

BACHELOR THESIS

An Introduction to JavaFX 3D with BSF4ooRexx

Author

René Steger

Supervisor

ao. Univ. Prof. Mag. Dr. Rony G. Flatscher

Vienna University of Economics and Business

Abstract

The aim of this thesis is to show how 3D can be used in JavaFX with the help of ooRexx and

BSF4ooRexx. Nutshell examples are used to illustrate how 3D objects can be created and their

properties defined. Furthermore, this work includes installation instructions for the required

programmes and an explanation of them. ooRexx is an object-oriented programming language

which, in combination with BSF4ooRexx, makes it possible to build a bridge to Java and thus

use its libraries for programming.

i

Table of Contents

List of Figures ... iii

List of Listings .. iv

List of Abbreviations .. v

1 Introduction ... 1

2 Used Software ... 2

2.1 Rexx / ooRexx ... 2

2.2 BSF4ooRexx .. 3

2.3 Java .. 4

2.4 JavaFX ... 4

2.5 IntelliJ IDEA .. 5

3 Installation Guide .. 6

3.1 Java .. 6

3.2 ooRexx 5.0.0 .. 7

3.3 BSF4ooRexx850 .. 8

3.4 IntelliJ IDEA .. 9

3.5 ooRexx Plugin for IntelliJ IDEA ... 10

4 Nutshell Examples .. 11

4.1 Apache Version 2.0 License .. 11

4.2 Start Code for each Programme ... 12

4.3 3D Shapes .. 13

4.3.1 Create a Sphere ... 13

4.3.2 Create a Cylinder .. 14

4.3.3 Create a Box ... 15

4.4 Create a Perspective Camera ... 17

4.4.1 Box with Perspective Camera .. 17

4.4.2 Cylinder & Sphere with Perspective Camera ... 19

4.5 Transformations ... 19

4.5.1 Scale ... 20

4.5.2 Rotate ... 21

4.5.3 Translate, Shear, Scale & Rotate with the Class “Transform” 22

4.6 CullFace ... 25

ii

4.7 DrawMode ... 27

4.8 PhongMaterial ... 30

4.8.1 DiffuseColor, SpecularColor & SpecularPower .. 30

4.8.2 DiffuseMap ... 33

4.8.3 BumpMap ... 36

4.8.4 SpecularMap ... 37

4.8.5 SelfIlluminationMap .. 38

4.8.6 DiffuseMap, BumpMap, SpecularMap & SpecularPower 39

4.9 LightBase ... 41

4.9.1 AmbientLight ... 41

4.9.2 PointLight ... 44

4.9.3 AmbientLight & DrawMode .. 45

5 Conclusion .. 48

References .. 49

Appendix .. 51

A 1. Perspective Camera – Cylinder .. 51

A 2. Perspective Camera – Sphere ... 52

A 3. Transformations – Scale ... 53

A 4. Transformations – Rotate ... 54

A 5. PhongMaterial – BumpMap ... 55

A 6. PhongMaterial – SpecularMap ... 57

A 7. PhongMaterial – SelfIlluminationMap ... 58

A 8. PhongMaterial – Combination .. 60

A 9. LightBase – PointLight ... 61

A 10. LightBase – AmbientLight & DrawMode .. 63

iii

List of Figures

Figure 1: Installation Process Java ... 7

Figure 2: Installation Process ooRexx .. 7

Figure 3: Installation Process BSF4ooRexx ... 9

Figure 4: Installation Process IntelliJ ... 9

Figure 5: Installation Process ooRexx Plugin .. 10

Figure 6: Apache Version 2.0 License ... 11

Figure 7: Output from Create a Sphere .. 14

Figure 8: Output from Create a Cylinder ... 15

Figure 9: Output from Create a Box ... 16

Figure 10: Output from Create a Perspective Camera ... 18

Figure 11: Output from Cylinder & Sphere with Perspective Camera 19

Figure 12: Output from Scale Transformation ... 21

Figure 13: Output from Set Rotation .. 22

Figure 14: Output from Translate, Shear, Scale and Rotate ... 24

Figure 15: Output from CullFace ... 27

Figure 16: Output from DrawMode ... 29

Figure 17: Output from DiffuseColor, SpecularColor & SpecularPower 33

Figure 18: Output from DiffuseMap .. 36

Figure 19: Output from BumpMap .. 37

Figure 20: Output from SpecularMap .. 38

Figure 21: Output from SelfIlluminationMap .. 39

Figure 22: Output from DiffuseMap, BumpMap, SpecularMap & SpecularPower 40

Figure 23: Output from AmbientLight ... 44

Figure 24: Output from PointLight .. 45

Figure 25: Output from AmbientLight & DrawMode.. 47

iv

List of Listings

Listing 1: Start Code for each Programme ... 12

Listing 2: Create a Sphere .. 13

Listing 3: Create a Cylinder ... 15

Listing 4: Create a Box ... 16

Listing 5: Create a Perspective Camera ... 18

Listing 6: Set position of the Perspective Camera ... 19

Listing 7: Scale Transformation ... 20

Listing 8: Set Rotation .. 21

Listing 9: Adjusting the Rotation ... 22

Listing 10: Translate, Shear, Scale and Rotate ... 23

Listing 11: CullFace ... 26

Listing 12: DrawMode ... 29

Listing 13: DiffuseColor, SpecularColor & SpecularPower .. 32

Listing 14: DiffuseMap .. 35

Listing 15: BumpMap .. 36

Listing 16: SpecularMap .. 37

Listing 17: SelfIlluminationMap .. 38

Listing 18: DiffuseMap, BumpMap, SpecularMap & SpecularPower 40

Listing 19: AmbientLight ... 42

Listing 20: PointLight .. 44

Listing 21: AmbientLight & DrawMode ... 46

Listing 22: Perspective Camera – Cylinder .. 52

Listing 23: Perspective Camera - Sphere ... 53

Listing 24: Transformation - Scale ... 54

Listing 25: Transformation - Rotate ... 55

Listing 26: PhongMaterial - BumpMap ... 56

Listing 27: PhongMaterial - SpecularMap ... 58

Listing 28: PhongMaterial - SelfIlluminationMap ... 59

Listing 29: PhongMaterial – Combination ... 61

Listing 30: LightBase - PointLight ... 63

Listing 31: LightBase - AmbientLight & DrawMode .. 65

v

List of Abbreviations

AWT Abstract Window Toolkit

BSF4ooRexx Bean Scripting Framework for ooRexx

GUI Graphical User Interface

IDE Integrated Development Environment

JRE Java Runtime Environment

JVM Java Virtual Machine

ooRexx Open Object Rexx

Rexx Restructured Extended Executor

RexxLA Rexx Language Association

SAA System Application Architecture

1

1 Introduction

This bachelor thesis examines how a bridge can be built to Java by means of ooRexx in

combination with BSF4ooRexx and thus 3D objects can be created in JavaFX.

The main goal, besides a theoretical introduction to the required software components, is to

program nutshell examples, demonstrate the output and explain it. However, the purpose of the

work is not to provide more complex code examples, but to demonstrate the basic functions of

JavaFX, such as the creation of 3D shapes with the Java classes available for this purpose.

Based on this, the various possibilities for defining and changing the properties of the generated

objects will be presented.

The following chapter deals with the required software components. For this purpose, a short

overview of the programming languages ooRexx and Java is given and it is explained in more

detail how BSF4ooRexx builds a bridge from ooRexx to Java.

Chapter 3 deals with the installation of the required programmes. It shows step by step what to

do if, for example, older versions are already installed on the operating system.

Chapter 4 shows the nutshell examples programmed in this bachelor thesis, which make up the

main part of this paper. They are described using the written code and pictures of the output.

Finally, in the last chapter, the work is discussed once more and it is explained what could still

be programmed in a further occupation with JavaFX.

2

2 Used Software

This chapter introduces the software components used in this thesis and provides information

about them. On the one hand, these are the two programming languages Java and ooRexx and,

on the other hand, BSF4ooRexx. Furthermore, the optional components in the form of IntelliJ

and the corresponding ooRexx plugin are discussed. Instructions for installing this software can

be found in the following chapter.

2.1 Rexx / ooRexx

Mike F. Cowlishaw developed a programming language in IBM's research facilities in 1979

that was easier for humans to understand and program than the dubious mainframe batch

language Exec 2 used at IBM until then (Flatscher, 2013). This was the programming language

Rexx, which in 1987 became the scripting and batch language for IBM for all its operating

systems, after the SAA (System Application Architecture) had been introduced earlier

(Flatscher, 2006). Subsequently, numerous open source and commercial Rexx interpreters,

which did not originate from IBM, were developed, indicating the growing popularity of Rexx

(Flatscher, 2013).

At the end of the 1980s, a project was started with the aim of expanding the Rexx programming

language to include object-oriented functions (Flatscher, 2013). This project became Object

Rexx, which was distributed for the first time in 1997. IBM's own versions of Object Rexx were

created for IBM's AIX and Microsoft Windows (Flatscher, 2013).

In 2005, the Rexx Language Association (RexxLA) released Open Object Rexx, the open-

source version of Object Rexx, after IBM gave them the source code in 2004 (Flatscher, 2013).

With ooRexx classic Rexx programs can be executed and written, as it is a classic Rexx

interpreter (Flatscher, 2013). ooRexx is available for various operating systems in 32- and 64-

bit versions. Programs created on one operating system can run on any other for which ooRexx

is available (Flatscher, 2013). ooRexx also has an excellent documentation, as this has also been

passed on to RexxLA by IBM in addition to the source code and can thus be kept up to date

(Flatscher, 2013).

3

Some advantages of ooRexx are:

• English-like language: Unlike other programming languages, ooRexx uses common

English words for instructions instead of abbreviations and symbols. This makes

ooRexx easier to learn and use.

• Fewer rules: There are few formatting rules in ooRexx. Instructions can be written in

upper or lower case and can span several lines. Likewise, several instructions can be on

the same line.

• Interpreted, not compiled: Since ooRexx is an interpreted language, unlike other

programming languages, programmes do not need to be compiled before execution.

• Clear error messages: When a programme encounters an error, ooRexx issues a message

explaining the error in a meaningful way.

(Rexx Language Association, n.d.)

2.2 BSF4ooRexx

BSF4ooRexx, the Bean Scripting Framework for ooRexx, is an external Rexx function package

that enables ooRexx to interact directly with Java (Flatscher, 2012). It uses the open-source

class library BSF (Bean Scripting Framework) of Java, with which scripting languages can be

implemented in Java (Flatscher, 2012).

By masking the entire class library and interactions with objects of Java, the impression was

created that these are in fact ooRexx libraries and objects. This makes the interaction with Java

easier to understand for ooRexx programmers (Flatscher, 2012).

Using BSF4ooRexx has several advantages for programmers, which are listed here:

• If the required functionality is already available in the Java Runtime Environment

(JRE), no further external function packages are necessary.

• All Java classes of the JRE can be used which are executable on the operating systems

supported by Java in their present form.

• Any Java class libraries can be used directly.

• Abstract methods can be used if they are implented in ooRexx, thus realising a callback

mechanism from Java to ooRexx.

• Independent of the installed operating system, all information systems can be controlled

via ooRexx, provided they have Java programming interfaces.

4

• Java applications are able to execute Rexx scripts under their own control.

(Flatscher, 2012)

2.3 Java

In 1995, Sun Microsystems published the Java programming language. It follows the paradigm

of object-oriented programming and is class-based (Wikipedia, 2023-b). With Java, once

compiled Java code has been written, it should be possible to run it on any system that has Java

support without recompilation (Wikipedia, 2023-b). Normally, Java applications are compiled

into bytecode. The syntax is in the style of C and C++, but there are fewer low-level functions

available (Wikipedia, 2023-b). In 2007, Sun Microsystems’ Java Virtual Machine was made

available as open-source software. With the takeover of Sun Microsystems by Oracle in 2010,

they also took over the development of Java (Wikipedia, 2023-b).

There were five main objectives in the development of the Java language. It should be:

• simple, object-oriented and familiar

• robust and secure

• architecture-neutral and portable

• efficient

• interpretable, dynamic and threaded.

(Wikipedia, 2023-b)

2.4 JavaFX

JavaFX is a framework for creating Java applications that was published in 2008. It is the

successor to AWT (Abstract Window Toolkit) and Swing (Wikipedia, 2022).

AWT already existed in the form of the Java package “java.awt” in the first version of Java in

1996. It enabled the creation of GUI applications that ran without modifications on the

operating systems supported by Java (Flatscher, 2017).

With Swing, another GUI framework was added in Java 2 in 1998, which was combined in the

Java package “javax.swing” (Flatscher, 2017).

5

JavaFX is intended to simplify the creation of graphical user interfaces (GUI) on all systems

supported by Java. Parallel to JavaFX, a scripting language called JavaFX Script was

introduced. However, this was dropped again with the introduction of JavaFX 2.0 in 2011. With

the release of Java 8, JavaFX was also updated to version 8 (Wikipedia, 2022).

2.5 IntelliJ IDEA

As mentioned above, the optional software component IntelliJ IDEA and the associated ooRexx

plugin are used in this work.

IntelliJ IDEA is an integrated development environment (IDE) that was first published by

JetBrains in 2001. IntelliJ IDEA can be used to develop software written in JVM-based

languages (Wikipedia, 2023-a). IntelliJ IDEA is offered in a limited free Community Edition,

as well as a paid Ultimate Edition with additional functionality (Wikipedia, 2023-a).

Through the ooRexx Plugin for IntelliJ it is possible to use ooRexx with IntelliJ. Furthermore,

the plugin offers the possibility to detect errors during programming and to colouring the syntax

of the code.

6

3 Installation Guide

In the following chapter, installation instructions are given for the required software

components, whereby the first three are absolutely necessary and the last two can be installed

optionally.

Care should be taken to ensure that the Java and ooRexx programming languages are installed

in any case before BSF4ooRexx. Once this has been done, the optional components can be

installed in the form of IntelliJ and the associated ooRexx Plugin for IntelliJ. This also

corresponds to the sequence described in this manual.

The following software versions were used in this paper:

• Java: Oracle Version 8u351 64 Bit

• ooRexx: Open Object Rexx Version 5.0.0-12531 64 Bit

• BSF4ooRexx: V850-20221106 64 Bit

• IntelliJ IDEA: Version 2022.3

• ooRexx Plugin for IntelliJ IDEA: Version 2.2.0-GA

3.1 Java

First of all, the programming language Java must be installed on the computer if it is not already

present. The bit rate should correspond to that of ooRexx. For this thesis, as already mentioned

above, version 8 with a bit rate of 64-bit from Oracle was used. The installation file can be

found here:

https://www.java.com/de/download/

If an older version of Java is already present on the computer, it can be removed in the course

of the installation process, as an uninstall tool is included in the installation programme.

When using Oracle's version, however, make sure that it is only licensed for personal (non-

commercial) use, as can be seen in the left image of Figure 1.

https://www.java.com/de/download/

7

Figure 1: Installation Process Java

3.2 ooRexx 5.0.0

The next step is to install Open Object Rexx on the operating system. It is recommended to use

the same bit rate that is used for the operating system and for Java to avoid errors. ooRexx 5.0.0

can be downloaded from the following link:

https://sourceforge.net/projects/oorexx/files/oorexx/

If an older version of ooRexx is already installed on the system, it should be uninstalled first.

This applies in particular if the recent version does not have the same bit rate as the previous

version. Otherwise, the installer will recognise the previous version and automatically start the

uninstall programme.

Figure 2 shows some of the steps that are followed during the installation of ooRexx. During

the installation it is not necessary to make any changes to the options.

Figure 2: Installation Process ooRexx

https://sourceforge.net/projects/oorexx/files/oorexx/

8

Figure 2 (Continued): Installation Process ooRexx

3.3 BSF4ooRexx850

After successfully installing the two programming languages Java and ooRexx, the Bean

Scripting Framework for Open Object Rexx can be downloaded from the SourceForge website

under the following link:

https://sourceforge.net/projects/bsf4oorexx/files/

If an older version of BSF4ooRexx already exists, it must be uninstalled before installing the

latest version.

The downloaded file is a .zip file, which needs to be unzipped before being installed. It includes

the installation files for the different operating systems.

To start the installation process, open the unzipped folder of BSF4ooRexx850, go to

"install/windows" and start "install.cmd". This opens a command line window in which the

installation is conducted (see Figure 3).

BSF4ooRexx850 automatically detects which architecture is required during the installation. In

this case it is a 64-bit version.

https://sourceforge.net/projects/bsf4oorexx/files/

9

Figure 3: Installation Process BSF4ooRexx

3.4 IntelliJ IDEA

Next, you can install the optional software component IntelliJ. IntelliJ is available in two

versions, a paid Ultimate Edition and a free Community Edition. The free version is sufficient

for this thesis (see top left image in Figure 4). This can be found under the link below:

https://www.jetbrains.com/idea/download/#section=windows

After starting the installation process, various settings can be made, but these are not necessary

for this paper (see top right image in Figure 4).

After completing the installation of IntelliJ, the corresponding ooRexx Plugin for IntelliJ can

be installed, which is described in the next point.

Figure 4: Installation Process IntelliJ

https://www.jetbrains.com/idea/download/#section=windows

10

Figure 4 (Continued): Installation Process IntelliJ

3.5 ooRexx Plugin for IntelliJ IDEA

Finally, the ooRexx Plugin for IntelliJ must be installed. This can be downloaded from the

following link:

https://sourceforge.net/projects/bsf4oorexx/files/Sandbox/aseik/ooRexxIDEA/GA/

Make sure that the file is not unpacked after the download. This archive is imported by IntelliJ.

Once you have opened IntelliJ, go to the Plugins section. There, first click on the gear icon and

then on Install Plugin from Disk (see left image in Figure 5). Select the downloaded ooRexx

plugin.

To finish, IntelliJ must be restarted (see right image in Figure 5).

Figure 5: Installation Process ooRexx Plugin

https://sourceforge.net/projects/bsf4oorexx/files/Sandbox/aseik/ooRexxIDEA/GA/

11

4 Nutshell Examples

This chapter presents the programmed nutshell examples that give an insight into the basics of

3D programming with ooRexx and JavaFX. For each example, the code or a part of it, if it does

not differ too much from the previous one, is shown. This code, which is not shown in full, can

be found in the appendix. In addition, one or more images of the output of the executed code

are provided. The examples should be executed in the order given in this paper, as some

examples build on the previous ones. For this paper, the tutorials from

https://www.tutorialspoint.com/javafx/index.htm were partly used as inspiration.

4.1 Apache Version 2.0 License

In each of the programmed examples, the Apache License Version 2.0 is specified (see Figure

6). This is a free software licence from the Apache Software Foundation. Under this licence,

the software may be freely used, modified and distributed in any environment (Apache Software

Foundation, 2004).

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

/*

---------------------- Apache Version 2.0 License ----------------------

Copyright 2023 René Steger

Licensed under the Apache License, Version 2.0 (the "License");

you may not use this file except in compliance with the License.

You may obtain a copy of the License at

 http://www.apache.org/licenses/LICENSE-2.0

Unless required by applicable law or agreed to in writing, software

distributed under the License is distributed on an "AS IS" BASIS,

WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.

See the License for the specific language governing permissions and

limitations under the License.

--

*/

Figure 6: Apache Version 2.0 License

https://www.tutorialspoint.com/javafx/index.htm

12

4.2 Start Code for each Programme

The start code given in Listing 1 is the code that is executed at the beginning of each example

(Flatscher, 2023).

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

-- create an instance of the Rexx class

rexxHandler=.RexxAppHandler~new

-- the abstract "start" method will be served by rexxHandler

rxApp=BSFCreateRexxProxy(rexxHandler, ,"javafx.application.Application")

-- launch the application and invokes "start"

rxApp~launch(rxApp~getClass, .nil)

-- get Java Support

::REQUIRES "BSF.CLS"

-- the Rexx handler for javafx.application.Application

::CLASS RexxAppHandler

-- will be called by JavaFX

::METHOD start

-- accesses the primary stage

USE ARG primaryStage

Listing 1: Start Code for each Programme

First of all, access from ooRexx to Java must be established. The directive “::REQUIRES” is

used for this, as can be seen in line 27 of the code. It loads the ooRexx module “BSF.CLS”,

which masks Java as ooRexx. Thus, all of Java's functionality is present. The directive

“::REQUIRES” is always executed before all other non-directive statements.

In line 30, the directive “::CLASS” creates the class called “RexxAppHandler” in ooRexx. An

instance of this created class is created in line 20.

To create the initial graphical user interface in JavaFX, the abstract class

“javafx.application.Application” and the “start” method must be implemented. The code in line

24 starts the application and calls the start process. In order to create a Java object from a Rexx

object, the external Rexx function “BSFCreateRexxProxy()” is required (Flatscher, 2017).

13

4.3 3D Shapes

3D shapes are generally geometric figures that can be drawn in an XYZ plane. To create such

in JavaFX, there are the classes “Sphere”, “Cylinder” and “Box”. These classes just mentioned

belong to the Java package “javafx.scene.Shape” (Oracle, n.d.-j).

4.3.1 Create a Sphere

In this example, a three-dimensional sphere is created by the class “Sphere” with a certain size.

37

38

39

40

41

42

43

44

45

46

47

48

49

50

51

52

53

54

55

56

57

-- setting title to the Stage

primaryStage~setTitle("Sphere")

-- create the root node

root=.bsf~new("javafx.scene.Group")

-- create a sphere

sphere=.bsf~new("javafx.scene.shape.Sphere")

-- set the radius of the sphere

sphere~radius=75

-- set position of the sphere

sphere~translateX=200

sphere~translateY=150

-- add the object to the root node

root~getChildren~~add(sphere)

-- create a scene and put it on the stage

primaryStage~setScene(.bsf~new("javafx.scene.Scene", root, 400, 300))

-- display the content of the stage

primaryStage~show

Listing 2: Create a Sphere

First of all, a title is added to the application. Then a new group is created with “.bsf~new” and

defined as the root node. In line 44, a sphere is created by calling the class “Sphere”, which is

finally added to the root node in line 52 with “add(sphere)”. With “~radius” the size of the

sphere is defined. Since the zero point of the coordinate system in JavaFX is in the upper left

corner, the sphere is created there (see left image in Figure 7).Therefore, the next step is to set

the position of the sphere, which is done in lines 48 & 49. This moves the sphere in the desired

direction (see right image in Figure7). Finally, a scene of the desired size is created and added

14

to the stage of the application. The last line “primaryStage~show” enables the output of the

example.

Figure 7: Output from Create a Sphere

4.3.2 Create a Cylinder

In the following example, a three-dimensional cylinder is created with the class “Cylinder” in

a certain size.

37

38

39

40

41

42

43

44

45

46

47

48

49

50

51

52

53

54

55

56

-- setting title to the Stage

primaryStage~setTitle("Cylinder")

-- create the root node

root=.bsf~new("javafx.scene.Group")

-- create a cylinder

cylinder=.bsf~new("javafx.scene.shape.Cylinder")

-- set the radius and the height of the cylinder

cylinder~radius=50

cylinder~height=200

-- set position of the cylinder

cylinder~translateX=200

cylinder~translateY=150

-- add the object to the root node

root~getChildren~~add(cylinder)

-- create a scene and put it on the stage

primaryStage~setScene(.bsf~new("javafx.scene.Scene", root, 400, 300))

15

57

58

-- display the content of the stage

primaryStage~show

Listing 3: Create a Cylinder

Since the creation of a cylinder is basically the same as the creation of the sphere in the previous

example, we will only briefly go into how the size of the cylinder is determined. First, as can

be seen in line 44 of Listing 3, the cylinder must be created with the class “Cylinder”. Then the

size of the cylinder is defined by “~radius” and “~height”. The rest of the code corresponds to

the previous example and you get the following output (see right picture of Figure 8).

Figure 8: Output from Create a Cylinder

4.3.3 Create a Box

This example is intended to show how to create a three-dimensional box of a certain size using

the “Box” class.

37

38

39

40

41

42

43

44

45

46

47

-- setting title to the Stage

primaryStage~setTitle("Box")

-- get access to the JavaFX colors

col=bsf.loadClass("javafx.scene.paint.Color")

-- create the root node

root=.bsf~new("javafx.scene.Group")

-- create a box

box=.bsf~new("javafx.scene.shape.Box")

16

48

49

50

51

52

53

54

55

56

57

58

59

60

61

62

-- set the width, height and depth of the box

box~width=150

box~height=150

box~depth=150

-- set position of the box

box~translateX=200

box~translateY=150

-- add the object to the root node

root~getChildren~~add(box)

-- create a scene and put it on the stage

primaryStage~setScene(.bsf~new("javafx.scene.Scene", root, 400, 300, col~LIGHTGREY))

-- display the content of the stage

primaryStage~show

Listing 4: Create a Box

Creating a box works in the same way as creating a sphere or a cylinder. The only difference to

the previous example is that instead of the radius, the width is set with "box~width" and the

depth "box~depth" after the box has been created. Through

"box=.bsf~new("javafx.scene.shape.Box")" this is possible.

In addition, in this example the background of the scene was changed by "col~LIGHTGREY".

However, as can be seen in line 41 of Listing 4, the Java class "javafx.scene.paint.Color" must

first be loaded into ooRexx so that it can be accessed (Oracle, n.d.-a). At the same time, the

newly created instance of the class has been given the name "col". The result of the code is

shown in the right image of Figure 9.

Figure 9: Output from Create a Box

17

4.4 Create a Perspective Camera

In the last three examples we saw how to create the different 3D shapes. The following

examples show how a perspective camera can be added to these. The “PerspectiveCamera” is

a subclass of the “Camera” class. The defined position of the camera is always in the middle of

a scene (Oracle, n.d.-g).

4.4.1 Box with Perspective Camera

In this example, as mentioned before, a perspective camera is added to a box. Most of the code

in the example is the same as in the previous example. The application is given a title, the box

is created and its position in the scene is set.

37

38

39

40

41

42

43

44

45

46

47

48

49

50

51

52

53

54

55

56

57

58

59

60

61

62

63

-- setting title to the Stage

primaryStage~setTitle("Box_PerspectiveCamera")

-- get access to the JavaFX colors

col=bsf.loadClass("javafx.scene.paint.Color")

-- create the root node

root=.bsf~new("javafx.scene.Group")

-- create a box

box=.bsf~new("javafx.scene.shape.Box")

-- set the width, height and depth of the box

box~width=150

box~height=150

box~depth=150

-- set position of the box

box~translateX=150

box~translateY=150

-- add the object to the root node

root~getChildren~~add(box)

-- create a perspective camera

camera=.bsf~new("javafx.scene.PerspectiveCamera")

-- set position of the camera

camera~translateX=0

camera~translateY=0

18

64

65

66

67

68

69

70

71

72

73

74

camera~translateZ=0

-- create a scene

scene=.bsf~new("javafx.scene.Scene", root, 800, 600, col~LIGHTGREY)

-- add camera to the scene

scene~setCamera(camera)

-- put the scene on the stage

primaryStage~setScene(scene)

-- display the content of the stage

primaryStage~show

Listing 5: Create a Perspective Camera

Finally, in line 60 of the code, the camera is created. For this, the Java class

"javafx.scene.PerspectiveCamera" is imported into ooRexx with the instruction ".bsf~new" and

an instance named "camera" is created from it. With "~translate" for the X, Y and Z axis of the

coordinate system, the camera position could be moved to the desired location. However, this

was not done in the first step. This means that the camera, after being added to the scene in line

69 with "scene~setCamera(camera)", is in the middle of the scene.

The output of the example can be seen in the left image of Figure 10.

Figure 10: Output from Create a Perspective Camera

Finally, in this short section of the above example, the camera position was changed (see Listing

6). The perspective camera was moved to the left on the X-axis, up on the Y-axis and out of the

screen on the Z-axis, resulting in the output shown in Figure 10 on the right.

19

59

60

61

62

63

64

-- create a perspective camera

camera=.bsf~new("javafx.scene.PerspectiveCamera")

-- set position of the camera

camera~translateX=-600

camera~translateY=-400

camera~translateZ=-500

Listing 6: Set position of the Perspective Camera

4.4.2 Cylinder & Sphere with Perspective Camera

For these two examples, the programmed code can be found in the appendix, as it is essentially

the same as for the previous example with the box. In the left-hand image of Figure 11, the

three-dimensionality of the cylinder is clearly visible. The sphere in the right-hand image of

Figure 11 is also shown in a weakened form, as it is only slightly distorted. But since it is a

sphere, this is to be expected.

Figure 11: Output from Cylinder & Sphere with Perspective Camera

4.5 Transformations

In the following two examples, the transformation possibilities of the class “Node” are

presented, which include scaling, rotating, but also the translating used in the previous examples

(Oracle, n.d.-f). The third example shows another possibility to use these transformations with

the class “Transform”. With this class, the transformation Shear can also be used (Oracle, n.d.-

k).

20

4.5.1 Scale

The transformation Scale determines the factors with which the coordinates around the centre

of the object are scaled along the various axes (Oracle, n.d.-f). In this example, as before, only

excerpts of the code with the respective changed values are shown, as there are only three

additional lines involved. The entire code can again be found in the appendix.

Listing 7 shows four different factor definitions along the respective axes. Figure 12 shows the

corresponding outputs, with the top left image belonging to the top code.

52

53

54

55

-- add a scale transformation to the box

box~scaleX=1.75

box~scaleY=0.75

box~scaleZ=0.5

52

53

54

55

-- add a scale transformation to the box

box~scaleX=0

box~scaleY=1

box~scaleZ=1

52

53

54

55

-- add a scale transformation to the box

box~scaleX=1

box~scaleY=0

box~scaleZ=1

52

53

54

55

-- add a scale transformation to the box

box~scaleX=1

box~scaleY=1

box~scaleZ=0

Listing 7: Scale Transformation

As can be seen in the top left image, the box from Figure 10 has been given a different shape

by adding scaling. A multiplier of 1.75 was applied to the X-axis, 0.75 to the Y-axis and 0.5 to

the Z-axis, making the box wider, lower and less deep.

For the other three outputs, a multiplier of 0 was applied to each of the three axes, while a

multiplier of 1 was applied to the remaining values. The result is a square and not a box.

21

Figure 12: Output from Scale Transformation

4.5.2 Rotate

This example shows the result of adding a rotation to the box known from the above examples.

Here too, the entire code can be found in the appendix.

52

53

54

55

-- set rotation of the box

point=.bsf~new("javafx.geometry.Point3D", 1, 1, 1)

box~rotate=45

box~rotationAxis=point

Listing 8: Set Rotation

First, the class “Point3D” must be imported into ooRexx with ".bsf~new" for the execution of

the rotation. At the same time, an instance of this class is created, which is given the name

"point". The coordinates X, Y and Z are represented by this geometric point (Oracle, n.d.-i).

With "~rotate" the angle of rotation is set. In this case to 45 degrees. By assigning the point

created earlier to the instruction "~rotationAxis", the rotation is executed over all three axes

22

(see left image in Figure 13). If this instruction is not executed, the box will only rotate around

one axis (Oracle, n.d.-f).

Figure 13: Output from Set Rotation

In Listing 9, different values for the coordinates are passed to the point, triggering a different

rotation of the box (see right image in Figure 13).

52

53

54

55

-- set rotation of the box

point=.bsf~new("javafx.geometry.Point3D", 2, 1, 0)

box~rotate=45

box~rotationAxis=point

Listing 9: Adjusting the Rotation

4.5.3 Translate, Shear, Scale & Rotate with the Class “Transform”

In the following example, the four different transformations are combined. In addition, a

different class is used than in the previous examples. At the beginning, the title of the

application is defined as usual. Then the box is created with the class “Box” and its size is

defined. In this case, the values for width, height and depth are 150.

37

38

39

40

41

42

43

44

45

-- setting title to the Stage

primaryStage~setTitle("Box_Transform")

-- get access to the JavaFX colors

col=bsf.loadClass("javafx.scene.paint.Color")

-- create the root node

root=.bsf~new("javafx.scene.Group")

23

46

47

48

49

50

51

52

53

54

55

56

57

58

59

60

61

62

63

64

65

66

67

68

69

70

71

72

73

74

75

76

77

78

79

80

81

82

83

84

85

-- create a box

box=.bsf~new("javafx.scene.shape.Box")

-- set the width, height and depth of the box

box~width=150

box~height=150

box~depth=150

-- set position of the box

translate=.bsf~new("javafx.scene.transform.Translate")

translate~x=400

translate~y=300

translate~z=0

-- add a shear transformation to the box

shear=.bsf~new("javafx.scene.transform.Shear")

shear~x=1.75

shear~y=1.25

-- add a scale transformation to the box

scale=.bsf~new("javafx.scene.transform.Scale")

scale~x=1.75

scale~y=0.75

scale~z=0.5

-- set rotation of the box

rotate=.bsf~new("javafx.scene.transform.Rotate")

point=.bsf~new("javafx.geometry.Point3D", 1, 1, 1)

rotate~angle=45

rotate~axis=point

-- add the transformations to the box

box~getTransforms~~add(translate)~~add(shear)~~add(scale)~~add(rotate)

-- add the object to the root node

root~getChildren~~add(box)

-- create a scene and put it on the stage

primaryStage~setScene(.bsf~new("javafx.scene.Scene", root, 800, 600, col~LIGHTGREY))

-- display the content of the stage

primaryStage~show

Listing 10: Translate, Shear, Scale and Rotate

24

Then the subclass "Translate" of the class "Transform" is imported into ooRexx with the

".bsf~new" already known from the previous examples and the instance "translate" is created.

The distances by which the coordinates are shifted in the direction of the respective axes are

determined with x, y and z. In this case, the box is in the middle of the window.

Next, the class "Shear" is imported and an instance of it called "shear" is created. Shearing is a

transformation that was not used in the previous examples, as this is only possible in the class

"Transform". Here, a multiplier is defined by which the coordinates of one axis are shifted

depending on the other axis. However, this is only possible for x and y. In this example, the

multiplier 1.75 was used for x and 1.25 for y.

In the next step, the transformation Scale known from above is added. This time, however, it

comes from the class "Transform". It determines the factor by which the coordinates are scaled

in the direction of the axes. Here the values 1.75 for x, 0.75 for y and 0.5 for z were applied.

The last step is to add the rotation to the previous steps. This is done as in the example above,

where the rotation of an object was introduced. This time, however, the class "Rotate" must be

imported into ooRexx as shown in line 71 of Listing 10. Once this has been done, the angle of

the rotation, here 45 degrees, is specified.

Finally, the instances "translate", "shear", "scale" and "rotate" are added to the box with

"~add()" (see line 77). The box must again be assigned to the root node, otherwise the box will

not be visible in the output.

The output of the individual steps is shown in Figure 14 starting from the top left to the bottom

right.

Figure 14: Output from Translate, Shear, Scale and Rotate

25

Figure 14 (Continued): Output from Translate, Shear, Scale and Rotate

4.6 CullFace

The following example discusses cullFace in JavaFX. CullFace is a property that can be applied

to all three-dimensional shapes. Here it is illustrated using spheres. In general, culling removes

the parts of a shape that are not visible in the display area. This can improve the performance

of the display (Wikipedia, 2021-b). There are three types of culling, namely "FRONT",

"BACK" and "NONE". These are enum constants, i.e. predefined constants that cannot be

changed (Oracle, n.d.-b).

37

38

39

40

41

42

43

44

45

46

47

48

49

50

51

52

53

54

-- setting title to the Stage

primaryStage~setTitle("Sphere_CullFace")

-- import class Sphere

sphere=bsf.import("javafx.scene.shape.Sphere")

-- get access to cullFace

cuFa=bsf.loadClass("javafx.scene.shape.CullFace")

-- create the root node

root=.bsf~new("javafx.scene.Group")

-- create a sphere

sphere1=sphere~new

-- set the radius of the sphere

sphere1~radius=75

-- set position of the sphere

sphere1~translateX=150

sphere1~translateY=200

26

55

56

57

58

59

60

61

62

63

64

65

66

67

68

69

70

71

72

73

74

75

76

-- set the value of cullFace

sphere1~cullFace=cuFa~front

sphere2=sphere~new

sphere2~radius=75

sphere2~translateX=400

sphere2~translateY=200

sphere2~cullFace=cuFa~back

sphere3=sphere~new

sphere3~radius=75

sphere3~translateX=650

sphere3~translateY=200

sphere3~cullFace=cuFa~none

-- add the objects to the root node

root~getChildren~~add(sphere1)~~add(sphere2)~~add(sphere3)

-- create a scene and put it on the stage

primaryStage~setScene(.bsf~new("javafx.scene.Scene", root, 800, 400))

-- display the content of the stage

primaryStage~show

Listing 11: CullFace

At the beginning of this example, the title of the application is set and the class "Sphere" is

imported into ooRexx with the instruction "bsf.import" not yet used in the previous examples

(see line 41 in Listing 11). With "bsf.loadClass", access to “CullFace” in ooRexx is enabled.

The instance thus created is given the name "cuFa". In the next step, a group is created and set

as the root node.

Next, a total of three spheres ("sphere1", "sphere2", "sphere3") with the same size are created

in the example with "~new". These are moved to the desired position with "~translate", as they

are all created in the upper left corner.

In the next step, the three different culling options are applied to one sphere each (see lines 56,

62 & 68). This is done by assigning this property to the spheres with "~cullFace". With

"=cuFa~” the desired value is passed. For "sphere1" this is the enum constant "FRONT", for

"sphere2" "BACK" and for "sphere3" "NONE".

27

This has the effect that for "FRONT" all polygons at the front of the sphere are removed. The

standard representation of an object can be seen in "sphere2" with the value "BACK". In this

case, all non-visible polygons on the back of the sphere are removed, as drawing these polygons

is unnecessary. "sphere3" represents the output of "NONE". In the case of "NONE", no culling

is carried out (see Figure 15).

Figure 15: Output from CullFace

4.7 DrawMode

After illustrating in the last example what the cullFace property does, this example introduces

the drawMode property. This property can again be applied to all three-dimensional shapes.

This time the class "Box" is used for this. There are two forms of drawMode, on the one hand

the enum constant "FILL" and on the other hand the enum constant "LINE" (Oracle, n.d.-c).

37

38

39

40

41

42

43

44

45

46

47

-- setting title to the Stage

primaryStage~setTitle("Box_DrawMode")

-- import class Box

box=bsf.import("javafx.scene.shape.Box")

-- get access to drawMode

drMo=bsf.loadClass("javafx.scene.shape.DrawMode")

-- get access to the JavaFX colors

col=bsf.loadClass("javafx.scene.paint.Color")

-- create the root node

28

48

49

50

51

52

53

54

55

56

57

58

59

60

61

62

63

64

65

66

67

68

69

70

71

72

73

74

75

76

77

78

79

80

81

82

83

84

85

86

87

88

root=.bsf~new("javafx.scene.Group")

-- create a box

box1=box~new

-- set the width, height and depth of the box

box1~width=150

box1~height=150

box1~depth=150

-- set position of the box

box1~translateX=200

box1~translateY=150

box1~translateZ=0

-- set the value of drawMode

box1~drawMode=drMo~line

box2=box~new

box2~width=150

box2~height=150

box2~depth=150

box2~translateX=700

box2~translateY=500

box2~translateZ=400

box2~drawMode=drMo~fill

-- add the objects to the root node

root~getChildren~~add(box1)~~add(box2)

-- create a perspective camera

camera=.bsf~new("javafx.scene.PerspectiveCamera")

-- set position of the camera

camera~translateX=0

camera~translateY=0

camera~translateZ=0

-- create a scene

scene=.bsf~new("javafx.scene.Scene", root, 800, 600, col~LIGHTGREY)

-- add camera to the scene

scene~setCamera(camera)

-- put the scene on the stage

primaryStage~setScene(scene)

29

89

90

-- display the content of the stage

primaryStage~show

Listing 12: DrawMode

The example is similar to the previous example, except that the class "Box" is now imported

instead of the class "Sphere". Unlike before, access to drawMode in ooRexx is now enabled in

line 43. At the same time, the name of the created instance is defined as "drMo".

In the further course, two boxes are created in this programme. For this purpose, their size is

determined and they are moved to the desired position. The position of the perspective camera,

which is also created, is set to the centre of the window.

The drawMode property is added to the two boxes with "~drawMode". With "drMo~", a value

of this property is assigned to each box. In this case, "box1" is assigned the enum constant

"LINE" and "box2" the enum constant "FILL" (see lines 61 & 70 in Listing 12).

Figure 16 shows the output of the two generated boxes. Here you can see that the right box

("box2") is the standard representation of a 3D shape. The left box ("box1"), on the other hand,

is drawn with lines only. As these lines are sometimes difficult to recognise on a white

background, the colour of the background has also been changed.

Figure 16: Output from DrawMode

30

4.8 PhongMaterial

In the following examples, the third property of 3D shapes, namely material, is presented. The

subclass "PhongMaterial" of the class "Material" is used to represent the different

manifestations of the property Material. The characteristics are diffuseColor, specularColor,

specularPower, diffuseMap, bumpMap, specularMap and selfIlluminationMap. These in turn

can be added to any three-dimensional object (Oracle, n.d.-h).

4.8.1 DiffuseColor, SpecularColor & SpecularPower

The first example in this section shows the characteristics diffuseColor, specularColor and

specularPower of the property Material. DiffuseColor is the basic colour of an object. With

specularColor simple reflections are created on an object. With specularPower the intensity of

these reflections can be increased. The default value is 32.

37

38

39

40

41

42

43

44

45

46

47

48

49

50

51

52

53

54

55

56

57

58

59

60

61

-- setting title to the Stage

primaryStage~setTitle("Cylinder_Material")

-- import class Cylinder

cylinder=bsf.import("javafx.scene.shape.Cylinder")

-- import class PhongMaterial

phMa=bsf.import("javafx.scene.paint.PhongMaterial")

-- get access to the JavaFX colors

col=bsf.loadClass("javafx.scene.paint.Color")

-- create the root node

root=.bsf~new("javafx.scene.Group")

-- create a cylinder

cylinder1=cylinder~new

-- set the radius and the height of the cylinder

cylinder1~radius=50

cylinder1~height=200

-- set position of the cylinder

cylinder1~translateX=150

cylinder1~translateY=150

-- preparing the material

material1=phMa~new

material1~diffuseColor=col~BURLYWOOD

31

62

63

64

65

66

67

68

69

70

71

72

73

74

75

76

77

78

79

80

81

82

83

84

85

86

87

88

89

90

91

92

93

94

95

96

97

98

99

100

101

102

-- set the material to cylinder

cylinder1~setMaterial(material1)

cylinder2=cylinder~new

cylinder2~radius=50

cylinder2~height=200

cylinder2~translateX=400

cylinder2~translateY=150

material2=phMa~new

material2~specularColor=col~BURLYWOOD

cylinder2~setMaterial(material2)

cylinder3=cylinder~new

cylinder3~radius=50

cylinder3~height=200

cylinder3~translateX=650

cylinder3~translateY=150

material3=phMa~new

material3~specularPower=10

cylinder3~setMaterial(material3)

-- add the objects to the root node

root~getChildren~~add(cylinder1)~~add(cylinder2)~~add(cylinder3)

-- create a perspective camera

camera=.bsf~new("javafx.scene.PerspectiveCamera")

-- set position of the camera

camera~translateX=0

camera~translateY=0

camera~translateZ=0

-- create a scene

scene=.bsf~new("javafx.scene.Scene", root, 800, 600)

-- add camera to the scene

scene~setCamera(camera)

32

103

104

105

106

-- put the scene on the stage

primaryStage~setScene(scene)

-- display the content of the stage

primaryStage~show

Listing 13: DiffuseColor, SpecularColor & SpecularPower

At the beginning of the example, the classes "Cylinder" and "PhongMaterial" are imported into

ooRexx, as they are needed in the further course of the programme. The instance of the class

"Cylinder" is given the name "cylinder". The instance of the class "PhongMaterial" has the

name "phMa". In addition, the class "Color" from the package "javafx.scene.paint" must be

accessible in ooRexx.

Thus, the three required cylinders can now be created. This is done with the assignment

"=cylinder~new". Radius and height of the cylinders as well as their position in the window are

determined next.

In the next step, the different types of material are prepared. To do this, "material1", "material2"

and "material3" are created with the assignment "=phMa~new". In lines 61,73 & 84 (see

Listing13) the respective characteristics are added to the previously created materials.

"material1" gets "diffuseColor" as the material surface and "material2" gets "specularColor".

These two are assigned the colour "BURLYWOOD" with the instance "col" of the class

"Color". The property "specularPower" is applied to "material3".

Now the respective material types must be assigned to the cylinders with

"~setMaterial(material)" as shown in lines 64, 75 & 86.

The output of this example is shown in Figure 17.

33

Figure 17: Output from DiffuseColor, SpecularColor & SpecularPower

4.8.2 DiffuseMap

The second example in this section shows the application of a diffuse map to an object. With

this type of material, it is possible to add an image to an object. The supported file formats are

"BMP", "GIF", "JPEG" and "PNG" (Oracle, n.d.-d).

The images "wood.jpg", "normal.jpg" and "spec.jpg" used in the following examples and the

associated licence conditions can be found under the links in the references (Texturise, 2013-c;

2013-a; 2013-b; n.d.).

Due to the licence conditions, it must be ensured that these or similar images are saved on the

computer under the previously specified names before the programmes are executed (Texturise,

n.d.).

37

38

39

40

41

42

43

-- change directory to program location

parse source . . s

call directory filespec('loc', s)

-- setting title to the Stage

primaryStage~setTitle("Box_DiffuseMap")

34

44

45

46

47

48

49

50

51

52

53

54

55

56

57

58

59

60

61

62

63

64

65

66

67

68

69

70

71

72

73

74

75

76

77

78

79

80

81

82

83

84

-- create the root node

root=.bsf~new("javafx.scene.Group")

-- create a box

box=.bsf~new("javafx.scene.shape.Box")

-- set the width, height and depth of the box

box~width=150

box~height=150

box~depth=150

-- set position of the box

box~translateX=300

box~translateY=200

-- set rotation of the box

point=.bsf~new("javafx.geometry.Point3D", 1, 1, 1)

box~rotate=45

box~rotationAxis=point

-- load an image

img=.bsf~new("javafx.scene.image.Image", "file:wood.jpg")

-- preparing the material

material=.bsf~new("javafx.scene.paint.PhongMaterial")

material~diffuseMap=img

-- set the material to box

box~setMaterial(material)

-- add the object to the root node

root~getChildren~~add(box)

-- create a perspective camera

camera=.bsf~new("javafx.scene.PerspectiveCamera")

-- set position of the camera

camera~translateX=0

camera~translateY=0

camera~translateZ=0

-- create a scene

scene=.bsf~new("javafx.scene.Scene", root, 600, 400)

-- add camera to the scene

scene~setCamera(camera)

35

85

86

87

88

89

-- put the scene on the stage

primaryStage~setScene(scene)

-- display the content of the stage

primaryStage~show

Listing 14: DiffuseMap

First, the directory in which the image loaded later in this example is located must be changed

to the program location. This is done by "parse source" and "call directory filespec()".

The next lines correspond to many of the examples discussed earlier in the paper. These are

lines 42 - 59 from Listing 14, which are therefore not explained again here.

Line 62 again contains code not yet used in this work. Here the class "Image" from the package

"javafx.scene.image" is imported into ooRexx and at the same time an instance of the class

named "img" is created. Simultaneously, an image is loaded into the programme with "file:".

In this case it is a picture called "wood" (Texturise, 2013-c).

Then the class "PhongMaterial" from the package "javafx.scene.paint" is imported into ooRexx.

For this purpose, the instance "material" is also created. In line 66, this material type is now

added to "material" with "~diffuseMap". The image previously loaded into the programme is

next assigned to "material" with "~img".

In line 69, the "material" just created is added to the box created in the programme with

"~setMaterial(material)".

The remaining lines of code present in this example are again identical to the examples

discussed earlier in the paper.

The output of this example corresponds to that in Figure 18.

36

Figure 18: Output from DiffuseMap

4.8.3 BumpMap

The third example in this section deals with bump maps. With this type of material, details can

be added to 3D shapes without increasing the number of polygons. This is possible because the

grey levels of an image are used to create variations in the shading of the surface (Wikipedia,

2021-a). In JavaFX, however, bump maps are essentially normal maps that are stored as RGB

images (Oracle, n.d.-h). All the written code for this example is in the appendix.

61

62

63

64

65

66

67

68

69

-- load an image

img=.bsf~new("javafx.scene.image.Image", "file:normal.jpg")

-- preparing the material

material=.bsf~new("javafx.scene.paint.PhongMaterial")

material~bumpMap=img

-- set the material to box

box~setMaterial(material)

Listing 15: BumpMap

The code for the bump map is largely the same as the example explained earlier. The only two

differences are in the area of the image and the material type added to the "material". Instead

of the previous image called "wood", this time one called "normal" is loaded into the

37

programme (Texturise, 2013-a). Furthermore, the “diffuseMap” previously added to the

"material" is replaced by a "bumpMap". Figure 19 illustrates the output of the example.

Figure 19: Output from BumpMap

4.8.4 SpecularMap

This example shows the use of a specular map. The purpose of such a map is to define how

much an object shines in a certain place. It should be a black and white image added to the

object. The whiter a point is on the image added to the object, the more the 3D shape should

shine at this point (We Design Virtual, 2020). Here you will also find the complete programme

in the appendix.

61

62

63

64

65

66

67

68

69

-- load an image

img=.bsf~new("javafx.scene.image.Image", "file:spec.jpg")

-- preparing the material

material=.bsf~new("javafx.scene.paint.PhongMaterial")

material~specularMap=img

-- set the material to box

box~setMaterial(material)

Listing 16: SpecularMap

38

The code in this programme is basically structured like the one in the previous example. This

time the last image "normal" is replaced by the image "spec" (Texturise, 2013-b). The second

point is to use a "specularMap" instead of the "bumpMap" added to the "material" in the last

example. Figure 20 shows the result of the programmed example.

Figure 20: Output from SpecularMap

4.8.5 SelfIlluminationMap

In the following example, we will look at what a self-illumination map does in the programme.

A self-illumination map is a type of material that illuminates itself. This means that this area is

not affected by other light sources. With such a map, white areas of an added image are

completely self-illuminating, whereas the black areas do not illuminate at all (Autodesk, n.d.).

The complete example can be found in the appendix.

61

62

63

64

65

66

67

68

69

-- load an image

img=.bsf~new("javafx.scene.image.Image", "file:wood.jpg")

-- preparing the material

material=.bsf~new("javafx.scene.paint.PhongMaterial")

material~selfIlluminationMap=img

-- set the material to box

box~setMaterial(material)

Listing 17: SelfIlluminationMap

39

This programme also corresponds to the examples described above. However, the image

"wood" is used again in the code and thus loaded into the programme (Texturise, 2013-c). In

addition, a "selfIllumiationMap", which is added to the "material", replaces the "specularMap"

used previously in the code. The output of the programme can be seen in Figure 21.

Figure 21: Output from SelfIlluminationMap

4.8.6 DiffuseMap, BumpMap, SpecularMap & SpecularPower

The last example in this section aims to show what output can be generated by a combination

of the different material types. For this purpose, the diffuseMap, the bumpMap, the

specularMap and specularPower are used. What the result looks like when these are used

individually was made clear in the previous examples. Since only a short part of the programme

needs to be shown here, the complete code can be found in the appendix.

61

62

63

64

65

66

67

68

69

70

-- load images

img=.bsf~new("javafx.scene.image.Image", "file:wood.jpg")

img2=.bsf~new("javafx.scene.image.Image", "file:normal.jpg")

img3=.bsf~new("javafx.scene.image.Image", "file:spec.jpg")

-- preparing the material

material=.bsf~new("javafx.scene.paint.PhongMaterial")

material~diffuseMap=img

material~bumpMap=img2

material~specularMap=img3

40

71

72

73

74

material~specularPower=15

-- set the material to box

box~setMaterial(material)

Listing 18: DiffuseMap, BumpMap, SpecularMap & SpecularPower

After the code from the example in chapter "4.8.2 DiffuseMap" has been programmed up to

line 59, the code in Listing 18 can be continued. The class "Image" from the package

"javafx.scene.image" is imported with ".bsf~new" and at the same time the instance "img" is

created. The image named "wood" is loaded into this instance (Texturise, 2013-c). This time,

however, two more images are loaded into the programme, namely "normal" and "spec"

(Texturise, 2013-a; 2013-b). Next, the class "PhongMaterial" is imported into ooRexx and the

"material" is created at the same time. Now first the "diffuseMap" is added to the "material"

and then "img", i.e. the image "wood" is assigned to it. This gives the box a certain wooden

surface. After the "bumpMap" is added to the "material" and the image "img2" is assigned, a

certain structure appears on the box. If finally the "specularMap" is added to the "material" and

the image "img3" is assigned, and in the last step "specularPower" is set to the value 15 in this

case, the result shown in Figure 22 is achieved.

Figure 22: Output from DiffuseMap, BumpMap, SpecularMap & SpecularPower

41

4.9 LightBase

In the next examples, the class "LightBase" is introduced. This base class consists of the two

subclasses "AmbientLight" and "PointLight". It defines properties for objects that represent a

form of light source (Oracle, n.d.-e).

4.9.1 AmbientLight

In the first example of the last section, the class "AmbientLight" is explained. In this class, an

object is defined as an ambient light source. This means that a light source is created that

appears to come from all directions.

37

38

39

40

41

42

43

44

45

46

47

48

49

50

51

52

53

54

55

56

57

58

59

60

61

62

63

64

65

-- change directory to program location

parse source . . s

call directory filespec('loc', s)

-- setting title to the Stage

primaryStage~setTitle("Box_AmbientLight")

-- get access to the JavaFX colors

col=bsf.loadClass("javafx.scene.paint.Color")

-- create the root node

root=.bsf~new("javafx.scene.Group")

-- create a box

box=.bsf~new("javafx.scene.shape.Box")

-- set the width, height and depth of the box

box~width=200

box~height=200

box~depth=200

-- set position of the box

box~translateX=300

box~translateY=200

-- set rotation of the box

point=.bsf~new("javafx.geometry.Point3D", 1, 1, 1)

box~rotate=45

box~rotationAxis=point

-- load an image

img=.bsf~new("javafx.scene.image.Image", "file:wood.jpg")

42

66

67

68

69

70

71

72

73

74

75

76

77

78

79

80

81

82

83

84

85

86

87

88

89

90

91

92

93

94

95

96

-- preparing the material

material=.bsf~new("javafx.scene.paint.PhongMaterial")

material~diffuseMap=img

-- set the material to box

box~setMaterial(material)

-- create an ambient light

light=.bsf~new("javafx.scene.AmbientLight")

light~color=col~CORAL

-- add objects to the root node

root~getChildren~~add(box)~~add(light)

-- create a perspective camera

camera=.bsf~new("javafx.scene.PerspectiveCamera")

-- set position of the camera

camera~translateX=0

camera~translateY=0

camera~translateZ=0

-- create a scene

scene=.bsf~new("javafx.scene.Scene", root, 600, 400)

-- add camera to the scene

scene~setCamera(camera)

-- put the scene on the stage

primaryStage~setScene(scene)

-- display the content of the stage

primaryStage~show

Listing 19: AmbientLight

At the beginning of the example, the directory is changed by "parse source" and "call directory

filespec()".

Then the application is given the name "Box_AmbientLight" by "~setTitle" and the class

"Color" from the package "javafx.scene.paint" is imported into ooRexx. At the same time, the

instance named "col" of this class is created. Then a group is created by ".bsf~new" and this is

set as the "root" node.

43

Next, a box is created by the class "Box" from the package "javafx.scene.shape" and given the

name "box". Afterwards, the size of the box is set to 200 by "~width", "~height" and "~depth".

Afterwards, the box created in the upper left corner is moved to the centre of the created window

by "~translateX" and "~translateY".

In addition, a rotation of the box is added. For this purpose, a geometric point called "point" is

created with the class "Point3D" from the package "javafx.geometry". For this point, the values

of the coordinates of X, Y and Z are each set to 1.

Then the class "Image" from the package "javafx,scene.image" loads the image "wood" into the

programme (Texturise, 2013-c). This image has the name "img" in the code.

Now the class "PhongMaterial" from the package "javafx.scene.paint" creates a new material

called "material". In the next step, the material type "diffuseMap" is added to this. The image

"img" is then assigned to it. Now the material of the box must be added by

"~setMaterial(material)".

Subsequently, the class "AmbientLight" from the package "javafx.scene" creates an ambient

light named "light". This is assigned the colour "CORAL" by "col".

Now the box and the light must be added to the "root" node by "add()".

Besides, a camera with the name "camera" is created by the class "PerspectiveCamera" from

the package "javafx.scene". Its position is set to the centre of the window by "translateX",

"translateY" and "translateZ" with the respective value 0.

Furthermore, the class "Scene" from the package "javafx.scene" creates a scene with the values

600 and 400 for its width and height. In addition, the previously created camera is added to the

scene with "~setCamera(camera).

This scene is added to the stage with "~setScene(scene)". Finally, the output of the programmed

example is started with "~show".

The result of this programme can be seen in Figure 23.

44

Figure 23: Output from AmbientLight

4.9.2 PointLight

In this example, the class "PointLight" is briefly discussed. This is a light source object that has

a fixed point in a room. It radiates light evenly in all directions. Since in this example only the

class "PointLight" is used instead of the class "AmbientLight" and nothing else has changed in

the code, only this short excerpt of the code is shown here. The entire programmed code of the

example is available in the appendix.

74

75

76

77

78

79

80

-- create a point light

light=.bsf~new("javafx.scene.PointLight")

light~color=col~WHITE

-- set position of the light

light~translateX=500

light~translateY=100

light~translateZ=-100

Listing 20: PointLight

Up to line 72, the code is the same as in the previous example, so it can be taken over from

there.

In this programme, the class "PointLight" from the package "javafx.scene" creates a point light

called "light". Then the colour "WHITE" is assigned to it by "col". Then the position of the

45

light is defined in the room with the values 500, 100 and -100 for "translateX", "translateY"

and "translateZ".

The rest of the code can now be taken over again from the previous example. The output of this

programme is shown in Figure 24.

Figure 24: Output from PointLight

4.9.3 AmbientLight & DrawMode

The last example of this thesis shows how the hardly visible edges of an object (see Figure 23

in Chapter 4.9.1) can be displayed more clearly with the help of the class "drawMode", which

has already been explained above. The complete code can again be found in the appendix.

44

45

46

47

48

49

50

51

52

53

54

55

-- import class Box

box=bsf.import("javafx.scene.shape.Box")

-- get access to drawMode

drMo=bsf.loadClass("javafx.scene.shape.DrawMode")

-- get access to the JavaFX colors

col=bsf.loadClass("javafx.scene.paint.Color")

-- create the root node

root=.bsf~new("javafx.scene.Group")

-- create a box

box1=box~new

46

56

57

58

59

60

61

62

63

64

65

66

67

68

69

70

71

72

73

74

75

76

77

78

79

80

81

82

83

84

85

86

87

88

89

90

91

92

93

94

95

-- set the width, height and depth of the box

box1~width=200

box1~height=200

box1~depth=200

-- set position of the box

box1~translateX=300

box1~translateY=200

-- set rotation of the box

point=.bsf~new("javafx.geometry.Point3D", 1, 1, 1)

box1~rotate=45

box1~rotationAxis=point

-- set the value of drawMode

box1~drawMode=drMo~fill

-- load an image

img=.bsf~new("javafx.scene.image.Image", "file:wood.jpg")

-- preparing the material

material=.bsf~new("javafx.scene.paint.PhongMaterial")

material~diffuseMap=img

-- set the material to box

box1~setMaterial(material)

-- create an ambient light

light=.bsf~new("javafx.scene.AmbientLight")

light~color=col~CORAL

box2=box~new

box2~width=200

box2~height=200

box2~depth=200

box2~translateX=300

box2~translateY=200

box2~rotate=45

box2~rotationAxis=point

box2~drawMode=drMo~line

-- add objects to the root node

root~getChildren~~add(box1)~~add(light)~~add(box2)

Listing 21: AmbientLight & DrawMode

47

At the beginning, the class "Box" is imported, access to "drawMode" is enabled and the class

"Color" is loaded. Then a group is set as the root node.

Next, a box is created, its size and position are set and a rotation is added. Furthermore, this

time the enum constant "FILL" is assigned to the box in line 68.

The next lines correspond to the example from chapter "4.9.1 AmbientLight".

In order to show the hardly visible edges of this box more clearly, a second box of the same

size and in the same position as the first one is created. However, this box is assigned the enum

constant "LINE". This makes the edges of the created box visible (see Figure 25).

The diagonal lines that can be seen in the output are the triangles that are drawn during the 3D

rendering in JavaFX.

Figure 25: Output from AmbientLight & DrawMode

48

5 Conclusion

This bachelor thesis illustrated the programming of 3D objects in ooRexx exploiting JavaFX

via BSF4ooRexx. The required software components were explained in more detail, installation

instructions for them were given and then programmed nutshell examples were presented. With

ooRexx and BSF4ooRexx and the bridge they build to Java, it is easier to use Java´s libraries

and thus to program examples like the ones presented in the paper. In addition, it was shown

how 3D shapes can be created and their properties, such as the material surface, can be defined

and changed. There is the potential to create more complex programs in the future using

JavaFX, ooRexx and BSF4ooRexx. For example, it would be possible to use MeshView, which

can be used to create your own 3D shapes. Furthermore, adding animations to created objects

would be conceivable. Since the user-friendliness of ooRexx is a clear advantage over

programming with Java, the author believes it will certainly be used in the future.

49

References

Apache Software Foundation. (2004). Apache License, Version 2.0. Retrieved March 13, 2023,

from https://www.apache.org/licenses/LICENSE-2.0

Autodesk. (n.d.). Self-Illumination Map. Retrieved April 16, 2023, from

https://help.autodesk.com/view/3DSMAX/2024/ENU/?guid=GUID-0584ED4B-FE91-

4B0B-A09C-22557D5D51DD

Flatscher, R. G. (2006). Resurrecting Rexx, Introducing Object Rexx.

Flatscher, R. G. (2012). Automatisierung mit ooRexx und BSF4ooRexx. Proceedings der

GMDS 2012 / Informatik 2012, 1-12.

Flatscher, R. G. (2013). Introduction to Rexx and ooRexx: From Rexx to Open Object Rexx

(ooRexx) (1. ed.). Facultas Verlags- und Buchhandels AG.

Flatscher, R. G. (2017). JavaFX for ooRexx - Creating Powerful Portable GUIs for ooRexx.

The Proceedings of the Rexx Symposium for Developers and Users, 1-43.

Flatscher, R. G. (2023). Creating Portable GUIs with JavaFX. Retrieved March 13, 2023, from

https://wi.wu-

wien.ac.at/rgf/wu/lehre/autojava/material/foils/270_AutoJava_JavaFX_V04.pdf

Oracle. (n.d.-a). Color (JavaFX 8). Retrieved March 14, 2023, from

https://docs.oracle.com/javase/8/javafx/api/javafx/scene/paint/Color.html

Oracle. (n.d.-b). CullFace (JavaFX 8). Retrieved March 24, 2023, from

https://docs.oracle.com/javase/8/javafx/api/javafx/scene/shape/CullFace.html

Oracle. (n.d.-c). DrawMode (JavaFX 8). Retrieved March 28, 2023, from

https://docs.oracle.com/javase/8/javafx/api/javafx/scene/shape/DrawMode.html

Oracle. (n.d.-d). Image (JavaFX 8). Retrieved April 12, 2023, from

https://docs.oracle.com/javase/8/javafx/api/javafx/scene/image/Image.html

Oracle. (n.d.-e). LightBase (JavaFX 8). Retrieved April 17, 2023, from

https://docs.oracle.com/javase/8/javafx/api/javafx/scene/LightBase.html

Oracle. (n.d.-f). Node (JavaFX 8). Retrieved March 20, 2023, from

https://docs.oracle.com/javase/8/javafx/api/javafx/scene/Node.html

Oracle. (n.d.-g). PerspectiveCamera. Retrieved March 15, 2023, from

https://docs.oracle.com/javase/8/javafx/api/javafx/scene/PerspectiveCamera.html

Oracle. (n.d.-h). PhongMaterial (JavaFX 8). Retrieved April 4, 2023, from

https://docs.oracle.com/javase/8/javafx/api/javafx/scene/paint/PhongMaterial.html

50

Oracle. (n.d.-i). Point3D (JavaFX 8). Retrieved March 22, 2023, from

https://docs.oracle.com/javase/8/javafx/api/javafx/geometry/Point3D.html

Oracle. (n.d.-j). Shape3D (JavaFX 8). Retrieved March 13, 2023, from

https://docs.oracle.com/javase/8/javafx/api/javafx/scene/shape/Shape3D.html

Oracle. (n.d.-k). Transform (JavaFX 8). Retrieved March 20, 2023, from

https://docs.oracle.com/javase/8/javafx/api/javafx/scene/transform/Transform.html

Rexx Language Association. (n.d.). About Open Object Rexx. Retrieved April 21, 2023, from

https://www.oorexx.org/about.html

Texturise. (2013-a). Wood Fine Tiled: Normal. Retrieved July 2, 2023, from

http://2.bp.blogspot.com/-yId-

zytBTeo/Ug6YqFgn8BI/AAAAAAAALA8/g_xWUApJPEw/s1600/wood-fine-

NRM.jpg

Texturise. (2013-b). Wood Fine Tiled: Spec. Retrieved July 2, 2023, from

http://2.bp.blogspot.com/-

zBzWwdCFGuI/Ug6Ypq2xKII/AAAAAAAALA0/6wotxQ8cjQw/s1600/wood-fine-

SPEC.jpg

Texturise. (2013-c). Wood Fine Tiled: Wood. Retrieved July 2, 2023, from

http://2.bp.blogspot.com/-

GfuzYF0lWNU/Ug6YrzFhtMI/AAAAAAAALBE/jtN_nPoMqEk/s1600/wood+fine.j

pg

Texturise. (n.d.). Licence. Retrieved July 2, 2023, from

http://www.texturise.club/p/licence_5.html

We Design Virtual. (2020). What Does a Specular Map Do? Retrieved April 16, 2023, from

http://wedesignvirtual.com/what-does-a-specular-map-do/

Wikipedia. (2021-a). Bumpmapping. Retrieved April 16, 2023, from

https://de.wikipedia.org/wiki/Bumpmapping

Wikipedia. (2021-b). Culling. Retrieved March 26, 2023, from

https://de.wikipedia.org/wiki/Culling

Wikipedia. (2022). JavaFX. Retrieved February 17, 2023, from

https://de.wikipedia.org/wiki/JavaFX

Wikipedia. (2023-a). IntelliJ IDEA. Retrieved April 28, 2023, from

https://en.wikipedia.org/wiki/IntelliJ_IDEA

Wikipedia. (2023-b). Java (programming language). Retrieved February 14, 2023, from

https://en.wikipedia.org/wiki/Java_(programming_language)

51

Appendix

For the examples only partially presented in this paper, the full code is provided in the appendix.

A 1. Perspective Camera – Cylinder

Listing 22 shows the complete code for displaying the Cylinder with Perspective Camera from

chapter 4.4.2.

37

38

39

40

41

42

43

44

45

46

47

48

49

50

51

52

53

54

55

56

57

58

59

60

61

62

63

64

65

66

-- setting title to the Stage

primaryStage~setTitle("Cylinder_PerspectiveCamera")

-- create the root node

root=.bsf~new("javafx.scene.Group")

-- create a cylinder

cylinder=.bsf~new("javafx.scene.shape.Cylinder")

-- set the radius and the height of the cylinder

cylinder~radius=50

cylinder~height=200

-- set position of the cylinder

cylinder~translateX=150

cylinder~translateY=150

-- add the object to the root node

root~getChildren~~add(cylinder)

-- create a perspective camera

camera=.bsf~new("javafx.scene.PerspectiveCamera")

-- set position of the camera

camera~translateX=0

camera~translateY=0

camera~translateZ=0

-- create a scene

scene=.bsf~new("javafx.scene.Scene", root, 800, 600)

-- add camera to the scene

scene~setCamera(camera)

52

67

68

69

70

-- put the scene on the stage

primaryStage~setScene(scene)

-- display the content of the stage

primaryStage~show

Listing 22: Perspective Camera – Cylinder

A 2. Perspective Camera – Sphere

Listing 23 shows the complete code for displaying the Sphere with Perspective Camera from

chapter 4.4.2.

37

38

39

40

41

42

43

44

45

46

47

48

49

50

51

52

53

54

55

56

57

58

59

60

61

62

63

64

65

-- setting title to the Stage

primaryStage~setTitle("Sphere_PerspectiveCamera")

-- create the root node

root=.bsf~new("javafx.scene.Group")

-- create a sphere

sphere=.bsf~new("javafx.scene.shape.Sphere")

-- set the radius of the sphere

sphere~radius=75

-- set position of the sphere

sphere~translateX=150

sphere~translateY=150

-- add the object to the root node

root~getChildren~~add(sphere)

-- create a perspective camera

camera=.bsf~new("javafx.scene.PerspectiveCamera")

-- set position of the camera

camera~translateX=100

camera~translateY=100

camera~translateZ=-100

-- create a scene

scene=.bsf~new("javafx.scene.Scene", root, 800, 600)

-- add camera to the scene

scene~setCamera(camera)

53

66

67

68

69

-- put the scene on the stage

primaryStage~setScene(scene)

-- display the content of the stage

primaryStage~show

Listing 23: Perspective Camera - Sphere

A 3. Transformations – Scale

Listing 24 shows the complete code for adding a scale transformation from chapter 4.5.1.

37

38

39

40

41

42

43

44

45

46

47

48

49

50

51

52

53

54

55

56

57

58

59

60

61

62

63

64

65

66

-- setting title to the Stage

primaryStage~setTitle("Box_Scale")

-- create the root node

root=.bsf~new("javafx.scene.Group")

-- create a box

box=.bsf~new("javafx.scene.shape.Box")

-- set the width, height and depth of the box

box~width=150

box~height=150

box~depth=150

-- set position of the box

box~translateX=150

box~translateY=150

-- add a scale transformation to the box

box~scaleX=1.75

box~scaleY=0.75

box~scaleZ=0.5

-- add the object to the root node

root~getChildren~~add(box)

-- create a perspective camera

camera=.bsf~new("javafx.scene.PerspectiveCamera")

-- set position of the camera

camera~translateX=0

camera~translateY=0

camera~translateZ=0

54

67

68

69

70

71

72

73

74

75

-- create a scene

scene=.bsf~new("javafx.scene.Scene", root, 800, 600)

-- add camera to the scene

scene~setCamera(camera)

-- put the scene on the stage

primaryStage~setScene(scene)

-- display the content of the stage

primaryStage~show

Listing 24: Transformation - Scale

A 4. Transformations – Rotate

Listing 25 shows the complete for adding a rotation from chapter 4.5.2.

37

38

39

40

41

42

43

44

45

46

47

48

49

50

51

52

53

54

55

56

57

58

59

60

61

-- setting title to the Stage

primaryStage~setTitle("Box_Rotate")

-- create the root node

root=.bsf~new("javafx.scene.Group")

-- create a box

box=.bsf~new("javafx.scene.shape.Box")

-- set the width, height and depth of the box

box~width=150

box~height=150

box~depth=150

-- set position of the box

box~translateX=300

box~translateY=200

-- set rotation of the box

point=.bsf~new("javafx.geometry.Point3D", 1, 1, 1)

box~rotate=45

box~rotationAxis=point

-- add the object to the root node

root~getChildren~~add(box)

-- create a perspective camera

camera=.bsf~new("javafx.scene.PerspectiveCamera")

55

62

63

64

65

66

67

68

69

70

71

72

73

74

75

-- set position of the camera

camera~translateX=0

camera~translateY=0

camera~translateZ=0

-- create a scene

scene=.bsf~new("javafx.scene.Scene", root, 600, 400)

-- add camera to the scene

scene~setCamera(camera)

-- put the scene on the stage

primaryStage~setScene(scene)

-- display the content of the stage

primaryStage~show

Listing 25: Transformation - Rotate

A 5. PhongMaterial – BumpMap

Listing 26 shows the complete code for creating a box with added bump map from chapter

4.8.3.

37

38

39

40

41

42

43

44

45

46

47

48

49

50

51

52

53

54

55

-- change directory to program location

parse source . . s

call directory filespec('loc', s)

-- setting title to the Stage

primaryStage~setTitle("Box_BumpMap")

-- create the root node

root=.bsf~new("javafx.scene.Group")

-- create a box

box=.bsf~new("javafx.scene.shape.Box")

-- set the width, height and depth of the box

box~width=150

box~height=150

box~depth=150

-- set position of the box

box~translateX=300

box~translateY=200

56

56

57

58

59

60

61

62

63

64

65

66

67

68

69

70

71

72

73

74

75

76

77

78

79

80

81

82

83

84

85

86

87

88

89

-- set rotation of the box

point=.bsf~new("javafx.geometry.Point3D", 1, 1, 1)

box~rotate=45

box~rotationAxis=point

-- load an image

img=.bsf~new("javafx.scene.image.Image", "file:normal.jpg")

-- preparing the material

material=.bsf~new("javafx.scene.paint.PhongMaterial")

material~bumpMap=img

-- set the material to box

box~setMaterial(material)

-- add the object to the root node

root~getChildren~~add(box)

-- create a perspective camera

camera=.bsf~new("javafx.scene.PerspectiveCamera")

-- set position of the camera

camera~translateX=0

camera~translateY=0

camera~translateZ=0

-- create a scene

scene=.bsf~new("javafx.scene.Scene", root, 600, 400)

-- add camera to the scene

scene~setCamera(camera)

-- put the scene on the stage

primaryStage~setScene(scene)

-- display the content of the stage

primaryStage~show

Listing 26: PhongMaterial - BumpMap

57

A 6. PhongMaterial – SpecularMap

Listing 27 shows the complete code for creating a box with added specular map from chapter

4.8.4.

37

38

39

40

41

42

43

44

45

46

47

48

49

50

51

52

53

54

55

56

57

58

59

60

61

62

63

64

65

66

67

68

69

70

71

72

73

-- change directory to program location

parse source . . s

call directory filespec('loc', s)

-- setting title to the Stage

primaryStage~setTitle("Box_SpecularMap")

-- create the root node

root=.bsf~new("javafx.scene.Group")

-- create a box

box=.bsf~new("javafx.scene.shape.Box")

-- set the width, height and depth of the box

box~width=150

box~height=150

box~depth=150

-- set position of the box

box~translateX=300

box~translateY=200

-- set rotation of the box

point=.bsf~new("javafx.geometry.Point3D", 1, 1, 1)

box~rotate=45

box~rotationAxis=point

-- load an image

img=.bsf~new("javafx.scene.image.Image", "file:spec.jpg")

-- preparing the material

material=.bsf~new("javafx.scene.paint.PhongMaterial")

material~specularMap=img

-- set the material to box

box~setMaterial(material)

-- add the object to the root node

root~getChildren~~add(box)

58

74

75

76

77

78

79

80

81

82

83

84

85

86

87

88

89

-- create a perspective camera

camera=.bsf~new("javafx.scene.PerspectiveCamera")

-- set position of the camera

camera~translateX=0

camera~translateY=0

camera~translateZ=0

-- create a scene

scene=.bsf~new("javafx.scene.Scene", root, 600, 400)

-- add camera to the scene

scene~setCamera(camera)

-- put the scene on the stage

primaryStage~setScene(scene)

-- display the content of the stage

primaryStage~show

Listing 27: PhongMaterial - SpecularMap

A 7. PhongMaterial – SelfIlluminationMap

Listing 28 shows the complete code for creating a box with added self-illumination map from

chapter 4.8.5.

37

38

39

40

41

42

43

44

45

46

47

48

49

50

51

52

53

-- change directory to program location

parse source . . s

call directory filespec('loc', s)

-- setting title to the Stage

primaryStage~setTitle("Box_SelfIlluminationMap")

-- create the root node

root=.bsf~new("javafx.scene.Group")

-- create a box

box=.bsf~new("javafx.scene.shape.Box")

-- set the width, height and depth of the box

box~width=150

box~height=150

box~depth=150

-- set position of the box

59

54

55

56

57

58

59

60

61

62

63

64

65

66

67

68

69

70

71

72

73

74

75

76

77

78

79

80

81

82

83

84

85

86

87

88

89

box~translateX=300

box~translateY=200

-- set rotation of the box

point=.bsf~new("javafx.geometry.Point3D", 1, 1, 1)

box~rotate=45

box~rotationAxis=point

-- load an image

img=.bsf~new("javafx.scene.image.Image", "file:wood.jpg")

-- preparing the material

material=.bsf~new("javafx.scene.paint.PhongMaterial")

material~selfIlluminationMap=img

-- set the material to box

box~setMaterial(material)

-- add the object to the root node

root~getChildren~~add(box)

-- create a perspective camera

camera=.bsf~new("javafx.scene.PerspectiveCamera")

-- set position of the camera

camera~translateX=0

camera~translateY=0

camera~translateZ=0

-- create a scene

scene=.bsf~new("javafx.scene.Scene", root, 600, 400)

-- add camera to the scene

scene~setCamera(camera)

-- put the scene on the stage

primaryStage~setScene(scene)

-- display the content of the stage

primaryStage~show

Listing 28: PhongMaterial - SelfIlluminationMap

60

A 8. PhongMaterial – Combination

Listing 29 shows the complete code for the combination of diffuseMap, bumpMap,

specularMap and specularPower from chapter 4.8.6.

37

38

39

40

41

42

43

44

45

46

47

48

49

50

51

52

53

54

55

56

57

58

59

60

61

62

63

64

65

66

67

68

69

70

71

72

73

-- change directory to program location

parse source . . s

call directory filespec('loc', s)

-- setting title to the Stage

primaryStage~setTitle("Box_PhongMaterial")

-- create the root node

root=.bsf~new("javafx.scene.Group")

-- create a box

box=.bsf~new("javafx.scene.shape.Box")

-- set the width, height and depth of the box

box~width=200

box~height=200

box~depth=200

-- set position of the box

box~translateX=300

box~translateY=200

-- set rotation of the box

point=.bsf~new("javafx.geometry.Point3D", 1, 1, 1)

box~rotate=90

box~rotationAxis=point

-- load images

img=.bsf~new("javafx.scene.image.Image", "file:wood.jpg")

img2=.bsf~new("javafx.scene.image.Image", "file:normal.jpg")

img3=.bsf~new("javafx.scene.image.Image", "file:spec.jpg")

-- preparing the material

material=.bsf~new("javafx.scene.paint.PhongMaterial")

material~diffuseMap=img

material~bumpMap=img2

material~specularMap=img3

material~specularPower=15

-- set the material to box

61

74

75

76

77

78

79

80

81

82

83

84

85

86

87

88

89

90

91

92

93

94

box~setMaterial(material)

-- add the object to the root node

root~getChildren~~add(box)

-- create a perspective camera

camera=.bsf~new("javafx.scene.PerspectiveCamera")

-- set position of the camera

camera~translateX=0

camera~translateY=0

camera~translateZ=0

-- create a scene

scene=.bsf~new("javafx.scene.Scene", root, 600, 400)

-- add camera to the scene

scene~setCamera(camera)

-- put the scene on the stage

primaryStage~setScene(scene)

-- display the content of the stage

primaryStage~show

Listing 29: PhongMaterial – Combination

A 9. LightBase – PointLight

Listing 30 shows the complete code for creating a point light from chapter 4.9.2.

37

38

39

40

41

42

43

44

45

46

47

48

49

-- change directory to program location

parse source . . s

call directory filespec('loc', s)

-- setting title to the Stage

primaryStage~setTitle("Box_PointLight")

-- get access to the JavaFX colors

col=bsf.loadClass("javafx.scene.paint.Color")

-- create the root node

root=.bsf~new("javafx.scene.Group")

62

50

51

52

53

54

55

56

57

58

59

60

61

62

63

64

65

66

67

68

69

70

71

72

73

74

75

76

77

78

79

80

81

82

83

84

85

86

87

88

89

90

-- create a box

box=.bsf~new("javafx.scene.shape.Box")

-- set the width, height and depth of the box

box~width=200

box~height=200

box~depth=200

-- set position of the box

box~translateX=300

box~translateY=200

-- set rotation of the box

point=.bsf~new("javafx.geometry.Point3D", 1, 1, 1)

box~rotate=45

box~rotationAxis=point

-- load an image

img=.bsf~new("javafx.scene.image.Image", "file:wood.jpg")

-- preparing the material

material=.bsf~new("javafx.scene.paint.PhongMaterial")

material~diffuseMap=img

-- set the material to box

box~setMaterial(material)

-- create a point light

light=.bsf~new("javafx.scene.PointLight")

light~color=col~WHITE

-- set position of the light

light~translateX=500

light~translateY=100

light~translateZ=-100

-- add objects to the root node

root~getChildren~~add(box)~~add(light)

-- create a perspective camera

camera=.bsf~new("javafx.scene.PerspectiveCamera")

-- set position of the camera

camera~translateX=0

camera~translateY=0

camera~translateZ=0

63

91

92

93

94

95

96

97

98

99

100

-- create a scene

scene=.bsf~new("javafx.scene.Scene", root, 600, 400)

-- add camera to the scene

scene~setCamera(camera)

-- put the scene on the stage

primaryStage~setScene(scene)

-- display the content of the stage

primaryStage~show

Listing 30: LightBase - PointLight

A 10. LightBase – AmbientLight & DrawMode

Listing 31 shows the complete code for the combination of AmbientLight and drawMode from

chapter 4.9.3.

37

38

39

40

41

42

43

44

45

46

47

48

49

50

51

52

53

54

55

56

57

58

59

-- change directory to program location

parse source . . s

call directory filespec('loc', s)

-- setting title to the Stage

primaryStage~setTitle("Box_AmbientLight_DrawMode")

-- import class Box

box=bsf.import("javafx.scene.shape.Box")

-- get access to drawMode

drMo=bsf.loadClass("javafx.scene.shape.DrawMode")

-- get access to the JavaFX colors

col=bsf.loadClass("javafx.scene.paint.Color")

-- create the root node

root=.bsf~new("javafx.scene.Group")

-- create a box

box1=box~new

-- set the width, height and depth of the box

box1~width=200

box1~height=200

box1~depth=200

64

60

61

62

63

64

65

66

67

68

69

70

71

72

73

74

75

76

77

78

79

80

81

82

83

84

85

86

87

88

89

90

91

92

93

94

95

96

97

98

99

100

-- set position of the box

box1~translateX=300

box1~translateY=200

-- set rotation of the box

point=.bsf~new("javafx.geometry.Point3D", 1, 1, 1)

box1~rotate=45

box1~rotationAxis=point

-- set the value of drawMode

box1~drawMode=drMo~fill

-- load an image

img=.bsf~new("javafx.scene.image.Image", "file:wood.jpg")

-- preparing the material

material=.bsf~new("javafx.scene.paint.PhongMaterial")

material~diffuseMap=img

-- set the material to box

box1~setMaterial(material)

-- create an ambient light

light=.bsf~new("javafx.scene.AmbientLight")

light~color=col~CORAL

box2=box~new

box2~width=200

box2~height=200

box2~depth=200

box2~translateX=300

box2~translateY=200

box2~rotate=45

box2~rotationAxis=point

box2~drawMode=drMo~line

-- add objects to the root node

root~getChildren~~add(box1)~~add(light)~~add(box2)

-- create a perspective camera

camera=.bsf~new("javafx.scene.PerspectiveCamera")

-- set position of the camera

camera~translateX=0

65

101

102

103

104

105

106

107

108

109

110

111

112

camera~translateY=0

camera~translateZ=0

-- create a scene

scene=.bsf~new("javafx.scene.Scene", root, 600, 400)

-- add camera to the scene

scene~setCamera(camera)

-- put the scene on the stage

primaryStage~setScene(scene)

-- display the content of the stage

primaryStage~show

Listing 31: LightBase - AmbientLight & DrawMode

