

Danksagung 2

Danksagung

An dieser Stelle möchte ich mich herzlich bei meinen Eltern bedanken, deren

Hilfe mir die erfolgreiche Gestaltung meines Studiums erleichtert hat.

Außerdem gilt mein Dank Herrn Dr. Flatscher, der mich während der Erstellung

dieser Arbeit stets mit hilfreichen fachlichen Hinweisen unterstützt hat.

Contents 3

Contents

Abstract ... 5

List of figures... 6

List of abbreviations .. 8

1 Introduction ... 10

2 Involved Components ... 12

2.1 Java .. 12

2.2 ooRexx ... 13

2.2.1 REXX ... 13

2.2.2 Object orientation ... 14

2.3 BSF4ooRexx .. 14

2.4 Apache ODF Toolkit ... 15

2.5 Apache Xerces ... 16

2.6 Apache OpenOffice .. 16

2.6.1 Writer ... 17

2.6.2 Calc.. 17

2.6.3 Impress .. 17

3 Installation Guide .. 18

3.1 Java Runtime ... 18

3.2 ooRexx ... 18

3.3 BSF4ooRexx .. 18

3.4 Apache Xerces ... 19

3.5 Apache ODF Toolkit ... 20

3.6 Apache OpenOffice .. 20

4 OpenDocument Format .. 21

4.1 Introduction and history .. 21

4.2 Inside an OpenDocument Format File .. 22

4.2.1 mimetype ... 22

4.2.2 META-INF/manifest.xml ... 23

Contents 4

4.2.3 meta.xml .. 23

4.2.4 settings.xml .. 24

4.2.5 styles.xml ... 25

4.2.6 content.xml .. 26

5 Apache ODF Toolkit ... 27

5.1 Introduction and history .. 27

5.2 Components ... 28

5.2.1 ODF Validator .. 28

5.2.2 ODF XSLT Runner .. 29

5.2.3 Simple API ... 29

5.3 ODFDOM ... 30

5.3.1 ODFDOM Layers ... 30

6 Nutshell Examples .. 33

6.1 ODT / Writer ... 34

6.1.1 Nutshell Example ODT 1 ... 34

6.1.2 Nutshell Example ODT 2 ... 38

6.1.3 Nutshell Example ODT 3 ... 42

6.2 ODS / Calc ... 45

6.2.1 Nutshell Example ODS 1 ... 45

6.2.2 Nutshell Example ODS 2 ... 48

6.2.3 Nutshell Example ODS 3 ... 51

6.3 ODP / Impress .. 55

6.3.1 Nutshell Example ODP 1 ... 55

6.3.2 Nutshell Example ODP 2 ... 59

6.3.3 Nutshell Example ODP 3 ... 63

7 Conclusion and Outlook .. 66

8 References ... 67

Abstract 5

Abstract

This paper illustrates the concepts required for automatically creating and

manipulating ODF documents using the Apache ODF Toolkit and the easy-to-

learn high-level programming language ooRexx. It describes the involved

components and the OpenDocument Format Standard. The theoretical

concepts are followed by short code examples, which exemplify the possibilities

to create and manipulate text, spreadsheet and presentation documents.

Keywords:

AOO | Apache OpenOffice | BSF4ooRexx | ODF | ODFDOM | OOo

OoRexx | OpenOffice | OpenOffice.org | Scripting

List of figures 6

List of figures

Figure 1 - helloworld.rexx .. 13

Figure 2 - Editing the environment variable .. 19

Figure 3 - Structure of an ODF file .. 22

Figure 4 - MIME type of OpenOffice text document .. 23

Figure 5 - Excerpt of the manifest.xml file ... 23

Figure 6 - Excerpt of the meta.xml file .. 24

Figure 7 - Excerpt of the settings.xml file .. 24

Figure 8 - Condensed excerpt of the content.xml file .. 26

Figure 9 - The ODFDOM Layers [ADOP12] .. 30

Figure 10 - Nutshell Example ODT 1 Code ooRexx .. 34

Figure 11 - Nutshell Example ODT 1 Code Java .. 35

Figure 12 - Nutshell Example ODT 1 Resulting Document 37

Figure 13 - Nutshell Example ODT 2 Code ... 38

Figure 14 - Nutshell Example ODT 2 Resulting Document 41

Figure 15 - Nutshell Example ODT 3 Code ... 42

Figure 16 - Nutshell Example ODT 3 Resulting Document 44

Figure 17 - Nutshell Example ODS 1 Code .. 45

Figure 18 - Nutshell Example ODS 1 Resulting Document 47

Figure 19 - Nutshell Example ODS 2 Code .. 48

Figure 20 - Nutshell Example ODS 2 Resulting Document 50

List of figures 7

Figure 21 - Nutshell Example ODS 3 Code .. 52

Figure 22 - Nutshell Example ODS 3 Resulting Document 54

Figure 23 - Nutshell Example ODP 1 Code .. 56

Figure 24 - Nutshell Example ODP 1 Resulting Document 58

Figure 25 - Nutshell Example ODP 2 Code .. 60

Figure 26 - Nutshell Example ODP 2 Resulting Document 62

Figure 27 - Nutshell Example ODP 3 Code .. 63

Figure 28 - Nutshell Example ODP 3 Resulting Document 65

List of abbreviations 8

List of abbreviations

API Application Programming Interface

ASF Apache Software Foundation

BSF4ooRexx Bean Scripting Framework for ooRexx

DOM Document Object Model

IEC International Electrotechnical Commission

IS International Standard

ISO International Organization for Standardization

JDK Java Development Kit

JRE Java Runtime Environment

JTC Joint Technical Committee

MIME Multipurpose Internet Mail Extensions

OASIS
Organization for the Advancement of Structured

Information Standards

ODF Open Document Format

ODFDOM A free OpenDocument Format library

ODP OpenDocument Format Presentation Document

ODS OpenDocument Format Spreadsheet Document

ODT OpenDocument Format Text Document

ooRexx Open Object Rexx

PDF Portable Document Format

List of abbreviations 9

REXX Restructured Extended Executor

RexxLA Rexx Language Association

RGB Additive color model (red green blue)

SAX Simple API for XML

SWF Shockwave Flash

W3C World Wide Web Consortium

XML Extensible Markup Language

XSL Extensible Stylesheet Language

Introduction 10

1 Introduction

Office software is one of the most commonly used types of computer programs.

With a growing amount of knowledge workers employed in the service sector in

the developed world, software to help these workers boosting their productivity

is essential. [WOff12]

Office software is usually distributed as a collection of different programs with a

similar look and feel and a consistent user interface, a so called office suite.

These office suites normally consist of at least a word processor, a spreadsheet

software and a presentation program. Additional programs of the bundle can

handle graphics, formulas, databases and so forth.

The one particular company which immediately comes to mind is certainly Mi-

crosoft, with its Microsoft Office Suite. Disadvantages of such a proprietary solu-

tion are restricted rights due to licenses, obstacles for customization and, of

course, the created documents can only be opened and altered with the corre-

sponding software, although there are some exceptions to this rule.

One popular alternative is the OpenDocument Format (ODF), an open standard

for office documents. “ODF is defined via an open and transparent process at

OASIS (Organization for the Advancement of Structured Information Standards)

and has been approved unanimously by the Joint Technical Committee 1

(JTC1) of the International Organization for Standardization (ISO) and the Inter-

national Electrotechnical Commission (IEC) as an International Standard (IS) in

May 2006. It is available for implementation and use free of any licensing, royal-

ty payments, or other restrictions.” [OASI06, p. 5]

This paper illustrates the concepts required for automatically creating and ma-

nipulating ODF documents using the ODFDOM API, which is part of the Apache

ODF Toolkit. The Apache ODF Toolkit is a set of Java modules for creating,

scanning and manipulating ODF documents.

The reference implementation of ODFDOM is written in Java. Due to the com-

plex syntax of Java the human-friendly and easy to learn programming lan-

Introduction 11

guage Open Object Rexx (ooRexx) is used in combination with Java in this pa-

per.

Numerous components have already been mentioned above. These compo-

nents and the way they are working together to achieve the desired objective

are described in chapter 2.

After these theoretical concepts chapter 3 guides the reader through the re-

quired installation processes. It shows step by step what has to be done in or-

der to create and manipulate ODF documents on your own Windows 7 ma-

chine.

In chapter 4 the OpenDocument Format Standard is described in greater detail.

A look into the inside of an ODF document is provided.

In the fifth Chapter it is explained what the ODF Toolkit is and what it can be

used for. Furthermore the individual components of the Toolkit are listed and

briefly described.

Chapter 6 illustrates how the above-mentioned concepts and components can

be combined to create and manipulate ODF documents with nine short code

examples, so called nutshell examples.

Involved Components 12

2 Involved Components

Java will be camouflaged as ooRexx using the Bean Scripting Framework for

ooRexx (BSF4ooRexx) for the purpose of using the Java reference implementa-

tion of ODFDOM, which is a part of the ODF Toolkit. Using the ODFDOM API

OpenDocument Format (ODF) documents will be created and manipulated in so

called nutshell examples in chapter 6. The free office document suite Apache

OpenOffice will then be used to view these Examples.

In order to unfold these rather complex undertaking all mentioned components

are described in this chapter.

2.1 Java

“The Java programming language is a general-purpose, concurrent, class-

based, object-oriented language.” [Gosl05, p. 35] Named after Java coffee and

appeared in 1995, it is now one of the most popular programming languages

worldwide at the time of writing.

One of the main advantages of Java is the vast amount of already available

code snippets, which can be combined to efficiently create new code instead of

writing it all over again.

The syntax of Java is derived largely from C++, another widely-used program-

ming language. This syntax is rather complex and cannot be described as hu-

man-friendly, especially for people new to programming concepts. [WJav12]

The reference implementation of ODFDOM, which is used to manipulate ODF

documents in this paper, is written in Java. Due to the mentioned disadvantages

of the Java syntax, the programming language ooRexx will be used to utilize

Java. More information on this procedure follows in chapter 2.3.

Involved Components 13

2.2 ooRexx

Open Object Rexx (ooRexx) is an enhancement of classic REXX (Restructured

Extended Executor). REXX itself is briefly described in 2.2.1 whereas the object

orientation concepts provided by ooRexx are illustrated in 2.2.2.

2.2.1 REXX

REXX is an easy-to-learn high-level programming language developed at IBM

by Mike Cowlishaw. It was designed to ease the process of programming as

one can fathom with the following list of features REXX provides (excerpt):

 Simple and human-friendly syntax

 Just two dozen instructions

 No case-sensitivity

 Dynamic data typing (no declarations required)

 No reserved keywords

 Powerful built-in functions for string- and word-processing [WREX12]

These are just some of the most important key features of the programming

language REXX. To further illustrate its simplicity the classic “Hello, world!” pro-

gram is implemented in REXX in Figure 1.

Say "Hello, world!"

Figure 1 - helloworld.rexx

Please remember that the instruction Say could also be written with capital let-

ters (SAY) or even as a mix of capital and non-capital letters (SaY) due to the

case-insensitivity.

Compared to implementations in other programming languages like Java this is

an incredibly simple “Hello, world!” program.

Involved Components 14

2.2.2 Object orientation

Open Object Rexx (ooRexx) adds object orientation to REXX. It is an Open

Source Project managed by the Rexx Language Association (RexxLA). The

RexxLA puts the advantages of object orientation as follows:

“Open Object Rexx includes features typical of an object-oriented language,

such as subclassing, polymorphism, and data encapsulation. It is an extension

of the classic Rexx language, which has been expanded to include classes (a

base set of classes is supplied), objects, and methods. These extensions do not

replace classic Rexx functions or preclude the development or running of clas-

sic Rexx programs.” [Rexx09]

“Object-oriented programmers solve problems by identifying and classifying ob-

jects related to the problem. Then they determine what actions or behaviors are

required of those objects. Finally, they write the instructions to generate the

classes, create the objects, and implement the actions. The main program con-

sists of instructions that send messages to objects.” [Rexx09]

“Other advantages often associated with object-oriented technology are:

 Simplified design through modeling with objects

 Greater code reuse

 Rapid prototyping

 Higher quality of proven components

 Easier and reduced maintenance

 Cost-savings potential

 Increased adaptability and scalability” [Rexx09]

2.3 BSF4ooRexx

BSF4ooRexx stands for Bean Scripting Framework for ooRexx. It is a frame-

work that basically “allows Java to be used as a huge Rexx function Library”.

[Flat04, p. 4]

Involved Components 15

BSF4ooRexx camouflages Java as Open Object Rexx. The huge potential of

this concept lies in the combination of the advantages of both programming lan-

guages. On the one hand the vast amount of already available Java code be-

comes accessible; on the other hand the code is still as easily understandable

as any ooRexx program code. All Java classes and all Java methods become

available in ooRexx.

Realized is this with an Object Rexx package, called BSF.cls. It

 “Defines routines, classes and methods which hide the procedural inter-

face from Object Rexx programs,

 Allows to import Java classes explicitly into Object Rexx in the form of

Object Rexx proxy classes,

 Allows to create Object Rexx proxy objects which interact with the ap-

propriate Java objects.” [Flat04, p. 13]

It is sufficient to use an ordinary text editor to create ooRexx files. When using

the Bean Scripting Framework the correct ending of the filename is “.rxj”. These

files are then executed with the Open Object Rexx Interface. However, for con-

venience reasons it is recommended to use a more sophisticated editor with

features like syntax highlighting, for example Vim (http://www.vim.org).

2.4 Apache ODF Toolkit

“The Apache ODF Toolkit is a set of Java modules that allow programmatic

creation, scanning and manipulation of Open Document Format (ISO/IEC

26300 == ODF) documents.” [AODF12] ODF is an open international standard

for office documents.

A more detailed description of ODF is given in chapter 4. More information on

the Apache ODF toolkit can be found in chapter 5.

http://www.vim.org/

Involved Components 16

2.5 Apache Xerces

Due to the fact that ODF documents are basically a bundle of XML files and

other objects an XML processing software is needed.

Xerces, developed by the Apache Software Foundation (ASF), is an XML par-

ser library for processing (i.e. parsing, manipulating, serializing etc.) XML files

and has to be installed in order to run the nutshell examples presented in chap-

ter 6. [AXer12]

Instructions on the installation process are available at chapter 3.4

2.6 Apache OpenOffice

As new ODF documents are created and existing ones are altered in chapter 6

adequate software to view these documents afterwards is required.

For this purpose the sophisticated free office software package Apache

OpenOffice was chosen. It is better known as OpenOffice.org at the time of writ-

ing. In June 2011 it became a project of the Apache Software Foundation (ASF)

and was renamed Apache OpenOffice. OpenOffice uses the OpenDocument

Format as its default file format. It is written in C++ and Java and is available in

over 110 languages, contributing to its worldwide distribution and usage. This

popular office suite is comprised of six different applications:

 A word processor called Writer

 A spreadsheet software called Calc

 A presentation program called Impress

 A drawing software called Draw

 A database program called Base

 A tool for handling mathematical formulae called Math [AOpe12]

This paper is focused on three of them: Writer, Calc and Impress.

Involved Components 17

2.6.1 Writer

Apache OpenOffice Writer is a word processor. “A word processor is a comput-

er application used for the production (including composition, editing, formatting,

and possibly printing) of any sort of printable material.” [WWor12] Word Proces-

sors are used to create all kinds of extensive text documents, such as memos,

business correspondence, letters etc.

Examples handling OpenDocument Format text documents (.odt) are shown in

chapter 6.1. These odt files can be opened with OpenOffice Writer.

2.6.2 Calc

The spreadsheet component of the Apache OpenOffice software package is

called Calc. “A spreadsheet is a computer application with tools that increase

the user's productivity in capturing, analyzing, and sharing tabular data sets. It

displays multiple cells usually in a two-dimensional matrix or grid consisting of

rows and columns (in other words, a table, hence ‘tabular’).” [WSpr12]

Calc is comparable to Microsoft’s Excel both in look and feel and in range of

features. Chapter 6.2 is dealing with OpenDocument Format spreadsheets.

2.6.3 Impress

Impress is designed to create presentations (slide shows). “A presentation pro-

gram is supposed to help both: the speaker with an easier access to his ideas

and the participants with visual information which complements the talk.”

[WPre12]

Apache OpenOffice Impress is capable of exporting presentations to PDF files

and SWF files. These Flash videos can be viewed on any computer with a

Flash player installed. Examples handling OpenDocument Format presentation

documents are shown in chapter 6.3.

Installation Guide 18

3 Installation Guide

This chapter guides the reader through the installation processes of the re-

quired software. It shows where the needed software can be obtained. The in-

structions are intended for a Windows 7 system.

3.1 Java Runtime

Firstly a Java Runtime Environment (JRE) is required to be installed on your

computer.

Please note that only the Runtime is needed, not the entire Java Development

Kit (JDK), which would also include the Java compiler (javac). The JRE is the

part of the Java software platform responsible for the Java bytecode execution.

The latest version of Java is available at http://www.java.com/de/download/.

The website also provides a useful tool which checks whether Java is already

installed or not.

3.2 ooRexx

The programming language ooRexx needs to be installed on your machine. It is

free to download from http://www.oorexx.org/download.html. The latest release

is version 4.1.0. Alternatively it is also available at Sourceforge:

http://sourceforge.net/projects/oorexx/.

3.3 BSF4ooRexx

BSF4ooRexx camouflages Java as Open Object Rexx.

It is also available to download from the Sourceforge website:

http://sourceforge.net/projects/bsf4oorexx/. It supports ooRexx version 4.1.0

and later.

http://www.java.com/de/download/
http://www.oorexx.org/download.html
http://sourceforge.net/projects/oorexx/
http://sourceforge.net/projects/bsf4oorexx/

Installation Guide 19

3.4 Apache Xerces

Apache Xerces is an XML processor. Download the Java distribution from

http://xerces.apache.org/mirrors.cgi.

Among the files of the package are two files called xercesImpl.jar and

xml-apis.jar. Both have to be added to the environment variable

CLASSPATH. With this entry Java is able to find the necessary classes.

Under Windows 7 go to the following path:

Control panel / System / Advanced System Settings / Environment Variables

And add the entire path (starting with the letter of the drive, usually “C:”) of the

two mentioned files to the “CLASSPATH” variable. Entries in the variable are

separated by a semicolon (;). Figure 2 illustrates this procedure.

Figure 2 - Editing the environment variable

http://xerces.apache.org/mirrors.cgi

Installation Guide 20

3.5 Apache ODF Toolkit

The Apache ODF Toolkit is currently undergoing incubation at the ASF at the

time of writing in February 2012. “Incubation is required of all newly accepted

projects until a further review indicates that the infrastructure, communications,

and decision making process have stabilized in a manner consistent with other

successful ASF projects.” [AODF12]

The first ODF Toolkit release under Apache (0.5-incubating) was published on

January 14th 2012. It is ready to download from the following address:

http://incubator.apache.org/odftoolkit/downloads.html.

The ODFDOM library, a .jar file, has to be added to the environment variable

CLASSPATH too. For instructions on this procedure refer to chapter 3.4.

3.6 Apache OpenOffice

Finally a program to open and view the ODF documents is required. In this pa-

per Apache OpenOffice was chosen. Please note that this is only one office

software suite capable of opening and creating documents complying with the

OpenDocument Format standard.

The latest version at is available at http://www.openoffice.org/download/.

http://incubator.apache.org/odftoolkit/downloads.html
http://www.openoffice.org/download/

OpenDocument Format 21

4 OpenDocument Format

This chapter focuses on the OpenDocument Format for Office Applications. Af-

ter a brief introduction it is shown how an OpenDocument Format file looks like

and what it consists of.

4.1 Introduction and history

“The OpenDocument Format (ODF) is an open, XML-based document file for-

mat for office applications that create and edit documents containing text,

spreadsheets, charts, and graphical elements.” [OASI06, p. 5]

The OpenDocument Format standard is maintained by the Organization for the

Advancement of Structured Information Standards (OASIS). OASIS published

the first version of ODF (1.0) in May 2005. It was created with the following ob-

jectives in mind. It should

 “be suitable for office documents containing text, spreadsheets, charts,

and graphical documents;

 be compatible with XML v1.0 and W3C namespaces in XML v1.0 specifi-

cations;

 preserve the structure of the document to allow re-editing (for example,

footnotes must be stored as structured footnotes, not just as text in the

document that looks like a footnote);

 be friendly to transformations using the W3C’s Extensible Stylesheet

Language (XSLT) or similar XML based languages or tools;

 keep the document’s content and layout information separate to enable

independent processing; and

 ‘borrow’ from similar, existing standards wherever possible and permit-

ted.” [Leib09, p. 85]

ODF became an official ISO standard (ISO/IEC 26300:2006) in May 2006. “The

OpenDocument format aims to provide an open alternative to proprietary docu-

ment formats.” [WOpe12]

OpenDocument Format 22

4.2 Inside an OpenDocument Format File

“The ODF file structure uses a Zip file as a compressed archive to hold a series

of XML files and other information (such as binary files containing embedded

images) that describe the document's content and presentation.” [Ditc07, p. 17]

The Extensible Markup Language (XML) is a widely used markup language for

describing structured, hierarchical data. Its tree structure consists mainly of el-

ements and attributes, which describe these elements. [W3CX08]

The package of an ODF file can be viewed with a data compression utility such

as WinRAR, WinZip or 7zip. Figure 3 shows the structure of a simple unzipped

ODF text file package.

Figure 3 - Structure of an ODF file

It is fascinating that a file as complex as a comprehensive presentation or a

complicated spreadsheet basically comes down to plain XML files. The content

of these XML files is described in the following chapters.

4.2.1 mimetype

MIME (Multipurpose Internet Mail Extensions) was originally an extension of the

email format to support attachments and more. “MIME's use, however, has

grown beyond describing the content of email to describe content type in gen-

eral […]” [WMul12]

In the context of ODF the mimetype file is containing only a single line of code

indicating the type of the document (text, spreadsheet etc.). [OASI07, p. 722]

OpenDocument Format 23

Figure 4 shows this line for a text document.

application/vnd.oasis.opendocument.text

Figure 4 - MIME type of OpenOffice text document

4.2.2 META-INF/manifest.xml

The manifest.xml file is always located in the directory META-INF. “The

main pieces of information stored in the manifest are:

 A list of all of the files in the package.

 The media type of each file in the package.

 If a file stored in the package is encrypted, the information required to

decrypt the file is stored in the manifest.” [OASI07, pp. 711-717]

Figure 5 shows an excerpt of the file with the root element called manifest

and some file-entries including the media-type and the path to the files.

Figure 5 - Excerpt of the manifest.xml file

4.2.3 meta.xml

Meta data is a term referring to data which describes other data. The expres-

sion “Data about data” is commonly used to describe Meta Data. [WMet12]

The meta.xml file in an ODF package contains information about the docu-

ment itself, e.g.

 The version of ODF used in the document

 Document title

 Name of the author

OpenDocument Format 24

 Time of the last save action

 Date of creation/modification

 Statistics like number of words, paragraphs or tables

 Language

 Keywords

 Number of editing cycles

Figure 6 shows a brief excerpt of the meta.xml file.

Figure 6 - Excerpt of the meta.xml file

4.2.4 settings.xml

The settings.xml file contains application-specific information on settings

like the zoom factor, window size or printer information. These pieces of infor-

mation are independent from content, formatting or layout. [OASI07, p. 40]

In Figure 7 one can see the separation of view-settings such as the zoom factor

and configuration-settings such as a boolean value (truth value, either true=1 or

false=0) that specifies whether hidden text should be printed or not.

Figure 7 - Excerpt of the settings.xml file

OpenDocument Format 25

4.2.5 styles.xml

Styles are an essential part of an ODF document. “OpenDocument makes

heavy use of styles for formatting and layout. Most of the style information is

here (though some is in content.xml).

Styles types include:

 Paragraph styles

 Page styles

 Character styles

 Frame styles

 List styles” [WOpe12]

An interesting fact is that styles are even used for implementing manual format-

ting, e.g. when making a text bold within the Writer application. In such cases

the application automatically creates new styles in the background and assigns

them to the content accordingly. The ODF specification therefore distinguishes

three types of styles:

 “Common styles

Most office applications support styles within their user interface. Within

this specification, the XML representations of such styles are referred to

as styles. When a differentiation from the other types of styles is re-

quired, they are referred to as common styles. The term common indi-

cates that this is the type of style that an office application user considers

to be a style.

 Automatic styles

An automatic style contains formatting properties that, in the user inter-

face view of a document, are assigned to an object such as a paragraph.

The term automatic indicates that the style is generated automatically. In

other words, formatting properties that are immediately assigned to a

specific object are represented by an automatic style. This way, a sepa-

ration of content and layout is achieved.

OpenDocument Format 26

 Master styles

A master style is a common style that contains formatting information

and additional content that is displayed with the document content when

the style is applied. An example of a master style are master pages.

Master pages can be used in graphical applications. In this case, the ad-

ditional content is any drawing shapes that are displayed as the back-

ground of the draw page. Master pages can also be used in text docu-

ments. In this case, the additional content is the headers and footers.

Please note that the content that is contained within master styles is ad-

ditional content that influences the representation of a document but

does not change the content of a document.” [OASI07, p. 55]

The reasons for this approach are also explicated in the specification:

1. “The format and layout of the document get separated from the docu-

ment content.

2. If two or more objects have the same formatting properties and styles

assigned, the formatting properties that are assigned to the objects di-

rectly can be represented by a single automatic style for all objects. This

saves disk space and allows styles to integrate seamlessly into the over-

all document style.” [OASI07, p. 479]

4.2.6 content.xml

The most important file is the content.xml file as it contains all of the actual

content of the document i.e. text, tables and so on. It is notably derived from

HTML and quite legible to humans.

Figure 8 shows a (very condensed) excerpt of a text document’s content.xml

file containing a paragraph with the text “Hello World!”.

Figure 8 - Condensed excerpt of the content.xml file

Apache ODF Toolkit 27

5 Apache ODF Toolkit

This chapter is dealing with the Apache ODF Toolkit. Since there have been

recent changes concerning the ODF Toolkit at the time of writing a brief over-

view of the Toolkit’s history is given in chapter 5.1. All components, particularly

the ODFDOM API are described with a focus on the underlying layer model in

chapter 5.2.

5.1 Introduction and history

“The Apache ODF Toolkit is a set of Java modules that allow programmatic

creation, scanning and manipulation of Open Document Format (ISO/IEC

26300 == ODF) documents.” [AODF12]

It was firstly proposed in 2006 by Rob Weir from IBM (Mr. Weir is still a con-

tributor to the ODF Toolkit project at the time of writing):

“The 700-page ODF specification defines what an application and platform neu-

tral office document in XML format looks like. But we are lacking high-level de-

veloper tools that allow us to be productive with this format. An ODF toolkit will

go a long way to accelerating the arrival of new ODF-supporting applications

and solutions since it reduces these difficulties that currently confront the devel-

oper.” [Weir06, p. 1]

He argues that “there is very little code that directly manipulates XML”

[Weir06, p. 1]. Instead, most developers would use DOM or SAX to manipulate

XML. “For ODF to become more attractive to application developers, we need

tools that are easy to master and that work with the tools the application devel-

opers already use.” [Weir06, p. 1]

“The ideal tool for the application developer would:

 be simple to use, requiring a minimal amount of code to solve simple

tasks. The application developer should be able to write a script to gen-

erate a formatted spreadsheet with a loan amortization table in 30 lines

of code.

Apache ODF Toolkit 28

 allow easy integration with scripting hosts, such as Perl and Python.

 provide a high-level model, closer to the problem domain of application

developers, with objects which represent spreadsheets, cell and column

formats.” [Weir06, p. 2]

That is how the ODF Toolkit originated. In 2011 the project was moved to the

Apache Incubator (parallel with OpenOffice). “Incubation is required of all newly

accepted projects until a further review indicates that the infrastructure, com-

munications, and decision making process have stabilized in a manner con-

sistent with other successful ASF projects.” [AODF12]

The first ODF Toolkit release under Apache (0.5-incubating) was published on

January 14th 2012.

5.2 Components

The ODF Toolkit is a compilation of different programs and tools, each perform-

ing a specific task concerning OpenDocument Format Documents. These vari-

ous components are described in this chapter.

5.2.1 ODF Validator

“ODF Validator is a tool that validates OpenDocument files and checks them for

certain conformance criteria.” [AVal12] It is available as a Java library.

The ODF Validator detects the ODF version of a give document automatically

and validates the document accordingly. It validates the document against an

OpenDocument schema, which has to be stored locally on the machine. “The

schemas and the files that should be validated can be specified in a configura-

tion file.” [AVal12] The Validator requires a Java Runtime Environment 1.5 or

higher.

Apache ODF Toolkit 29

5.2.2 ODF XSLT Runner

“ODF XSLT Runner is a small Java application that allows you to apply XSLT

stylesheets to XML streams included in ODF packages without extracting them

from the package. It can be used from the command line.” [AXSL12]

A common usage scenario would be the transformation of an ODF document

into XHTML. With the XSLT Runner this is possible without having to extract the

ODF package prior to the transformation. [AXST12]

There are example stylesheets available on the homepage of the ODF Toolkit.

5.2.3 Simple API

Like ODFDOM the Simple API is a programming interface providing functions to

create and modify ODF documents. It is a high-level Java API in the sense that

it enables the user to perform relatively complex tasks with just a few lines of

code. For example, it provides simple methods to create a new document or to

save a document with just a single instruction. [ASim12]

Online one can find a very helpful and extensive demo page as well as a so

called “Document Cookbook”. These two links are helpful getting started with

the API more easily:

 http://incubator.apache.org/odftoolkit/simple/demo/index.html

 http://incubator.apache.org/odftoolkit/simple/document/cookbook/index.html

Please note that the URLs will probably change when the project overcomes

the incubator status. In this case refer to the project homepage of the Apache

Software Foundation.

http://incubator.apache.org/odftoolkit/simple/demo/index.html
http://incubator.apache.org/odftoolkit/simple/document/cookbook/index.html

Apache ODF Toolkit 30

5.3 ODFDOM

“ODFDOM is a free OpenDocument Format (ODF) library. Its purpose is to pro-

vide an easy common way to create, access and manipulate ODF files, without

requiring detailed knowledge of the ODF specification. It is designed to provide

the ODF developer community with an easy lightwork programming API porta-

ble to any object-oriented language.” [ADOA12]

ODFDOM is one part of the Apache ODF Toolkit. The reference implementation

is written in Java at the time of writing in February 2012.

5.3.1 ODFDOM Layers

As stated above, the primary objective is to provide an easy to use API for han-

dling ODF documents. In order to achieve a well-designed modular structure

the ODFDOM API follows a layered approach. There are two different

ODFDOM layers, which are described in more detail in the following chapters.

[ADOP12]

Figure 9 - The ODFDOM Layers [ADOP12]

Apache ODF Toolkit 31

5.3.1.1 XML Layer

“The ODF XML Layer provides all the features of an office format, such as ta-

bles, images, numbering etc. All features are defined in the first part of the ODF

1.2 specification describing the ODF XML schema.” [ADOL12]

It consists of two different APIs:

 ODF Document API

 ODF DOM API

Whereas the Document API provides a high level view on the features and en-

ables complex procedures with little code, the DOM API offers detailed access

to the XML on a very low level. [ADOL12]

ODF Document API

 “This API is concerned about usability, hiding all ODF XML implementation de-

tails from the user, covering frequent user scenarios.” [ADOL12]

Examples for such user scenarios are changing the content of a specific

spreadsheet cell or inserting a new foil into a presentation document. The Doc-

ument API provides a very high level view on the document, offering simple in-

structions for such common scenarios.

A class of this API covers multiple ODF XML elements, i.e. each instruction has

significant impacts on the underlying XML files of the document’s package. “As

naming convention all sources of the ODF document functionality layer are or-

ganized beyond org.odftoolkit.odfdom.doc.*” [ADOL12]

ODF DOM API

The ODF DOM API, in contrast to the Document API, provides a low-level view

on a document. It gives access to the single elements of the XML files. It is de-

signed to easily manipulate a specific XML node and therefore altering the doc-

ument.

Apache ODF Toolkit 32

“For every ODF XML element and ODF XML attribute defined by the ODF

grammar (the RelaxNG schema) a unique class exists, providing methods for

their allowed children.” [ADOL12]

“All sources of the typed DOM API are organized beyond

org.odftoolkit.odfdom.dom.*” [ADOL12]

5.3.1.2 Package Layer

“The ODF Package Layer provides access to all resources stored within the

ODF package, such as XML streams, images or embedded objects.” [ADOL12]

All ODF Package features are covered by the ODF Package API. These fea-

tures take advantage of technologies like ZIP compression and W3C encryp-

tion.

The Package layer views a document like described in chapter 4.2, i.e. as a

bundle of resources zipped to a package. For example, it is possible to add an

image to an ODF Document package, which is never actually added (and thus

not displayed) to the document.

Nutshell Examples 33

6 Nutshell Examples

The expression “in a nutshell” means “summed up briefly”. The objective of the

following nutshell examples is to give an insight into the possibilities and under-

lying concepts of the ODF Toolkit while being as short as possible. They are

using the ODFDOM API (5.3), which is part of the Apache ODF Toolkit bundle.

At the time of writing there are discussions among the developers on the coex-

istence of the two APIs (Simple API & ODFDOM API).

In this chapter nine examples are presented, three for text documents

(ODT, 6.1), three for spreadsheet documents (ODS, 6.2) and three for presen-

tation documents (ODP, 6.3). Each example starts with the code followed by a

description of the code and ends with a screenshot of the resulting document

opened with Apache OpenOffice.

It is recommended to work through these examples in the order in which they

are presented, because they are partly built on each other. For a better under-

standing of the translation process from Java to ooRexx refer to the first ODT

example in chapter 6.1.1.

A really helpful collection of further introductory examples using the Simple API

can be found online, it is called the Simple ODF Cookbook:

http://simple.odftoolkit.org/cookbook/.

http://simple.odftoolkit.org/cookbook/

Nutshell Examples 34

6.1 ODT / Writer

In this chapter three examples dealing with ODF Text Documents are present-

ed. For those readers not familiar with the programming language ooRexx, the

first example (6.1.1) is exemplified both in Java (Figure 11) and ooRexx (Figure

10).

6.1.1 Nutshell Example ODT 1

In this nutshell example a new ODF Text Document (ODT) is created, some text

is added to the document and the document is saved with a given file name.

Code ooRexx

odftd=bsf.import("org.odftoolkit.odfdom.doc.OdfTextDocument") 1

TextDocument=odftd~newTextDocument 2

 3

TextDocument~addText("Hello World!") 4

TextDocument~newParagraph("This is my first Text Document.") 5

TextDocument~newParagraph 6

TextDocument~save("writer_ne1.odt") 7

 8

::requires BSF.CLS9

Figure 10 - Nutshell Example ODT 1 Code ooRexx

As one can see in Figure 10 ooRexx code is quite clean and straightforward.

Few cryptic symbols like curly brackets or semicolons are required (as opposed

to Java code). Instructions need not to be closed with a semicolon, instead the

line break stands as an indicator for an instruction’s end. However, it is possible

to state more than one instruction in each line, in this case the instructions have

to be separated with semicolons.

A very important symbol in ooRexx is the twiddle sign (~). It is also called the

“message send” symbol. “Sending a message to an object results in performing

some action; that is, it results in running some underlying code. The action-

generating code is called a method. When you send a message to an object,

you specify its method name in the message.” [RPro09]

Nutshell Examples 35

In ooRexx the syntax to call a method has the following structure:

object~method(parameters)

The corresponding Java code, resulting in the exact same ODF document is

shown in Figure 11. Among the advantages of ooRexx are the dynamic data

typing, which means that no declarations are required (as in line 4 of Figure 11)

and the omitted case sensitivity. For further information regarding the

programming language ooRexx refer to chapter 2.2.

Code Java

import org.odftoolkit.odfdom.doc.OdfTextDocument; 1

public class writer_ne1 { 2

 public static void main(String[] args) { 3

 OdfTextDocument TextDocument; 4

 TextDocument=OdfTextDocument.newTextDocument(); 5

 6

 TextDocument.addText("Hello World!"); 7

 TextDocument.newParagraph("This is my first Text Document."); 8

 TextDocument.newParagraph(); 9

 10

 TextDocument.save("writer_ne1.odt"); 11

 } 12

} 13

Figure 11 - Nutshell Example ODT 1 Code Java

Description

The following description (including line numbers) refers to the ooRexx code in

Figure 10. First of all, look at line 9:

::requires BSF.CLS

Although this statement is placed in the last line of the examples, it is actually

the first line to be carried out. When an ooRexx program is executed all lines

are read and syntactically checked.

Nutshell Examples 36

The two colons stand for a directive. A directive in ooRexx is a statement that

gets carried out previous to all other non-directive statements. In this case it is a

“requires directive”. “You use the ::REQUIRES directive when a program needs

access to the classes and objects of another program.” [AFMM09, p. 42]

Line 9 loads the package BSF.CLS. The package supplies the class BSF,

which enables us to create Java objects from within ooRexx. This line can be

found in all the examples as it is required to camouflage Java as ooRexx and

therefore to use the ODF Toolkit, which is available as a Java Archive (see 3.5).

In line 1 the BSF functionality is used to import the Java class

org.odftoolkit.odfdom.doc.OdfTextDocument. Please note that the

exact case is required and the name of the class has to be fully qualified, i.e.

the full path to the class including the package. After this statement we can treat

this imported Java class as if it was an ooRexx class.

The class OdfTextDocument (part of the ODF Document API, see 5.3.1.1)

represents an empty ODF text document. It inherits several essential methods

from the class org.odftoolkit.odfdom.doc.OdfDocument, e. g.:

 loadDocument

 save

At this point the Java class was only imported. Now an instance of the imported

class is needed. At line 2 we send the message newTextDocument, i.e. the

method’s name, to the class and we name the instance TextDocument.

TextDocument stands now for an instance of the class OdfTextDocument.

Two methods of the class OdfTextDocument for adding some text to a text

document are called from line 4 to line 6:

 addText

 newParagraph

The addText method requires a string parameter. The newParagraph meth-

od also accepts a string parameter, but it can be used without any parameters

to add a line break to the document, as illustrated in line 6 of Figure 10.

Nutshell Examples 37

Finally in line 7 the save method is carried out to save the created document

with a file name specified in a parameter. Although this statement triggers com-

plex actions the statement itself is very simple.

Result

Figure 12 shows a screenshot of the resulting ODF text document opened with

OpenOffice Writer.

Figure 12 - Nutshell Example ODT 1 Resulting Document

Nutshell Examples 38

6.1.2 Nutshell Example ODT 2

In this example a text document is created and a table is added to the docu-

ment. Some cells of the table get assigned to an ooRexx variable by which they

can be referenced from thereon. Text is added to the table and the cells of the

table are formatted. Finally the document is saved with a specified name.

Code

odftd=bsf.import("org.odftoolkit.odfdom.doc.OdfTextDocument") 1

odftable=bsf.import("org.odftoolkit.odfdom.doc.table.OdfTable") 2

 3

outputOdt=odftd~newTextDocument 4

outputOdt~newParagraph("I'm inserting a table now.") 5

outputOdt~newParagraph 6

 7

table=odftable~newTable(outputOdt, 2, 2) 8

 9

cell_top_left=table~getCellByPosition(0, 0) 10

cell_top_right=table~getCellByPosition(1, 0) 11

cell_bottom_left=table~getCellByPosition(0, 1) 12

 13

cell_top_left~setCellBackgroundColor("#CCCCCC") 14

cell_top_right~setCellBackgroundColor("#CCCCCC") 15

 16

cell_top_left~setStringValue("This is...") 17

cell_top_right~setStringValue("... the header-row.") 18

 19

cell_bottom_left~setStringValue("and this text is centered") 20

cell_bottom_left~setHorizontalAlignment("center") 21

 22

outputOdt~save("writer_ne2.odt") 23

 24

::requires BSF.CLS25

Figure 13 - Nutshell Example ODT 2 Code

Nutshell Examples 39

Description

In the first two lines the required classes – stated with their fully qualified class

name – for this example are imported:

 The org.odftoolkit.odfdom.doc.OdfTextDocument class just as

in the first ODT example (6.1.1).

 The org.odftoolkit.odfdom.doc.table.OdfTable class for the

table. Interestingly this class is also heavily used in spreadsheet docu-

ments, which basically consist of a table (see chapter 6.2).

We are already familiar with the statements in line 4 to 6. We create a new in-

stance of the class OdfTextDocument and add some text to the document.

In line 8 an instance of the imported class OdfTable is created. In contrast to

the simple constructor method of the OdfTextDocument class, this class has

ten different constructor methods varying in the parameters. The parameters

stated in this example are:

 The document object to which the table is added (outputOdt)

 The number of rows (2)

 The number of columns (2)

The table instance gets the simple name table by which it can be referenced.

It is possible to assign freely chosen names to certain cells or cell ranges. In

some cases this can simplify handling the cells, because names are easier to

work with than numbers of a coordinate system. Nevertheless the cells can still

be referenced with their coordinates, which can be much more comfortable, e.g.

when automatically manipulating a greater number of cells with a loop.

From line 10 to line 12 cell objects are assigned to the ooRexx variables

cell_top_left, cell_top_right and cell_bottom_left. The name of

this method is getCellByPosition. Its two parameters are the coordinates,

column and row. Please note that both axes start with zero, common usage in

programming languages. From now on we can refer to these table cells using

the ooRexx variables.

Nutshell Examples 40

The next method to be used in this example is the

setCellBackgroundColor method in line 14 and 15. For colors the ODF

Toolkit includes a particular class, org.odftoolkit.odfdom.type.Color.

In this case we simply state the RGB code of the desired color in a parameter of

the method to distinguish the top row of the table.

RGB stands for red, green and blue. In the example the hexadecimal notation is

used. Digits one and two are for the amount of red that gets “added” to the color

(RGB is an additive color model). The next two digits are for the amount of

green and the last two digits are for the color blue. Each two digits range from a

minimum of 00 to the maximum FF (255 in decimal). [WRGB12] Our color code

CCCCCC results in a tone of grey (see Figure 14).

Our table is still without any content. In order to change that we add some text

to the table cells in line 17 to 20 using the setStringValue method of the

class org.odftoolkit.odfdom.doc.table.OdfTableCell. For adding

numbers to the cells we would use the setDoubleValue method (see line 18

and 19 in Figure 19).

These set methods (setStringValue, setCellBackgroundColor, …)

have a counterpart named get methods. With these methods the value can be

retrieved again. This dichotomy is common usage in modern programming lan-

guages.

The last statement before we save the document can be found in line 21. The

setHorizontalAlignment method is called. This method specifies where in

the cell the text is placed. It accepts the following parameters:

 center

 justify

 left or start

 right or end

Nutshell Examples 41

Result

The code illustrated in Figure 13 results in the document shown in Figure 14.

Figure 14 - Nutshell Example ODT 2 Resulting Document

Nutshell Examples 42

6.1.3 Nutshell Example ODT 3

The third ODT nutshell example illustrates how to load an existing document

and how to add a locally stored image to a text document.

Code

odftd=bsf.import("org.odftoolkit.odfdom.doc.OdfTextDocument") 1

outputOdt=odftd~loadDocument("writer_ne1.odt") 2

 3

outputOdt~newParagraph 4

outputOdt~newParagraph("And this is the third nutshell example.") 5

outputOdt~newParagraph("Inserting an image.") 6

outputOdt~newParagraph 7

 8

imguri=.bsf~new("java.net.URI","bierfriedl.jpg") 9

outputOdt~newImage(imguri) 10

 11

outputOdt~save("writer_ne3.odt") 12

 13

::requires BSF.CLS 14

Figure 15 - Nutshell Example ODT 3 Code

Description

As in the examples above, the class OdfTextDocument is imported in line 1.

Line 2 exemplifies another useful method of this class: the loadDocument

method. By stating the path to the document (in this case just the name of the

document because it is located in the same directory as the ooRexx script) in a

parameter the entire document is obtained and can be manipulated.

So the ODF Toolkit allows importing and therefore editing existing documents

with a single line of code which is quite convenient. Please note that this exam-

ple will only work after the first nutshell example (see 6.1.1) is executed.

In the lines 4 to 7 some text is added to the document with the newParagraph

method at the end of the document.

Nutshell Examples 43

An instance of the java class java.net.URI is created via the BSF class in

line 9. Therefore the new method of the BSF.CLS is used. Two parameters are

stated:

 Fully qualified name of the Java class (java.net.URI)

 Path to the file (bierfriedl.jpg)

With the method newImage the image can easily be added to the text docu-

ment (see line 10). Finally, the document is saved with the name

writer_ne3.odt.

Nutshell Examples 44

Result

Figure 16 shows a screenshot of the resulting ODF text document opened with

OpenOffice Writer.

Figure 16 - Nutshell Example ODT 3 Resulting Document

Nutshell Examples 45

6.2 ODS / Calc

In the three nutshell examples of this chapter spreadsheet documents (ODS)

are created and altered.

6.2.1 Nutshell Example ODS 1

This code snippet exemplifies how to create a new spreadsheet document with

the ODF Toolkit, add some text to the first worksheet (there are three of them in

a document by default) and save the document.

Code

odfsd=bsf.import("org.odftoolkit.odfdom.doc.OdfSpreadsheetDocument") 1

SpreadsheetDocument=odfsd~newSpreadsheetDocument 2

 3

odfTable=SpreadsheetDocument~getTableList~get(0) 4

odfCell=odfTable~getCellByPosition(0,0) 5

 6

odfCell~setStringValue("Hello World!") 7

 8

SpreadsheetDocument~save("calc_ne1.ods") 9

 10

::requires BSF.CLS11

Figure 17 - Nutshell Example ODS 1 Code

Description

Whereas text documents possess a continuous space to which all kinds of ob-

jects such as text paragraphs, tables or images can be added, a spreadsheet

document is fundamentally different. It is composed of a two-dimensional matrix

like a table with rows and columns.

Due to this structure it is mandatory to specify the cell, i.e. the combination of

row number and column number, when adding some content to the spread-

sheet document.

In the first line of the example the OdfSpreadsheetDocument class is import-

ed. A new instance of the class is created subsequently in line 2.

Nutshell Examples 46

In line 4 the table of the first worksheet (with number 0) is obtained. The varia-

ble odfTable now references an instance of the class

org.odftoolkit.odfdom.doc.table.OdfTable, which we already used

in chapter 6.1.2.

We are familiar with line 5 in which we name the top left cell with the coordi-

nates 0,0 odfCell. In line 7 a string gets added to this cell and finally the doc-

ument is saved with the save method at line 9.

Nutshell Examples 47

Result

Figure 18 shows a screenshot of the resulting ODF spreadsheet document

opened with OpenOffice Calc.

Figure 18 - Nutshell Example ODS 1 Resulting Document

Nutshell Examples 48

6.2.2 Nutshell Example ODS 2

In this example a new spreadsheet document is created. Thereafter its cells are

filled with some text and numbers. A formula is used to calculate a sum from

these numbers and the result is displayed in a cell. Finally some cells of the

worksheet are merged together and the document is saved.

Code

odfsd=bsf.import("org.odftoolkit.odfdom.doc.OdfSpreadsheetDocument") 1

SpreadsheetDocument=odfsd~newSpreadsheetDocument 2

 3

odfTable=SpreadsheetDocument~getTableList~get(0) 4

 5

A3=odfTable~getCellByPosition(0,2) 6

B3=odfTable~getCellByPosition(1,2) 7

A4=odfTable~getCellByPosition(0,3) 8

B4=odfTable~getCellByPosition(1,3) 9

A5=odfTable~getCellByPosition(0,4) 10

B5=odfTable~getCellByPosition(1,4) 11

A6=odfTable~getCellByPosition(0,5) 12

B6=odfTable~getCellByPosition(1,5) 13

 14

A3~setStringValue("Product A"); A4~setStringValue("Product B") 15

A5~setStringValue("Product C"); A6~setStringValue("Sum") 16

 17

B3~setDoubleValue("99.99"); B4~setDoubleValue("19.99") 18

B5~setDoubleValue("59.99") 19

B6~setFormula("=B3+B4+B5") 20

 21

headline=odfTable~getCellRangeByPosition(0,1,1,1) 22

headline~merge 23

headline=odfTable~getCellByPosition(0,1) 24

headline~setStringValue("CALCULATION") 25

 26

SpreadsheetDocument~save("calc_ne2.ods") 27

 28

::requires BSF.CLS29

Figure 19 - Nutshell Example ODS 2 Code

Nutshell Examples 49

Description

The lines one to four of Figure 19 are similar to the example in 6.2.1. A new

spreadsheet document is created and the table of the first worksheet is ob-

tained.

Spreadsheet software commonly uses letters for the columns and numbers for

the rows. These two elements are then combined to describe a single cell

(e.g. “A1” is the top left cell). This naming convention is realized to name the

variables accordingly in the lines 6 to 13 with the familiar method

getCellByPosition.

In the lines 15 to 18 one can see two instructions in each line. These instruc-

tions have to be separated by a semicolon. The semicolon can be omitted in

lines with a single instruction.

The second column (B) is filled with some numbers using the method

setDoubleValue in lines 18 and 19. The values of these cells are added to-

gether in line 20. The setFormula method expects a formula or any string as

parameter.

In line 22 the method getCellRangeByPosition names a range of adjacent

cells headline. The parameter consists of four numbers which specify the

range of cells:

 Start column

 Start row

 End column

 End row

The two cells A2 and B2 are merged together to one cell in line 23. This new

cell – with the coordinates 0, 1 – is named headline again in line 24 and filled

with a string in line 25.

Nutshell Examples 50

Result

The code illustrated in Figure 19 results in the document shown in Figure 20.

Figure 20 - Nutshell Example ODS 2 Resulting Document

Nutshell Examples 51

6.2.3 Nutshell Example ODS 3

In the third ODS nutshell example an existing spreadsheet document (the one

created in 6.2.2) is loaded. The name of one of the worksheets is changed and

a new worksheet is added to the document. Some cells are formatted and an

entire row is erased. Finally the document is saved with the name

calc_ne3.ods (leaving the original document calc_ne2.ods unchanged).

Code

odfsd=bsf.import("org.odftoolkit.odfdom.doc.OdfSpreadsheetDocument") 1

SpreadsheetDocument=odfsd~loadDocument("calc_ne2.ods") 2

 3

odfTable=SpreadsheetDocument~getTableList~get(0) 4

odfTable~setTableName("Calculation") 5

 6

odfTable~newTable(SpreadsheetDocument) 7

odfTableNew=SpreadsheetDocument~getTableList~get(1) 8

odfTableNew~setTableName("New") 9

 10

headline=odfTable~getCellByPosition(0,1) 11

headline~setHorizontalAlignment("center") 12

headline~setVerticalAlignment("middle") 13

headline~setCellBackgroundColor("#CCCCCC") 14

 15

headline=odfTable~getRowByIndex(1) 16

row2=odfTable~getRowByIndex(2); row3=odfTable~getRowByIndex(3) 17

row4=odfTable~getRowByIndex(4); row5=odfTable~getRowByIndex(5) 18

headline~setHeight(15,0); row2~setHeight(7,0) 19

row3~setHeight(7,0); row4~setHeight(7,0); row5~setHeight(9,0) 20

 21

columnA=odfTable~getColumnByIndex(0); columnA~setWidth(40) 22

columnB=odfTable~getColumnByIndex(1); columnB~setWidth(20) 23

 24

A3=odfTable~getCellByPosition(0,2) 25

B3=odfTable~getCellByPosition(1,2) 26

A4=odfTable~getCellByPosition(0,3) 27

B4=odfTable~getCellByPosition(1,3)28

A5=odfTable~getCellByPosition(0,4) 29

B5=odfTable~getCellByPosition(1,4) 30

A6=odfTable~getCellByPosition(0,5) 31

B6=odfTable~getCellByPosition(1,5) 32

 33

A3~setVerticalAlignment("middle") 34

A4~setVerticalAlignment("middle") 35

A5~setVerticalAlignment("middle") 36

A6~setHorizontalAlignment("right") 37

A6~setCellBackgroundColor("#EEEEEE") 38

B6~setCellBackgroundColor("#EEEEEE") 39

 40

odfTable~removeRowsByIndex(0,1) 41

 42

SpreadsheetDocument~save("calc_ne3.ods") 43

 44

::requires BSF.CLS45

Figure 21 - Nutshell Example ODS 3 Code

Description

The convenient loadDocument method, which we already saw in 6.1.3 is also

available for spreadsheet documents. It is used in line 2 to load the document

created in 6.2.2.

In line 5 the method setTableName is carried out in order to rename the first

worksheet of the document. From line 7 to line 9 a new worksheet is created,

obtained and renamed new.

We are already familiar with the setHorizontalAlignment method in line 12

from the example in 6.1.2. There is a pendant called setVerticalAlignment

for the vertical positioning, which accepts the following values:

 auto or automatic

 baseline

 bottom

 middle

 top

Nutshell Examples 53

In order to change the height of a row we need to obtain an entire row with the

getRowByIndex method. In the parameter of the method the number of the

row is stated (starting with 0, as usual).

In line 19 and 20 we change the height of some rows with the setHeight

method. The value in the parameter is given in millimeters.

Columns can also be obtained. This is necessary to change their width. The

corresponding methods are getColumnByIndex and setWidth. These are

used in the lines 22 and 23.

Self-explanatory names are given to the variables representing the cell objects

ranging from A3 to B6 in line 25 to 32.

In the following lines we are using the methods setVerticalAlignment,

setHorizontalAlignment and setCellBackgroundColor again to for-

mat the cells and make the document look nicer.

Finally in line 41 the method removeRowsByIndex is called. This method ena-

bles us to erase one or more entire rows of a table. The first parameter is the

number of the first row to delete (0 for the first row) and the second parameter is

the number of rows to delete, in this case just the top row, which was empty.

Nutshell Examples 54

Result

Figure 22 shows a screenshot of the resulting ODF spreadsheet document

opened with OpenOffice Calc.

Figure 22 - Nutshell Example ODS 3 Resulting Document

Nutshell Examples 55

6.3 ODP / Impress

Finally, this last chapter with nutshell examples deals with presentation docu-

ments with the file name ending “.odp”. The first example shows the different

underlying concept of a presentation document in contrast to a text or spread-

sheet document.

6.3.1 Nutshell Example ODP 1

The first nutshell example of this section is, like the others in 6.1.1 and in 6.2.1,

designed to show how to create a new document, add some text to it and save

it.

Adding text to a text document is the easiest example as the document class

itself comes with a method (actually two) to conveniently manage the task. A

spreadsheet document needs information on the placement of the text, i.e. the

worksheet and the coordinates of its table.

By contrast presentation documents are built as an empty, white space without

a natural text flow. For adding text to it one needs to specify where on the foil

the text should be positioned. In addition, text can only be added to containing

elements, not directly to the foil itself. To illustrate this concept, we add some

text to the foil in this example without specifying where.

Nutshell Examples 56

Code

odfpd=bsf.import("org.odftoolkit.odfdom.doc.OdfPresentationDocument") 1

PresentationDocument=odfpd~newPresentationDocument 2

Presentation=PresentationDocument~getContentRoot 3

 4

foil=Presentation~getFirstChild 5

 6

frame=foil~newDrawFrameElement 7

textBox=frame~newDrawTextBoxElement 8

 9

text=textBox~newTextPElement 10

text~addContent("Hello World!") 11

 12

PresentationDocument~save("impress_ne1.odp") 13

 14

::requires BSF.CLS 15

Figure 23 - Nutshell Example ODP 1 Code

Description

In the first line, we import the class OdfPresentationDocument. The code in

the second line creates an empty presentation document. In line 3 the method

getContentRoot is carried out. This method obtains the content root (class

OfficePresentationElement), which represents the XML tag

office:presentation.

In line 5 the method getFirstChild of the class OfficePresenta-

tionElement is called. The class inherits this method, which performs an XML

navigation task, from org.apache.xerces.dom.ParentNode. It basically

obtains the first foil of the presentation document.

In order to add some text to the foil a frame is created in line 7, a text box in line

8 and a text element, to which the text is later added, in line 10. This is a rather

complex undergoing for a simple task compared to the other document types

(see 6.1.1 and 6.2.1). Still the result (Figure 24) will not be pleasing as we don’t

specify where on the foil to add all these elements.

Nutshell Examples 57

The variable text is of the class OdfTextParagraph. This class includes a

method called addContent, which accepts a string as parameter.

The saving process is as simple as for the other document types. The docu-

ment gets the name impress_ne1.odp. As usual the Bean Scripting Frame-

work functionality for the Java support is loaded in the last line of the example.

Nutshell Examples 58

Result

The code illustrated in Figure 23 results in the document shown in Figure 24. As

we neither specified the exact place of the text nor the size of the text element

or the containing elements we get this unwanted result where the text is placed

at the top left and the letters are written vertically. These mistakes are corrected

in the next example in 6.3.2.

Figure 24 - Nutshell Example ODP 1 Resulting Document

Nutshell Examples 59

6.3.2 Nutshell Example ODP 2

In 6.3.1 we saw how to add text to a presentation document. Although we used

three different elements for this purpose the result was still unsatisfactory. The

text was displayed partly outside the foil and only one character was placed in

each line.

This example shows how elements (containing text, images or other objects)

are correctly positioned on a slide and how the width and height of these ele-

ments can be specified.

Some text is inserted in one frame element; an image is added to another frame

element on a new slide. Additionally, the order of the slides is changed and fi-

nally the document is saved.

Code

odfpd=bsf.import("org.odftoolkit.odfdom.doc.OdfPresentationDocument") 1

PresentationDocument=odfpd~newPresentationDocument 2

Presentation=PresentationDocument~getContentRoot 3

 4

slide1=Presentation~getFirstChild 5

 6

frame1=slide1~newDrawFrameElement 7

frame1~setSvgXAttribute("12cm") 8

frame1~setSvgYAttribute("3cm") 9

frame1~setSvgWidthAttribute("4cm") 10

frame1~setSvgHeightAttribute("3.5cm") 11

 12

textBox=frame1~newDrawTextBoxElement 13

 14

text=textBox~newTextPElement 15

text~addContent("Hello world!") 16

 17

slide2=Presentation~newDrawPageElement("") 18

 19

frame2=slide2~newDrawFrameElement 20

frame2~setSvgXAttribute("12cm") 21

frame2~setSvgYAttribute("5cm")22

frame2~setSvgWidthAttribute("5cm") 23

frame2~setSvgHeightAttribute("7cm") 24

 25

image=frame2~newDrawImageElement 26

image~newImage(.bsf~new("java.net.URI","bierfriedl.jpg")) 27

 28

PresentationDocument~moveSlide(1,0) 29

 30

PresentationDocument~save("impress_ne2.odp") 31

 32

::requires BSF.CLS 33

Figure 25 - Nutshell Example ODP 2 Code

Description

We are already familiar with the first five lines of the code. The necessary Java

class is imported, a new document is created and the content root and the first

foil of the presentation document is obtained.

The first frame element is assigned to the ooRexx variable named frame1 in

line 7.

In the next four lines (8 to 11) the following methods of the class

org.odftoolkit.odfdom.dom.element.draw.DrawFrameElement are

carried out to specify the position and the size:

 setSvgXAttribute and setSvgYAttribute

These methods specify the position of the frame element. The distance

to the left border of the foil (setSvgXAttribute) and the distance to

the top of the foil (setSvgYAttribute) are given in centimeters.

 setSvgWidthAttribute and setSvgHeightAttribute

These methods define the size of the frame element by stating the width

and the height in centimeters. Slides are 28 centimeters wide and 21

centimeters high by default.

Now that the FrameElement is sufficiently described with these four values we

can add a TextBoxElement (line 13) and a TextPElement (line 15) to it. The

Nutshell Examples 61

actual text is inserted in line 16. In conclusion, adding text to a presentation

slide is a far more complex task than adding it to a text document.

In line 18 a new slide is added to the document with the method

newDrawPageElement. The name of a master page can be specified as a pa-

rameter. Our presentation document now contains two slides (named slide1

and slide2).

A second FrameElement named frame2 is created and added to slide2 in

line 20. Once again we specify the size and the position of the new element with

the four methods described above (lines 21 to 24).

An image element is drawn in line 26. We are already familiar with the code in

line 27 from the nutshell example in 6.1.3.

 Among other useful functions like the save or the loadDocument method the

class org.odftoolkit.odfdom.doc.OdfPresentationDocument also

provides a convenient method to move slides and therefore to change the order

of the slides. This method – named moveSlide – expects two parameters:

 The current index of the slide that need to be moved.

 The index of the destination position.

The first slide always has the index zero. So our code moveSlide(1,0)

moves the second slide containing the image to the index 0 and therefore to the

start of the presentation.

The code in line 31 saves our presentation document with the name

impress_ne2.odp.

Nutshell Examples 62

Result

Figure 25 is a screenshot showing the resulting ODP document opened with

Apache OpenOffice Impress.

Figure 26 - Nutshell Example ODP 2 Resulting Document

Nutshell Examples 63

6.3.3 Nutshell Example ODP 3

In this last nutshell example some other useful functions regarding presentation

documents, like copying an entire slide from one presentation to another, are

exemplified.

Code

odfpd=bsf.import("org.odftoolkit.odfdom.doc.OdfPresentationDocument") 1

PresentationDocument=odfpd~newPresentationDocument 2

 3

PresentationDocument2=odfpd~loadDocument("impress_ne2.odp") 4

 5

PresentationDocument~copyForeignSlide(1, PresentationDocument2, 0) 6

PresentationDocument~deleteSlideByIndex(0) 7

 8

PresentationDocument~save("impress_ne3.odp") 9

 10

::requires BSF.CLS 11

Figure 27 - Nutshell Example ODP 3 Code

Description

Presentations are a communication and collaboration tool. It is therefore a

common task to merge presentations together or to split them up, rearranging

slides across multiple presentation documents. The ODF Toolkit comes with

powerful features in this area.

In the first two lines a new document is created by importing the corresponding

Java class and creating a new instance of said class.

In line 4 the presentation document created in 6.3.2 (named

impress_ne2.odp) is loaded.

Line 6 includes a call of the method copyForeignSlide. This method pro-

vides a convenient way to exchange slides between different presentation doc-

uments. It expects three parameters:

 Destination index, i.e. the new position of the copied foil

Nutshell Examples 64

 Source document

 Source index, i.e. the foils position in the source document

In this example the first slide of the document PresentationDocument2 gets

copied to the second position in the current document.

In line 9 the first slide, which is empty, is erased from the document with anoth-

er useful and powerful method, the deleteSlideByIndex method. The num-

ber given in the parameter represents the index of the slide to be deleted.

Nutshell Examples 65

Result

The code illustrated in Figure 27 results in the document shown in Figure 28.

Figure 28 - Nutshell Example ODP 3 Resulting Document

Conclusion and Outlook 66

7 Conclusion and Outlook

Office software is ubiquitous in modern business life and therefore essential for

the efficiency and success of organizations and businesses. It is among the

most commonly used types of computer programs. For letters and memos text

documents are created. Calculations are done with spreadsheet documents and

presentations are commonplace in meetings and at trade fairs.

Despite the high market share of Microsoft with its Office Suite there is a power-

ful and open source alternative, which mitigates disadvantages of proprietary

solutions like licenses or obstacles for customization: Apache OpenOffice.

Due to the frequent usage of office software there is demand for automation of

simple or repetitive tasks like serial letters. Apache OpenOffice comes with fea-

ture rich API’s: the Simple API and the ODFDOM API. At the time of writing

there are discussions among the developers on the coexistence of these two

programming interfaces. The API’s are written in Java, bundled together and

distributed in the Apache ODF Toolkit.

With the Bean Scripting Framework for ooRexx it is surprisingly easy to use the

Toolkit without having to deal with the painful difficulties of the Java syntax. As

exemplified in this paper, developers and IT departments can easily create and

edit text, spreadsheet or presentation documents.

Now that the free OpenOffice moved to the Apache Software Foundation it has

a bright future ahead. With further improvements of the API’s more features and

functions are likely to be implemented.

References 67

8 References

[ADOA12] Apache Incubator: ODFDOM - The OpenDocument API, 2012

http://incubator.apache.org/odftoolkit/odfdom/index.html

[Accessed 24 February 2012]

[ADOL12] Apache Incubator: The ODFDOM Layers, 2012

http://incubator.apache.org/odftoolkit/odfdom/Layers.html

[Accessed 26 February 2012]

[ADOP12] Apache Incubator: ODFDOM Project Overview, 2012

http://incubator.apache.org/odftoolkit/odfdom/ProjectOverview.html

[Accessed 24 February 2012]

[AFMM09] Ashley, David W.; Flatscher, Rony G.; Hessling, Mark; McGuire,

Rick; Miesfeld, Mark; Peedin, Lee; Tammer, Rainer; Wolfers, Jon:

Open Object Rexx Programming Guide Version 4.0.0, 14.08.2009

http://www.oorexx.org/docs

[Accessed 4 March 2012]

[AODF12] Apache Incubator: Apache ODF Toolkit (incubating), 2012

http://incubator.apache.org/odftoolkit

[Accessed 4 February 2012]

[AOpe12] Apache Software Foundation: Apache OpenOffice (incubating), 2012

http://incubator.apache.org/openofficeorg/index.html

[Accessed 4 February 2012]

[ASCo12] Apache Software Foundation: Simple ODF Cookbook, 2012

http://simple.odftoolkit.org/cookbook

[Accessed 3 March 2012]

[ASim12] Apache Incubator: Simple API, 2012

http://incubator.apache.org/odftoolkit/simple/index.html

[Accessed 23 February 2012]

References 68

[AVal12] Apache Incubator: ODF Validator, 2012

http://incubator.apache.org/odftoolkit/conformance/ODFValidator.html

[Accessed 23 February 2012]

[AXer12] Apache Software Foundation: The Apache Xerces Project, 2011

http://xerces.apache.org

[Accessed 4 February 2012]

[AXSL12] Apache Incubator: ODF XSLT Runner, 2012

http://incubator.apache.org/odftoolkit/xsltrunner/ODFXSLTRunner.html

[Accessed 23 February 2012]

[AXST12] Apache Incubator: ODF XSLT Runner and ODF XSLT Runner Task

Examples, 2012

http://incubator.apache.org/odftoolkit/xsltrunner/ODFXSLTRunnerExamples.html

[Accessed 21 March 2012]

[Ditc07] Ditch, Walter: XML-based Office Document Standards, JISC

Technology & Standards Watch 1.0, 08 2007

[Flat04] Flatscher, Rony G.: Camouflaging Java as Object REXX,

International Rexx Symposium, Böblingen, 05 2004

[Gosl05] Gosling, James; Joy, Bill; Steele, Guy; Bracha, Gilad:

The Java Language Specification, Addison-Wesley, 2005

[Leib09] Leiba, Barry: OpenDocument Format: The Standard for Office

Documents, IEEE Internet Computing Vol. 13, pp. 83-87, 2009

[Maye11] Mayer, Günter: Scripting the ODF Toolkit (ODFDOM), 2011

http://wi.wu.ac.at/rgf/diplomarbeiten

[Accessed 30 January 2012]

[OASI06] OASIS: Open by Design - The Advantages of the OpenDocument

Format (ODF), 2006

http://www.oasis-

open.org/committees/download.php/21450/oasis_odf_advantages_10dec2006.pdf

[Accessed 27 January 2012]

http://incubator.apache.org/odftoolkit/xsltrunner/ODFXSLTRunnerExamples.html

References 69

[OASI07] OASIS: Open Document Format for Office Applications

(OpenDocument) v1.1 Specification, 2007

http://docs.oasis-open.org/office/v1.1/OS/OpenDocument-v1.1-html/OpenDocument-

v1.1.html

[Accessed 9 February 2012]

[Rexx09] Rexx Language Association: About Open Object Rexx - Object-

oriented Programming, 2009

http://www.oorexx.org/about.html

[Accessed 2 February 2012]

[RPro09] Rexx Language Association: Open Object Rexx: Programming Guide

- Modeling Objects, 2009

http://www.oorexx.org/docs/rexxpg/x871.htm

[Accessed 3 March 2012]

[W3CX08] World Wide Web Consortium: Extensible Markup Language 1.0

Specification, 2008

http://www.w3.org/TR/REC-xml

[Accessed 14 February 2012]

[WCal12] Wikipedia: OpenOffice.org Calc, 2012

http://en.wikipedia.org/w/index.php?title=OpenOffice.org_Calc&oldid=470222583

[Accessed 6 February 2012]

[Weir06] Weir, Rob: A Proposal for an OpenDocument Developers Kit, 2006

http://www.robweir.com/blog/publications/ODF_Toolkit_Proposal.pdf

[Accessed 15 February 2012]

[WJav12] Wikipedia: Java (programming language), 2012

http://en.wikipedia.org/w/index.php?title=Java_(programming_language)&oldid=474158381

[Accessed 31 January 2012]

[WMet12] Wikipedia: Metadata, 2012

http://en.wikipedia.org/w/index.php?title=Metadata&oldid=473611207

[Accessed 9 February 2012]

References 70

[WMul12] Wikipedia: Multipurpose Internet Mail Extensions, 2012

http://en.wikipedia.org/w/index.php?title=MIME&oldid=473237813

[Accessed 9 February 2012]

[WOff12] Wikipedia: Office suite, 2012

http://en.wikipedia.org/w/index.php?title=Office_suite&oldid=469001631

[Accessed 26 January 2012]

[WOpe12] Wikipedia: OpenDocument technical specification, 2012

http://en.wikipedia.org/w/index.php?title=OpenDocument_technical_specification&oldid=445

678724

[Accessed 7 February 2012]

[WPre12] Wikipedia: Presentation program, 2012

http://en.wikipedia.org/w/index.php?title=Presentation_program&oldid=468044768

[Accessed 6 February 2012]

[WREX12] Wikipedia: REXX, 2012

http://en.wikipedia.org/w/index.php?title=REXX&oldid=471379104

[Accessed 2 February 2012]

[WRGB12] Wikipedia: RGB color model, 2012

http://en.wikipedia.org/w/index.php?title=RGB_color_model&oldid=473759578

[Accessed 6 March 2012]

[WSpr12] Wikipedia: Spreadsheet, 2012

http://en.wikipedia.org/w/index.php?title=Spreadsheet&oldid=482178720

[Accessed 17 March 2012]

[WWor12] Wikipedia: Word processor, 2012.

http://en.wikipedia.org/w/index.php?title=Word_processor&oldid=473138864

[Accessed 26 January 2012]

