request object as the state parameter. In the call-

back method, get access to the request object via the AsyncState parameter and

get the response object from EndGetResponse(), which ends the request. In order

to get access to the body of the response, retrieve the response stream and read it

with a StreamReader.

http://localhost/sampleURI)

Microsoft Silverlight page 83

HttpWebRequest request = (HttpWebRequest)HttpWebRequest.Create(new
Uri(http://localhost/sampleURI));

request.BeginGetResponse(new AsyncCallback(ReadCallback), request);

private void ReadCallback(IAsyncResult result)

{

 HttpWebRequest request = (HttpWebRequest)result.AsyncState;

 HttpWebResponse response =
 (HttpWebResponse)request.EndGetResponse(result);

 StreamReader reader = new StreamReader(response.GetResponseStream()))

}

Listing 33: Using HttpWebRequest for Resource Request

A possible service handling workflow is outlined in figure 28. An instantiated Silver-

light application uses WebClient to prepare and send a request to a server (e.g.

Java EE server). On the server the appropriate service is invoked and returns a

response. Now it is the client application‘s turn to parse the response for further

processing.

Figure 28: Silverlight Service Consumption Example Workflow
40

If the response data is already strongly typed – using a SOAP service for instance

– it can be integrated directly. In most cases the response contains raw XML.

40

 http://www.infoq.com/articles/silverlight-java-interop – requested in January 2011

Microsoft Silverlight page 84

Three different built-in methods can be used in Silverlight to parse XML:

 LINQ to XML (Language Integrated Query to XML – formerly called XLINQ)

LINQ to XML is a dialect of the .NET Framework‘s LINQ. LINQ to XML has

data querying capabilities and uses query syntax to access the nodes and

attributes in XML. It makes working with data such as collections of objects

and XML documents much easier than with DOM
41

. The first step is to

create an XmlReader from the response stream:

XmlReader responseReader = XmlReader.Create((Stream)stream);

That XmlReader is loaded into a XElement:

XElement xmlResponse = XElement.Load(responseReader);

Any element or attribute can subsequently be accessed by name to get its

value:

XElement item = xmlResponse.Element("item");

 XmlReader

The XmlReader class is a fast-forward–only, non-caching XML parser. For

processing large XML files, XmlReader is better suited than LINQ to XML for

performance reasons [Brown10]. The following code from listing 34 leads to

the same result as with LINQ to XML:

XmlReader responseReader = XmlReader.Create((Stream)stream);

responseReader.Read();

responseReader.ReadToFollowing("item");

String item = responseReader.ReadElementContentAsString();

Listing 34: Parse Response Data with XMLReader

 XmlSerializer

The System.Xml.Serialization namespace provides the XmlSerializer

class that one can use to easily save and load objects to any stream. The

XmlSerializer provides a way to convert an XmlReader into strongly typed

41

 See http://msdn.microsoft.com/en-us/library/bb387021.aspx – requested in March 2011 – for a
 comparison between LINQ to XML and DOM.

Microsoft Silverlight page 85

objects. To use this approach, one needs to define a class that matches the

format of the incoming XML. The workflow is the same as with XmlReader

until it points to the requested element. Next create a class equivalent to the

element‘s structure. Then create an XMLSerializer with the target type:

XmlSerializer serializer = new XmlSerializer(typeof(item));

Deserialize the XmlReader to get an object of the target type:

item i = (item)serializer.Deserialize(responseReader);

Now get access to child elements of the serialized parent element as they

were properties of it. For instance, the (de)seralized object i has an element

name which should be assigned to a variable name. This is accomplished via:

String name = i.name;

Although Silverlight is featuring the discussed powerful ways to connect to external

services and to parse response data, Visual Studio does not excel that much as

Flex does with Flash Builder when it comes to wizard-supported, automatic service

detecting and integration. Basically you can automatically integrate a service via a

so-called Service Reference. Right click on a project and select ―Add Service Ref-

erence‖.

The dialog, shown in figure 29, allows you to enter the URI of a service. Click ―Go‖

in case of an external service or ―Discover‖ in case of a service part of the same

solution to analyze the signature of the service. If the URI points to a valid service,

all available operations are listed and can be implemented on the basis of a proxy

mediating communication between you and the remote service.

Microsoft Silverlight page 86

Figure 29: Reference Service in Silverlight

This sounds pretty much like the data wizard functionality in Flash Builder. Unfortu-

nately, the auto-generating part ends with the creation of the proxy. In contrast to

Flex in combination with the Flash Builder, in Visual Studio one has to invoke me-

thods on the proxy manually, has to write event handlers with callbacks and has to

take care of integrating the result data with the UI.

5.4 Interaction with the Environment

While Flex is on the leading edge concerning efficient service integration, Silverlight

performs outstandingly when it comes to interaction with the HTML environment.

As discussed in section 4.4, the spectrum of communication from Flex to Java-

Script and vice versa is limited to explicitly ―exposed‖ functions and special va-

riables. In contrast to an embedded Flex/Flash application, an embedded Silverlight

application is able to directly interact with the DOM, with JavaScript functions and

even with the browser object itself. So the HTML environment can be directly ad-

dressed from inside managed code (Silverlight). The prerequisite is to set the enab-

leHtmlAccess property to ―true‖ when instantiating the plug-in on a web page (cf.

section 5.1).

Microsoft Silverlight page 87

The following tasks can be accomplished with this functionality known as HTML

Bridge
42

:

 Manage the web page from managed code:

Use the root HtmlElement of the document property of an HtmlPage, a refer-

ence to the body of the HTML document, and methods for retrieving ele-

ments on the page by ID. This enables you to navigate the contents of a

web page, work with individual element properties and styles, and retrieve

information from a query string [Brown10]. For example get access to a cer-

tain element via its ID:

HtmlElement element = HtmlPage.Document.GetElementById("myDiv");

 Work with the browser window:

The HtmlWindow class provides a direct connection to the functionality of the

browser, including shortcuts to display alert and confirmation dialogs, use

navigation controls, execute arbitrary script code, and access bookmarks

within the page [GhSc09]. Address it through the Window property of the

HtmlPage object and invoke certain functions on it:

HtmlPage.Window.Alert("Hello World!");

 Calling Silverlight from JavaScript:

The first step is to mark a class with the ScriptableType attribute. This

attribute, which is part of the System.Windows.Browser namespace, makes a

class accessible to JavaScript:

[ScriptableType]

public partial class MainPage : UserControl

Once a class has been marked as a ScriptableType, all public properties,

methods, and events are available to JavaScript.

42

 The cross-browser compatibility of the HTML Bridge is derived from the cross-browser compatibility of
its functional assets (DOM, JavaScript). Hence, the HTML Bridge basically works fine in combination
with all modern browsers. See http://www.quirksmode.org/dom/w3c_core.html – requested in April
2011 – for a brief compatibility check.

Microsoft Silverlight page 88

Use the ScriptableMember attribute to expose selected events, methods or

properties to JavaScript:

[ScriptableMember]

public void bridgeMethod()

{}

After the scriptable objects are defined, they have to be registered for use in

JavaScript by invoking the RegisterScriptableObject() method on the

HtmlPage class:

HtmlPage.RegisterScriptableObject("objectAlias", objectInstance);

The object is registered with the scripting engine by passing it as the second

parameter to the RegisterScriptableObject() method, which then uses the

first parameter to create an alias for the class instance [Brown10]. This alias

is appended to the content property of the hosting Silverlight plug-in:

var silverlight = document.getElementById("mySilverlightRIA");

silverlight.content.objectAlias.bridgeMethod();

 Calling JavaScript from Silverlight:

Silverlight gives you the flexibility to call JavaScript from managed code and,

in turn, the ability to call any method on an HTML or JavaScript object via

the Invoke() method [Brown10]. The Invoke() method can be applied to

any HtmlDocument, HtmlElement, or HtmlWindow object. The first parameter of

this method represents the name of the function to be invoked. The trailing

parameter(s) represent(s) the argument(s) that will be passed to this func-

tion:

HtmlPage.Window.Invoke("jsFunction", "argument");

Now image a scenario in which it is necessary to incorporate both Flash and Silver-

light technology in a web application. The following nutshell puts their interoperabili-

ty to the test.

Microsoft Silverlight page 89

 Calling Flash from Silverlight

The very first step is to set up the callback in the Flex project:

ExternalInterface.addCallback("sayHello", sayHello);

Invoke the JavaScript function which propagates the function call to the Flash ob-

ject:

HtmlPage.Window.Invoke("callFlash");

Finally, the invoked JavaScript function gets the already in HTML embedded Flex

application and calls the appropriate Flex function:

function callFlash ()

{

 flashApp = document.getElementById("flashApp");

 flashApp.sayHello();

}

 Call Silverlight from Flash

Mark a type or member as scriptable

[ScriptableType]

public partial class bridgePage : UserControl

{}

and register it to the script engine:

HtmlPage.RegisterScriptableObject("bridgePage", this);

Invoke the JavaScript function which propagates the function call to Silverlight:

ExternalInterface.call("callSilverlight");

Finally, the invoked JavaScript function calls the appropriate Silverlight function on

the embedded and instantiated Silverlight object:

function callSilverlight()

{

 silverlight.content.bridgePage.sayHello();

}

The bottom line is that JavaScript is able to link Flash and Silverlight. They are not

mutually exclusive but offer synergy potentials to a certain extent. For example, a

DHTML-based legacy front-end can be gradually extended with Flash-based multi-

media content and Silverlight-based forms integrating WCF services from a .NET

back-end.

Microsoft Silverlight page 90

5.5 Silverlight Out-of-Browser

Silverlight 3, released on July 9 2009, introduced the feature to install Silverlight

applications on the local client machine. This Out-Of-Browser (OOB) activation

model neither requires an active connection to the web source of the application

nor an open browser window.

Out-of-browser Silverlight applications work just like in-browser Silverlight applica-

tions with some minor differences [Brown10]:

 Isolated storage quota for out-of-browser applications is 25 MB by default as

opposed to 1 MB for in-browser applications. In both cases, this can be ex-

tended by prompting the user.

 Out-of-browser applications provide access to keys that the browser normal-

ly captures, such as function keys.

 Out-of-browser applications can be pinned to the Start menu or taskbar on

Windows systems and display custom icons.

 Out-of-browser applications require an explicit check for a new version, whe-

reas in-browser versions automatically update.

 Out-of-browser applications support the elevated trust mode (see below).

 Use Component Object Model (COM) automation to integrate with native

code and applications on the desktop.

 Out-of-browser applications can‘t receive initialization parameters or take

advantage of any of the plug-in parameters while running out of the browser.

 Out-of-browser applications can‘t interact with the HTML DOM - there‘s no

DOM to work with.

Microsoft Silverlight page 91

With version 4 of Silverlight released on April 15 2010 it is possible to substitute the

Windows chrome
43

 with a custom one. For every Silverlight application one has the

choice to substitute the default chrome style with a no border or a borderless round

corner style. In addition, Silverlight features events and functions which support

building custom chrome.

At a glance, OOB seems to be very similar to AIR, but they are very different ac-

tually. OOB applications do not run in a separate runtime environment because

every Silverlight application can easily configured as OOB (camouflaged as desk-

top application) and OOB does not require extended APIs for working with local

resources as it is basically neither intended nor privileged to work with them. What

is more, OOB applications are still bound to the sandbox
44

. This means that they

are subject to strict limitations on what system resources and services they can

access or request in order to prevent accidently or maliciously intended harm to the

client machine.

Silverlight 4 introduced an elevated trust system, though. If the deployment pack-

age (.xap) is signed with a certificate of a trusted authority, the application can es-

cape the sandbox to a certain extent. When trusted, the application is privileged to

read and write files in the user document folders and no longer has to use proxies

for cross-domain web service calling, for example. However, trusted OOB applica-

tions still do not enjoy the rigorous access to the local storage system as AIR appli-

cations do.

Let‘s have a look at the installation process of OOB. Earlier versions of Silverlight

required editing the AppManifest.xml file in order to setup your application for

OOB. With the release version 4 just go to the ―Properties‖ section of the project

and tick ―Enable running application out of the browser‖ as shown in figure 30.

Then click on the now accessible ―Out-of-Browser Settings …‖ button to configure

the displayed title, icon and the like. If you tick the option for elevated trust, your

application will not be installable until it is signed.

43

 The chrome of a GUI refers to the borders, title bars, buttons (minimize, maximize and close) and other
elements that decorate a typical window on a given operating system.

44
 See http://searchsecurity.techtarget.com/definition/sandbox – requested in April 2011 – for more infor-
mation on basic sandbox concepts.

Microsoft Silverlight page 92

Figure 30: Silverlight OOB Setup

As soon as you confirm the OOB settings, an OutOfBrowserSettings.xml file hold-

ing the configuration is added to the properties of your application. The installation

is initiated with a right click on the application running in the browser and selecting

the install command from the context menu. Another option is to trigger the Appli-

cation.Current.Install() method via UI event, e.g. the user initiates the installation

by clicking on a button of the GUI wired up with a respective event handler

(cf. figure 31).

Figure 31: OOB installation

Microsoft Silverlight page 93

The property Application.Current.IsRunningOutOfBrowser allows observing the state

of the application. For instance, provide different functionality or show different in-

terfaces. Figure 32 illustrates both the displayed interface of the application from

figure 31 after it is installed and the interface of the desktop version.

Figure 32: State dependent User Interfaces

JavaFX page 94

6 JavaFX

JavaFX, the youngest of the discussed RIA frameworks, is developed by Sun Mi-

crosystems. The technology formerly known as F3 (Form Follows Function) is es-

sentially the successor of Java Applet. While Java is indisputably omnipresent in

the back end (server tier), it is not the first choice for the frontier view of modern

web applications. Writing a GUI in an XML-based language just requires significant-

ly less code and time than with Java‘s Abstract Windows Toolkit (AWT) or Swing,

for example. In order to overcome this potential weak spot, JavaFX is designed to

tremendously simplify the creation of graphical user interfaces on the Java plat-

form.

6.1 Specification

Using the Java platform at its core, JavaFX works seamlessly with the Java plat-

form and can easily leverage existing Java code. This also allows JavaFX to leve-

rage the ―write once, run anywhere‖ capability provided with the Java platform

[WGCI09]. The JavaFX 1.3 SDK, released on April 22 2010, can be downloaded

from http://javafx.com. Plug-ins for both NetBeans and Eclipse IDE exist and

enable syntax highlighting, code completion, debugging, etc in JavaFX projects.

Adobe Photoshop and Adobe Illustrator offer integration via JavaFX Production

Suite plug-ins. These plug-ins enable you to generate JavaFX data files from

created graphics.

6.1.1 Runtime Environment

JavaFX runs on any system and browser as long as a Java Runtime Environment

(JRE) is installed. The version targeted at mobile devices is called JavaFX Mobile

and runs on top of the Java Micro Edition (ME). Unfortunately JavaFX Mobile is

trailing comparable technologies like the iPhone SDK or Android SDK
45

.

45

 http://mobile360.de/javafx-mobile-hebt-nicht-ab-32351.html (German) – requested in February 2011

JavaFX page 95

6.1.2 Language Characteristics

In contrast to Flex or Silverlight, JavaFX employs only one language: JavaFX

Script. JavaFX Script combines full object orientation with a declarative syntax

which is not based on XML but rather looks similar to CSS.

 JavaFX Script

At a glance, the characteristics of JavaFX Script are [WGCI09]:

 It is an object-oriented language. It supports classes, instance variables, in-

stance functions and - in contrast to Java – multiple inheritance via mixin

classes.

 It supports a declarative style suitable for GUI programming. Its object literal

syntax and sequence syntax make describing GUIs easy.

 It supports data binding. It allows for easy separation of GUI views and

models.

 It is a statically typed, compiled language with basic type inference capabili-

ties. It compiles source code into Java classes.

 It employs libraries for timelines and path-based animation similar to Adobe

Flash.

 It can leverage the vast number of Java libraries. JavaFX classes can ex-

tend Java classes and interfaces, and JavaFX code can instantiate Java ob-

jects and call Java methods.

JavaFX Script is broken down into two main levels, script and class. The difference

between script and class level is that variables and functions defined at the script

level are globally accessible inside the .fx project whereas class level follows the

same scope concept as in Java. One exception to Java is that JavaFX employs no

―static‖ prefix; script level fields and methods serve basically the same purpose.

One may instantiates a class to get access to its properties.

JavaFX page 96

In JavaFX objects are instantiated using object literals. This is a declarative syntax

using the name of the class that you want to create followed by a list of initializers

and definitions for this specific instance enclosed in curly braces ―{}‖.

For instance, listing 35 shows the creation of an instance of the class ja-

vafx.scene.control.TextBox via object literal syntax. Every instance variable in-

itializer is followed by a colon ―:‖ and a value or binding expression. Object literals

may also consist of variable declarations and other object literals assigned to an

instance variable. A close look on listing 35 actually reveals two object literals: the

obvious outer one (―TextBox‖), an instance of the javafx.scene.control.TextBox

class, has another object literal (―Font‖) of class javafx.scene.text.Font as-

signed to its font property.

TextBox {

 var mytext = "I’m a text box! "
 text: mytext

 columns: 12

 selectOnFocus: true

 font: Font {

 size: 14

 }

 layoutX: 100

 layoutY: 20

}

Listing 35: JavaFX Instance Creation via Object Literal

Instances of objects can be also created with the new expression, but for the sake

of consistency you should still use curly braces ―{}‖ instead of round braces. Listing

36 demonstrates the conventional approach using new for instantiation that looks

more like Java. Please note the line with the command supposed to set the size of

the myfont object. The size property of the class javafx.scene.text.Font has

the public-init access modifier which allows no post initialization value assign-

ment.

As JavaFX features no Java-like constructors per se – when using the new expres-

sion the class name is always followed by empty braces – trying to set the size of

an instance of type javafx.scene.text.Font will result in a compile-time error,

unless one uses object literals.

JavaFX page 97

var textBox = new TextBox();

var mytext = "I’m a text box!";

textBox.text = mytext;

textBox.columns = 12;

textBox.selectOnFocus = true;

var myfont = new Font();

myfont.size = 14; // Compile-Time Error!!!

textBox.font = myfont;

textBox.layoutX = 100;

textBox.layoutY = 20;

Listing 36: JavaFX Instance Creation via Java Convention

Nevertheless, creating instances of Java object in JavaFX still requires the stan-

dard convention. Note that the mytext variable from listing 35/listing 36 obviously is

of String data type and is recognized as such from the context.

Although you can declare a type, it is basically inferred from the first assigned val-

ue. Table 5 demonstrates additional vital features of JavaFX Script either not

present in Java or at last differently operationalized.

Feature Code Sample Description

Sequences /* initialize sequence of specific
size (six) with items */

def footballPos = [“QB”,

“TE”, “WR”, “FS”, “SS”,

“CB”]

/* initialize empty sequence of spe-
cific size (six) */

def footballPos = [0..12

step 2]

// insert ―HB‖ after ―QB‖

insert “HB” after foot-

ballPos[0]

Ordered lists of objects, similar to

arrays. JavaFX uses meaningful,

reserved keywords like ―insert‖ and

―delete‖ list manipulation and ―step‖

to set up intervals. Data type of

sequence is inferred from ―logical‖

data type of items.

Block expressions /* declare a variable x and initialize
it with the value 7 */

var x = {

 var a = 5;

 var b = 2;

 a + b };

The block expression is formed by

enclosing other expressions within

a pair of curly braces.

The type of the block expression is

the type of the last expression it

encloses. If the last expression is

not of the void type, then the value

of the last expression is the value

of the block expression [WGCI09].

JavaFX page 98

Condition expres-

sions

// short form if-expression

var x = if (i == y) then 2

else 4;

// complex if-expression

var salary = if(rating <

80.0) 2.50

else if(rating < 120.0)

3.50

else 5.00;

Special type of block expression.

Introduced by the if keyword,

followed by a parentheses en-

closed condition, which must be an

expression of type Boolean; an

optional then clause after the clos-

ing parenthesis; and an optional

else clause.

For loops
// iterate over sequence

for(item in sequence) {

println(item); }

// iterate over a count

for (i in [0..100]) { }

Introduced by the for keyword,

followed by a pair of parentheses

that enclose one or more comma-

separated in clauses, and an ex-

pression after the closing paren-

thesis. For expressions are often

used to loop over sequences or to

create new sequences by returning

an object on each iteration.

Functions and

implicit return type

/*anonymous function with implicit
return type */

var passRating: func-

tion(td:Number,

att:Number);

passRating = function(td,

att) { td/att *20 };

// implicit return type

public function passRat-

ing(td:Number, att:Number)

{

//return type of Number inferred

td/att*20 }

In JavaFX, functions are objects of

themselves and may be assigned

to variables. For example, to dec-

lare a function variable, assign a

function to that variable, and then

invoke the function through the

variable.

If return type of function is omitted,

it is inferred from the last expres-

sion in the function expression

block. Cannot be applied on recur-

sive functions and two or more

functions referencing each other.

Table 5: Selected JavaFX Script Features

With the release of JavaFX 2.0 (scheduled for late 2011) JavaFX Script will be dis-

continued as JavaFX moves to the regular Java API. However, functionality like

data binding and the use of object literals is supposed to persist and should be ex-

posed as library. The goal is to ensure a sophisticated integration with other Java

UI toolkits and to encourage developers creating JavaFX applications with their

JavaFX page 99

JVM language of choice. Since JavaFX Script is a very potent language, it presum-

ably will be enhanced in open source projects of JavaFX
46

.

6.1.3 Deployment

JavaFX applications can be deployed on the Web as a Java applet or via Java Web

Start
47

. Java applets run inside the browser, are loaded on web page initialization

and require a full download of necessary files on each startup. Java Web Start ap-

plications can run outside the browser, are only invoked on user interaction and

cache necessary files on the client machine. Java applets were always criticized for

long loading phases. Since the release of Java SE 6 Update 10 in October 2008,

however, the applet framework is overhauled and leverages the local caching prin-

ciple of Java Web Start. New data is only downloaded when the version of the .jar

file is subject to update. The basic steps to deploy a JavaFX application as an app-

let or with Java Web Start are
48

:

1. Create and sign the JAR application file.

2. Create the JNLP (Java Network Launch Protocol) descriptor file.

3. Add JavaScript code to the HTML source or – Java Web Start exclusively - as-

sociate the Java Web Start MIME type and double click the .jnlp file
49

.

Figure 33 shows the obligatory parameters which have to be set for deployment. In

NetBeans go to the ―Properties‖ of your project, select ―Application‖ and tick ―Self

Signed Jar‖ and ―Pack200 Compression‖. Then switch to ―Run‖ and mark ―Run in

46

 An open source JavaFX Script utility project called JFXtras can be found at
http://code.google.com/p/jfxtras/ – requested in April 2011. Oracle announced that all JavaFX UI con-
trols will be released to open source with the release of JavaFX 2.0.

 See http://drdobbs.com/blogs/java/228701550 – requested in April 2011 – for more information.
 Additionally, Stephen Chin, co-author of [WGCI09] requests with a petition

http://steveonjava.com/javafx-petition/ – requested in April 2011 – open sourcing the whole JavaFX
platform.

 Project Visage http://code.google.com/p/visage/ - requested in May 2011 – shall adopt the legacy of
JavaFX Script outside of Oracle‘s control.

47
 See http://www.java.com/en/download/faq/java_webstart.xml and
http://www.oracle.com/technetwork/java/javase/overview-137531.html – both requested in March 2011
– for more information on Java Web Start.

48
 cf. http://download.oracle.com/javase/tutorial/deployment/applet/deployingApplet.html – requested in
March 2011

49
 The MIME type of Java Web Start is normally auto-associated when Java is installed.

JavaFX page 100

Browser‖ for applet deployment or ―Web Start Execution‖ when using Java Web

Start.

After the project is built, a .jar file, containing the application and a .jnlp file are

created. Java Network Launching Protocol (JNLP)
50

 was first introduced with Java

Web Start. This feature defines the required resources, security settings, and app-

let configuration properties for deployment. It is now being applied to applets them-

selves, so that applets no longer run within the browser application, but rather run in

a background Java process with a window on the browser page. [CCB09].

Figure 33: Applet/Web Start Generation Parameters in NetBeans

Finally the applet needs to be launched via a JavaScript function. If one is using

NetBeans or any respective IDE this very last task will be done by the IDE as it au-

to-generates the needed code. However, if one is not using an IDE, the required

dtfx.js file has to be referenced manually and its javafx() function also needs to

be manually invoked with the initialization parameters (cf. listing 37 with figure 33).

50

 See http://java.sun.com/javase/technologies/desktop/javawebstart/download-spec.html - requested in
March 2011 – for the JNLP specification.

JavaFX page 101

<script src="http://d.javafx.com/1.3/dtfx.js"> </script>

<script>

javafx(

 {

 archive: "JavaFXDeploymentTest.jar",

 draggable: true,

 width: 200,

 height: 200,

 code: "javafxdeploymenttest.Main",

 name: "JavaFXDeploymentTest"

 }

);

</script>

Listing 37: JavaScript Code for Java Applet Deployment

Note that the draggable parameter has to be set to ―true‖ if the application should

be fit for browser undocking.

With Java Web Start the application is even simpler to reference in a web page.

Just create a link pointing to the .jnlp file:

Launch with Java Web Start

 Undock From Browser

With Java SE Version 6 Update 10, released on October 15 2008, it is possible to

undock an applet from the browser. Provided that the aforementioned draggable

property is set to ―true‖ on deployment, you can click on an applet and drag it out of

the browser onto the desktop while holding down the ALT key similar to the demon-

stration in figure 34. The applet persists, even if the browser is closed. Clicking on a

close button (right corner ―X‖ by default) integrates the applet in the browser once

again.

JavaFX page 102

Figure 34: JavaFX Draggable Applet Example
51

Add an instance from javafx.stage.AppletStageExtension to the extensions in-

stance variable of your application GUI as demonstrated in listing 38 to define fur-

ther behavior listed in table 6.

 Stage {

 title: "A Draggable Applet"

 width: 450

 height: 330

…

 extensions: [

 AppletStageExtension {

 //Defines mouse state if cursor is in draggable area

 shouldDragStart: function(e): Boolean {

 return e.primaryButtonDown and dragArea.hover;

 }

 //Indicates when applet is out of the browser

 onDragFinished: function(): Void {

 inbrowser = false;

 }

 //Indicates when applet is in the browser

 onAppletRestored: function(): Void {

 inbrowser = true;

 }

 //Display default close button and use default close logic

 useDefaultClose: true

 }

]

 }

Listing 38: Using javafx.stage.AppletStageExtension to Define Dragging Behavior

51

 cf. http://download.oracle.com/javafx/1.3/tutorials/ShouldDrag/index.html – requested in February 2011

JavaFX page 103

Extension Property Description

appletDragSupported Set to ―true‖ if browser and Java installation support applet

dragging.

onAppletRestored Function, called when close button is pressed and applet re-

turned to the browser.

onDragFinished Function, called when applet is dragged to the desktop and

the primary mouse button is released.

onDragStarted Function, called when primary mouse button is held down and

drag process starts.

shouldDragStart Function, called when primary mouse button is held down on

applet.

useDefaultClose Determine whether default close button shall be displayed and

default close behavior or own closing display object and logic

should be used.

Table 6: Properties of javafx.stage.AppletStageExtension
52

6.2 Data Binding and Triggering

As already discussed, data binding is a convenient way to connect the model of an

application to the presentation view. JavaFX also incorporates the ability to syn-

chronize the state/value of two objects or variables. However, data binding in Ja-

vaFX is very fine-grained and complex.

But data binding is not the only way to encapsulate change notifiers and getter and

setter methodology. With triggers it is possible to attach a block of code to a varia-

ble executed each time the variable changes.

52

http://download.oracle.com/docs/cd/E17802_01/javafx/javafx/1.3/docs/api/javafx.stage/javafx.stage.Ap
pletStageExtension.html – requested in February 2011

JavaFX page 104

Table 7 discusses the nine (!) different ways to observe and automatically update

dependent variables in JavaFX; from simple variable binding to binding of whole

function closures (cf. [WGCI09]).

Binding Mechanism Code Sample Description

Bind to variable // Update b when a changes

var b = bind a;

// Update z when x or y changes

var z = bind x + y;

Update the value of a bound

variable, whenever a depen-

dent variable from the binding

context is changed.

Bind to instance varia-

ble

// Update y when x changes

var m = myClass

{ y: bind x, z: x };

The value of x is assigned to

both instance variables y and z.

A change of x updates y but

not z.

Bind to condition ex-

pression

// Update z corresponding to
condition when x or y changes.

var z = bind if (x < y)

x else y

Whenever the variables of the

condition expression changes,

the condition exp. is re-

evaluated and the value of the

appropriate branch variable is

assigned to z.

Bind to for expression // Constant a is subject to up-

date whenever b, c or k

changes

def a = bind for (i in

[b..c] where i < k) {}

Changes of all variables from

the in clause and the where

clause expect incremental vari-

able cause reassignment of

bound variable.

Bind to a block // Update z when a or b

changes, not c.

def z = bind {

 def y = a;

 def x = b;

 def w = c;

 y + x; }

Bound blocks can only contain

constant declarations and a

final value expression stating

the return value. Updates occur

when sources of the return

value expression change.

Bind to object literal // Create a new instance of myC-

lass and assign it to m whenev-

er a or b changes.

def m = bind myClass

{ x:a, y:b };

If the value of an instance vari-

able initializer of the bound

object literal expression

changes, a new instance is

created. If one of the instance

JavaFX page 105

// Similar as above. A change in
a, however, leads only to a

change in the property n.x.

def n = bind myClass

{x: bind a, y: b };

variable initializers is additional-

ly bound to a variable, only the

property of the instance

receives an update.

Bidirectional and lazy

binding

// Update x when y changes and

vice versa.

var x = bind y with

reverse;

// Update m as soon as it is ac-

cessed with all updates occurred
(queued) after the last access-
triggered ―batch‖ update.

var m = bind lazy n + 5

println(“m: “ {m})

Enhance default binding beha-

vior. Bidirectional binding prop-

agates changes in both the

target object and the depen-

dent objects to each other.

Lazy binding has a perfor-

mance impact. The target ob-

ject will not be updated before

it is accessed. The change in

the dependent object is regis-

tered, though.

Bind to function call // Update rating with the new

result of calcRating when a or

b changes.

var rating =

calcRating(a, b, c)

Whenever the value of an ar-

gument of the bound function

changes, the function is in-

voked again and the result is

propagated to the target varia-

ble.

Bound function // Update rating with the new

result of calcRating when a, b

or z changes.

bound function calcRat-

ing(x: Number, y: Num-

ber) {

 var m = x;

 var n = y;

 var o = z;

 var rating =

 calcRating(a, b)

}

A bound function is a function

definition decorated with the

bound modifier [WGCI09]. In

contrast to binding a function call,

a bound function will also be re-

invoked when the function body

changes.

Table 7: JavaFX Binding Capabilites

Please note that you can only bind variables on declaration not on a subsequent

initialization and once bound the variable can only be reassigned in the course of

updates from bidirectional binding.

JavaFX page 106

 Triggers

Triggers are designed to catch data modification events on an observed variable.

Attach a trigger to a variable with the keywords on replace followed by an optional

variable for storing the old value and a block which should be executed every time

the value of the variable changes (cf. listing 39).

var x: String on replace oldValue {

 y = x;

}

var y: String;

Listing 39: JavaFX Trigger Example

A trigger can be used to mimic the behavior of a binding. It actually bypasses the

restriction of reassigning bound variables. However, triggers only listen for changes

on the observed variable. They do not observe synchronization of target and

source.

6.3 Remote Service Handling

The same principles as already discussed on the basis of other frameworks effect

service handling in JavaFX. A mechanism is required in order to asynchronously

make a request to a provided URL. As soon as the service returns a response,

another mechanism is required for parsing the response and integrating the data in

your application.

Before version 1.2, released on June 2 2009, JavaFX used to leverage ja-

vafx.async.RemoteTextDocument for server communication. Since version 1.2

however, RemoteTextDocument is deprecated as one is encouraged to use ja-

vafx.io.http.HttpRequest instead. HttpRequest breaks down the communication

process into a series of steps. Each step can have a callback assigned and allows

inference to be drawn about the state of transmission. Use ja-

vafx.data.pull.PullParser to handle XML or JSON based responses.

The concrete example displayed in figure 35 with its code depicted in the listings 40

to 42 is based on a REST example from [CCB09]. Contrary to the referenced ex-

ample, the following one is implemented with HttpRequest instead of the depre-

cated RemoteTextDocument.

JavaFX page 107

When looking at figure 35 one can expect an application consuming a weather web

service. In fact, the application consumes a service from the Yahoo API
53

 first and

then calls a weather service from the GeoNames API
54

 on the basis of the retrieved

coordinates as depicted in listing 40.

Figure 35: JavaFX Weather Widget

The very first step
55

 as depicted in listing 40 is to create an HttpRequest instance,

specify the request method (GET or POST) and the URL (location) and assign a

callback for parsing the response to the onInput instance variable initializer (1).

Specifying additional callbacks allows for fine-grained state tracking of the opera-

tion, e.g. assign another callback to onStarted to record the request initialization or

assign a callback to onDone that is called when the request is completed. Next the

start() function needs to be invoked on the request to execute the Yahoo service

request (2).

If input arrives with the response of the service, the parseLocationResponse()

function previously assigned to onInput is called (3). It instantiates the PullParser

class with the respective document type (XML or JSON), the input stream and an

onEvent() function invoked each time a value is fully parsed. Calling the parse()

method on the PullParser object starts the parsing process (4). The onEvent()

53

 http://developer.yahoo.com/everything.html – requested in March 2011
54

 http://www.geonames.org/export/web-services.html – requested in March 2011
55

 See
http://download.oracle.com/docs/cd/E17802_01/javafx/javafx/1.3/docs/api/javafx.io.http/javafx.io.http.Htt
pRequest.html – requested in March 2011 – for the documentation of the
javafx.io.http.HttpRequest class and its callback variables.

JavaFX page 108

function compares the fully qualified name of each element with those of interest

and stores the element‘s value in a respective instance variable of an object in case

of a positive match (5).

For instance, the instance of a class like

public class Location {

 public var city: String;

 public var state: String;

 public var lat: String;

 public var long: String;

}

can be used to store the data. As soon as the location data is retrieved, parsed and

stored (6), a new request is initiated on the basis of the data calling the GeoNames

service for weather information. The request and the parsing function are designed

analogous to the location counterparts (following the steps (1) to (6)).

var location: Location = Location {};

var weather: Weather = Weather {};

var zipCode: String;

var locationURL = bind "http://local.yahooapis.com/LocalSearchService/"

 "V3/localSearch?appid=YahooDemo&query=city&zip={zipCode}"

 "&results=1&output=xml";

var weatherURL = bind

 "http://ws.geonames.org/findNearByWeatherXML?lat={location.lat}"

 "&lng={location.long}";

var req: HttpRequest;

var locationParser: PullParser;

var weatherParser: PullParser;

function requestCoordinates(): Void {

 req = HttpRequest {

 method: HttpRequest.GET

 location: bind locationURL

 onInput: parseLocationResponse

 onDone: function() {

 println("Coordinates retrieved.");

 requestWeather()

 }

 }

 req.start();

 println("Coordinates requested.");

}

function parseLocationResponse(is: InputStream): Void {

 try {

 locationParser = PullParser {

 documentType: PullParser.XML

 input: is

1

2

3

JavaFX page 109

 onEvent: function(event: Event) {

 // parse the XML Yahoo data and populate the location object

 if (event.type == PullParser.END_ELEMENT) {

 if (event.qname.name == "City") {

 location.city = event.text;

 } else if (event.qname.name == "Latitude") {

 location.lat = event.text;

 } else if (event.qname.name == "Longitude") {

 location.long = event.text;

 } else if (event.qname.name == "State") {

 location.state = event.text;

 }

 }

 }

 }

 locationParser.parse();

 }

 finally {

 is.close();

 }+

}

function requestWeather(): Void {

 req = HttpRequest {

 method: HttpRequest.GET

 location: bind weatherURL

 onInput: parseWeatherResponse

 onDone: function() {

 println("Weather retrieved.")

 }

 }

 req.start();

 println("Weather requested.");

}

function parseWeatherResponse(is: InputStream): Void {

 try {

 weatherParser = PullParser {

 documentType: PullParser.XML;

 input: is

 onEvent: function(event: Event) {

 // Parse the XML Weather data and

 // populate the Weather object

 if (event.type == PullParser.END_ELEMENT) {

 if (event.qname.name == "clouds") {

 weather.clouds = event.text;

 } else if (event.qname.name == "windSpeed") {

 weather.windSpeed = Double.valueOf(event.text);

 } else if (event.qname.name == "temperature") {

 weather.temperature = Double.valueOf(event.text);

 }

 }

 }

 }

4

6

5

1

2

3

5

JavaFX page 110

 weatherParser.parse();

 } finally {

 is.close();

 }

}

Listing 40: JavaFX Weather Widget Logic

As an aside, the code from listing 40 demonstrates the JavaFX Script specific way

of string concatenation. JavaFX Script basically requires no concatenation operator

to join multi-line strings as adjacent string literals are automatically merged. In or-

der concatenate a string literal with a variable forming a string expression, JavaFX

Script uses curly braces ―{}‖; in contrast to Java which uses the ―+‖ operator. For

instance, the locationURL variable has the concatenation of a string literal plus the

brace-delimited value of the zipCode variable assigned (bound) to it:

var locationURL = bind "http://local.yahooapis.com/LocalSearchService/"

 "V3/localSearch?appid=YahooDemo&query=city&zip={zipCode}"

 "&results=1&output=xml";

A workaround would include the concat() function:

var locationURL = bind "…YahooDemo&query=city&zip=".concat(zipCode).concat("…")

The last step is to integrate the application logic with your GUI. Create a container

like an HBox with a TextBox which accepts ZIP code input from the user – the basis

of the search results (cf. listing 41).

HBox { content: [

 Text {

 content: "ZIP Code: "

 },

 TextBox {

 columns: 6

 text: bind zipCode with inverse

 selectOnFocus: true

 action: function(): Void {

 requestCoordinates();

 }

 }]

}

Listing 41: JavaFX Weather Widget ZIP Request View

4

6

JavaFX page 111

Hitting the RETURN key calls the requestCoordinates() function which initiates the

HttpRequest to Yahoo. Note the bidirectional binding expression assigned to the

text instance variable initializer of the TextBox object. Every time the text property

changes, the zipCode is also changed and vice versa to ensure that requests are

only based on the current zipCode. Create further visual containers with text boxes

to display the retrieved search results in a structured way like in listing 42:

HBox { content: [

 Text {

 textOrigin: TextOrigin.TOP

 content: "City: "

 },

 Text {

 textOrigin: TextOrigin.TOP

 content: bind "{location.city} {location.state}"

 fill: Color.BLUE

 }]

}

Listing 42: JavaFX Weather Widget Response View

6.4 Interaction with the Environment

JavaFX classes are compiled to Java bytecode and executed on the JVM. So Ja-

vaFX runs entirely on the Java platform. JavaFX applets have to be deployed on

HTML pages. So JavaFX applets have to be integrated via JavaScript. Now these

prerequisites actually unlock great interaction potentials between JavaFX and Java

and JavaScript respectively.

6.4.1 Interaction with JavaScript

The functionality of the AppletStageExtension class is not limited to defining the

behavior of draggable applets but also provides the eval() function for access to

JavaScript functions and DOM. eval() takes any JavaScript expression as a string

for evaluation. For instance, assign the instance of AppletStageExtension to a

variable applet and then invoke:

applet.eval(“someJsFunc()”);

to execute the JavaScript function on the JavaFX side and get a possible return

value.

JavaFX page 112

Calling JavaScript FX functions and passing data from JavaScript to JavaFX is

more restricted. As of JavaFX 1.3.1, released on August 21 2010, only public script

variables and functions defined for the applet can be accessed directly. Neverthe-

less, any script level function can be accessed via the keyword docu-

ment.appletID.script which exposes the script property of the applet - instan-

tiated on the web page and referenced by its id – to the JavaScript engine.

Now call a JavaFX script function like:

document.appletID.script.javaFXFunc(args);

In order to ensure that function invocation does not interfere with ongoing tasks,

javafx.lang.FX.deferAction() can be used to brace the body of the function Ja-

vaScript may calls. This makes sure that the task is queued for execution after the

current event is terminated
56

. Listing 43 shows a simple JavaFX nutshell with a

script level function setColor() which changes the value of the mycolor variable.

When the nutshell is run a single circle is drawn on the screen filled with a color

determined by the mycolor variable.

var mycolor = Color.GOLD;

public function setColor(red: Number, green: Number, blue: Number): Void

{

 mycolor = Color { red: red, green: green, blue: blue };

}

public function run() {

 Stage {

 scene: Scene {

 content: [

 Circle {

 centerX: 200

 centerY: 200

 radius: 80

 fill: bind mycolor

 }

]

 }

 }

}

Listing 43: JavaFX Script Function Set Up for Invocation in JavaScript

56

 cf. the invokeLater() method of the javax.swing.SwingUtilities class

http://download.oracle.com/javase/6/docs/api/javax/swing/SwingUtilities.html#invokeLater%28java.lang.
Runnable%29 – requested in April 2011

JavaFX page 113

Listing 44 basically depicts the same code as listing 37 necessary to initialize an

applet. However, it also assigns an id to the applet. The JavaScript function chan-

geColor() gets the applet by its id and invokes its setColor() function previously

defined in JavaFX. As a consequence, the mycolor script level variable of the Ja-

vaFX applet is changed.

<script src="http://d.javafx.com/1.3/dtfx.js"> </script>

<script>

 javafx(

 {

 archive: "JavaFXDeploymentTest.jar",

 draggable: true,

 width: 200,

 height: 200,

 code: "javafxdeploymenttest.Main",

 name: "JavaFXDeploymentTest"

 id: "JavaFXApp"

 }

);

 function changeColor() {

 var app = document.getElementById("JavaFXApp");

 app.script.setColor(1.0, 1.0, 0.0);

}

</script>

Listing 44: Invoking JavaFX Script Function in JavaScript

This bridge can be used to provide access to JavaFX and Java packages already

imported in the applet context. As of JavaFX 1.3.1 it is not possible to instantiate

JavaFX classes in JavaScript. This restriction does not apply to Java classes,

though.

For example, create an instance of a Java class imported in the JavaFX applet:

var dim = new document.appletID.java.awt.dimension();

and assign a value to one of its properties:

dim.height = 200;

JavaFX page 114

6.4.2 Interaction with Java

With JavaFX one can perform tasks like GUI building and model/view data syn-

chronization significantly more efficient than with plain old Java. Basically, scripting

languages tend to perform specific tasks more easily and more quickly than gener-

al-purpose languages. Think of implicit type declaration of variables and automatic

type conversions. In times when you occasionally reach the limits of the JavaFX

API you can take advantage of the vast number of Java libraries available to Ja-

vaFX.

But it does not have to be the need of certain functionality that encourages one to

integrate Java classes in a JavaFX application. Image a scenario with a front end

written in JavaFX connecting to a Java back end employing strongly typed data

communication.

6.4.2.1 Basic Java Integration

Any class from the Java API can be leveraged inside JavaFX without any adjust-

ments required. Just use the new operator to create an instance and use the ―dot

notation‖ (.) to access variables and functions of instance objects. For instance

var mySwingLabel = new javax.swing.JLabel();

creates an instance of the class javax.swing.JLabel in JavaFX. In order to assign

a value to the instance‘s text property, invoke the setText() method on it:

mySwingLabel.setText(“I’m a swing label.”);

So working with Java classes in JavaFX is basically the same as in Java itself. Just

observe name conflicts with JavaFX keywords like insert and delete when ac-

cessing properties of a Java object E.g. calling java.lang.System.in.read();

results in a compilation error as in is a reserved keyword [CCB09]. To avoid this

quote the field: java.lang.System.<<in>>.read(); .

A JavaFX class does not differentiate between extending Java classes and imple-

menting Java interfaces; it extends both and overrides their methods. In fact, a Ja-

va interface is treated as a mixin class (supports multi inheritance).

JavaFX page 115

Listing 45 demonstrates how a JavaFX class extends (= implements) the Java in-

terface java.awt.event.ActionListener. It has to override all available abstract

methods of the interface.

class MyActionListener extends java.awt.event.ActionListener {

 public override function

 actionPerformed(e:java.awt.event.ActionEvent) : Void {

 // handle event

 }

}

Listing 45: JavaFX Class Extending Java Interface

Although it is possible to extend a Java class in JavaFX, its attributes and methods

have no inherit connection to binding and triggering mechanism; the runtime sys-

tem will ignore the updates [CCB09]. The main obstacle is Java lacks facilities to

track changes made to fields
57

.

JavaFX arguments of primitive data type are autoboxed into appropriate Java

wrapper classes when passed on Java method call.

Table 8 maps all JavaFX primitive data types
58

 to their corresponding Java

classes
59

. JavaFX literals are also JavaFX objects, so it is possible to access the re-

spective methods of a class directly from the literal [CCB09]. For instance, a double

literal like 2.25 can be converted to an integer by calling its intValue() method inhe-

rited from java.lang.Double.

57

 For further reading on binding Java objects in JavaFX Script and a workaround to accomplish this see
http://blog.netopyr.com/2008/12/19/binding-java-objects-in-javafx-script/ – requested in May 2011

58
 Technically ―String‖ is no primitive data type but, due to its special support for character strings, often
considered as such.

59
 For a full list of conversion rules in cases when automatic conversion is not possible see [CCB09] pp.

286-291.

JavaFX page 116

JavaFX Type Java Class

Double java.lang.Double

Number java.lang.Number

Float java.lang.Float

Long java.lang.Long

Integer java.lang.Integer

Short java.lang.Short

Byte java.lang.Byte

Character java.lang.Character

Boolean java.lang.Boolean

String java.lang.String

Table 8: JavaFX to Java Type Mapping

JavaFX 1.2, released on June 2 2009, introduced the native array of type to

share arrays between JavaFX and Java. JavaFX‘s basic collection data type se-

quence is not treated as array and incompatible to native Java arrays. Whenever a

Java array parameter is required or Java returns an array, the native array of

type is used to mimic a Java array.

6.4.2.2 Integration of JavaFX in Java

Accessing JavaFX objects values from within Java is more complicated than the

other way round. The main obstacle is the fact, that the Java compiler is not able to

read JavaFX scripts directly to extract the needed information [Hein08]. Fortunate-

ly, various approaches exist for scripting JavaFX in Java. You can call JavaFX

functions via Java interface, execute scripts with the FXEvaluator, leverage the Ja-

va Scripting API or use Reflection to ―investigate‖ JavaFX objects at runtime.

JavaFX page 117

6.4.2.2.1 Java Interfaces

The simplest approach is to define a Java interface like in listing 46 and have a Ja-

vaFX class extending it and overriding (all of) its method(s)
60

.

public interface Printable {

 void printMessage();

}

Listing 46: Java Interface for Implementation in JavaFX

The next step is to create a Java class with a method (print()), which takes an

instance of the JavaFX class (represented by m of type Printable) and invokes the

implemented interface method (printMessage()) on it as depicted in listing 47.

public class JavaMessagePrinterLibrary {

 public static void print(Printable m) {

 m.printMessage();

 }

}

Listing 47: Java Class Receiving JavaFX Instance and Invoking Method on It

The last step is to instantiate the JavaFX class in JavaFX and to pass the instance

(jFxObj) to Java by calling the appropriate method (print()) from the Java class
61

demonstrated in listing 48.

public class JavaFXMessagePrinter extends Printable {

 public var message: String;

 public override function printMessage() {

 System.out.println(message);

 }

}

60

 cf. http://java.sun.com/developer/technicalArticles/scripting/javafx/javafx_and_java/index.html – re-
quested in March 2011

61
 Ensure that the JavaFX class and the Java class are in the same package. As a consequence, the

Java class can be referenced as such in JavaFX.

JavaFX page 118

var jFxObj = MyJavaFXClass {

 message: "Hello JavaFX from Java by Interface!"

 };

function run(args: String[]): Void {

 JavaMessagePrinterLibrary.print(jFxObj);

}

Listing 48: JavaFX Class Implementing Java Interface

The advantage is that the Java class does not need to know that it is invoking Ja-

vaFX functionality. Neither the Java class nor the Java interface contains JavaFX

code. Hence, they are reusable along with other Java classes.

6.4.2.2.2 FXEvaluator

The javafx.util.FXEvaluator class should be used to execute JavaFX scripts

from within Java. It requires having javafxc.jar, which represents the JavaFX

Script compiler API, added to the classpath. The eval() method of FXEvaluator

takes a string representation of the script, executes the script and returns a JavaFX

object, if the script creates one. The following line runs the script and assigns the

result to an object:

Object fxObj = FXEvaluator.eval(script);

Please note that the returned JavaFX object can only be used to inform about the

type of class not to access properties of it. The script is evaluated without any con-

text state (script context). Any state it creates during evaluation cannot be reused

by other scripts
62

. FXEvaluator is suitable for simply executing scripts but not to

pass in arguments to a script. This requires working with the Java Scripting API.

6.4.2.2.3 Java Scripting API

Scripting in Java is supported by two frameworks: Scripting for the Java Platform

(JSR 223) and the Bean Scripting Framework (BSF). Both allow accessing Java

objects and methods from scripting languages and executing programs written in

scripting languages in Java applications.

62

 cf.
http://download.oracle.com/docs/cd/E17802_01/javafx/javafx/1.3/docs/api/javafx.util/javafx.util.FXEvalua
tor.html – requested in March 2011

JavaFX page 119

 Scripting for the Java Platform

Scripting for the Java Platform (often referred to as JSR 223) defines mechanisms

to access scripting languages from Java code. An implementation for JavaFX

Script is available and part of the JavaFX Runtime. With the provided scripting en-

gine, you can read JavaFX files, compile and run them. And because the engine for

JavaFX Script implements the interface Invocable, it is possible to call members of

JavaFX objects [Hein08].

Version 6 of the Java Standard Edition, released on December 11 2006, imple-

mented JSR 223, which enables scripting on the Java Platform with any scripting

engine as long it is JSR 223 compatible. The API is located in javax.script and is

distributed with every Java 6 SE. The basic steps for running a script in Java are
63

:

 Create a ScriptEngineManager instance:

ScripEngineManager manager = new ScriptEngineManager();

The ScriptEngineManager is used to discover available script engines and

instantiates them.

 Retrieve a ScriptEngine instance from the ScriptEngineManager:

ScriptEngine scrEng = manager.getEngineByExtension(“javafx”);

Representation of the specific script engine; also possible to retrieve by in-

voking getEngineByName() on ScriptEngineManager object.

 Evaluate (execute) script by calling eval() on the script engine instance.

The script engine instance can be optionally cast to a JavaFXScriptEngine. As a

consequence, the script can be compiled before evaluation and a ja-

vax.tools.DiagnosticCollector object, collecting errors in case of a ScriptEx-

ception, can be passed to the eval() or compile() methods of the JavaFXScrip-

tEngine instance.

So far working with the Java Scripting API seems to be similar to FXEvaluator. A

script engine, however, can be used to call methods and to assign values to in-

stance variables from previously executed scripts. Use invokeMethod(fxObj,

63

 cf. http://java.sun.com/developer/technicalArticles/J2SE/Desktop/scripting/ – requested in March 2011

JavaFX page 120

“methName”) on the engine instance to call a method. fxObj() stands for the object

the evaluated script returned; methName is to be substituted with the name of the

appropriate method. Calling put(key, value) places a key/value in the state of the

engine. This can be basically used to assign a value to a variable of the script in-

stance on execution.

 Bean Scripting Framework

BSF
64

 refers to a scripting API originally developed by IBM and now maintained by

the Apache Software Foundation. BSF has basically a very similar range of applica-

tion as javax.script (JSR223). The BSFManager class handles all supported

scripting engines and gives access to scripting services. Invoke loadScriptingEn-

gine() on the BSFManager instance to get an object implementing a BSFEngine

which reflects the scripting capabilities of a certain language and permits script ex-

ecution. Currently, two different version of BSF exist: the BSF 2.x releases (BSF

2.4 was released on October 6 2006) build on the original API by IBM and the BSF

3.x releases implement javax.script (JSR223) for Java 1.4 and Java 1.5.

 Scripting Synergy in Action

The following nutshell demonstrates how two scripting languages achieve to com-

municate with each other in Java. The two script languages are JavaFX (for ob-

vious reasons) leveraging the JSR 223 API and ooRexx leveraging BSF.

Open Object Rexx
65

 (ooRexx) is a free implementation of Object Rexx managed by

Rexx Language Association (RexxLA). ooRexx is a fully object-oriented, interpreted

language. It allows weak typing, imposes few syntax rules and consists of com-

mands full of meaningful English words. Unlike languages like Java or C#, ooRexx

uses the tilde character to invoke methods on objects (send messages to the ob-

ject) instead of a dot. Apart from its powerful functionality, ooRexx was chosen for

this demonstration because it is supported with its own BSF engine: BSF4ooRexx
66,

67
.

64

 http://jakarta.apache.org/bsf/ – requested in March 2011
65

 http://www.oorexx.org/ – requested in March 2011
66

 http://wi.wu-wien.ac.at/rgf/rexx/bsf4oorexx/current/ – requested in March 2011
67

 A thesis published in July 2010 introduces a JSR 223 bridge for ooRexx. See http://wi.wu-
wien.ac.at:8002/rgf/diplomarbeiten/BakkStuff/2010/201007_Ryabenkiy/201007_Ryabenkiy_WebScripti
ng_ApacheTomCat_TagLib.pdf for more information.

JavaFX page 121

Listing 49 depicts the Java nutshell facilitating the interfacing from JavaFX to oo-

Rexx on the basis of two simple scripts. The JavaFX script is based on a sample

from [WGCI09] while the ooRexx script is based on samples from Rony G. Flat-

scher. Successfully running the demonstration nutshell requires adding ja-

vafxc.jar, bsf-rexx-engine.jar and bsf-v40090910.jar to the application‘s

classpath.

The Java nutshell executes a JavaFX script, catches the returned object and in-

vokes a JavaFX function on the object. The JavaFX instance returned in the course

of the script evaluation is subsequently passed to an ooRexx script. On execution

of that script, ooRexx sends messages to the passed JavaFX object.

import javax.script.*;

import com.sun.javafx.api.JavaFXScriptEngine;

import org.apache.bsf.*;

public class Main {

 public static Object result;

 public static Object javaFXObj;

 public static void main(String[] args) {

 String javaFxCode =

 // Create JavaFX class using object literal syntax

 "public class Student {\n"

 + " public var name:String;\n"

 + " public function getName():String { \n"

 + " this.name;\n"

 + " }\n"

 + "}\n"

 + " function run(args: String[]):Void { \n"

 + " var student = Student { name: 'John Dorian'\n"

 + " as String};\n"

 // JavaFX built-in function

 + " println('[JavaFX] Name = {student.name}');\n"

 + " student;\n"

 + "}";

 // Get manager for script engine discovery

 ScriptEngineManager manager = new ScriptEngineManager();

 // Lookup script engine and create instance

 ScriptEngine scrEng = manager.getEngineByExtension("javafx");

 // Cast script engine to JavaFXScriptEngine which allows invocation of

 // procedures in script.

 JavaFXScriptEngine engine = (JavaFXScriptEngine) scrEng;

JavaFX page 122

 if (engine == null) {

 System.out.println("no scripting engine available");

 } else {

 try {

 fxObj = engine.eval(javaFxCode); // Execute script

 try {

 // Print string representation of JavaFX object

 System.out.println("[Java] javaFXObj: " + javaFXObj);

 // Get the class of JavaFX object and print it

 System.out.println("[Java] javaFXObj.getClass: " +

 javaFXObj.getClass());

 // Call method on script object

 result = engine.invokeMethod(fxObj, "getName");

 // Print result of method invocation

 System.out.println("[Java] getName() returned: " + result);

 } catch (NoSuchMethodException nsme) {

 nsme.printStackTrace();

 }

 } catch (ScriptException ex) {

 ex.printStackTrace();

 }

 }

 try {

 // Similar to ScriptEngineManager; implements discovery

 BSFManager mgr = new BSFManager();

 // Lookup script engine and create instance

 BSFEngine rexxEngine = mgr.loadScriptingEngine("rexx");

 // Rexx code to run; triggering the requires-processing for “BSF.CLS”

 rexxEngine.apply("", 0, 0, "::requires BSF.CLS;", null, null);

 // ooRexx script code

 // retrieve the beanName (index into BSFRegistry)

 String rexxCode = "use arg javaFXObj ;" +

 // send Java object a message; get string representation

 // of JavaFX object

 "say '[ooRexx] javaFXObj:' javaFXObj;" +

 // send Java object another message; get class type

 "say '[ooRexx] javaFXObj~class: ' javaFXObj~class;" +

 // send Java object another message; invoke getName() and

 // display the result reversed

 "say '[ooRexx] javaFXObj~getName~reverse: '" +

 "javaFXObj~getName~reverse;" +

 // get ooRexx support (camouflage Java as ooRexx)

 "::requires BSF.CLS ;";

 // argument for ooRexx

 Vector vArgs = new Vector();

 // include JavaFX return value in argument for ooRexx

 vArgs.addElement(javaFXObject);

JavaFX page 123

 // Execute script code; first arg: source*, second arg: line number*,

 // third arg: column number*, fourth arg: script string,

 // fifth arg: optional Java args names, sixth arg: Java args

 // *relevant in case of external file source

 rexxEngine.apply("", 0, 0, rexxCode, null, vArgs);

 } catch (BSFException e) {

 e.printStackTrace();

 }

 }

}

Listing 49: JavaFX-Java-ooRexx Interaction via JSR 223 and BSF 2.4

Figure 36 shows the output of the nutshell from listing 49. The first output line is

printed by JavaFX. The second line is the JavaFX object the script evaluation re-

turned printed by Java. The class of the JavaFX object as recognized in Java is

displayed in line three while line four contains the value the JavaFX function invoca-

tion returned. The fifth, sixth and seventh lines are generated by ooRexx. In line five

ooRexx displays the string representation of the passed JavaFX object. In line six

the proxy class of the JavaFX object is shown. In the last line ooRexx sent a mes-

sage to the JavaFX object to call its getName() function and to invoke reverse()

on it.

Figure 36: Output of JavaFX-Java-ooRexx Interaction Nutshell

6.4.2.2.4 JavaFX Script Reflection

JavaFX Script includes the reflection API javafx.reflect that allows you to per-

form certain metaprogramming tasks. Metaprogramming is the act of manipulating

a programming facility using a language rather than using the programming facility

itself [WGCI09].

JavaFX page 124

The Reflection API makes it possible to inspect classes, interfaces, fields and me-

thods at runtime, without knowing the names of the classes, methods etc. at com-

pile time. It is also possible to instantiate new objects, invoke methods and get/set

field values using reflection [JenkJR].

Using the Reflection API is by far the most challenging approach for processing a

JavaFX script in Java. It is all about working with proxies so-called mirrors of ob-

jects and values in a given context.

The entry point is the class javafx.reflect.FXLocal.Context retrieved via

FXLocal.Context context = FXLocal.getContext();

Whenever you need to work with an object or value, work with a reference of it

created via context.mirrorOf(obj). This function wrappers the value with a proxy

that uses the local VM to handle the reflection [CCB09]. Table 9 depicts vital Ja-

vaFX reflection functionality.

Task Code Sample

Create instance and in-

itialize instance variables

/* Get reference of class (from JavaFX API or custom class) which

is going to be instantiated. */

FXClassType classRef = con-

text.findClass("javafx.geometry.Dimesion2D");

// Get raw uninitialized object (allocate memory).

FXLocal.ObjectValue obj =

(ObjectValue) classRef.allocate();

/* Initialize instance variables with the name of the variable and a

proxy of the value as arguments. */

obj.initVar("height", context.mirrorOf(10.0));

obj.initVar("width", context.mirrorOf(20.0));

obj.initialize(); // Initialize instance of class.

Assign value(s) to in-

stance variable(s)

// Previously created instance of

// class javafx.geometry.Dimension2D

var dim = Dimension2D { height: 10.0, width: 10.0 };

// Get reference to class (cf. row above)

FXClassType classRef =

context.findClass("javafx.geometry.Dimension2D");

JavaFX page 125

// Get a proxy of the instance object ―dim‖

FXObjectValue obj = context.mirrorOf(dim);

// Access instance variables of referenced class with a given name

FXVarMember hVar =

classRef.getVariable("height");

FXVarMember wVar =

classRef.getVariable("width");

/* Assign value to variable with the specific instance object and a

proxy of the value as argument. */

hVar.setValue(obj, context.mirrorOf(10.0));

wVar.setValue(obj, context.mirrorOf(20.0));

Assign value(s) to script

variables(s)

/* As already mentioned, script variables are the almost JavaFX

equivalent to Java static fields. The workflow is basically the same

as with instance variables with one exception: ―null‖ has to be

passed to setValue() instead of the object instance. */

// Previously declared script variable

public var s: String;

// Get reference to class

FXClassType classRef =

context.findClass("MyJavaFXClass");

// Access script variable of referenced class with a given name

FXVarMember hVar =

classRef.getVariable("s");

/* Assign value to variable with ―null‖ as first parameter instead of

an object instance (there isn‘t any) and a proxy of the value as

argument. */

hVar.setValue(null,

context.mirrorOf("I’m a string."));

Invoke function /* Get function of referenced class that matches the passed name.

Also pass arguments if function takes any. */

FXFunctionMember func =

classRef.getFunction("toString");

/* Invoke function with instance object and value proxies if function

takes arguments. */

FXValue val = func.invoke(obj);

Table 9: JavaFX Reflection Use Cases (cf. [CCB09] and [WGCI09])

Evaluation page 126

7 Evaluation

The previous four chapters presented the big players in RIA development: AJAX,

Adobe Flex, Microsoft Silverlight and JavaFX; and discussed selected functionality

they offer. The goal of this chapter is to highlight the strengths and weakness of

each technology. In addition, use cases are presented to help spotting the technol-

ogy which meets your requirements the most. Please note that these guidelines are

generalized. The most significant influencing factors are programming and tool ex-

pertise of the staff, the compatibility with legacy systems and the philosophy of an

enterprise.

7.1 Evaluation of AJAX

Working with AJAX is a mixed blessing. On the one hand, developers profit from

the wide spread of the utilized standards and can quickly get productive. On the

other hand, a lot of time and cost has to be spent on crucial compatibility tests for

heterogeneous platforms and versions. Workarounds have to be set up too, if users

deactivate JavaScript in their browsers.

 Strengths

 Standardized technologies:

AJAX leverages open standardized technologies, which are available in al-

most every browser. Building on Web standards like HTML, CSS and Java-

Script basically ensures forward- and backward-compatibility, better main-

tenance and reaching a broad audience.

 Open Source Frameworks and Community:

Various open source frameworks supporting AJAX exist on the Web (cf. ta-

ble 3). They do not only simplify the development of AJAX applications but

also provide custom smart controls and other building blocks. Users of such

open source software have access to the source code and debugging tools

and may suggest both bug fixes and enhancements to the source code.

Open source software users contribute because they are interested in im-

proving the reliability and maintainability of the software. The successful

Evaluation page 127

adoption of open and interoperable AJAX-based Web technologies is also

pursued by the OpenAjax Alliance
68

, a 100+ member organization of leading

vendors, open source projects, and companies using AJAX.

 Familiar look and feel:

Basic controls employed in AJAX applications like buttons, text input fields,

radio buttons, checkboxes, etc. are exactly the ones web users are familiar

with and intuitively use them.

 Favors gradual re-factoring of existing Web applications:

Introducing AJAX has minimal (negative) impact on productivity. AJAX wid-

gets do not require a holistic changeover as long existing applications are

written in HTML or JavaScript. What is more, common web developers

should be familiar with the languages of the AJAX conglomerate since they

are standards for many years.

 Light footprint:

Clients may reject to install a plug-in in order to use an application. The ini-

tial state of an AJAX application solely requires downloading HTML/script

files and CSS files without any extra gadgets to install.

 Development tool independence:

It is basically a benefit when one does not have to rely on a single (commer-

cial) IDE to develop an application. Sophisticated free IDEs like NetBeans

and Eclipse come with plug-ins simplifying the design process.

 No updates on the client required:

When users aren‘t on the latest version of a plug-in, requiring them to up-

date is risky. According to [Hamm06] many are unwilling to wait through the

lengthy install process and instead choose to do business elsewhere – po-

tentially with the competition.

68

 http://www.openajax.org/index.php – requested in May 2011

Evaluation page 128

 SEO:

Search Engine Optimization (SEO) aims to improve the visibility of web sites

to search engines and their users. Indexing dynamic Web content and the

content of RIAs may be a blind spot. Although Adobe is providing a special

type of the Flash Player to Google and Yahoo! for prospecting information in

.swf files for a short time, AJAX applications are still the most transparent

ones. For instance, hash fragments (#) in URLs can be used. Hash frag-

ments (#) are generally used in an URL to identify a position within a re-

source. In JavaScript the window.location.hash property can be used to

get and set the application‘s state. For instance, in a web mapping service

the value of the hash fragment can be used to reflect certain zoom levels.

The onhashchange event allows detecting when the hash changed and the

user navigated on the map. In combination with an appropriate event hand-

ler, this function can be used to update the address bar every time an AJAX

action occurred. As a consequence, the hash fragment can be used to

record and directly link the application‘s state while the search engine will in-

dex the original page that should be ranked. In addition, Google which is

embracing AJAX for a long time (think of Gmail and Google Maps) pushes

AJAX SEO and offers guides for making AJAX application crawlable
69

.

 Weaknesses

 Complex cross browser behavior and accessibility:

The existence of various web browsers makes the platform very heteroge-

neous. Not only handling the XMLHttpRequest object but also the DOM me-

thodology differs greatly from browser to browser (especially with older ver-

sions). This requires extensive cross platform and version testing.

69

 http://code.google.com/intl/de-DE/web/ajaxcrawling/docs/getting-started.html – requested in March
2011

Evaluation page 129

 Security Concerns:

Due to their close relation to traditional HTML applications AJAX applications

are vulnerable to cross-site scripting
70

 and cross-site request forgery
71

. Al-

though ―XMLHttp‖ requests have a better security model than ordinary HTTP

requests, the returned JavaScript is still a valuable target for malicious code.

 Browser History and Bookmarks:

When working with multi-step processes on a web page, e.g. ordering some-

thing online, people got used to click the ―back‖ button to jump to a previous

step (to undo an action) as each step is often comprised by a separate doc-

ument identified by a URL. Parts of an AJAX application are represented by

the same single URL. Regardless of which functionality the user selects or

how he/she changes the application state, the location is always the same.

That is why the ―Back‖ button cannot be properly used to reload previous

content from the same application. Also bookmarks cannot be created as

they require mapping content to a certain URI. To enable the necessary

deep linking, hash fragments (#) may be used (see section ―SEO‖).

 Animation and multimedia support:

Animation support highly depends on the framework employed. Complex,

path-based animations like in Flash cannot be achieved. AJAX provides no

native support for multimedia playback; for this purpose it relies on a sepa-

rate plug-in.

7.2 Evaluation of Flex

According to Forrester Research (cf. [Hamm10]) Adobe Flex is the most frequently

used plug-in related RIA development platform. The ubiquitous Flash Player and

Flex‘s integrated support for visual media design products of the Adobe family are

responsible for the proliferation of Flex.

70

 http://en.wikipedia.org/wiki/Cross-site_scripting – requested in November 2010
71

 http://en.wikipedia.org/wiki/Cross-site_request_forgery – requested in November 2010

Evaluation page 130

The security model of AIR, the necessary initial investment and the advent of HTML

5, however, may militate against choosing Flex.

 Strengths

 Widespread adoption of Flash:

Enterprises selecting Flex name the penetration of the Flash Player their key

decision driver. When Flash is already installed, application deployment re-

quires no additional changes to the user‘s desktop. Unlike Ajax, Flash

doesn‘t require browser-specific code or enablement of JavaScript in the us-

er‘s browser. (cf. [Hamm06]).

 Flash Builder:

Although the Flash Builder comes with costs, it is a sophisticated IDE (identi-

fied as the most sophisticated during the project work) for developing RIAs.

Its integrated support for products like Photoshop, Fireworks, Catalyst and

Flash eases the collaboration of programmers and designers. A WYSIWYG-

editor and wizards for data service integration encapsulate plenty of code

and allow building a RIA quickly.

 Suitable for large-scale business applications:

Various architectural frameworks (e.g. Cairngorm
72

) exist for Flex which fa-

vor processing large amounts of data and impose structure. Adobe Live-

Cycle
73

 modules or BlazeDS
74

 can be incorporated for business process au-

tomation and efficient data exchange with the back end.

 Offline and out-of-browser capabilities:

Deploy Flex applications with AIR to provide RIA functionality beyond the

browser borders. AIR applications can operate both in connected and dis-

connected mode and interrelate server data with the local file system.

72

 http://sourceforge.net/adobe/cairngorm/home/ – requested in February 2011
73

 http://www.adobe.com/products/livecycle/ – requested in December 2010
74

 http://opensource.adobe.com/wiki/display/blazeds/BlazeDS – requested in December 2010

Evaluation page 131

 Weaknesses

 ActionScript deficits:

ActionScript 3 is strongly typed and very similar to Java but it misses ab-

stract classes, private constructors, enums, generics and method overload-

ing. The ActionScript compiler is slower than the C# compiler and less effec-

tive at diagnosing issues (e.g. detecting memory leaks).

 HTML 5 on the horizon:

With the introduction of HTML 5 the audience reached by the Flash Player

may decrease as HTML 5 acquires some key features of Flash (cf. chapter

8). People will most likely embrace an open standard which provides the

same functionality as a proprietary plug-in.

 AIR security concerns:

Web applications basically run in the sandbox of the browser to prevent ma-

licious scripts from harming the local system. AIR applications must be

signed but do not require a certificate from a recognized authority. Although

Adobe may wants to free developers from going through the process of ob-

taining a legitimate certificate, distributing privileged applications without the

need to rigorously authenticate them is a major security risk (cf. [Hals08]).

Third-party software is always a potential host of malicious scripts which can

cause significant harm if granted access to the local file system.

7.3 Evaluation of Silverlight

Silverlight developers benefit through decreased development time and decreased

maintenance costs. If you primary have expertise in .NET, Silverlight is a good op-

tion for designing a Web application front end for an n-tier application system. De-

velopers who are not familiar with .NET and respective languages are confronted

with a steep learning curve. Developing on a platform different from Windows is

impractical (see ―Weaknesses‖ below).

Evaluation page 132

 Strengths

 .NET platform eco-system:

Silverlight applications have access to a vast number of .NET libraries.

Since virtually any CLI language can be used to write the application logic,

Silverlight may require you to learn a single new language, XAML, which is

self-explanatory to a large extend due to its XML nature. The .NET develop-

er community is very large and offers valuable support and tutorials making

Silverlight suitable for beginners.

 Imposes clear view/logic separation:

In Silverlight prohibits writing application logic in the same file where the UI

markup resides. The static appearance (GUI) is entirely written in .xaml files

while the so-called code behind (the logic) has to be placed in corresponding

.xaml.cs files. The benefit is that designers and programmers can work on

the same application without having to deal with code from the domain of

each other. Silverlight automatically arranges the linking of view and logic

files.

 HTML integration:

Any XAML element of a Silverlight application can be manipulated by the

surrounding JavaScript code while the Silverlight code is privileged to inte-

ract with JavaScript without artificial boundaries.

 Computational performance:

Due to just-in-time compilation and the CLI, which executes Silverlight as

native code, Silverlight runs generally faster than Flex code. In contrast to

Flex Silverlight supports real multi-threading; this can be very useful for

processing computationally intensive code while it is vital to not block the

GUI.

Evaluation page 133

 Out-of-browser (OOB) capabilities:

Silverlight OOB cannot challenge Adobe AIR but can be useful when an ap-

plication should be available offline. The isolated storage at the user directo-

ry of the local machine the OOB model grants can be used for simple read-

ing and writing operations on that part of the file system.

 Weaknesses

 Plug-in distribution and acceptance:

The plug-in is not part of any Windows OS distribution. It has to be down-

loaded separately or via Windows Updates. There is still a very significant

percentage of Web users that does not have Silverlight installed (cf. figure 7

in chapter 2.4.1). A Web site would not be able to reach that audience with

content relying on Silverlight (unless the content encourages them to install

it).

 Development platform and platform support:

Silverlight runs in every major browser as long as you use a Windows or

Mac operating system. Although a Linux version named Moonlight
75

 exists, it

is excluded by Linux certain distributions like Fedora claiming patent and re-

distribution concerns
76

. Developing Silverlight applications on the Windows

platform cannot be avoided since Visual Studio and Expression (except an

outdated light version) only run on top of Windows.

7.4 Evaluation of JavaFX

JavaFX is mostly attractive to Java enthusiasts and people who are familiar with

Java GUI building but desire a simpler alternative to complex Swing. The declara-

tive syntax language makes designing a GUI easy and intuitive, saves a lot of code

required to connect controls and provides a more attractive look and feel than

75

 http://www.go-mono.com/moonlight/ – requested in January 2011
76

 http://fedoraproject.org/wiki/ForbiddenItems#Moonlight – requested in March 2011

Evaluation page 134

Swing. JavaFX excels when it comes to data binding and enriches the Java world

with simple ways for connecting to Web services.

The major drawback of JavaFX is its uncertain future. Still an emerging technology,

JavaFX will be revamped in 2011; JavaFX Script will be discontinued while parts of

the JavaFX API are going to be integrated into Java. It remains to be seen how the

revamped JavaFX performs.

 Strengths

 Broad reach:

Since the Java Virtual Machine is available virtually on every client machine,

you do not have to find a way to encourage users to download the runtime

environment your RIA requires.

 Java eco-system:

JavaFX has holistic access to the Java API. It is even possible to create and

employ custom Swing components in JavaFX. The fact that Java classes

can be directly addressed by JavaFX has a huge impact on back end inte-

gration: connect a JavaFX GUI seamlessly with the entire business logic of a

Java back end. This allows passing strongly typed data on service calls.

 Declarative syntax:

Although the syntax for designing GUIs is not XML-based, it still has very

much in common with MXML and XAML. A GUI in JavaFX requires less

code, is more transparent and is more intuitively to design than a

Swing/AWT GUI written in pure Java.

 Free of charge:

Simply, but strong influencing factor: the JavaFX ecosystem is free of cost.

Evaluation page 135

 Weaknesses

 Tool support:

JavaFX faces strong mature competition supported by specialized design

tools. Flex and Silverlight are both powered by tools like Adobe Flash Cata-

lyst and Microsoft Expression Blend which allow division of labor and simple

integration of results as all tools related to a technology share the same

project format. Although NeatBeans and Eclipse feature plug-ins granting

syntax highlighting, refactoring and auto completion, JavaFX specific de-

bugging and error identification requires improvements and still more bug

fixes; tool support in case of JavaFX is generally restrained.

 No clear direction for JavaFX Mobile:

JavaFX Mobile aims to replace Java ME and to provide a domain specific

language (DSL) for designing GUIs of ―write once, run everywhere‖ applica-

tions. The majority of mobile device vendors claims that JavaFX Mobile is

not featuring characteristic device decided UI controls while JavaFX Mobile‘s

performance is not sufficient for running common App Store or Android Mar-

ket applications and so only two Windows Mobile 6 devices (LG Incite and

HTC Touch Diamond) feature JavaFX Mobile at the moment. Oracle is

planning to introduce a JavaFX MSA (Mobile Service Architecture) player to

enable JavaFX Mobile on more devices but for now placed JavaFX Mobile

on hold.

 Graphics and multimedia:

Rendering advanced 2D and 3D graphics inside the Java VM consumes

much more CPU power than with Adobe Flash
77

. The JavaFX API provides

a native media player for video playback which - for now - is not able to inte-

ract with the graphics kernel for acceleration. As a consequence, high CPU

utilization is reached when playing standard definition (SD) videos, while

720p+ high definition (HD) playback cannot be achieved with acceptable

frame rates.

77

 cf. http://geeknizer.com/why-choose-javafx-how-to-code-benchmark-graphics-cpu-memory/ – requested
in April 2011

Evaluation page 136

7.5 Recommendations

Each of these technologies has the same goal: bridging the gap between the Web

and the desktop conglomerate through interconnectivity combined with intuitive

GUIs offering immediate and accurate feedback. But their principle is not just to

deliver fancy, rich GUIs. A RIA built with one of these technologies is supposed to

aggregate and visualize complex data from different sources for intuitive manipula-

tion by the client and to provide a specialized functional asset that engages the

client and supports him/her on complex processes.

No one technology is inherently better than another. It is crucial to identify the

needs of the clients regarding performance, interactivity and security. Each frame-

work has to be measured in terms of maintainability and scalability and how well it

integrates with legacy systems. Introducing a new technology can have a huge im-

pact on productivity especially when in-house expertise does not match the re-

quired skills.

The following guidelines categorize AJAX, Flex and Silverlight according to use

cases (cf. [Hamm06] and [Guir09])
78

.

 AJAX for incremental, tactical improvements, SEO-friendliness and

 customizable footprint

Select AJAX when release cycles are short and updates are released on a frequent

basis. Knowledge about AJAX should easily be acquired by common Web devel-

opers. AJAX favors gradual refactoring of existing applications. AJAX frameworks

and libraries can easily be changed and customized to meet specific application

footprints.

78

 JavaFX is excluded as its platform and API are currently suitable for experimenting with small RIAs but
not stable enough for sophisticated enterprise development.

 See http://www.whippetcode.net/news/java-fx-enterprise-ready-/ – requested in February 2011 – for
more information on it.

Evaluation page 137

 Flex for large-scale, more comprehensive user productivity applications

When building applications from scratch, Flex is a smart choice because Flex has

integrated support for visual design tools like Catalyst and Photoshop, allows build-

ing custom component libraries and features mature architectural frameworks that

allow imposing a high degree of individual structure on projects. Combine visual

attractive and engaging Flash content with Flex controls and forms connected to

services and data stores.

Adobe is a safe choice for those who place a high value on reliable support and

product continuity, concerns that are vital when making strategic technology in-

vestments [Hamm06].

 Silverlight for integration with .NET environment

Microsoft .NET is the most frequently used platform for deploying enterprise RIAs

(cf. [Hamm10]). Therefore, Silverlight front ends will appeal most to enterprises

working in .NET.

HTML 5 Outlook page 138

8 HTML 5 Outlook

HTML 5 is the successor of HTML 4 and XHTML 1.x. Its primary goal is to enrich

the HTML conglomerate with new syntax and semantic elements for better structur-

ing and to ensure that all major browsers offer the same functionalities and capa-

bilities. HTML as we know could not be considered state-of-the-art. Vendors are

forced to test malformed code across various browsers and then need to reverse-

engineer their error-handling scheme. Semantic is also not a strength of HTML 4,

since today‘s Web pages are filled with countless <div> tags which neither provide

much information about the structure of the document nor are easy to read for both

humans and computerized systems (search engines). Proprietary extensions (plug-

ins) were chosen to fill technology gaps in the sense of interactivity and multimedia.

Now with built-in tags for audio and video replay HTML 5 will have a huge impact

on Adobe Flash and its unique selling proposition – the broad availability and mul-

timedia media features.

The driving forces behind HTML 5 are the World Wide Web Consortium (W3C) and

the Web Hypertext Application Technology Working Group (WHATWG). All major

browser vendors except Microsoft are members of the WHATWG.

According to Ian Hickson, editor of the HTML 5 specification and Google employee

(his co-editor David Hyatt works for Apple), a major goal of HTML 5 is to move the

Web away from proprietary technologies. He says: "They're single-vendor solutions

[and] they don't really fit well into the Web platform […] With an open platform,

there's no such risk, since we have true competition, many vendors, and an open

standard that anyone can implement […] It would be a terrible step backward if hu-

manity's major development platform [the Web] was controlled by a single vendor

the way that previous platforms such as Windows have been."
79

HTML 5 is expected to be especially embraced on the mobile sector as the only

sophisticated cross platform solution since proprietary rich media technologies

could not penetrate the mobile ecosystem not at least due to politically motivated

barriers. For instance, HTML 5 contributes very well to Apple‘s decision to abandon

HTML 5 Outlook page 139

Flash from its smart phones. Apple claims Flash is supposed to run slowly and

highly energy consuming on mobile devices. The more meaningful reason behind

this strategy is that Flash would interfere Apple‘s business model concerning its

electronic market places
80

.

However, this chapter is not dedicated analyzing strategies of software vendors but

analyzing new features of HTML 5 and especially the question if HTML 5 poses a

potential threat to state-of-the-art RIA development frameworks. Please note that

HTML 5 is still in working draft stage. All features presented and assumptions made

in this chapter are based on the HTML 5 roadmap, early hands-on experiences with

demos and forecasts made by Forrester Research and are subject to change.

 The (Expected) Features of HTML 5

As of first quarter 2011, major browsers are slowly adopting some of HTML 5‘s new

features. The following list points out the main characteristics of HTML 5
81

.

 Enhanced Multimedia Support:

The Flash Player produced relief for the Web plagued with incompatible

technologies for multimedia playback. <video> and <audio> tags are de-

signed for device and plug-in independent multimedia consumption and try

to make the Flash Player obsolete. The video portal and Google subsidiary

YouTube is already running a trial with HTML 5. A common audio and video

format is not likely to be part of the specification as browser vendors try to

push their own formats. A <figure> tag displays images but also code

snippets along with a legend.

79

 http://www.infoworld.com/d/application-development/html5-could-it-kill-flash-and-silverlight-
291?page=0,1 – requested in March 2011

80
 http://tech.fortune.cnn.com/2010/01/29/behind-the-adobe-apple-cold-war/ – requested in March 2011

81
 cf. http://www.drweb.de/magazin/html5-ueberblick/ (German) and
http://ajdotnet.wordpress.com/2011/03/10/html5-part-ii-new-standard-for-web-applications/ – both re-
quested in March 2011

 Additionally you may want to pay a visit to http://www.html5rocks.com (as of March 2011) for a fancy
but also quite good interactive introduction to HTML 5.

HTML 5 Outlook page 140

 Drawing:

A <canvas> tag for 2D (and 3D) drawing and JavaScript enhanced anima-

tion should address use cases of the Flash domain. A <svg> tag supports

inline Scalable Vector Graphics (SVG).

 Semantic Tags:

Tags like <header>, <footer> and <nav> and descriptive link relations shall

provide a fine-grained identification of document parts, replace countless

<div> tags and support easier navigation. A <time> tag provides machine

readable information on vague date specifications.

 CSS3
82

:

Define interactive behavior with transitions, transformations and animations;

graphical enhancements like gradients and shadows.

 Specialized Forms with Client-Side Validation:

New types for the <input> element, e.g. date or email, provide basic vali-

dation. Define valid regular expressions and mark fields as required or sub-

ject to auto completion.

 Improved Web Storage:

Use setItem and getItem on window.localStorage to store data locally in

an isolated storage. An application cache stores the status of a web page for

offline use and can be set to reload a page just in case of an update from

the Web. HTML 5 also comes with a Web SQL Database API.

 Geolocation:

Builds on Google Gears and should provide a standardized interface to re-

trieve geographical location information.

82

 See http://wi.wu-
wien.ac.at:8002/rgf/diplomarbeiten/Seminararbeiten/2010/201007_Piffer/201007_Piffer_CSS.pdf for a
brief introduction to CSS3.

HTML 5 Outlook page 141

 Web Workers:

Implement long-running, complex scripts to run on a background thread

without interfering user interaction on the main thread. Use onmessage()

method for communication between main thread and workers.

 WebSocket:

Establishes full-duplex communication for pushing updates to the server and

pulling updates from the server without (significant) delays; plain old AJAX is

not designed for this. This concept known as ―long polling‖ or ―long live re-

quest‖ (umbrella term ―Comet‖) would require continuously initiating and

sending new XMLHttpRequests, thus producing a large amount of overhead.

 Native Drag & Drop and FileSystem Access:

Invoke the datatransfer object on a JavaScript event to get access to func-

tionality for handling drag & drop gestures inside the browser but also from

the browser to the desktop and vice versa. Use the FileSystem API to work

with a sandboxed section of the local file system.

 Under Construction

As of first quarter 2011 HTML 5 is available as working draft. A candidate recom-

mendation stage will not be reached before 2012 while a stable, ratified W3C stan-

dard is expected in 2014
83

. In the meantime HTML 5 is challenged by inconsistent

behavior across browsers and platforms. For instance, the way how HTML 5 rend-

ers complex objects leaves room for interpretation and leads to varying results

among browsers. Since HTML 5 is still in development, it will of course take some

time before standard control libraries appear and major IDEs support HTML 5 with

WYSIWYG editors.

83

 cf. http://wiki.whatwg.org/wiki/FAQ#When_will_HTML5_be_finished.3F – requested in March 2011

HTML 5 Outlook page 142

 RIA Frameworks Persist

The prevalent opinion
84

 is that HTML 5 will challenge today‘s RIA technologies but

will not be able to substitute them in the near future. Although HTML 5 is supposed

to excel in terms of broad reach, system requirements, basic controls and mobile

support, RIA frameworks are just more mature; see figure 37 for an early compari-

son by Forrester Research supposed to give the reader an idea on how HTML 5

would compete with RIA technologies if it were released today.

Figure 37: HTML 5 vs. RIA Frameworks [Hamm10]

In order to be attractive to enterprise developers, HTML 5 has to be deployable at

low cost with a support level and functional asset comparable to frameworks like

Flex or Silverlight. In addition, it needs to seamlessly integrate with existing back

ends and legacy systems. HTML 5 constitutes an evolution not a revolution. It nei-

ther provides a new programming model nor changes server side processing. It will

still rely on AJAX‘s XMLHttpRequest for efficient asynchronous HTTP communica-

tion with a server. WebSockets require a WebSockets server and a secured socket

84

 See http://active.tutsplus.com/articles/roundups/html5-and-flash-17-industry-experts-have-their-say/ –
requested in May 2011 – for a representative interview with 18 experts on the field of RIA development
and Web design.

HTML 5 Outlook page 143

connection. Unless requested data is changing constantly, WebSockets would

generate much more overhead than AJAX and consequently would carry asyn-

chronous requests to excess. HTML 5 will also resort to AJAX widget toolkits for

controls not built-in. The expected functional asset of HTML 5 is still missing vital

features sophisticated business applications require
85

:

 Processing large amounts of data; data input with complex validations, visu-

al controls for smart data aggregation

 Immediate feedback (not possible with post backs), dynamic UIs with forms

built dynamically or changing depending on user input

 Real offline and out of browser capability

 Stateful programming model, MVC patterns with data binding mechanisms

The big advantage of proprietary RIA solutions is that they advance at a much fast-

er pace than HTML and will always be ahead on the curve when compared to open

standards since innovation is not restrained by standards bodies and opposing cor-

porations.

 Pressure Makes Diamonds

HTML 5 will definitely weaken the position of Adobe Flash. The Flex framework

profited from the fact that the necessary runtime (Flash Player) was installed on

virtually every system. HTML 5 still has a long way to go before browser consistent-

ly support tags and UI controls while RIA frameworks evolve further. The bottom

line is that HTML 5 and today‘s RIA frameworks are likely to coexist, serving differ-

ent purposes: HTML 5 will accelerate the ―Semantic Web‖ movement and will be

used for multimedia playback especially on mobile devices; RIA frameworks will still

be employed as front end of enterprise Web applications.

85

 cf. http://ajdotnet.wordpress.com/2011/03/12/html5-part-iii-the-limits/ – requested in March 2011

Round-up and Outlook page 144

9 Round-up and Outlook

This thesis aimed to introduce the reader to Rich Internet Applications which basi-

cally replace traditional thin web application clients and try to fill the gap between

the web and the desktop conglomerate. It outlined the advantages of a RIA and

general principles a web application should follow to generate maximum user satis-

faction. The essential artifacts of every RIA are rich GUI components and mechan-

ism for asynchronously communicating with a server, thus, retrieving (further) ap-

plication data without artificially interrupting the user‘s workflow. RIA functionality

goes beyond capabilities of traditional web applications. A RIA actively takes over

rendering and even logic processing duties from the server.

RIA development frameworks put in great effort to simplify tasks like the process of

designing a GUI with a declarative language or consuming remote web services.

The trailblazer AJAX is still the most popular RIA framework. Combining web stan-

dards with its AJAX engine and open source widget libraries, it provides a conve-

nient experience and reaches the widest audience.

However, AJAX faces strong competition from Flex and Silverlight. These technol-

ogies employ their own runtime and are part of the Flash and .NET development

platform respectively. Flex and Silverlight applications tend to be more suitable for

presenting rich media and for integration with enterprise systems. Additionally both

come with great IDE support. While AJAX applications are restricted to the brows-

er, Flex and Silverlight advance to the desktop sphere as they provide continuous

application support both in connected and disconnected mode and enable interac-

tion with the local system. Java introduced JavaFX to catch up with mature RIA

technologies and to revamp Java Applets. Although JavaFX has great potential, for

instance it features various mechanisms for fine-grained data binding; it could not

take off so far. Moving JavaFX to the Java API will definitely help JavaFX to appeal

well to the Java community.

HTML 5 is going to have an impact on the RIA conglomerate as it addresses key

features of the domain of plug-in based technologies. But HTML 5 is still on the

advent. A significant comparison to Flash and Silverlight first requires HTML 5 to be

released as stable W3C standard.

References page 145

10 References

[AIRComp] Browser vs. application

http://www.adobe.com/products/air/comparison/

Requested in November 2010

[Brown10] Brown P.: Silverlight 4 in Action. Stamford 2010: Manning Publica-

tions Co.

[BuKo09] Busch M., Koch N.: Rich Internet Applications – State-of-the-Art.

Ludwig-Maximilians-Universität München, December 2009

[CaGh10] Cameron R., Ghosh J.: Silverlight Recipes: A Problem-Solution Ap-

proach, Second Edition. New York 2010: Springer Science+Business

Media, LLC

[CCB09] Clarke J., Connors J., Bruno E.: JavaFX – Developing Rich Internet

Applications. Addison-Wesly 2009

[DBBO07] Deb B., Bannur S. G., Bharti S.: RIA – Opportunities and Challenges

for Enterprises. Infosys White Paper, January 2007

[DeveAJ] AJAX: Asynchronous Java + XML?

http://www.developer.com/design/article.php/3526681/AJAX-
Asynchronous-Java--XML.html

Requested in November 2010

[DVPG05] Driver M., Valdes R., Phifer G.: Rich Internet Applications Are the

Next Evolution of the Web. Gartner, May 2005

[EDWF10] Fain Y., Rasputnis V., Tartakovsky A.: Enterprise Development with

Flex. 2010

[Garr05] Garrett J. J.: Ajax: A New Approach to Web Applications. February
2005

http://www.adaptivepath.com/ideas/essays/archives/000385.php

Requested in November 2010

References page 146

[GhSc09] Ghoda A., Scanion J.: Accelerated Silverlight 3. New York 2009:

Springer Verlag

[Giur09] Giurata P.: Rich Internet Application agnosticism - Flex vs. Silverlight

vs. AJAX / HTML5. November 2009

http://www.catalystresources.com/saas-

blog/rich_internet_application_agnosticism/

Requested in February 2011

[HaGo07] Hammond J., Goulde M.: Rich Internet Apps move beyond the

browser. Forrester, June 2007

[Hals08] Halsstead B.: Why Criminal Hackers Will Love Adobe AIR

http://developers.curl.com/blogs/community_blog/2008/04/16/why-
criminal-hackers-will-love-adobe-air

Requested in November 2010

[Hamm06] Hammond J. S.: Ajax Or Flex – How To Select RIA Technologies.

Forrester Research

[Hamm10] Hammond J. S.: Does HTML 5 Herald The End Of RIA Plug-Ins?

Forrester Research

http://www.adobe.com/content/dam/Adobe/en/enterprise/pdfs/html-5-

ria-plug-ins.pdf

Requested in February 2011

[Hein08] Heinrichs M: Using JavaFX Objects in Java Code, March 2008

http://blog.netopyr.com/2008/03/21/using-javafx-objects-in-java-code/

Requested in February 2011

[Hold08] Holdener A. T.: Ajax – The Definitive Guide, O'Reilly. January, 2008

References page 147

[InterAJ] Interakt Online

http://www.interaktonline.com/files/art/ajax/AJAX%20-
%20Asynchronously%20Moving%20Forward.pdf

Requested in October 2010

[IsecAJ] Information Security Partners: Attacking AJAX Web Applications

https://www.isecpartners.com/files/iSEC-
Attacking_AJAX_Applications.BH2006.pdf

Requested in November 2010

[JenkJR] Jenkov J.: Java Reflection Tutorial

http://tutorials.jenkov.com/java-reflection/index.html

Requested in February 2011

[KeCh09] Keefe M., Christiansen C. A.: Java and Flex Integration Bible. Wiley

2009

[Mull03] Mullet K.: The Essence of Effective Rich Internet Applications. Ma-

cromedia Whitepaper, November 2003

[LRWA08] Linnenfelser M., Rech J., Weber S.: An Overview of and Criteria for

the Differentiation and Evaluation of RIA Architectures. March 2008

[Moock07] Moock C.: Essential ActionScript 3.0. O‘Reilly 2007

[NoHe05] Noda T., Helwig S.: Technical Comparison and Case Studies of

AJAX, Flash, and Java based RIA. Best Practice Reports, University

of Wisconsin-Madison, November 2005

[OfJe02] Offutt J: Web Software Applications Quality Attributes. George Ma-

son University, November 2002

[Treto08] Tretola R.: What is RIA? January 2008

http://insideria.com/2008/01/what-is-ria-1.html

Requested in October 2010.

References page 148

[Tric08] Trice A.: Understanding The Architecture of a Rich Internet Applica-
tion. February 2008

http://insideria.com/2008/02/understaning-the-architecture.html

Requested in October 2010.

[WGCI09] Weaver J., Gao W., Chin S., Iverson D.: Pro JavaFX Platform –

Script, Desktop and Mobile RIA with Java Technology. New York

2009: Springer-Verlag

[Wick08] Wick B.: RIAs Integrated with Enterprise Systems Deliver Greater
Value to Businesses. May 2008

http://www.information-
management.com/infodirect/2008_72/10001286-1.html

Requested in October 2010

[Widj08] Widjaja S.: RIA Entwicklung mit Flex 3. Hanser March 2008

[WijnAJ] Wijngaarden T. van: Asynchronous JavaScript and XML

http://www.few.vu.nl/~eliens/projects/design-
/multimedia/@archive/student/archive/lit-teunis.pdf

Requested in November 2010

