

An Introduction to Apache PDFBox

Library: Nutshell Examples

Tiao Wang (h0553521)

Supervisor: ao.Univ.Prof. Dr. Rony G. Flatscher

Vienna,Select date

Bachelor’s thesis

at the Institute for Information

Systems and Society

An Introduction to Apache PDFBox Library: Nutshell Examples I

Table of contents

Abstract .. II

Table of figures ... III

1 Introduction ... 1

2 Background .. 2

2.1 Portable Document Format ... 2

2.2 Apache PDFBox .. 5

2.3 Java .. 7

2.4 Open Object Rexx ... 8

2.5 Bean Scripting Framework for ooRexx ... 10

3 Installation.. 11

3.1 Java ... 11

3.2 ooRexx ... 11

3.3 BSF4ooRexx .. 12

3.4 Apache PDFBox ... 12

4 Nutshell Examples .. 13

4.1 Creating a PDF Document ... 13

4.2 Adding Text to an Existing PDF Document ... 16

4.3 Use Different Fonts and Colors ... 18

4.4 Extracting Text from an Existing PDF Document 21

4.5 Drawing some Shapes .. 23

4.6 Creating a Table with Content .. 26

4.7 Converting a PDF Document To Image .. 29

4.8 Inserting Image to a PDF Document ... 31

4.9 Adding Multiple Pages to a PDF Document ... 33

4.10 Splitting a PDF Document with Multiple Pages 36

4.11 Merging Multiple PDF Documents .. 38

4.12 Setting the Document Metadata ... 40

4.13 Adding Watermark to a Document .. 42

4.14 Encrypting a PDF Document .. 45

4.15 Creating a PDF-A Document .. 48

4.16 Validating a PDF-A Document .. 52

4.17 Creating a Digital Signature ... 54

4.18 Verifying a Digital Signature .. 58

5 Conclusio .. 61

6 References .. 62

Appendix .. 64

An Introduction to Apache PDFBox Library: Nutshell Examples II

Abstract

This thesis presents a collection of 18 nutshell examples demonstrating the use of

Apache PDFBox, a Java library for creating and manipulating PDF documents. The

examples are implemented using ooRexx, a high-level object-oriented scripting

language, and BSF4ooRexx, a bridge between ooRexx and Java. The thesis provides

an overview of the PDF format and the features of PDFBox, followed by the

implementation of the examples, which cover a range of functionality such as

creating a new PDF document, adding text, images, and annotations, manipulating

existing PDF documents, and extracting data from them. The examples are designed

to be concise and easy to follow, allowing users to quickly understand how to use

PDFBox to accomplish various tasks related to PDF document creation and

manipulation.

An Introduction to Apache PDFBox Library: Nutshell Examples III

Table of figures

Figure 1: “01. Creating a PDF Document.rex” ... 14

Figure 2: Output of “01. Creating a PDF Document.rex” 15

Figure 3: “02. Adding Text to an Existing PDF Document.rex” 16

Figure 4: Warning for the overwrite mode .. 17

Figure 5: Output of “02. Adding Text to an Existing PDF Document.rex” 17

Figure 6: “03. Use Different Fonts and Colors.rex” ... 19

Figure 7: Output of “03. Use Different Fonts and Colors.rex”........................... 20

Figure 8: “04. Extracting Text from an Existing PDF Document.rex” 21

Figure 9: Output of “04. Extracting Text from an Existing PDF Document.rex” ... 22

Figure 10: “05. Drawing some Shapes.rex” .. 24

Figure 11: Output of “05. Drawing some Shapes.rex” 25

Figure 12: “06. Creating a Table with Content.rex” .. 27

Figure 13: Output of “06. Creating a Table with Content.rex” 28

Figure 14: “07. Converting a PDF Document To Image.rex” 29

Figure 15: Output of “07. Converting a PDF Document To Image.rex” 30

Figure 16: “08. Inserting Image to a PDF Document.rex” 31

Figure 17: Output of “08. Inserting Image to a PDF Document.rex” 32

Figure 18: “09. Adding Multiple Pages to a PDF Document.rex” 34

Figure 19: Output of “09. Adding Multiple Pages to a PDF Document.rex” 35

Figure 20: “10. Splitting a PDF Document with Multiple Pages.rex” 36

Figure 21: Output of “10. Splitting a PDF Document with Multiple Pages.rex” 37

Figure 22: “11. Merging Multiple PDF Documents.rex”.................................... 38

Figure 23: Output of “11. Merging Multiple PDF Documents.rex” 39

Figure 24: “12. Setting the Document Metadata.rex” 40

Figure 25: Output of “12. Setting the Document Metadata.rex” 41

Figure 26: “13. Adding Watermark to a Document.rex” 43

Figure 27: Output of “13. Adding Watermark to a Document.rex” 44

Figure 28: “14. Encrypting a PDF Document.rex” .. 45

Figure 29: Output 1 of “14. Encrypting a PDF Document.rex” 46

Figure 30: Output 2 of “14. Encrypting a PDF Document.rex” 46

Figure 31: Output 3 of “14. Encrypting a PDF Document.rex” 47

Figure 32: “15. Creating a PDF-A Document.rex” .. 49

Figure 33: Output of “15. Creating a PDF-A Document.rex” 51

Figure 34: “16. Validating a PDF-A Document.rex” .. 53

Figure 35: Output of “16. Validating a PDF-A Document.rex” 53

Figure 36: Keystore creation .. 54

An Introduction to Apache PDFBox Library: Nutshell Examples IV

Figure 37: “17. Creating a Digital Signature.rex” ... 55

Figure 38: Output of “17. Creating a Digital Signature.rex” 57

Figure 39: “18. Verifying a Digital Signature.rex” .. 59

Figure 40: Output of “18. Verifying a Digital Signature.rex” 60

An Introduction to Apache PDFBox Library: Nutshell Examples 1

1 Introduction

In recent years, the use of PDF files has become ubiquitous in a wide range of

industries and applications. The Portable Document Format (PDF) provides a versatile

and reliable means of sharing and distributing documents across different devices and

platforms. However, working with PDF files can often be challenging, especially when

it comes to manipulating and customizing them to specific needs.

This Bachelor's thesis explores the use of PDFBox, an open-source Java library, to

create and manipulate PDF documents. Specifically, we investigate how the

combination of PDFBox with the programming languages of Java and ooRexx, along

with the BSF4ooRexx bridge, can be used to create powerful, flexible, and efficient

PDF manipulation scripts.

The thesis is structured into four main sections:

The first section introduces the topic, explaining the importance of PDF files and the

challenges associated with working with them. This section also outlines the goals and

objectives of the thesis.

The second section offers background information on PDFBox, Java, and ooRexx,

including their features and capabilities. This section also explains how these

components can be used together to create PDF manipulation scripts.

The third chapter will provide a step-by-step installation guide for the necessary

components, including ooRexx, Java, and BSF4ooRexx. This chapter aims to ensure

that readers can install the components and start working with PDFBox effectively.

The fourth section comprises 18 Nutshell examples that demonstrate the extensive

capabilities of PDFBox for creating and manipulating PDF documents. These examples

cover a range of practical applications, such as creating PDF documents, extracting

text and images from PDF files, and merging and splitting PDF documents.

Finally, the thesis will conclude with a summary of the main findings and contributions

of the study. Overall, this bachelor’s thesis offers valuable insights into the potential

of PDFBox and ooRexx for creating and manipulating PDF documents. The Nutshell

examples provided demonstrate the power and flexibility of this platform and provide

a valuable resource for developers and users alike.

An Introduction to Apache PDFBox Library: Nutshell Examples 2

2 Background

To implement the nutshell examples presented in this bachelor thesis, the use of

several technologies and components is required. This chapter will provide

information about the relevant components in order to understand the implementing

process.

2.1 Portable Document Format

Portable Document Format (PDF) is a widely recognized file format that has

revolutionized the way documents are shared and accessed digitally. Developed by

Adobe Systems in the early 1990s, PDF was created to provide a way to share

documents across different computer platforms while preserving the document's

layout, fonts, and images. Today, PDF has become one of the most popular and

widely used document formats in the world, used across a wide range of industries,

including publishing, printing, legal, and government documents [1].

The beauty of PDF lies in its ability to maintain document formatting and layout,

regardless of the platform or device used to open it. This means that PDFs can be

shared, viewed, and printed with ease, regardless of the operating system, software

program, or device used [2]. In addition, PDFs can be secured with passwords and

digital signatures, ensuring document confidentiality and authenticity [3].

PDF was created by Adobe Systems in the early 1990s, and its development was

driven by the need for a universal file format that could be used across different

computer systems. The idea for PDF came from John Warnock, the co-founder of

Adobe Systems. In 1991, Warnock wrote a paper called "The Camelot Project" that

proposed a new way of working with documents. The paper described a system that

would allow documents to be viewed and printed on any computer, regardless of the

software used to create them. The system would also allow documents to be stored

electronically and distributed easily [4]. Warnock's vision was to create a document

format that would be as reliable and consistent as paper, but more versatile and

portable. He believed that by creating a universal format for documents, it would be

possible to improve the way people worked with information, making it easier to

share and collaborate on documents.

The first version of PDF was released in 1993, and it quickly gained popularity among

businesses and organizations that needed a reliable way to share and distribute

documents. The format became especially popular in industries such as publishing,

An Introduction to Apache PDFBox Library: Nutshell Examples 3

where it was used to create electronic versions of books and other printed materials.

In 2008, Adobe Systems released the PDF 1.7 specification as an ISO standard,

making PDF an open standard that could be used by anyone [5]. This move helped

to further establish PDF as a universal document format, and it paved the way for

the development of a wide range of PDF-related software tools and applications.

Today, PDF is one of the most widely used document formats in the world, with

millions of PDF documents created and shared every day. It has become an essential

tool for businesses, governments, and individuals who need a reliable way to share

and exchange information. And with the rise of mobile devices, PDF has become

even more important, as it allows users to access and view documents on a wide

range of devices, including smartphones and tablets.

PDF has gone through several versions since its inception. Each version has

introduced new features and improvements that have made PDF an increasingly

powerful and versatile format for creating, sharing, and exchanging documents.

Below, we will explore the version history of PDF [6].

• PDF 1.0 - The first version of PDF was released by Adobe Systems in 1993. It

was based on PostScript, a page description language developed by Adobe.

PDF 1.0 introduced basic features such as the ability to embed fonts, images,

and other media into documents. It also allowed for documents to be viewed

and printed on any computer, regardless of the software used to create them.

• PDF 1.1 - This version, released in 1996, introduced support for interactive

form elements, such as text boxes and radio buttons. It also included support

for annotations, which allowed users to add comments and notes to PDF

documents.

• PDF 1.2 - Released in 1998, introduced support for digital signatures and

encryption, making PDF documents more secure. It also included support for

multimedia elements, such as audio and video.

• PDF 1.3 - This version, released in 2000, introduced support for layers, which

allowed users to control the visibility of different elements in a document. It

also included support for color management, making it easier to create

accurate color representations in PDF documents.

• PDF 1.4 - Released in 2001, PDF 1.4 introduced support for transparency,

allowing for more sophisticated graphics and designs. It also included support

for tagged PDF, which made PDF documents more accessible for users with

disabilities.

An Introduction to Apache PDFBox Library: Nutshell Examples 4

• PDF 1.5 - This version, released in 2003, introduced support for JPEG2000

compression, which made it possible to create smaller PDF files without

sacrificing image quality. It also included support for 3D graphics and

interactive multimedia elements.

• PDF 1.6 - Released in 2004, PDF 1.6 introduced support for layers that could

be nested within one another, making it easier to organize complex

documents. It also included support for live transparency, which allowed for

more complex and dynamic designs.

• PDF 1.7 - The final version of PDF to be released by Adobe Systems, PDF 1.7

was introduced in 2006. It included a range of new features, such as support

for the Adobe XML architecture, enhanced support for digital signatures, and

improved handling of complex graphics and fonts.

• PDF 2.0 - In 2017, PDF 2.0 was released by the International Organization

for Standardization (ISO). This version introduced a range of new features,

including support for hybrid PDFs that can include both PDF and HTML

content, improved support for 3D graphics and annotations, and enhanced

security features.

PDF has gained popularity for various reasons. It offers a multitude of benefits over

other file formats, making it an ideal choice for sharing and exchanging documents.

One of the most significant advantages of PDF is its ability to preserve formatting.

Unlike other file formats, PDF documents retain their formatting and layout

regardless of the software or device used to view them. This means that the original

document's fonts, colors, images, and graphics are preserved, ensuring that the

document looks the same on any device. This is particularly important for documents

like contracts, where formatting is crucial [7]. PDF also offers robust security

features, such as password protection and encryption, that help safeguard sensitive

documents from unauthorized access or modification. These features ensure that

only authorized users can access or edit the document, making it an ideal choice for

confidential documents such as financial reports, legal contracts, or medical records

[8]. Another benefit of PDF is its smaller file size. PDF files can be compressed to

reduce their size without compromising the document's quality. This means that PDF

documents take up less storage space, making them easier to share, store, and

transfer over the internet. This is particularly important for large documents that

would otherwise be difficult to email or upload to a website [9]. PDF documents are

also searchable, making it easy to find specific information within a document

An Introduction to Apache PDFBox Library: Nutshell Examples 5

quickly. This feature is especially useful for large documents like textbooks or

research papers. The search function allows users to find information quickly without

having to read through the entire document [10]. PDF is also cross-platform

compatible, meaning that it can be viewed and printed on any device or operating

system. This makes it easy to share documents with others, regardless of their

device or software. PDF files are also easy to create, edit, and share using various

software applications, such as Adobe Acrobat, Microsoft Word, or Google Docs.

2.2 Apache PDFBox

Apache PDFBox is an open-source Java library for working with PDF documents. It

allows developers to create, manipulate, and extract data from PDF files

programmatically. Apache PDFBox was first released in 2008 and has since become

a popular tool among developers due to its extensive features and ease of use. It is

licensed under the Apache License 2.0, which means that it can be used for both

commercial and non-commercial purposes [11].

Apache PDFBox was initially developed by Ben Litchfield in 2002 as a personal

project. At that time, PDFBox was a simple Java-based tool that could extract text

from PDF documents. In 2008, PDFBox was accepted as an Apache Incubator project

and officially became part of the Apache Software Foundation [12]. It was designed

to be a lightweight and easy-to-use library for Java developers who needed to work

with PDF documents. Over time, PDFBox continued to evolve and mature, adding

new features and capabilities. In 2010, version 1.0.0 was released, marking a major

milestone in the project's development. This version included several significant

improvements, including enhanced support for digital signatures, font embedding,

and color spaces [13]. In 2012, PDFBox 1.7 was released, and it introduced support

for the PDF/A standard. PDF/A is a subset of the PDF format that is specifically

designed for long-term archiving of electronic documents, ensuring their

preservation and accessibility over time. With the release of PDFBox 1.7, users were

able to create PDF/A documents that met the ISO standard for archiving. PDFBox

1.7 offered features such as embedding fonts, ensuring all necessary metadata was

present in the document, and validating PDF/A compliance. This made it a valuable

tool for organizations that needed to create and manage long-term digital archives.

One of the key milestones in the history of PDFBox was the release of version 2.0 in

2016. This major release included significant changes and improvements, such as

better support for PDF 2.0, improved font handling, and enhanced text extraction

An Introduction to Apache PDFBox Library: Nutshell Examples 6

capabilities. It also introduced a new modular architecture, making it easier for

developers to use and extend the library [14]. PDFBox 3.0 is the latest major release

of the Apache PDFBox library, and it was released in January 2021. This release

introduced many new features and improvements, including significant performance

enhancements, Java 11 compatibility, and new functionality for digital signature

handling and document creation [15].

The Apche PDFBox library is made up of four main components: PDFBox, FontBox,

XMPBox, and Preflight [12].

• PDFBox is the core component of the library and provides the main

functionality for working with PDF files, including parsing, creation, and

manipulation of PDF documents. It allows developers to extract text, images,

and other content from PDF files, as well as add, remove, or modify elements

within a PDF document.

• FontBox is a component of PDFBox that provides support for font

manipulation. It allows developers to extract information about the fonts used

in a PDF document, as well as embed or subset fonts to reduce file size and

ensure that the document is displayed correctly.

• XMPBox is a component of PDFBox that provides support for Extensible

Metadata Platform (XMP) metadata. It allows developers to extract, modify,

and add XMP metadata to PDF documents, which can be used to provide

additional information about the document, such as author, date, and

copyright information.

• Preflight is a component of PDFBox that provides preflighting functionality. It

allows developers to check whether a PDF document conforms to certain

standards, such as the PDF/A or PDF/X standards and provides detailed

reports of any issues that are found.

One of the most significant advantages of PDFBox is that it is entirely free to use,

making it accessible to everyone, regardless of their budget. Additionally, PDFBox is

designed to be compatible with multiple platforms, including Windows, Mac, and

Linux, which means users can access and use it from any device. PDFBox's

comprehensive functionality is another significant benefit. It can perform a variety

of tasks, including creating, modifying, and extracting content from PDF files.

Additionally, it supports advanced features such as encryption and digital signatures,

which makes it an ideal tool for businesses that deal with sensitive information.

An Introduction to Apache PDFBox Library: Nutshell Examples 7

Another important benefit of PDFBox is its high performance. It can handle large

files and perform complex operations quickly, saving users valuable time and

resources. Finally, PDFBox benefits from an active community of developers and

users, who continuously work to improve and update the tool, making it an excellent

choice for anyone looking for a reliable and versatile PDF solution [12].

2.3 Java

Java is a high-level, class-based and object-oriented programming language that

has become a popular choice for software development since it was first released in

1995. Developed by Sun Microsystems (now owned by Oracle Corporation), Java

was designed to be platform-independent, meaning that it can run on multiple

operating systems without requiring recompilation [16]. This makes Java a highly

versatile language, widely used for developing everything from desktop applications

to mobile apps, web applications, and enterprise software. Java's popularity can be

attributed to its simplicity, robustness, and security features [17]. It has a vast

library of built-in classes and functions, making it easy to write complex programs

quickly. Additionally, Java has a vast community of developers, who contribute to

open-source projects, share code snippets, and provide support to new

programmers. Java is an object-oriented language, which means that it is based on

the concept of objects. Objects are instances of classes, which are templates that

define the properties and methods of an object. Java's object-oriented programming

model enables developers to write modular, reusable code that is easy to maintain

and update [18].

For Java applications to run on a computer or device, they require the Java Runtime

Environment (JRE), which is a software package that includes the Java Virtual

Machine (JVM) and other necessary components. The JVM is a key component of the

JRE, and it is responsible for executing Java bytecode [19]. Bytecode is a low-level,

machine-independent code that is generated by the Java compiler when a program

is compiled [20]. The JVM interprets this bytecode and executes it on the underlying

system, providing a platform-independent runtime environment for Java

applications. One of the key benefits of the JVM is that it provides a layer of

abstraction between the Java code and the underlying operating system. This means

that developers can write code that runs on any system that has a compatible JVM

installed, without needing to worry about the specific details of the operating system

or hardware [21]. This makes it much easier to develop cross-platform applications

An Introduction to Apache PDFBox Library: Nutshell Examples 8

that can run on a variety of devices and operating systems. The JRE also includes a

number of other components, such as class libraries, that are necessary for running

Java applications. Class libraries are collections of pre-built classes and functions

that developers can use to speed up development and reduce the amount of code

they need to write. These class libraries cover a wide range of functionality, from

basic data types and control structures to more advanced features such as network

programming and graphical user interfaces [22]. While the JRE is an essential

component of the Java ecosystem, it is important to note that it is separate from the

Java Development Kit (JDK), which includes additional tools such as the Java

compiler and debugger. The JRE is primarily used for running Java applications, while

the JDK is used for developing and compiling Java code [23].

2.4 Open Object Rexx

Open Object Rexx (ooRexx) is an open-source programming language that is a

modern implementation of the Rexx programming language. It was created by the

Rexx Language Association and is available for a wide range of platforms, including

Windows, Linux, and macOS [24]. ooRexx is based on the original Rexx language

created by Mike Cowlishaw in the late 1970s. Rexx, short for "REstructured eXtended

eXecutor," was designed to be an easy-to-learn and easy-to-use language that could

be used for a wide range of tasks, including scripting, systems programming, and

more. Over the years, Rexx was implemented on a variety of platforms, including

mainframe computers, personal computers, and even some embedded systems. It

gained popularity as a scripting language for various applications, including the OS/2

operating system [25]. In the 1990s, IBM released an updated version of Rexx called

Object Rexx, which added support for object-oriented programming [24]. In 2004,

the Open Object Rexx project was started to create an open-source implementation

of Object Rexx. The goal was to make the language more accessible to developers

and to encourage its adoption in the open-source community. ooRexx is maintained

by a group of volunteers who are dedicated to improving the language and making

it available on a wide range of platforms, including Windows, Linux, macOS, and

various Unix operating systems [26].

ooRexx offers several benefits that make it an attractive option for programmers.

Here are some of the key advantages of ooRexx [27]:

• English-like language: ooRexx instructions use common English words,

making the language more intuitive and easier to learn for beginners. Unlike

An Introduction to Apache PDFBox Library: Nutshell Examples 9

some programming languages that use abbreviations and symbols, ooRexx

instructions are easy to understand and remember.

• Fewer rules: ooRexx has relatively few rules about format, allowing

programmers to write code in their preferred style. For example, instructions

can span multiple lines, be typed in uppercase or lowercase, and include

multiple instructions on a single line.

• Interpreted, not compiled: ooRexx is an interpreted language, which means

that programs can be executed immediately without the need for compilation.

This makes it faster to develop and test code, and also easier to modify and

update programs.

• Built-in functions and methods: ooRexx comes with a rich set of built-in

functions and methods that perform various processing, searching, and

comparison operations for text and numbers. This saves programmers time

and effort, as they don't have to write these functions from scratch.

• Typeless variables: ooRexx treats all data as objects of different kinds,

allowing variables to hold any kind of object without the need for explicit type

declarations. This flexibility simplifies programming and enables

programmers to write more concise and readable code.

• String handling: ooRexx includes powerful functionality for manipulating

character strings, enabling programs to read and separate characters,

numbers, and mixed input. ooRexx also performs arithmetic operations on

any string that represents a valid number, including those in exponential

formats.

• Decimal Arithmetic: ooRexx uses decimal arithmetic, which is more accurate

and natural for humans, instead of the binary arithmetic used by many other

programming languages. This makes it easier to perform precise calculations

without rounding errors or other inaccuracies.

• Clear error messages and powerful debugging: ooRexx provides clear error

messages and a powerful debugging tool (TRACE instruction) to help

programmers quickly identify and fix errors in their code. This saves time and

effort during the development and testing phases.

An Introduction to Apache PDFBox Library: Nutshell Examples 10

2.5 Bean Scripting Framework for ooRexx

Bean Scripting Framework (BSF4ooRexx) is a bridge technology that enables the

ooRexx scripting language to interact with Java classes and libraries. This technology

provides an easy way to call Java code from ooRexx scripts, allowing developers to

leverage the power of Java libraries and components from within their ooRexx

scripts.

BSF4ooRexx was developed as an extension of the Bean Scripting Framework (BSF),

which is a Java-based framework that provides a standardized way of integrating

scripting languages with Java. The original BSF was developed by IBM and was later

released as an open-source project under the Apache license [28]. BSF4ooRexx was

developed as an extension of the original BSF project to add Java support for ooRexx.

The key benefit of BSF4ooRexx is the ability to leverage existing Java libraries and

components from within ooRexx scripts. This enables developers to take advantage

of the vast number of Java libraries available and provides an easy way to add

scripting support to Java applications.

An Introduction to Apache PDFBox Library: Nutshell Examples 11

3 Installation

This chapter presents a comprehensive installation guide for various programming

languages and components. This guide is designed to provide a step-by-step process

for installing the software and tools necessary to replicate the nutshell examples

presented in this thesis. It is important to follow each step carefully to ensure that the

testing system is properly configured and able to run the necessary software.

3.1 Java

Firstly a Java Runtime Environment (JRE) is required to be installed on your computer.

• Step 1: Download Azul JDK

Visit the Azul website at https://www.azul.com/downloads/ and select the

appropriate version of Azul JDK for your operating system. Click on the

download link to begin the download process.

• Step 2: Install Azul JDK

Once the download is complete, locate the installation file and run it. Follow the

prompts to install Azul JDK on your system. During the installation process, you

may be prompted to select the installation directory and other configuration

options.

• Step 3: Verify the installation

To verify that Azul JDK has been installed successfully, open a command prompt

or terminal and enter the following command: java -version If Azul JDK has

been installed correctly, the output should display the version of Azul JDK that

you have installed.

3.2 ooRexx

The next thing to do is to install the ooRexx environment. To do that, follow these

three steps:

• Download ooRexx from the official website at

https://sourceforge.net/projects/oorexx/ and navigate to the Download section

and select the appropriate version for your operating system. Click on the

download link to start the download process.

• Once the download is complete, locate the installation file and run it. Follow the

installation prompts to install ooRexx on your system. You may need to select

the installation directory and configure other options during the installation

process.

https://www.azul.com/downloads/
https://sourceforge.net/projects/oorexx/

An Introduction to Apache PDFBox Library: Nutshell Examples 12

• To verify the installation, open a command prompt or terminal and enter the

following command: rexx -v. If ooRexx has been installed correctly, the output

should display the version of ooRexx that you have installed.

3.3 BSF4ooRexx

Before proceeding with the installation, make sure to uninstall any previous versions

of BSF4ooRexx on your system. To do this, use the menu "BSF4ooRexx -> Installation

-> Uninstall BSF4ooRexx".

Next, follow these steps to install BSF4ooRexx:

• Download the installation archive "BSF4ooRexx_install-*.zip" from the

BSF4ooRexx website https://sourceforge.net/projects/bsf4oorexx/ .

• Unzip the downloaded installation archive. This will also unzip the Apache

OpenOffice/LibreOffice scripting-support for ooRexx.

• Change into the unzipped subdirectory "BSF4ooRexx/install/windows".

• Run the installation file in this directory to start the installation process.

3.4 Apache PDFBox

To install PDFBox, follow these steps:

1. Download PDFBox: Visit the PDFBox website at https://pdfbox.apache.org/

and navigate to the Download section. Select the latest version of PDFBox and

download the binary distribution of the following libraries:

• pdfbox-app-3.0.0-alpha3.jar

• preflight-3.0.0-alpha3.jar

• xmpbox-3.0.0-alpha3.jar

2. Unzip the downloaded archive: Once the download is complete, locate the

downloaded archive and extract its contents to a directory on your computer.

3. Copy the PDFBox jar files: Navigate to the directory where you extracted the

contents of the archive and copy the .jar files to the "BSF4ooRexx/lib"

directory.

https://sourceforge.net/projects/bsf4oorexx/

An Introduction to Apache PDFBox Library: Nutshell Examples 13

4 Nutshell Examples

In this chapter, 18 nutshell examples are presented. The Objective of these examples

is to give an insight into the functionality and working concept of the Java library

PDFbox. Each example will start with the code, which will be explained. At the end a

screenshot of the result will be showed. It is highly recommended to run the examples

in the right order, because many examples will build on the results of previous

examples. It's also important to note that a "resources" folder exists in the root

directory, and certain examples require files from this folder to run successfully. Please

ensure that these files are present in the folder before running the codes. To gain a

better understanding of the code presented in the nutshell examples, it is highly

recommended to go through the slides of Business Programming 1 & 2 by Professor

Rony Flatscher [29] [30].

4.1 Creating a PDF Document

The first nutshell example demonstrates how to create a writeable PDF document and

add some text to it. Afterwards the document is saved with a chosen file name. For

these tasks some simple steps need to be followed as the code showed below.

1 -- change directory to program location

2 parse source . . pgm

3 call directory filespec('L', pgm)

4

5 -- create a new document and add a blank page

6 doc=.bsf~new("org.apache.pdfbox.pdmodel.PDDocument")

7 page=.bsf~new("org.apache.pdfbox.pdmodel.PDPage")

8 doc~addPage(page)

9

10 -- create a content stream

11 contclass = "org.apache.pdfbox.pdmodel.PDPageContentStream"

12 cont=.bsf~new(contclass,doc,page)

13

14 -- define font type

15

16 fontclass = "org.apache.pdfbox.pdmodel.font.Standard14Fonts"

17 fname = BSF.loadClass(fontclass)~FontName~HELVETICA_BOLD

18 font =.bsf~new("org.apache.pdfbox.pdmodel.font.PDType1Font",fname)

19

20 -- use the content stream to insert content

21 cont~beginText

22 cont~setFont(font, 22)

23 cont~setLeading(25f)

An Introduction to Apache PDFBox Library: Nutshell Examples 14

24 cont~newLineAtOffset(100, 700)

25 cont~showText("Hello World")

26 cont~endText

27 cont~close

28

29 -- save and close the document file

30 doc~save("01-new doc.pdf")

31 doc~close

32

33 -- get java support

34 ::requires "BSF.CLS"

Figure 1: “01. Creating a PDF Document.rex”

As one can see the code is very clearly structured and easy to understand. The very

first thing to do is to get Java support within the ooRexx environment. For that we

use the directive statement “::requires”, which is executed before all other non-

directive statements. The last line from the code loads the ooRexx module "BSF.CLS",

which camouflages Java as ooRexx. So, the whole functionality of Java is fully granted.

The next thing we need to do is to change the directory to the location where the

program is saved. The first line retrieves the location of the program and names it as

“pgm”. The dots in the command disregard other additional information, which is not

needed in this example. The following line uses the retrieved program location and

defines the current root directory, the parameter “L” here stands for location. The

program can be moved to any new location without rewriting the code.

Now we can focus on the actual tasks of this example. At first a PDF document needs

to be created. Therefore we use the statement “.bsf~new” to import the Java class

“org.apache.pdfbox.pdmodel.PDDocument” and create a new instance of that class. At

the same time the name “doc” is given to the newly created instance of this class. It

is important to use the fully qualified name of the Java class. After that is done, the

imported Java class can be treated as if it was an ooRexx class. For a PDF document

to be valid it must contain at least one page. Therefore, an empty page needs to be

created and added to the document. For that, a new 121instance of the Java class

“PDPage” named “page” is created in the same way as “doc”. The Java method

“addPage”, which was imported with the Java class, is used for adding the empty page

to the document.

The PDFbox library uses the class “ PDPageContentStream” for adding contents to the

document. Once again, an instance of this class is created. For the creation of the

An Introduction to Apache PDFBox Library: Nutshell Examples 15

cotentstream two parameters are needed, names of the document and the desired

page. The next step is to set up the font type of the text we want to add. PDFbox

comes with several build-in font types and one of them is selected and named “font”.

For adding the text content to the document, the following methods are used:

• ~beginText: start of text input process

• ~setFont(font, 22): set up the default font type and size

• ~setLeading(25f): set up the default distance between two lines

• ~newLineAtOffset(100, 700): set up the start position of the text input

• ~showText("Hello World"): add desired text content to the document

• ~endText: end of the text input process

• ~close: close the contend stream

The final step is to save and close the PDF document with all the contents added. The

methods “save” and “close” are used.

The following figure shows a screenshot of the resulting PDF document opened with

Adobe Acrobat Pro.

Figure 2: Output of “01. Creating a PDF Document.rex”

An Introduction to Apache PDFBox Library: Nutshell Examples 16

4.2 Adding Text to an Existing PDF Document

The second example demonstrates how to load an existing PDF document and put in

additional contents.

1 -- change directory to program location

2 parse source . . pgm

3 call directory filespec('L', pgm)

4

5 -- define the source file and import it

6 source=.bsf~new("java.io.File", "01-new doc.pdf")

7 importdoc=BSF.loadClass("org.apache.pdfbox.Loader")

8 doc=importdoc~loadPDF(source)

9 page=doc~getPage(0)

10

11 -- set the append mode

12 contclass = "org.apache.pdfbox.pdmodel.PDPageContentStream"

13 append=BSF.loadClass(contclass)~AppendMode~APPEND

14

15 -- create a content stream

16 cont=.bsf~new(contclass,doc,page,append,"true")

17 fontclass = "org.apache.pdfbox.pdmodel.font.Standard14Fonts"

18 fname = BSF.loadClass(fontclass)~FontName~HELVETICA_BOLD

19 font=.bsf~new("org.apache.pdfbox.pdmodel.font.PDType1Font",fname)

20

21 -- use the content stream to insert content

22 cont~beginText

23 cont~setFont(font, 22)

24 cont~setLeading(25f)

25 cont~newLineAtOffset(100, 600)

26 cont~showText("Hello World, again")

27 cont~endText

28 cont~close

29

30 -- save and close the document file

31 doc~save("02-modified doc.pdf")

32 doc~close

33

34 -- get java support

35 ::requires "BSF.CLS"

Figure 3: “02. Adding Text to an Existing PDF Document.rex”

The code of the second example is similar to the code of the first example. First, we

get Java support and define the directory of the program. Next step is to read the

existing PDF Document created in the previous example. Therefore, the Java class

An Introduction to Apache PDFBox Library: Nutshell Examples 17

“java.io.File” is used for providing access to the source file, which can be loaded now

with the method “~loadPDF” imported with the Java class "org.apache.pdfbox.Loader".

After the document is loaded the first page is selected for editing by the method

“getPage”.

For adding contents to the document, the class “PDPageContentStream” is needed

again. The tricky part here is the fact, that this class works in overwrite mode by

default. The existing contents are replaced by the new content. The following figure

shows the warning if the default setting is used.

Figure 4: Warning for the overwrite mode

In this example, overwriting the existing contents is not desired. For that, the

“AppendMode” needs to be set to “APPEND”. This allows us to create a content stream

that works in the append mode.

For the new content the same methods are used. To prevent overlapping with the

existing content the starting position of the new content has been changed. In the last

step the document can be saved and closed. The following figure is a screenshot

showing the resulting PDF document.

Figure 5: Output of “02. Adding Text to an Existing PDF Document.rex”

An Introduction to Apache PDFBox Library: Nutshell Examples 18

4.3 Use Different Fonts and Colors

This example shows how to insert text with different font types, size and colors on one

single page.

1 -- change directory to program location

2 parse source . . pgm

3 call directory filespec('L', pgm)

4

5 -- create a new document and add a blank page

6 doc=.bsf~new("org.apache.pdfbox.pdmodel.PDDocument")

7 page=.bsf~new("org.apache.pdfbox.pdmodel.PDPage")

8 doc~addPage(page)

9

10 -- create a content stream

11 contclass = "org.apache.pdfbox.pdmodel.PDPageContentStream"

12 cont=.bsf~new(contclass,doc,page)

13

14 -- define font type

15 fontclass = "org.apache.pdfbox.pdmodel.font.Standard14Fonts"

16 fname = BSF.loadClass(fontclass)~FontName~HELVETICA

17 font=.bsf~new("org.apache.pdfbox.pdmodel.font.PDType1Font",fname)

18

19 -- use the content stream to insert content

20 cont~beginText

21 cont~setFont(font, 15)

22 cont~setLeading(25f)

23 cont~newLineAtOffset(100, 700)

24 cont~showText("This is a normal line")

25 cont~newLine

26

27 -- use a new font type

28 fname = BSF.loadClass(fontclass)~FontName~HELVETICA_BOLD

29 font=.bsf~new("org.apache.pdfbox.pdmodel.font.PDType1Font",fname)

30 cont~setFont(font, 15)

31 cont~showText("This is a bold line")

32 cont~newLine

33

34 -- use a new font type

35 fname = BSF.loadClass(fontclass)~FontName~HELVETICA_OBLIQUE

36 font=.bsf~new("org.apache.pdfbox.pdmodel.font.PDType1Font",fname)

37 cont~setFont(font, 15)

38 cont~showText("This is an italic line")

39 cont~newLine

40

41 -- use a new font type

An Introduction to Apache PDFBox Library: Nutshell Examples 19

42 fname = BSF.loadClass(fontclass)~FontName~COURIER

43 font=.bsf~new("org.apache.pdfbox.pdmodel.font.PDType1Font",fname)

44 cont~setFont(font, 15)

45 cont~showText("This is a line in COURIER")

46 cont~newLine

47

48 -- use a new font type

49 fname = BSF.loadClass(fontclass)~FontName~TIMES_ROMAN

50 font=.bsf~new("org.apache.pdfbox.pdmodel.font.PDType1Font",fname)

51 cont~setFont(font, 15)

52 cont~showText("This is a line in TIMES_ROMAN")

53 cont~setLeading(45f)

54 cont~newLine

55

56 -- use a bigger font size

57 cont~setFont(font, 25)

58 cont~showText("This is a bigger line")

59 cont~newLine

60

61 -- use a new font color

62 col=BSF.loadClass("java.awt.Color")~red

63 cont~setNonStrokingColor(col)

64 cont~showText("This is a red line")

65 cont~newLine

66

67 -- use a new font color

68 col=BSF.loadClass("java.awt.Color")~blue

69 cont~setNonStrokingColor(col)

70 cont~showText("This is a blue line")

71 cont~endText

72 cont~close

73

74 -- save and close the document file

75 doc~save("03-different styles.pdf")

76 doc~close

77

78 -- get java support

79 ::requires "BSF.CLS"

Figure 6: “03. Use Different Fonts and Colors.rex”

First, a new PDF document with a blank page and the contentstream are created.

Second, the font type “HELVETICA” and font size 15 are set as default. Then the text

insert process is started. This process is repeated several times, each time with a

different font type. The Java class "org.apache.pdfbox.pdmodel.font.Standard14Fonts"

has to be reimported and set as default font type every time. For different font size it

An Introduction to Apache PDFBox Library: Nutshell Examples 20

is sufficient to call the method “~setFont” with the desired parameter. Next step is to

change the font color. Therefore, the Java class “java.awt.Color” is imported to provide

color support. The method “~setNonStrokingColor” is used to set up default text color.

Last step is to save and close the document.

The following figure shows the resulting PDF document.

Figure 7: Output of “03. Use Different Fonts and Colors.rex”

An Introduction to Apache PDFBox Library: Nutshell Examples 21

4.4 Extracting Text from an Existing PDF Document

In the last three examples we saw how to add text to a document under different

circumstances. This example will demonstrate how to extract text content from an

existing PDF document to a simple .txt file.

1 -- change directory to program location

2 parse source . . pgm

3 call directory filespec('L', pgm)

4

5 -- define the source file and import it

6 source=.bsf~new("java.io.File", "03-different styles.pdf")

7 importdoc=BSF.loadClass("org.apache.pdfbox.Loader")

8 doc=importdoc~loadPDF(source)

9

10 -- use the stripper to get content

11 stripper=.bsf~new("org.apache.pdfbox.text.PDFTextStripper")

12 content=stripper~getText(doc)

13

14 -- write the content to the destination file

15 writer=bsf.import("java.io.FileWriter")

16 file= writer~new("04-extracted content.txt")

17 file~write(content)

18 file~close()

19

20 -- get java support

21 ::requires "BSF.CLS"

Figure 8: “04. Extracting Text from an Existing PDF Document.rex”

After getting Java support and setting up the directory location the source file is

loaded. To read the content a new instance of the Java class

"org.apache.pdfbox.text.PDFTextStripper" is created. Then the text content is saved

by the method “~getText”.

The next step is to create an empty text file and extract the content to it. Hereby the

Java class “java.io.FileWriter" is needed. The following methods are used in the extract

process:

• ~new: create a new file

• ~write: write content to the file

• ~close: close the writer

After the extract process the text content is saved without any formatting to a text file

as the following figure shows.

An Introduction to Apache PDFBox Library: Nutshell Examples 22

Figure 9: Output of “04. Extracting Text from an Existing PDF Document.rex”

An Introduction to Apache PDFBox Library: Nutshell Examples 23

4.5 Drawing some Shapes

In the previous examples we saw how text processing with PDFbox works. This

example will demonstrate how to use the content stream to draw different shapes.

In PDFbox, it is impossible to draw shapes directly, what we can do is to define a path

from A to B in form of a line or a curve. A combination of these lines and curves can

form complex shapes, which the following code will show.

1 -- change directory to program location

2 parse source . . pgm

3 call directory filespec('L', pgm)

4

5 -- create a new document and add a blank page

6 doc=.bsf~new("org.apache.pdfbox.pdmodel.PDDocument")

7 page=.bsf~new("org.apache.pdfbox.pdmodel.PDPage")

8 doc~addPage(page)

9

10 -- create a content stream

11 contclass = "org.apache.pdfbox.pdmodel.PDPageContentStream"

12 cont=.bsf~new(contclass,doc,page)

13 cont~setLineWidth(1)

14

15 -- draw a line

16 cont~moveTo(100,700)

17 cont~lineTo(250,700)

18

19 -- draw a curve

20 cont~moveTo(350,700)

21 cont~curveTo(380,720,420,750,500,700)

22

23 -- draw a rectangle

24 cont~addRect(120,600,100,-100)

25

26 -- draw a triangle

27 cont~moveTo(350,500)

28 cont~lineTo(450,500)

29 cont~lineTo(400,600)

30 cont~lineTo(350,500)

31

32 -- draw a star shape

33 cont~moveTo(120,360)

34 cont~lineTo(220,360)

35 cont~lineTo(140,300)

36 cont~lineTo(170,400)

An Introduction to Apache PDFBox Library: Nutshell Examples 24

37 cont~lineTo(200,300)

38 cont~lineTo(120,360)

39

40 -- draw a circle

41 cx=400

42 cy=350

43 r=50

44 k=0.552284749831

45 cont~moveTo(cx-r,cy)

46 cont~curveTo(cx-r,cy+k*r,cx-k*r,cy+r,cx,cy+r)

47 cont~curveTo(cx+k*r,cy+r,cx+r,cy+k*r,cx+r,cy)

48 cont~curveTo(cx+r,cy-k*r,cx+k*r,cy-r,cx,cy-r)

49 cont~curveTo(cx-k*r,cy-r,cx-r,cy-k*r,cx-r,cy)

50

51 -- make all the drawed shapes visible

52 cont~stroke

53 cont~close

54

55 -- save and close the document file

56 doc~save("05-shapes.pdf")

57 doc~close

58

59 -- get java support

60 ::requires "BSF.CLS"

Figure 10: “05. Drawing some Shapes.rex”

First, a new document with a blank page and the associated content stream are

created. Then the method “~setLineWidth” is used to set up the line thickness of the

path we want to draw.

The first shape to draw is a simple straight from one point to another point. The method

“~moveTo” is used to define the coordinates of the starting point and the method

“~lineTo” describes the path to the ending point.

Drawing a curve is slightly more complex. In addition to the starting point and ending

point, 2 further control points are needed to describe the path of the curve. That is the

reason why the method “~curveTo” has six parameters, which are the X/Y coordinates

of the two control points and the ending point.

For drawing a rectangle, the method “~addRect” can be used to simplify the coding.

With a starting point and the length/width this method automatically draws the four

sides of the rectangle.

An Introduction to Apache PDFBox Library: Nutshell Examples 25

The next shape to draw is a triangle. Therefore, we must combine three lines to form

the triangle. With a set of three Point chosen, the points are connected with each

other. In the same way we can draw a star shape, by connecting five points with each

other.

The last and the trickiest shape to draw is a circle. It is impossible to draw a perfect

circle, but a very good approximation can be reached by combining several curves. In

this example the circle is divided into four parts. First, the circle center and the radius

are defined. Then the constant “k” is needed to determine the coordinates of the

control points. So, these four curves are drawn to form the circle.

The final step is to use the method “~stroke” to make all the paths defined visible.

Then the doc can be saved and closed.

The following figure shows the drawn shapes.

Figure 11: Output of “05. Drawing some Shapes.rex”

An Introduction to Apache PDFBox Library: Nutshell Examples 26

4.6 Creating a Table with Content

This example demonstrates how to create a table and add contents to it. PDFbox does

not include a build-in table editor. However, we can use the knowledge from the last

example to draw the table manually.

1 -- change directory to program location

2 parse source . . pgm

3 call directory filespec('L', pgm)

4

5 -- create a new document and add a blank page

6 doc=.bsf~new("org.apache.pdfbox.pdmodel.PDDocument")

7 page=.bsf~new("org.apache.pdfbox.pdmodel.PDPage")

8 doc~addPage(page)

9

10 -- define font type

11 fontclass = "org.apache.pdfbox.pdmodel.font.Standard14Fonts"

12 fname = BSF.loadClass(fontclass)~FontName~HELVETICA_BOLD

13 font=.bsf~new("org.apache.pdfbox.pdmodel.font.PDType1Font",fname)

14

15 -- create a content stream

16 contclass = "org.apache.pdfbox.pdmodel.PDPageContentStream"

17 cont=.bsf~new(contclass,doc,page)

18 cont~setLineWidth(1)

19 cont~setFont(font, 18)

20

21 -- define the cell and table

22 initx=50

23 inity=700

24 cheight=30

25 cwidth=100

26 col=5

27 row= 10

28

29 -- start the loops to draw the table and insert contents

30 do i=0 to row-1

31 do j=0 to col-1

32 cont~addRect(initx+j*cwidth,inity-i*cheight,cwidth,-cheight)

33 cont~beginText

34 cont~newLineAtOffset(initx+j*cwidth+10,inity-i*cheight-cheight+10)

35 cont~showText("Cell" "(" || j+1 || "," || i+1 || ")")

36 cont~endText

37 end

38 end

39

40 -- make the table visible

An Introduction to Apache PDFBox Library: Nutshell Examples 27

41 cont~stroke

42 cont~close

43

44 -- save and close the document file

45 doc~save("06-table with content.pdf")

46 doc~close

47

48 -- get java support

49 ::requires "BSF.CLS"

Figure 12: “06. Creating a Table with Content.rex”

After the document and the content stream are created, the coordinates of the initial

point and the size of the cells are defined. Then, the number of the columns and rows

are defined. After the preparation is done, we can start to draw the table manually.

Therefore, two do-loops are created, one each for the rows and columns. First, the

method “~addRect” is used for drawing the table, cell by cell. Then, a text content is

inserted to each of the cells. After the loops are done, the whole table is made visible

by the methode “~stroke”.

The following figure shows a screenshot of the resulting table.

An Introduction to Apache PDFBox Library: Nutshell Examples 28

Figure 13: Output of “06. Creating a Table with Content.rex”

An Introduction to Apache PDFBox Library: Nutshell Examples 29

4.7 Converting a PDF Document To Image

This Example demonstrates how to save an existing PDF document as an image file.

 -- change directory to program location

1 parse source . . pgm

2 call directory filespec('L', pgm)

3

4 -- define the source file and import it

5 source=.bsf~new("java.io.File", "06-table with content.pdf")

6 importdoc=BSF.loadClass("org.apache.pdfbox.Loader")

7 doc=importdoc~loadPDF(source)

8

9 -- use the renderer to buffer the document as an image

10 renderer=.bsf~new("org.apache.pdfbox.rendering.PDFRenderer",doc)

11 image=renderer~renderImage(0)

12

13 -- write the buffered image to the destination file

14 writer=bsf.import("javax.imageio.ImageIO")

15 file=.bsf~new("java.io.File","07-saved image.jpg")

16 writer~write(image, "jpeg", file)

17

18 -- get java support

19 ::requires "BSF.CLS"

Figure 14: “07. Converting a PDF Document To Image.rex”

As one can see the code for this example is very simple. The Java class “Loader” is

used to import the existing PDF document. Then, the Java class “PDFRenderer” is

imported to save the whole page as an image to the buffer. For saving the Image file

there are a few steps to do. First, the Java class “ImageIO” has to be imported. Then,

the Java class “io.File” is used to create an empty image file. The last step is to use

the method “~write” from the class “ImageIO” for writing the buffered image to the

created image file.

The figure below shows a screenshot of the resulting image file opened with Microsoft

Paint.

An Introduction to Apache PDFBox Library: Nutshell Examples 30

Figure 15: Output of “07. Converting a PDF Document To Image.rex”

An Introduction to Apache PDFBox Library: Nutshell Examples 31

4.8 Inserting Image to a PDF Document

In previous example the converting from PDF to image is showed. This example will

demonstrate how to insert an existing image to a PDF document.

1 -- change directory to program location

2 parse source . . pgm

3 call directory filespec('L', pgm)

4

5 -- create a new document and add a blank page

6 doc=.bsf~new("org.apache.pdfbox.pdmodel.PDDocument")

7 page=.bsf~new("org.apache.pdfbox.pdmodel.PDPage")

8 doc~addPage(page)

9

10 -- import the image file

11 xclass = "org.apache.pdfbox.pdmodel.graphics.image.PDImageXObject"

12 xobject=BSF.loadClass(xclass)

13 image=xobject~createFromFile("07-saved image.jpg",doc)

14

15 -- create a content stream

16 contclass = "org.apache.pdfbox.pdmodel.PDPageContentStream"

17 cont=.bsf~new(contclass,doc,page)

18

19 -- use the content stream to insert content

20 cont~drawImage(image,0,0)

21 cont~close

22

23 -- save and close the document file

24 doc~save("08-inserted image.pdf")

25 doc~close

26

27 -- get java support

28 ::requires "BSF.CLS"

Figure 16: “08. Inserting Image to a PDF Document.rex”

After creating the new document and a new blank page, the Java class

“PDImageXObject” is imported to handle the image file we want to insert. The method

“~createFromFile” is used to create an image object that can be used for further

operations. To use this method, we need the path of the desired image file and the

name of document object we created.

After the content stream is prepared, the method “~drawImage” is used to insert the

image object we created from the original image file. With that done, the document

can be saved and closed.

An Introduction to Apache PDFBox Library: Nutshell Examples 32

The following figure shows the resulting document with the image inserted.

Figure 17: Output of “08. Inserting Image to a PDF Document.rex”

An Introduction to Apache PDFBox Library: Nutshell Examples 33

4.9 Adding Multiple Pages to a PDF Document

In the previous examples all the documents only contain one single page. PDFbox does

certainly support multi-page documents. This example shows how to add contents to

multiple pages within a single document.

1 -- change directory to program location

2 parse source . . pgm

3 call directory filespec('L', pgm)

4

5 -- create a new document

6 doc=.bsf~new("org.apache.pdfbox.pdmodel.PDDocument")

7

8 -- start the loop for each page

9 num= 3

10 do i=1 to num

11

12 -- add a blank page the document

13 page.i=.bsf~new("org.apache.pdfbox.pdmodel.PDPage")

14 doc~addPage(page.i)

15

16 -- create a content stream

17 contclass = "org.apache.pdfbox.pdmodel.PDPageContentStream"

18 cont=.bsf~new(contclass,doc,page.i)

19

20 -- define font type

21 fontclass = "org.apache.pdfbox.pdmodel.font.Standard14Fonts"

22 fname = BSF.loadClass(fontclass)~FontName~HELVETICA

23 font=.bsf~new("org.apache.pdfbox.pdmodel.font.PDType1Font",fname)

24

25 -- use the content stream to insert content

26 cont~beginText

27 cont~setFont(font, 22)

28 cont~setLeading(25f)

29 cont~newLineAtOffset(100, 700)

30 cont~showText("This is Page" i)

31 cont~newLine

32 cont~newLine

33 cont~newLine

34 cont~showText("This is the first line")

35 cont~newLine

36 cont~newLine

37 cont~showText("This is the second line")

38 cont~newLine

39 cont~newLine

40 cont~showText("This is the third line")

An Introduction to Apache PDFBox Library: Nutshell Examples 34

41 cont~newLine

42 cont~newLine

43 cont~showText("This is the fourth line")

44 cont~endText

45 cont~close

46 end

47

48 -- save and close the document file

49 doc~save("09-multiple pages.pdf")

50 doc~close

51

52 -- get java support

53 ::requires "BSF.CLS"

Figure 18: “09. Adding Multiple Pages to a PDF Document.rex”

After the document is created, we want to add several pages according to the goal of

this example. In this code a do loop is used to simplify the code. For demonstration

the number of loops is set to 3. It is of course possible to use another value instead or

just do it manually without the loop function.

For each loop a page with own index is created and added to document. It is necessary

to create a content stream for each of the pages. After inserting the desired content,

the content stream is closed. After all loops are done, the document can be saved and

closed.

The following figure shows the resulting multi-pages document.

An Introduction to Apache PDFBox Library: Nutshell Examples 35

Figure 19: Output of “09. Adding Multiple Pages to a PDF Document.rex”

An Introduction to Apache PDFBox Library: Nutshell Examples 36

4.10 Splitting a PDF Document with Multiple Pages

The last example showed how to create an PDF document with multiple pages. This

example demonstrates how to split a document containing several pages into separate

documents.

1 -- change directory to program location

2 parse source . . pgm

3 call directory filespec('L', pgm)

4

5 -- define the source file and import it

6 source=.bsf~new("java.io.File", "09-multiple pages.pdf")

7 importdoc=BSF.loadClass("org.apache.pdfbox.Loader")

8 doc=importdoc~loadPDF(source)

9

10 -- use the splitter to split the document

11 spl=.bsf~new("org.apache.pdfbox.multipdf.Splitter")

12 pages=spl~split(doc)

13

14 -- create an iterator to navigate through the pages

15 iterator=Pages~listIterator

16

17 -- save each page as a new document

18 do i= 1 to pages~size

19 pd=iterator~next

20 pd~save("10-split page"||i||".pdf")

21 pd~close

22 end

23

24 -- get java support

25 ::requires "BSF.CLS"

Figure 20: “10. Splitting a PDF Document with Multiple Pages.rex”

The first thing to do is to import a document with several pages. The resulting

document of the last example is used for that. For splitting the document a new

instance of the Java class “org.apache.pdfbox.multipdf.Splitter” is created. First, the

document is split into a list of separate documents by using the method “~split”. Next,

the method “~listIterator” is used to create an iterator for pointing every single

document from the list. We use a loop statement to save those documents. The first

step is to check the number of documents created, which defines the number of loops

to run. The next step is to create the loops, in which we use the method “~next” to

select a single document and save it. After the loops are done, every page from the

original documents is saved as a new separate document.

An Introduction to Apache PDFBox Library: Nutshell Examples 37

The following figure shows the resulting documents.

Figure 21: Output of “10. Splitting a PDF Document with Multiple Pages.rex”

An Introduction to Apache PDFBox Library: Nutshell Examples 38

4.11 Merging Multiple PDF Documents

In the last example the splitting of a documents containing several pages is showed.

This example will demonstrate the reverse process, namely the merging of several

documents into a single one.

1 -- change directory to program location

2 parse source . . pgm

3 call directory filespec('L', pgm)

4

5 -- define the source files

6 file1=.bsf~new("java.io.File", "10-split page1.pdf")

7 file2=.bsf~new("java.io.File", "10-split page2.pdf")

8 file3=.bsf~new("java.io.File", "10-split page3.pdf")

9

10 -- import the merger

11 merger=.bsf~new("org.apache.pdfbox.multipdf.PDFMergerUtility")

12

13 -- set the destination file

14 merger~setDestinationFileName("11-merged doc.pdf")

15

16 -- add the source files and save as a new document

17 merger~addSource(file1)

18 merger~addSource(file2)

19 merger~addSource(file3)

20 mus=BSF.loadClass("org.apache.pdfbox.io.MemoryUsageSetting")

21 merger~mergeDocuments(mus~setupMainMemoryOnly)

22

23 -- get java support

24 ::requires "BSF.CLS"

Figure 22: “11. Merging Multiple PDF Documents.rex”

The first thing to do is to use the Java class “java.io.File” to provide access to the

source files. Next, a new instance of the Java class “PDFMergerUtility” needs to be

created. The file name of the new document is set by the method

“~setDestinationFileName”. Then, the method “~addSource” is used to import source

file we want to merge. This needs to be done for every file. Next, the memory usage

setting needs to be defined. Therefore, the Java class “MemoryUsageSetting” is

imported and set to “~setupMainMemoryOnly”. The last step is to use the method

“~mergeDocuments” with the defined memory usage setting to merge all the imported

documents.

An Introduction to Apache PDFBox Library: Nutshell Examples 39

The following figure shows a screenshot of the resulting document opened with Adobe

Acrobat Pro.

Figure 23: Output of “11. Merging Multiple PDF Documents.rex”

An Introduction to Apache PDFBox Library: Nutshell Examples 40

4.12 Setting the Document Metadata

This example demonstrates how to set or modify the metadata of a PDF document.

Metadata consists information about the document itself such as Author, Title, Creation

date, Subject…

1 -- change directory to program location

2 parse source . . pgm

3 call directory filespec('L', pgm)

4

5 -- define the source file and import it

6 source=.bsf~new("java.io.File", "11-merged doc.pdf")

7 importdoc=BSF.loadClass("org.apache.pdfbox.Loader")

8 doc=importdoc~loadPDF(source)

9

10 -- load the document information and set different metadata

11 info=doc~getDocumentInformation

12 info~setAuthor("Tiao")

13 info~setTitle("PDFbox Nutshell Example No. 12")

14 info~setCreator("Tiao")

15 info~setSubject("Metadata")

16 info~setKeywords("PDF, Metadata, BSF4oorexx")

17

18 -- save and close the document file

19 doc~save("12-metadata added.pdf")

20 doc~close

21

22 -- get java support

23 ::requires "BSF.CLS"

Figure 24: “12. Setting the Document Metadata.rex”

With PDFbox it is very easy to edit the metadata of a document. First, a document is

loaded using the Java class “org.apache.pdfbox.Loader”. Then, the method

“~getDocumentInformation” is used to load the metadata of the document. Now it is

possible to modify it. In this example these following methods are used:

• ~setAuthor: set the author of the document

• ~setTitle: set the title of the document

• ~setCreator: set the Creator of the document

• ~setSubject: set the Subject of the document

• ~setKeywords: set the Keywords of the document

After setting the metadata the document is saved and closed. The following figure

shows a screenshot of the modified metadata.

An Introduction to Apache PDFBox Library: Nutshell Examples 41

Figure 25: Output of “12. Setting the Document Metadata.rex”

An Introduction to Apache PDFBox Library: Nutshell Examples 42

4.13 Adding Watermark to a Document

This example shows how to create a watermark on every page of a document.

1 -- change directory to program location

2 parse source . . pgm

3 call directory filespec('L', pgm)

4

5 -- define the source file and import it

6 source=.bsf~new("java.io.File", "12-metadata added.pdf")

7 importdoc=BSF.loadClass("org.apache.pdfbox.Loader")

8 doc=importdoc~loadPDF(source)

9

10 -- count the number of pages

11 pages=doc~getDocumentCatalog~getPages

12

13 -- start the loop for each page

14 do i= 1 to doc~getNumberOfPages

15 page=pages~get(i-1)

16

17 -- set the append mode

18 contclass = "org.apache.pdfbox.pdmodel.PDPageContentStream"

19 append=BSF.loadClass(contclass)~AppendMode~APPEND

20

21 -- create a content stream

22 cont=.bsf~new(contclass,doc,page,append,"true")

23

24 -- define font type

25

26 fontclass = "org.apache.pdfbox.pdmodel.font.Standard14Fonts"

27 fname = BSF.loadClass(fontclass)~FontName~HELVETICA_BOLD

28 font=.bsf~new("org.apache.pdfbox.pdmodel.font.PDType1Font",fname)

29

30 -- use the content stream to insert content

31 cont~beginText

32 cont~setLeading(25f)

33 cont~setFont(font, 70)

34

35 -- set the transparency of the watermark

36 gsclass="org.apache.pdfbox.pdmodel.graphics.state.PDExtendedGraphicsState"

37 gs=.bsf~new(gsclass)

38 gs~setNonStrokingAlphaConstant(0.2)

39 cont~setGraphicsStateParameters(gs)

40

41 -- set the color of the watermark

42 col=BSF.loadClass("java.awt.Color")~red

An Introduction to Apache PDFBox Library: Nutshell Examples 43

43 cont~setNonStrokingColor(col)

44

45 -- set the rotation of the watermark

46 matrix=.bsf~new("org.apache.pdfbox.util.Matrix")

47 cont~setTextMatrix(matrix~getRotateInstance(20,150,100))

48

49 -- insert the watermark

50 cont~showText("This is a Watermark")

51 cont~endText

52 cont~close

53 end

54

55 -- save and close the document file

56 doc~save("13-watermark.pdf")

57 doc~close

58

59 -- get java support

60 ::requires "BSF.CLS"

Figure 26: “13. Adding Watermark to a Document.rex”

The first thing to do is to import a document with several pages. We can use the

resulting document of last example. Next, the number of pages is counted to determine

how many loops are needed to add the watermark. In this example, we will use a short

text as watermark.

Within the loop a content stream is created for the current page. To avoid overwriting

existing content the append mode must be activated. After setting the font type the

content stream can be started with the method “~beginText”. The next thing to do is

to set the transparency of the watermark. Therefore, the Java class

“PDExtendedGraphicsState” needs to be imported. The alpha constant, which defines

the transparency, is modified by the method “~setNonStrokingAlphaConstant”. This

setting needs to be saved to the content stream using the method

“~setGraphicsStateParameters”. Then, the font color of the text is set to red and the

font size to 70. The Java class “org.apache.pdfbox.util.Matrix” is imported to rotate

the watermark. Therefore, the method “getRotateInstance” is used to define the

rotation parameters. The first parameter is the rotation angle and the next two

parameters are coordinates of the rotation point. This rotation setting needs to be

saved to the content stream as well. The last step of the loop is to insert the text as

watermark and close the content stream.

After all loops are done, the document can be saved and closed. The following figure

shows the resulting document.

An Introduction to Apache PDFBox Library: Nutshell Examples 44

Figure 27: Output of “13. Adding Watermark to a Document.rex”

An Introduction to Apache PDFBox Library: Nutshell Examples 45

4.14 Encrypting a PDF Document

This example illustrates how to secure a PDF Document by setting the user access

permissions and encrypting the whole document.

1 -- change directory to program location

2 parse source . . pgm

3 call directory filespec('L', pgm)

4

5 -- define the source file and import it

6 source=.bsf~new("java.io.File", "13-watermark.pdf")

7 importdoc=BSF.loadClass("org.apache.pdfbox.Loader")

8 doc=importdoc~loadPDF(source)

9

10 -- set access permissions

11 ap=.bsf~new("org.apache.pdfbox.pdmodel.encryption.AccessPermission")

12 ap~setcanModify(.false)

13 ap~setCanExtractContent(.false)

14 ap~setCanPrint(.false)

15

16 -- define the standard protection policyencrypt the document

17 sppclass = "org.apache.pdfbox.pdmodel.encryption.StandardProtectionPolicy"

18 spp=.bsf~new(sppclass,"ownerpw","userpw",ap)

19 spp~setEncryptionKeyLength(128)

20 spp~setPermissions(ap)

21

22 --encrypt the document

23 doc~protect(spp)

24

25 -- save and close the document file

26 doc~save("14-encrypted.pdf")

27 doc~close

28

29 -- get java support

30 ::requires "BSF.CLS"

Figure 28: “14. Encrypting a PDF Document.rex”

The first thing to do is to create or load a PDF document, which should be secured.

In this example the resulting document of last example is used to demonstrate how

the securing process works.

After the document is loaded, the first part of the securing process can be started. A

standard PDF document can be opened, copied, printed or modified by anyone. To

avoid that, the Java class “org.apache.pdfbox.pdmodel.encryption.AccessPermission”

is imported to define access permissions for the user. The following methods are

used to define if the user has certain permission to the document.

An Introduction to Apache PDFBox Library: Nutshell Examples 46

• ~setcanModify: Permission to modify the document.

• ~setCanExtractContent: Permission to extract content from the document.

• ~setCanPrint: Permission to print the document.

In this example these permissions are set to false, which means that the user is not

allowed to process these operations.

The next part of the securing process is to encrypt the document and adopt the

access permission settings we defined in the first part of the process. Therefore, the

Java class “org.apache.pdfbox.pdmodel.encryption.StandardProtectionPolicy“ needs

to be imported. This class requires three parameters, the first two are owner and

user password, the third parameter is the access permission setting. Owner

password and user password are strings that can be chosen freely. With the user

password the document can be opened and all operations, that aren’t forbidden by

the defined access permissions, can be processed. The owner password is needed to

gain full access to the document and is not subject to any restriction.

The next step is to set the length of the secret key used to encrypt the document by

using the method “~setEncryptionKeyLength”. The access permission setting needs

to be activated by the method ”~setPermissions“. Finally, the document is encrypted

by the method “~protect”.

After the securing process the document can be saved and closed.

The following figures will show the effects of the securing process.

Figure 29: Output 1 of “14. Encrypting a PDF Document.rex”

Figure 30: Output 2 of “14. Encrypting a PDF Document.rex”

An Introduction to Apache PDFBox Library: Nutshell Examples 47

Figure 31: Output 3 of “14. Encrypting a PDF Document.rex”

An Introduction to Apache PDFBox Library: Nutshell Examples 48

4.15 Creating a PDF-A Document

This example demonstrates how to create a PDF/A document. PDF/A is a specialized

version of the Portable Document Format (PDF) used for long-term archiving of digital

contents and is standardized by the International Organization for Standardization

(ISO).

1 -- change directory to program location

2 parse source . . pgm

3 call directory filespec('L', pgm)

4

5 -- create a new document and add a blank page

6 doc=.bsf~new("org.apache.pdfbox.pdmodel.PDDocument")

7 page=.bsf~new("org.apache.pdfbox.pdmodel.PDPage")

8 doc~addPage(page)

9

10 -- load the font file

11 fontfile=.bsf~new("java.io.File", "resources\arial.ttf")

12 fontclass = "org.apache.pdfbox.pdmodel.font.PDType0Font"

13 font=BSF.loadClass(fontclass)~load(doc,fontfile)

14

15 -- set the xmp metadata

16 xmp=BSF.loadClass("org.apache.xmpbox.XMPMetadata")~createXMPMetadata

17 dc=xmp~createAndAddDublinCoreSchema

18 dc~setTitle("15-PDFa.pdf");

19 id=xmp~createAndAddPDFAIdentificationSchema

20 id~setPart(1);

21 id~setConformance("B");

22 serializer=.bsf~new("org.apache.xmpbox.xml.XmpSerializer")

23 baos=.bsf~new("java.io.ByteArrayOutputStream")

24 serializer~serialize(xmp, baos,"true")

25 metadata=.bsf~new("org.apache.pdfbox.pdmodel.common.PDMetadata",doc)

26 metadata~importXMPMetadata(baos~toByteArray)

27 doc~getDocumentCatalog~setMetadata(metadata)

28

29 -- define the color profile

30 colorprofile=.bsf~new("java.io.FileInputStream", "resources\sRGB.icc")

31 intentclass = "org.apache.pdfbox.pdmodel.graphics.color.PDOutputIntent"

32 intent=.bsf~new(intentclass,doc,colorprofile)

33 intent~setInfo("sRGB IEC61966-2.1")

34 intent~setOutputCondition("sRGB IEC61966-2.1")

35 intent~setOutputConditionIdentifier("sRGB IEC61966-2.1")

36 intent~setRegistryName("http://www.color.org")

37 doc~getDocumentCatalog~addOutputIntent(intent)

38

An Introduction to Apache PDFBox Library: Nutshell Examples 49

39 -- create a content stream

40 cont=.bsf~new("org.apache.pdfbox.pdmodel.PDPageContentStream",doc,page)

41

42 -- use the content stream to insert content

43 cont~beginText

44 cont~setFont(font, 22)

45 cont~setLeading(25f)

46 cont~newLineAtOffset(100, 700)

47 cont~showText("This is a PDF/A Document")

48 cont~endText

49 cont~close

50 nocclass="org.apache.pdfbox.pdfwriter.compress.CompressParameters"

51 noc=BSF.loadClass(nocclass)

52

53 -- save and close the document file

54 doc~save("15-PDFa.pdf",noc~NO_COMPRESSION)

55 doc~close

56

57 -- get java support

58 ::requires "BSF.CLS"

Figure 32: “15. Creating a PDF-A Document.rex”

The first thing to do is to create a new PDF document and add a blank page to it. The

PDF/A format has some requirements that need to be fulfilled. The first requirement

concerns the fonts. All fonts used in the document must be embedded in the file,

because of this the usage of the build-in standard font types is not suitable. For this

example, the font file “arial.ttf” has been downloaded and put into the folder

“resources”. The Java class “java.io.File” is used to provide access to the file and the

class “org.apache.pdfbox.pdmodel.font.PDType0Font” is imported to load the font file.

Another requirement of the PDF/A format is to have metadata defined in the document.

The tricky part here is the fact, that the use of the ISO-standardized metadata format

Extensible Metadata Platform (XMP) is required. The PDFbox library does not support

this format by default, so the sub-library xmpbox needs to be implemented to handle

XMP metadata. After this is done, the Java class “org.apache.xmpbox.XMPMetadata”

can be imported to provide XMP metadata support. First, the method

“~createXMPMetadata” is used to create a new XMP metadata. A PDF/A document

requires at least two entries in the metadata, the title and the PDF/A version of the

document. For these two entries we must use different standardized schemas to define

them. The title requires the use of the Dublin Core Metadata Element Set, which is

done by using the methods “~createAndAddDublinCoreSchema” and “~setTitle”. The

PDF/A Identification Schema defines the entries, which indicate that the file is a PDF/A

An Introduction to Apache PDFBox Library: Nutshell Examples 50

document and its version. Therefore, the methods

“~createAndAddPDFAIdentificationSchema”, “~setPart” and “~setConformance” are

used. In this example, the PDF/A basic version 1B is used. The next step is to serialize

the XMP metadata. Therefore, the Java class “org.apache.xmpbox.xml.XmpSerializer”

is imported. For the serializing process a destination output stream is needed, which

can be created by importing the Java class “java.io.ByteArrayOutputStream”. After the

serializing process the XMP metadata as an output stream can be imported to the

document. First, the Java class “org.apache.pdfbox.pdmodel.common.PDMetadata” is

imported and the method “~importXMPMetadata” is used to import the XMP metadata

we created. Finally, the metadata is implemented by the method “~setMetadata”.

The last requirement of PDF/A standard is to include the color space profile used into

the document. For this example, the color space profile “sRGB.icc” is used and saved

to the resources folder. First, the color profile is converted to an input stream by

importing the Java class “java.io.FileInputStream”. Next, the Java class

“org.apache.pdfbox.pdmodel.graphics.color.PDOutputIntent” is imported to create an

output intent using the converted color profile. The color profile needs to be defined in

document by the following methods:

• ~setInfo

• ~setOutputCondition

• ~setOutputConditionIdentifier

• ~setRegistryName

After inserting these entries the color profile can be implemented by the method

“~addOutputIntent”.

The next step is to create a content stream and insert some text in the document.

Then, the document can be saved and closed.

The following figure shows the resulting document.

An Introduction to Apache PDFBox Library: Nutshell Examples 51

Figure 33: Output of “15. Creating a PDF-A Document.rex”

An Introduction to Apache PDFBox Library: Nutshell Examples 52

4.16 Validating a PDF-A Document

This example shows how to validate an existing PDF/A document.

1 -- change directory to program location

2 parse source . . pgm

3 call directory filespec('L', pgm)

4

5 -- define the source file

6 file="15-PDFa.pdf"

7

8 -- use the parser to validate the document and save the result

9 pclass = "org.apache.pdfbox.preflight.parser.PreflightParser"

10 parser=.bsf~new(pclass,file)

11 doc=parser~parse

12 if doc~validate~isValid=1

13 then content=file " is a valid PDF/A-1b document"

14 else content=file " is not a valid PDF/A-1b document"

15

16 -- create a new document and add a blank page

17 doc=.bsf~new("org.apache.pdfbox.pdmodel.PDDocument")

18 page=.bsf~new("org.apache.pdfbox.pdmodel.PDPage")

19 doc~addPage(page)

20

21 -- create a content stream

22 contclass = "org.apache.pdfbox.pdmodel.PDPageContentStream"

23 cont=.bsf~new(contclass,doc,page)

24

25 -- define font type

26 fontclass = "org.apache.pdfbox.pdmodel.font.Standard14Fonts"

27 fname = BSF.loadClass(fontclass)~FontName~HELVETICA_BOLD

28 font=.bsf~new("org.apache.pdfbox.pdmodel.font.PDType1Font",fname)

29

30 -- use the content stream to insert validation result

31 cont~beginText

32 cont~setFont(font, 22)

33 cont~setLeading(25f)

34 cont~newLineAtOffset(100, 700)

35 cont~showText(content)

36 cont~endText

37 cont~close

38

39 -- save and close the document file

40 doc~save("16-validation result.pdf")

41 doc~close

42

An Introduction to Apache PDFBox Library: Nutshell Examples 53

43 -- get java support

44 ::requires "BSF.CLS"

Figure 34: “16. Validating a PDF-A Document.rex”

The PDFbox library doesn’t support PDF/A validation by default. The sub-library

preflight needs to be implemented.

First, the Java class “org.apache.pdfbox.preflight.parser.PreflightParser” is imported

and the method “~parse” is used to read the source document. Next, the method

“~validate” is used to validate, whether the given document meets the requirements

of the PDF/A standard. The method “~isValid” is used to read the validation result. If

the value 1 is returned, then the document is a valid PDF/A document. Otherwise the

document doesn’t meet the requirements.

The next step is to save the validation result to a new document. Therefore, a new

PDF document is created, and a blank page is added. Then, a content stream is

created to insert the validation result. In the end, the document is saved and closed.

The following figure shows the resulting document.

Figure 35: Output of “16. Validating a PDF-A Document.rex”

An Introduction to Apache PDFBox Library: Nutshell Examples 54

4.17 Creating a Digital Signature

This example demonstrates how to create a digital signature with PDFbox. The

signing process is done with bouncy castle, which is a Java library for cryptography.

Bouncy castle is included in the standalone version of PDFbox Library. For the signing

process a keystore is needed, it can be created with keytool using command line.

Keystore contains public keys, private keys and certificates, which are used during

the signing process. In this example a keystore is already created and saved in the

resources folder. The following figure shows the command used for the keystore

creation.

Figure 36: Keystore creation

The following parameters are used:

• -genkeypair: Generates a key pair

• -storepass: Sets the password of the keystore

• -storetype: Sets the type of the keystore

• -alias: Sets the name of the keystore

• -validity: Sets the validity time (in days) of the keystore

• -v: Verbose Mode

• -keyalg: Sets algorithm used for the keystore

• -keystore: Sets the file name of the keystore

1 -- change directory to program location

2 parse source . . pgm

3 call directory filespec('L', pgm)

4

5 -- define the source file and import it

6 infile=.bsf~new("java.io.File", "16-validation result.pdf")

7 importdoc=BSF.loadClass("org.apache.pdfbox.Loader")

8 doc=importdoc~loadPDF(infile)

9

10 -- configure the signature settings

11 sigc="org.apache.pdfbox.pdmodel.interactive.digitalsignature.PDSignature"

12 sig=.bsf~new(sigc)

13 filter=BSF.loadClass(sigc)~FILTER_ADOBE_PPKLITE

14 sf=BSF.loadClass(sigc)~SUBFILTER_ADBE_PKCS7_DETACHED

15 sig~setFilter(filter)

16 sig~setSubFilter(sf)

17 sig~setName("Tiao Wang")

18 sig~setLocation("Vienna, Austria")

19 sig~setReason("Testing")

20 cal=BSF.loadClass("java.util.Calendar")~getInstance

An Introduction to Apache PDFBox Library: Nutshell Examples 55

21 sig~setSignDate(cal)

22 doc~addSignature(sig)

23

24 -- prepare the signature generator

25 password=.bsf~new("java.lang.String", "123456")~toCharArray

26 keystore=BSF.loadClass("java.security.KeyStore")~getInstance("PKCS12")

27 ksfis=.bsf~new("java.io.FileInputStream", "resources\keystore.p12")

28 keystore~load(ksfis,password)

29 pk=keystore~getKey(test,password)

30 certchain=keystore~getCertificateChain(test)

31 certList=BSF.loadClass("java.util.Arrays")~asList(certchain)

32 cert =certlist~get(0)

33 certstore=.bsf~new("org.bouncycastle.cert.jcajce.JcaCertStore",certlist)

34

35 -- create the signature generator

36 gen=.bsf~new("org.bouncycastle.cms.CMSSignedDataGenerator")

37 sbclass="org.bouncycastle.operator.jcajce.JcaContentSignerBuilder"

38 sha1signer=.bsf~new(sbclass,"SHA256WithRSA")~build(pk)

39 pbclass="org.bouncycastle.operator.jcajce.JcaDigestCalculatorProviderBuilder"

40 calc=.bsf~new(pbclass)~build

41 igclass="org.bouncycastle.cms.jcajce.JcaSignerInfoGeneratorBuilder"

42 infogen=.bsf~new(igclass,calc)~build(sha1signer, cert)

43 gen~addSignerInfoGenerator(infogen)

44 gen~addCertificates(certstore)

45

46 -- set the destination file

47 outfile=.bsf~new("java.io.File", "17-signed.pdf")

48 fos=.bsf~new("java.io.FileOutputStream", outfile)

49 exsign=doc~saveIncrementalForExternalSigning(fos)

50

51 -- convert the signing data to the cms format

52 x=exsign~getContent

53 io=BSF.loadClass("org.apache.commons.io.IOUtils")

54 ba= io~toByteArray(x)

55 cmsdata=.bsf~new("org.bouncycastle.cms.CMSProcessableByteArray",ba)

56

57 -- generate the signature

58 signed=gen~generate(cmsdata,"false")

59 cmssig=signed~getEncoded

60

61 -- add the signature to the document

62 exsign~setSignature(cmssig)

63

64 -- get java support

65 ::requires "BSF.CLS"

Figure 37: “17. Creating a Digital Signature.rex”

An Introduction to Apache PDFBox Library: Nutshell Examples 56

The first step is to load an existing document that need to be signed. In this

example, the resulting document of the last example is used. The next step is to

create and configure the signature. Therefore, a new instance of the Java class

“org.apache.pdfbox.pdmodel.interactive.digitalsignature.PDSignature” is created. For

configuring the signature, the following methods are used:

• ~setFilter

• ~setSubFilter

• ~setName

• ~setLocation

• ~setReason

• ~setSignDate

The configured signature is added to the document by the method “addSignature”.

The next part is to create and prepare the signature generator. The first step is to

load the keystore and extract the certificates and the private key. Therefore, the

Java class “java.security.KeyStore” is imported to provide keystore support. Next,

the keystore source file is converted into an input stream using the Java class

“java.io.FileInputStream”. For loading the keystore input stream we must use the

chosen password, which needs to be converted to a character array. After the

kestore is loaded, the private key and the certificate chain can be extracted by the

methods “~getKey” and “~getCertificateChain”. For extracting the private key, the

password is used again. The certificate chain is converted to a list and used to create

a new instance of the Java class “org.bouncycastle.cert.jcajce.JcaCertStore”. The

certificate we will use is the first item from the certificate chain.

The next thing to do is to create the signature generator by creating a new instance

of the Java class “org.bouncycastle.cms.CMSSignedDataGenerator”. Then, an info

generator is needed. For the info generator can be created, the Java classes

“org.bouncycastle.operator.jcajce.JcaContentSignerBuilder” and

“org.bouncycastle.operator.jcajce.JcaDigestCalculatorProviderBuilder” need to be

imported and defined. The info generator is created by importing the Java class

“org.bouncycastle.cms.jcajce.JcaSignerInfoGeneratorBuilder” and added to the

signature generator by the method “~addSignerInfoGenerator”. The certificate store

needs to be added too.

After the signature generator is created and configured, the signing process can be

started. First, the destination file for the signed document needs to be defined. Then,

an output stream is created for the destination file. The output stream will be used

by the method “saveIncrementalForExternalSigning”, which will write the signing

data. The next step is to make the signing data suitable for the Cryptographic

Message Syntax (CMS) Standard, which is used for digital signatures and encryption.

The content is read by the method “~getContent” and converted to a byte array by

importing the Java class “org.apache.commons.io.IOUtils“ and using the method

“~toByteArray”. The Java class “org.bouncycastle.cms.CMSProcessableByteArray“ is

imported to provide CMS support.

An Introduction to Apache PDFBox Library: Nutshell Examples 57

The method “~generate” generates the signature, which can be retrieved by the

method “~getEncoded”. The last step is to use the method “~setSignature” to save

the signed signature to the document.

The following figure show the resulting document with the digital signature.

Figure 38: Output of “17. Creating a Digital Signature.rex”

An Introduction to Apache PDFBox Library: Nutshell Examples 58

4.18 Verifying a Digital Signature

This example demonstrates how to verify a digital signature in a PDF document.

1 -- change directory to program location

2 parse source . . pgm

3 call directory filespec('L', pgm)

4

5 -- define the source file and import it

6 source=.bsf~new("java.io.File", "17-signed.pdf")

7 importdoc=BSF.loadClass("org.apache.pdfbox.Loader")

8 fis =.bsf~new("java.io.FileInputStream","17-signed.pdf")

9 doc=importdoc~loadPDF(source)

10

11 -- extract the signature and the signed content

12 sig=doc~getSignatureDictionaries~get(0)

13 sigdata=sig~getContents

14 signeddata=sig~getSignedContent(fis)

15

16 -- convert the signed content to the cms format

17 pbclass="org.bouncycastle.cms.CMSProcessableByteArray"

18 cmsdata=.bsf~new(pbclass,signeddata)

19 cms=.bsf~new("org.bouncycastle.cms.CMSSignedData", cmsdata,sigdata)

20

21 -- load the certificate

22 signerinfo=cms~getSignerInfos~getSigners~iterator~next

23 cert=cms~getCertificates~getMatches(signerInfo~getSID)~iterator~next

24

25 -- create the verifier

26 vbclass="org.bouncycastle.cms.jcajce.JcaSimpleSignerInfoVerifierBuilder"

27 vbuilder=.bsf~new(vbclass)

28 provider=.bsf~new("org.bouncycastle.jce.provider.BouncyCastleProvider")

29 vbuilder~setProvider(provider)

30 verifier=vbuilder~build(cert)

31

32 -- verify the signature and save the result

33 result=signerinfo~verify(verifier)

34 if result=1 then content=source~getName "has a valid signature"

35 else content=source~getName "has a invalid signature"

36

37 -- create a new document and add a blank page

38 doc=.bsf~new("org.apache.pdfbox.pdmodel.PDDocument")

39 page=.bsf~new("org.apache.pdfbox.pdmodel.PDPage")

40 doc~addPage(page)

41

42 -- create a content stream

An Introduction to Apache PDFBox Library: Nutshell Examples 59

43 contclass = "org.apache.pdfbox.pdmodel.PDPageContentStream"

44 cont=.bsf~new(contclass,doc,page)

45

46 -- define font type

47 fontclass = "org.apache.pdfbox.pdmodel.font.Standard14Fonts"

48 fname = BSF.loadClass(fontclass)~FontName~HELVETICA_BOLD

49 font=.bsf~new("org.apache.pdfbox.pdmodel.font.PDType1Font",fname)

50

51 -- use the content stream to insert the verify result

52 cont~beginText

53 cont~setFont(font, 22)

54 cont~setLeading(25f)

55 cont~newLineAtOffset(100, 700)

56 cont~showText(content)

57 cont~endText

58 cont~close

59

60 -- save and close the document file

61 doc~save("18-signature result.pdf")

62 doc~close

63

64 -- get java support

65 ::requires "BSF.CLS"

Figure 39: “18. Verifying a Digital Signature.rex”

The basic idea of the verifying process is to check, whether the signature matches the

signed content. So, the first step is to extract them from the signed document. After

the document has been loaded, the method “~getSignatureDictionaries” is used to get

all signature dictionaries. Then, the method “~get(0)” is used to get the first signature

dictionary. The signature is extracted from the signature dictionary by the method

“~getContents”. The next step is to extract the signed content of the document.

Therefore, an input stream converted from the source document file is needed. The

method “~getSignedContent” extracts the signed content from the input stream.

The next step is to convert the extracted signed content to a new byte array, that is

suitable for the Cryptographic Message Syntax (CMS) Standard. The Java class

“org.bouncycastle.cms.CMSProcessableByteArray” is imported for this task. Next, the

converted signed content and the signature are used to create a new object of the

Java class “org.bouncycastle.cms.CMSSignedData”, which can checked, whether the

signature matches the signed content. For the verifying process a verifier needs to be

created. The first step is to get the signer info by using the method “~getSignerInfos”

and certificate that matches the signer info. Next, a verifier builder is created by the

An Introduction to Apache PDFBox Library: Nutshell Examples 60

Java class “org.bouncycastle.cms.jcajce.JcaSimpleSignerInfoVerifierBuilder”. Then,

the Java class “org.bouncycastle.jce.provider.BouncyCastleProvider” is set as the

security provider by using the method “~setProvider”. The method “~build” uses the

retrieved certificate and creates the verifier, which is used to check the signature. If

the value 1 is returned, the signature is valid. Otherwise the signature doesn’t match

the signed content.

The last thing to do is to create a new document and insert the verifying result. After

that, the document can be saved and closed.

The following figure shows the resulting document.

Figure 40: Output of “18. Verifying a Digital Signature.rex”

An Introduction to Apache PDFBox Library: Nutshell Examples 61

5 Conclusio

In conclusion, this thesis has explored the use of Apache PDFBox in combination with

ooRexx to create and manipulate PDF documents. Through the 18 Nutshell examples

provided, we have demonstrated the extensive capabilities of this platform,

highlighting the power and flexibility of PDFBox for a range of practical applications.

The use of BSF4ooRexx as a bridge between Java and ooRexx has provided a valuable

toolkit for working with Java Libraries such as Apache PDFbox, which has allowed

developers and users to create custom PDF manipulation solutions tailored to their

specific needs. The platform has opened new possibilities for PDF document creation

and manipulation, increasing efficiency and productivity.

Through the Nutshell examples provided, we have demonstrated the ability of PDFBox

to create and manipulate PDF documents for a range of practical applications, including

creating PDF documents, generating contents, and extracting information from PDF

files. The examples have highlighted the ease of use and flexibility of PDFBox, making

it an attractive platform for developers and users alike.

Looking towards future research, there is potential to explore the use of more complex

programs in conjunction with PDFBox, Java, and ooRexx to handle even more complex

document structures. Additionally, deeper exploration of the PDFBox library could help

identify more advanced features and capabilities, providing even greater opportunities

for developers and users.

Overall, this thesis has shown the potential of PDFBox and ooRexx for creating and

manipulating PDF documents. The Nutshell examples provided in this thesis serve as

a foundation for further research and development in this area, highlighting the

importance of exploring the potential of PDFBox to advance the capabilities of PDF

document manipulation. The combination of PDFBox and ooRexx represents a valuable

resource for anyone working with PDF documents, and the potential for further

development in this area is significant.

An Introduction to Apache PDFBox Library: Nutshell Examples 62

6 References

[1] D. Johnson, “PDF: The document format for everything.” https://www.pdfa.org/pdf-the-document-

format-for-everything-2/

[2] “What is a PDF? Portable Document Format | Adobe Acrobat.” https://www.adobe.com/acrobat/about-

adobe-pdf.html

[3] “Choosing a security method for PDFs.” https://helpx.adobe.com/acrobat/using/choosing-security-

method-pdfs.html

[4] J. Warnock, “The Camelot Project.” https://www.pdfa.org/norm-refs/warnock_camelot.pdf

[5] “Document Management — Portable Document Format — Part 1: PDF 1.7,” 2008.

https://opensource.adobe.com/dc-acrobat-sdk-docs/pdfstandards/PDF32000_2008.pdf

[6] Wikipedia contributors, “History of PDF,” Wikipedia, Jan. 29, 2023.

https://en.wikipedia.org/wiki/History_of_PDF#:~:text=The%20Portable%20Document%20Format%20

(PDF,an%20open%20standard%20in%202008.

[7] Kodhodbanaan, “Benefits of Using PDF Files In Your Office - Tishare,” newzworldmagazine.com, Jan.

24, 2023. https://worldtimemagazine.com/benefits-of-using-pdf-files-in-your-office-tishare/

[8] “Overview of security in Acrobat and PDFs.” https://helpx.adobe.com/acrobat/using/overview-security-

acrobat-pdfs.html

[9] “How to compress a PDF file.” https://helpx.adobe.com/acrobat/how-to/compress-

pdf.html#:~:text=To%20reduce%20the%20size%20of,from%20the%20drop%2Ddown%20menu.

[10] “How to make PDF searchable: Make PDF text searchable | Adobe Acrobat.”

https://www.adobe.com/acrobat/hub/how-to/make-a-pdf-searchable

[11] “Apache License, Version 2.0.” https://www.apache.org/licenses/LICENSE-2.0

[12] Wikipedia contributors, “Apache PDFBox,” Wikipedia, Oct. 02, 2022.

https://en.wikipedia.org/wiki/Apache_PDFBox

[13] “Index of /dist/pdfbox/pdfbox/1.0.0.” https://archive.apache.org/dist/pdfbox/pdfbox/1.0.0/

[14] “Apache PDFBox | PDFBox 2.0.0 Migration Guide.” https://pdfbox.apache.org/2.0/migration.html

[15] “Apache PDFBox | PDFBox 3.0 Migration Guide.” https://pdfbox.apache.org/3.0/migration.html

[16] Wikipedia contributors, “Java (programming language),” Wikipedia, Mar. 09, 2023.

https://en.wikipedia.org/wiki/Java_(programming_language)

[17] “Features of Java - Javatpoint,” www.javatpoint.com. https://www.javatpoint.com/features-of-java

[18] “Java OOP (Object-Oriented Programming).”

https://www.w3schools.com/java/java_oop.asp#:~:text=Java%20%2D%20What%20is%20OOP%3F,co

ntain%20both%20data%20and%20methods.

[19] “Java JRE | Java Run-time Environment - Javatpoint,” www.javatpoint.com.

https://www.javatpoint.com/java-jre

[20] “Java Bytecode - Javatpoint,” www.javatpoint.com. https://www.javatpoint.com/java-bytecode

[21] W. I. a J. V. M.-D. F. Techopedia, “Java Virtual Machine (JVM),” Techopedia.com, May 01, 2013.

https://www.techopedia.com/definition/3376/java-virtual-machine-jvm

[22] Wikipedia contributors, “Java Class Library,” Wikipedia, Jan. 13, 2023.

https://en.wikipedia.org/wiki/Java_Class_Library

An Introduction to Apache PDFBox Library: Nutshell Examples 63

[23] “Difference between JDK, JRE and JVM - javatpoint,” www.javatpoint.com.

https://www.javatpoint.com/difference-between-jdk-jre-and-jvm

[24] Wikipedia contributors, “Object REXX,” Wikipedia, Dec. 30, 2022.

https://en.wikipedia.org/wiki/Object_REXX

[25] Wikipedia contributors, “Rexx,” Wikipedia, Feb. 08, 2023. https://en.wikipedia.org/wiki/Rexx

[26] “Charter of the Open Object Rexx Project.” https://www.oorexx.org/charter.html

[27] “About Open Object Rexx.” https://www.oorexx.org/about.html

[28] Wikipedia contributors, “Bean Scripting Framework,” Wikipedia, Aug. 21, 2020.

https://en.wikipedia.org/wiki/Bean_Scripting_Framework

[29] R. Flatscher, “Business Programming 1.” https://wi.wu-wien.ac.at/rgf/wu/lehre/autowin/material/foils/

[30] R. Flatscher, “Business Programming 2.” http://wi.wu-wien.ac.at/rgf/wu/lehre/autojava/material/foils/

https://www.oorexx.org/about.html
https://en.wikipedia.org/wiki/Bean_Scripting_Framework
https://wi.wu-wien.ac.at/rgf/wu/lehre/autowin/material/foils/

An Introduction to Apache PDFBox Library: Nutshell Examples 64

Appendix

Prerequisites to execute the nutshell examples:

Software:

• Azul Zulu JDK -> https://www.azul.com/downloads/?package=jdk#zulu

• ooRexx https://sourceforge.net/projects/oorexx/

• BSF4ooRexx https://sourceforge.net/projects/bsf4oorexx/

• Apache PDFBox https://www.apache.org/dyn/closer.lua/pdfbox/3.0.0-

alpha3/pdfbox-app-3.0.0-alpha3.jar

• xmpbox https://www.apache.org/dyn/closer.lua/pdfbox/3.0.0-

alpha3/xmpbox-3.0.0-alpha3.jar

• preflight https://www.apache.org/dyn/closer.lua/pdfbox/3.0.0-

alpha3/preflight-3.0.0-alpha3.jar

Installation Guide:

1. Download the latest versions of the required software.

2. Install Azul Zulu JDK.

3. Install ooRexx.

4. Install BSF4ooRexx.

5. Copy the downloaded .jar files into the lib folder of the Bsf4ooRexx850

directory.

How to use:

1. Verify that the resource folder is present.

2. Execute the Nutshell examples in the correct order.

3. Check the results.

https://www.azul.com/downloads/?package=jdk#zulu
https://sourceforge.net/projects/oorexx/
https://sourceforge.net/projects/bsf4oorexx/
https://www.apache.org/dyn/closer.lua/pdfbox/3.0.0-alpha3/pdfbox-app-3.0.0-alpha3.jar
https://www.apache.org/dyn/closer.lua/pdfbox/3.0.0-alpha3/pdfbox-app-3.0.0-alpha3.jar
https://www.apache.org/dyn/closer.lua/pdfbox/3.0.0-alpha3/xmpbox-3.0.0-alpha3.jar
https://www.apache.org/dyn/closer.lua/pdfbox/3.0.0-alpha3/xmpbox-3.0.0-alpha3.jar
https://www.apache.org/dyn/closer.lua/pdfbox/3.0.0-alpha3/preflight-3.0.0-alpha3.jar
https://www.apache.org/dyn/closer.lua/pdfbox/3.0.0-alpha3/preflight-3.0.0-alpha3.jar

	Deckblatt_Bachelor_englisch_30.05.2022.pdf
	thesis-final.pdf

