
1

WIRTSCHAFTSUNIVERSITÄT WIEN

Vienna University of Economics and Business

Bachelor's Thesis

Titel of Bachelor's Thesis (english) JDOR – An introduction to Java 2D’s drawing classes

with ooRexx and BSF4ooRexx

Titel of Bachelor's Thesis (german) JDOR – Eine Einführung in Java 2D’s Zeichenklassen

mit ooRexx und BSF4ooRexx
Author
(last name, first name):

Blauensteiner, Fabian

Student ID number: H12021645

Degree program: Bachelor of Science (WU), BSc (WU)

Wirtschafts- und Sozialwissenschaften
Examiner
(degree, first name, last name):

ao.Univ.Prof.Mag.Dr.rer.soc.oec Rony G. Flatscher

I hereby declare that:

1. I have written this Bachelor's thesis myself, independently and without the aid of
unfair or unauthorized resources. Whenever content has been taken directly or
indirectly from other sources, this has been indicated and the source referenced.

2. This Bachelor's Thesis has not been previously presented as an examination

paper in this or any other form in Austria or abroad.

3. This Bachelor's Thesis is identical with the thesis assessed by the examiner.

 Date Signature

i

Contents
Abstract ...1

1. Introduction ...2

1.1 Initial Situation ..2

1.2 Goal of this Thesis ..3

1.3 Structure of the Thesis ...3

2. Used Languages and Frameworks ..5

2.1 Open Object REXX (ooRexx) ...5

2.1.1 Code Example for ooRexx ...8

2.2 Java ... 10

2.2.1 Code Example for Java and Comparison to ooRexx 12

2.3 Bean Scripting Framework for ooRexx (BSF4ooRexx) 15

3. Used Versions ... 16

3.1 Open Object REXX 5.0 .. 16

3.2 Java 1.8.0_352 .. 17

3.3 BSF4ooRexx 850 ... 17

4. Installation Guide and Troubleshooting ... 18

4.1 Installation of Open Object REXX .. 18

4.2 Installation of Java ... 19

4.3 Installation of BSF4ooRexx .. 21

4.4 Checking Installations Correctness .. 22

4.5 Classpath – Variable .. 23

5. Creating Graphics with Java .. 26

5.1 Abstract Windowing Toolkit (AWT)... 26

5.2 Java 2D API ... 27

5.3 Java Drawing for ooRexx (JDOR) .. 30

5.3.1 JDOR – Commands .. 31

ii

6. JDOR-Examples in Open Object REXX .. 37

6.1 Drawing Simple Shapes – JDOR_shapes.rxj ... 38

6.2 Different Strokes in JDOR – JDOR-strokes.rxj ... 40

6.3 Displaying Text in JDOR – JDOR-Strings.rxj ... 43

6.4 Using Images in JDOR – JDOR-images.rxj ... 45

6.5 Rotate, Scale, Translate and Shear in JDOR ... 48

6.6 Moving Objects in JDOR – JDOR-move.rxj ... 51

6.7 Combining JDOR with JavaFX – JDORFX.rxj .. 54

6.8 Creating Arbitrary Shapes with JDOR – JDOR-shapes.rxj 58

7. Conclusion ... 62

Appendix .. 64

A 1. JDOR-transform.rxj ... 64

A 2. JDOR-move.rxj ... 65

A 3. JDORFX.rxj .. 67

A 4. JDOR – shapes.rxj .. 73

References .. 75

iii

List of Figures
Figure 1: Console output of the used version of Open Object REXX 16

Figure 2: Console output of the used version of Java .. 17

Figure 3 ooRexx Installation Process .. 19

Figure 4: Java version from Bellsoft. ... 19

Figure 5: Java Installation Process .. 20

Figure 6: Installation Steps for BSF4ooRexx ... 21

Figure 7: ooRexxTry.rxj coding-tool ... 22

Figure 8: BSF4ooRexx error message .. 23

Figure 9: Setting Classpath-Variable ... 24

Figure 10: Content of the classpath-variable ... 25

Figure 11: Coordinate system for User-Space in Java .. 27

Figure 12: Relation of graphics and methods (Oracle, o.D.-c) 29

Figure 13: Shapes in JDOR - JDOR_shapes.rxj .. 38

Figure 14: Output of JDOR_shapes.rxj .. 40

Figure 15: Strokes in JDOR - JDOR_strokes.rxj .. 41

Figure 16: Output JDOR_strokes.rxj .. 42

Figure 17: Writing in JDOR - JDOR-Strings.rxj .. 43

Figure 18: Output JDOR-Strings.rxj ... 45

Figure 19: Using images in JDOR - JDOR-images.rxj ... 46

Figure 20: Snowman.png (left) and output of the code from

 JDOR-images.rxj (right) .. 47

Figure 21: Excerpt from JDOR - JDOR_transform.rxj (full code in

 Appendix - A 1. JDOR-transform.rxj) .. 49

Figure 22: Output form JDOR-transform.rxj ... 50

Figure 23: JDOR-move.rxj (partly – complete version in

 Appendix - A 2. JDOR-move.rxj) ... 52

Figure 24: Output of JDOR-move.rxj after three seconds (left) and after

 two minutes (right) .. 53

Figure 25: Creating a JavaFX button in ooRexx – Excerpt from JDORFX.rxj 54

Figure 26: Setting the EventHandler for the Draw-Button – excerpt from

 JDORFX.rxj... 54

Figure 27: Implemeting the logic of an EventHandler - excerpt from JDORFX.rxj 55

iv

Figure 28: GUI created by JDORFX.rxj ... 56

Figure 29: Creating a movement effect - excerpt from JDORFX.rxj 56

Figure 30: Drawings created by JAVA-FX GUI interaction .. 57

Figure 31: Creating shapes - JDOR-shapes.rxj (excerpt – full code in

 Appendix in A 4. JDOR – shapes.rxj) .. 59

Figure 32: Banner created by JDOR-shapes.rxj .. 61

Figure 33: JDOR-transform.rxj ... 64

Figure 34: JDOR-move.rxj ... 66

Figure 35: JDORFX.rxj .. 72

Figure 36: JDOR-shapes.rxj .. 74

List of Tables
Table 1: Comparison between procedural and object-oriented

 programming (geeksforgeeks, 2022; javatpoint.com, o.D.)7

Table 2: JDOR-commands and their Java2D - counterparts 36

1

Abstract
This bachelor thesis demonstrates how the most recent BSF4ooRexx 850 extension,

JDOR, can be utilized in ooRexx to generate various images.

For this purpose, "Nutshell-Examples" are presented to illustrate the fundamental

operations and how they are carried out. Additionally, a detailed description of the

required software components and an installation manual are included.

ooRexx is a further development of the successor of IBMs mainframe languages EXEC

and EXEC 2. With the help of the BSF4ooRexx 850 framework, the high functionality

of Java can be combined with the simple-to-read syntax of ooRexx to provide access

to Java functionalities via ooRexx.

Through JDOR and an underlying interest in simple graphics design, even

programmers with limited knowledge in ooRexx and Java can produce sophisticated

drawings.

2

1. Introduction
This chapter gives a short overview of the topic of this bachelor thesis, the related

research question and the overall goal of this thesis. Additionally, it provides the

methodological approach to write this paper and the main structure of the thesis.

1.1 Initial Situation
“Java” is one of the most popular programming languages today, ranking at number

two in the PYPL-Index, whose ranking is based on the number of searches for tutorials

on Google (GitHub.io, 2022). It also ranks at number four in the TIOBE-index (taking

into account the number of programmers and search-engine usage) and at number

three in the Developer Nation index (ranking created through surveys of active

developers) (SlashData, 2022; TIBOE, 2023) . Even though Java is one of the most

prominent languages, its’ structure and syntax is often, especially for beginners, hard

to understand.

Therefore, the courses “Business Programming I” and “Business Programming II” from

Professor Rony G. Flatscher at the “Vienna University of Business and Economics”

focus on the programming language “ooRexx”, which is a more beginner-friendly and

easier to understand language for a layman. Throughout these two courses students

learn the basics of programming and how to use the “ooRexx” language to automate

certain processes through the “OLE-connection” (=Object Linking and Embedding) of

the Microsoft ecosystem.

In the second course students learn how to use objects and functions from Java in

ooRexx through the BSF4ooRexx-Framework. It allows the programmer to interact

with the Java language while using the syntax and structure from ooRexx.

With the latest instalment of ooRexx and BSF4ooRexx 850 the capabilities of this

combination increased even more, including a broader collection of usable functions

from Java.

The author of this paper thinks that GUI-elements (=Graphical User Interface) are,

apart from the general output-console of most programming languages, an interesting

way to show beginners certain mechanisms of these languages. They often invite the

programmer to try out new things and play around with these elements. Therefore the

3

author chose the newly integrated “JDOR”-package (=Java Drawing for ooRexx) for

this thesis.

1.2 Goal of this Thesis
This bachelor's thesis' main objective is to program, demonstrate, and explain a few

examples using the JDOR-package. Drawings made using the JDOR-package utilize

Java's "Graphics" and "Graphics2D" libraries. JDOR can be used to produce

extremely complex drawings with a range of distinct aspects for a variety of use-cases.

The purpose of this thesis is not to demonstrate these incredibly complex drawings,

but rather to introduce this broad subject by making specific remarks and explanations

on how to use some of the items and functions.

The research question, which this thesis aims to address, is whether JDOR is a useful

addition for students learning ooRexx, how the students should learn it, and if it is

beneficial to give an additional lesson on this subject.

This bachelor thesis should provide the reader with the basic information of the used

programming languages and frameworks. Furthermore, it gives an introduction of the

ooRexx programming language and how its’ syntax and structure work.

After reading this thesis the reader should be able to install the needed languages and

frameworks, program simple ooRexx-Code and use the JDOR-package to create

simple drawings.

1.3 Structure of the Thesis
This bachelor's thesis can be divided into two main sections. The thesis' first section

takes a more theoretical approach and is more closely akin to a literature review. To

develop this theoretical overview of the subject, several websites and publications were

consulted. The sources can be found in the chapter References.

The second section deals with the actual programming. To demonstrate the many

aspects of the JDOR package, the author offers specific code samples and their

generated output. For this, the author used his previous knowledge of Java and

ooRexx and combines it with the newly gained information from the research for the

theoretical part of this thesis building a link between those two major parts.

4

In the following chapter the different programming languages used for this thesis are

introduced and compared. Chapter 3 will provide a step-by-step installation guide for

all the needed languages and packages as well as a short sub-chapter on some

installation problems the author experienced during his own installation process and

how they were solved.

In chapter 4 the different packages and libraries that were used in the

programming part are discussed in more detail, giving an overview of the underlying

structure.

Chapter 5 deals in detail with the Java-2D library, giving overall information and history

of the library and providing a comprehensive description of some of the functions used

in the code-examples showing the different possible attributes that were and could be

used while coding.

Chapter 6 shows the different code-examples and their outputs. It should provide basic

knowledge and information about the structure and functionality of the provided

examples.

Finally, in the last chapter the most important information of this thesis will be

summarized, and the research question will be answered.

5

2. Used Languages and Frameworks
To code and execute the different example-programs presented in this bachelor-thesis

three main software components need to be installed on the system. These

components are the two programming languages “ooRexx” and “Java” as well as the

“Bean Scripting Framework for ooRexx” (BSF4ooRexx) extension. This chapter

provides more information about these components.

2.1 Open Object REXX (ooRexx)
The programming language Open Object REXX (ooRexx) is the successor and open-

source Version of the Object REXX programming language developed by IBM, which

itself is the successor of the language REXX. REXX was developed in 1979 by

Mike F. Cowlishaw and IBMs’ research facilities (Flatscher, 2013).

The goal of REXX was to create a programming language which is easier to

understand for humans that replaces the cryptic IBM-Mainframe languages “EXEC”

and “EXEC 2” (Flatscher, 2013). REXX later became the standard batch and scripting

language for the SAA (System Application Architecture) for all of IBMs’ operating

systems. In the 1980s REXX became increasingly popular even outside IBM, which

lead to the development of many different REXX-interpreters (Flatscher, 2013).

At the end of the 1980s and the beginning of the 1990s IBMs’ researchers created the

next milestone in the REXX history by developing a REXX-interpreter which extends

the REXX language with an object-oriented feature (Flatscher, 2013). This prototype

would later become Object REXX and was first distributed in 1997. Different versions

of this interpreter were created to be used on the operating system AIX from IBM and

Microsoft’s Windows (Flatscher, 2013).

After lengthy negotiations between IBM and the RexxLA, the source code of Object

REXX was given to the RexxLA in 2004, which committed itself to its further

development. Open Object Rexx is the open source version of Object REXX

(Flatscher, 2013).

Since 2004 RexxLA continuously developed new versions of ooRexx. In 2009

ooRexx 4.0 was released providing the user with a newly written kernel which allows

porting to virtually all operating systems (Flatscher, 2017).

6

The most recent version of ooRexx, ooRexx 5.0, was published in December 2022

after spending the previous five years in beta. A number of the fundamental ooRexx

4.0 functionalities have been updated, and new components have been introduced

(Flatscher, 2017). However, the basic principles of the simple structure and easy

readability of REXX have not been forgotten.

ooRexx drew a lot of inspiration from other object-orientated programming languages.

One prime example in this case is “Smalltalk” (Flatscher, 2017). For example, variables

have a dynamic type, which means that their type can change throughout the program

and all values are seen as objects (Flatscher, 2017).

ooRexx generally perceives each value as a string. The interpreter automatically

changes variables to numeric values when they are coupled with mathematical

symbols like the plus sign. On the one hand, because the interpreter does part of the

logical work, this is especially beneficial for beginners who are not as familiar with the

various data types. On the other hand, this might cause some issues for programmers

who have exclusively worked with strictly typed programming languages, like Java, up

until that point.

ooRexx offers a structure and syntax which is more in line with the English language,

making it easier for layman to read and understand the code. The use of a smaller

number of built-in functions helps beginners to get a quick overview of the whole

system.

Especially for programmers who already have some experience with object-orientated

languages, ooRexx will seem very familiar. The use of classes and methods is straight-

forward and after a short period of familiarization with its’ syntax it is quickly possible

to write more complicated programs. This of course also goes the other way around,

making it a good programming language for learning the basics of programming. This

is probably one of the reasons why Prof. Dr. Rony G. Flatscher chose ooRexx as the

programming language for his two “Business Programming” courses.

Through its’ interpreter ooRexx programs can be written in a procedural and object-

oriented way, making it a good starting point for learning the differences of the two big

programming language categories.

7

It can be debated which programming style is better, yet most modern and popular

programming languages, like “Java”, “Python” or “C#”, are based on an object-

orientated approach making it possible to code in a procedural style as well as an

object-orientated style (geeksforgeeks, 2022). Table 1 shows some of the differences

between the procedural approach and the object-oriented approach. It can be said that

object-oriented programming is based on objects from the real world and is capable to

solve more complex problems (geeksforgeeks, 2022; javatpoint.com, o.D.)

 Procedural-Oriented
Programming

Object-Oriented
Programming

Definition:
Program is based on the

unreal world and divided

into functions

Program is based on the

real world and divided into

objects

Approach Follows a top-down

approach

Follows a bottom-up

approach

Data movements Data moves freely within the

system

Objects communicate with

each other over functions

Inheritance
No concept of inheritance

an no code reusability

Inheritance is present and

features code reusability

Complexity
Not appropriate for complex

problems

Appropriate for complex

problems

Data hiding
Features no possibility of

data hiding

Features a possibility of

data hiding

Examples Fortran, Pascal, C, VB C#, Java, Python, C++,

ooRexx
Table 1: Comparison between procedural and object-oriented programming (geeksforgeeks,

2022; javatpoint.com, o.D.)

8

2.1.1 Code Example for ooRexx

To give a better picture of the structure and syntax of ooRexx, Code 1 shows a short

and simple program that uses some of the basic elements of the programming

language. The program creates the factorial of different numbers using a recursive

function. A recursive function is a function which calls itself.

Throughout the years new versions of ooRexx were released which brought new ways

of declaring certain variables. One of these instances is the declaration of arrays. An

array is a structure which holds multiple elements of the same data type. Before

ooRexx 5.0 an array must be created like it is shown in line 2 in Code 1. Since ooRexx

5.0 it is possible to use the easier to read method which is shown in line 5. The code

in line 5 overwrites the “numbers” array declared in line 2.

In most programming languages an array must be declared with a fixed number of

elements, which is needed in order to reserve the storage space on the system. In

ooRexx an array is of dynamic size, which allows adding new elements after the

declaration of the array. Line 7 in Code 1 shows how a new element is added at the

index 8 to the existing “numbers”-array.

Outputs in ooRexx can easily be created by the “SAY” keyword. The interpreter

automatically detects which data type is needed for the used variable making string-

parsing operations for numeric values for the outputs obsolete.

Line 11 shows the use of a loop. Most often loops use a certain variable which is

increased incrementally for each pass. In this case the variable ‘i’ starts at ‘1’ and

increases incrementally till it reaches the size of the array (in this case ‘8’). In each

pass the “FACTOR”-function is called which passes an element of the array to the

function. If ‘i’ is ‘6’ it would pass the sixth element to the function. Each loop must be

closed by the “END”-keyword.

Functions are a part of a programming code which can be used multiple times. Line 18

in Code 1 shows the creation of such a function. Through the keyword “PROCEDURE”

the function becomes encapsulated, which gives the function a local scope, meaning

that the function cannot access variables from the main program. Each element from

9

the main program must be passed to the function-code as an argument when calling

the function.

Line 21 shows a simple IF-THEN-ELSE structure. If the passed argument is equal to

‘1’ the function will return ‘1’ to the main code. Otherwise, the interpreter will execute

the code-block followed by the “ELSE”-keyword. This is the most complex part of

Code 1 since the function calls itself again, making it a recursive function.

As an example, at the third element of ‘numbers’, which is the number ‘3’ will be

passed to the function as the variable ‘num’. Since ‘3’ is unequal to ‘1’ the interpreter

will execute the ELSE block, which results in the calculation ‘3 * FACTOR (3-1)’.

The FACTOR function will be called again passing the argument ‘2’, which again is not

‘1’, calling the FACTOR-function again with the argument ‘2-1’.

Since ‘2-1’ is ‘1’ the function will only return ‘1’, resulting in the final calculations of:

1. FACTOR (3) = 3 * FACTOR (3-1)

2. FACTOR (2) = 2 * FACTOR (2-1)

3. FACTOR (1) = 1

4. -> 3 * 2 * 1 = 6

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
 Code 1: Example Code for factoring in ooRexx

/*code for array initalization in ooRexx 4.0 and lower*/
numbers = .array~of(1,2,3,4,5,6,7)

/*new possibility in ooRexx 5.0*/
numbers = 1,2,3,4,5,6,7

numbers[8] = 8

say "Size of the array" numbers~SIZE

DO i=1 TO numbers~SIZE
factorial = FACTOR(numbers[i])
SAY "The factor of" numbers[i] "is" factorial
END

PARSE PULL input
EXIT

FACTOR: PROCEDURE
PARSE ARG num
IF num = 1 THEN
RETURN 1
ELSE
RETURN num * FACTOR(num - 1)

10

Output 1 shows the output resulting from Code 1. First the size of the array was

displayed by line 9 in Code 1. After that the different factors were displayed by the loop.

Through the calculation done for the number ‘3’ it shows that the program gives the

correct result for the factor of ‘3’.

2.2 Java
Java is an object-oriented programming language like ooRexx. Java was created by

Sun Microsystems’ James Gosling in 1991 and released in 1995. The idea was to

develop a language for digital devises for television (Bahtnagar, 2022). The first plan

was to use “C++” for the projects code but later was rejected since “C++” had some

issues, like the increasing memory use compared to other languages. After some

thoughts James Gosling decided to create a new programming language which has a

syntax similar to C++ (Britannica, 2022).

After many different names, like “Greentalk” and “Oak”, Java was chosen as the final

name for the project, which name is based on a type of espresso bean (Bahtnagar,

2022). After some work, the projects focus shifted to the World Wide Web and its’

premise to link many devices and to run everywhere on each device (Britannica, 2022).

In contrary to many other programming languages Java’s compiler converts the code

into bytecode, which is than interpreted by the Java Runtime Environment (JRE) or the

Java Virtual Machine (JVM) (Britannica, 2022). The JRE thereby acts like a virtual

computer which interprets the bytecode and translates it for the host computer

(Britannica, 2022).

Size of the array: 8

The factor of 1 is 1
The factor of 2 is 2
The factor of 3 is 6
The factor of 4 is 24
The factor of 5 is 120
The factor of 6 is 720
The factor of 7 is 5040
The factor of 8 is 40320

Output 1: Output from Code 1

11

Because of the JRE as this second layer, code in Java can be written the same way

on many different platforms (“Write once, run anywhere”) – this helped to increase the

popularity, since most users work on different systems (Britannica, 2022).

Java uses a “Just in Time Compiler” (JIT), which is responsible for performance

optimizations at runtime. Javas JIT compiler interacts with the Java Virtual Machine at

runtime and compiles certain bytecode sequences into native machine code (Sharma,

2022). In comparison to having the JVM interpret the bytecode repeatedly, the JIT

compiler allows the hardware to execute the native code, which leads to a performance

gain (Sharma, 2022). This performance gain is only visible when multiple code

sequences are used multiple times since then the code will be interpreted and compiled

to machine code once and further executions will use the pre-compiled version

(Brihadiswaren, 2020)

Java often has this stigma of being a slower language compared to other programming

languages, like ‘C’ and C++’ (Brihadiswaren, 2020). While this statement is not

completely wrong, Java’s JIT-compiler performs optimization processes automatically

which greatly increases its’ performance. In languages like ‘C’ these optimization flags

need to be set explicitly which often result into a faster execution then Java

(Brihadiswaren, 2020).

In most other programming languages a compiler first needs to translate the code into

instructions for certain specific systems (Britannica, 2022).

Java primarily works with five principles:

• Robustness

• Portability

• Platform Independence

• High Performance

• Multithreading (Bahtnagar, 2022)

Since the release of version 1.0 in the beginning of 1996 many changes were made to

the programming language itself and its’ corresponding platforms, increasing its’

features and use-cases. In the following years Java was increasingly used in more

systems – personal and professional.

12

It was even used on NASA’s Mars exploration rovers, showing its’ versatility

(Britannica, 2022). Due do Javas popularity Sun Microsystems released different

versions for different purposes, like Java SE for home computers, Java ME for

embedded devices and Java EE for internet servers and supercomputers (Britannica,

2022).

In 2010 Oracle took over Javas development when it acquired Sun Microsystems

(Britannica, 2022). Currently Java is used as a programming language in internet

programming, mobile devises, business solution, games, etc. (Bahtnagar, 2022). The

current version of Java, “Java 19”, was released in September 2022 and the next

version “Java 20” is set to release in March of 2023.

2.2.1 Code Example for Java and Comparison to ooRexx

To show the structure and syntax of Javas code, especially in comparison to ooRexx

codes, Code 2 depicts Java’s solution to the same factoring problem solved by ooRexx

in Code 1.

To give a better comparison the code in Code 2 is built the same way as ooRexxs code

in Code 1. This is done to give a better understanding of the similarities and differences

between the two programming languages. In reality, Java provides many different

functions and structures which could greatly decrease the number of lines of code

needed to solve the problem.

For the author one of the most striking differences to Open Object REXX is the use of

curly brackets to indicate the start and end of a block or section and semicolons at

each end of a line. Another conspicuous feature is the use of strictly typed variables

since each datatype of the variable needs to be specified at the declaration of the

variable.

Another prominent feature is the division into classes and functions. The use of at least

one class with one function (in most simple cases this would be the “main” class and

the corresponding “main” function) is mandatory. In comparison, ooRexx can be used

with classes and functions but they are not necessarily needed (see Code 1).

13

Java has three levels of different scopes (accessibility for variables, classes and

methods):

• Class Scope (instance variables):

o Variables which are declared within a certain class (yet outside of the

methods) are accessible by all methods in the class. This can be seen

in line 6 in Code 2.

• Method Scope (local variables):

o Variables declared within a method can only be accessed by this

method. An example of this is the variable ‘num’ declared in line 25 in

Code 2.

• Block Scope (loop variables):

o If a variable is declared in a for-loop condition it can only be accesses

within this loop (see variable ‘i’ on line 19 in Code 2)

(Codeacademy, o.D.)

The program starts with the declaration of the array ‘numbers’ with the ‘int’-

datatype on line 6 in Code 2. Like in most programming languages an array in Java

has a fixed length making it impossible to add other elements afters its’ declaration.

Therefore, the command on line 10 would cause an error since the array only has

seven elements. To solve this problem, an ‘ArrayList’ is used on line 13, which is

similar to ooRexxs Array. To add a new element to this ArrayList the add-function of

the ArrayList is used.

To write to the console the “System.out.println()” keyword is needed. Unlike

ooRexx, texts must be in quotation marks and variables must be linked with the ‘+’

sign.

To loop through the array a for-loop is used on line 19 which does the same as a

“DO” loop in ooRexx, where the variable ‘i’ is created which iteratively takes values

starting from ‘1’ to the size of the ArrayList. In Java other loop variants, like a for-each-

loop, could be used to iterate through an array-like structure.

14

In the loop the FACTOR-method with the current element of the ArrayList as an

argument is called on line 21. The method is declared on line 25 and uses the

‘public’ keyword, which would make it possible for other classes to access the

method. The method is built similar to the FACTOR-method in ooRexx in Code 1 using

the variable ‘num’ and return ‘1’ if ‘num’ is equal to ‘1’ or else call the method again.

The code creates the same output as Code 1, which can be seen in Output 1. In

comparison, ooRexx’s code is easier to read then Java’s, yet for some programmers

who are already familiar with languages like ‘C++’ Java’s code-structure is also easy

to get used to.

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34

Code 2: Example Code for factoring in Java

import java.util.ArrayList;
import java.util.Arrays;
public class Main
{
 //Array has a fixed length
 public int[] numbers = {1,2,3,4,5,6,7};

 public static void main(String[] args)
 {
 //numbers[8] = 8; -> would cause an error -> OutofRange

 //ArrayList has a dynamic length
 ArrayList<Integer> numbers2 = new ArrayList<Integer>();
 numbers2.addAll(Arrays.asList(1,2,3,4,5,6,7));
 numbers2.add(8);

 System.out.println("Size of the array" + numbers2.size());

 for (int i=0; i< numbers2.size();i++)
 {
 System.out.println("The factor of "+i+" is "+FACTOR(numbers2.get(i)));
 }

 }
 public static int FACTOR(var num)
 {
 if(num == 1){
 return 1;
 }
 else{
 return (num * FACTOR(num - 1));
 }
 }
}

15

2.3 Bean Scripting Framework for ooRexx
(BSF4ooRexx)

The Bean Scripting Framework for ooRexx allows interaction between ooRexx

programs and Java over the JNI (Java Native Interface) for Windows, macOS and

Linux (Flatscher, 2017). It provides programmers with the possibility to implement

(abstract) Java methods and other Java functionalities in ooRexx.

BSF4ooRexx was created in Austria and Germany in the year 2000 after IBM decided

to no longer support its’ OS/2 system (Flatscher, 2012). It uses Javas open-source

class-library Bean Scripting Framework (BSF) which allows to implement other

script-languages in Java. With the release of ooRexx 4.0 and its’ interface to C++ it

was possible to implement callbacks from Java to ooRexx (Flatscher, 2012, 2021).

BSF4ooRexx is an external ooRexx function packages, which allows ooRexx to access

external functions, even though they are written in C++. For an easier understanding

for ooRexx programmers, who are not familiar with Java, the different functions were

masked to create the impression that the used Java methods are in fact ooRexx

methods (Flatscher, 2012).

Using the BSF4ooRexx package provides the programmers with serval advantages:

• No need for further external function packages if the needed functions are

already present in the Java runtime environment

• It allows the use of different Java classes and JRE classes regardless of the

operating system that is used.

• It is possible to use Java-classes which use abstract method or expect

arguments from different interface-classes.

• If a system has a Java-interface it can be accessed over Open Object REXX

• It is possible to start ooRexx-scripts through Java

(Flatscher, 2012, 2021)

16

3. Used Versions
Specific versions of the programming languages and frameworks used are required to

recreate the outputs of the programs supplied in the following chapters. Otherwise, the

code will either not run at all or not correctly.

Since many of the earlier versions lack specific capabilities, it is extremely important to

use the proper versions. Even though the code has only been tested with the versions

listed below, using a newer version shouldn't present any issues.

It should also be mentioned that if versions of the programming languages are used

that are not those listed below it is imperative that the same architecture version is

used (e.g. only use the combination of 32-bit ooRexx with 32-bit Java – the same goes

for the 64-bit version).

3.1 Open Object REXX 5.0
Open Object REXX 5.0 is the newest version from ooRexx. It can be downloaded from

the website of the REXX language association (https://www.rexxla.org) or from their

file-share-portal on SourceForge

(https://sourceforge.net/projects/ooRexx/files/ooRexx/5.0.0/). It is imperative to

choose the correct version of ooRexx for the used system.

For the programming part of this bachelor thesis a Windows Laptop and the 64-bit

version of ooRexx were used. ooRexx is available in a 32-bit and 64-bit version. Using

the 32-bit version should not make a difference if the corresponding Java version is

used.

Figure 1: Console output of the used version of Open Object REXX

https://www.rexxla.org/
https://sourceforge.net/projects/oorexx/files/oorexx/5.0.0/

17

3.2 Java 1.8.0_352
Even though “Java 8” is not the newest version of Java it still includes all the necessary

packages for the project. As of today, “Java 8” is still maintained and should still receive

updates in the coming years. Oracle will support “Java 8” through their extended

support period till December 2030 (Oracle, 2022). The premier support ended in March

2022 which included regular updates as well as technical support (Oracle, 2022).

The version of Java used for this bachelor thesis is the “Liberica FULL JDK 8 x86 64”-

package and can be downloaded through the website of Bellsoft (https://bell-

sw.com/pages/downloads/#downloads). Other versions of Java for other operating

systems can be accessed through the same link.

Figure 2: Console output of the used version of Java

3.3 BSF4ooRexx 850
Version 850 of the BSF4ooRexx is the newest version and successor of

BSF4ooRexx 641. While the earlier version of BSF4ooRexx works with “Java 6” and

“ooRexx 4.1” or later, version 850 needs at least “Java 8” and “ooRexx 5.0”. This is

mainly due to the additional features these two versions bring with them compared to

their older versions (Flatscher, 2022a).

BSF4ooRexx 850 is based on the older 641 version and brings along many changes

related to “Java 8” and “ooRexx 5.0”. It is needed to start the programs that are

presented in this bachelor thesis, since the JDOR-package is only included in the

newest version. The JDOR-package makes it possible to use the Java-2D library in

ooRexx.

The specific version of BSF4ooRexx 850 used in this project is the version from the

23.12.2022. It can be downloaded on SourceForges’ website

(https://sourceforge.net/projects/BSF4ooRexx/files/)

https://bell-sw.com/pages/downloads/#downloads
https://bell-sw.com/pages/downloads/#downloads
https://sourceforge.net/projects/bsf4oorexx/files/

18

4. Installation Guide and Troubleshooting
In the following chapter an installation guide for the different programming languages

and frameworks is presented. While the two programming languages can be installed

through different installers (program which leads the user through the installation

process) the BSF4ooRexx framework needs a little bit more work.

Even if not absolutely necessary, it is advisable to carry out the installations in the order

mentioned here. For the two programming languages, the order would be irrelevant,

however the BSF4ooRexx framework has to be installed last.

After the introduction to the installation guide, some problems, the author faced during

his installation process are mentioned and possible solutions are provided.

4.1 Installation of Open Object REXX
The installation of ooRexx is easy and can be done through an installer. The download

can be started through the following link from SourceForge:

https://sourceforge.net/projects/ooRexx/files/ooRexx/5.0.0/ooRexx-5.0.0-

12583.windows.x86_64.exe/download

This link will automatically open the download website where the needed files will be

downloaded after a short timer. The download only consists of one “.exe”-file

(executable file)

If a previous version of ooRexx is already installed on the system, the installer should

be able to detect it. In the process of the installation, the installer will give the user the

option to deinstall any previous version of ooRexx. It is advised to deinstall any

previous versions since certain problems could occur if two different versions are

installed on the system.

During the installation no additional checkboxes were marked throughout the

installation process, so no extra settings were enabled or disabled. Some of the

installation steps can be seen in Figure 3. The steps of the top two pictures will only

happen if a previous version is installed.

https://sourceforge.net/projects/oorexx/files/oorexx/5.0.0/ooRexx-5.0.0-12583.windows.x86_64.exe/download
https://sourceforge.net/projects/oorexx/files/oorexx/5.0.0/ooRexx-5.0.0-12583.windows.x86_64.exe/download

19

4.2 Installation of Java
Bellsoft provides a wide range of different Java versions for different operating systems

under the following link:

https://bell-sw.com/pages/downloads/

For this project the “MSI”-version of the Windows x86 64-bit version was downloaded

which includes an installer for the chosen Java version (see Figure 4)

Figure 4: Java version from Bellsoft.

Figure 3 ooRexx Installation Process

https://bell-sw.com/pages/downloads/

20

If the same version of Java is already installed on the system, the installer will give the

user the option to either change, repair or remove the installation (see top left picture

in Figure 5).

If a new version of Java is installed, the installer will automatically let the user decide

what features should be installed (see top right picture in Figure 5). By default, the

entire package is installed - this can be seen when "Liberica Full JDK" is highlighted in

blue. If nothing specific is selected, Java will be saved in the "Program Files" folder.

After that the installer will either start the changing or installation process. When this

process is complete the installation is finished (see bottom left picture in Figure 5). As

with Open Object REXX no additional check-boxes were marked.

Figure 5: Java Installation Process

21

4.3 Installation of BSF4ooRexx
The Bean Scripting Framework for Open Object REXX can be downloaded from the

website of SourceForge through the following link:

 https://sourceforge.net/projects/BSF4ooRexx/files/latest/download

The needed files are downloaded as a .zip-file which must be unzipped before starting

the installation process. Depending on the system the unzipping may take a while. The

download contains the installations for the different operating systems and through the

installation process the framework automatically detects the required architecture (e.g.

32-bit or 64-bit).

If a previous version of BSF4ooRexx is installed on the system, it is recommended to

deinstall the old version before installing the new on. This can be achieved by

executing “uninstall.exe” for the correct operating system. For most windows systems

the .exe-file can be found in the following folder:

“C:\Program Files\BSF4ooRexx\install\windows”

The installation process can be done manually by first unzipping the file downloaded

from SourceForge. After that the “install.cmd”-file can be found in the “install/windows”-

folder from the just unzipped download.

Alternatively, the file can be downloaded and installed through the

“Command Line Prompt” (cmd) which can be accessed through “Windows-Key + R”

combination. After opening the “cmd” the text from Figure 6 can be copied and

executed line by line to complete the process. Line 7 will open the installer for

BSF4ooRexx 850 which demands some user-inputs that need to be followed.

1 curl -L --output downloads/BSF4ooRexx850.zip
https://sourceforge.net/projects/BSF4ooRexx/files/latest/download
2 cd downloads
3 tar -xf BSF4ooRexx850.zip
4 cd BSF4ooRexx
5 cd install
6 cd windows
7 install.cmd
 Figure 6: Installation Steps for BSF4ooRexx

https://sourceforge.net/projects/bsf4oorexx/files/latest/download

22

cURL stands for “Client URL” and is a command line tool to send or request data using

URL syntax (Stenberg, o.D.). The command in Line 1 automatically downloads the

data from the given https-address and saves it in the “Downloads”-Folder under the

name “BSF4ooRexx850.zip”. The different “cd”-commands are used to jump between

the different directories. Finally, the “tar”-command in Line 3 extracts / unpacks the

.zip-folder in the current directory.

If needed the text from Figure 6 can be copied into a batch-file which will automatically

execute all lines.

4.4 Checking Installations Correctness
To check if all the installed parts are working together correctly the “ooRexxTry.rxj”

program-file can be executed. The program itself is a coding-platform for ooRexx which

included a simple code and output field.

Figure 7: ooRexxTry.rxj coding-tool

23

4.5 Classpath – Variable
If an older version of BSF4ooRexx was previously installed on the system, it can

happen that the system is still referencing these older versions. In that case the

“ooRexxTry.rxj”-program or the programs shown in this thesis will not be able to

execute correctly since the old references do not include the new and needed libraries

that were added with BSF4ooRexx 850.

In most cases, the interpreter will return an error message to show the user that some

elements could not be found or loaded. Looking at Figure 8, all the required

programming languages and frameworks were installed, yet the system is unable to

load the “BSF4ooRexx850” library.

Figure 8: BSF4ooRexx error message

This and similar errors are mostly due to problems during the installation process. It

should be noted that these do not always have to be user errors but can also be errors

caused by the system itself.

One of the easier solutions that might solve the issue is to use a new command-

window. If an old command-window was opened while the old version of BSF4ooRexx

was still installed, then this window still points to references from the old version of

BSF4ooRexx. Opening a new window after the installation should solve this problem.

If opening a new command-window does not solve the problem, there may be some

system-internal referencing issues. For the author, the problem in Figure 8 was solved

by deinstalling the current version of BSF4ooRexx 850, deleting all files which were

connected to the old version of BSF4ooRexx and by deleting the classpath - variable,

which includes the references, from the system.

24

The easiest way to manage the classpath-variable is to go to the “Advanced System

Settings” (pressing “Windows-Key” + “S” and entering “Advanced System Settings”).

In the bottom-right corner is a button “Environment Variables”, which when clicked

opens a new window, were the user can add, edit or delete certain system-variables.

After deleting the classpath-variable it is imperative to click the “OK” – button, otherwise

the changes will not be saved.

Figure 9 shows the different steps of this process. Since the authors system has

German set as its main language all the menus are also in German. However, the

structure and design of the various menu items are language-independent and

identical in every language. In this case “Umgebungsvariablen” means “Environmental

Variables” and “Löschen” can be translated to “Delete”.

After the classpath-variable is deleted BSF4ooRexx 850 can be installed again. If the

classpath-variable is deleted or empty the installation process of BSF4ooRexx 850

should automatically generate a new classpath-variable with the current and correct

references.

Figure 9: Setting Classpath-Variable

1

2

3

4

25

After this process, the classpath-variable can be viewed by opening the console

through “Windows-Key” + “R” and typing “cmd”. In the newly opened window typing

“set classpath” will display the content of the classpath-variable. Figure 10 below

shows this command and the results for the author’s system.

Figure 10: Content of the classpath-variable

As can be seen in Figure 10 the classpath-variable points to references of

BSF4ooRexx 850 after the new installation. This indicates that the REXX-Interpreter

now uses the correct version of BSF4ooRexx and that the “ooRexxTry.rxj” program

should execute correctly.

26

5. Creating Graphics with Java
Java provides programmers with a variety of different tools and frameworks to create

graphics and GUI elements. Most of these tools are collected in the

Java Foundation Classes (JFC) which are integrated in Java by default. This thesis

focuses on the creation of graphics with the Java 2D API.

The Java 2D API is an extension of the “Abstract Windowing Toolkit” (AWT) (Oracle,

o.D.-d). Through the REXX command handler “JDOR” (= Java Drawing for ooRexx)

programmers have the capability to use elements from the Java 2D APIs “Graphics”

and “Graphics2D” classes in ooRexx without prior knowledge of the syntax and

structure of Java (Flatscher, 2022b).

5.1 Abstract Windowing Toolkit (AWT)
The Abstract Windowing Toolkit is a collection of classes that allows the use of

graphical components in a Java program to create graphical user interfaces (GUI). It

is part of Java since version 1.0 and can be used on every Java-supported operating

system (Schäling, 2010).

AWT is a platform-dependent component which uses subroutines and peer-classes of

its native platform. Therefore, an AWT application will look like a standard

windows-application when running on a windows system or like a Mac application

when running on an Mac system (www.softwaretestinghelp.com, 2022). The reason

for this is that the AWT application passes the visualisation and interaction of the

elements to classes of the operating system, which then creates the GUI with the

existing look of the elements for the operating system (Ullenboom, 2014, pp. 777,778).

Due to the fact that the AWT is available on every platform it only contains elements

that are available on each platform (Ullenboom, 2014, p. 777). New elements, that are

only available on one platform need to be implemented manually (Ullenboom, 2014, p.

777).

Because each AWT component draws resources from the native platform and these

are outside of Java's memory management, these components are called heavyweight

components (Ullenboom, 2014, p. 777).

27

Figure 11: Coordinate system for User-Space in Java

Due to the heavyweight and platform-dependent character of AWT, newer and

platform-independent frameworks, such as Swing of JavaFX, are more frequently

used in modern applications (www.softwaretestinghelp.com, 2022).

Since Java 1.2 the AWT package is implemented an extended in the

Java Foundation Classes (JFC) which among other things includes the Swing

components and Java 2D API (Ullenboom, 2014, p. 778).

5.2 Java 2D API
The Java 2D API is a core component since Java 1.2 and allows programmers to

create and manipulate shapes, texts, fonts and images (Oracle, o.D.-d). The central

class in the Java 2D API is the java.awt.Graphics2D, which itself is a subclass of

the java.awt.Graphics class (Day, 1998).

Graphics2D brings a more uniform capability and utility support for manipulating two-

dimensional shapes like text, lines and other objects (Day, 1998). In comparison to the

Graphics class, the Graphics2D class provides the programmer with advanced

control over geometry, coordinate transformations, colour management and text layout

(Oracle, o.D.-a).

A coordinate system is needed to give drawing instructions to a computer. In most

cases, the zero point of the coordinate system is in the upper left corner. As can be

seen in Figure 11, if the x-value is increased, the drawing shifts to the right and an

increase of the y-value shifts the drawing downwards (Oracle, o.D.-b). The Java 2D

API distinguishes between two different coordinate systems:

• User Space: A device-independent system that the program uses. Each object

created in Java2D is specified in the User-Space.

• Device Space: A device-dependent system that changes according to the

used device (screen, window, printer). (Oracle, o.D.-b)

28

For most cases specifying coordinates as integers is sufficient, yet in some cases

floating-values of double-values are needed. Even though the coordinate systems can

vary drastically between different devices (e.g. a high-resolution screen and a printer),

these differences are invisible to the Java programmer (Oracle, o.D.-b).

In the Java 2D API there are three different levels of configuration information that help

the conversion from the device-independent user-space to the device-dependent

device-space:

• GraphicsEnvironment

• GraphicsDevice

• GraphicsConfiguration (Sun-Microsystems, 1999)

Through the “GraphicsEnvironment” the Java-application gets a collection of all

the rendering devices that are connected to the particular platform as well as a list of

all the fonts that are available (Sun-Microsystems, 1999). Among others, rendering

devices include screens, printers, monitors and image buffers (Sun-Microsystems,

1999).

A visible rendering device is described as a “GraphicsDevice”. Each
“GraphicsDevice” can have multiple “GraphicsConfiguration”. A
“GraphicsConfiguration” describes a certain mode like 1920x1080 or 1280x720
(Sun-Microsystems, 1999).

So, a “GraphicsEnvironment” contains multiple “GraphicsDevices” which itself
can contain multiple “GraphicsConfigurations”.

The Java-program automatically detects which device-space is currently needed and

performs the transformation from user-space to device-space through its

“AffineTransformation” object (Sun-Microsystems, 1999).

“AffineTransformation” defines the rules for the manipulation of coordinates

using matrices (Sun-Microsystems, 1999).

For transformations, Java 2D provides the programmer with four basic methods:

• Translate (move)
• Rotate
• Scale
• Shear

29

“Translate” moves the origin (x=0, y=0) of the graphics context to a new given point.

With the “rotate” - command it is possible to rotate a previously created object by a

certain angle. The “scale” – command applies a multiplier to both axes for all the

following commands (Oracle, o.D.-a). To slant the following drawings the “shear” –

command can be used, which applies a multiplier that determines how much the

coordinates are shifted / slanted in one axis as a function of their second axis – this

method is also known as skewing (Oracle, o.D.-a).

Even though, the Java 2D API provides a number of complex methods for creating

different graphics, most Java 2D programs only use a subset of these capabilities

found in the “Graphics” class (Oracle, o.D.-c).

Most of the methods within the “Graphics” class can be separated into two different

groups:

• Rendering the basic shapes, texts and images through the draw and fill
methods

• Setting attributes to those basic drawings and fillings (Oracle, o.D.-c)

Both method-groups can be combined to create a large number of different graphics.

Figure 12 shows different graphic objects and how they relate to the two

method-groups. While shapes can be created through the draw and fill methods, texts

can be edited with the “DrawString” method and the “setFont” and “setColor”

method.

Figure 12: Relation of graphics and methods (Oracle, o.D.-c)

30

5.3 Java Drawing for ooRexx (JDOR)
The JDOR package allows the Java 2D API environment to be used in ooRexx. With

it, programmers are able to exploit the “Graphics” and “Graphics2D” class of the

“Java.awt.package” (Flatscher, 2022b, p. 9). Despite this support, the structure and

architecture of ooRexx and Java differ greatly (Flatscher, 2022b, p. 7). Due to this fact,

ooRexx commands, while using similar wording, look different than their counterparts

in Java.

ooRexx and JDOR work with commands that are represented by simple, easy-to-read

strings, whose structure and arguments are converted behind the scenes into method

calls to Java2D (Flatscher, personal communication, 27.12.2022). Even though the

commands differ between the two programming languages, the commands in ooRexx

are formulated in such a way that it is also possible for Java programmers to

understand and use them after a short time.

JDOR also allows programmers to access the Java2D data with directories and

HashMaps of loaded colours, fonts and stroke-types. This access makes it possible to

define additional colours, fonts, and stroke-types with nicknames in a HashMap that

can later be used by the ooRexx program (Flatscher, 2022b, p. 8).

Through the functions of the JDOR Command Handler, the programmer is enabled to

store various images and graphics with ease. Commands can also be stored in a plain

text file to create macros for Java2D in ooRexx. To create animations the JDOR

Command Handler temporarily halts the execution of the program. (Flatscher, 2022b,

p. 9)

Nevertheless, in case of a problem, ooRexx programmers will usually only find code in

Java when they search the internet, which they must first convert into ooRexx code.

Depending on the problem, this can itself lead to various difficulties and challenges.

To give a better understanding of the different JDOR – commands in ooRexx the

following chapter will provide a list of JDOR – commands and their counterpart in

Java 2D.

31

5.3.1 JDOR – Commands

Although the commands written in JDOR / ooRexx and their counterparts in Java often

use the same wording, their structure differs in many cases. One of the most striking

differences is the absence of brackets and commas.

This chapter is mainly based on the JDOR – documentation from Rony G. Flatscher

and the “Graphics” and “Graphics2D” – documentation from Oracle. The

documentation of JDOR can be found in the BSF4ooRexx-folder with the following

path:

 /BSF4ooRexx850\information\jdor\jdor_doc.html

The “Graphics” and “Graphics2D” documentation can be retrieved from the following two

links:

 https://docs.oracle.com/javase/8/docs/api/java/awt/Graphics.html

 https://docs.oracle.com/javase/8/docs/api/java/awt/Graphics2D.html

JDOR provides ooRexx programmers with a wide range of different commands, yet

not each of these commands was used in the programming – part of this bachelor

thesis.

Table 2 lists the commands that were used in this bachelor thesis. Each command is

described in its scope and additionally the different possible arguments are described

in more detail.

The arguments which do not necessarily have to be provided when using the

commands are written in square brackets in this table (this is only used to distinguish

between necessary and non-necessary arguments). In reality, square brackets are not

used when providing additional arguments.

It should also be mentioned that there are multiple combinations of attributes for each

command in ooRexx and in Java. While with ooRexx the additional arguments, which

can only be used together, are placed together in the square brackets, for Java only

the complete command without square brackets is specified.

https://docs.oracle.com/javase/8/docs/api/java/awt/Graphics.html
https://docs.oracle.com/javase/8/docs/api/java/awt/Graphics2D.html

32

One of the biggest differences between JDOR and Java2D is JDOR's "goto"

command. This defines the start coordinates for the following commands and is mainly

used to separate these coordinates from the other coordinates and eliminates the need

to re-enter the same coordinates several times (Flatscher R., personal communication,

27.12.2022).

In Java a “Graphics2D” object must be created to draw shapes. For the

Java-commands in Table 2 this object is named “G2D”.

JDOR Java Description for
JDOR

WINSIZE width

height
setSize(double width,

double height);
Sets the size (width and

height) of a new window

NEW width height

[type]

public BufferedImage(int

width, int height,

int Imagetype);

Creates an image

/drawable area on the

window. Needed if area

should be unequal to

500x500

WINSHOW setVisible(true); Shows the current window

WINHIDE setVisible(false); Hides the current window

BACKGROUND

colornickname

G2D.setBackground(

Color color);

Sets the colour of the

background. Only works in

combination with the

command ClearRect

GOTO x y - Sets the x1 and y1

coordinates for the

following commands

FONTSIZE size G2D.setFont(G2D.getFont().
deriveFont(float size);

Sets the fontsize for the

following commands

https://docs.oracle.com/javase/8/docs/api/java/awt/Graphics2D.html#setBackground-java.awt.Color-
https://docs.oracle.com/javase/8/docs/api/java/awt/Color.html

33

FONTSTYLE style G2D.setFont(G2D.getFont().
deriveFont(int style);

Sets the fontstyle for the

following commands.

Style-attribute (0: Normal,

1: Bold, 2: Italic, 3:

Bold+Italic)

FONT NickName

fontname

Font name = new Font (
string fontname, int style,
float size);

Saves the current font

under a nickname with the

current style and size.

FontName must be in

explanation marks

FONT NickName G2D.setFont(Font name) Sets a previously saved

font as the font for the

following commands

STROKE Nickname

width [cap]

[join]

[miter_limit]

[dashpattern[]

dashphase]

BasicStroke name = new
BasicStroke(float width,
int cap, int join,
float miter_limit,
float[] dashpattern,
float dash_phase);

Saves a stroke under a

nickname with a width (in

pixels).

Cap-Attribute (0: BUTT, 1:

ROUND, 2: SQUARE).

Join-Attribute (0: BEVEL, 1:

MITER, 2: ROUND).

Miter_Limit-Attribue (Sets

limit for Join-Miter).

Dashpattern-Attribute

(Array with lengths and

spacings).

Dashphase-Attribute

(Offset for starting point for

the first dashpattern)

STROKE

strokeNickName

G2D.setStroke(Stroke name);

Sets a previously saved

stroke as the stroke for the

following commands.

DRAWLINE x y G2D.drawLine(int x1, int y1,

int x2, int y2);

Draws a line from the

current coordinates to the

given coordinates

https://www.tabnine.com/code/java/methods/java.awt.BasicStroke/%3Cinit%3E
https://docs.oracle.com/javase/8/docs/api/java/awt/Stroke.html
https://docs.oracle.com/javase/8/docs/api/java/awt/Graphics.html#drawLine-int-int-int-int-

34

DRAWRECT width

heigth

G2D.drawRect(int x1, int y1,
int width, int height);

Draws a rectangle from the

current coordinates (upper-

left) with the given width

and height

DRAWOVAL width

heigth

G2D.drawOval(int x1, int y1,
int width, int height);

Draws an oval in an

invisible rectangle from the

current coordinates (upper-

left) with the given width

and height

DRAWPOLYLINE

xPoints[]

yPoints[]

nPoints

G2D.drawPolyline(

int[] xPoints,

int[] yPoints,

int nPoints);

Draws a line between

multiple given points.

Xpoints-Attribute (Array of

x-coordinates)

ypoints-Attribute (Array of

y-coordinates)

npoints-Attribute (number

of points – must be equal to

both points-arrays size)

 DRAWARC width

height startAngle

arcAngle

G2D.drawArc(int x, int y,
int width, int height,
int startAngle,
int arcAngle);

Draws an arc in an invisible

rectangle starting from the

current coordinates (upper-

left) with the given width

and height. The angles are

measured in degree

starting from the 3 o’clock

position going

counterclockwise. The

arcAngle-Attribute gives the

endpoint of the arc.

DRAWSTRING text G2D.drawString(String text,

int x, int y);
Draws a string (=text) at the

current coordinates

FILLRECT width

height

G2D.fillRect(int x, int y,

int width, int height);
Fills a rectangle starting

from the current

coordinates (upper-left)

with the given width an

https://docs.oracle.com/javase/8/docs/api/java/awt/Graphics.html#drawPolyline-int:A-int:A-int-
https://docs.oracle.com/javase/8/docs/api/java/awt/Graphics.html#drawArc-int-int-int-int-int-int-
https://docs.oracle.com/javase/8/docs/api/java/awt/Graphics.html#drawString-java.lang.String-int-int-
https://docs.oracle.com/javase/8/docs/api/java/lang/String.html
https://docs.oracle.com/javase/8/docs/api/java/awt/Graphics.html#fillRect-int-int-int-int-

35

FILLOVAL width

heigth

G2D.fillOval(int x, int y,
int width, int height);

Fills an oval in an invisible

rectangle starting from the

current coordinates (upper-

left) with the given width an

height.
FILLARC width

heigth

G2D.fillArc(int x, int y,
int width, int height,
int startAngle,int arcAngle);

Fills an arc in an invisible

rectangle starting from the

current coordinates (upper-

left) with the given width an

height. (structure of arc see

DRAWARC)
LOADIMAGE

NickName Path

ImageIO.read(new File(

string path);
Saves an image from the

given path under the given

nickname.
DRAWIMAGE

NickName

[width height]

[bgcolor]

G2D.drawImage(drawImage(

Image img, int x, int y,

int width, int height,

Color bgcolor,

ImageObserver observer);

Draws a previously saved

image. If width and height

are provided the image will

scale up or down.

Bgcolor-Attribute sets the

backgroundcolor for

transparent image-parts.

TRANSLATE x y G2D.translate(int x, int y); Sets a new origin for the

coordinate-system.

ROTATE theta

[x y]

G2D.rotate(double theta,

double x, double y);
Rotates the following

drawing in the given theta

(=angle in degree) around

the origin of the coordinate

system.

„x“ and „y“ sets a new origin

for the rotation
SCALE shx shy G2D.scale(double shx,

double shy)
Applies a multiplier to the

coordinates, width and

height attributes for the

following commands

SHEAR shx shy G2D.shear(double shx,
double shy)

Applies a factor that

determines how much an

object shifts in relation to its

“x” and “y” coordinates.

https://docs.oracle.com/javase/8/docs/api/java/awt/Graphics.html#fillOval-int-int-int-int-
https://docs.oracle.com/javase/8/docs/api/java/awt/Graphics.html#fillArc-int-int-int-int-int-int-
https://docs.oracle.com/javase/8/docs/api/java/awt/Graphics.html#drawImage-java.awt.Image-int-int-java.awt.Color-java.awt.image.ImageObserver-
https://docs.oracle.com/javase/7/docs/api/java/awt/Image.html
https://docs.oracle.com/javase/7/docs/api/java/awt/Color.html
https://docs.oracle.com/javase/7/docs/api/java/awt/image/ImageObserver.html
https://docs.oracle.com/javase/8/docs/api/java/awt/Graphics2D.html#rotate-double-double-double-
https://docs.oracle.com/javase/8/docs/api/java/awt/Graphics2D.html#shear-double-double-

36

CLEARRECT width

heigth

G2D.clearRect(int x, int y,

int width, int height)

Draws a rectangle with the

previously defined

backgroundcolour

(works only in combination

with the

background-command)

Table 2: JDOR-commands and their Java2D - counterparts

https://docs.oracle.com/javase/8/docs/api/java/awt/Graphics.html#clearRect-int-int-int-int-

37

6. JDOR-Examples in Open Object REXX
This chapter deals with the practical implementation of the information from the

previous chapters.

It shows several different small programming examples that are intended to illustrate

some of the functionality of the JDOR package in more detail. For this purpose, the

different commands shown in Table 2 have been used to create these small

programming examples.

Even though the examples only use a small amount of the different ooRexx functions,

like loops or question-blocks, it is still recommended to be familiar with the syntax of

ooRexx. Nevertheless, the descriptions of the different sections of code should be

sufficient to understand the structures and processes.

Each example mainly consists of three parts. First, a small description is given which

explains the overall aim of the respective program. Then, the code is shown and

described in detail. The last part is a picture of the generated output and its description.

The basic idea is that the respective programs build upon each other - therefore, each

program tries to extend some of the functionality of the previous program. The aim of

this chapter should be to provide some elementary use-cases and guidance for the

different commands so that other programmers can build upon them to create more

complex programs.

Since the BSF4ooRexx 850 framework is continually in development some changes,

improvements and extensions to the JDOR – package could be published in the future

that were not described in this bachelor-thesis because they were not yet publicly

available at the time of writing the various chapters.

The JDOR – documentation which is part of the BSF4ooRexx 850 program – folder

contains additional information for all the different commands and is revised and

supplemented with each new version and contains nearly all available

JDOR-commands.

38

6.1 Drawing Simple Shapes – JDOR_shapes.rxj
This example shows some of the different drawable shapes from the “Graphics” and

“Graphics2D” libraries. It provides examples for drawing and filling rectangles, ovals,

lines and round-rectangles in basic colors. It should also show how overlapping shapes

act.

The basics for each JDOR program can be found in line 1,2 and 31 of Figure 13. The

code in line 31 starts the “jdor.cls” file before executing the other code-lines. Line 1

loads the JDOR – Command – Handler with its default name “JDOR”. Line 2 addresses

this handler under its default name, connecting the following commands to the specific

handler. These lines are needed to use Javas “Graphics” and “Graphics2D”

libraries in ooRexx.

CALL addJdorHandler
ADDRESS jdor -- set default environment to JDOR

--Creating and showing a new window
win_width = 500
win_height = 300
NEW win_width win_height
WINSHOW

--Drawing the different shapes
GOTO 50 (win_height / 2 -50) --200
DRAWRECT 200 100

GOTO 200 (win_height / 2 - 25) --225
COLOR red
DRAWROUNDRECT 150 50 45 45
COLOR gray
FILLROUNDRECT 150 50 45 45

GOTO 300 (win_height / 2 - 40) --210
COLOR green
DRAWOVAL 150 80
COLOR red
FILLOVAL 150 80

GOTO 50 (win_height / 2) --250
COLOR blue
DRAWLINE 450 (win_height / 2)

SLEEP 40
::REQUIRES "jdor.cls"

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31

Figure 13: Shapes in JDOR - JDOR_shapes.rxj

39

To draw in ooRexx a new window or frame is needed where these drawings can be

displayed. With the code in line 4 and 5 the variables “win_width” and “win_height”

are created which are used to save the width and the height of the window. In line 7 a

new window is created with the previously saved width and height. Line 8 displays the

window on the current screen.

The drawings in this program are all centred around the middle of the y-axis– which in

this case is “150” (half of “win_height”).

Before the first rectangle is drawn, the starting point (“x” and “y”) of the new drawing

must first be selected with the “goto” command. The first drawing should be 50 steps

away from the origin on the x-axis. To place the rectangle (height 100, length 200) in

the centre, half of its height must be subtracted from the y-axis starting point

(100 / 2 = 50).

The same idea is followed by the “goto”-command before drawing the oval and round

rectangle, with their represented height (see line 14 and 21). The “draw”-command

only draws the outlines of the respective shapes in the previously defined colour (e.g

line 15 sets the colour to “red” for the “DRAWROUNDRECT”- Command). The

“DRAWROUNDRECT” – command draws an empty rectangle with rounded edges in the

colour red. The “strength” of the curve-effect is set by the third and fourth argument of

the “DRAWROUNDRECT” and “FILLROUNDRECT” command (if both arguments are the

same, the edges are perfectly circular – see Figure 14). In line 18, the

“FILLROUNDRECT” – command is used to draw a grey rectangle with rounded edges.

Since the “FILLROUNDRECT” – command in line 18 was written after the “DRAWRECT”

– command (line 12) the round rectangle overlaps the edged rectangle. The same can

be seen with the “DRAWOVAL” and “DRAWLINE”. A new object is always drawn on top

of all the previously defined objects.

While the shapes, like rectangles and ovals, are defined by their width and height, lines

are described by their endpoint (they start from the point set by the previous

“goto”-command and end at the given coordinate)

Figure 14 on the next page shows the output of the code from Figure 13. It shows the

four different shapes being drawn on top of each other in the middle of the window.

40

The standard-width of strokes used by the “DRAW”-commands is one pixel. Due to this

small size factor, the different line-colours are hard to see if the shapes are filled with

another colour (e.g. the green line around the red oval is only barely visible).

The “STROKE” – command can help in such cases, as it provides the programmers

with more customization-possibilities. The next chapter takes a closer look at the

different stroke-types and their effects.

6.2 Different Strokes in JDOR – JDOR-strokes.rxj
The following example shows the saving and use of the various stroke-types. For this

reason, lines and rectangles with different stroke-widths and stroke-settings are

created. In generally, strokes can be used in combination with most of the “DRAW”-

commands (e.g. DRAWLINE, DRAWRECT).

Before drawing with different strokes, these strokes must be defined and saved first

(this happens in line 11 to 15 in Figure 15 with the “STROKE”-command). The defined

strokes are always saved with their nickname in the internal registry of the program

and can be used later.

Strokes consist of a width, cap-type, join-typ, miterlimit, dashpattern and dashphase.

The “CAP-TYPE” sets the decoration of the starting- and endpoint of a line. The

“square” and “round” cap add some pixels to the line, making it a little longer.

Figure 14: Output of JDOR_shapes.rxj

41

Through the “JOIN-TYPE” the connecting behaviour can be set to define how two lines

in a shape react if they overlap. By default, two lines, joining in a 90-degree angle, form

a straight edge. The "MITERLIMIT" can be used to determine at what point two lines

running pointedly towards each other are cut off at the tip.

An array can be used to create a dashed pattern. There are two different ways in

ooRexx to create a dashed line. Firstly, a Java-Array can be created with

“dashphase_stroke1 = bsf.createJavaArrayOf("float.class", 15, 8, 15,8)” (line

11) which can then be used as an attribute for a new stroke ("dashphase_stroke1” in

line 12). Secondly, the array can be specified immediately, in round brackets, as an

attribute for a stroke ("(20,10,8,10)" in line 13).

CALL addJdorHandler --
ADDRESS jdor -- set default environment to JDOR

--Creating and showing a new window with width = 500 and height = 400
win_width = 500
win_height = 400
WINSIZE win_width win_height
WINSHOW

--Creating / Saving strokes
dashphase_stroke1=bsf.createJavaArrayOf("float.class", 15, 8, 15,8)
STROKE stroke1 3 2 0 10 "dashphase_stroke1" 0
STROKE stroke2 5 1 1 10 "(20,10,8,10)" 0
STROKE stroke3 8 1 0
STROKE stroke4 9 2 2

--Creating the drawings
GOTO 50 50
COLOR red
STROKE stroke1
DRAWLINE 300 50

GOTO 50 100
COLOR orange
STROKE stroke2
DRAWLINE 300 100

GOTO 50 150
COLOR black
STROKE stroke3
DRAWRECT 250 200
COLOR blue
FILLRECT 250 300

GOTO 350 50
COLOR green
STROKE stroke4
DRAWRECT 100 300

SLEEP 40
::REQUIRES "jdor.cls"

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41

Figure 15: Strokes in JDOR - JDOR_strokes.rxj

42

The array can be seen as an on-off switch for the drawing-pen, where entries with an

even index draw a line and entries with an odd index leave a blank space (note that

the array starts with index “0”, which is seen as an even number). In case of “STROKE2”

the first 20 points are drawn, then 10 points are left blank, then 8 points are drawn and

then 10 points are left blank again. After all elements of the array are drawn the pattern

starts again from index “0”.

After a stroke is defined it can be set by the “STROKE nickname”-command (see line

20) and used for each following command till a new stroke is set. For example, the line

drawn by the “DRAWLINE 300 50”-command on line 21 is drawn in a red colour (set

on line 19) and with stroke “stroke1” (set on line 20).

Figure 16 shows the output from the code in Figure 15. In comparison to the green line

around the red oval in Figure 14, the black line around the blue rectangle is very well

visible thanks to the increased width by the “STROKE”-command. It also shows the

different dash-patterns from “STROKE1” and “STROKE2”.

Figure 16: Output JDOR_strokes.rxj

43

Figure 17: Writing in JDOR - JDOR-Strings.rxj

6.3 Displaying Text in JDOR – JDOR-Strings.rxj
In addition to various forms, no graphic interface can usually do without some form of

texts and fonts. The "Graphics" and "Graphics2D" classes also offer various

possibilities for displaying texts in a window. In addition to the font, their size and style

can also be adapted to the respective situation.

This small program shows, how texts can be displayed in JDOR using the

“DRAWSTRING”-command and how they can be combined with rectangles and lines to

create textboxes and underlined texts.
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44

CALL addJdorHandler -- load
ADDRESS jdor -- set default environment to JDOR

--Creating and showing a new window
win_width = 500
win_height = 200
WINSIZE win_width win_height
WINSHOW

--Creating and saving different fonts
FONTSIZE 15
FONTSTYLE 1 -- 1=BOLD
FONT BOLD_15_COMIC_S "Comic Sans MS"
FONTSIZE 20
FONTSTYLE 2 -- 2=ITALIC
FONT ITALIC_20_BLACKOUT "Blackout"
FONT Arial_BOLDITALIC_20 "Arial-BOLDITALIC-20" –- BOLD + ITALIC

GOTO 50 50
COLOR blue
FONT BOLD_15_COMIC_S
DRAWSTRING "This is a text written in the font Comic Sans MS"
STRINGBOUNDS "This is a text written in the font Comic Sans MS"
PARSE VAR rc x " " y " " width " " height
SAY width
COLOR black
DRAWLINE 50+width 50

GOTO 50 100
FONT ITALIC_20_BLACKOUT
DRAWSTRING "This is a text written in the font Blackout"

GOTO 50 150
COLOR red
FONT Arial_BoldITALIC_20
DRAWSTRING "This is a text written in the font Arial"
STRINGBOUNDS "This is a text written in the font Arial"
PARSE VAR rc x " " y " " width " " height
SAY rc
GOTO 50 150-height
DRAWRECT width height

SLEEP 40
::REQUIRES "jdor.cls"

44

Before a certain font can be used in JDOR, it needs to be defined first. In JDOR, there

are generally two ways a new font can be defined. However, only fonts that are stored

on the respective system can be used with both variants. To obtain the names of the

fonts stored in the system, the program "2-110_JDOR_listShowPrintFonts.rxj" should

be launched, which can be found in the sample-folder of the BSF4ooRexx850

installation.

By default, the “FONTSIZE” is set to “12” and the “FONTSTYLE” to “0”. Both parameters

can be changed by their respective command (see line 11 and 12 in Figure 17). With

the command “FONT nickname fontname” a new font is saved with the currently

used size and style. So, in line 15 a new font is saved under the name

“BOLD_15_COMIC_S” which uses the font “Comic Sans MS” with the size 15 and

style 1 (=BOLD). A faster way would be to set all three parameters in one line which is

shown in line 17 in Figure 17. All three parameters can be specified in one line. After

the nickname for the new font is chosen, the three parameters are then separated by

a hyphen.

To use the font for a new “DRAWSTRING”-command the font must be set with the “FONT

nickname”-command which looks up the nickname in the system’s registry.

The command “STRINGBOUNDS” (see line 23) returns the coordinates, width and

height of an invisible rectangle that is drawn around a certain text. This information can

be accessed with the “rc”-variable, which can be split into its respective information

with the “PARSE VAR” command (line 24).

When drawing underlines or textboxes it is crucial to understand that text is written on

top of the current position, whereas shapes are drawn below the current position. So,

a line drawn on the same height as a text is displayed right underneath the text (see

line 27 in Figure 17– only the x-coordinate (=50+width) of the endpoint changes, while

the y-coordinate stays the same). The result can be seen in the first text in Figure 18.

When drawing a rectangle around a text, the starting point of this rectangle must first

be shifted upwards by the height of the text (see the “GOTO”-command on line 14). After

that, the rectangle, with the width and height provided by the “STRINGBOUNDS”-

command is drawn perfectly around the text. It needs to be noted, that the

45

“STRINGBOUNDS”-command adds a small spacing on top of the text (see the third

text in Figure 18)

Figure 18 shows the output from the code in Figure 17. As it is described in the code,

the first line of text is written in bold and underlined with a black line and the second

line of text is written in an italic style. The third line is written in both bold and italic and

outlined with a rectangle.

6.4 Using Images in JDOR – JDOR-images.rxj
Images are an important component of many modern graphical user interfaces. Even

though the “Graphics” and “Graphics2D” libraries are not the newest additions to

the Java-class system, they do provide valuable functions to use and manipulate

images. JDOR allows to use these functions in ooRexx.

The code in this example intends to show the basics of image processing in JDOR. To

do this, a previously created image is imported into JDOR, then decorated with a frame

and finally saved on the system.

JDOR provides a variety of different commands related to image-processing. The focus

in this example lies on the “LOADIMAGE”, “DRAWIMAGE” and “SAVEIMAGE” commands.

These are three of the most important commands when using and saving images.

Additionally, this example also uses commands shown in the two previous examples,

to create different strokes and texts.

Figure 18: Output JDOR-Strings.rxj

46

To load an image into JDORs registry the “LOADIMAGE”-command is used in line 14

in Figure 19 to save the “Snowman.png” image under the nickname

“Stickman_and_Snowman”. To centre the image in the middle of the frame, the

dimensions of the image are needed, which can be accessed through the “IMAGESIZE

nickname”-command, which saves the width and height into the “rc”-variable (see

line 15 and 16). In combination with the windowsize and image-dimensions the starting

point for the image can be calculated and set with the “goto”-command (see line 19).

With the “DRAWIMAGE Stickman_and_Snowman”-command the image gets drawn

at the current location.

A new width and height for the image can be set with the “DRAWIMAGE” command, yet

the dimensions accessed by the “IMAGESIZE” command won’t be affected.

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38

CALL addJdorHandler -- load and add the Java Rexx command handler,
ADDRESS jdor -- set default environment to JDOR

--Creating and showing a new window
win_width = 600
win_height = 400
WINSIZE win_width win_height
WINSHOW

--setting the color and stroke for the frame
COLOR woodbrown 139 90 43 255
STROKE ImageFrame 30 0 2

LOADIMAGE Stickman_and_Snowman "Snowman.png" –-nickname and path
IMAGESIZE Stickman_and_Snowman
PARSE VAR rc width_img " " height_img –-300x300

--Drawing the frame in the center of the window
GOTO (win_width-width_img)/2 (win_height-height_img)/2 –- 150 50
DRAWIMAGE Stickman_and_Snowman
DRAWRECT width_img height_img

--Draw a string on the bottom of the image onto a gold rectangle
--String should be displayed in the middle
STRINGBOUNDS "WINTERWONDERLAND"
PARSE VAR rc x " " y " " width " " height
GOTO (win_width-width)/2 (win_height-height_img)/2+height_img-height
COLOR gold 255 215 0 255
FILLRECT width height
COLOR black
GOTO (win_width-width)/2 (win_height-height_img)/2+height_img
DRAWSTRING "WINTERWONDERLAND"

--Saving the created image in the same directory
SAVEIMAGE "framed_Snowman.png" --path

SLLEP 40
::REQUIRES "jdor.cls"

Figure 19: Using images in JDOR - JDOR-images.rxj

47

To draw a frame around the picture the “DRAWRECT”-command is used in line 21 with

the width and height received by the “IMAGESIZE”-command. The rectangle is drawn

in the colour set by the RGB-Code (139,90,43,255) in line 11 and with a stroke of width

30 and a round join-behaviour set in line 12.

Drawing a rectangle with a wider stroke-size will draw half the strokes width outside of

the rectangle’s set size and half its width inside of it. Thus, the greater the width of the

strokes, the more image area is covered by the newly drawn rectangle. This can be

seen in Figure 20 where parts of the outer pixels of the “Snowman.png” are covered

by the rectangle in the newly created output-image.

The “Winterwonderland” text inside the rectangle in Figure 20 is created in the same

way as the third text-line described in chapter 6.4 "Using images in

JDOR – JDOR-images.rxj”. Using the window-dimensions, image-size and text-size

the string and the golden rectangle can be displayed in the middle of the lower edge of

the image through the “GOTO”, “DRAWSTRING” and “DRAWRECT” commands (see line

25 to 32). The result can be seen on the right side of Figure 20.

With the “SAVEIMAGE “framed_snowman.png”” the resulting image is saved under

the name “framed_snowman.png” in the current path. If the image needs to be saved

in another location the path could be added to the filename (e.g.

“SAVEIMAGE “C:/Users/Pictures/framed_Snowman.png””).

Figure 20: Snowman.png (left) and output of the code from JDOR-images.rxj (right)

48

6.5 Rotate, Scale, Translate and Shear in JDOR
This example shows the basics of rotating, scaling, translating and shearing in JDOR.

These four methods together build the basis for “AffineTransform” in “GRAPHICS”

and “GRAPHICS2D”. Rotating objects is needed if the goal is to draw a shape which is

not parallel to the x-axis or y-axis. Scaling applies a multiplier to both axes which affects

the size and coordinates of the following drawings. Translating lets the programmer

move the origin of the coordinate-system from the current window. Shearing is the

most complex of the four methods and allows to shift and “stretch” objects.

To give a better example of these transforming methods. First, the lines of a

coordinate-system are drawn in a window. After that, the different methods are applied

to various rectangles.

For the creation of the coordinate-grid two loops are needed. The first loop created the

vertical lines and the second loop the horizontal lines. The lines should be placed 25

points apart. Loops in ooRexx often use a counter-variable and a step. In case of the

“DO i=0 TO win_width BY 25” in line 16 in Figure 21 the counter-variable “i” starts

at “0” and iteratively goes up by “25” till it reaches the value of “win_width” (=500). At

each step, a vertical line with the height of the window is drawn. The same process is

applied to the horizontal lines respectively. The two lines that form the center of the

grid are drawn in black (line 24 to 28).

Through the “TRANSLATE win_width/2 win_height/2” command on line 31 the

origin of the coordinate system is set to the middle of the window. Consequently, it is

possible to select starting points with the “GOTO”-command which have negative

coordinates. If that is the case, the “GOTO”-command must be written in exclamation

marks (see line 32).

The “ROTATE”-command in JDOR allows to rotate objects around a certain point. This

point can be provided through the “x” and “y” coordinates, like “ROTATE 45 100 100”.

If no such point is provided, as in line 34 in Figure 21, then the objects are rotated

around the origin. Through the “ROTATE 45” command in line 34 all following objects

are rotated clockwise at a 45° angle towards the origin (in this case the center of the

frame) respective to the current starting point selected by the “GOTO -25 -50”

command.

49

“ROTATE” commands do not overwrite each other but rather add their values up. So, a

“ROTATE 45” followed by a “ROTATE 90” will result in an overall rotation of 135°. To

reset a rotation either the “RESET” command (which also resets the origin to the top

left) or the “ROTATE” command can be used. Vital to mention is that if the rotate

command is used, it needs to add up to 360° or 0°. So, the “ROTATE 315” in line 36

will reset the rotation set by “ROTATE 45” in line 34.

The rectangle drawn by the “FILLRECT 50 50” in line 38, at the starting point 50,50

proofs that no rotation is in effect (it is drawn in the exact location set by “GOTO 50 50”

– see the green rectangle in Figure 22).

10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48

--setting the colors
COLOR coordinate_system 190 190 190 200
COLOR middle 0 0 0 255

--Drawing the system
COLOR coordinate_system
DO i=0 TO win_width BY 25
 GOTO i 0
 DRAWLINE i win_height
END
DO i=0 TO win_height BY 25
 GOTO 0 i
 DRAWLINE win_width i
END
COLOR middle
GOTO win_width/2 0
DRAWLINE win_width/2 win_height
GOTO 0 win_height/2
DRAWLINE win_width win_height/2

-- Applying methods
TRANSLATE win_width/2 win_height/2
"GOTO -25 -100"
DRAWRECT 50 50
ROTATE 45
DRAWRECT 50 50
ROTATE 315
GOTO 50 50
COLOR GREEN
FILLRECT 50 50
"SHEAR -1 0"
COLOR BLACK
FILLRECT 50 50
CLEAR
TRANSLATE win_width/2 win_height/2
SCALE 2 2
"GOTO -50 50"
COLOR blue
FILLRECT 25 25

Figure 21: Excerpt from JDOR - JDOR_transform.rxj (full code in Appendix - A 1. JDOR-transform.rxj)

50

Through the “SHEAR” command objects / shapes can be shifted or skewed. Objects

can be sheared in the x-direction and / or y-direction through their respective argument.

For a shear in the x-direction only the x-coordinates change while the y-coordinates

stay the same (𝑥𝑥′ = 𝑥𝑥 + 𝑆𝑆ℎ𝑥𝑥 ∗ 𝑦𝑦, 𝑦𝑦′ = 𝑦𝑦). By performing a shear in the y-direction, y-

coordinates change while x-coordinates stay the same (𝑥𝑥′ = 𝑥𝑥,

𝑦𝑦′ = 𝑦𝑦 + 𝑆𝑆ℎ𝑦𝑦 ∗ 𝑥𝑥). When applying a shear in both directions, both coordinates change

(𝑥𝑥′ = 𝑥𝑥 + 𝑆𝑆ℎ𝑥𝑥 ∗ 𝑦𝑦 , 𝑦𝑦′ = 𝑦𝑦 + 𝑆𝑆ℎ𝑦𝑦 ∗ 𝑥𝑥).

With the “SHEAR -1 0” in line 40 only a shear in the x-direction is applied. The

following rectangle “FILLRECT 50 50” appears shifted (see the black parallelogram

in Figure 22. For example, the starting point set by the “GOTO 50 50” is changed to

(0,50) (mathematical equation: 𝑥𝑥′ = 50 − 1 ∗ 50 => 𝑥𝑥′ = 0 , 𝑦𝑦′ = 50).

Through the following “CLEAR”-command in line 43 all transformations, including the

“SHEAR” and “TRANSLATE” are reset. Therefore, the “TRANSLATE”-command must be

reset in line 44.

The “SCALE 2 2” in line 45 applies a double-multiplier to all coordinate-related

following commands (“x” and “y” coordinates). Due to this fact the “GOTO -50 50” in

line 46 actually moves the starting point to (-100,100) and the “FILLRECT 25 25” in

line 48 draws a rectangle with the size 50x50 (see the blue rectangle in Figure 22.

Figure 22: Output form JDOR-transform.rxj

51

6.6 Moving Objects in JDOR – JDOR-move.rxj
The following example shows how to “animate” objects in ooRexx through JDOR.

Animating in this context means creating the appearance that an object is moving. In

reality, however, an object is drawn repeatedly in such short time-intervals in different

places, that it looks to a human observer as if this object is moving from one place to

another.

The goal of this example is to show that simple animations can be created with ease

through just one loop, in which only the coordinates of the drawings are changing. In

addition, it shows how a “rebound effect” (redirecting an object after it collides with

another object) can be achieved through simple calculations. The idea is that a circle,

which is drawn in the middle of the window, starts moving in the direction of a random

angle leaving a trail on its path.

To place a circle exactly in the middle of the window, the window-size and

circle-diameter are needed. In this example the diameter of the circle is “50” (set by

the variable “ball_dia” in line 8 in). In its essence a circle is an oval with identical

width and height - so the “FILLOVAL 50 50” on line 20 draws a circle.

To give the circle a direction, trigonometric functions are needed. By default, ooRexx

does not have any trigonometric functions, so they must be imported through a Java

class. In line 4 the “java.lang.Math” class is imported through BSF4ooRexx 850

which allows the use of each method in this class via “.calc~methodname”.

Respectively, this is used to convert the random number (“RANDOM(1,360)” – picks

a number between 1 and 360) into radians and then to apply the cosines and sinus in

the lines 21 to 23. The cosines and sinus are needed to calculate the movement in the

“x” and “y” direction.

Constantly changing the same values is important to create animations. To achieve

this, an endless loop is created with the “DO FOREVER” command. To get the current

position on the window the “GET STATE” command is needed, which creates a table

of information that is accessible through the “RC” variable. The coordinates can then

be accessed through their respective index in the table (see “rc[“CURRX”]” in line

28).

52

Figure 23: JDOR-move.rxj (partly – complete version in Appendix
- A 2. JDOR-move.rxj)

CALL bsf.import "java.lang.Math", "calc" --import Java.lang.Math as calc
--Setting variables
win_width = 500
win_height = 500
ball_dia = 50
speed = 5
colors = "red", "black", "green", "blue", "orange", "gray", "yellow"
--Create Window
WINSIZE win_width win_height
NEW win_width win_height
BACKGROUND white
CLEARRECT win_width win_height
WINSHOW

COLOR black
GOTO win_width/2-ball_dia/2 win_height/2-ball_dia/2 -- 500/2 - 50/2 = 225
FILLOVAL 50 50
angle = .calc~toRadians(RANDOM(1,360)) --random angle between 1 and 360
MOVE_Y = .calc~cos(angle) * speed --Cosines needs radians
MOVE_X = .calc~sin(angle) * speed --Sinus needs radians
SAY angle
SAY MOVE_X " : "MOVE_Y
DO FOREVER -- loop will be executed forever till window is closed
 getState
 currX = rc["CURRX"]
 currY = rc["CURRY"]
 next = collison_detection(currX, currY, MOVE_X, MOVE_Y)
 MOVE_X = next[1]
 MOVE_Y = next[2]
 COLOR next[3]
 GOTO currX+MOVE_X currY+MOVE_Y
 FILLOVAL ball_dia ball_dia
END
sleep 4 -- line is never executed since loop is never exited
EXIT -- same as line 47 (exists only for consistency with other examples)

collison_detection: PROCEDURE EXPOSE win_width win_height ball_dia colors
PARSE ARG CurrX, CurrY, move_X, move_Y
IF CurrX + move_X < 0 THEN --left Border
 DO
 move_X = -move_X
 col = colors[RANDOM(1,colors~size)]
 END
IF CurrX + move_X + ball_dia > win_width THEN --right Border
 DO
 move_X = -move_X
 col = colors[RANDOM(1,colors~size)]
 END
IF CurrY + move_Y < 0 THEN --top Border
 DO
 move_Y = -move_Y
 col = colors[RANDOM(1,colors~size)]
 END
IF CurrY + move_Y + ball_dia > win_height THEN --bottom Border
 DO
 move_Y = -move_Y
 col = colors[RANDOM(1,colors~size)]
 END
erg = move_X, move_Y, col --Creating an array to return multiple values
RETURN erg

4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
41
42
43
46
47
48
49
50
53
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78

53

The actual calculations in which direction the circle moves are done in the

“collision_detection” method. The method is created in line 50 and called on line 30.

The method uses the current location (“currX” and “curry”) and the movement

parameters (“MOVE_X” and “MOVE_Y”) as arguments to calculate whether the next

location would be outside the frame-borders. Through the “EXPOSE”-keyword it

accesses the window-dimensions and circle-diameter (line 50) and returns two new

directions and a colour (line 78).

For the top and left border this means that the current location plus the respective

directional move would lead to a value below “0” (see line 57 and 67). Since the current

location is always on the top left corner of the circle, the circles diameter must be added

to the current location and the next moves direction when checking if the circle moves

across the right and bottom border (see line 62 and 72).

If the method detects a collision than the respective direction is changed (e.g. for a top

or bottom collision the “y”-direction is changed). Additionally, the colour for the circle

is changed by picking a random colour out of the “colours”-array. The direction and

colour are return via an array which is stored in the “next” variable (line 30). The

program then uses these variables to calculate the next move and colour (line 31,32

and 41). After that, a new oval is drawn with “FILLOVAL ball_dia ball_dia” in

line 43.

Figure 24 shows the output after a few seconds (left) and after two minutes (right). It

can be seen that with each collision, the line changes its colour and direction.

Figure 24: Output of JDOR-move.rxj after three seconds (left) and after two minutes (right)

54

6.7 Combining JDOR with JavaFX – JDORFX.rxj
This example shows how to combine JDOR with JavaFX. JavaFX is a

system-independent lightweight platform that enables the creation of desktop

applications and Rich Internet Applications (RIA) (Javatpoint, o.D.). FXML is a version

of XML that is being used to create and represent its graphical user interface. Of

essence is the fact it is detached from the actual program (Javatpoint, o.D.).

With JavaFX a small GUI with buttons and text fields is created which allows one to

draw and move objects in JDOR. The GUI-elements can be defined in an FXML file or

directly in the ooRexx-code. Due to the small number of elements used in the GUI, the

elements were defined directly in ooRexx. Figure 25 shows how a button is created

with an ID (“setId(“btnDraw”)”), position (“setLayoutX()” and

“setLayoutY()”) and text (“setText()”). A similar syntax is used for the

creation of the other elements as well.

For each button an “EventHandler” is created which waits for a user-input (e.g.

clicking the button) and then performs an action (e.g. drawing an object in JDOR).

Figure 26 shows how the “EventHandler” “RexxButtonDrawHandler” with multiple

arguments (“txtWidth”, “txtHeight”,…) is created and how it is linked to the Draw-

button with the command “btnDraw~setOnAction(bhDraw)”.

Figure 27 shows the logic of the “RexxbuttonDrawHandler”. If the “Draw”-button is

clicked, the handler accesses the texts from the “txtwidth”, “txtheight” and

“choice” elements (“EXPOSE” and “USE ARG” in lines 211,212 and 214) and saves it

in the “information”-array (line 216 to 218).

btnDraw=.bsf~new("javafx.scene.control.Button")~~setId("btnDraw")-
 ~~setTextFill(colorClz~BLACK) -
 ~~setLayoutX(460) -
 ~~setLayoutY(25) -
 ~~setText("Draw object")

73
74
75
76
77

Figure 25: Creating a JavaFX button in ooRexx – Excerpt from JDORFX.rxj

bhDraw=BSFCreateRexxProxy(.RexxButtonDrawHandler~new(txtWidth,
txtHeight, choice, Information), ,"javafx.event.EventHandler")
btnDraw~setOnAction(bhDraw)

106

107

Figure 26: Setting the EventHandler for the Draw-Button – excerpt from JDORFX.rxj

55

To use JDOR functionalities in a new class, the current JDOR instance must be

addressed first. This is done in line 215 and must be implemented in each new class.

This allows multiple classes to access the same JDOR instance. Therefore, different

“EventHandlers” have access to the same information regarding the current JDOR

instance.

Through the “PUSHIMAGE currentState” in line 219 the current state of the frame

(positions of the different objects) is saved as an image which can later be used to

restore the state of the frame before the new object was drawn. Then, on line 221 the

handler creates a drawing of the chosen object (“choice~getValue()”) at position

50,50 with the entered size (“txtWidth~getText” and “txtHeight~getText”).

The implementation of JavaFX in ooRexx uses an object-oriented approach, where

every element is created in a class and each “EventHandler” is a class itself.

In total, the GUI has eleven elements. One selection box to set which object should be

drawn next. Two text fields to enter the width and height of the object. One button to

draw the selected object. One button to reset the last drawn object (deleting the object

from the current frame). Four buttons to move the object. One text field to add a path

if the image should be saved on the system and one button to save the image.

Figure 28 shows the resulting GUI with its elements and layout. Due to the lack of a

colour selector, it is only possible to draw in black. A colour selector could be

implemented in a similar way to the object selector, whereby different colour options

are displayed after clicking on the selector.

::class RexxButtonDrawHandler
 ::method init
 EXPOSE txtWidth txtHeight choice information
 USE ARG txtWidth, txtHeight, choice, information
 ::method handle -- will be invoked by the Java side
 EXPOSE txtWidth txtHeight choice information
 ADDRESS JDOR
 information[1] = choice~getValue()
 information[2] = txtWidth~getText
 information[3] = txtHeight~getText
 PUSHIMAGE currentState
 GOTO 50 50
 choice~getValue() txtWidth~getText txtHeight~getText

209
210
211
212
213
214
215
216
217
218
219
220
221

Figure 27: Implemeting the logic of an EventHandler - excerpt from JDORFX.rxj

56

To create the “moving”-effect with the four directions buttons, the object must be

redrawn with each click and the old object must be erased. To erase the object, the old

object must be painted over with a clear composition (line 140 and 141 in Figure 29).

The composition sets the behaviour for overlapping objects. With the

“COMPOSITE src_over” on line 142 the default composition is set so that new pixels

are drawn on top of old pixels. The "DRAWIMAGE currentState" command is used

to prevent newly painted objects from erasing old objects when moved, since all old

objects are redrawn with each move.

With the “information[1] information[2] information[3]” line the

contents of the “information”-array (Object, Width, Height) are used to draw an object,

since the combination would form a string like “DRAWRECT 60 60”

The complete code can be found in the Appendix – in chapter A 3. JDORFX.rxj

Figure 28: GUI created by JDORFX.rxj

::class RexxButtonUpHandler
::method init
 EXPOSE information
 USE ARG information
::method handle -- will be invoked by the Java side
 EXPOSE information
 ADDRESS JDOR
 GETSTATE
 curr_x = rc["CURRX"]
 curr_y = rc["CURRY"]
 WINUPDATE .false
 COMPOSITE clear
 FILLRECT information[2]+1 information[3]+1
 COMPOSITE src_over
 GOTO 0 0
 DRAWIMAGE currentState
 GOTO curr_x curr_y-5
 information[1] information[2] information[3]
 WINUPDATE .true

129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147

Figure 29: Creating a movement effect - excerpt from JDORFX.rxj

57

Figure 30 above shows some pictures created via the Java-FX GUI. When a new

object is drawn, it is automatically placed at the location 50,50 (see upper left image in

Figure 30). Although, the user can only choose between rectangles and ovals, it is still

possible to create more detailed drawings.

For example, the bottom two pictures in Figure 30 show drawings of a car and a face

by combining several different rectangles or ovals in different sizes.

While the drawings are not the most colourful nor complex it is still clear that it is

possible to produce simple visuals that can be recognized by others.

Figure 30: Drawings created by JAVA-FX GUI interaction

58

6.8 Creating Arbitrary Shapes with JDOR –
JDOR-shapes.rxj

This chapter takes a closer look at the shapes and Path2D commands added in the

latest version of BSF4ooRexx. For this purpose, a small example will be created to

show some of the functionalities.

Using the Shapes and Path2D commands, different shapes can be combined to create

new completely and arbitrary ones. The resulting shape can then be drawn, filled and

transformed.

Since the functions of "SHAPES" and "PATH2D" were only added with a version of

BSF4ooRexx during the later stages of the writing process of this bachelor thesis, the

commands were not described in chapter 5.3.1 JDOR – Commands. A complete

description of the commands can be found in the “JDOR_doc.html” file in the

information-folder in the BSF4ooRexx installation-folder or on the website of WU’s

“Information Systems & Society” institute (https://wi.wu.ac.at/rgf/rexx/misc/jdor_doc.t

mp/jdor_doc.html#cmdNew).

Even though the “SHAPES” function is very similar to the objects shown in the previous

chapters (e.g. "DRAWRECT", "DRAWARC"), they still differ in syntax and structure. A

"PATH2D" object is in itself a shape that can consist of different elements and

"SHAPES", which together form a new individual "SHAPE".

In contrast to the standard "DRAW" commands, "SHAPES" are not drawn immediately,

but are first created and then drawn with an additional command. The "GOTO x y" is

also omitted, as the starting point is directly set when the "SHAPE" is created

(e.g. "SHAPE my_rect Rectangle x y width height"). The object can then be

drawn via the “DRAWSHAPE my_rect”-command, which will draw the “my_rect”

object at the given location (x,y).

In this example rectangles, arcs and ellipses are combined to create two “PATH2D”

objects which together form a banner / image. The aim is to show that with "SHAPES"

and "PATH2D" complex drawings can be created in just a few lines of code.

https://wi.wu.ac.at/rgf/rexx/misc/jdor_doc.tmp/jdor_doc.html#cmdNew
https://wi.wu.ac.at/rgf/rexx/misc/jdor_doc.tmp/jdor_doc.html#cmdNew

59

 STROKE str3 3
STROKE str1 1
--TranslateX TranslateY ScaleX ScaleY ShearX ScaleY
"TRANSFORM trans1 -0.1 -0.25"
"TRANSFORM trans2 0.1 0.25"

--Creating the different shapes
SHAPE path1 path
SHAPE path2 path
SHAPE rect_bg Rectangle 100 50 300 400
SHAPE rect_right Rectangle 275 150 50 75
SHAPE rect_left Rectangle 188 22 50 75
SHAPE rect_test Rectangle 100 100 200 200
SHAPE circle Ellipse 225 200 50 50
SHAPE arc_right arc2d 350 350 50 50 90 90 open
"SHAPE arc_left arc2d 100 350 50 50 90 -90 open"

--Creating the path1 shape (appending lines and shapes)
PATHMOVETO path1 250 250
PATHLINETO path1 350 350
PATHAPPEND path1 arc_right
PATHLINETO path1 350 350
PATHMOVETO path1 250 250
PATHAPPEND path1 circle
PATHLINETO path1 225 225
PATHMOVETO path1 250 250
PATHLINETO path1 150 350
PATHAPPEND path1 arc_left
PATHLINETO path1 150 350
PATHMOVETO path1 250 250
PATHLINETO path1 250 200
PATHLINETO path1 250 300
PATHQUADTO path1 200 280 250 400
PATHQUADTO path1 300 280 250 300
PATHLINETO path1 250 175

--Creating the path2 shape (using transformation)
PATHITERATOR rect_right trans1 --applying transform from line 11
PATHAPPEND path2 "rc" --transformed shape is saved in rc
PATHLINETO path2 250 175
PATHMOVETO path2 189.3 69.75
PATHITERATOR rect_left trans2 --applying transform from line 12
PATHAPPEND path2 "rc" --transformed shape is saved in rc
PATHMOVETO path2 239.3 82.25
PATHLINETO path2 250 175
PATHMOVETO path2 260 81.25
PATHLINETO path2 250 175

--Drawing the shapes
COLOR white
FILLSHAPE rect_bg
COLOR red
FILLSHAPE path1
COLOR orange
FILLSHAPE path2
STROKE str3
COLOR black
DRAWSHAPE path1
DRAWSHAPE rect_bg
DRAWSHAPE path2

7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
 Figure 31: Creating shapes - JDOR-shapes.rxj (excerpt – full code in Appendix in A 4. JDOR – shapes.rxj)

60

Figure 31 on the page above shows the code for this example. In line 10 and 11 two

transformations with a shear effect are set. The syntax follows

“TRANSFORM nickname translateX translateY scaleX scaleY shearX

shearY”. A single dot means that the value has not been changed and the current

value is being used – in this case the default value.

Shapes are all created with the “SHAPE” keyword followed by a nickname, type and

attributes. For example, an arc at the location 350,350 with a width and height of 50

and an open arch with 90° is created with the command

“SHAPE arc_right arc2d 350 350 50 50 90 90 open” in line 21.

After a shape is created, it can either be drawn directly (e.g. “DRAWSHAPE rect_bg”

on line 65) or it can be appended to a path (line 27).

With the “PATHMOVETO path1 250 250” in line 25 the current position of “path1” is

set to 250,250. In comparison, the “PATHLINETO path1 350 350” will also set the

current position to 350,350 and will draw a line from the old position to the new position.

With the “PATHAPPEND path1 arc_right” on line 27 the previously created

“arc_right” shape is appended to “path1”. When appending shapes, it is crucial to

know where JDOR starts drawing these shapes. For example, the starting-point of an

ellipse is at its 3 o’clock position – therfore a line will automatically be drawn to this

location before drawing the ellipse.

The “PATHQUADTO path1 200 280 250 400” in line 39 is used to draw a

quadratic-curve to a new position (in this case 200,280). On its “route” from the current

to the new position it will touch the second point (in this case 250,400).

To apply a transformation to a shape, the “PATHITERATOR”-command can be used.

On line 39 the transformation “trans1” is applied to the shape “rect_right”. To

append the transformed shape to a path the “rc” variable needs to be used instead of

the shapes name (e.g “PATHAPPEND path1 “rc”” in line 45).

61

To draw or fill a shape the “DRAWSHAPE” or “FILLSHAPE” followed by the nickname of

the needed shape can be used. A colour or stroke-type can only be applied to a whole

shape. So, if a larger object with multiple colours is needed, the different sections must

be split into different shapes.

Due to this fact, the drawing was split into three shapes. A white background created

by the shape “rect_bg”, The red lower part of the banner created by “path1” and the

orange upper part created by “path2”.

Figure 32 shows the resulting image of “JDOR-shapes.rxj” All enclosed parts of the

“path1” shape are filled with a red colour. Also, the shear-effect of both

transformations for the shape “path” created the two slightly angled rectangles at the

upper part of the image is visible.

As with all the other commands, JDOR always draws one layer above the other. So,

the lines in the red circle in the middle are only visible since the “DRAWSHAPE path1”

command was executed after the “FILLSHAPE path1” command. Otherwise, the

“FILLSHAPE” command would have painted over the black lines.

Figure 32: Banner created by JDOR-shapes.rxj

62

7. Conclusion
By no means are Java and the 20-year-older ooRexx the most recent programming

languages available. But, whereas Java is still widely used and appreciated in the

development community, ooRexx has lost its popularity over time.

The most recent version of ooRexx, however, was only made available in December

of 2022 and through extensions, notably BSF4ooRexx 850, the number of

functionalities has increased significantly.

Allowing programs to use the complex features of the Java programming language in

a simple-to-read programming language like ooRexx is especially beneficial for

beginners, but it also has advantages for experienced developers.

The syntax and structure of ooRexx, like many other programming languages

available, may take some getting accustomed to. However, results are often attained

rather rapidly, and the usage is typically rewarding.

JDOR, the practical subject of this thesis, is simple to learn and gives programmers

the ability to create basic drawings after a little learning period, especially when

combined with its documentation. In particular, beginners may learn about graphic

design by employing the various elements and engaging in active learning. Through

the latest addition, “SHAPES” and “PATH2D”, even complex drawings can be created

with ease.

Unfortunately, the lack of online support is one of ooRexx's greatest drawbacks. In

most cases, it is up to the individual to identify their errors. Therefore, even though

knowledge of Java is not required to utilize the BSF4ooRexx 850 framework, it

undoubtedly has certain benefits to know how to solve issues in Java. Additionally,

"successors" to "AWTs" "Graphics" and "Graphics2D," such as "Swing" and

"JavaFX," are generally more popular and better suited in their respective sectors.

However, one should not undervalue JDOR's potential. JDOR, like JavaFX to a certain

extent, are fascinating additions for students and encourage experimentation if there

is an underlying interest in drawing or graphic design. Nevertheless, it is debatable

whether a course needs to have a distinct JDOR unit. A few slides outlining the

fundamental ideas, would suffice to spark some students' curiosity on this topic.

63

A certain excitement of exploration may emerge rather fast, especially if one

goes deeper into the subject and tries out the other commands in the JDOR

documentation.

Even though it was occasionally difficult, the author of this bachelor thesis generally

enjoyed the designing and creation-process of the provided examples.

In conclusion, it is debatable to what degree learning the "Graphics" and

"Graphics2D" components via JDOR in ooRexx provides a graduate with a

competitive edge in the workforce. However, the AWT package serves as the

foundation upon which the other graphical Java classes, like Swing and JavaFX, are

build on, and as such, it provides a useful look behind the scene. Hence, the author

believes that learning JDOR is especially worthwhile for beginners. But rather than

adding a new course subject, it would probably be sufficient to provide students with

slides that they could read on their own.

With these slides as a basis and enough creativity students are able to create

numerous drawings and may also awaken the interest in more complex design classes

or frameworks.

64

Appendix
This chapter contains the complete code for the examples that were only partly shown

in the thesis.

A 1. JDOR-transform.rxj
Figure 32 shows the complete code from example JDOR-transform.rxj shown and

described in chapter 6.5 Rotate, Scale, Translate and Shear in JDOR

Figure 33 on page 63 and 64 shows the complete code of “JDOR-move.rxj” shown in

chapter 6.6 Moving objects in JDOR – JDOR-move.rxj. In addition to the code shown

in the chapter the complete code contains a commented section (line 34 to 40) which,

if included, would erase the trail left by the circle.

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51

CALL addJdorHandler -- load
ADDRESS jdor -- set default environment to JDOR

--Creating and showing a new window
win_width = 500
win_height = 400
WINSIZE win_width win_height
WINSHOW

--setting the colors
COLOR coordinate_system 190 190 190 200
COLOR middle 0 0 0 255

--Drawing the system
COLOR coordinate_system
DO i=0 TO win_width BY 25
 GOTO i 0
 DRAWLINE i win_height
END
DO i=0 TO win_height BY 25
 GOTO 0 i
 DRAWLINE win_width i
END
COLOR middle
GOTO win_width/2 0
DRAWLINE win_width/2 win_height
GOTO 0 win_height/2
DRAWLINE win_width win_height/2

-- Applying methods
TRANSLATE win_width/2 win_height/2
"GOTO -25 -100"
DRAWRECT 50 50
ROTATE 45
DRAWRECT 50 50
ROTATE 315
GOTO 50 50
COLOR GREEN
FILLRECT 50 50
"SHEAR -1 0"
COLOR BLACK
FILLRECT 50 50
CLEAR
TRANSLATE win_width/2 win_height/2
SCALE 2 2
"GOTO -50 50"
COLOR blue
FILLRECT 25 25

sleep 400
::REQUIRES "jdor.cls"

Figure 33: JDOR-transform.rxj

65

A 2. JDOR-move.rxj
Figure 34 shows the complete code of the “JDOR-move.rxj” example shown in chapter

6.6 Moving Objects in JDOR – JDOR-move.rxj. In addition to the code shown in the

chapter the complete code contains a commented section (line 34 to 40) which, if

included, would erase the trail left by the circle.

CALL addJdorHandler -- load the JDOR handler
ADDRESS jdor -- set default environment to JDOR

CALL bsf.import "java.lang.Math", "calc" --import Java.lang.Math as calc
--Setting variables
win_width = 500
win_height = 500
ball_dia = 50
speed = 5
colors = "red", "black", "green", "blue", "orange", "gray", "yellow"
--Create Window
WINSIZE win_width win_height
NEW win_width win_height
BACKGROUND white
CLEARRECT win_width win_height
WINSHOW

COLOR black
GOTO win_width/2-ball_dia/2 win_height/2-ball_dia/2 -- 500/2 - 50/2 =
FILLOVAL 50 50
angle = .calc~toRadians(RANDOM(1,360)) --random angle between 1 and 360
MOVE_Y = .calc~cos(angle) * speed --Cosines needs radians
MOVE_X = .calc~sin(angle) * speed --Sinus needs radians
SAY angle
SAY MOVE_X " : "MOVE_Y
DO FOREVER -- loop will be executed forever till window is closed
 getState
 currX = rc["CURRX"]
 currY = rc["CURRY"]
 next = collison_detection(currX, currY, MOVE_X, MOVE_Y)
 MOVE_X = next[1]
 MOVE_Y = next[2]
 WINUPDATE .false
 --COMPOSITE clear
 --FILLRECT ball_dia ball_dia
 --COMPOSITE src_over
 --To clear the window before drawing a new circle
 --It would appear as the circle is moving without a trail
 --GOTO 0 0
 --CLEARRECT ball_dia ball_dia
 COLOR next[3]
 GOTO currX+MOVE_X currY+MOVE_Y
 FILLOVAL ball dia ball dia

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43

66

To achieve this, each time the circle is moved, the complete image is first painted over

with the background colour. This would also paint over any previously drawn circle.

After that, the circle is repainted on a new location. To make this process look more

fluent for the viewer the window wont physically update (line 33,44) during these steps

which should give the impression that these intermediate steps do not take place

 WINUPDATE .true
 --sleep 0.01
END
sleep 4 -- line is never executed since loop is never exited
EXIT -- same as line 47 (exists only for consistency with other examples)

collison_detection: PROCEDURE EXPOSE win_width win_height ball_dia colors
--"EXPOSE" makes public variables accessible in the method
-- -> changing them in the method would also change them everywhere else
PARSE ARG CurrX, CurrY, move_X, move_Y

-- angle of entrence = angle of exit
-- Only changing one direction (direction * -1) while the other stays
IF CurrX + move_X < 0 THEN --left Border
 DO
 move_X = -move_X
 col = colors[RANDOM(1,colors~size)]
 END
IF CurrX + move_X + ball_dia > win_width THEN --right Border
 DO
 move_X = -move_X
 col = colors[RANDOM(1,colors~size)]
 END
IF CurrY + move_Y < 0 THEN --top Border
 DO
 move_Y = -move_Y
 col = colors[RANDOM(1,colors~size)]
 END
IF CurrY + move_Y + ball_dia > win_height THEN --bottom Border
 DO
 move_Y = -move_Y
 col = colors[RANDOM(1,colors~size)]
 END
erg = move_X, move_Y, col --Creating an array to return multiple values
RETURN erg --returning the array

::requires "jdor.cls"

44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80

Figure 34: JDOR-move.rxj

67

A 3. JDORFX.rxj
The complete code for the program shown in chapter 6.7 Combining JDOR with

JavaFX – JDORFX.rxj is shown in Figure 34 over the next pages. In its essence, all

the parts, that are a new addition from the previous chapters were described in chapter

6.7.

More information is provided for the button handlers for the direction changes (Up,

Down, Left, and Right). In these, the old object is entirely painted over using the

command "FILLRECT information[2]+1 information[3]+1" before the

corresponding object is redrawn in the appropriate direction (+/- 5). "FILLRECT" is

utilized because, despite whether it is a circle or a rectangle, it can truly paint over any

form due to its wider height and width.

The “+1” in the “FILLRECT” width and height is used since the dimension of a rectangle

drawn with the “FILLRECT” command is one point smaller than the given width and

height. So, the size of a rectangle drawn by “FILLRECT 300 300” is in fact only

299x299. The "FILLRECT" command, in a sense, paints the region inside an invisible

rectangle without touching the borders. A rectangle drawn by “DRAWRECT 300 300”

has a size of 300x300.

So, by giving the “FILLRECT”-command a larger size (+1) it can paint over every object

(oval and rectangle), regardless if it was drawn by a “DRAW” or “FILL” command

68

CALL addJdorHandler -- load
ADDRESS jdor -- set default environment to JDOR

 NEW 500 500
 WINSHOW

rexxHandler=.RexxAppHandler~new -- create Rexx object that will control the FXML
 -- instantiate the abstract JavaFX class
rxApp=BSFCreateRexxProxy(rexxHandler, ,"javafx.application.Application")
 -- launch the application, invoke "start" and then stay up until the application
rxApp~launch(rxApp~getClass, .nil)
::REQUIRES "BSF.CLS" -- get Java support
::REQUIRES "JDOR.CLS" –- get JDOR support

::CLASS RexxAppHandler -- the Rexx handler for javafx.application.Application
::METHOD start -- will be called by JavaFX, allows to setup everything
 USE ARG primaryStage, questions
 ADDRESS JDOR
 primaryStage~setTitle("JDOR Mover") –- setting the name of the JavaFX frame
 colorClz=bsf.loadClass("javafx.scene.paint.Color") –- access to JavaFX colors

information = "Object","Width","Height"
 --wT = bsf.loadClass("javafx.scene.control.Labeled.wrapText")

 --PANE:
 root=.bsf~new("javafx.scene.layout.AnchorPane") -- create the root node
 root~prefHeight=150
 root~prefWidth=620

choice = .bsf~new("javafx.scene.control.ComboBox")~~setId("choice") -
 ~~setLayoutX(26) -
 ~~setLayoutY(25) -
 ~~setPrefWidth(150) -
 ~~setPromptText("Select object")
choice~getItems()~add("FILLOVAL")
choice~getItems()~add("FILLRECT")
choice~getItems()~add("DRAWOVAL")
choice~getItems()~add("DRAWRECT")

btnUP=.bsf~new("javafx.scene.control.Button")~~setId("btnUP") -
 ~~setTextFill(colorClz~BLACK) -
 ~~setLayoutX(197) -
 ~~setLayoutY(71) -
 ~~setText(" Up ")
btnDown=.bsf~new("javafx.scene.control.Button")~~setId("btnDown") -
 ~~setTextFill(colorClz~BLACK) -
 ~~setLayoutX(263) -
 ~~setLayoutY(71) -
 ~~setText("Down")
 btnLeft=.bsf~new("javafx.scene.control.Button")~~setId("btnLeft") -
 ~~setTextFill(colorClz~BLACK) -
 ~~setLayoutX(326) -
 ~~setLayoutY(71) -
 ~~setText(" Left ")
 btnRight=.bsf~new("javafx.scene.control.Button")~~setId("btnRight") -
 ~~setTextFill(colorClz~BLACK) -
 ~~setLayoutX(388) -
 ~~setLayoutY(71) -
 ~~setText(" Right ")

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62

69

 btnReset=.bsf~new("javafx.scene.control.Button")~~setId("btnReset") -
 ~~setTextFill(colorClz~BLACK) -
 ~~setLayoutX(26) -
 ~~setLayoutY(71) -
 ~~setText("Reset current object")
 btnSave=.bsf~new("javafx.scene.control.Button")~~setId("btnSave") -
 ~~setTextFill(colorClz~BLACK) -
 ~~setLayoutX(545) -
 ~~setLayoutY(110) -
 ~~setText("Save")
btnDraw=.bsf~new("javafx.scene.control.Button")~~setId("btnDraw") -
 ~~setTextFill(colorClz~BLACK) -
 ~~setLayoutX(460) -
 ~~setLayoutY(25) -
 ~~setText("Draw object")
 txtHeight = .bsf~new("javafx.scene.control.TextField")~~setId("txtHeight")-
 ~~setPromptText("height")-
 ~~setLayoutX(197)-
 ~~setLayoutY(25)-
 ~~setPrefHeight(26)-
 ~~setPrefWidth(125)
 txtWidth = .bsf~new("javafx.scene.control.TextField")~~setId("txtWidth")-
 ~~setPromptText("width")-
 ~~setLayoutX(326)-
 ~~setLayoutY(25)-
 ~~setPrefHeight(26)-
 ~~setPrefWidth(125)
 txtSave = .bsf~new("javafx.scene.control.TextField")~~setId("txtSave")-
 ~~setPromptText("save as")-
 ~~setLayoutX(460)-
 ~~setLayoutY(71)-
 ~~setPrefHeight(26)-
 ~~setPrefWidth(138)

--BUTTONHANDLER
bhUp=BSFCreateRexxProxy(.RexxButtonUpHandler~new(information),
,"javafx.event.EventHandler")
btnUP~setOnAction(bhUp)
bhDown=BSFCreateRexxProxy(.RexxButtonDownHandler~new(information),
,"javafx.event.EventHandler")
btnDown~setOnAction(bhDown)
bhLeft=BSFCreateRexxProxy(.RexxButtonLeftHandler~new(information),
,"javafx.event.EventHandler")
btnLeft~setOnAction(bhLeft)
bhRight=BSFCreateRexxProxy(.RexxButtonRightHandler~new(information),
,"javafx.event.EventHandler")
btnRight~setOnAction(bhRight)
bhDraw=BSFCreateRexxProxy(.RexxButtonDrawHandler~new(txtWidth,
txtHeight, choice, Information), ,"javafx.event.EventHandler")
btnDraw~setOnAction(bhDraw)
bhReset=BSFCreateRexxProxy(.RexxButtonResetHandler~new(information),
,"javafx.event.EventHandler")
btnReset~setOnAction(bhReset)
bhSave=BSFCreateRexxProxy(.RexxButtonSaveHandler~new(txtSave),
,"javafx.event.EventHandler")
btnSave~setOnAction(bhSave)
--Adding the elements to the AnchorPane
root~getChildren~~add(btnUP) -
~~add(btnDown) -
~~add(choice) -
~~add(btnLeft) -
~~add(btnRight) -

63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98

99
100

101
102

103
104

105
106

107
108

109
110

111
112
113
114
115
116
117

70

~~add(btnReset)-
~~add(btnSave) -
~~add(btnDraw) -
~~add(txtHeight)-
~~add(txtWidth)-
~~add(txtSave)

 -- put the scene on the stage (using AnchorPane's height and width)
 primaryStage~setScene(.bsf~new("javafx.scene.Scene", root))
 primaryStage~show
 ::CLASS RexxButtonUpHandler
 ::METHOD init
 EXPOSE information
 USE ARG information
 ::METHOD handle -- will be invoked by the Java side
 EXPOSE information
 ADDRESS JDOR
 GETSTATE
 curr_x = rc["CURRX"]
 curr_y = rc["CURRY"]
 WINUPDATE .false
 COMPOSITE clear
 FILLRECT information[2]+1 information[3]+1
 COMPOSITE src_over
 GOTO 0 0
 DRAWIMAGE currentState
 GOTO curr_x curr_y-5
 information[1] information[2] information[3]
 WINUPDATE .true

 ::CLASS RexxButtonDownHandler
 ::METHOD init
 expose information
 use arg information
 ::METHOD handle -- will be invoked by the Java side
 EXPOSE information
 ADDRESS JDOR
 GETSTATE
 curr_x = rc["CURRX"]
 curr_y = rc["CURRY"]
 WINUPDATE .false
 COMPOSITE clear
 FILLRECT information[2]+1 information[3]+1
 COMPOSITE src_over
 GOTO 0 0
 DRAWIMAGE currentState
 GOTO curr_x curr_y+5
 information[1] information[2] information[3]
 WINUPDATE .true

 ::CLASS RexxButtonLeftHandler
 ::METHOD init
 EXPOSE information
 USE ARG information
 ::METHOD handle -- will be invoked by the Java side
 EXPOSE information
 ADDRESS JDOR
 GETSTATE
 curr_x = rc["CURRX"]
 curr_y = rc["CURRY"]
 WINUPDATE .false

118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179

71

 COMPOSITE clear
 FILLRECT information[2]+1 information[3]+1
 COMPOSITE src_over
 GOTO 0 0
 DRAWIMAGE currentState
 GOTO curr_x-5 curr_y
 information[1] information[2] information[3]
 WINUPDATE .true

::CLASS RexxButtonRightHandler
 ::METHOD init
 EXPOSE information
 USE ARG information
 ::METHOD handle -- will be invoked by the Java side
 EXPOSE information
 ADDRESS JDOR
 GETSTATE
 curr_x = rc["CURRX"]
 curr_y = rc["CURRY"]
 WINUPDATE .false
 COMPOSITE clear
 FILLRECT information[2]+1 information[3]+1
 COMPOSITE src_over
 GOTO 0 0
 DRAWIMAGE currentState
 GOTO curr_x+5 curr_y
 information[1] information[2] information[3]
 WINUPDATE .true

::CLASS RexxButtonDrawHandler
 ::METHOD init
 EXPOSE txtWidth txtHeight choice information
 USE ARG txtWidth, txtHeight, choice, information
 ::METHOD handle -- will be invoked by the Java side
 EXPOSE txtWidth txtHeight choice information
 ADDRESS JDOR
 information[1] = choice~getValue()
 information[2] = txtWidth~getText
 information[3] = txtHeight~getText
 PUSHIMAGE currentState
 GOTO 50 50
 choice~getValue() txtWidth~getText txtHeight~getText

::CLASS RexxButtonResetHandler
 ::METHOD init
 EXPOSE information
 USE ARG information
 ::METHOD handle -- will be invoked by the Java side
 EXPOSE information
 ADDRESS JDOR
 WINUPDATE .false
 COMPOSITE clear
 FILLRECT information[2]+1 information[3]+1
 COMPOSITE src_over
 GOTO 0 0
 DRAWIMAGE currentState
 WINUPDATE .true

180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237

72

::CLASS RexxButtonSaveHandler
::METHOD init
 EXPOSE txtSave
 USE ARG txtSave
::METHOD handle -- will be invoked by the Java side
 EXPOSE txtSave
 ADDRESS JDOR
 SAVEIMAGE txtSave~getText

238
239
240
241
242
243
244
245

Figure 35: JDORFX.rxj

73

A 4. JDOR – shapes.rxj
Figure 36 contains the full code of the “JDOR-shapes.rxj” examples shown in chapter

6.8 Creating arbitrary Shapes with JDOR – JDOR-shapes.rxj.

In addition to the code shown in the chapter Figure 36 includes the lines 1 to 6 where

the JDOR-handler is loaded and a window with the size 500x500 is created

The structure and logic of the example was described in the chapter.

CALL addJdorHandler -- load
 ADDRESS jdor -- set default environment to JDOR

 NEW 500 500
 WINSHOW

 STROKE str3 3
 STROKE str1 1
 --TranslateX TranslateY ScaleX ScaleY ShearX ScaleY
 "TRANSFORM trans1 -0.1 -0.25"
 "TRANSFORM trans2 0.1 0.25"

 --Creating the different shapes
 SHAPE path1 path
 SHAPE path2 path
 SHAPE rect_bg Rectangle 100 50 300 400
 SHAPE rect_right Rectangle 275 150 50 75
 SHAPE rect_left Rectangle 188 22 50 75
 SHAPE rect_test Rectangle 100 100 200 200
 SHAPE circle Ellipse 225 200 50 50
 SHAPE arc_right arc2d 350 350 50 50 90 90 open
 "SHAPE arc_left arc2d 100 350 50 50 90 -90 open"

 --Creating the path1 shape (appending lines and shapes)
 PATHMOVETO path1 250 250
 PATHLINETO path1 350 350
 PATHAPPEND path1 arc_right
 PATHLINETO path1 350 350
 PATHMOVETO path1 250 250
 PATHAPPEND path1 circle
 PATHLINETO path1 225 225
 PATHMOVETO path1 250 250
 PATHLINETO path1 150 350
 PATHAPPEND path1 arc_left
 PATHLINETO path1 150 350
 PATHMOVETO path1 250 250
 PATHLINETO path1 250 200
 PATHLINETO path1 250 300
 PATHQUADTO path1 200 280 250 400
 PATHQUADTO path1 300 280 250 300
 PATHLINETO path1 250 175

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42

74

--Creating the path2 shape (using transformation)
 PATHITERATOR rect_right trans1 --applying transform from line 11
 PATHAPPEND path2 "rc" --transformed shape is saved in rc
 PATHLINETO path2 250 175
 PATHMOVETO path2 189.3 69.75
 PATHITERATOR rect_left trans2 --applying transform from line 12
 PATHAPPEND path2 "rc" --transformed shape is saved in rc
 PATHMOVETO path2 239.3 82.25
 PATHLINETO path2 250 175
 PATHMOVETO path2 260 81.25
 PATHLINETO path2 250 175

 --Drawing the shapes
 COLOR white
 FILLSHAPE rect_bg
 COLOR red
 FILLSHAPE path1
 COLOR orange
 FILLSHAPE path2
 STROKE str3
 COLOR black
 DRAWSHAPE path1
 DRAWSHAPE rect_bg
 DRAWSHAPE path2
 SLEEP 15
 ::REQUIRES "JDOR.CLS"

43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68

Figure 36: JDOR-shapes.rxj

75

References
Bahtnagar, A. (2022). The complete history of Java programming language.

www.geeksforgeeks.com. Retrieved 09.12.2022 from
https://www.geeksforgeeks.org/the-complete-history-of-java-programming-
language/

Brihadiswaren, G. (2020). A performance comparison between C, Java, and Python.
www.medium.com. Retrieved 09.12.2022 from https://medium.com/swlh/a-
performance-comparison-between-c-java-and-python-df3890545f6d

Britannica. (2022). Java. Encyclopidia Britannica. Retrieved 09.12.2022 from
https://www.britannica.com/technology/Java-computer-programming-language

Codeacademy. (o.D.). Scope in Java. www.codeacedemy.com. Retrieved 11.12.2022
from https://www.codecademy.com/article/variable-scope-in-java

Day, B. (1998). Getting started with Java 2D. JavaWorld. Retrieved 26.12.2022 from
https://www.infoworld.com/article/2076715/getting-started-with-java-2d.html

Flatscher, R. G. (2012). Automatisierung mit ooRexx und BSF4ooRexx. 1-12.
Flatscher, R. G. (2013). Introduction to Rexx and ooRexx (coloured illustration): from

Rexx to open object Rexx (ooRexx) (1. . ed.). Facultas Verl.- u. Buchhandels-
AG.

Flatscher, R. G. (2017). Automatisierungssprache Open Object Rexx 5.0 vor der Tür.
iX, 11, 66-70.

Flatscher, R. G. (2021). BSF4ooRexx 6.41 Going GA. 1-39.
Flatscher, R. G. (2022a). BSF4ooRexx: From 641 GA Update to 850 Beta International

RexxLA Symposium 2022-09,
https://www.rexxla.org/presentations/2022/202209_B4r641_to_B4r850.pdf

Flatscher, R. G. (2022b). BSF4ooRexx: Introducing the JDOR Rexx Command

Handler for Easy Creation of Bitmaps and

 Bitmap Manipulations on Windows, Mac and Linux International RexxLA Symposium,
2022-09,
https://www.rexxla.org/presentations/2022/202209_JDOR_command_handler.pdf
geeksforgeeks. (2022). Differences between Procedural and Object Oriented

Programming. geekforgeeks. Retrieved 07.12.2022 from
https://www.geeksforgeeks.org/differences-between-procedural-and-object-
oriented-
programming/#:~:text=Object%2Doriented%20programming%20provides%20
data,of%20data%20hiding%20and%20inheritance.

GitHub.io. (2022). PYPL PopularitY of Programming Language. Retrieved 06.12.2022
from https://pypl.github.io/PYPL.html

Javatpoint. (o.D.). JavaFX Tutorial. Retrieved 20.01.2023 from
https://www.javatpoint.com/javafx-tutorial

javatpoint.com. (o.D.). Difference between procedural programming and object-
oriented programming. www.javatpoint.com. Retrieved 10.12.2022 from
https://www.javatpoint.com/procedural-programming-vs-object-oriented-
programming

Oracle. (2022). Oracle Java SE Support Roadmap. www.oracle.com. Retrieved
13.12.2022 from https://www.oracle.com/java/technologies/java-se-support-
roadmap.html

Oracle. (o.D.-a). Class Graphics2D. Oracle. Retrieved 27.12.2022 from
https://docs.oracle.com/javase/8/docs/api/java/awt/Graphics2D.html

https://www.geeksforgeeks.org/the-complete-history-of-java-programming-language/
https://www.geeksforgeeks.org/the-complete-history-of-java-programming-language/
https://medium.com/swlh/a-performance-comparison-between-c-java-and-python-df3890545f6d
https://medium.com/swlh/a-performance-comparison-between-c-java-and-python-df3890545f6d
https://www.britannica.com/technology/Java-computer-programming-language
https://www.codecademy.com/article/variable-scope-in-java
https://www.infoworld.com/article/2076715/getting-started-with-java-2d.html
https://www.rexxla.org/presentations/2022/202209_B4r641_to_B4r850.pdf
https://www.rexxla.org/presentations/2022/202209_JDOR_command_handler.pdf
https://www.geeksforgeeks.org/differences-between-procedural-and-object-oriented-programming/#:%7E:text=Object%2Doriented%20programming%20provides%20data,of%20data%20hiding%20and%20inheritance
https://www.geeksforgeeks.org/differences-between-procedural-and-object-oriented-programming/#:%7E:text=Object%2Doriented%20programming%20provides%20data,of%20data%20hiding%20and%20inheritance
https://www.geeksforgeeks.org/differences-between-procedural-and-object-oriented-programming/#:%7E:text=Object%2Doriented%20programming%20provides%20data,of%20data%20hiding%20and%20inheritance
https://www.geeksforgeeks.org/differences-between-procedural-and-object-oriented-programming/#:%7E:text=Object%2Doriented%20programming%20provides%20data,of%20data%20hiding%20and%20inheritance
https://pypl.github.io/PYPL.html
https://www.javatpoint.com/javafx-tutorial
https://www.javatpoint.com/procedural-programming-vs-object-oriented-programming
https://www.javatpoint.com/procedural-programming-vs-object-oriented-programming
https://www.oracle.com/java/technologies/java-se-support-roadmap.html
https://www.oracle.com/java/technologies/java-se-support-roadmap.html
https://docs.oracle.com/javase/8/docs/api/java/awt/Graphics2D.html

76

Oracle. (o.D.-b). Coordinates. Oracle. Retrieved 27.12.2022 from
https://docs.oracle.com/javase/tutorial/2d/overview/coordinate.html

Oracle. (o.D.-c). Lesson: Getting Started with Graphics. Oracle. Retrieved 28.12.2022
from https://docs.oracle.com/javase/tutorial/2d/basic2d/index.html

Oracle. (o.D.-d). Lesson: Overview of the Java 2D API Concepts.
www.docs.oracle.com. Retrieved 25.12.2022 from
https://docs.oracle.com/javase/tutorial/2d/overview/index.html

Schäling, B. (2010). Programmieren in Java: Aufbau. www.highscore.de.
Sharma, S. (2022). Just in Time compiler. Retrieved 09.12.2022 from

https://www.geeksforgeeks.org/just-in-time-compiler/
SlashData. (2022). State of the Developer Nation 22nd Edition. 22. Retrieved

30.01.2023, from https://slashdata-website-
cms.s3.amazonaws.com/sample_reports/VZtJWxZw5Q9NDSAQ.pdf

Stenberg, D. (o.D.). What is cURL? www.curl.se. Retrieved 20.12.2022 from
https://curl.se/docs/faq.html#What_is_cURL

Sun-Microsystems. (1999). 1.2 Rendering Model. Nickerson Group at University of
Washington. Retrieved 27.12.2022 from https://nick-
lab.gs.washington.edu/java/jdk1.3.1/guide/2d/spec/j2d-intro.fm2.html

TIBOE. (2023). TIOBE Index for January 2023. TIBOE. Retrieved 30.01.2023 from
https://www.tiobe.com/tiobe-index/

Ullenboom, C. (2014). Java SE 8 Standard-Bibliothek: das Handbuch für Java-
Entwickler. Galileo Press.

www.softwaretestinghelp.com. (2022). What Is Java AWT (Abstract Window Toolkit).
www.softwaretestinghelp.com. Retrieved 25.12.2022 from
https://www.softwaretestinghelp.com/java-awt-abstract-window-toolkit/

https://docs.oracle.com/javase/tutorial/2d/overview/coordinate.html
https://docs.oracle.com/javase/tutorial/2d/basic2d/index.html
https://docs.oracle.com/javase/tutorial/2d/overview/index.html
https://www.geeksforgeeks.org/just-in-time-compiler/
https://slashdata-website-cms.s3.amazonaws.com/sample_reports/VZtJWxZw5Q9NDSAQ.pdf
https://slashdata-website-cms.s3.amazonaws.com/sample_reports/VZtJWxZw5Q9NDSAQ.pdf
https://curl.se/docs/faq.html#What_is_cURL
https://nick-lab.gs.washington.edu/java/jdk1.3.1/guide/2d/spec/j2d-intro.fm2.html
https://nick-lab.gs.washington.edu/java/jdk1.3.1/guide/2d/spec/j2d-intro.fm2.html
https://www.tiobe.com/tiobe-index/
https://www.softwaretestinghelp.com/java-awt-abstract-window-toolkit/

	Contents
	List of Figures
	List of Tables
	Abstract
	1. Introduction
	1.1 Initial Situation
	1.2 Goal of this Thesis
	1.3 Structure of the Thesis

	2. Used Languages and Frameworks
	2.1 Open Object REXX (ooRexx)
	2.1.1 Code Example for ooRexx

	2.2 Java
	2.2.1 Code Example for Java and Comparison to ooRexx

	2.3 Bean Scripting Framework for ooRexx (BSF4ooRexx)

	3. Used Versions
	3.1 Open Object REXX 5.0
	3.2 Java 1.8.0_352
	3.3 BSF4ooRexx 850

	4. Installation Guide and Troubleshooting
	4.1 Installation of Open Object REXX
	4.2 Installation of Java
	4.3 Installation of BSF4ooRexx
	4.4 Checking Installations Correctness
	4.5 Classpath – Variable

	5. Creating Graphics with Java
	5.1 Abstract Windowing Toolkit (AWT)
	5.2 Java 2D API
	5.3 Java Drawing for ooRexx (JDOR)
	5.3.1 JDOR – Commands

	6. JDOR-Examples in Open Object REXX
	6.1 Drawing Simple Shapes – JDOR_shapes.rxj
	6.2 Different Strokes in JDOR – JDOR-strokes.rxj
	6.3 Displaying Text in JDOR – JDOR-Strings.rxj
	6.4 Using Images in JDOR – JDOR-images.rxj
	6.5 Rotate, Scale, Translate and Shear in JDOR
	6.6 Moving Objects in JDOR – JDOR-move.rxj
	6.7 Combining JDOR with JavaFX – JDORFX.rxj
	6.8 Creating Arbitrary Shapes with JDOR – JDOR-shapes.rxj

	7. Conclusion
	Appendix
	A 1. JDOR-transform.rxj
	A 2. JDOR-move.rxj
	A 3. JDORFX.rxj
	A 4. JDOR – shapes.rxj

	References

