
WIRTSCHAFTSUNIVERSITÄT WIEN
Vienna University of Economics and Business

1.

2.

3.

4.

Unterschrift

pi4oorexx - An introduction to programming the Raspberry Pi with
ooRexx and BSF4ooRexx

pi4oorexx - Eine Einführung zur Programmierung des Raspberry Pi mit
ooRexx und BSF4ooRexx

Dür Marcel

00925194

Bachelor of Science (WU), BSc (WU)

ao.Univ.Prof. Mag.Dr.rer.soc.oec. Rony G. Flatscher

Contents

1 Introduction 1
1.1 Initial Situation and Problem Definition . 1
1.2 Target Setting . 1
1.3 Methodical Approach . 1
1.4 Structure of the Bachelor Thesis . 2

2 Required Software 3
2.1 Rexx and ooRexx . 3
2.2 BSF4ooRexx . 4
2.3 Java . 5
2.4 Raspberry Pi OS . 6
2.5 Pi4J . 6
2.6 WiringPi . 7
2.7 pigpio . 7
2.8 I²C Tools for Linux . 7
2.9 pi4oorexx . 7

3 Raspberry Pi 9
3.1 Versions . 9
3.2 Pinout . 10
3.3 GPIO . 12

3.3.1 Digital Input/Digital Output . 12
3.3.2 PWM . 13
3.3.3 1-Wire . 13
3.3.4 UART . 14
3.3.5 SPI . 15
3.3.6 I²C . 16

4 Installation and Configuration 18
4.1 ooRexx . 18
4.2 Java . 19
4.3 BSF4ooRexx . 19
4.4 WiringPi . 19
4.5 Jar Archives . 19

4.5.1 Pi4J . 20
4.5.2 pi4oorexx . 20

4.6 Set Java Classpath . 20
4.7 Enable Interfaces . 21

i

5 Examples 25
5.1 Digital Input/Digital Output . 25

5.1.1 gpioOut1.rex . 25
5.1.1.1 Circuit . 25
5.1.1.2 Sourcecode . 26

5.1.2 gpioOut2.rex . 27
5.1.2.1 Circuit . 27
5.1.2.2 Sourcecode . 27

5.1.3 gpioOut3.rex . 28
5.1.3.1 Circuit . 28
5.1.3.2 Sourcecode . 28

5.1.4 pinListener1.rex . 29
5.1.4.1 Circuit . 29
5.1.4.2 Sourcecode . 30

5.1.5 pinListener2.rex . 31
5.1.5.1 Circuit . 32
5.1.5.2 Sourcecode . 32

5.1.6 pinListener3.rex . 33
5.1.6.1 Circuit . 33
5.1.6.2 Sourcecode . 33

5.2 PWM.rex . 35
5.2.1 servo . 35

5.2.1.1 Circuit . 35
5.2.1.2 Sourcecode . 36

5.3 1-Wire . 36
5.3.1 ds18b20stream.rex . 37

5.3.1.1 Circuit . 37
5.3.1.2 Sourcecode . 38

5.3.2 ds18b20unix.rex . 38
5.3.2.1 Circuit . 38
5.3.2.2 Sourcecode . 38

5.3.3 ds18b20pi4oorex.rex . 39
5.3.3.1 Circuit . 39
5.3.3.2 Sourcecode . 39

5.4 UART . 40
5.4.1 gps.rex . 40

5.4.1.1 Circuit . 40
5.4.1.2 Sourcecode . 41

5.5 SPI . 45
5.5.1 LEDMatrixDriver.rex . 45

5.5.1.1 Circuit . 46
5.5.1.2 Sourcecode . 46

ii

5.5.2 LEDMatrixPi4oorexx.rex . 50
5.5.2.1 Circuit . 50
5.5.2.2 Sourcecode . 50

5.5.3 binaryclock.rex . 51
5.5.3.1 Circuit . 52
5.5.3.2 Sourcecode . 52

5.6 I²C . 53
5.6.1 bme280.rex . 55

5.6.1.1 Circuit . 55
5.6.1.2 Sourcecode . 56

5.6.2 bme280pi4oorexx.rex . 61
5.6.2.1 Circuit . 61
5.6.2.2 Sourcecode . 61

5.6.3 pcf8574.rex . 62
5.6.3.1 Circuit . 63
5.6.3.2 Sourcecode . 64

5.6.4 pcf8591.rex . 65
5.6.4.1 Circuit . 65
5.6.4.2 Sourcecode . 66

5.6.5 ds3231.rex . 67
5.6.5.1 Circuit . 67
5.6.5.2 Sourcecode . 68

5.6.6 bh1750.rex . 70
5.6.6.1 Circuit . 70
5.6.6.2 Sourcecode . 71

5.6.7 bh1750pi4oorexx.rex . 73
5.6.7.1 Circuit . 73
5.6.7.2 Sourcecode . 73

5.7 HD44780 LC-Display . 73
5.7.1 LCDparallel.rex . 73

5.7.1.1 Circuit . 74
5.7.1.2 Sourcecode . 75

5.7.2 LCDi2c.rex . 79
5.7.2.1 Circuit . 80
5.7.2.2 Sourcecode . 81

5.7.3 LCDpi4oorexx.rex . 86
5.7.3.1 Circuit . 86
5.7.3.2 Sourcecode . 86

5.8 RFIDAttendance.rex . 87
5.8.0.1 Circuit . 87
5.8.0.2 Sourcecode . 88

6 Conclusio 92

iii

7 Appendix 93
7.1 Source Codes . 93
7.2 LaTex . 93

List of Figures

1 Pi4J API . 6
2 Raspberry Pi 4B . 10
3 Pinout . 11
4 data exchange RS-232/UART . 14
5 SPI cabling . 15
6 SPI Daisy Chaining . 16
7 I²C example . 17
8 raspi-config . 21
9 raspi-config interfaces . 22
10 raspi-config activate SPI . 23
11 raspi-config activate Serial Port . 24
12 gpioOut circuit . 26
13 pinListener circuit . 30
14 Servo circuit . 35
15 ds18b20 circuit . 37
16 GPS Sensor circuit . 41
17 LED Matrix driver circuit . 46
18 binary clock . 52
19 i2cdetect . 54
20 i2cset . 54
21 i2cget . 54
22 BME 280 circuit . 56
23 PCF 8574 circuit . 64
24 PCF 8591 circuit . 66
25 DS3231 Real Time Clock circuit . 68
26 bh1750 Ambient Light Sensor circuit . 71
27 LC-Display parallel Interface 4-Bit Mode circuit 75
28 LC-Display I²C 4-Bit Mode circuit . 80
29 RFID Attendance System circuit . 88

List of Tables

1 Logic Levels . 12
2 Example of a 1-wire address . 13
3 I²C operating modes . 16

iv

4 One Byte in Bits . 62
5 Dec vs Bin vs Hex . 63
6 LCDi2c Explanation of the mode variable 82
7 LCDi2c byte example letter ”M” . 82
8 LCDi2c Example print ”M” at Display . 83

Listings

1 Rexx Sample . 3
2 additionally required software packages . 18
3 install ooRexx . 18
4 install Java JDK . 19
5 install BSF4ooRexx . 19
6 install WiringPi . 19
7 download ad unzip Pi4J . 20
8 open bashrc file . 20
9 set Classpath . 20
10 raspi-config . 21
11 gpioOut1 Load requires classes . 26
12 gpioOut1 define output . 27
13 gpioOut1 main program . 27
14 gpioOut2 define pin as output . 27
15 gpioOut2 define default state . 27
16 gpioOut2 main program . 28
17 gpioOut3 start daemon . 28
18 gpioOut3 define output . 28
19 gpioOut3 define default state . 28
20 gpioOut3 main program . 29
21 pinListener1 required Java classes . 30
22 pinListener1 define Pushbutton . 30
23 pinListener1 define output and LED state 31
24 pinListener1 main program . 31
25 pinListener2 define input pin and PullDown 32
26 pinListener2 define input pin and PullDown 32
27 pinListener2 main program . 32
28 pinListener3 required Java classes . 33
29 pinListener3 define input . 33
30 pinListener3 define output . 33
31 pinListener3 create and register listener . 33
32 pinListener3 run main program . 34
33 pinListener3 class evl . 34
34 pinListener3 get Java Support . 34

v

35 servo define pin and state . 36
36 servo 0 degree . 36
37 servo main program . 36
38 ds18b20 output temp . 38
39 ds18b20 routine ds18b20GetTemp:stream . 38
40 ds18b20 output temp . 38
41 ds18b20 routine ds18b20GetTemp:unix . 39
42 ds18b20 output temp . 39
43 ds18b20 routine ds18b20GetTemp:pi4oorexx 40
44 ds18b20 routine ds18b20setupDs18B20 . 40
45 gps load requires Java classes . 41
46 gps init serial port . 42
47 gps routine readData . 42
48 gps routine validateData . 43
49 gps routine prepareData . 44
50 gps main program . 44
51 LEDMatrixDriver routine setupLED . 47
52 LEDMatrixDriver routine init . 47
53 LEDMatrixDriver routine write . 48
54 LEDMatrixDriver routine speed . 48
55 LEDMatrixDriver routine close . 48
56 LEDMatrixDriver routine clear . 48
57 LEDMatrixDriver routine intensity . 49
58 LEDMatrixDriver routine ticker . 49
59 LEDMatrixDriver routine printString . 49
60 LEDMatrixDriver java support . 50
61 LEDMatrixPi4oorexx program . 50
62 binary clock . 52
63 bme280 routine setupBme . 56
64 bme280 routine 0xFF . 57
65 bme280 routine 0xF . 57
66 bme280 routine calcValues . 57
67 bme280 get routines . 60
68 BME java support . 61
69 bme280 example program . 61
70 bme280pi4oorexx example program . 61
71 pcf8574 program . 64
72 pcf8594 routine getAnalogInput . 66
73 pcf8594 main program . 67
74 ds3231 routine getTime . 68
75 ds3231 routine getDate . 69
76 ds3231 routine setTime . 69

vi

77 ds3231 routine setDate . 69
78 ds3231 routine setupDs3231 . 70
79 ds3231 routine main program . 70
80 bh1750 routine setupBh1750 . 71
81 bh1750 routine readBh1750 . 72
82 bh1750 routine 0xFF . 72
83 bh1750 main program . 72
84 bh1750pi4oorex main program . 73
85 LCDparallel setup . 75
86 LCDparallel init . 76
87 LCDparallel lcdByte . 77
88 LCDparallel LCDprint . 79
89 LCDparallel main program . 79
90 LCDi2c routine setup . 81
91 LCDi2c routine toByte . 81
92 LCDi2c routine write . 83
93 LCDi2c routine printline . 84
94 LCDi2c routine printcmd . 84
95 LCDi2c routine init . 85
96 LCDi2c routine clear . 85
97 LCDi2c example main programm . 85
98 LCDpi4oorexx main programm . 86
99 RFIDAttendance routine setup . 88
100 RFIDAttendance routine readwrite . 89
101 RFIDAttendance routine beep . 91
102 RFIDAttendance main program . 91
103 lstListings Configuration . 93
104 myOwnKeyword . 94

vii

List of Abbreviations

API Application Programming Interface
ARM Acorn RISC Machines
BSF4ooRexx Bean Scripting Framework for Open Object Rexx
CLI Command Line Interface
CRC Cyclic Redundancy Check
DIMM Dual Inline Memory Module
EEPROM Electrically Erasable Programmable Read-Only Memory
GND Ground
GPIO General Purpose Input/Output
GPS Global Positioning System
HAT Hardware Attached on Top
HDMI High Definition Multimedia Interface
I²C Inter-Integrated Circuit
ID Identity document
JAR Java Archive
JDK Java Development Kit
JRE Java Runtime Environment
JVM Java virtual machine
LCD Liquid-crystal display
LED Light-emitting diode
MOSI Master Output, Slave Input
MISO Master Input, Slave Output
NMEA National Marine Electronics Association
ooRexx Open Object Restructured Extended Executor
PWM Pulse Width Modulation
RAM Random-Access Memory
RFID Radio-frequency identification
SAA Systems Application Architecture)
SoC System on a Chip
SPI Serial Peripheral Interface
UART Universal Asynchronous Receiver/Transmitter
VCC Voltage common collector
WPI Wiring Pi

viii

Abstract

The goal of this thesis is to show that a Raspberry Pi can be programmed using
ooRexx and BSF4ooRexx. Practical Nutshell examples are used to illustrate what
needs to be considered and how programs can be implemented. The required software
is explained and how to use it. ooRexx is a simple programming language that allows
the user to use Java libraries with the help of BSF4ooRexx and to program with
them without having Java knowledge. Raspberry Pi is a small computer, which was
developed to give especially young people access to a computer and the possibility to
program something. In combination, a broad mass with little expertise in ooRexx and
a small budget can develop programs themselves and use this as an entry into the world
of programming.

ix

1 Introduction

This chapter briefly introduces the topic, presents the objective and research question, and
outlines the methodological approach. Furthermore, an overview of the present bachelor
thesis is given.

1.1 Initial Situation and Problem Definition

The Raspberry Pi was developed in 2012 by the Raspberry Pi Foundation to offer young
people an inexpensive computer with which they can learn programming and experiment.
Since programming was the main focus during the development of Raspberry Pi, there is
a GPIO (General Purpose Input Output) strip, which can be used to read out or control
sensors, displays, motors or LEDs.[bit19]
Through the Business Programming I and II lecture with Professor Flatscher at the WU
Vienna, the author got to know the programming language ooRexx. Since the author
has already programmed in other languages, this simpler use of Java through ooRexx or
BSF4ooRexx was very interesting. The lecture aroused the author’s interest, so the author
attended a symposium of the Rexx Language Association in November 2021. Especially the
contribution of Tony Dycks ”Stable RPM Based Linux Distros for the Raspberry Pi 4” stood
out. Among other things, he discussed how ooRexx and BSF4ooRexx can be installed and
used on the Raspberry Pi 4.[Dyc21]

1.2 Target Setting

The author does not only want to install ooRexx or BSF4ooRexx on the Raspberry Pi, as
presented in the symposium, but also to make it useful for everyday life. For this reason,
examples are shown in this bachelor thesis, which are useful in everyday life, such as an RFID
Attendance System. However, the basis for the control of various sensors is also shown in
order to offer a variety of possible use cases.
In this bachelor thesis the following research question is answered:
”Is it possible to use ooRexx and BSF4ooRexx to program and control sensors via the GPIO
interface on the Raspberry Pi?”
The research question is answered using programs that the author has programmed.

1.3 Methodical Approach

The presented bachelor thesis is, in the broadest sense, a literature work. It is quoted
from relevant literature and journals. Also significant websites were consulted as a source.
However, the core of the thesis is the programming of programs on the Raspberry PI, which
is why only a small part of the thesis is dedicated to theory. For the programs, data sheets
are quoted, which can be read online at any time. All sources are traceable and verifiable.
The author pays attention to a proper reproduction of the contents for all sources, which
also means a complete bibliography as well as a correct citation.

1

1.4 Structure of the Bachelor Thesis

At the beginning of this bachelor thesis an introduction is given. This consists of the initial
situation, in which the author explains his motives for choosing the topic of this thesis, an
objective, which presents the goal of this thesis and the research question, the methodological
approach and the structure of the thesis. In chapter 2, the required software is discussed. A
short overview of the respective software is given and advantages and/or disadvantages are
dealt with. The third chapter deals in detail with Raspberry Pi. The different versions and
interfaces are discussed. The next chapter shows how to install and configure the required
software. It is explained step by step what has to be done. Chapter 5 shows the examples
worked out by the author, so called nutshell examples, and thus forms the main part of
the thesis. Each example is described exactly and shown with pictures and source code.
The last chapter is the Conclusio. The author summarizes the findings of the thesis and
his ”lessons learned” during the programming. Furthermore the author gives an outlook on
further possible applications of BSF4ooRexx on the Raspberry Pi.

2

2 Required Software

To implement the examples presented in this bachelor thesis, the use of various software is
necessary. This chapter goes into more detail about the individual software components and
gives a brief overview of them.

2.1 Rexx and ooRexx

Rexx is a programming language designed by Mike Cowlishaw. It is purpose was to make
programming easier because the high-quality programs are written in a simple and under-
standable language.[Cow90]
Algorithms written in Rexx are written in a structured and clear way. Everybody should be
able to use it. Furthermore, Rexx is independent, which means that is works with several
system software.[Cow90]
It was designed to make the manipulation of objects, such as numbers and words, easier.
Rexx can call programs and functions which are written in other languages although it was
designed to be independent of its supporting system software. Rexx can be used to write
anything from simple to large programs. [Ass21]
Rexx offers an English-like language which makes it easy to learn and use it, fewer rules,
built-in functions and methods, typeless variables as variables can hold any kind of object,
string handling, decimal arithmetic instead of binary arithmetic, clear error messages and
very good debugging[Ass15]
Rexx was developed in two phases. The first was about a rapid evolution in an experimental
environment and the second was about cautious enhancements. Mike Cowlishaw worked
on phase one for several years and finished it in 1982 at IBM. After that, numerous im-
plementations from different suppliers followed. Rexx became the producers language for
the SAA (Systems Application Architecture) at IBM, which was a big milestone. As Rexx
was used for commercial purposes a stable language definition was necessary. Therefore, the
characteristically radical changes from the beginning were no longer possible. Luckily due
to the rapid evolution in the first years such radical changes are no longer needed because of
small adjustments and changes. Over the years Rexx stayed approachable and small.[Cow90]

In Listing 1 you can see a short example of the, already mentioned, simple and under-
standable language. In this example we iterate through a loop, and on each pass we output
the variable ”i” with the ”say ” command. This output would result in 1,2,3,4

1 do i=1 to 4

2 say i

3 end

Listing 1: Rexx Sample

ooRexx is short for Open Object Restructured Extended Executor. It adds object orien-
tation to Rexx, it is Open Source and it is managed by the Rexx Language Association
(RexxLA). It is an enhancement of the classic Rexx as it is a “full-featured programming

3

language which has a human-oriented syntax”. Due to the Open Object Rexx-Interpreter
programs can be written procedurally as well as object oriented. Some of its main benefits
are the easy usage and learnability, the ability to issue commands to multiple environments,
the full object orientation, and the powerful functions.[Ass15]
It was first published in spring 2005 and it is actively developed since then. Today it is
available for the most important operating systems in a precompiled version, e.g. Linux,
Windows and MacOSX[Fla12]
Problems are solved by identifying and classifying objects that are related to the problem.
Actions and behaviours of these objects are determined. Finally, the instructions to gener-
ate classes are written, the objects are generated and the actions are implemented. “The
main program consists of instructions that send messages to objects.” Many advantages are
associated with the object-oriented technology:

� Objects are modeled to simplify the design

� Code can be reused more often

� Rapid prototyping

� Higher quality of components

� Reduced and easier maintenance

� Less costs

� Increased adaptability and scalability

[Ass15]

2.2 BSF4ooRexx

BSF4ooRexx stands for Bean Scripting Framework for ooRexx and it extends the functional-
ity of ooRexx, so that it can interact directly with Java objects. Everything that is available
in Java is also available for ooRexx.[Fla13]
It is an external Rexx function package. This means that its functions can be accessed from
Rexx programs. To simplify the interaction with Java the entire Java class library and the in-
teraction with Java objects were masked. This created the impression that these are ooRexx
class libraries and ooRexx objects and programmers only have to send ooRexx messages.
Access to Java using an external Rexx function package was the original intention. It should
be executable on all platforms. BSF4oorexx provides several advantages for programmers.
The author lists a few of them here:

� There is no need for additional external function packages if the function is already
available in the Java runtime environment(JRE)

� All JRE Java classes, which are executable unchanged on all operating systems sup-
ported by Java, can be used

4

� Any Java class library can be used directly

� Also abstract methods can be used when the implementation is done in ooRexx which
realizes a callback mechanism from Java to ooRexx.

� All information systems can be controlled via ooRexx as long as they have Java pro-
gramming interfaces. This is independent of the installed operating system.

� Java applications can execute Rexx scripts under their own control.

[Fla12]

2.3 Java

Java is a object-oriented programming language. It was first released by Sun Microsystems
in 1995. It can be downloaded for free and numerous applications and websites only work if
Java is installed on the end device.[Java]
Originally it was designed for interactive television, but it was too advanced at that time.
Java is named after Java coffee. It intends to let programmers “write one, run anywhere
(WORA)”, which means that compiled Java code can run on all Java supporting platforms
without recompiling. Typically, Java applications are compiled to bytecode. The syntax is
similar to C and C++, but has fewer low-level facilities. In May 2007 Java released its Java
virtual machine (JVM) as an open-source software. In the years 2009/2010 Oracle acquired
Sun Microsystems.[Javb]
Java has five principles:

� Simplicity, object-orientation, familiarity

� Robustness and security

� Architecture-neutral and portable

� Execute with high performance

� Interpretable, dynamic and threaded

[Oraa]
A Java platform facilitates the developing and running of programs written in Java lan-
guage. The platform includes an execution engine (which is a virtual machine - JVM), a
compiler and some libraries. The virtual machine is the heart of the Java platform. It ex-
ecutes Java bytecode programs. These are the same, independent of the hardware or the
operating system. JVM contains a compiler which translates Java bytecode intro native pro-
cessor instructions just in time and catches the native code during execution. This makes
the Java application run as fast as the native programs. Because of the bytecode Java pro-
grams run on any platform that has a virtual machine. The Java platform provides a set
of libraries which contains many of the standard functions of other operating systems. The

5

Java libraries provides a common set of functions, an abstract interface to tasks that depend
on the hardware and operating system, and it provides a substitute or a consistent way to
check for the presence of a specific feature if the underlying platform does not support all
features. The Java Development Kit (JDK) contains a Java compiler, the Java Runtime
Environment (JRE), and many important development tools. The JRE contains a JVM, the
standard library, a configuration tool, and a browser plug-in. It is the most installed Java
environment. [Orab]

2.4 Raspberry Pi OS

An own operating system for the Raspberry Pi was developed, which is based on Debian
Linux and optimized for the Raspberry Pi. The name of the operating system is Raspberry
Pi OS or was formerly called Raspbian. The latest version of Raspberry Pi OS is based
on Debian 11 Bullseye and was released in August 2021. Other operating systems for the
Raspberry Pi are also offered, such as Ubuntu.[Lon21]

2.5 Pi4J

Pi4j is an open source project started by Robert Savage and Daniel Sendula in 2012.[Del20]
The goal of this project is to develop a user-friendly Java library to provide low level access
to the hardware of the Raspberry Pi and other hardware. For this, the library handles the
communication with the native low level libraries to simplify programming.(see Figure 1)
There are currently two versions. Version 1.4 was released on 3/3/2021 and is also the last

Figure 1: Pi4J API [Del20]

release of this version. Version 1.4 uses the WiringPi scheme for pinout. The more current
version is version 2, which is still under development. The goal of the second version is to
focus on the communication with the hardware of the Raspberry Pi. No drivers for specific
sensors are provided. However, these can be embedded as plug-ins in version 2. Version

6

2 uses the BCM scheme, as from this version pigpio is used to drive the GPIO instead of
WiringPi. Since the WiringPi project has been discontinued. [Pi4] However, this bachelor
thesis will continue to use version 1.4, since version 2 has no advantage at the time of writing.
Version 1.4 will provide the best support for connecting devices until a new Raspberry Pi is
released (the latest version is the Raspberry Pi 4 or the Pi Zero 2).

2.6 WiringPi

WiringPi is a library developed in the C programming language for the Raspberry Pi to
provide access to the GPIO interface. The library was developed by Gordon Henderson,
who however stopped the development of the library in August 2019. In this work the open
source version from Github(https://github.com/WiringPi/WiringPi) is used, because the
used Pi4j version 1.4 is based on this library. The WiringPi library supports all Raspberry
Pi models up to and including the Raspberry Pi Model 4B and Pi Zero 2.[Hen22]

2.7 pigpio

Pigpio is like WiringPi a library to get access to the GPIO interface of the Raspberry Pi.
The pigpio library, unlike the WiringPi library, is still supported. The Pi4j version 2 is
now based on this library. About the developer of this library is not known except for his
nickname ”joan”.[Pi4]

2.8 I²C Tools for Linux

The I²C tools for linux package is a collection of programs that can be used for communication
over the I²C bus. For this the tools i2cdetect, i2cset and i2cset are used.[Del21]

2.9 pi4oorexx

The author has created his own JAR archive, which consists of ready-made Java classes that
provide ready-made drivers of various used components. Drivers for the following compo-
nents are included in the pi4oorexx.jar file:

� BME280 - temperature/pressure/humidity sensor

� BH1750 - ambient light sensor

� LC-Display I2C - hd44780 Driver

� DS18B20 - 1-wire temperature sensor

� MFRC522 - RFID module

� MAX7219 - LED Matrix driver

7

https://github.com/WiringPi/WiringPi

For each of these classes a help function has been implemented, which can be output with
”∼help” via ooRexx, listing all available functions and the wiring.
By using this archive the access to the above mentioned sensors is possible with a few lines
of code. For the use of this archive BSF4ooRexx and Pi4J are necessary.

8

3 Raspberry Pi

The Raspberry Pi is a single-board computer in credit card format developed by the Rasp-
berry Pi Foundation. The first Raspberry pi was released in 2012. The idea behind this
development was to provide people with affordable hardware to encourage them to learn a
programming language.[Ras]

3.1 Versions

The first version of the Raspberry Pi was the Model 1B which was released in 2012. This
had a single core CPU with 700 MHZ clock speed and 256MB RAM. The difference to the
2013 released version Model 1A is that the Model B has an Ethernet connector and two USB
ports unlike the Model 1A which has no Ethernet and only one USB port. However, due to
the lack of these components, the Model 1A was cheaper to purchase.
In 2014, an improvement of the Model 1B was released, the Model 1B+. The Model 1B+
was equipped with more RAM and the GPIO pins were increased from 26 to 40. The number
of USB ports was doubled from two to four, and the composite video output was replaced
with an HDMI output.
2014 also saw the introduction of a compute module in the form of a DDR2 SODIMM and
an improved version of the 1A, the 1A+. The 1A+ was again downsized and equipped with
HDMI.
Then in 2015, the Model 2B was introduced. This model shipped with quad-core CPU and
had a 200MHz increase in clock speed(from 700MHz to 900MHz) and instead of 512MB
RAM now 1024MB RAM.
The Raspberry Pi Zero was also introduced in 2015, this has the features of a Model 1B+
with single core CPU and 512MB Ram. The Zero’s size was again smaller than the Model
1A+. The Zero was sold around 5 USD. However, it did not have an Ethernet port and
instead of USB ports, it only had Micro-USB ports.
Then in 2016, the Raspberry Pi Model 3B was introduced. This was the first Raspberry Pi
to have a WiFi and Bluetooth chip on board. The clock frequency of the CPU was increased
by a new CPU from 900 MHz to 1200 MHz. With the new CPU it was also possible to run
64bit operating systems.
In 2017 a new Compute Module was introduced. The Compute Module 3 had the hardware
of the Model 3B in the form of a DDR2 SODIMM module. The Raspberry Pi Zero W
was introduced in the same year. This was equipped with a new chip to make WiFi and
Bluetooth available.
Then in 2018, an improved version of the Model 3B was released. The 3B+. The Model
3B+ was equipped with increased CPU clock speed and the Ethernet port was swapped from
100Mbit to 1Gbit. A new Model 3A+ was also released. However, this had only 512MB
RAM instead of the 1024MB of the Model 3B+.
In 2019, the Model 4B was released. This was equipped with a stronger CPU and the pos-
sibility to equip with up to 8GB RAM.

9

In 2020, the new Compute Module 4 and the Raspberry Pi 400 were released. The new
Compute Module was no longer delivered in the form of a DDR2 SODIMM bar but in a new
form. The Raspberry Pi 400 was shipped as a ”keyboard”. In this ”keyboard” a Raspberry
Pi was integrated. All connections were led out on the back of the keyboard. In 2021 the
Pi Zero 2 was released. This now has a Quad-Core CPU instead of a Single-Core CPU.[pim21]

In this bachelor thesis the Raspberry Pi 4B with the following specifications is used:

Figure 2: Raspberry Pi 4B [fre21]

� SoC: Boardcom BCM2711, Quad core Cortex A72 (ARM V8)

� RAM: 8GB LDDR4-3200 SDRAM

All examples were also tested and worked on a Pi 3B,3B+ and Zero 2W.

3.2 Pinout

The pinout in this work is based on the previously mentioned device (Raspberry 4B). The
Raspberry 4B has a 40 pin GPIO header with the following pinout

10

Figure 3: Pinout [Del20]
11

All examples illustrated in the next chapter use the WiringPi Scheme (WPI), if it is not
explicitly mentioned otherwise. The author has chosen this scheme, because the used Pi4J
version 1.4 is based on this scheme. The BCM scheme is only used from Pi4J version 2,
since here, as already mentioned in chapter 2, WiringPi was changed to pigpio as low level
integration.

3.3 GPIO

The GPIO interface of the Raspberry Pi is a very versatile interface that offers several
purposes. The Raspberry Pi 4B has headers with 40 GPIO pins, but not all of them can be
used for data exchange. Only 26 of these pins can be used for data exchange. The remaining
pins are divided as follows. Four pins are used for power supply of the connected devices,
two each with 3.3V and 5V. Eight pins are used as ground pins. The remaining two pins are
used to expand the Raspberry Pi with a so-called HAT(Hardware At Top) module.[Mon16]
These HAT modules must have certain characteristics to be considered as such modules.
The plug-on board must have a size of 65x56 mm and it must also have the possibility to
feed through the ribbon cables for a display and a camera. The modules are automatically
recognized via the I²C line.[Dem19] In the following the possible applications of the GPIO
interface are described.

3.3.1 Digital Input/Digital Output

All 26 GPIO pins can be defined as input or output. If the pins are used as outputs, care
must be taken that a maximum output current of 16mA per pin may flow.[Dem19] It should
also be noted that a maximum output current of 50mA is available for all GPIO pins. The
GPIO pins can also be used as input. Here you should take care that the input voltage
does not exceed 3.3V, because this can destroy the Raspberry Pi.[Eleb] The pins WPI 8 and
WPI 9 are equipped with an external pullup resistor to fulfill the specification for I²C bus
(chapter 3.3.6). All other pins can be connected with an internal pullup or pulldown resistor
by software. These internal pullup or pulldown resistors have the purpose to set the input
of a pin to a predefined state. The pullup resistor sets the input to ”high” the pulldown
resistor to ”low”. The voltages required to set the state can be found in Table 1. Defining a

Parameter Volts Description

VIL ≤ 0.8 Voltage, input low
VIH ≥ 1.3 Voltage, input high

Table 1: Logic Levels [Gay18]

defined state is important because the GPIO pins tend to change their state without external
influence[Elea] The GPIO pins can be used, for example, to switch an LED or to receive a
signal from a pushbutton. Some applications of the GPIO pins are illustrated in chapter 5.

12

3.3.2 PWM

Pulse width modulation (PWM) can be used to simulate voltages between 0V and 3.3V.
Since the Raspberry Pi can only output 0V or 3.3V this technique is used. The two impor-
tant parameters are the pulse duration t1 and the period duration T. Thereby a so called
duty-cycle can be generated. This can be in the range of 1-100 percent.[Tut] The Raspberry
Pi has two PWM pins. These are WPI 26(PWM0) and WPI23(PWM1). These provide hard-
ware PWM with a minimum frequency of 10Hz and a maximum frequency of 8KHz.[Mat21]
However, it is also possible to simulate a PWM pin by a fast level change from 0V to 3.3V.
The software-driven PWM is possible with WiringPi on all pins. However, only a maximum
frequency of 100 Hz can be achieved.[Hen]

3.3.3 1-Wire

1-wire or one Wire is the name of a serial bus system developed by Dallas Semiconductor.
This bus system was developed for devices with low data rates, such as the DS18B20 tem-
perature sensor which is also presented in the following examples in the next chapter.[Gay18]
For the 1-wire-bus only a data line, which also acts as a supply line, and a ground line are
necessary. This type of supply is also called parasitic supply and uses a capacitor, which
charges itself via the data line and supplies the sensor with power.[Dem19]
However, to realize a longer data line and to reduce data loss it is possible to supply the
sensors directly with power.[sci]
The 1-wire bus is a master-slave bus, which means that the slaves only send data to the
master when the master makes a request. The slaves cannot communicate with each other.
The half-duplex method is used. The master is formed by the Raspberry Pi.[Dem19]
Since several devices can be used simultaneously on the 1-wire bus, the devices (slaves) must
have a unique identifier so that the master can identify them unambiguously. This identifier
consists of a 64bit long data set which is composed as follows: The first eight bits represent
the ”family code”. The ”family code” is a predefined code of the manufacturer, which iden-
tifies the type of the sensor (e.g. DS18B20 Temperature Sensor). The next 48 bits represent
a unique serial number of the sensor. And the last 8 bits are the CRC code to verify that
the type and serial number match.[Hor13]

Family Code ID CRC

8 bits 48 bits(unique to family) 8 bits
10 0008027e34 ca

Table 2: Example of a 1-wire address [Hor13]

The table given here(see Table 2) illustrates an example how this code can look like. A
table listing the family codes is available at https://owfs.org/.
The pin intended for 1-wire devices is the WPI 7 pin.

13

https://owfs.org/

3.3.4 UART

The Universal Asynchronous Receiver Transmitter (UART) is an interface for serial data
exchange. The UART interface is directly integrated in the CPU of the Raspberry Pi.
Asynchronous means that the sender does not have to send a clock signal to synchronize
the transmission. This is achieved with UART with start bits and stop bits.[Mol16] UART
exchanges the data via two lines. These are called RXD and TXD. RXD stands for Receive
Data and TXD stands for Transmit Data. To exchange data between two UART interfaces
the RXD and TXD lines must be crossed out. This means that the TXD line of the transmit-
ter must be connected to the RXD line of the receiver and the RXD line of the transmitter
must be connected to the TXD line of the receiver.[mik] The UART interface can only ex-
change data between two Raspberry Pi without further hardware, because they only work
with an operating voltage of 3.3V. Connecting the UART interface of the Raspberry Pi with
e.g. a UART interface of an Arduino would cause damage to the Raspberry Pi, because
the Arduino has an operating voltage of 5V.[Ard] However, to enable communication with
standardized interfaces such as the RS-232 interface, a MAX3232 chip must be used. This
converts the signal into RS-232 compliant signal.[Hor13]
Figure 4 shows the exchange of data between an RS-232 interface and a Raspberry Pi using
a MAX2323 chip. The output voltage of the RS-232 ranges from -15 to +15 volts, which
would destroy the CPU of the Raspberry PI, but the MAX2323 chip reduces the voltage to
the voltage needed by the Raspberry PI, which is about 3V. The transmission starts with
sending the start bit. On this start bit the eight data bits are sent immediately. The fol-
lowing parity bit (used to detect transmission errors) and the stop bits (so that the receiver
knows that the transmission has ended and it waits again for a new start bit) are optional.

Figure 4: data exchange RS-232/UART [Gay18]

Another term that appears when using the UART interface is the baud rate. The baud rate,
also called symbol rate, indicates how often the state (e.g. voltage level) of the communi-
cation channel changes in a given time unit (usually seconds).[ABa90] With the baud rate,
care must be taken that the transmitter and receiver are set to the same baud rates.
The flow control regulates the data transmission. If the receiver takes longer to process the

14

data than the transmitter sends it, the receiver informs the transmitter to stop transmission
in the meantime. Only when the receiver is ready to receive new data again does it inform
the transmitter to resume transmission[Lab]
The pins intended for the UART interface are WPI 15(TXD) and WPI16(RXD)

3.3.5 SPI

The Serial Peripheral Interface (SPI) is a serial synchronous data bus which was developed
by Motorola in 1987. The purpose is the communication between the microcontroller and
the devices connected to the bus. However, the SPI bus is only designed for short data
lines but higher transfer rates of up to 20Mbyte/s can be achieved. The data transfers take
place in full duplex mode. This means that data can be sent and received simultaneously.
SPI is based on the master-slave concept. Only the master has the possibility to start the
communication between the master and the slaves. The slave devices cannot communicate
with each other. The Raspberry Pi acts as master. Different devices can act as slaves, e.g.
the MAX7219 chip presented in chapter 5.5.[Dem19]
Four lines are required by default. Two lines for data transmission (MOSI [Master Out Slave
In] , MISO[Master In Slave Out]) and two control lines(SS[Slave Select],SCLK[Serial Clock]).
The data is transmitted via the MOSI and MISO lines. The SCK line is used to transmit
the clock signal generated by the master. The SS line is used to select the desired slave
device.[Mic20]
The names of the data lines can vary, because we try to get away from the master-slave
terminology. MOSI is also called POCI(Peripheral Out Controller In) and MISO is also
called PICO(Peripheral In Controller Out). Likewise SS is now called CS(Chip Select).
[Ass]
On the Raspberry Pi you have to take care that only two SS(CS) lines (CE0: WPI10 and
CE1: WPI11) are available at the GPIO header. This means that without further manual
configuration, only two slave devices can be used simultaneously in normal operation. In
figure 5 you can see the necessary cabling[Pla]

Figure 5: SPI cabling [Pla]

However, there is also a possibility to address several chips with one line. This is called
”daisy chaining”. The difference to normal operation is that the slave devices are not con-
nected to a common data line but in series as shown in Figure 6. This means that the data

15

sent by the master is passed from slave 1 to slave 2 and slave 2 then sends the response data
back to the master.

Figure 6: SPI Daisy Chaining[Mikb]

With this implementation it must be noted that as many commands are sent to the slaves
as there are slaves. Otherwise the slaves could interpret the commands incorrectly.[Mikb]
The pins intended for the SPI interface are WPI12(MOSI), WPI13(MISO), WPI14(SCLK),WPI10(CE0)
and WPI11(CE1)

3.3.6 I²C

The Inter-Integrated Circuit(I²C) or two-wire interface(TWI) was developed by Philips in
1982 and is, like SPI, an available BUS on the Raspberry Pi. On the basis of the I²C bus
other bus systems were developed, e.g. the SMBus. The I²C bus is still widely used because
it is cheap and easy to use.[Gay18]
The I²C bus has several operating modes which differ in the data rate. The different oper-
ating modes can be seen in table 3.[Dem19] Like the SPI bus, the I²C bus is a master-slave

Mode Datarate

Standard Mode 100 kBit/s
Fast Mode 400 kBit/s

Fast Mode Plus 1 MBit/s
High Speed Mode 3.4 MBit/s
Ultra Fast Mode 5 MBit/s

Table 3: I²C operating modes [Dem19]

bus. The lines necessary for operation are called SDA (Serial Bus Data) and SCL (Serial Bus
Clock). The SDA line is responsible for data transmission and the SCL for the clock. Figure
7 shows an example of how the slave devices are connected to the bus. The Raspberry Pi
acts as the master and there are three slave devices connected to the bus.

16

Figure 7: I²C example [Gay18]

With the I²C bus it is possible that the devices can also take on other roles. The
Raspberry Pi could also be operated as a slave, in which case the role of the master could
be taken over by a microcontroller, for example. However, there must always be one master,
but there can also be several masters. This is then called MultiMaster.[Gay18]
Without further integration of range extenders[Moh17], the I²C bus is limited to a spatial
extension of a few meters, otherwise transmission errors may occur.[Dem19]
So that the I²C bus master can distinguish between the slave devices, each slave device has
its own address. These addresses identify the devices unambiguously. A maximum of 127(at
7 bit) addresses or connected devices are possible on one bus. For some devices it is possible
to change the address by separate pins. This is shown in chapter 5.6. As with the SPI bus,
with the I²C bus it is only possible for the master to start communication.[Mika]
The pins intended for the I²C Bus are WPI8(SDA) and WPI9(SCL).

17

4 Installation and Configuration

This chapter explains the installation of all necessary software components and the config-
uration of the Raspberry Pi. For this bachelor thesis the following software versions were
used.

� Raspberry Pi OS Bullseye 32 Bit Kernel 5.10, Release Date: 28.01.2022

� ooRexx: Open Object Rexx Version 5.0.0 r12352 32 Bit

� Java: Bellsoft openjdk version ”11.0.14” 2022-01-18 LTS

� BSF4ooRexx: V641-20220131 32 Bit

� WiringPi: Version 2.70

� Pi4J Version 1.4

4.1 ooRexx

The first step is to install ooRexx on the Raspberry Pi. The procedure is based on the instal-
lation guide by Tony Dycks, which was presented at the 32nd Annual Rexx Symposium in
2021.[Dyc21] Before installing ooRexx, all required software packages must be installed.(see
Listing 2)

1 sudo apt install subversion -y

2 sudo apt install cmake -y

3 sudo apt install g++ -y

4 sudo apt install libncurses5-dev -y

Listing 2: additionally required software packages

The next step is now the installation of ooRexx. First a folder for ooRexx is created. Then
ooRexx is downloaded from suversion and compiled.(see Listing 3)

1 cd /home/pi

2 sudo mkdir oorexx

3 cd oorexx

4 sudo mkdir build

5 cd build

6 svn checkout svn://svn.code.sf.net/p/oorexx/code-0/main/trunk oorexx-code-0

7 cd oorexx-code-0

8 sudo cmake .

9 sudo make install

Listing 3: install ooRexx

ooRexx uses the appropriate version by compiling on the device. Here it will be the 32 bit
version. This process will take some time.

18

4.2 Java

The next step is to install the Java Development Kit.(see Listing 4). The software is down-
loaded with the help of the command line program wget and is installed immediately af-
terwards. The latest version of Java11 JDK 32bit for ARM is used at the time of writing
this bachelor thesis. The JDK used is created by BellSoft. The respective commands for
download and installation have been split into two lines for readability. In line 1 and 2 Java
is downloaded and in line 3 and 4 it is installed.

1 sudo wget "https://download.bell-sw.com/java/11.0.14+9/\

2 bellsoft-jdk11.0.14+9-linux-arm32-vfp-hflt-full.deb"

3 sudo apt install /home/pi/oorexx/build/oorexx-code-0/\

4 bellsoft-jdk11.0.14+9-linux-arm32-vfp-hflt-full.deb

Listing 4: install Java JDK

4.3 BSF4ooRexx

In this step BSF4ooRexx is downloaded and installed(see Listing 5)

1 sudo wget "https://sourceforge.net/projects/bsf4oorexx/files/latest/download" -O bsf.zip

2 sudo unzip bsf.zip

3 sudo rm bsf.zip

4 cd bsf4oorexx

5 cd install

6 cd linux

7 sudo yes | sh install.sh

Listing 5: install BSF4ooRexx

Just like ooRexx, BSF4ooRexx automatically uses the appropriate version. The 32Bit version
is installed

4.4 WiringPi

Next step is the installation of the WiringPi software package. This is downloaded from
Github and installed afterwards.(see Listing 6)

1 cd /home

2 sudo git clone "https://github.com/WiringPi/WiringPi.git"

3 cd WiringPi

4 sudo ./build

Listing 6: install WiringPi

4.5 Jar Archives

If all previous steps have been completed successfully, the next step can be started. This
step explains how to download all the required JAR archives.

19

4.5.1 Pi4J

For the two still needed JAR archives a folder jar is created in the directory /home/pi/. The
version 1.4 of Pi4J is then loaded and unpacked into this folder (see Listing 7).

1 cd /home/pi

2 mkdir jars

3 cd jars

4 sudo wget "https://pi4j.com/download/pi4j-1.4.zip"

5 sudo unzip pi4j-1.4.zip

Listing 7: download ad unzip Pi4J

4.5.2 pi4oorexx

The pi4oorexx jar archive must be loaded by hand from https://github.com/pi4oorexx/

pi4oorexx/blob/6dd1fd72928f0a516725bce7be26c16103a3d105/pi4oorexx.jar and moved
to the /home/pi/jar directory.

4.6 Set Java Classpath

The next step is to set the Java Classpath. The following three JAR archives must be placed
in the Classpath

� pi4j-core.jar

� bsf4ooRexx-v641-20220131-bin.jar

� pi4oorexx.jar

To enter the classpath into the bashrc file, the command from Listing 8 must be executed.

1 sudo nano ∼/.bashrc

Listing 8: open bashrc file

Then you should go to the end of the file and extend the Classpath with the following
command.(see Listing 9) With this command the JAR archives of Pi4J, pi4oorexx and
BSF4ooRexx are entered into the classpath The ”$CLASSPATH” variable causes any values
that were already in the classpath to be taken over. The second and third ”export” command
was added only because of readability.

1 export CLASSPATH=$CLASSPATH:"/home/pi/jars/pi4j-1.4/lib/pi4j-core.jar"

2 export CLASSPATH=$CLASSPATH:"/home/pi/jars/pi4oorexx.jar"

3 export CLASSPATH=$CLASSPATH:"/opt/BSF4ooRexx/bsf4ooRexx-v641-20220131-bin.jar":.

Listing 9: set Classpath

20

https://github.com/pi4oorexx/pi4oorexx/blob/6dd1fd72928f0a516725bce7be26c16103a3d105/pi4oorexx.jar
https://github.com/pi4oorexx/pi4oorexx/blob/6dd1fd72928f0a516725bce7be26c16103a3d105/pi4oorexx.jar

The paths to the individual JAR archives should be placed under quotation marks. The colon
serves as a separator between the individual paths. The dot at the end of the Classpath is
also intentional, because it includes the current directory in the Classpath.[del]

Afterwards with CTRL+O the entry is stored and confirmed with RETURN. With
CTRL+X the editor is left again. The command line interface must be restarted after
setting the classpath.

4.7 Enable Interfaces

The interfaces presented in chapter 3 are deactivated by default and must be activated before
they can be used for the first time. The activation of the interfaces can be done with the
following command (see Listing 10).

1 sudo raspi-config

Listing 10: raspi-config

After that, point ”3 interface options” will be selected and confirmed by return key.(see
Figure 8)

Figure 8: raspi-config

After that the desired interfaces can be activated. To be able to test all examples of this
bachelor thesis the following interfaces have to be activated(see Figure 9)

� I4 SPI

� I5 I2C

� I6 Serial Port (UART)

21

� I7 1-Wire

� I8 Remote-GPIO (the activation of this interface is only necessary for the demonstra-
tion of pigpio in example 5.1.3)

Figure 9: raspi-config interfaces

As a demonstrative example the activation of the SPI interface is shown. This procedure
can also be used for the I2C and the 1-Wire interface. Only for the serial port further steps
have to be done.
To activate the SPI interface ”I4 SPI ” must be selected and confirmed with the return key.
Afterwards ”Would you like the SPI interface to be enabled” must be confirmed with ”yes
”.(see Figure 10)

22

Figure 10: raspi-config activate SPI

For the Serial port one more step is necessary, because the Raspberry Pi redirects the
serial port to the console (see Figure 11).

23

Figure 11: raspi-config activate Serial Port

After activating the interfaces, the Raspberry Pi should be restarted.

24

5 Examples

This chapter demonstrates how various electrical components can be controlled with ooRexx
or with the help of BSF4ooRexx and the pi4j or pi4oorexx library. For simplification all
components were used on so-called breakout boards[Hus21]. These breakout boards already
have all the additional components required, such as series resistors for LEDs.
For all examples a so called T-Board with cable extension is used which is plugged into a
breadboard. This has the advantage that all sensors do not have to be connected directly to
the Raspberry Pi. Due to the breadboard there are also several connection possibilities per
pin available[Del20]

5.1 Digital Input/Digital Output

The digital inputs and outputs can be used in many different ways. from simple switching
of an output or reading in a pushbutton to controlling an LC-Display (example 5.7.1).

5.1.1 gpioOut1.rex

This example demonstrates how to define a GPIO pin as an output pin and switch it on and
off. To see the status of the output pin it is connected to a LED. Pi4J is used to define the
pin as output.

5.1.1.1 Circuit
The anode(A) of the LED is connected to the GPIO pin 29 which is defined as output. The
cathode of the LED(K) is connected to Ground(GND).(see Figure 12)

25

Figure 12: gpioOut circuit

5.1.1.2 Sourcecode
At the beginning the required Java classes have to be loaded once via BSF4ooRexx.The
needed Java classes are in the Pi4J JAR archive. In line 14 an instance of this class is
created immediately (see Listing 11).

14 gpio=bsf.loadClass("com.pi4j.io.gpio.GpioFactory")∼getInstance
15 RaspiPin=bsf.loadClass("com.pi4j.io.gpio.RaspiPin")

16 pinstate=bsf.loadClass("com.pi4j.io.gpio.PinState")

Listing 11: gpioOut1 Load requires classes

26

After loading the Java classes, a digital output is defined and the default state low is assigned
to it. The GPIO pin 29 is selected as output.(see Listing 12)

20 LED=gpio∼provisionDigitalOutputPin(RaspiPin∼GPIO_29,pinstate∼low)

Listing 12: gpioOut1 define output

The actual program (see Listing 13) runs in an endless loop and switches the previously
defined GPIO, here called LED, high and after one second low again. Thereby the LED
flashes in a second rhythm. The code in line 33 is necessary so that the program can access
the Java classes via BSF4ooRexx.

24 say "program started"

25 do forever

26 LED∼high
27 call syssleep 1

28 LED∼low
29 call syssleep 1

30 end

31 exit

32

33 ::requires BSF.CLS -- get Java support

Listing 13: gpioOut1 main program

5.1.2 gpioOut2.rex

The example gpioOut2 offers exactly the same functions as gpioOut1 but it does not use Pi4J
and instead uses WiringPi to control the pins. This way Java can be omitted completely.

5.1.2.1 Circuit
This program uses the same circuit as gpioOut1.(see Figure 12)

5.1.2.2 Sourcecode
First the GPIO pin must be defined as output again (Listing 14). This is done in this
example with the ooRexx command ”address system”.

14 address system "gpio mode 29 out"

Listing 14: gpioOut2 define pin as output

After that the output pin GPIO 29 gets the default state low. WiringPi uses 1 and 0 instead
of the terms low and high. 1 symbolizes high and 0 symbolizes low (see Listing 15)

17 address system "gpio write 29 0"

Listing 15: gpioOut2 define default state

The main program switches an LED on and off for one second, as in gpioOut1. The switching
on of the output is done with the code from line 24 and the switching off is done in line 26
(see Listing 16).

27

22 say "program started"

23 do forever

24 address system "gpio write 29 1"

25 call syssleep 1

26 address system "gpio write 29 0"

27 call syssleep 1

28 end

29 exit

Listing 16: gpioOut2 main program

5.1.3 gpioOut3.rex

gpioOut3 offers exactly the same functions as gpioOut1 and gpioOut2. This example was
chosen for a one-time demonstration of the pigpio library. The pipgio library is only used in
version 2 of Pi4J. Up to version 1.4 WiringPi is used.

5.1.3.1 Circuit
This program uses the same circuit as gpioOut1 and gpioOut2.(see Figure 12) However, it
should be noted that pigpio uses the BCM scheme and not the WiringPi scheme. This means
that the wiring remains the same, but the GPIO pin is no longer 29 but 21. (see chapter 3.2
Pinout)

5.1.3.2 Sourcecode
In this example the support of Java is omitted and the commands are executed by ooRexx
”address system” command. Before you can access the GPIO pins with pigpio you have to
start the pigpiod daemon (see Listing 17).

13 address system "sudo systemctl start pigpiod"

Listing 17: gpioOut3 start daemon

The next step is to define pin 21 (BCM scheme) as output pin. This is defined by the letter
”w” at the end of the command. the letter ”r” would define the pin as an input pin.(see
listing 18)

16 address system "pigs modes 21 w"

Listing 18: gpioOut3 define output

After that the default state is set to low or 0 again. pigpio uses like WiringPi 0 and 1 for
the states high and low(see Listing 19)

19 address system "pigs w 21 0"

Listing 19: gpioOut3 define default state

The main program is structured as in the previous two programs. In an endless loop the
output is switched on and off every second. (see Listing 20)

28

23 say "program started"

24 do forever

25 address system "pigs w 21 1"

26 call syssleep 1

27 address system "pigs w 21 0"

28 call syssleep 1

29 end

30 exit

Listing 20: gpioOut3 main program

In this bachelor thesis no further example will appear using the pigpio library. This was only
demonstrated once so that you can see the strong similarities to the WiringPi syntax.

5.1.4 pinListener1.rex

In the three previous examples the use of the GPIO pins as output was shown. However,
it is also important to be able to process user input. Therefore, the next three examples
demonstrate the query of a GPIO pin as input. This input is generated by a push button.
In the example pinListener1 the GPIO pin 24 is used as input pin. The pin registers the
input based on the applied voltage. The threshold values that must be applied to define the
logic level are explained in chapter 3.3.1,Table 1.The pins are controlled by the pi4j library

5.1.4.1 Circuit
The output, which is equipped with an LED, is on GPIO pin 29 as in the gpioOut examples.
The input is GPIO pin 24.

29

Figure 13: pinListener circuit

5.1.4.2 Sourcecode
At the beginning again all needed Java classes have to be loaded by BSF4ooRexx. In line 17
the class ”PinPullResistance” is loaded, which can be used to activate the internal PullUp
or PullDown resistors. This is especially necessary for the pushbutton, because its state is
not clearly defined and could otherwise change without external influences.(see Listing 21)

15 gpio=bsf.loadClass("com.pi4j.io.gpio.GpioFactory")∼getInstance
16 clzRaspiPin=bsf.loadClass("com.pi4j.io.gpio.RaspiPin")

17 clzPinPullResistance=bsf.loadClass("com.pi4j.io.gpio.PinPullResistance")

18 pinstate=bsf.loadClass("com.pi4j.io.gpio.PinState")

Listing 21: pinListener1 required Java classes

In Listing 22 the definition of GPIO pin 24 as input is shown. Also this input is set to
low or 0 with the internal PullDown resistor.

21 PushButton = gpio∼provisionDigitalInputPin(clzRaspiPin∼GPIO_24,-
22 clzPinPullResistance∼PULL_DOWN)

Listing 22: pinListener1 define Pushbutton

30

In line 26 the output is defined and set to low at the same time. This means that the LED
does not light up when the program is started, but only after the button is pressed. The
variable LEDstate stores whether the variable is on or off.(see Listing 23)

26 LED =gpio∼provisionDigitalOutputPin(clzRaspiPin∼GPIO_29,pinstate∼low)
27 LEDstate = 0

Listing 23: pinListener1 define output and LED state

The code in Listing 24 continuously queries the state of the input. It is distinguished
whether the LED is on or off. If the LED is off and the state of the input pin is high then the
LED is switched on (see line 32-36). In line 37, the program is stopped briefly after a status
change of the LED, since pressing the button too long would immediately switch it on again
in the next run. Therefore the user is given 0.4 seconds to release the button again. From
line 41 onwards, when the LED is on and the button is pressed, the LED is switched off
again. The delay in line 49 causes the button to be polled for its state 10 times per second.
Line 51 delivers the Java support per BSF4ooRexx

29 say "Listening started - press the pushbutton to change the status of the LED"

30 do forever

31

32 if LEDstate = 0 then do

33 if PushButton∼getState∼toString = "HIGH" then do

34 say "LED on"

35 LEDstat = 1

36 LED∼high
37 call syssleep 0.4

38 end

39 end

40

41 else do

42 if PushButton∼getState∼toString = "HIGH" then do

43 say "LED OFF"

44 LEDstat = 0

45 LED∼low
46 call syssleep 0.4

47 end

48 end

49 call syssleep 0.1

50 end

51 ::Requires BSF.CLS

Listing 24: pinListener1 main program

5.1.5 pinListener2.rex

This example shows the Pinlistener1 example without using Java and the Pi4J library. For
this the WiringPi library is used again.

31

5.1.5.1 Circuit
The wiring has not changed in this example compared to pinListener1 (see Figure 13)

5.1.5.2 Sourcecode
In line 17 the GPIO pin 24 is defined as input and in the following line the internal PullDown
resistor is activated.(see Listing 25)

17 address system "gpio mode 24 in"

18 address system "gpio mode 24 down"

Listing 25: pinListener2 define input pin and PullDown

In line 23 and 24 the GPIO pin is defined as output and its state is set to 0 or low(see
listing 26)

23 address system "gpio mode 29 out"

24 address system "gpio write 29 0"

Listing 26: pinListener2 define input pin and PullDown

The main program is the same as pinListener1 but all Pi4j commands have been replaced by
WiringPi commands. Therefore also in line 30 an array is created, which stores the current
state of the input pin. The query for this takes place in line 34. As with pinListener1, it
is queried here whether the LED is on or off. If it is off and the button is pressed, it is
activated with the command in line 40. If the LED is on and the button is pressed, the LED
is switched off with the command in line 49.(see Listing 27)

29 say "Listening started - press the pushbutton to change the status of the LED"

30 currentState= .array∼new
31 do forever

32

33 /*check status of input pin*/

34 address command "gpio read 24" with output using (currentState)

35

36 if LEDstat = 0 then do

37 if currentState[1] = 1 then do

38 say "LED on"

39 LEDstat = 1

40 address system "gpio write 29 1"

41 call syssleep 0.4

42 end

43 end

44

45 else do

46 if currentState[1] = 1 then do

47 say "LED OFF"

48 LEDstat = 0

49 address system "gpio write 29 0"

50 call syssleep 0.4

51 end

52 end

32

53 call syssleep 0.1

54 end

Listing 27: pinListener2 main program

5.1.6 pinListener3.rex

The example pinListener3 now uses the Pi4J library again via BSF4ooRexx. In this example
the state of the input pin is not made via a continuous query but via a so-called ActionLis-
tener. This example is based on the Pi4J demo example ListenGpioExample.java by Robert
Savage.[Sav21]

5.1.6.1 Circuit
The wiring has not changed in this example compared to pinListener1 (see Figure 13)

5.1.6.2 Sourcecode
At the beginning the needed Java classes have to be loaded.(see Listing 28)

15 gpio=bsf.loadClass("com.pi4j.io.gpio.GpioFactory")∼getInstance
16 clzRaspiPin=bsf.loadClass("com.pi4j.io.gpio.RaspiPin")

17 clzPinPullResistance=bsf.loadClass("com.pi4j.io.gpio.PinPullResistance")

18 pinstate=bsf.loadClass("com.pi4j.io.gpio.PinState")

Listing 28: pinListener3 required Java classes

After that the same GPIO input 24 is used as in the other two examples (see Listing 29).

21 PushButton = gpio∼provisionDigitalInputPin(clzRaspiPin∼GPIO_24,-
22 clzPinPullResistance∼PULL_DOWN)

Listing 29: pinListener3 define input

The output is again connected to GPIO pin 29 and defined as start state ”off”. This
time, however, as can be seen in line 25, the pin must be placed in the locale package so that
the pin can be used from the entire program. In line 27 the state of the LED is stored.(see
Listing 30)

25 pkgLocal=.context∼package∼local -- get package local directory

26 pkgLocal∼LED = gpio∼provisionDigitalOutputPin(clzRaspiPin∼GPIO_29, clzPinstate∼low)
27 LEDstate = 0

Listing 30: pinListener3 define output

In Listing 31 first a new .evl object is created and then the listener is created and in line 38
this is assigned to the button.

34 rexxObj = .evl∼new
35 clzGpioPinListenerDigital = -

36 bsf.loadClass("com.pi4j.io.gpio.event.GpioPinListenerDigital")

37 javaObj = bsfCreateRexxProxy(rexxObj, , clzGpioPinListenerDigital)

33

38 listeners=bsf.createJavaArrayOf(clzGpioPinListenerDigital, javaObj)

39 PushButton∼addListener(listeners)

Listing 31: pinListener3 create and register listener

The code in Listing 32 makes the program run until CTRL + C is pressed.

40 signal on syntax name syntax_but_ok

41 do forever

42 call syssleep .5

43 end

44 exit

45

46 syntax_but_ok:

47 say "syntax_but_ok"

48 exit

Listing 32: pinListener3 run main program

The unknown method in the class evl (see Listing 33) is used to catch all messages from
Java. To get the state of the pin, the value of the slotdir argument is queried, as seen in line
58. If this is high and the LED is off, then it is switched on or vice versa.

52 ::class evl

53 ::method unknown

54 expose LEDstate

55 use arg eventObject, slotDir

56

57 if LEDstate = 0 then do

58 if slotdir[1]∼getState∼toString = "HIGH" then do

59 say "LED on"

60 LEDstate = 1

61 .LED∼high
62

63 end

64 end

65

66 else do

67 if slotdir[1]∼getState∼toString = "HIGH" then do

68 say "LED OFF"

69 LEDstate = 0

70 .LED∼low
71

72 end

73 end

Listing 33: pinListener3 class evl

Listing 34 shows how to get Java support via BSF4ooRexx, without this support this would
not be possible.

75 ::requires BSF.CLS

Listing 34: pinListener3 get Java Support

34

5.2 PWM.rex

The Raspberry Pi offers the possibility to control devices via its hardware PWM pin. This
is demonstrated in the example servo.rex.

5.2.1 servo

In this example a SG90 servo is controlled by CLI commands. The servo can rotate about
180 degrees. A numeric input in the range between 50 and 250 is expected, an input value of
150 represents the home position of the servo (0 degrees). An input of 50 will move the servo
to -90 degrees and an input of 250 will move the servo to +90 degrees. For this example the
PWM mode of Wiring Pi is used.

5.2.1.1 Circuit
The servo must be supplied with 5V voltage(VCC). Therefore it is connected to one of the
two 5V pins. It also needs a connection to Ground (GND) so that the circuit is closed. The
signal pin is connected to pin 26, because this is one of the two PWM pins of the Raspberry
Pi.(see Figure 14)

Figure 14: Servo circuit

35

5.2.1.2 Sourcecode
In line 13 the GPIO pin is set to PWM mode. Line 14 sets the mark space mode for the
PWM pin. In line 15 the PWM clock divider is set and Line 16 sets the range of the PWM.
The servo needs a frequency of 50 Hertz and this is achieved by dividing the PWM frequency
of the Rapsberry Pi (19.2MHz) by the clock divider and by the range. (see Listing 35) this
results in 19,200,000Hz

192∗2000 = 50Hz

13 address system "gpio mode 26 pwm"

14 address system "gpio pwm-ms"

15 address system "gpio pwmc 192"

16 address system "gpio pwmr 2000"

Listing 35: servo define pin and state

Before the user can make any entries, the servo is moved to its home position of 0 degrees.(see
Listing 36)

21 address system "gpio pwm 26 150"

Listing 36: servo 0 degree

In the main program the user has the possibility to set the servo to his desired position
between -90 and +90 degrees via CLI input. The default position is at a value of 150. As
mentioned above, with an input value of 50 the servo is set to -90 degrees and with 250 to
+90 degrees. With each input the entered value is checked for validity. this means that
the inputs may only be between 50 and 250, otherwise the servo comes into an undefined
state.(see Listing 37)

23 do forever

24 say " Enter a value between 50 and 250 "

25 parse pull angle

26 if angle >49 & angle < 251 then do

27 command = "gpio pwm 26 " angle

28 address system command

29 end

30 else say "wrong input: must be between 50 and 250"

31 end

32 exit

Listing 37: servo main program

5.3 1-Wire

The 1-Wire bus provides the Raspberry Pi with a very easy to program interface. This
is shown with the DS18B20 temperature sensor. Only a few lines of code are needed to
implement these sensors.

36

5.3.1 ds18b20stream.rex

This example shows how to read a DS18B20 temperature sensor using the ooRexx Stream
class. With the help of the stream object the data of the sensor are read.

5.3.1.1 Circuit
Even if the sensor is called 1-wire, at least 2 cables must be connected. The term 1-wire
comes from the fact that there is only one data line. In this example, however, a breakout
board with a 1-wire sensor is used, so even three wires must be connected here. The VCC
connection must be connected to the power supply pin of 3.3V. The GND connection must
be connected to Ground and the Data connection must be connected to the GPIO 7 pin.(see
Figure 15)

Figure 15: ds18b20 circuit

37

5.3.1.2 Sourcecode
With the code from Listing 38 the sensor is read out and simultaneously output to the
console.

11 say "current Temp: "ds18b20GetTemp()

12 exit

Listing 38: ds18b20 output temp

The routine ds18b20GetTemp is used to return the read temperature value of the DS18B20
sensor. In line 17 the command to read out all 1-Wire sensors is stored in the variable
”Sensors”. This command is then executed in line 19 and the result is stored in an array
named ”sen”. The name of the first sensor is stored in line 20 in the variable ”ds18b20”.
After that a new stream object is created in line 21 which accesses the previously read sensor.
The routine returns the read temperature value in line 22. The value must be divided by
1000, because e.g. a value of 22 degrees is returned as 22000 (see Listing 39).

16 ::Routine ds18b20GetTemp public

17 Sensors = "ls /sys/bus/w1/devices"

18 sen=.array∼new
19 address system sensors with output using (sen)

20 ds18b20 = sen[1]

21 stream=.stream∼new("/sys/bus/w1/devices/"||ds18b20||"/driver/"-
22 ||ds18b20||"/temperature")∼∼open
23 return stream∼lineIn/1000

Listing 39: ds18b20 routine ds18b20GetTemp:stream

5.3.2 ds18b20unix.rex

There is also the possibility to read out the temperature measured by the sensor with the
Unix command ”tail”. Through the ”address system” command of ooRexx it is very easy to
use functions of the operating system.

5.3.2.1 Circuit
The wiring has not changed in this example compared to ds18b20stream(see Figure 15)

5.3.2.2 Sourcecode
The code to output the temperature is identical to the code of example ds18b20stream.rex
because only the code in the routine has changed.(see Listing 40)

11 say "current Temp: "ds18b20GetTemp()

12 exit

Listing 40: ds18b20 output temp

In line 17 to 20, as in the ds18b20stream.rex example, first all available sensors are stored in
an array and the first sensor is selected. In line 21 the tail command is stored in a variable

38

so that it can be executed in line 23. The tail command reads the last line of the ”w1 slave”
device. This line is then parsed and only the part after ”t=” is stored in the variable grad.
This value, as mentioned before, is too high by a factor of 1000, so the read value is divided
by 1000 before it is returned.(see Listing 41)

16 ::Routine ds18b20GetTemp public

17 Sensors = "ls /sys/bus/w1/devices"

18 sen=.array∼new
19 address system sensors with output using (sen)

20 ds18b20 = sen[1]

21 temp = ("tail -n 1 /sys/bus/w1/devices/"ds18b20"/driver/"ds18b20"/w1_slave")

22 value = .array∼new
23 address system temp with output using (value)

24 parse var value "t=" grad

25 return grad/1000

Listing 41: ds18b20 routine ds18b20GetTemp:unix

5.3.3 ds18b20pi4oorex.rex

This example shows the third way how to access the 1-Wire temperature sensor DS18B20
and read out the temperature. For this purpose the pi4oorexx JAR library mentioned in
chapter 2.9 is used, which uses a modified Java class of the diozero project to read the values
of the sensor[JLe21]

5.3.3.1 Circuit
The wiring has not changed in this example compared to ds18b20stream(see Figure 15)

5.3.3.2 Sourcecode
The difference to the two previous examples of the DS18B20 temperature sensor is that Java
is required for this example. The access to Java is implemented via BSF4ooRexx. This
makes it possible to access the pi4oorexx library.
In line 17 you call the routine setupDs18b20. This is absolutely necessary otherwise the
sensor is not available. (see Listing 42) Line 19 shows the return value of the routine
ds18b20gettemp.

17 call setupDs18b20

18 /*outputs the currently measured temperature*/

19 say ds18b20GetTemp()

20 exit

Listing 42: ds18b20 output temp

The public routine returns the temperature of sensor 0. with the ”Get” command the
desired sensor is selected and the command ”getTemperature” returns the measured value.
(see Listing 43)

39

26 ::routine ds18b20GetTemp public

27 return .s∼get(0)∼getTemperature

Listing 43: ds18b20 routine ds18b20GetTemp:pi4oorexx

In line 32 a local package is created. With this you have the possibility to make objects
locally accessible. In line 33 the required Java class is loaded from the pi4oorexx library and
line 34 the available sensors are made available locally via the variable ”s”. In line 36 the
access to the Java classes is established via BSF4ooRexx.(see Listing 44)

31 ::routine setupDs18b20 public

32 pkgLocal=.context∼package∼local
33 sensor = bsf.loadClass("at.pi4oorexx.ds18b20.W1ThermSensor")

34 pkgLocal∼s= sensor∼getAvailableSensors
35 return

36 ::requires BSF.CLS

Listing 44: ds18b20 routine ds18b20setupDs18B20

5.4 UART

For the demonstration of the UART interface the author has chosen the control of a GPS
sensor.

5.4.1 gps.rex

A Neo-6M GPS sensor is used. The Neo-6M sensor continuously polls the GPS data. The
data is transmitted in NMEA format, then processed and output. The connection to the
sensor is established with the help of Pi4J and BSF4ooRexx.

5.4.1.1 Circuit
The Neo-6M sensor requires a supply voltage of 5V. This is applied to the VCC pin. The
GND pin is connected to one of the ground pins on the breadboard. When connecting the
data line, please note that the RXD and TXD lines must be crossed out. As described in
chapter 3.3.4.(see Figure 16)

40

Figure 16: GPS Sensor circuit

5.4.1.2 Sourcecode
To connect to the Neo-6M sensor via the UART interface, some Java classes have to be loaded
via BSF4ooRexx and a new object of class ”SerialConfig” has to be created(see Listing 45)

14 serial = bsf.loadClass("com.pi4j.io.serial.SerialFactory")∼createInstance
15 port = bsf.loadClass("com.pi4j.io.serial.SerialPort")

16 baud = bsf.loadClass("com.pi4j.io.serial.Baud")

17 dataBits = bsf.loadClass("com.pi4j.io.serial.DataBits")

18 parity= bsf.loadClass("com.pi4j.io.serial.Parity")

19 stopBits= bsf.loadClass("com.pi4j.io.serial.StopBits")

20 flowControl= bsf.loadClass("com.pi4j.io.serial.FlowControl")

21 config = .bsf∼new("com.pi4j.io.serial.SerialConfig")

Listing 45: gps load requires Java classes

In Listing 46 the serial port is initialized. The GPS sensor uses the default serial port
(ttyS0). The baudrate is set to 9600 and 8 databits are used. No parity bit is used and one
stop bit. The flowcontrol is not used The individual parameters are explained in chapter

41

3.3.4. After all parameters are set, the config object created in Listing 45 are assigned
parameters and then the serial connection is opened.

25 po=port∼getDefaultPort
26 b=baud∼_9600
27 d= dataBits∼_8
28 pa = parity∼NONE
29 st=stopBits∼_1
30 f=flowControl∼NONE
31 config∼device(po)∼baud(b)∼dataBits(d)∼parity(pa)∼stopBits(st)∼flowControl(f)
32 serial∼open(config)

Listing 46: gps init serial port

The routine ”readData” is used to read the data of the GPS sensor. For this the routine
is passed the object of the serial interface in line 113. In line 114 a variable is created which
stores all received data. In the loop in line 115 to 118 a total of 300 characters from the
data stream are stored. The code shown in line 116 receives character by character, but in
ascii format. However, this is also immediately converted from ascii format to character in
line 117 when the string is assembled. Since each character is followed by a space, all spaces
are removed from the string in line 120. Then, in line 122, the characters are split into two
parts. The part desired for the output is the one after the string ”$GPRMC”. Then, in line
123, the string is split again. All characters after the string ”$GPVTG” are truncated. Thus
the string now consists of the desired characters of the NMEA coding [Ray22]. However, it
must be noted that although the string consists of the desired characters, this string still
contains the control characters for ”carriage return” and ”line feed”. These are removed in
line 124. If these characters are not removed, the CRC check will not match. At the end the
desired data is returned by return command.(see Listing 47)

112 ::routine readData

113 use arg serial

114 datastring = ""

115 do i=1 to 300

116 a=serial∼getInputStream
117 datastring = datastring a∼read∼d2c
118 end

119

120 datastring = space(datastring,0)

121 /*Cut out desired part (GPRMC) from the string*/

122 parse var datastring useless "$GPRMC," firstcut

123 parse var firstcut receivedDataRaw "$GPVTG" .

124 parse var receivedDataRaw receivedData +59

125 return receivedData

Listing 47: gps routine readData

Listing 48 shows the validateData routine, which is responsible for ensuring that the
data received is valid. The data passed to the routine is first checked for its length. If no
data is contained, the routine returns a .FALSE. this would mean that the data is not valid.
If data is present, it is split in line 141. The desired $GPRMC NMEA data set consists

42

of the GPS data followed by an asterisk (*) and the CRC checksum. This variable with
the GPS data is then linked bitwise by XOR operation. At the end the calculated values
from the data and the read checksum must match to confirm valid data. The verification
of the data starts in line 148. Here a variable is assigned the character ”g”. The character
”g” is the result of the XOR operations of ”GPRMC” which was precalculated because
this part was truncated in the routine ”readData” and was not appended separately. It
should also be noted that the dollar sign and the asterisk character may still be used for
the calculation of the checksum. In the loop between line 149 and 152 the individually
characterized characters are XORed character by character. In line 153 the result of all
XOR operations of a character is transferred to the hexadecimal notation. In line 155 it is
then checked whether the calculated checksum matches the received checksum. If this is the
case a .TRUE is returned, if not a .FALSE is returned.

136 ::routine validateData

137 parse arg checkData

138 /* check if data are available */

139 if checkData∼length > 0 then do

140 /*read checksum from string */

141 parse var checkData data "*" checksum

142

143 /*Since "GPRMC," also belongs to the calculation of the checksum,

144 but this value has already been cut out to facilitate

145 the search process, the value precalculated value is

146 inserted into the variable a

147 the precalculated value results in a = "g" */

148 a="g"

149 do i=1 to data∼length
150 erg = bitxor(a,data[i])

151 a=erg

152 end

153 checksum_calc = c2x(a)

154 /*check if the received checksum is equal to the calculated one*/

155 if checksum = checksum_calc then do

156 return .True

157 end

158 else do

159 return .False

160 end

161 end

162 else do

163 return .False

164 end

Listing 48: gps routine validateData

The routine ”prepareData” prepares the verified data in a predefined[Nov21] form. The
following data can be output:

� Date

43

� Time

� Latitude

� Longitude

(see Listing 49)

87 ::routine prepareData

88 parse arg gps

89 DataColl = .directory∼new
90 parse var gps utc +6 13 lat +10 24 latDir +1 26 lon +11 38 lonDir +1 47 dat +6 .

91 --prepare Time

92 time =substr(utc,1,2) || ":"|| substr(utc,3,2) || ":" || substr(utc,5,2) "UTC"

93 DataColl ∼∼time = time

94 --prepare latitude

95 latitude = substr(lat,1,2) || "." || substr(lat,3,2) || substr(lat,6,5) || latDir

96 DataColl ∼∼latitude = latitude

97 --prepare longitude

98 longitude = substr(lon,1,3) || "." || substr(lon,4,2) || substr(lon,7,5) || lonDir

99 DataColl ∼∼longitude = longitude

100 --prepare Date

101 date = substr(dat,1,2) || "." || substr(dat,3,2) || "." || substr(dat,5,2) -- dd/mm/yy

102 DataColl ∼∼date =date

103 return dataColl

Listing 49: gps routine prepareData

The main program(Listing 50) starts with receiving the GPS data via readData routine.
The data is stored in the variable GpsData. After that a counter is created in line 43 and
initialized with the value 1. The while loop starting in line 44 is used to check the data for
validity (per validateData routine). If the data is valid, the loop is immediately exited and
the data is output (lines 60 - 63) and the serial connection is terminated (line 66). If the
data is not valid, a warning is issued. After that, line 46 checks how many times the loop
has already been run. The counter created before is used for this. If there are more than
10 attempts to read in data, the program is terminated with an error message. If it is not
yet the tenth run, in line 50 a second is waited and then in line 51 a new reading attempt is
started. With each run the counter (line 53) increases by one.

39 GpsData = readData(serial)

40

41 /*If no data is received more than ten times, the program is aborted

42 and an error message is displayed.*/

43 count = 1

44 do while (validateData(Gpsdata) = .False)

45 say "no valid Data Receiveid Nr." count

46 if count >= 10 then do

47 say "no valid data received- check antenna"

48 exit

49 end

50 call syssleep 1

44

51 GpsData = readData(serial)

52 --say GpsData --debug

53 count = count + 1

54 end

55

56 /* valid values were received and were checked by checksum*/

57

58 preparedData = prepareData(GpsData)

59

60 say preparedData∼date
61 say preparedData∼time
62 say preparedData∼latitude
63 say preparedData∼longitude
64

65 /*close the serial port*/

66 serial∼close
67 exit 0

Listing 50: gps main program

5.5 SPI

In this chapter the control of devices via the SPI bus is explained.

5.5.1 LEDMatrixDriver.rex

The program LEDMatrixDriver.rex was developed to control a MAX7219 8x8 matrix LED
display driver via SPI interface. The SPI interface is implemented via Pi4j using BSF4ooRexx.
The driver provides routines for the output at the display and for the control of the display.
There are the following routines:

� write: writes a Byte to the Display.
The write command absolutely needs single char as values for register and value. e.g.
write 1∼x2c , 255∼d2c
register:1 ... 8 values from 0-255 as Char

� printString: outputs the entered string as a ticker.

� setup: loads all needed components, must be called first at the beginning of the pro-
gram.

� init: ust be called after setup. Activates the chip so that it accepts commands

� clear: deletes the display content

� intensity: set brightness of the display. e.g. call intensity ”12”x , Min: ”01”x ,
Max:”15”x (in hexadecimal notation)

45

� close: switches off the MAX7219 chip and clears the display.

This example was inspired by github.com/sharetop/max7219-java

5.5.1.1 Circuit
The LED Matrix breakout board must be connected as follows. The VCC contact must be
connected to the power supply of 3.3V. GND must be connected to a ground pin. DIN(Data
In [from the chip’s point of view]) must be connected to GPIO 12. CLK must be connected
to GPIO 14 and CS must be connected to GPIO 10. This chip uses only three lines because
the chip does not return a response to the Raspberry Pi.(see Figure 17)

Figure 17: LED Matrix driver circuit

5.5.1.2 Sourcecode

The routine ”setupLED”(Listing 51) is necessary to load all required Java classes, per
BSF4ooRexx, for the SPI connection (see lines 221-225). These are then made available
program-wide by the command in line 219. In line 232-236 the commands for the MAX7219
chip are made available in the local package. Line 239 shows the required registers for the
clear sequence. Line 242 provides the required bytes for the representation of the characters

46

github.com/sharetop/max7219-java

which are loaded from lines 249 -377. For better readability, only one line of the resource
ascii127fontHex is shown in this code snippet. The complete resource can be found in the
source code in the provided file.

217 ::routine setupLED public

218

219 pkgLocal=.context∼package∼local -- get package local directory

220

221 pkgLocal∼clzSpiChannel=bsf.loadClass("com.pi4j.io.spi.SpiChannel")
222 pkgLocal∼clzSpiDevice=bsf.loadClass("com.pi4j.io.spi.SpiDevice")
223 pkgLocal∼spi = bsf.loadClass("com.pi4j.io.spi.SpiFactory")∼getInstance(-
224 .clzSpiChannel∼CS0,-
225 .clzSpiDevice∼DEFAULT_SPI_SPEED,.clzSpiDevice∼DEFAULT_SPI_MODE)
226 -- define some constants

227 /*Addres Register*/

228 /* DATASHEET MAX7219

229 https://datasheets.maximintegrated.com/en/ds/MAX7219-MAX7221.pdf 06.02.2022

230 */

231

232 pkgLocal∼MAX7219_REG_DECODEMODE ="09"x

233 pkgLocal∼MAX7219_REG_INTENSITY ="0a"x

234 pkgLocal∼MAX7219_REG_SCANLIMIT ="0b"x

235 pkgLocal∼MAX7219_REG_SHUTDOWN ="0c"x

236 pkgLocal∼MAX7219_REG_DISPLAYTEST="0f"x
237

238 /* clear sequence */

239 pkgLocal∼clearSequence= "01 02 03 04 05 06 07 08"x

240

241 /* define font: eight bytes per char */

242 pkgLocal∼font=.resources∼ascii127fontHex∼makeString("line"," ")∼space(1)∼strip∼x2c
243

244

245 /* Ascii 127 font

246 -->https://github.com/sharetop/max7219-java/blob/master/src/main/java/cn/sharetop/

max7219/Font.java

247 (higher 128 code places seem to be defined for Codepage 437 (CP437) inferring from

comments?)

248 */

249 ::resource ascii127fontHex

250 00 00 00 00 00 00 00 00

Listing 51: LEDMatrixDriver routine setupLED

The routine ”init” must be executed only at the first program call. As long as the routine
close is not used, the chip remains ready for use. The command shutdown - ”01”x switches
the chip active. After the close routine has been executed (shutdown - ”00”x), the ”init”
routine must also be executed again. The calls of the write routine use the values defined
before in setup and thereby initialize the chip. The values can be taken from the data
sheet.[int21] (see Listing 52)

167 ::routine init public

47

168 call write .MAX7219_REG_SCANLIMIT , "07"x

169 call write .MAX7219_REG_DECODEMODE , "00"x

170 call write .MAX7219_REG_DISPLAYTEST , "00"x

171 call write .MAX7219_REG_SHUTDOWN , "01"x

172 call intensity "12"x

173 return

Listing 52: LEDMatrixDriver routine init

The routine ”write” in Listing 53, is the only routine that communicates directly with
the Max7219 chip. ”write” needs two values as character. The register of the chip and the
value(line 204). In line 206 the values are converted to a Java byte array and sent to the
chip.

203 ::routine write public

204 parse arg register , value

205 --combine both characters and convert them into a Java byte array

206 .spi∼write(BsfRawBytes(register || value))

207 return

Listing 53: LEDMatrixDriver routine write

The routine speed is used to specify the speed of the ticker.(see Listing 54)

188 ::routine speed

189 use arg s

190 call syssleep s

191 return

Listing 54: LEDMatrixDriver routine speed

the routine ”close” is used to clear the output on the display and to switch off the
MAX7219 chip. For this the routine ”clear” is called in line 180 and in line 181 the routine
”write” is used to send the command to switch off the chip.(see Listing 55)

179 ::routine close public

180 call clear

181 call write .MAX7219_REG_SHUTDOWN , "00"x

182 return

Listing 55: LEDMatrixDriver routine close

The routine ”clear” in Listing 56 writes zero values to the registers previously defined in
”setup”. This clears the output. Here it is to be noted that the first register is not, as usual,
0 but begins with 1.

144 ::routine clear public

145 do i=1 to .clearSequence∼length
146 call write .clearSequence[i], "00"x

147 end

148 return

Listing 56: LEDMatrixDriver routine clear

48

The ”intensity” routine(Listing 57) is used to set the brightness of the display. For this
a hexadecimal value between ”00 ”x and ”15 ”x must be passed. This value is sent to the
chip in line 136.

134 ::routine intensity public

135 parse arg value

136 call write .MAX7219_REG_INTENSITY, value

137 return

Listing 57: LEDMatrixDriver routine intensity

the routine ”ticker” (listing 58) is used to output the text on the display as a ticker. For
this the ticker gets a character from the resource ascii127fontHex. This is already divided
into eight bytes. In line 115 and 116 a prolog and epilog are appended to the character to
be output. This consists of also byte with the value 0. This serves that the characters run
in starting from the right edge and that the characters also disappear again completely from
the matrix. in the loop in line 118 - 121 the characters are then sent byte by byte to the chip.
In line 122 there is the possibility to set the speed of the ticker with the ”speed” routine.

112 ::routine ticker

113 use arg charsAsFontBytes -- already has 8 font bytes per character to be output

114

115 epilog=.font∼substr(1,8)
116 prolog = epilog

117 charsAsFontBytes= prolog || charsAsFontBytes || epilog

118 do i=1 to (charsAsFontBytes∼length-8)
119 do idx=1 to 8

120 call write idx∼x2c, charsAsFontBytes[i+idx-1]

121 end

122 call speed 0.05

123 end

124 return

Listing 58: LEDMatrixDriver routine ticker

The routine ”printString”(Listing 59) is used to split an input text into single characters,
then transform them into 8 byte characters using the resource ascii127fontHex(lines 90-95)
and assemble them into a mutable buffer and pass them to the routine ”ticker”(line 96)

87 ::routine printString public

88 use arg string

89 mb=.mutableBuffer∼new
90 do i=1 to string∼length
91 decCode = c2d(String[i])

92 pos=decCode*8+1

93 fontBytes = .font∼substr(pos,8)
94 mb∼append(fontBytes)
95 end

96 call ticker mb∼string
97 return

Listing 59: LEDMatrixDriver routine printString

49

Because in this example the Pi4J library is used, it has to be loaded by BSF4ooRexx and
therefore the command in Listing 60 is necessary

381 ::requires "BSF.CLS"

Listing 60: LEDMatrixDriver java support

This program does not have its own main program. When this program is called, it only
outputs that the driver has been loaded. However, it is possible to try out the driver. The
driver contains a short example which requires an input from the user and then outputs
this to the matrix display. However, this example is deactivated. To activate it, only the
comment characters in lines 46 and 76 must be removed.

5.5.2 LEDMatrixPi4oorexx.rex

The example LEDMatrixPi4oorexx demonstrates the same functions but this example is
based on a ready to use Java driver [sha] which is inserted into the pi4oorexx library. In the
following source code all available routines are described.

5.5.2.1 Circuit
The wiring has not changed in this example compared to LEDMatrixDriver(see Figure 17)

5.5.2.2 Sourcecode
This code demonstrates the routine of the pi4oorexx matrix LED class. At the beginning(line
12) the class MATRIX must be loaded from the pi4oorexx library via BSF4ooRexx. After
loading a new object of this class must be created (line 14). Line 16 demonstrates the
execution of the ”Help” routine. This is used, as mentioned in chapter 2.9, to list all routines
and to get more information about this class. The code in line 19 activates the MAX7219
chip. The ”clear” routine clears the content on the display. With the code in line 23 it is
possible to change the orientation of the ticker text and in line 25 an entered text is output
on the display by the ”showMessage” routine. In line 29 - 35 it is demostrated how to output
arbitrary characters on the matrix display. For this an array with all registers is created in
line 29. (The numbering of the registers goes from 1 to 8) The code in the loop outputs a
triangle on the display starting with a dot. This number of characters then increases per
loop pass until eight dots are displayed at the end. After a three-second program pause, the
output is cleared again by the command in line 38.(see Listing 61)

11 -- Import Class

12 matrix = bsf.importClass("at.pi4oorexx.matrix.MATRIX")

13 -- create new Object

14 m = matrix∼new
15 /*use the help function to learn more about the available routines*/

16 m∼help
17 /* initialize the MAX7219 driver to be able to send data to the

18 display*/

19 m∼open
20 /*clear display*/

50

21 m∼clear
22 /*change orientation of scrolling Text */

23 m∼orientation(0) --0,90,180,270

24 /*print scrolling Text*/

25 m∼showMessage("Hello ooRexx")

26

27 /*write customdata to the Matrix Display*/

28 -- all eight register of the Display

29 reg= .array∼of(1∼x2c,2∼x2c,3∼x2c,4∼x2c,5∼x2c,6∼x2c,7∼x2c,8∼x2c)
30 -- draw a rectangle

31 do i = 1 to 8

32 val = (2**i-1)∼d2c
33 m∼_write(BSFRawBytes(reg[i]||val))
34 call syssleep 0.5

35 end

36 call syssleep 3

37 --clear screen

38 m∼clear
39

40 ::requires BSF.CLS -- get java Support

Listing 61: LEDMatrixPi4oorexx program

5.5.3 binaryclock.rex

The binaryClock example demonstrates the application of the LEDMatrixDriver from chap-
ter 5.5.1 With the help of this driver a binary clock is generated on the display (see Figure
18). The time shown on the display is 14:06:47

51

Figure 18: binary clock

5.5.3.1 Circuit
The wiring has not changed in this example compared to LEDMatrixDriver(see Figure 17)

5.5.3.2 Sourcecode
The program binaryClock(Listing 62) begins with the loading of all required classes per
”setup ”routine.(Line 12) Afterwards in line 15 the ”init” routine is loaded. In line 19 an
array with all register addresses is created. In the endless loop from line 21 to line 34 the time
read in by the system is then prepared for the output. In line 22 the system time is loaded
into the variable ”time”. Afterwards in line 25 all colons are replaced by zeros, because the
binary clock should not display at the position of the colons. Further the generated string
is inverted. This has the sense, so that the output on the display begins with hh:mm:ss at
the left lower edge. In line 29 to 32 the individual characters are then output by ”write”
routine. In line 37 the driver for the LED matrix module is loaded.

11 -- get SPI Support

12 call setupLED

13 call syssleep 0.5

14 -- initialize the chip so that it can accept data

52

15 call init

16 call syssleep 0.5

17 /* create an array with the available registers and

18 convert the numbers into characters*/

19 reg= .array∼of(1∼x2c,2∼x2c,3∼x2c,4∼x2c,5∼x2c,6∼x2c,7∼x2c,8∼x2c)
20

21 do forever

22 time = TIME() --get system Time

23 /*formats the read-in time for the output on the display

24 colons are replaced by zeros and the string is inverted*/

25 time = time∼replaceAT("0",3)∼replaceAT("0",6)∼reverse
26 /* console output in the usual format*/

27 say time∼reverse∼replaceAT(":",3)∼replaceAT(":",6)
28 /*output the current time on the display. Byte by byte*/

29 do i = 1 to 8

30 call write reg[i] , time[i]∼d2c
31 call syssleep 0.02

32 end

33 call syssleep 0.1

34 end

35 exit

36

37 ::requires "LEDMatrixDriver.rex" --load Driver fir LED Matrix Modul

Listing 62: binary clock

5.6 I²C

The I²C interface offers a wide range of sensors and devices. From sensors that measure
temperature, pressure, humidity or illuminance to extensions of GPIO ports and analog to
digital converters. There are also devices that provide a clock or output devices such as an
LC display. These devices will be discussed in more detail in this chapter.
Before the first devices and sensors are described, the tool ”I²C Tools for Linux” mentioned
in chapter 2.8 is explained. In this bachelor thesis three program from this tool are used.

1. i2cdetect
This program can be used to display all available devices connected via I2c bus. In the
given example (Figure 19) all devices connected to the I2C bus 1 are displayed.
The ”-y” flag after the command means that you don’t have to confirm again and the
”1” means that the I²C bus 1 is used.[Jar+a]

53

Figure 19: i2cdetect

After a successful scan, the device address is displayed in the console. The device
addresses are displayed in hexadecimal notation.

In Figure 19 shown, six devices are connected to I²C bus 1. The devices are also
called slaves[Rat21] Address 20,21,24 are the address of the PCF8574 remote 8-bit I/O
expander. address 23 is a digital ambient light sensor. address 27 is a LC display with
PCF8574 backpack. Address 77 is a BME280 temperature/pressure/humidity sensor.

2. i2cset
i2cset can be used to send data to the I2c device[Jar+c] In the given example(Figure
20) the value 0xff(= 255 decimal) is sent via i2cset to the device on bus 1 and the
address 0x21.

Figure 20: i2cset

When using i2cset, care should be taken that only commands that can also be found
in the data sheet of the I2C device are sent to the device. Improper use of i2cset
could destroy the device, since it is possible to write to areas of the device that are not
designed for this purpose, e.g. the memory DIMM of a serial EEPROM.[Jar+c]

3. i2cget
i2cget can be used to read data from an i2cdevice.[Jar+b] The example(Figure 21)
demonstrates the reading of data from device 0x21, which was previously sent to the
device with i2cset.

Figure 21: i2cget

54

5.6.1 bme280.rex

This example demonstrates the control of a BME 280 temperature/air pressure/humidity
sensor via I²C bus. The address of the device was determined with i2cdetect. The connection
to the I²C bus is established by Pi4J and BSF4ooRexx. Four public routines are provided
so that they can also be called from other programs.

� SetupBme: is necessary to establish a connection to the I²C bus. must be executed
only once.

� getTemp: returns temperature in °C

� getPressure: returns pressure in hPa

� getHumidity: returns humidity in

The I²C address of the BME280 can be read out via i2cdetect. In these examples it is 0x77
hex or 119 decimal.

5.6.1.1 Circuit
4 lines are required for the wiring. VCC is connected to the supply voltage of 3.3V. GND is
connected to Ground. Data line SDA is connected to GPIO pin 8 and the signal line SCL is
connected to GPIO pin 9.(see Figure 22)

55

Figure 22: BME 280 circuit

5.6.1.2 Sourcecode
As already seen in the previous examples, the routine ”setupBme” loads the required Java
classes and provides the required I²C connection in local package(see Listing 63)

196 ::routine setupBme public

197 pkgLocal=.context∼package∼local -- get package local directory

198 device = bsf.loadClass("com.pi4j.io.i2c.I2CDevice")

199 i2cbus = bsf.loadClass("com.pi4j.io.i2c.I2CBus")

200 bus = bsf.loadClass("com.pi4j.io.i2c.I2CFactory")∼getInstance(i2cbus∼BUS_1)
201 pkgLocal∼device = bus∼getDevice(119) --0x77 = hex -> int

56

202 return

Listing 63: bme280 routine setupBme

The routine ”0xFF” Converts the measured byte from a signed byte(-128 ... 127) to an
unsigned byte(0 ... 255) (see Listing 64)

208 ::routine 0xFF

209 use arg v

210

211 if v < 0 then

212 do

213 v= v+256

214 return v

215 end

216 else return v

Listing 64: bme280 routine 0xFF

The routine ”0xF” the 0xf routine returns a value between 0-15.(see Listing 65)

220 ::routine 0xF

221 use arg v

222 return 0xff(v)//16

Listing 65: bme280 routine 0xF

The routine ”calcValues”(see Listing 66) is the part of the program that reads the data
from the sensor and subsequently calculates and returns the temperature, air pressure and
humidity. The calculations were done based on the datasheet or the Java driver from Naoki
Ikeguchi. [Ike18] In line 52 a Java byte array is created by BSF4ooRexx with a capacity of
24 bytes, here you have to pay attention if a primitive type (byte.class) or a reference type
(Byte.class) is needed.[pro] In line 53 data are read from the sensor of address 136, these
are then stored in the line 52 generated byte array, the 0 means that there is no offset when
reading, so should be read from the beginning and the 24 indicates that 24 bytes should be
read.
Then the coefficients for temperature and air pressure are calculated (lines 58 - 92). In line
96 again a Java byte array is created and a byte is read from the sensor(address 161) (line 97)
In line 104, 7 bytes are read from the sensor into a Java byte array created in the previous
line. All these values are necessary for the calculation.
Between lines 108 and 120 the calculation of the coefficients of humidity is done.
After that, three commands are sent to the BME chip in lines 124 - 138 which trigger the
chip to start the measurement. The measured values are then read out in line 146. The
values are then calculated from line 150 - 185. In line 187 an ooRexx directory is created,
into which the measured values are fed (lines 188-190) and then returned (line 192).

50 ::routine calcValues

51 -- read compesations parameter

52 data = bsf.createJavaArray("byte.class",24)

53 .device∼read(136,data,0,24)

57

54

55 -- convert Data Datasheet Table 16

56 -- temperature coeffocients

57

58 dig_T1 = (0xff(data[1])) + ((0xff(data[2]))*256)

59

60 dig_T2 = (0xff(data[3])) + ((0xff(data[4]))*256)

61 if dig_T2 > 32767 then dig_T2 = dig_T2 - 65536

62

63 dig_T3 = (0xff(data[5])) + ((0xff(data[6]))*256)

64 if dig_T3 > 32767 then dig_T3 = dig_T3 - 65536

65

66 -- pressure coefficients

67

68 dig_P1 = (0xff(data[7])) + ((0xff(data[8]))*256)

69

70 dig_P2 = (0xff(data[9])) + ((0xff(data[10]))*256)

71 if dig_P2 > 32767 then dig_P2 = dig_P2 - 65536

72

73 dig_P3 = (0xff(data[11])) + ((0xff(data[12]))*256)

74 if dig_P3 > 32767 then dig_P3 = dig_P3 - 65536

75

76 dig_P4 = (0xff(data[13])) + ((0xff(data[14]))*256)

77 if dig_P4 > 32767 then dig_P4 = dig_P4 - 65536

78

79 dig_P5 = (0xff(data[15])) + ((0xff(data[16]))*256)

80 if dig_P5 > 32767 then dig_P5 = dig_P5 - 65536

81

82 dig_P6 = (0xff(data[17])) + ((0xff(data[18]))*256)

83 if dig_P6 > 32767 then dig_P6 = dig_P6 - 65536

84

85 dig_P7 = (0xff(data[19])) + ((0xff(data[20]))*256)

86 if dig_P7 > 32767 then dig_P7 = dig_P7 - 65536

87

88 dig_P8 = (0xff(data[21])) + ((0xff(data[22]))*256)

89 if dig_P8 > 32767 then dig_P8 = dig_P8 - 65536

90

91 dig_P9 = (0xff(data[23])) + ((0xff(data[24]))*256)

92 if dig_P9 > 32767 then dig_P9 = dig_P9 - 65536

93

94 -- Read dig_H1 from 0xA1 -> 161

95

96 data_H1 = bsf.createJavaArray("byte.class",1)

97 .device∼read(161,data_H1,0,1)
98

99 dig_H1 = (0xff(data_H1[1]))

100

101 -- Read 7 Bytes from 0xE1 -> 225

102

103 data2 = bsf.createJavaArray("byte.class",7)

104 .device∼read(225,data2,0,7)

58

105

106 -- humidity coefficients

107

108 dig_H2 = (0xff(data2[1]) + (data2[2]*256))

109 if dig_H2 > 32767 then dig_H2 = dig_H2 - 65536

110

111 dig_H3 = 0xff(data2[3])

112

113 dig_H4 = ((0xff(data2[4])*16) +(0xf(data2[5]))) --- 0xff 0xf

114 if dig_H4 > 32767 then dig_H4 = dig_H4 - 65536

115

116 dig_H5 = ((0xff(data2[5])/16) +(0xff(data2[6])*16)) --- 0xff 0xff

117 if dig_H5 > 32767 then dig_H5 = dig_H5 - 65536

118

119 dig_H6 = (0xff(data2[7]))

120 if dig_H6 > 127 then dig_H6 = dig_H6 - 256

121

122 --select control humidity register

123

124 com1 = bsf.createJavaArray("byte.class",1)

125 com1∼put(box("byte.class",1),1) -- 0x01 = 1

126 .device∼write(242,com1) --0xF2 = 242

127

128 --select control measurement register

129

130 com2 = bsf.createJavaArray("byte.class",1)

131 com2∼put(box("byte.class",39),1) --0x27 = 39

132 .device∼write(244,com2) --0xF4 = 244

133

134 --select config register

135

136 com3 = bsf.createJavaArray("byte.class",1)

137 com3∼put(box("byte.class",-96),1) --- 0xA0 -> -96 (byte) --->java Byte

138 .device∼write(242,com3) --0xF5 = 245

139

140

141 call syssleep 1 -- pause

142

143 --read measured data from 0xF7 -> 247 8 Byte

144

145 meas = bsf.createJavaArray("byte.class",8)

146 .device∼read(247,meas,0,8)
147

148 -- convert pressure and temp

149

150 adc_p = ((0xff(meas[1])*65536) + (0xff(meas[2])*256) + (0xff(meas[3])))/16

151 adc_t = ((0xff(meas[4])*65536) + (0xff(meas[5])*256) + (0xff(meas[6])))/16

152

153 -- convert humidity data

154

155 adc_h = (0xff(meas[7])*256)+(0xff(meas[8]))

59

156

157 --Temp offset calculation

158

159 var1 = ((adc_t / 16384) - (dig_T1 / 1024)) * dig_T2

160 var2 = (((adc_t / 131072) -(dig_T1 / 8192)) * ((adc_t / 131072) - (dig_T1 / 8192)))-

161 * dig_T3 --131072 = 2^16

162 t_fine = var1 + var2

163 temp = (t_fine) / 5120

164

165 -- pressure offset calculation

166

167 var3 = (t_fine / 2) - 64000

168 var4 = var3 * var3 * dig_P6 / 32768

169 var4 = var4 * var3 * dig_P5 * 2

170 var4 = (var4 / 4) + (dig_P4 * 65536)

171 var3 = (dig_P3 * var3 * var3 / 524288 + dig_P2 * var3) / 524288

172 var3 = (1 + var3 / 32768) * dig_P1

173

174 p = 1048576 - adc_p

175 p = (p-(var4/4096))*6250 / var3

176 var3 = dig_P9 * p * p / 2147483648

177 var4 = p * dig_P8 / 32768

178

179 pressure = (p+ (var3 + var4 + dig_P7) / 16) / 100

180

181 -- humidity offset calculation

182

183 var_H = t_fine - 76800

184 var_H = (adc_h - (dig_H4 * 64 + dig_H5/16384 * var_H))* (dig_H2 / 65536 * -

185 (1 + dig_H6 / 67108864 * var_H * (1 + dig_H3/67108864 * var_H)))

186 humidity = var_H * (1 - dig_H1 * var_H / 524288)

187

188 DataColl = .directory∼new
189 DataColl∼∼temp = temp

190 DataColl∼∼pressure = pressure

191 DataColl∼∼humidity = humidity

192

193 return DataColl

Listing 66: bme280 routine calcValues

The routine ”getTemp” , ”getPressure” and ”getHumidity” return the measured val-
ues(see Listing 67).

32 ::routine getTemp public

33 temp = calcValues()

34 return temp∼temp
35 ---------------

36 ---------------

37 /*return Pressure*/

38 ::routine getPressure public

39 p = calcValues()

60

40 return p∼pressure
41 ---------------

42 ---------------

43 /*return humidity*/

44 ::routine getHumidity public

45 h = calcValues()

46 return h∼humidity

Listing 67: bme280 get routines

Because in this example the Pi4J library is used, it has to be loaded by BSF4ooRexx and
therefore the command in Listing 68 is necessary.

229 ::requires "BSF.CLS"

Listing 68: BME java support

To demonstrate the sensor, a short example has been included in the code (see listing
69) which first executes the ”setupBME” routine and then outputs temperature, pressure
and humidity(see Listing 69).

18 call setupBme

19

20 say getTemp()

21 say getPressure()

22 say getHumidity()

23

24 exit 0

Listing 69: bme280 example program

5.6.2 bme280pi4oorexx.rex

The example bme280pi4oorexx shows how to read the sensor with only a few lines of code
using BSF4ooRexx and the pi4oorexx library.

5.6.2.1 Circuit
The wiring has not changed in this example compared to BME280(see Figure 22).

5.6.2.2 Sourcecode
The source code for the BME280 sensor is very short thanks to the pi4oorexx library, because
the calculations are done in the implemented Java class. In line 11 the necessary Java class
is loaded from BSF4ooRexx. In line 12 the ”help” routine is called, which prints information
about the class on the console. In line 13 a measurement is performed. It is important
that each time before the temperature, pressure or humidity are retrieved (line 14-17) a new
measurement must be performed. Line 18 loads the required Java support via BSF4ooRexx.

11 b = bsf.loadClass("at.pi4oorexx.bme280.BME280")

12 b∼help

61

13 b∼measure
14 say b∼getPressure
15 say b∼getTempCelcius
16 say b∼getTempFahrenheit
17 say b∼getHumidity
18 ::requires bsf.cls

Listing 70: bme280pi4oorexx example program

5.6.3 pcf8574.rex

This example shows the control of the PCF8574 I/O port expander via I²C bus. Thus it
is possible to switch eight outputs(LED) with two lines. For this, data or a byte is sent to
the PCF8574 via i2cset, which converts this into individual bits and switches the outputs
accordingly. i2cset expects the address of the PCF8574 as well as the byte to be transmitted
in hexadecimal notation, as shown in Figure 20. The address is determined by i2cdetect(see
Figure 19). the byte to be transmitted is randomly generated by ooRexx. For this you
should be familiar with the conversion from binary to hexadecimal number system.
In table 4 a byte(8 bit) is shown as binary number. The first line shows the digit value in
the decimal system and the third line shows a random byte with the decimal value of 186.
This can also be verified by adding the decimal digit values: 128 + 32 + 16 + 8 + 2 = 186 .
The I²C address of the display can be read out via i2cdetect. In these examples it is 0x21
hex.

128 64 32 16 8 4 2 1
Bit 8 Bit 7 Bit 6 Bit 5 Bit 4 Bit 3 Bit 2 Bit 1

1 0 1 1 1 0 1 0

Table 4: One Byte in Bits

In Table 5, the decimal numbers from 0 - 15 are output as binary and hexadecimal
numbers, but since a byte consists of 8 bits and not four, it is composed of two half-bytes or
nibbles. For this, two hexadecimal characters are simply strung together. In this way, it is
possible to generate a byte with a decimal value range of 0 - 255, as shown in Table 4.

62

decimal binary hexadecimal
0 0 0 0 0 0
1 0 0 0 1 1
2 0 0 1 0 2
3 0 0 1 1 3
4 0 1 0 0 4
5 0 1 0 1 5
6 0 1 1 0 6
7 0 1 1 1 7
8 1 0 0 0 8
9 1 0 0 1 9
10 1 0 1 0 A
11 1 0 1 1 B
12 1 1 0 0 C
13 1 1 0 1 D
14 1 1 1 0 E
15 1 1 1 1 F

Table 5: Dec vs Bin vs Hex

Another function of the program is to count binary from 0 to 255. This is then output
on the eight LEDs binary coded.

5.6.3.1 Circuit
The wiring is the same as for any I²C device. VCC belongs to the 3.3V power supply. Gnd
is connected to Ground. The I²C line SDA belongs to GPIO pin 8 and SCL to GPIO pin 9.
To control the eight contacts P1 - P8 must be connected to the contacts on the LED board
L1 - L8. The separate GND pin on the LED board still has to be connected to ground. (see
Figure 23)

63

Figure 23: PCF 8574 circuit

5.6.3.2 Sourcecode
In line 11 the address of the PCF8574 is entered in hexadeximal notation. The address can
be determined with i2cdetect (see Figure 19). In line 12 a binary number is declared which
represents decimal 0 to switch all outputs to 0 or low. In line 13 this command is executed by
i2cset. Here it must be noted that i2cset expects a hexadecimal number in the form of 0x00
to 0xff and therefore the previously defined binary number is converted to a hexadecimal
number. ooRexx does not use the prefix ”0x” in the hexadecimal notation therefore this
must be added by hand. In line 16 to 23 8 random bits are generated which are assembled
to a byte in line 25. The eighth bit with the highest value comes first. As last the first bit
with the lowest place value is appended. This generated byte is then sent to the PCF8574
by i2cset in line 27. In line 29 the program is stopped for 5 seconds to see the output.
After that the second program section(line 32 to 37) starts. Here is counted binary from 0
to 255 and this is shown by LED. First the number to be counted away from is defined in
line 32. Then in the loop the respective number is sent via i2cset to the PCF8574. For this,
however, the decimal number must first be converted into a hexadecimal number. In line 35
the number is increased by one. The loop runs up to 256 so that all numbers from 0 to 255
can be output on the LED board.

11 addr = "0x21" -- get address with i2cdetect

12 clear = "00000000"b

64

13 address system "i2cset -y 1 " addr "0x"clear∼c2x -- set all output to 0

14

15 --create random Bits

16 bit1= random(0,1)

17 bit2= random(0,1)

18 bit3= random(0,1)

19 bit4= random(0,1)

20 bit5= random(0,1)

21 bit6= random(0,1)

22 bit7= random(0,1)

23 bit8= random(0,1)

24

25 byte = bit8|| bit7 || bit6 || bit5 || bit4 || bit3 || bit2 || bit1 -- create byte

26

27 address system "i2cset -y 1 " addr "0x"byte∼b2x --displays the randomly generated byte

28

29 call syssleep 5

30

31 -- count binary from 0 to 255

32 val = 0

33 do i = 1 to 256

34 address system "i2cset -y 1 " addr "0x"val∼d2x
35 val = val+1

36 call syssleep 0.3

37 end

38 exit

Listing 71: pcf8574 program

5.6.4 pcf8591.rex

Since the Raspberry Pi has no analog inputs, the pcf8591 example uses an analog to digital
converter (ADC). The PCF8591 ADC offers four analog inputs with a resolution of 8 bit.
This means that values between 0 and 255 (decimal) can be displayed. The program has a
routine ”getAnalogInput(n)” with which the four analog inputs can be queried. The analog
inputs are numbered from n= 0 ... 3. In this example, for illustration, a potentiometer is
connected to the analog input 2 to perform measurements. However, all four inputs can be
used simultaneously. The I²C address of the PCF8591 can be read out via i2cdetect. In
these examples it is 0x48 hex.

5.6.4.1 Circuit
The wiring of the PCF8591 ADC is like all I²C devices very simple because only four lines
are needed. VCC must be connected to the power supply of 3.3V. GND must be connected
to Ground. The data line SDA must be connected to GPIO pin 8 and the clock line SCL
must be connected to GPIO pin 9.
Since a measurement is also to be shown, the potentiometer must be connected as follows.
VCC must be connected to the power supply of 3.3V and GND must be connected to Ground.

65

The analog output signal SIG must be connected to the PCF8591 on AI2. It would also be
possible to use one of the other analog inputs.(see Figure 24)

Figure 24: PCF 8591 circuit

5.6.4.2 Sourcecode
The routine ”getAnalogInput”(see Listing 72) expects a parameter with the desired analog
input (line 24) After that the input is checked for correctness and the correct chip address (e.g.
for input 0 the address is 0x40) is stored in the variable ”addr”. In line 32 an array is created
which stores the value received by i2cget command. In line 33 the analog input is queried for
the first time, but this value contains the value of the previous measurement, so in line 34 a
new query is made and stored in the array. In line 36 the value of the second measurement
is returned, but before that it is converted from hexadecimal to decimal. ”substr” is used
because i2cget returns a value in the form of e.g. ”0xf5” and ooRexx needs hexadecimal
numbers in the form ”f5”, therefore the first two characters ”0x” of the received value are
truncated.

23 ::routine getAnalogInput public

24 use arg input

25

66

26 if input = 0 then addr = "0x40"

27 else if input = 1 then addr = "0x41"

28 else if input = 2 then addr = "0x42"

29 else if input = 3 then addr = "0x43"

30 else say "falsche eingabe"

31

32 value = .array∼new
33 address system "i2cget -y 1 0x48 " addr with output append using(value) -- dummy

34 address system "i2cget -y 1 0x48 " addr with output append using(value)

35

36 return x2d(substr(value[2] ,3)) -- 0xf5 -> f5

Listing 72: pcf8594 routine getAnalogInput

Listing 73 shows the value of the potentiometer connected to Analog Input 2 which is read
out and displayed.

19 say getAnalogInput(2)

20 exit

Listing 73: pcf8594 main program

5.6.5 ds3231.rex

This example shows the use of a DS3231 RTC module, which provides time and date via I²C
bus. This module is useful when the Raspberry Pi is operated without an active internet
connection, because the Raspberry Pi does not have a backup battery and therefore does
not save the time when it is switched off. This module has a buffer battery that saves the
time and date even after it is switched off.
There are two routines available to recover the time and date from the DS3231. The routine
”getTime” returns the time in the format HH:MM:SS. The routine ”getDate” returns the
date in the format YY:MM:DD. There are also two routines to set the time and date. With
the routine ”setTime HH ,MM ,SS” the time can be set and with the routine ”setDate YY,
MM, DD” the date can be set.
It is still to be mentioned that the Real time clock does not count decimally but hexadec-
imally. However, this hexadecimal value represents the time decimally. This means for
example that seconds are returned in the hexadecimal notation ”0x00” to ”0x59”. Also
there is the ”setupDS3231” routine, which loads all needed classes via BSF4ooRexx and
makes them available in the local package. The I²C address of the DS3231 can be read out
via i2cdetect. In these examples it is 0x68 hex or 104 decimal.

5.6.5.1 Circuit
The wiring is the same as in all previous I²C examples. VCC is connected to the power
supply of 3.3V, GND is connected to Ground and the two I²C lines are connected to SDA
on GPIO pin 8 and SCL on GPIO pin 9.(see Figure 25)

67

Figure 25: DS3231 Real Time Clock circuit

5.6.5.2 Sourcecode
The routine ”getTime” (see Listing 74) reads the data from the individual registers of the
chip which store the time. Register 0 contains the seconds, register 1 the minutes and register
2 the hours. In line 34 a Java byte array is created which caches the read values. In line 35,
register 0 is read and the received data is stored in an array created in line 34. In line 36,
this value is then read and converted from decimal to hexadecimal and stored in variable ”s”.
Without the conversion, ooRexx would interpret the read hexadecimal value as a decimal
number and output it incorrectly. This process is repeated in lines 37 - 40 also for minutes
and hours. In line 41 the time is then stored in the variable ”time” in the usual form and in
line 42 this value is returned as a string.

33 ::routine getTime public

34 read = bsf.CreateJavaArray("byte.class",2)

35 .device∼read(0,read,0,1)
36 s= read[1]∼d2x
37 .device∼read(1,read,0,1)
38 m= read[1]∼d2x
39 .device∼read(2,read,0,1)
40 h= read[1]∼d2x

68

41 time = h":"m":"s

42 return time

Listing 74: ds3231 routine getTime

The routine ”getDate” (see Listing 75) does the same as the routine ”getTime” only for
”getDate” the registers 4 for days, 5 for month and 6 for year are read and returned.

46 ::routine getDate public

47 read = bsf.CreateJavaArray("byte.class",1)

48 .device∼read(4,read,0,1)
49 d= read[1]∼d2x
50 .device∼read(5,read,0,1)
51 mo= read[1]∼d2x
52 .device∼read(6,read,0,1)
53 y= read[1]∼d2x
54 date = y"."mo"."d

55 return date

Listing 75: ds3231 routine getDate

The routine ”setTime”(see Listing 76) can be used to set the time. Here three parameters
for the desired time in hours(hh), minutes(mm) and seconds(ss) must be passed to the routine
(line 61). These are then written to the respective registers in lines 62-64. Since the routine
BSFRawBytes is used, which only accepts character, the passed value must be converted
from hexadecimal notation to a character.

60 ::routine setTime public

61 use arg hh,mm,ss

62 .device∼write(0,BSFRawBytes(ss∼x2c))
63 .device∼write(1,BSFRawBytes(mm∼x2c))
64 .device∼write(2,BSFRawBytes(hh∼x2c))
65 return

Listing 76: ds3231 routine setTime

The routine ”setDate” (see Listing 77) is changed to the routine ”setTime” again only in
the registers to be written. For this the passed parameters are written into the respective
registers. The values must be passed in the format year(yy), month(momo) and day(dd).

71 ::routine setDate public

72 use arg yy, momo,dd

73 .device∼write(4,BSFRawBytes(dd∼x2c))
74 .device∼write(5,BSFRawBytes(momo∼x2c))
75 .device∼write(6,BSFRawBytes(yy∼x2c))
76 return

Listing 77: ds3231 routine setDate

The routine ”setupDs3231” (see Listing 78) establishes the connection to the required
Java classes and then makes them available in the local package.

69

80 ::routine setupDs3231 public

81 pkgLocal=.context∼package∼local -- get package local directory

82 device = bsf.loadClass("com.pi4j.io.i2c.I2CDevice")

83 i2cbus = bsf.loadClass("com.pi4j.io.i2c.I2CBus")

84 bus = bsf.loadClass("com.pi4j.io.i2c.I2CFactory")∼getInstance(i2cbus∼BUS_1)
85 pkgLocal∼device = bus∼getDevice(104)

Listing 78: ds3231 routine setupDs3231

Listing 79 shows a sample output as the main program. In line 16 the SetupRoutine is called
to get access to all required classes. In line 18 and 19 the time and date are set. In line 22
to 26 an endless loop is executed, which outputs the date and time every second. Line 29 is
necessary to get the possibility to load Java classes with BSF4ooRexx.

16 ::routine setupDs3231 public

17 pkgLocal=.context∼package∼local -- get package local directory

18 device = bsf.loadClass("com.pi4j.io.i2c.I2CDevice")

19 i2cbus = bsf.loadClass("com.pi4j.io.i2c.I2CBus")

20 bus = bsf.loadClass("com.pi4j.io.i2c.I2CFactory")∼getInstance(i2cbus∼BUS_1)
21 pkgLocal∼device = bus∼getDevice(104)

Listing 79: ds3231 routine main program

5.6.6 bh1750.rex

This example shows the use of the BH1750 Ambient Light Sensor. This sensor can measure
the illuminance in the unit lux. Again a setup routine ”setupBh1750” is provided. Further-
more there is the routine ”readBH1750” to read out the actual measured illuminance. The
I²C address of the bh1750 can be read out via i2cdetect. In these examples it is 0x23 hex or
35 decimal.

5.6.6.1 Circuit
The wiring is the same as in all previous I²C examples. VCC is connected to the power
supply of 3.3V, GND is connected to Ground and the two I²C lines are connected to SDA
on GPIO pin 8 and SCL on GPIO pin 9.(see Figure 26)

70

Figure 26: bh1750 Ambient Light Sensor circuit

5.6.6.2 Sourcecode
The routine ”setupBh1750” establishes the connection to the required Java classes and makes
them available in the local package.(see Listing 80)

23 ::routine setupBh1750 public

24 pkgLocal=.context∼package∼local -- get package local directory

25 device = bsf.loadClass("com.pi4j.io.i2c.I2CDevice")

26 i2cbus = bsf.loadClass("com.pi4j.io.i2c.I2CBus")

27 bus = bsf.loadClass("com.pi4j.io.i2c.I2CFactory")∼getInstance(i2cbus∼BUS_1)
28 pkgLocal∼device = bus∼getDevice(35)
29 return

Listing 80: bh1750 routine setupBh1750

The routine ”readBh1750”(Listing 81) performs the measurement and returns the mea-
sured value. In line 36 the command to activate the chip is stored in the variable ”power”
and in line 37 the mode is stored in the variable ”mode”. Mode 20 is used, which means
that a single measurement with a resolution of 1 lux is performed. The modes can be read
in the data sheet.

71

In line 40 to 43 the commands are written to the chip and the program is stopped briefly so
that the chip has time to process the command. In line 46 a Java byte array with a size of
two bytes is created to store the read data in line 47. In line 50 and 51 the read data are
processed and prepared according to the data sheet and in line 52 the value is returned.

34 ::routine readBh1750 public

35 --values from the data sheet

36 power = 1 -- Power on

37 mode = 20 -- One Time H-Res Mode 1lx Resolution --> Datasheet

38

39 /* Activate sensor and select mode */

40 .device∼write(BsfRawBytes(power∼x2c))
41 call syssleep 0.05

42 .device∼write(BsfRawBytes(mode∼x2c))
43 call syssleep 0.5

44

45 /* Read out measured data */

46 read = bsf.CreateJavaArray("byte.class",2)

47 .device∼read(read,0,2)
48

49 /* Convert measured values according to data sheet */

50 msb = 0xff(read[1]) * 256

51 lsb= 0xff(read[2])

52 return (msb+lsb)/1.2

Listing 81: bh1750 routine readBh1750

The routine ”0xFF”(see Listing 82) converts the received signed byte (value range -128
to 127) to an unsigned byte (value range 0 to 255).

58 ::routine 0xff

59 use arg v

60 if v < 0 then return v+256

61 return v

Listing 82: bh1750 routine 0xFF

Listing 83 shows the main program. In line 15 the ”setupBh1750” routine is exe-
cuted to have access to all required components. After that, in line 16, with the routine
”readBH1750”, measurement is executed and the value is output. In line 18 the Java sup-
port is loaded by BSF4ooRexx.

15 call setupBh1750

16 say readBh1750()

17 exit

18 ::requires BSF.CLS -- get Java support

Listing 83: bh1750 main program

72

5.6.7 bh1750pi4oorexx.rex

The example bh1750pi4oorexx is the same as bh1750.rex only the pi4oorexx library is used
for this.

5.6.7.1 Circuit
The wiring has not changed in this example compared to bh1750(see Figure 26)

5.6.7.2 Sourcecode
Listing 84 shows the source code to get access to the bh1750 sensor via pi4oorexx.
In line 12 the required Java class is loaded from the pi4oorexx library via BSF4ooRexx and
at the same time a new instance is created with ”getInstance(1,35)”. ”1” represents the
number of the I²C bus and ”35” represents the address of the chip on the I²C bus. Here it
must be noted that by i2cdetect the value is output in hexadeximal notation and here the
address is given in decimal. i2cdetect has output the address with 0x20 which corresponds
to 35 decimal.
In line 13 the sensor is read out with ”getOptical” and the value is output. In line 14 the
”help” command is executed to get more information in the console. Line 16 establishes the
Java support via BSF4ooRexx.

12 call setupBh1750

13 say readBh1750()

14 exit

15 ::requires BSF.CLS -- get Java support

Listing 84: bh1750pi4oorex main program

5.7 HD44780 LC-Display

As the next example the LC display with a HD44780 controller is presented. In this sub-
chapter, the control of the LC display is presented in three different ways. At the beginning
the control via the parallel interface is presented. Afterwards the control via the I²C bus is
presented. Finally the control with the pi4oorexx library is presented.
This controller is able to control different versions of the display, for example a display with
16 characters per line and two lines. This display is called 1602. There is also a display with
20 characters per line and four lines. This display is then called 2004.

5.7.1 LCDparallel.rex

This example shows the control of the LC display via the parallel interface of the HD-44780
controller. The display offers two modes for the parallel interface. There is an 8-bit mode and
a 4-bit mode. In the 8-bit mode eight data lines must be connected between the display and
the Raspberry Pi. In addition, 8 further control lines or supply lines must be connected. This
would lead to a total of 16 lines. In this example, however, the LC display is controlled in

73

4-bit mode. In 4-bit mode, only 4 data lines are required, since the character to be displayed
is transmitted in two steps. First the upper ”half byte” or upper nibble is transmitted and
then the lower ”half byte” or lower nibble. This leads to a reduction from 16 to 12 lines.
There are three public routines which are necessary to output text to the display.

� setup: Builds the connection to the required classes and provides all required GPIO
pins in the local package.

� init: initializes the display (according to the datasheet) and sets it to 4-bit mode

� LCDprint: outputs the entered text on the LC display

To show something on the display the methods 1) setup and 2) init have to be executed once
at the start of the program this examples based on Java example: adolf-reichwein-schule.
de/bildungsangebote/berufliches-gymnasium/praktische-informatik/newsdetaildvt/

news/lcd-display-fuer-den-raspberry-pi/

5.7.1.1 Circuit
The wiring in 4-bit mode has the advantage of using four data lines less than in 8-bit mode.
However, as can be seen in Figure 27, 12 lines still have to be connected.
The VDD pin on the display must be connected to ground. VSS is connected to the 5V
power supply. V0 is used to adjust the contrast, so it is connected to SIG from a 10 kiloohm
potentiometer. RS is connected to GPIO pin 29. RW is connected to Ground. E is connected
to GPIO pin 28.
Data line D4 is connected to GPIO pin 22. D5 is connected to GPIO pin 23. D6 is connected
to GPIO pin 24 and D7 is connected to GPIO pin 25. At the end both pins for the backlight
have to be connected. A is connected to the 5V power supply and K is connected to ground.
For the additional potentiometer VCC must be connected to the 5V power supply and GND
must be connected to ground.

74

adolf-reichwein-schule.de/bildungsangebote/berufliches-gymnasium/praktische-informatik/newsdetaildvt/news/lcd-display-fuer-den-raspberry-pi/
adolf-reichwein-schule.de/bildungsangebote/berufliches-gymnasium/praktische-informatik/newsdetaildvt/news/lcd-display-fuer-den-raspberry-pi/
adolf-reichwein-schule.de/bildungsangebote/berufliches-gymnasium/praktische-informatik/newsdetaildvt/news/lcd-display-fuer-den-raspberry-pi/

Figure 27: LC-Display parallel Interface 4-Bit Mode circuit

5.7.1.2 Sourcecode

The routine ”setup”(Listing 85) establishes the connection to the GPIO pins and makes
them available in the local package (see line 190 - 203). From line 206 on all commands
necessary to control the display controller are stored and made available in the local package.

188 ::routine setup public

189

75

190 pkgLocal=.context∼package∼local -- get package local directory

191

192 /*Establish connection to the GPIO pins*/

193 GpioFactory = bsf.loadClass("com.pi4j.io.gpio.GpioFactory")∼getInstance
194 RaspiPin = bsf.loadClass("com.pi4j.io.gpio.RaspiPin")

195 pinState = bsf.loadClass("com.pi4j.io.gpio.PinState")

196

197 /*raspipin uses the WPI scheme for pinout*/

198 pkgLocal∼rs =GpioFactory∼provisionDigitalOutputPin(RaspiPin∼GPIO_29,pinState∼LOW)
199 pkgLocal∼e =GpioFactory∼provisionDigitalOutputPin(RaspiPin∼GPIO_28,pinState∼LOW)
200 pkgLocal∼d4 =GpioFactory∼provisionDigitalOutputPin(RaspiPin∼GPIO_22,pinState∼LOW)
201 pkgLocal∼d5 =GpioFactory∼provisionDigitalOutputPin(RaspiPin∼GPIO_23,pinState∼LOW)
202 pkgLocal∼d6 =GpioFactory∼provisionDigitalOutputPin(RaspiPin∼GPIO_24,pinState∼LOW)
203 pkgLocal∼d7 =GpioFactory∼provisionDigitalOutputPin(RaspiPin∼GPIO_25,pinState∼LOW)
204

205 /* commands for the Lc display */

206 pkgLocal∼LCD_CLEARDISPLAY = "01"x

207 pkgLocal∼LCD_ROW_1 = "80"x

208 pkgLocal∼LCD_ROW_2 = "C0"x

209 pkgLocal∼LCD_ROW_3 = "94"x

210 pkgLocal∼LCD_ROW_4 = "D4"x

211 pkgLocal∼COMMANDREGISTER = "00"x

212 pkgLocal∼DATAREGISTER = "01"x

213 return

Listing 85: LCDparallel setup

The routine ”init”(Listing 86) initializes the display controller and sets it to 4-bit mode.
The commands required for this are shown in the data sheet. lcdByte, the routine used in
it, is explained in detail in Listing 87.

140 ::routine init public

141

142 call lcdByte "33"x , .COMMANDREGISTER

143 call syssleep 0.01

144 call lcdByte "32"x , .COMMANDREGISTER

145 call syssleep 0.01

146 call lcdByte "28"x , .COMMANDREGISTER

147 call syssleep 0.01

148 call lcdByte .LCD_CLEARDISPLAY , .COMMANDREGISTER

149 call syssleep 0.01

150 call lcdByte "0C"x , .COMMANDREGISTER

151 call syssleep 0.01

152 call lcdByte "06"x , .COMMANDREGISTER

153 call syssleep 0.01

154 call lcdByte .LCD_CLEARDISPLAY, .COMMANDREGISTER

155 call syssleep 0.05

156 return

Listing 86: LCDparallel init

The routine ”lcdByte”(Listing 87) is responsible for the output of the character at the

76

display, as well as for the control of the controller.
In line 60 the routine accepts two parameters. First the character to be displayed or the
control command (bits) and as second parameter the mode. So if the commandregister or
dataregister should be written. This is also queried in line 63. If the command register is to
be written, i.e. the command is directed to the display controller, the RS line is set to low
and the controller knows that a command follows.
Otherwise, the RS line is set high and the controller knows that data to display follows and
it must be written to the data register. In line 71 to 74 all four data lines are set low to
ensure the output state of these pins. In line 77 the transmitted character is converted to
an 8 bit binary sequence.
In line 80 the preparation of the nibble(half byte) to be transmitted starts. First the upper
nibble must be transmitted and then the lower nibble. To determine which GPIO pins must
be activated or set high, the binary sequence generated in line 77 is checked for ”0” and ”1”.
Since the upper nibble is transmitted first, the first four characters of the binary sequence
are considered and the respective GPIO pins are set high if there is a ”1” in the binary
sequence.
After the first four characters of the binary sequence have been processed and the GPIO pins
have been set high or low, the transmission to the controller follows from line 97. A short
program stop is executed in line 97 and 99 so that the program has time to set the pins to
the respective state. By switching the E pin on and off (lines 98 and 100) the upper nibble
is transferred to the controller.
From line 103 the same follows for the lower nibble. For this the binary sequence from the
fifth to the eighth character is checked for ”0” and ”1” and then output.

59 ::routine lcdByte

60 use arg bits, mode

61

62 /*Decide whether to write to the command or data register*/

63 if mode = .COMMANDREGISTER then do

64 .rs∼LOW
65 end

66 else do

67 .rs∼HIGH
68 end

69

70 /*Set data lines to low*/

71 .d4∼LOW
72 .d5∼LOW
73 .d6∼LOW
74 .d7∼LOW
75

76 /*Convert the passed character into an 8 bit string*/

77 bits = bits∼c2x∼x2b
78

79 /*create upper nibble*/

80 do i=1 to 4

81

77

82 if i = 1 then do

83 if bits[i] = 1 then .d7∼high
84 end

85

86 else if i= 2 then do

87 if bits[i] = 1 then .d6∼high
88 end

89 else if i = 3 then do

90 if bits[i] = 1 then .d5∼high
91 end

92 else

93 if bits[i] = 1 then .d4∼high
94 end

95

96 /*Write data to the register*/

97 call syssleep 0.001

98 .e∼high
99 call syssleep 0.001

100 .e∼low
101

102 /*Set data lines to low*/

103 .d4∼LOW
104 .d5∼LOW
105 .d6∼LOW
106 .d7∼LOW
107

108 /*create lower nibble*/

109 do i=5 to 8

110

111 if i = 5 then do

112 if bits[i] = 1 then .d7∼high
113 end

114

115 else if i= 6 then do

116 if bits[i] = 1 then .d6∼high
117 end

118 else if i= 7 then do

119 if bits[i] = 1 then .d5∼high
120 end

121 else

122 if bits[i] = 1 then .d4∼high
123 end

124

125 /*Write data to the register*/

126

127 call syssleep 0.001

128 .e∼high
129 call syssleep 0.001

130 .e∼low
131 call syssleep 0.001

132

78

133 return

Listing 87: LCDparallel lcdByte

The routine ”LCDprint” (Listing 88) requires two parameters which can be seen in line
172. First, the desired line of the display to be written and the string to be output.
. In line 174 to 177 it checks which line should be selected and sends a command to the
display controller to select the line. In line 178 the string is shortened to 16 characters in case
it would be longer and in line 179 to 181 each character of the string is written individually
into the data register of the display controller to be output.

171 ::Routine LCDprint public

172 use arg zeile, String

173

174 if zeile = 1 then call lcdByte .LCD_ROW_1 , .COMMANDREGISTER

175 else if zeile = 2 then call lcdByte .LCD_ROW_2 , .COMMANDREGISTER

176 else if zeile = 3 then call lcdByte .LCD_ROW_3 , .COMMANDREGISTER

177 else call lcdByte .LCD_ROW_4 , .COMMANDREGISTER

178 string = substr(string,1,16)

179 do j=1 to string∼length
180 call lcdByte String[j] , .DATAREGISTER

181 end

182 return

Listing 88: LCDparallel LCDprint

In Listing 89 we present a short example which displays the time in line 1 of the display
and the current date in line 2. First, however, the routine ”setup” must be called in line
31 and the routine ”init” in line 32 for the output to work. In line 40 the Java support is
provided by BSF4ooRexx. This is needed in this example to set the state of the GPIO pins
to high or low.

31 call setup --load all required connections

32 call init --Initialize display

33

34 say "Clock is running" --outputs time and date

35 do forever

36 call lcdprint 1 ,TIME()

37 call lcdprint 2 , DATE()

38 end

39 exit

40 ::requires BSF.CLS --Get Java Support

Listing 89: LCDparallel main program

5.7.2 LCDi2c.rex

In the first example of the LC display, the connection via parallel interface was demonstrated.
In this example the connection of the display via the I²C interface is presented. For this a
special version of the PCF8574 I/O port expander from chapter 5.6.3 is used. This is specially

79

modified for the control of LC-Displays. It still has only 8 outputs but a potentiometer was
added so that the contrast can be adjusted without an additional potentiometer.
This version has the big advantage that the complicated wiring is omitted. The control is
again in 4-bit mode.
The connection to the I²C bus is established via Pi4J and BSF4ooRexx The I²C address of
the display can be read out via i2cdetect. In these examples it is 0x27 hex or 39 decimal.

5.7.2.1 Circuit
As known from the other I²C examples, the wiring is done with only 4 lines. The LC-Display
needs in contrast to the other I²C examples a power supply of 5V, therefore the VCC pin is
also connected to it. The GND pin is connected to Ground, SDA to GPIO pin 8 and SCL
to GPIO pin 9. By using the I²C bus eight lines are saved compared to the 4-bit mode and
12 lines compared to the 8-bit mode.(see Figure 28)

Figure 28: LC-Display I²C 4-Bit Mode circuit

The routine ”setup” establishes the connection to the required I²C bus via BSF4ooRexx

80

and the Pi4J library and makes the required class available in the local package so that it
can be accessed program-wide.(see Listing 90)

171 ::routine setup public

172 pkgLocal=.context∼package∼local -- get package local directory

173 /*load required classes*/

174 i2cbus = bsf.loadClass("com.pi4j.io.i2c.I2CBus")

175 /*get Instance of I2CFactory on I2C Bus 1 */

176 bus = bsf.loadClass("com.pi4j.io.i2c.I2CFactory")∼getInstance(i2cbus∼BUS_1)
177 /*get Device on I2C Address 0x27 -> 39 decimal*/

178 pkgLocal∼device = bus∼getDevice(39)
179 return

Listing 90: LCDi2c routine setup

5.7.2.2 Sourcecode
The routine ”toByte” (see Listing 91) is used to convert a passed value(line 163) into the
form of a Java byte. A Java byte has a value range from -128 to +127. This is achieved with
the code in lines 165-168.

155 ::routine toByte

156 use arg value

157

158 if value > 127 then do

159 value = value-256

160 return value

161 end

162 return value

Listing 91: LCDi2c routine toByte

The routine ”write” (Listing 92) is responsible for sending the commands to the display
driver, via I²C bus.
In line 118 the routine gets two values. The byte to be output in binary representation and
the desired mode, i.e. whether it is intended for the instruction register or the data register.
In line 120 the passed value of the mode is checked, if the mode is ”1”, the passed byte
is intended for the data register, if it is ”0”, it is intended for the command register. For
this the corresponding commands are stored either in line 121,122 or in line 125,126 in the
variables ”mode” and ”mode ”.
The variable ”mode” or ”mode ” are there to send the control commands to the display. So
that it knows whether it is either in command or data mode, and whether the values on the
data lines are to be read in or not.

This is structured as follows (see Table 6) ,
Bit 1 : Register Select (RS) is responsible for the controller to know if it is a command or
data to be output. In this example it is ”1” therefore the data to be transmitted is data to
be output and not in the control data.
Bit 2: Read/Write(RW) is used to tell the controller whether to read or write data from the

81

register selected in bit 1. In this example the ”0” is transmitted, that means it is written
into the register. Bit 3: With Enable(E) the controller is given the command to read the
data bits on the data lines. In this example Enable is ”1” the controller reads the data from
the data lines. However, so that the controller knows that the transmission is finished, E
must be set to ”0” again. Therefore there are also the two variables ”mode” and ”mode ”
which differ only in bit 3.
Bit 4 : is responsible for the activation or deactivation of the backlight of the display. The
transmission of ”1” means that the backlight is switched on.

Backlight E RW RS
1 1 0 1

Bit 4 Bit 3 Bit 2 Bit 1

Table 6: LCDi2c Explanation of the mode variable

After that, starting from line 131, the data from the variable ”Byte” is prepared for
transmission to the display.
As in the previous LCD example, the data is transferred in 4-bit mode. This means that the
values from the variable ”Byte” (example see Table 7) must be divided into an upper and
lower nibble. First the upper nibble is prepared for the transmission (line 131). For this the
bit 5 to bit 8 of the variable ”Byte” are taken and stored in the variable ”upper Nibble”.
In line 132 the byte to be transmitted is generated. For this the upper nibble(4 bit length)
is combined with the ”mode”(4 bit length) variable to a byte(8 bit length) and converted
into a decimal number. With the routine ”toByte” this decimal number is adapted in such
a way that it corresponds to a Java byte.
In line 133 the same is done only with the difference that now not the variable ”mode” but
”mode ” is used. The reason for this is that the Enable(E) input at the controller is switched
on and off for a short time and thus reads the data.
After that the same process is repeated for the lower nibble.

Bit 8 Bit 7 Bit 6 Bit 5 Bit 4 Bit 3 Bit 2 Bit 1
0 1 0 0 1 1 0 1

upper Nibble lower Nibble

Table 7: LCDi2c byte example letter ”M”

After that, in line 143 to 147, a Java byte array is created by BSF4ooRexx and all four
commands are put into this array. In line 150 the commands are written to the controller
one after the other.
As an example, Table 8 lists all four commands necessary to output the letter ”M” on the
display.

82

register Nibble Backlight Enable RW RS
Bits Bit 8 Bit 7 Bit 6 Bit 5 Bit 4 Bit 3 Bit 2 Bit 1

enable 1 0 1 0 0 1 1 0 1
Command 1 upper Nibble control data
enable 0 0 1 0 0 1 0 0 1

Command 2 upper Nibble control data
enable 1 1 1 0 1 1 1 0 1

Command 3 lower Nibble control data
enable 0 1 1 0 1 1 0 0 1

Command 4 lower Nibble control data

Table 8: LCDi2c Example print ”M” at Display

After these four commands have been transmitted to the display controller, the letter
”M” is shown on the display.

110 ::routine write

111 use arg byte, m

112

113 if m = 1 then do --Datamode

114 mode = 1101

115 mode_ = 1001

116 end

117 else do --Commandmode

118 mode = 1100

119 mode_ = 1000

120 end

121

122 -- create upper Nibble

123

124 upper_Nibble = substr(byte,1,4)

125 by_un_en = toByte((upper_Nibble||mode)∼b2x∼x2d)
126 by_un_en_ = toByte((upper_nibble||mode_)∼b2x∼x2d)
127

128 -- create lower Nibble

129 lower_Nibble = substr(byte,5,4)

130

131 by_ln_en = toByte((lower_Nibble||mode)∼b2x∼x2d)
132 by_ln_en_ = toByte((lower_nibble||mode_)∼b2x∼x2d)
133

134 --put the bytes into a Java Byte array

135

136 out=bsf.createJavaArray("byte.class", 4)

137 out∼put(by_un_en,1)
138 out∼put(by_un_en_,2)
139 out∼put(by_ln_en,3)
140 out∼put(by_ln_en_,4)
141

142 /*write byte by byte to the controller*/

83

143 do i= 1 to 4

144 .device∼write(out[i])
145 end

146 return

Listing 92: LCDi2c routine write

The routine ”printline”(Listing 93) is used to output text to the display. For this two
parameters are needed (line 92), these are the string to be printed and the desired line to
be written to. In line 93 the mode is set to ”1” so that the data mode is selected. In line 95
the string is shortened to a maximum length of 16 characters. In line 99 and line 100 it is
checked which line was selected. In line 105 the string is split into its individual characters,
then each individual character is converted into a binary sequence and passed to the routine
”write”, so that it outputs the character on the display.

84 ::routine printline public

85 use arg string, line

86 mode = 1 -- mode 1 = Datamode

87

88 if string∼length > 16 then string = substr(string,1,16)

89 /* -- for a 2004 Display

90 if string∼length > 20 then string = substr(string,1,20)

91 */

92 if line = 1 then call printcmd "80"x

93 if line = 2 then call printcmd "C0"x

94 /* --for a 2004 Display

95 if line = 3 then call printcmd "94"x

96 if line = 4 then call printcmd "D4"x

97 */

98 do i=1 to string∼length
99 call write String[i]∼c2x∼x2b, mode

100 end

101

102 return

Listing 93: LCDi2c routine printline

The routine ”printcmd”(Listing 94) is used to send commands to the display controller.
To do this, mode ”0” is selected in line 82 and the command passed is sent to the controller
via the ”write” routine in line 83.

73 :routine printcmd

74 use arg cmd

75 mode = 0 -- Mode 0 = CMD mode

76 call write cmd∼c2x∼x2b , mode

77 return

Listing 94: LCDi2c routine printcmd

The routine ”init” (Listing 95) is necessary to put the display controller into the desired
mode.

84

55 ::routine init public

56 --4 Bit Mode

57 call printcmd "33"x

58 --4 Bit Mode

59 call printcmd "32"x

60 -- 4Bit 2 Line

61 call printcmd "28"x

62 --Turn display on

63 call printcmd "0C"x

64 -- move cursor right

65 call printcmd "06"x

66 return

Listing 95: LCDi2c routine init

The routine ”clear” (Listing 96) can be used to clear the display content.

44 ::routine clear public

45

46 call printcmd "01"x

47 return

Listing 96: LCDi2c routine clear

Listing 97 shows an example program, which first executes the routine ”setup” in line
24 to get access to the desired Java classes. Afterwards the display is initialized with the
routine ”init” and in line 28 the output on the display is deleted.
In line 31 ”Hello World” is output in row one, then one second is waited and in line 33 ”from
ooRexx” is output in row two. After that the content stays on the display for five seconds
and is cleared with ”clear”. Line 39 establishes the Java support via BSF4ooRexx.

24 /*Make i2c device available*/

25 call setup

26 /*initialize the device*/

27 call init

28 /*clear the display*/

29 call clear

30

31 /* Sample Output*/

32 call printline "Hello World" , 1

33 call syssleep 1

34 call printline "from ooRexx" , 2

35 call syssleep 5

36 call clear

37

38 exit

39

40 ::Requires BSF.CLS --get Java Support

Listing 97: LCDi2c example main programm

85

5.7.3 LCDpi4oorexx.rex

As a third example, the control of the LC display using the pi4oorexx library is shown. This
is done again via the I²C bus.

5.7.3.1 Circuit
The wiring hast not changed in this example compared to LCDi2c (see Figure 28)

5.7.3.2 Sourcecode

Listing 98 shows an example program how to control a LC display using the pi4oorexx
library.
First all needed classes are loaded in line 13 - 16. In line 18 the connection to the device is
established and in line 20 a new object of the pi4oorexx class is created.
After that the display can already be controlled. In line 22 the ”Help” routine is called,
which provides information about the pi4oorexx class and also about the wiring. In line
24 the display content is cleared so that in line 26 and 27 text can be printed on it by the
”display string” routine. After that the content is cleared again after three seconds and text
is printed again, but this time with ”dispay string pos”. With this routine the position of
the first character can be specified. After that the output is cleared again and at the end
the routine ”backlight” is demonstrated, which switches the backlight off and on again.
In line 43 the Java support is loaded by BSF4ooRexx.

12 /* load all required classes*/

13 lcd = bsf.import("at.pi4oorexx.lcd.I2CLCD")

14 i2cbus = bsf.loadClass("com.pi4j.io.i2c.I2CBus")

15 /*get Instance of I2C Factory: I2C Bus 1 */

16 bus = bsf.loadClass("com.pi4j.io.i2c.I2CFactory")∼getInstance(i2cbus∼BUS_1)
17 /*get Device on I2C Address 0x27 -> 39 int*/

18 device = bus∼getDevice(39)
19 /*build new object*/

20 screen =lcd∼new(device)
21 /*use the help function to learn more about the available routines*/

22 screen∼help
23 /*clear screen*/

24 screen∼clear
25 /*display string on desired line*/

26 screen∼display_string("Hello World",1)

27 screen∼display_string(" from ooRexx",2)

28

29 call syssleep 3

30 screen∼clear
31

32 /*display string on desired line and desired positon*/

33 screen∼display_string_pos("Hello from",1,2)

34 screen∼display_string_pos("ooRexx",2,3)
35 call syssleep 3

36 screen∼clear

86

37 call syssleep 1

38 /*Backlight off-on*/

39 screen∼backlight(0)
40 call syssleep 0.5

41 screen∼backlight(1)
42

43 ::requires BSF.CLS --get Java Support

Listing 98: LCDpi4oorexx main programm

5.8 RFIDAttendance.rex

This example shows a use case that connects several components. As an example, the
creation of a simple RFID attendance system was chosen. This includes an MFRF522 RFID
reader, an LC display, two push buttons and a buzzer. This makes it possible to record the
presence of employees in a file.
The operation starts by pressing the ”come” or ”go” button, which triggers the RFID reader,
which is then ready for reading for about five seconds. If the RFID card is held up to the
reader until then, it is read and, if successful, the data record with time and date is written
to a file. The status can be read on the LC display. Successful reading is also acknowledged
with a ”beep”. If the reading process is not successful, this is also indicated on the LC display
and acknowledged with three ”beeps”. For the use of this example a file with employee data
”emp.dat” must be created which contains the ID of the RFID card and its name. Other
data is also possible.
This example uses the Pi4J and the pi4oorexx library. These are loaded by BSF4ooRexx.

5.8.0.1 Circuit
First the LC-Diplay is described, because the wiring of this is connected the same way as
all other I²C devices. VCC is connected to the 3.3V power supply, GND is connected to
Ground. SDA is connected to GPIO pin 8 and SCL is connected to GPIO pin 9. After that
the RFID reader is connected, it is connected via SPI. VCC is connected to the 3.3V power
supply. MOSI is connected to GPIO pin 12. MISO is connected to GPIO pin 13. SCLK is
connected to GPIO pin 14. GND is connected to Ground. CE0 is connected to GPIO pin
10 and RST is connected to GPIO pin 6. IRQ is not needed in this example therefore it is
not connected. the ”come” and ”go” buttons are connected as follows. Pin 1 is connected
to the 3.3V power supply. Pin 2, the ”go” button, is connected to GPIO pin 24. Pin 3, the
”come” button, is connected to GPIO pin 5.
The buzzer contact SIG is connected to GPIO pin 1 and GND to Ground. (see Figure 29)

87

Figure 29: RFID Attendance System circuit

5.8.0.2 Sourcecode

The ”setup” routine(Listing 99) is used to load all required classes and make them avail-
able in the local package. Line 114 creates the package. In line 116-118 the RFID reader is
initialized. In line 121-127 the two inputs (buttons) and the output (buzzer) are initialized.
in line 131-136 the LC-Display is initialized.

113 ::routine setup

114 pkgLocal=.context∼package∼local -- get package local directory

115 --- initialzie MFRC522

116 rc522clientimpl = bsf.loadClass("at.pi4oorexx.mfrc522.rc522.RC522ClientImpl")

117 card = bsf.loadClass("at.pi4oorexx.mfrc522.model.card.Card")

118 pkgLocal∼rc522client = rc522clientimpl∼createInstance
119 --- initialize Button and Buzzer

120

121 gpio = bsf.loadClass("com.pi4j.io.gpio.GpioFactory")∼getInstance
122 RaspiPin = bsf.loadClass("com.pi4j.io.gpio.RaspiPin")

123 PinPullDown = bsf.loadClass("com.pi4j.io.gpio.PinPullResistance")∼PULL_DOWN
124 pkgLocal∼pinCome = gpio∼provisionDigitalInputPin(RaspiPin∼GPIO_05,PinPullDown)
125 pkgLocal∼pinGo = gpio∼provisionDigitalInputPin(RaspiPin∼GPIO_24,PinPullDown)
126 pinstate = bsf.loadClass("com.pi4j.io.gpio.PinState")

127 pkgLocal∼pinBuzzer = gpio∼provisionDigitalOutputPin(RaspiPin∼GPIO_01,pinstate∼high)
128

129 --- initialize LC- Display

88

130

131 device = bsf.loadClass("com.pi4j.io.i2c.I2CDevice")

132 lcd = bsf.import("at.pi4oorexx.lcd.I2CLCD")

133 i2cbus = bsf.loadClass("com.pi4j.io.i2c.I2CBus")

134 bus = bsf.loadClass("com.pi4j.io.i2c.I2CFactory")∼getInstance(i2cbus∼BUS_1)
135 device = bus∼getDevice(box(’int’,39)) --0x27 = 39 hex -> int

136 pkgLocal∼screen =lcd∼new(device)
137 return

Listing 99: RFIDAttendance routine setup

The ”readwrite” routine(Listing 100) is used to write the data read by RFID to a file. In
line 23 the paramenter is passed or the person comes or goes. this is necessary so that the
correct entry is written to the file.
In line 25 the auxiliary variable ”nocard” is created and assigned to the value ”0”. this is
needed so that the LC-Display only displays the output ”Hold card to reader”.
After that, a loop is created in line 27, which generates a total of 10 read attempts. After
that in line 28 the value of the RFID card is read.
In line 30 again an auxiliary variable ”readok” is created, which is set to ”1” when the card
is read successfully.
In line 31 it is checked if data was read If no data was read, the display shows that the card
should be held to the reader and the ”nocard” variable created before in line 25 is set to
”1” so that the output is not updated at each run. If data are read, the code from line 41 is
executed. This causes the ID of the card to be read. After that in line 44 the file with the
employees is read by stream object. In line 47 a loop starts, which compares all available
employees or their ID from the ”emp.dat” file with the read ID. in line 49 the read-in data
from the ”emp.dat” file are split into individual variables. e.g. ID. If a matching ID is
found, its name with time and date (line 55 or 62) is written into the ”attendance.csv” file.
If the value of the variable cg is ”come”, then ”come” is also written to the file, otherwise
”go”. As well as ”card detected” and either ”Hi” or ”bye” + name is output. Depending
on the ”cg” variable. Additionally there is an audible confirmation that the data has been
read successfully. and the loop counter is incremented(parts 10) to end the loop.additionally
the auxiliary variable ”readok” is set. If no data has been read after ten read attempts
and readok is ”0”, ”no card detected” is output on the display from line 87 and this is
acknowledged with three ”beeps”.

22 ::routine readwrite

23 use arg cg

24

25 nocard = 0 --so that display is not constantly updated when no card is present

26

27 do i=1 to 10 -- 10 reading attempts

28 carddata= .rc522client∼readCardData
29 call syssleep(0.1)

30 readok=0

31 if carddata == .nil then do

32

33 say "no card yet"

89

34 if nocard ==0 then do

35 .screen∼clear
36 .screen∼display_string_pos("Hold card",1,0)

37 .screen∼display_string_pos("to reader",2,0)

38 nocard = 1

39 end

40 end

41 else do

42 tagID = carddata∼getTagIdAsString
43 say "card detected" tagID

44 emp = .stream∼new("emp.dat")
45 emp∼open("read")
46

47 do while emp∼lines<> 0

48 data = emp∼linein
49 parse var data tag "," name "," perso

50 if tag = tagID then do

51 --say tagid passt

52 file =.stream∼new("attendance.csv")
53 file∼open("write")
54 if cg = "come" then do

55 file∼lineout(date() ", "Time() "," name "," COME)

56 say come

57 .screen∼clear
58 .screen∼display_string_pos("card detected" ,1,0)

59 .screen∼display_string_pos(("Hi" name) ,2,0)

60 end

61 else do

62 file∼lineout(date() ", "Time() "," name "," GO)

63 say go

64 .screen∼clear
65 .screen∼display_string_pos("card detected" ,1,0)

66 .screen∼display_string_pos("Bye" name,2,0)

67 end

68 file∼close
69 call beep 1

70 call syssleep (2)

71 i=10 --> end loop

72 readOK = 1

73 end

74 end

75 end

76

77 call syssleep(0.2)

78

79 if (i==10 & readok == 0) then do

80 .screen∼clear
81 .screen∼display_string_pos("no card",1,0)

82 .screen∼display_string_pos("detected!!!",2,0)
83 call syssleep(1)

84 call beep 3

90

85 end

86

87 end

88 .screen∼clear
89

90 return

Listing 100: RFIDAttendance routine readwrite

The ”beep” routine(Listing 101) is used to generate an acoustic signal with the buzzer.

100 ::routine beep

101 use arg n

102

103 do i = 1 to n

104 .pinBuzzer∼low
105 call Syssleep(0.05)

106 .pinBuzzer∼high
107 call Syssleep(0.05)

108 end

109 return

Listing 101: RFIDAttendance routine beep

The main program (see listing 102) first calls the ”setup” routine and clears the display
contents. After that an endless loop is started which waits for button inputs. If the ”come”
button is pressed the routine ”readwrite” is called with the parameter ”come”, with the ”go”
button the same happens only with the parameter ”go”. The current time is also shown on
the display. In line 19 BSF4ooRexx is loaded, which provides Java support.

100 call setup

101 call syssleep 0.2

102 .screen∼clear
103 call syssleep 0.2

104 say "start"

105 do forever

106 .screen∼display_string_pos("TIME"(),1,3)
107

108 if .pinCome∼getState∼toString =="HIGH" then call readwrite "come" -- come button

109 if .pinGo∼getState∼toString =="HIGH" then call readwrite "go" -- go button

110 call syssleep(0.2)

111 end

112

113 exit

114

115 ::requires BSF.CLS -- get Java Support

Listing 102: RFIDAttendance main program

91

6 Conclusio

The conclusion of this bachelor thesis is a conclusion and an outlook from the author’s point
of view. In this thesis the programming with ooRexx on a Raspberry Pi was presented. The
author described the necessary software, showed how to install it and presented examples
he developed himself. The author has thus proven that it is possible to program sensors
connected to a Raspberry Pi using ooRexx and BSF4ooRexx, which clearly answers the
research question. As already explained, BSF4ooRexx provides a simple way to use Java
classes without knowing complicated terms. The programming is simplified clearly and
can be used so by a broader mass. Especially on the comparatively inexpensive Raspberry
Pi many programmers, or just interested in it, have the opportunity to develop their own
programs. ooRexx therefore opens a door to develop simple programs with relatively little
know-how. The more one deals with programming in general and ooRexx in particular, the
more complex programs can be developed.
In the future, from the author’s point of view, work will definitely continue with ooRexx,
since its ease of use is an enormous advantage over programming in Java. The author is of
the opinion that ooRexx can be further developed in the future in such a way that access
to Java classes will no longer be necessary. One will program directly with ooRexx and use
own, just as easily accessible, classes.

92

7 Appendix

7.1 Source Codes

The source codes created for the work can be found at the following link https://github.

com/pi4oorexx

7.2 LaTex

The author used LaTex software package to create this work.
The LaTex package ”Listings” was used to display the source code. This LaTex package
has a syntax highlighting for Rexx intigrated. It does not handle the syntax of ooRexx,
but you can insert the needed commands by yourself. Listing 103 shows where you can add
your own keywords. In line 29 at morekeywords you can add your own keywords. Here, for
example, among other things ”myOwnKeyword” was added.The code in line 51 is also very
important, otherwise the code from the listings cannot be copied correctly formatted.

1 \lstset{

2 % normal tilde symbol

3 literate={∼} {\sim}{1},

4 %background color; you must add \usepackage{xcolor}; should come as last argument

5 backgroundcolor=\color{darkgray},

6 % the size of the fonts that are used for the code and textcolor

7 basicstyle=\ttfamily\scriptsize\color{white}

8 % sets if automatic breaks should only happen at whitespace

9 breakatwhitespace=false,

10 % sets automatic line breaking

11 breaklines=true,

12 % sets the caption-position to bottom

13 captionpos=b,

14 % comment style

15 commentstyle=\color{red},

16 % if you want to delete keywords from the given language

17 deletekeywords={...},

18 % lets you use non-ASCII characters; for 8-bits encodings only, doesnt work with UTF-8

19 extendedchars=true,

20 % keeps spaces in text, useful for keeping indentation of code

21 keepspaces=true,

22 % keyword style

23 keywordstyle=\color{myorange},

24 % the language of the code

25 language=OORexx,

26 % if you want to add more keywords to the set

27 morekeywords={::requires,::routine,public, myOwnKeyword},

28 % where to put the line-numbers; possible values are (none, left, right)

29 numbers=left,

30 % how far the line-numbers are from the code

31 numbersep=5pt,

32 % the style that is used for the line-numbers

93

https://github.com/pi4oorexx
https://github.com/pi4oorexx

33 numberstyle=\tiny\color{mygray},

34 % if not set, the frame-color may be changed on line-breaks within not-black text

35 rulecolor=\color{red},

36 % show spaces everywhere adding particular underscores; it overrides ’showstringspaces’

37 showspaces=false,

38 % underline spaces within strings only

39 showstringspaces=false,

40 % show tabs within strings adding particular underscores

41 showtabs=false,

42 % the step between two line-numbers. If it’s 1, each line will be numbered

43 stepnumber=1,

44 % string literal style

45 stringstyle=\color{green},

46 % sets default tabsize to 2 spaces

47 tabsize=2,

48 % copy text enable

49 columns=fullflexible,

50 % show the filename of files included with \lstinputlisting; also try caption

51 title=\lstname

52 }

Listing 103: lstListings Configuration

Listing 104 shows a short ooRexx program that demonstrates how to display custom
keywords. Attention, this program is not executable because it only serves to demonstrate
the display of the keyword.

1 do i= 1 to 5

2 myOwnKeyword i

3 end

Listing 104: myOwnKeyword

94

References

[ABa90] Michael A.Banks. BITS, BAUD RATE, AND BPS , Taking the Mystery Out of
Modem Speeds. 1990. url: http://www.textfiles.com/apple/bitsbaud.txt
(visited on 02/14/2022).

[Ard] Arduino. Serial. url: https://www.arduino.cc/en/reference/serial>
(visited on 02/12/2022).

[Ass] Open Source Hardware Association. A Resolution to Redefine SPI Signal Names.
url: https://www.oshwa.org/a-resolution-to-redefine-spi-signal-
names/ (visited on 02/04/2022).

[Ass15] Rexx Language Association. About Open Object Rexx. 2015. url: https://www.
oorexx.org/about.html (visited on 02/04/2022).

[Ass21] Rexx Language Association. What is Rexx? 2021. url: https://www.rexxla.
org/rexxlang/ (visited on 02/07/2022).

[bit19] bitreporter.de. Alle Raspberry Pi Modelle: Übersicht + Bilder. Nov. 2019. url:
https://bitreporter.de/raspberrypi/raspberry-pi-geschichte-modelle-

und-bauformen/ (visited on 02/14/2022).

[Cow90] Michael Cowlishaw. The REXX Language,A Practical Approach to Programming.
2nd ed. Prentice-Hall, Inc, 1990.

[del] delftstack.com. Java Classpath. url: https://www.delftstack.com/de/howto/
java/java-classpath-/ (visited on 02/13/2022).

[Del20] Frank Delporte. Getting started with Java on the Raspberry Pi,A lot of small
and bigger examples to introduce you to Java(11+), JavaFX (11+), Pi4J, Spring,
Queues. . . with hardwareprojects on the Raspberry Pi. Leanpub, 2020.

[Del21] John Delvare. I²C Tools for Linux. 2021. url: https://i2c.wiki.kernel.org/
index.php/I2C_Tools (visited on 02/12/2022).

[Dem19] Klaus Dembowski. Raspberry Pi – Dastechnische Handbuch.Konfiguration, Hard-
ware,Applikationsentwicklung. 3rd ed. Springer Vieweg, 2019.

[Dyc21] Tony Dycks. Stable RPM Based Linux Distros for theRaspberry Pi 4. Nov. 2021.
url: https://www.rexxla.org/presentations/2021/RexxLA2021-StableRPMLinuxDistro-
RPi4-TDycks.pdf (visited on 02/13/2022).

[Elea] Elektronik-Kompendium.de. Raspberry Pi: Belegung GPIO. url: https://www.
elektronik-kompendium.de/sites/raspberry-pi/1907101.htm (visited on
02/14/2022).

[Eleb] Elektronik-Kompendium.de. Raspberry Pi: GPIO mit Pullup- oder Pulldown-Widerstand
beschalten? url: https://www.elektronik-kompendium.de/sites/raspberry-
pi/2006051.htm (visited on 02/14/2022).

95

http://www.textfiles.com/apple/bitsbaud.txt
https://www.arduino.cc/en/reference/serial>
https://www.oshwa.org/a-resolution-to-redefine-spi-signal-names/
https://www.oshwa.org/a-resolution-to-redefine-spi-signal-names/
https://www.oorexx.org/about.html
https://www.oorexx.org/about.html
https://www.rexxla.org/rexxlang/
https://www.rexxla.org/rexxlang/
https://bitreporter.de/raspberrypi/raspberry-pi-geschichte-modelle-und-bauformen/
https://bitreporter.de/raspberrypi/raspberry-pi-geschichte-modelle-und-bauformen/
https://www.delftstack.com/de/howto/java/java-classpath-/
https://www.delftstack.com/de/howto/java/java-classpath-/
https://i2c.wiki.kernel.org/index.php/I2C_Tools
https://i2c.wiki.kernel.org/index.php/I2C_Tools
https://www.rexxla.org/presentations/2021/RexxLA2021-StableRPMLinuxDistro-RPi4-TDycks.pdf
https://www.rexxla.org/presentations/2021/RexxLA2021-StableRPMLinuxDistro-RPi4-TDycks.pdf
https://www.elektronik-kompendium.de/sites/raspberry-pi/1907101.htm
https://www.elektronik-kompendium.de/sites/raspberry-pi/1907101.htm
https://www.elektronik-kompendium.de/sites/raspberry-pi/2006051.htm
https://www.elektronik-kompendium.de/sites/raspberry-pi/2006051.htm

[Fla12] Rony G. Flatscher. “Automatisierung mit ooRexx und BSF4ooRexx”. In: Pro-
ceedings der GMDS 2012 / Informatik 2012 (2012), pp. 1–12.

[Fla13] Rony G. Flatscher. Introduction to Rexx and ooRexx, From Rexx to Open Object
Rexx (ooRexx). 1st ed. Facultas Verlags- und Buchhandels AG. Wien, 2013.

[fre21] freenove.com. Freenove Ultimate Starter Kit for Raspberry PI. 2021. url: https:
//github.com/Freenove/Freenove_Ultimate_Starter_Kit_for_Raspberry_

Pi/blob/master/Tutorial.pdf (visited on 02/11/2022).

[Gay18] Warren Gay. Advanced Raspberry Pi: Raspbian Linux and GPIO Integration.
2nd ed. Apress Media LLC, 2018.

[Hen] Gordon Henderson. Wiring Pi, Software PWM Library. url: http://wiringpi.
com/ (visited on 02/12/2022).

[Hen22] Gordon Henderson. Wiring Pi,GPIO Interface library for the Raspberry Pi. 2022.
url: http://wiringpi.com/reference/software-pwm-library/ (visited on
02/12/2022).

[Hor13] Brendan Horan. Practical Raspberry Pi. Apress, 2013.

[Hus21] Rebecca Husemann.Die besten Breakout-Boards für Maker. Feb. 2021. url: https:
//www.heise.de/news/Die-besten-Breakout-Boards-fuer-Maker-5051937.

html (visited on 02/14/2022).

[Ike18] Naoki Ikeguchi. BME280.java. Aug. 2018. url: https://github.com/siketyan/
TempRa/blob/master/src/main/java/io/github/siketyan/monitor/util/

BME280.java (visited on 02/15/2022).

[int21] maxim integrated.MAX7219 Datasheet. 2021. url: https://datasheets.maximintegrated.
com/en/ds/MAX7219-MAX7221.pdf (visited on 02/06/2022).

[Jar+a] Aurelien Jarno et al. i2cdetect(8) - Linux man page. url: https://linux.die.
net/man/8/i2cdetect (visited on 02/15/2022).

[Jar+b] Aurelien Jarno et al. i2cget(8) - Linux man page. url: https://linux.die.net/
man/8/i2cget (visited on 02/15/2022).

[Jar+c] Aurelien Jarno et al. i2cset(8) - Linux man page. url: https://linux.die.net/
man/8/i2cset (visited on 02/15/2022).

[Java] Java. What is Java? url: https://www.java.com/en/download/help/whatis_
java.html (visited on 02/08/2022).

[Javb] JavaTpoint. History of Java. url: https://www.javatpoint.com/history-of-
java (visited on 02/08/2022).

[JLe21] Matthew J.Lewis. Diozero. 2021. url: https : / / github . com / mattjlewis /

diozero (visited on 02/15/2022).

[Lab] Silicon Labs. AN0059.0: UART Flow Control. url: https://www.silabs.com/
documents/public/application-notes/an0059.0-uart-flow-control.pdf

(visited on 02/14/2022).

96

https://github.com/Freenove/Freenove_Ultimate_Starter_Kit_for_Raspberry_Pi/blob/master/Tutorial.pdf
https://github.com/Freenove/Freenove_Ultimate_Starter_Kit_for_Raspberry_Pi/blob/master/Tutorial.pdf
https://github.com/Freenove/Freenove_Ultimate_Starter_Kit_for_Raspberry_Pi/blob/master/Tutorial.pdf
http://wiringpi.com/
http://wiringpi.com/
http://wiringpi.com/reference/software-pwm-library/
https://www.heise.de/news/Die-besten-Breakout-Boards-fuer-Maker-5051937.html
https://www.heise.de/news/Die-besten-Breakout-Boards-fuer-Maker-5051937.html
https://www.heise.de/news/Die-besten-Breakout-Boards-fuer-Maker-5051937.html
https://github.com/siketyan/TempRa/blob/master/src/main/java/io/github/siketyan/monitor/util/BME280.java
https://github.com/siketyan/TempRa/blob/master/src/main/java/io/github/siketyan/monitor/util/BME280.java
https://github.com/siketyan/TempRa/blob/master/src/main/java/io/github/siketyan/monitor/util/BME280.java
https://datasheets.maximintegrated.com/en/ds/MAX7219-MAX7221.pdf
https://datasheets.maximintegrated.com/en/ds/MAX7219-MAX7221.pdf
https://linux.die.net/man/8/i2cdetect
https://linux.die.net/man/8/i2cdetect
https://linux.die.net/man/8/i2cget
https://linux.die.net/man/8/i2cget
https://linux.die.net/man/8/i2cset
https://linux.die.net/man/8/i2cset
https://www.java.com/en/download/help/whatis_java.html
https://www.java.com/en/download/help/whatis_java.html
https://www.javatpoint.com/history-of-java
https://www.javatpoint.com/history-of-java
https://github.com/mattjlewis/diozero
https://github.com/mattjlewis/diozero
https://www.silabs.com/documents/public/application-notes/an0059.0-uart-flow-control.pdf
https://www.silabs.com/documents/public/application-notes/an0059.0-uart-flow-control.pdf

[Lon21] Simon Long. Bullseye – the new version of Raspberry Pi OS. 2021. url: https:
//www.raspberrypi.com/news/raspberry-pi-os-debian-bullseye/ (visited
on 02/12/2022).

[Mat21] MathWorks. The Raspberry Pi PWM. 2021. url: https://de.mathworks.com/
help/supportpkg/raspberrypiio/ug/the-raspberry-pi-pwm.html (visited
on 02/14/2022).

[Mic20] Christoph Scherbeck Michael Kofler Charly Kühnast. Raspberry Pi, Das um-
fassende Handbuch. 6th ed. Rheinwerk Verlag GmbH, 2020.

[Mika] Mikrocontoller.net. I²C. url: https://www.mikrocontroller.net/articles/
I%C2%B2C (visited on 02/12/2022).

[Mikb] Mikrocontroller.net. SPI Daisychain. url: https://www.mikrocontroller.net/
articles/SPI_Daisychain (visited on 02/12/2022).

[mik] mikrocontroller.net. AVR-Tutorial: UART. url: https://www.mikrocontroller.
net/articles/AVR-Tutorial:_UART (visited on 02/12/2022).

[Moh17] Martin Mohr. “I2C-Reichweite steigern mit dem P82B715”. In: Raspberry Pi Geek
(Feb. 2017).

[Mol16] Derek Molloy. Exploring Raspberry Pi, Interfacing to the Real World with Embed-
ded Linux. John Wiley and Sons, Inc., 2016.

[Mon16] Simon Monk. Raspberry Pi Cookbook. 2nd ed. O’Reilly Media Inc., 2016.

[Nov21] Novatel. GPRMC, GPS specific information. 2021. url: https://docs.novatel.
com/OEM7/Content/Logs/GPRMC.htm (visited on 02/15/2022).

[Oraa] Oracle. Introduction to Java. url: https://www.oracle.com/java/technologies/
introduction-to-java.html (visited on 02/08/2022).

[Orab] Oracle. Java Platform Overview. url: https://docs.oracle.com/javase/8/
docs/technotes/guides/index.html (visited on 02/08/2022).

[Pi4] Pi4J. About Pi4J. url: https://pi4j.com/about/ (visited on 02/12/2022).

[pim21] pimylifeup. The Different Versions of the Raspberry Pi. 2021. url: https://
pimylifeup.com/raspberry-pi-versions/ (visited on 02/10/2022).

[Pla] Prof. Jürgen Plate. Raspberry Pi: SPI-Schnittstelle, Grundlagen. url: http://
www.netzmafia.de/skripten/hardware/RasPi/RasPi_SPI.html (visited on
02/14/2022).

[pro] programming.guide. Java: Byte (class) vs byte (primitive). url: https://programming.
guide/java/byte-vs-byte.html (visited on 02/16/2022).

[Ras] Pi Foundation Raspberry. About Us. url: https://www.raspberrypi.org/
about/ (visited on 02/10/2022).

[Rat21] Sushil Rathore. I2C Utilities in Linux. Oct. 2021. url: https://linuxhint.com/
i2c-linux-utilities/ (visited on 02/15/2022).

97

https://www.raspberrypi.com/news/raspberry-pi-os-debian-bullseye/
https://www.raspberrypi.com/news/raspberry-pi-os-debian-bullseye/
https://de.mathworks.com/help/supportpkg/raspberrypiio/ug/the-raspberry-pi-pwm.html
https://de.mathworks.com/help/supportpkg/raspberrypiio/ug/the-raspberry-pi-pwm.html
https://www.mikrocontroller.net/articles/I%C2%B2C
https://www.mikrocontroller.net/articles/I%C2%B2C
https://www.mikrocontroller.net/articles/SPI_Daisychain
https://www.mikrocontroller.net/articles/SPI_Daisychain
https://www.mikrocontroller.net/articles/AVR-Tutorial:_UART
https://www.mikrocontroller.net/articles/AVR-Tutorial:_UART
https://docs.novatel.com/OEM7/Content/Logs/GPRMC.htm
https://docs.novatel.com/OEM7/Content/Logs/GPRMC.htm
https://www.oracle.com/java/technologies/introduction-to-java.html
https://www.oracle.com/java/technologies/introduction-to-java.html
https://docs.oracle.com/javase/8/docs/technotes/guides/index.html
https://docs.oracle.com/javase/8/docs/technotes/guides/index.html
https://pi4j.com/about/
https://pimylifeup.com/raspberry-pi-versions/
https://pimylifeup.com/raspberry-pi-versions/
http://www.netzmafia.de/skripten/hardware/RasPi/RasPi_SPI.html
http://www.netzmafia.de/skripten/hardware/RasPi/RasPi_SPI.html
https://programming.guide/java/byte-vs-byte.html
https://programming.guide/java/byte-vs-byte.html
https://www.raspberrypi.org/about/
https://www.raspberrypi.org/about/
https://linuxhint.com/i2c-linux-utilities/
https://linuxhint.com/i2c-linux-utilities/

[Ray22] Eric S. Raymond. NMEA Revealed. Feb. 2022. url: https://gpsd.gitlab.
io/gpsd/NMEA.html#_rmc_recommended_minimum_navigation_information

(visited on 02/15/2022).

[Sav21] Robert Savage. ListenGpioExample. Jan. 2021. url: https://github.com/Pi4J/
pi4j-v1/blob/master/pi4j-example/src/main/java/ListenGpioExample.

java (visited on 02/15/2022).

[sci] scienceprog.com. 1-Wire protocol simple and easy. url: https://scienceprog.
com/1-wire-protocol-simple-and-easy/ (visited on 02/10/2022).

[sha] sharetop. max7219-java. url: https://github.com/sharetop/max7219-java
(visited on 02/15/2022).

[Tut] Raspberry Pi Tutorials. Programmieren lernen am Raspberry Pi – Teil 4: LEDs
mit PWM dimmen. url: https://tutorials-raspberrypi.de/programmieren-
lernen-raspberry-pi-gpio-pwm/ (visited on 02/14/2022).

98

https://gpsd.gitlab.io/gpsd/NMEA.html#_rmc_recommended_minimum_navigation_information
https://gpsd.gitlab.io/gpsd/NMEA.html#_rmc_recommended_minimum_navigation_information
https://github.com/Pi4J/pi4j-v1/blob/master/pi4j-example/src/main/java/ListenGpioExample.java
https://github.com/Pi4J/pi4j-v1/blob/master/pi4j-example/src/main/java/ListenGpioExample.java
https://github.com/Pi4J/pi4j-v1/blob/master/pi4j-example/src/main/java/ListenGpioExample.java
https://scienceprog.com/1-wire-protocol-simple-and-easy/
https://scienceprog.com/1-wire-protocol-simple-and-easy/
https://github.com/sharetop/max7219-java
https://tutorials-raspberrypi.de/programmieren-lernen-raspberry-pi-gpio-pwm/
https://tutorials-raspberrypi.de/programmieren-lernen-raspberry-pi-gpio-pwm/

	Introduction
	Initial Situation and Problem Definition
	Target Setting
	Methodical Approach
	Structure of the Bachelor Thesis

	Required Software
	Rexx and ooRexx
	BSF4ooRexx
	Java
	Raspberry Pi OS
	Pi4J
	WiringPi
	pigpio
	I²C Tools for Linux
	pi4oorexx

	Raspberry Pi
	Versions
	Pinout
	GPIO
	Digital Input/Digital Output
	PWM
	1-Wire
	UART
	SPI
	I²C

	Installation and Configuration
	ooRexx
	Java
	BSF4ooRexx
	WiringPi
	Jar Archives
	Pi4J
	pi4oorexx

	Set Java Classpath
	Enable Interfaces

	Examples
	Digital Input/Digital Output
	gpioOut1.rex
	Circuit
	Sourcecode

	gpioOut2.rex
	Circuit
	Sourcecode

	gpioOut3.rex
	Circuit
	Sourcecode

	pinListener1.rex
	Circuit
	Sourcecode

	pinListener2.rex
	Circuit
	Sourcecode

	pinListener3.rex
	Circuit
	Sourcecode

	PWM.rex
	servo
	Circuit
	Sourcecode

	1-Wire
	ds18b20stream.rex
	Circuit
	Sourcecode

	ds18b20unix.rex
	Circuit
	Sourcecode

	ds18b20pi4oorex.rex
	Circuit
	Sourcecode

	UART
	gps.rex
	Circuit
	Sourcecode

	SPI
	LEDMatrixDriver.rex
	Circuit
	Sourcecode

	LEDMatrixPi4oorexx.rex
	Circuit
	Sourcecode

	binaryclock.rex
	Circuit
	Sourcecode

	I²C
	bme280.rex
	Circuit
	Sourcecode

	bme280pi4oorexx.rex
	Circuit
	Sourcecode

	pcf8574.rex
	Circuit
	Sourcecode

	pcf8591.rex
	Circuit
	Sourcecode

	ds3231.rex
	Circuit
	Sourcecode

	bh1750.rex
	Circuit
	Sourcecode

	bh1750pi4oorexx.rex
	Circuit
	Sourcecode

	HD44780 LC-Display
	LCDparallel.rex
	Circuit
	Sourcecode

	LCDi2c.rex
	Circuit
	Sourcecode

	LCDpi4oorexx.rex
	Circuit
	Sourcecode

	RFIDAttendance.rex
	Circuit
	Sourcecode

	Conclusio
	Appendix
	Source Codes
	LaTex

