

Transforming JDOR into JDORFX: Providing

3D Graphics to ooRexx

Philipp Schaller
01125001

Department of Information Systems & Society

 Reviewer: ao.Univ.Prof.Mag.Dr.rer.soc.oec Rony G. Flatscher

26th of May 2024

ii

Table of Contents

List of Abbreviations .. iv

List of Figures .. v

List of Tables .. v

List of Listings ... vi

Abstract .. 7

1. Introduction .. 8

2. Background ... 8

2.1. Open Object Rexx .. 8

2.2. Java ... 9

2.3. Bean Scripting Framework for ooRexx .. 9

2.4. JDOR .. 9

2.5. JavaFX .. 10

3. Requirements .. 11

3.1. Java ... 11

3.2. Open Object Rexx 5.0.0 ... 13

3.3. BSF4ooRexx850 .. 15

4. Development .. 17

4.1. JavaFXDrawingHandler ... 17

4.2. Packages in Java ... 26

4.3. JDORFX ... 27

4.4. Environment for Nutshell Examples .. 28

5. JDORFX Commands and Examples .. 29

5.1. Comparing JDOR and JDORFX - Drawing ... 29

5.2. Comparing JDOR and JDORFX - 2D Shapes .. 31

5.3. Comparing JDOR and JDORFX - 2D Transformations... 33

5.4. Command List .. 35

5.5. Drawing 3D Shapes .. 40

5.6. Parallel and Perspective Camera .. 42

5.7. Light ... 45

5.8. Transform 3D Shapes ... 49

iii

5.9. Material .. 53

5.10. Map .. 57

6. Limitations .. 63

7. Conclusion ... 64

iv

List of Abbreviations

GUI

Graphical User Interface.

awt

Abstract Window Toolkit

v

List of Figures

Fig. 1. Download Java [14] .. 12
Fig. 2. Java Installation .. 12
Fig. 3. Terminal Command "java -version" ... 13
Fig. 4. Unblock ooRexx ... 13
Fig. 5. ooRexx Installation Setup ... 14
Fig. 6. Uninstall Older ooRexx Version or Upgrade .. 14
Fig. 7. ooRexx Installation Setup ... 14
Fig. 8. Terminal Command "rexx -version" ... 15
Fig. 9. Unblock BSF4ooRexx850 .. 15
Fig. 10. BSF4ooRexx850 Installation .. 16
Fig. 11. ooRexxTry.rxj ... 17
Fig. 12. Java Package ... 27
Fig. 13. JAR file ... 27
Fig. 14. JDOR vs JDORFX - drawing2d.rxj .. 31
Fig. 15. JDOR vs JDORFX - shapes2d.rxj .. 33
Fig. 16. JDOR vs JDORFX - transform2d.rxj.. 35
Fig. 17. Output jdorfx_shapes3d.rxj .. 42
Fig 18. Parallel Camera vs Perspective Camera 1 jdorfx_camera.rxj 45
Fig. 19. Perspective Camera vs Parallel Camera 2 jdorfx_camera.rxj 45
Fig. 20.AmbientLight vs PointLight jdorfx_light.rxj ... 48
Fig. 21. PointLight jdorfx_light.rxj .. 49
Fig. 22. Output jdorfx_transform3d.rxj .. 53
Fig. 23. Output jdorfx_material.rxj .. 57
Fig. 24. Output jdorfx_map_unedited.rxj .. 59
Fig. 25. Output jdorfx_map_edited.rxj .. 63

List of Tables

Tab. 1: List of 3D Commands in JDORFX .. 40

vi

List of Listings

Listing 1. JavaFXDrawingFrame Constructor ... 19
Listing 2: ConcurrentLinkedDeque to Store Scene Updates ... 20
Listing 3. GUI Updater .. 22
Listing 4. Case of Scale and Shear in JavaDrawingHandler .. 24
Listing 5. Case of Scale and Shear in JavaFXDrawingHandler ... 26
Listing 6. jdorfx.cls .. 27
Listing 7. Code to Address JDORFX in jdorfx_shapes2d.rxj .. 28
Listing 8. jdorfx_drawing2d.rxj ... 30
Listing 9. jdorfx_shapes2d.rxj .. 33
Listing 10. jdorfx_transform2d.rxj ... 35
Listing 11. jdorfx_shapes3d.rxj .. 41
Listing 12. jdorfx_camera.rxj ... 44
Listing 13. jdorfx_light.rxj ... 48
Listing 14. jdorfx_transform3d.rxj ... 52
Listing 15. jdorfx_material.rxj ... 56
Listing 16. jdorfx_map_unedited.rxj .. 58
Listing 17. jdorfx_map_edited.rxj .. 62

7

Abstract

This thesis introduces JDORFX, a JavaFX-based graphics framework, which utilizes the

capabilities of the Bean Scripting Framework (BSF) for ooRexx to provide JavaFX graphics

classes to ooRexx programmers. Based on the JDOR framework, which leverages awt based

Java2D for graphics rendering, it now also offers the use of 3D classes. The development

process of JDORFX is described, highlighting architectural differences to JDOR. Both

frameworks are compared to detect potential differences in performance and output. Finally,

nutshell examples are provided to explain each ooRexx command and their arguments that

utilizes JavaFX 3D classes through JDORFX.

8

1. Introduction
JDOR (Java Drawing for ooRexx) is a BSF4ooRexx850 extension that facilitates awt based

Java2D classes to the ooRexx programming language. This means that ooRexx

programmers can utilize the rich set of tools and functions available in these Java classes

and create and manipulate 2D graphics and images within their ooRexx scripts [1].

JavaFX is a Java library developed to replace Java swing and awt based Java2D as GUI

frameworks. It is used to develop versatile applications, encompassing both desktop and

Rich Internet Applications. These JavaFX applications are capable of seamless execution

across multiple platforms. It features more functionalities than swing or awt based Java2D,

such as Java’s 3D classes [2].

The goal of this Bachelor thesis is 1) to develop JDORFX, a BSF4ooRexx850 extension

that implements the same capabilities as JDOR, but transitioning from awt based Java2D

classes to JavaFX and 2) expanding it with the capabilities of Java3D. This will allow

ooRexx programmers to seamlessly switch between the two frameworks using the same

syntax within 2D graphic creation, but also facilitate an interface for 3D graphic creation to

the ooRexx language.

2. Background
This chapter provides an overview of the programming languages and libraries utilized in

the development of JDORFX, describing their features and functionalities. These

components collectively enable the integration, scripting, and graphical rendering

capabilities of the framework.

2.1. Open Object Rexx

Open Object Rexx (ooRexx) is an open-source implementation of Object Rexx managed by

the Rexx Language Association (RexxLA) and distributed under the Common Public

License. It builds on classic Rexx, which was developed in 1979 by Mike F. Cowlishaw

and IBM [3]. While compatible with classic Rexx and retaining its ability to be written

procedurally, it extends the capabilities of classic Rexx with object-oriented features such

as subclassing, polymorphism, and data encapsulation. One key advantage of ooRexx is its

user-friendly nature, with its syntax derived from meaningful English words for instructions

and little formatting requirements, which allows instructions to span multiple lines and be

written in upper or lower case. Further, ooRexx treats all data as objects, eliminating the

9

need to declare variables as specific types and permitting arithmetic operations on strings

which represent valid numbers. Rexx covers a variety of functionalities which are usually

offered by fundamentally different types of programming languages, including the ability

to develop programs of varying complexity, tailored user commands without being

dependent on its primary environment of operating systems, providing a macro language

for various applications, and developing prototype applications [4].

2.2. Java

Java, developed by Sun Microsystems in 1995, is an object-oriented programming language

as well, utilizing objects to represent both data and functionality [5]. It implements concepts

such as classes, inheritance, polymorphism, abstraction and encapsulation, which are

provided by its extensive standard library (API). Java is known for its simplicity, security,

and robustness. One of its key features is that it is a software based platform, which makes

it platform independent and capable of being executed on multiple platforms. Security is

another highlight, with Java running on a virtual machine, using a classloader, which

separates local class packages from imported ones, a bytecode verifier, which scans for

illegal code, a security manager that governs classes’ access rights, and not implementing

explicit pointers. Strong memory management, automatic garbage collection of unused

objects and exception handling offer robust mechanisms. Its architecture neutrality further

prevents implementation dependencies [6].

2.3. Bean Scripting Framework for ooRexx

The Bean Scripting Framework (BSF) for ooRexx is based on the open-source BSF (Bean

Scripting Framework) class library of Java, designed to facilitate scripting language

integration within Java applications, enabling access to Java objects and methods [7].

BSF4ooRexx provides interoperability between ooRexx and Java, allowing ooRexx scripts

to utilize Java classes and libraries seamlessly and enabling compatibility across various

operating systems and environments. It synthesizes ooRexx's human-oriented design

principle and Java’s extensive capabilities by camouflaging Java objects as ooRexx objects.

Its latest version is BSF4ooRexx850 and requires a Java version of at least 8 and an ooRexx

version of 5.0 as minimum requirements. Embedded within BSF4ooRexx850 is JDOR.

2.4. JDOR

JDOR (Java Drawing for ooRexx) serves as a powerful tool for ooRexx programmers,

enabling the utilization of awt based Java2D classes for graphic creation and manipulation

10

[1]. It serves as a Rexx command handler, a runtime library written in Java with

BSF4ooRexx850. The primary goal is to facilitate smooth interfacing with the awt based

Java2D subsystem, while still applying easy to use ooRexx syntax.

It operates by instantiating a Java class, “JavaDrawingHandler”, which implements the

“RexxRedirectingHandler” to process redirected ooRexx commands and executing them

through the “handleCommand” callback method. Each command is translated into Java

code while being processed in the “processCommand” method. Upon receiving the first

command, the handler instantiates a “JFrame” [8] containing a “JPanel” [9]. The

“Graphics2D” [10] class allows to either draw graphic components directly onto a

“BufferedImage” [11] or to create shape [12] and string objects which can later be added.

2.5. JavaFX

JavaFX [2], in contrast to Java's Swing classes, consists of graphics and media packages

facilitating the development of rich client applications. Their capabilities consist of Java

APIs, FXML for creating JavaFX application user interface, WebView, and Swing

interoperability, which allows to implement JavaFX capabilities to existing Swing

applications. It also offers built-in UI controls and CSS, 3D graphics features, a Canvas API

to draw within scenes, printing functionality, Rich Text Support enhances text capabilities,

and multitouch support caters to modern input methods. JavaFX further supports smooth

graphics rendering and a high-performance media engine for stable web multimedia

content.

Its architecture [2] consists of several interconnected components starting with the scene

graph which serves as the foundation for building JavaFX applications, representing a

hierarchical tree of nodes, starting with its root node. All other visual elements have exactly

one parent node and zero or more child nodes. Nodes can be objects such as 3D shapes, 2D

shapes, cameras, lights etc. Aside from nodes, the scene graph can also build and store

states, such as transforms, or effects, which can be applied to objects of the graph. The Java

public APIs offer extensive support for rich client application development, leveraging Java

features like generics and annotations. The graphics system, comprising Prism and Quantum

Toolkit, facilitates rendering and event handling, ensuring smooth performance across

platforms. The Glass windowing toolkit manages native operating system services and

event queues, facilitating seamless integration with the JavaFX platform. Threads like the

JavaFX application thread and Prism render thread handle various aspects of application

execution and rendering. The media and images features allow support for audio and video.

The web component, based on WebKit, offers functionalities such as HTML rendering,

11

JavaScript execution and more. CSS facilitates customizable styling of UI elements,

allowing developers to dynamically change the application's appearance. UI controls, layout

containers, and transformations offer options for organizing and modifying the user

interface. JavaFX further allows to implement visual effects to further enhance the visual

appearance of JavaFX applications.

3. Requirements
This chapter describes the installation process of the programs that have been used for this

project and are required to run the nutshell examples with JDORFX implementation. It

provides instructions for windows, however installation guides for mac or Linux can also

be found in the provided links. It is recommended to install the programming languages

ooRexx and Java before BSF4ooRexx to prevent possible issues.

3.1. Java

Java 8 is the earliest version of Java that is still receiving updates by vendors [13] and is

supported by BSF4ooRexx850. While it includes all the essential packages for

development, it is worth noting that later versions of Java which implement JavaFX GUI

modules can be utilized as well. Java can be downloaded from different sources. The

provided link guides to the download page of bellsoft:

https://bell-sw.com/pages/downloads/#jdk-8-lts [14]

Fig. 1. shows the version of Java used for development in this thesis: Liberica Full JDK

8u402+7 x86 64 for Windows. It is essential to choose the Full JDK package with 64-bit

rate, this will include the necessary JavaFX modules. Clicking on MSI downloads the

installer.

https://bell-sw.com/pages/downloads/#jdk-8-lts

12

Fig. 1. Download Java [14]

Executing the msi file starts the setup, which lets the user select the features to be installed

and their storage location. The default options (entire package and the path “Programm

Files”) should not be changed and the installation can be started.

Fig. 2. Java Installation

After the process is finished, one may open a windows terminal and enter the command

“java -version”, which shows the currently installed version of Java on the operating system.

Its number should match the one downloaded.

13

Fig. 3. Terminal Command "java -version"

3.2. Open Object Rexx 5.0.0

The required version of ooRexx is 5.0.0 or later with a bit rate of 64, which can be

downloaded from sourceforge via the following link:

https://sourceforge.net/projects/oorexx/files/oorexx/5.0.0/ooRexx-5.0.0-

12583.windows.x86_64.exe/download [15]

The download will start automatically after 5 seconds or if the download button is clicked.

Once completed, users will need to open their download directory, right click on the

downloaded file and choose “Properties” (German: Eigenschaften). In the “General” tab

(German: Allgemein), the checkbox “Unblock” (German: Zulassen) must be checked and

confirmed by clicking “Apply” (German: Übernehmen) and then “OK”.

Fig. 4. Unblock ooRexx

https://sourceforge.net/projects/oorexx/files/oorexx/5.0.0/ooRexx-5.0.0-12583.windows.x86_64.exe/download
https://sourceforge.net/projects/oorexx/files/oorexx/5.0.0/ooRexx-5.0.0-12583.windows.x86_64.exe/download

14

Doing this will prevent Windows from blocking the installation process, a situation that

might occur if the operating system perceives the downloaded file as a potential security

risk. Next, the setup will be started when executing the exe file. If an older version of

ooRexx is already installed, choices appear to either upgrade to the new version or uninstall

the previous one. In order to prevent possible issues later on, it is advised to select the

uninstall option. All further preferences should remain as default and the installation process

can be started.

Fig. 5. ooRexx Installation Setup

Fig. 6. Uninstall Older ooRexx Version or Upgrade

Fig. 7. ooRexx Installation Setup

15

Opening a terminal and entering “rexx -version” will check the installed version of ooRexx.

Fig. 8. Terminal Command "rexx -version"

3.3. BSF4ooRexx850

Now that the programming languages have been successfully installed, the Bean Scripting

Framework for Open Object Rexx, the bridge between Java and ooRexx, can be installed.

If an older version of BSF4ooRexx is already installed, then it is advised to uninstall it

before proceeding. The following link from sourceforge will start the download of the latest

version automatically after 5 seconds:

https://sourceforge.net/projects/bsf4oorexx/files/latest/download [16]

Once again, in the properties window of the downloaded zip file, which can be opened by

right clicking on the file, the checkbox “Unblock” needs to be checked.

Fig. 9. Unblock BSF4ooRexx850

https://sourceforge.net/projects/bsf4oorexx/files/latest/download

16

Next, the zip file needs to be unzipped. Within the newly created folder in

“bsf4oorexx\install”, the installation options for the different operating systems can be

found. Opening the “windows” folder and executing the “install.cmd” file will open a

windows terminal and start the installation process.

Fig. 10. BSF4ooRexx850 Installation

Finally, the file “ooRexxTry.rxj” in the folder “C:\Program Files\BSF4ooRexx850\utilities”

can be executed to check whether all installations were done correctly and all three

components are able to interact with each other. This opens a GUI window which accepts

ooRexx commands as input.

17

Fig. 11. ooRexxTry.rxj

4. Development
This chapter describes the development of JDORFX, using the previously described

programming languages and packages.

4.1. JavaFXDrawingHandler

Building upon the foundation provided by the “JavaDrawingHandler”, modifications have

been made to utilize JavaFX packages instead of awt based Java2D. Hence, the

“JavaFXDrawingHandler” class now extends the “Application” class [17] to incorporate

JavaFX GUI functionality while still implementing the

“RexxRedirectingCommandHandler”. Within this class, the start method from the

Application class has been implemented, which handles the top class container stage [18]

and processes input and GUI updates. The stage class is the main window of an application

and holds the scene graph, which can be switched during runtime.

When the “JavaFXDrawingHandler” class is instantiated, it iterates through the redirected

ooRexx commands that have been supplied. Each input is processed via the

18

“handleCommand” callback method, which in turn utilizes the “processCommand” method.

Upon the first iteration, a new thread is started to invoke the application launch method,

initializing the JavaFXApplication thread, which operates concurrently with the main

thread. The Application class serves as the foundation for JavaFX applications. It initializes

through the “init()” method which creates the GUI and updates it via the “start(Stage)”

method [18]. The application stops running when either the “Platform.exit()” method is

called or the last GUI window has been closed.

During the processing of the first command, a subclass of Scene [19],

“JavaFXDrawingFrame”, is created. The JavaFX “scene” class acts as the container for a

scene graph’s content. Its root Node determines how the scene graph adjusts to resizing.

Listining 1. shows the constructor of the “JavaFXDrawingFrame” class. Aside from static

variables that define the scene’s size if no proportions were specified, a “Pane” [20] object

serves as the root node, which enables dynamic adjustments of the scene's dimensions.

Additionally, a “Canvas” for drawing functionalities, along with “Group” [21] nodes to

store 2D shapes, 3D shapes, and “LightBase” objects are set as the root’s children. The

method “resizeSurface” is implemented to change the scene’s size when needed.

243

244

245

246

247

248

249

250

251

252

253

254

255

256

257

258

259

260

261

262

263

264

265

class JavaFXDrawingFrame extends Scene

{

 /* static definitions */

 static final private int prefWidth = 500;

 static final private int prefHeight = 500;

 static final private boolean prefResizable=false;

 /* instance definitions */

 boolean bDebug= false; // true

 Pane root = new Pane();

 Canvas canvas = new Canvas();

 Group shapeGroup = new Group();

 Group shape3DGroup = new Group();

 Group lightGroup = new Group();

 int currWidth = prefWidth;

 int currHeight = prefHeight;

 boolean currFrameVisible = true; // cf. command "winFrame [.true|.false]"

 boolean currFrameResizable = prefResizable;

 /** Constructor.

 * @param canvas to set size and display on scene

 */

 public JavaFXDrawingFrame(Canvas can)

19

Each iteration of processing a command changes the scene graph and each version is stored

within a “ConcurrentLinkedDeque” [22], which is an unbounded concurrent deque based

on linked nodes. This allows the JavaFX GUI thread safe access to the

“JavaFXDrawingFrame” object. The deque stores up to two scene objects, in order to

prevent a Nullpointer Exception in case the GUI thread accesses an empty deque. From two

scenes onward, the last element of the deque is removed to keep it small. The method

“setChangeSceneTrue()” changes a global boolean variable “changeFrame”, which signals

the FX thread to update its GUI.

266

267

268

269

270

271

272

273

274

275

276

277

278

279

280

281

282

283

284

285

286

287

288

 {

 super(new Group());

 this.setRoot(root);

 currWidth = (int) can.getWidth();

 currHeight = (int) can.getHeight();

 root.setPrefSize(currWidth,currHeight);

 canvas = can;

 root.getChildren().add(canvas);

 root.getChildren().add(shapeGroup);

 root.getChildren().add(shape3DGroup);

 root.getChildren().add(lightGroup);

 }

 /** Resizes frame.

 * @param width the width in pixel

 * @param height the width in pixel

 */

 public void resizeSurface (int width, int height)

 {

 root.setPrefSize(width,height);

 canvas.setWidth(width);

 canvas.setHeight(height);

 }

}

Listing 1. JavaFXDrawingFrame Constructor

709

710

711

712

713

714

715

716

// store updated scene in ConcurrentLinkedDeque for FX GUI

// store more than one scene to prevent NullPointer Exception in GUI thread

if (deque.size() < 3 && fxframe != null) {

 deque.add(fxframe);

}

else if (fxframe != null) {

 deque.removeLast(); // remove elements to keep size of deque small

 deque.add(fxframe);

20

Listing 2: ConcurrentLinkedDeque to Store Scene Updates

While changes to the scene are being executed in the main thread, the JavaFX thread updates

the GUI via an implemented “Runnable” [23] “updater” within its start method to set each

new version of the scene to its stage. The updater is called every 10 milliseconds to ensure

quick operations, but only refreshes if certain conditions are met, to prevent the GUI form

becoming unresponsive. Each iteration checks if a scene object is within the deque, if

“changeScene” signals a new available update and if an update is desired by the user

(“fxWinUpdate”). When all conditions are met, the latest scene element within the deque

and a new title will be set to the stage. The dimensions of the stage will be set to the scene

graph’s root node in case it has been resized. Afterwards, the program evaluates changes to

the stage itself, which encompass its decoration, layer, location, resizing and visibility.

Lastly, the updater signals that the changes have been implemented until a new scene

becomes available.

717

718

719

720

}

// signal FX GUI to update

setChangeSceneTrue();

5390

5391

5392

5393

5394

5395

5396

5397

5398

5399

5400

5401

5402

5403

5404

5405

5406

5407

5408

5409

5410

5411

Thread thread = new Thread(new Runnable() {

 @Override

 public void run() {

 Runnable updater = new Runnable() {

 @Override

 public void run() {

 // check if a new scene is available and an update should be executed

 if (!deque.isEmpty() && changeScene && fxWinUpdate) {

 // set first element of deque to stage

 Scene scene = deque.getFirst();

 stage.setScene(scene);

 stage.setTitle(frameTitle);

 stage.sizeToScene(); // in case of resize

 // checks if changes to the stage have been signaled

 if (changeFrame) {

 try {

 // change stage decoration

 if (changeDecoration) {

 if (stageDecorated) {

21

5412

5413

5414

5415

5416

5417

5418

5419

5420

5421

5422

5423

5424

5425

5426

5427

5428

5429

5430

5431

5432

5433

5434

5435

5436

5437

5438

5439

5440

5441

5442

5443

5444

5445

5446

5447

5448

5449

5450

5451

5452

5453

5454

5455

 stage.initStyle(StageStyle.DECORATED);

 } else {

 stage.initStyle(StageStyle.UNDECORATED);

 }

 }

 // signal that frame has been changed

 setChangeFrameFalse();

 } catch (Exception e) {

 throw new IllegalArgumentException("WinFrame "

 + "cannot be changed once the window "

 + " has been set to visible");

 }

 // check if stage should be set to front or back

 if (changeBackFront) {

 if (winToFront) {

 stage.toFront();

 }

 else {

 stage.toBack();

 }

 }

 // check if stage should be always on top

 if (changeAlwaysOnTop) {

 if (winAlwaysOnTop) {

 stage.setAlwaysOnTop(true);

 }

 else {

 stage.setAlwaysOnTop(false);

 }

 }

 // check if the location of the frame should be changed

 if (changeFrameLocation) {

 stage.setX(frameX);

 stage.setY(frameY);

 frameMoved();

 }

 // check if frame should be resizable

 if (fxFrameResizable) {

 stage.setResizable(true);

 } else {

22

Listing 3. GUI Updater

The redirected input of a Rexx program, which is supplied via the

“RexxRedirectingCommandHandler”, is being split into single commands and their

arguments. In the method “processCommand”, the first parameter of each command (as

string) is evaluated through a switch statement [24]. When the supplied command matches

a case and has the correct number of arguments, the corresponding code block is executed

and turns the commands into Java code. The code blocks of the cases are based on the

“JavaDrawingHandler” (JDOR) but have now been modified to utilize JavaFX packages

instead of awt based Java2D.

5456

5457

5458

5459

5460

5461

5462

5463

5464

5465

5466

5467

5468

5469

5470

5471

5472

5473

5474

5475

5476

5477

5478

5479

5480

5481

5482

5483

5484

5485

 stage.setResizable(false);

 }

 // check if frame should be visible

 if (fxVisible) {

 stage.show();

 } else {

 stage.hide();

 }

 // signal that changes to frame have been made

 setChangeFrameFalse();

 }

 // signal that scene has been updated

 setChangeSceneFalse();

 }

 }

 };

 // run updater every 10 milliseconds

 while (true) {

 try {

 Thread.sleep(10);

 } catch (InterruptedException ex) {

 }

 // UI update is run on the Application thread

 Platform.runLater(updater);

 }

 }

});

23

Once the last command has been processed in the main thread, the FX application thread

closes automatically. Listing 4. shows an example of an original case code block from the

“JavaDrawingHandler”.

1489

1490

1491

1492

1493

1494

1495

1496

1497

1498

1499

1500

1501

1502

1503

1504

1505

1506

1507

1508

1509

1510

1511

1512

1513

1514

1515

1516

1517

1518

1519

1520

1521

1522

1523

1524

1525

1526

1527

1528

case SCALE: // "scale x [y]" set scale for x, y; if y omitted, uses x

case SHEAR: // "shear x [y]" set scale for x, y; if y omitted, uses x

 {

 int argNum=arrCommand.length;

 if (argNum>3)

 {

 throw new IllegalArgumentException("this command needs either no, "

 + "one or 2 arguments, received "+(arrCommand.length-1)

 +" instead");

 }

 // get current settings

 AffineTransform at=bufGC.getTransform();

 String strResult=null;

 double newX=0, newY=0;

 if (cmd==EnumCommand.SCALE)

 {

 strResult=at.getScaleX()+" "+at.getScaleY();

 }

 else // SHEAR

 {

 strResult=at.getShearX()+" "+at.getShearY();

 }

 if (argNum>1) // set value

 {

 newX = Double.parseDouble(arrCommand[1]);

 newY = newX; // default to X value in case Y value is omitted

 if (argNum==3) // Y value supplied, use it

 {

 newY=Double.parseDouble(arrCommand[2]);

 }

 if (cmd==EnumCommand.SCALE)

 {

 bufGC.scale(newX,newY);

 }

 else

 {

24

When the supplied input matches either “SCALE” or “SHEAR”, the program evaluates if

the correct number of arguments are supplied. If this condition is false, an error message

will be returned, otherwise a new “AffineTransform” [25] object “at” is created and set as

the current transform state of the “Graphics2D” object “bufGC”. The Graphics2D [10] class

offers capabilities for managing geometry, coordinate transformations, color, and text

arrangement, which are applied to its corresponding “BufferedImage”. The

“AffineTransform” class enables 2D affine transformations, linear mappings between 2D

coordinates while preserving the geometric properties of lines, achieved through sequences

of translations, scales, flips, rotations, and shears.

Next, a new string variable “strResult” is created and stores the current state of either scale

or shear properties of “at”, depending on the received command. If more than one argument

has been supplied (aside from the command itself), then it is parsed and stored in a newly

created double variable “newX”. The double variable “newY” is either set to match this

value, or, if two arguments are supplied, parses the second argument. Depending on the

command, either new scale or new shear parameters are added to the Graphics2D object

“bufGC” with the values of “newX” and “newY”. Lastly, the changes can optionally be

stored in the variable “cannonical”, which supplies the programmer with information on the

made changes, and “strResult” is returned.

Listing 5. shows the modified version of the same switch statements that are implemented

in the “JavaFXDrawingHandler”. However, instead of “AffineTransform” [25] it

implements its JavaFX counterpart Affine [26], which uses similar transformations but also

allows transformations in 3D space. In the provided case, a newly created Affine object

“fxAffine” is set to the current state of the “GraphicsContext” [27] “canGC”, which

1529

1530

1531

1532

1533

1534

1535

1536

1537

1538

1539

1540

1541

 bufGC.shear(newX,newY);

 }

 }

 if (isOR)

 {

 if (argNum>1)

 {

 canonical=canonical+" "+newX+" "+newY;

 }

 writeOutput(slot, canonical); // write canonical form

 }

 return strResult; // current/old settings

 }

Listing 4. Case of Scale and Shear in JavaDrawingHandler

25

modifies the graphical elements of its “Canvas” [28]. The command arguments are then

again parsed and stored in double variables. The new transformation is then applied to

“canGC”.

However, unlike in the “JavaDrawingHandler”, where “Graphics2D” allows to add

instances of awt based Java2D shape classes to the image, the “GraphicsContext” in the

“JavaFXDrawingHandler” cannot add objects of JavaFX’ shape class [29] to its canvas.

Such shapes need to be added to the node “shapeGroup” to be displayed on the scene graph.

Conversely, transformations such as the previously mentioned “scale” and “shear” can only

be applied by “canGC” to drawing elements that are directly placed on the canvas. Hence,

the currently stored transformation must be parsed from “GraphicsContext” and applied to

a shape before setting it to the “shapeGroup”.

1381

1382

1383

1384

1385

1386

1387

1388

1389

1390

1391

1392

1393

1394

1395

1396

1397

1398

1399

1400

1401

1402

1403

1404

1405

1406

1407

1408

1409

case SCALE: // "scale x [y]" set scale for x, y; if y omitted, uses x

case SHEAR: // "shear x [y]" set scale for x, y; if y omitted, uses x

 {

 int argNum=arrCommand.length;

 if (argNum>3)

 {

 throw new IllegalArgumentException("this command needs either no, "

 + "one or 2 arguments, received "+(arrCommand.length-1)

 +" instead");

 }

 // get current settings

 Affine fxAffine = canGC.getTransform();

 String strResult=null;

 double newX=0, newY=0;

 if (cmd==EnumCommand.SCALE)

 {

 strResult=fxAffine.getMxx()+" "+fxAffine.getMyy();

 }

 else // SHEAR

 {

 strResult=fxAffine.getMxy()+" "+fxAffine.getMyx();

 }

 if (argNum>1) // set value

 {

 newX = Double.parseDouble(arrCommand[1]);

 newY = newX; // default to X value in case Y value is omitted

26

Listing 5. Case of Scale and Shear in JavaFXDrawingHandler

4.2. Packages in Java

After “JavaFXDrawingHandler” is completed, it can now be turned into a package [30].

Within the file, the command “package org.oorexx.handlers.jdorfx” will be added on top of

the program. Its name will become the file path. A Java package can be created by opening

a command terminal in the folder where “JavaFXDrawingHandler” is saved and entering

the following commands:

1. C:\Users\Your Name>javac JavaFXDrawingHandlere.java

Save and compile the file

1410

1411

1412

1413

1414

1415

1416

1417

1418

1419

1420

1421

1422

1423

1424

1425

1426

1427

1428

1429

1430

1431

1432

1433

1434

1435

1436

1437

1438

1439

 if (argNum==3) // Y value supplied, use it

 {

 newY=Double.parseDouble(arrCommand[2]);

 }

 if (cmd==EnumCommand.SCALE)

 {

 // set new Scale values

 fxAffine.appendScale(newX,newY);

 // apply affine transform to canvas

 canGC.setTransform(fxAffine);

 }

 else

 {

 // set new Shear values

 fxAffine.appendShear(newX,newY);

 // apply affine transform to canvas

 canGC.setTransform(fxAffine);

 }

 }

 if (isOR)

 {

 if (argNum>1)

 {

 canonical=canonical+" "+newX+" "+newY;

 }

 writeOutput(slot, canonical); // write canonical form

 }

 return strResult; // current/old settings

 }

27

2. C:\Users\Your Name>javac -d . JavaFXDrawingHandlere.java

Compile Package

Fig. 12. Java Package

These commands create a new folder “\org\oorexx\handlers\jdorfx” which contains the

compiled classes. Next, the folder will be turned into a “JAR” file named

“JDORFX_20240505.jar” with the following command:

3. C:\Users\schal\Desktop> jar -cvf JDORFX_20240505.jar org

Fig. 13. JAR file

“JAR”, short for “Java Archive”, is a file format based on the “ZIP” format, designed for

lossless data compression, archiving, decompression, and archive unpacking [31].

4.3. JDORFX

After the Java package has been successfully built, a new ooRexx cls file can be created,

which allows other Rexx programs to access the “JavaFXDrawingHandler” when being

addressed.

40

41

42

43

44

45

46

47

::routine addJdorFXHandler public

 use strict arg environmentName="JDORFX"

 call BsfCommandHandler "add", -

 environmentName, -

 .bsf~new("org.oorexx.handlers.jdorfx.JavaFXDrawingHandler")

::requires "BSF.CLS" -- get ooRexx-Java bridge

Listing 6. jdorfx.cls

28

JDORFX serves as a new command handler that supplies the environment through the

optional “environmentName”, which will be set to “JDORFX” if no argument is supplied.

It utilizes the previously created “org.oorexx.handlers.jdorfx.JavaFXDrawingHandler”

package. Lastly, it requires the “BSF.CLS” file, which enables ooRexx to use Java

functionalities.

4.4. Environment for Nutshell Examples

The last stage of development requires setting the environment, which will enable the

execution of Rexx programs that integrate JDORFX. First, when writing a program, the

following block of code needs to be implemented:

Rexx recognizes three types of instructions: assignment, keyword, e.g. “do” or “call”, and

command [32]. Command instructions are sent to the operating system by default. However,

using the keyword “address” allows to specify a different Rexx command handler instead,

such as JDORFX in the example above. ooRexx further adds directive instructions to Rexx.

During the execution of a Rexx program, it undergoes three phases. Firstly, the syntax is

checked in the "Load" phase, followed by the execution of directives in the "Setup" phase.

Finally, the program proceeds to execute the first instruction at the beginning of the program

in the "Execution" phase. This allows directives to be used to set up and configure the

execution environment, which is achieved through "::requires 'jdorfx.cls'" in the given

example.

In order to ensure that the Rexx program can access all necessary resources, "jdorfx.cls"

and "JDORFX_20240505.jar" must be saved in specific directories. Initially, Rexx

programs look for required classes within the current folder. If the classes are not found

there, the program will then search in the "BSF4ooRexx850" directory. Hence, "jdorfx.cls"

should either be placed in the same directory as the Rexx program that requires it or in

"%WINPROFILE%\BSF4ooRexx850". Secondly, the file "JDORFX_20240505.jar"

25

26

27

28

29

…

86

87

-- create JDORFX handler

-- load and add the Java Rexx command handler, using default name: JDORFX

call addJdorFXHandler

-- set default environment to JDORFX

address jdorfx

-- get ooRexx-Java bridge, contains JDORFX Rexx command handler

::requires "jdorfx.CLS"

Listing 7. Code to Address JDORFX in jdorfx_shapes2d.rxj

29

should be placed in "%WINPROFILE%\BSF4ooRexx850\lib", which has been designated

as the "CLASSPATH" environment variable for Java classes during the installation of

BSF4ooRexx850 [33].

5. JDORFX Commands and Examples
After the completion of the “JavaFXDrawingHandler”, its graphic capabilities are being

tested. The following nutshell examples compare the 2D drawing capabilities of JDORFX

and JDOR. Two Rexx programs containing the same commands are executed, one uses

JDOR while the other uses JDORFX. The objective is to run both programs and compare

the output on each created window.

After the comparison, a list of commands is provided that explains 3D functionalities which

are only accessible through JDORFX and showcase examples of their implementation are

provided.

5.1. Comparing JDOR and JDORFX - Drawing

Drawing with JDORFX works similar to drawing with JDOR. While the

“JavaDrawingHandler” uses “Graphics2D” [10] class to draw onto a “BufferedImage”, the

“JavaFXDrawingHandler” utilizes the “GraphicsContext” [27] class to draw onto a canvas

which is embedded in the scene graph.

The provided nutshell examples in Fig. 11 shows the output of Rexx programs which

implement either JDOR or JDORFX. They illustrate drawing operations which are executed

on their respective GUI. In both cases, the position of shapes and their appearance are

identical. However, some differences in color tones can be observed. This is due to the fact

that awt based Java2D “colors” and JavaFX “colors” use different color codes e.g. for green.

The first uses the RGB value of 0-204-0 [34], the latter uses the HEX value #008000, which

translates to the RGB value of 0-128-0 [35].

25

26

27

28

29

30

31

32

-- create JDORFX handler

-- load and add the Java Rexx command handler, using default name: JDORFX

call addJdorFXHandler

-- set default environment to JDORFX

address jdorfx

say "Create a new scene and draw on canvas"

-- creating a new window with size 500 x 500

30

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

49

50

51

52

53

54

55

56

57

58

59

60

61

62

63

64

65

66

67

newimage 500 500

-- draw filled polygon with nPoints taken from xPoints-array and yPoints-array

fillpolygon "(10,30,40,50,110,140)" "(0,100,40,50,200,0)" 6

-- move current x and y points

moveto 200 50

-- draw filled arc with width heigth start angle and arc angle

fillarc 100 200 40 120

-- move current x and y points

moveto 400 50

-- set draw and fill color to red

color red

-- draw line from current x and y points to new x and y

drawline 400 200

-- move current x and y points

moveto 50 300

-- draw filled oval with width and height

filloval 50 100

-- set draw and fill color to green

color green

-- move current x and y points

moveto 200 300

-- draw filled rectangle with width and height

fillrect 50 100

-- move current x and y points

moveto 300 300

-- draw round rectangle with width heigth arcwidth and archheight

drawroundrect 100 150 10 10

-- show created window

winshow

say

say "Sleep for 5 seconds and end program..."

sleep 5

-- get ooRexx-Java bridge, contains JDORFX Rexx command handler

::requires "jdorfx.CLS"

Listing 8. jdorfx_drawing2d.rxj

31

Fig. 14. JDOR vs JDORFX - drawing2d.rxj

5.2. Comparing JDOR and JDORFX - 2D Shapes

While the “Graphics2D” class implemented in the “JavaDrawingHandler” allows to draw

awt based Java2D shape objects onto the “BufferedImage”, the “GraphicsContext” of

JavaFX cannot add shape [29] objects to the corresponding canvas.

Hence, instances of Shape subclasses, e.g. circle, line, rectangle…, are created and stored

in a hashmap [36]. When the commands “drawshape” or “fillshape” are used, the shape

instances are added to the group [21] “shapeGroup” of the scene graph instead of the canvas.

Since the “shapeGroup” itself cannot store or set color properties of its children, the

currently set color of the “GraphicsContext” is parsed and applied to a shape when it is

drawn. This also relates to stroke properties.

Fig. 12. shows the outputs of JDORFX and JDOR while drawing shapes with various stroke

and color properties. While their mode of operations behind the scenes differ, their result

remains the same, aside from the differences in color tones.

25

26

27

28

29

30

31

32

33

34

-- create JDORFX handler

-- load and add the Java Rexx command handler, using default name: JDORFX

call addJdorFXHandler

-- set default environment to JDORFX

address jdorfx

say "Create a scene and add 2D shapes"

-- creating a new window with size 500 x 500

newimage 500 500

-- set draw and fill color to blue

32

35

36

37

38

39

40

41

42

43

44

45

46

47

48

49

50

51

52

53

54

55

56

57

58

59

60

61

62

63

64

65

66

67

68

69

70

71

72

73

74

75

76

77

78

color blue

-- set stroke with width=3 cap=2 join=2 miterLimit=10 dashArray=(10,20) dashOffset=4

stroke myStroke 3 2 2 10 "(10,20)" 4

stroke myStroke

-- draw filled polygon with nPoints taken from xPoints-array and yPoints-array

shape myPoly polygon "(50,150,100)" "(50,50,100)" 3

fillshape myPoly

-- draw arc with x y width heigth start extend type

shape myArc arc 200 50 100 100 0 250 2

drawshape myArc

-- set draw and fill color to R=0.5 G=0.3 B=0.6 Alpha=0.9

color myColor 0.5 0.3 0.6 0.9

color myColor

-- draw line from x y to newX and newY

shape myLine line 350 50 300 200

drawshape myLine

-- draw ellipse with x y width height

shape myEllipse ellipse 400 50 50 100

drawshape myEllipse

-- set draw and fill color to orange

color orange

-- draw rectangle with x y width height

shape rec rectangle2d 50 300 100 100

drawshape rec

-- draw filled round rectangle with x y width heigth arcWidth archHeight

shape myRoundrect roundrect 200 300 50 100 20 20

fillshape myRoundrect

-- set draw and fill color to gray

color gray

-- draw cubic cruve with x1 y1 ctrlx1 ctrly1 ctrlx2 ctrly2 x2 y2

shape myCubic cubic 300 300 300 350 400 350 300 400

drawshape myCubic

-- draw cubic cruve with x1 y1 ctrlx ctrly x2 y2

shape myQuadCurve quadcurve 450 450 300 300 400 300

drawshape myQuadCurve

-- set draw and fill color to pink

color pink

-- create a path and add elements

shape myPath path 1

pathmoveto myPath 50 250

-- add curve to path with ctrlx1 ctrly1 ctrlx2 ctrly2 x y

pathcurveto myPath 100 150 200 300 200 250

pathlineto myPath 400 250

--draw path

33

Fig. 15. JDOR vs JDORFX - shapes2d.rxj

5.3. Comparing JDOR and JDORFX - 2D Transformations

In “JavaDrawingHandler”, “AffineTransformations” [25] states are stored in the

Graphics2D class and applied to its elements when they are drawn. Similarly, in

“JavaFXDrawingHandler” “Affine” transformations [26] are stored in the

“GraphicsContext” class and applied to its canvas. However, since the shapes added to the

“shapeGroup” are not part of the canvas, the previously defined "affine transformations

need to be parsed form the “GraphicsContext” and set to the shapes when they are drawn.

The following example shows the use of transformation commands. Transformations can

either be set to all drawn elements or applied to a single path.

79

80

81

82

83

84

85

86

87

drawshape myPath

-- show created window

winshow

say

say "Sleep for 5 seconds and end program..."

sleep 5

-- get ooRexx-Java bridge, contains JDORFX Rexx command handler

::requires "jdorfx.CLS"

Listing 9. jdorfx_shapes2d.rxj

34

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

49

50

51

52

53

54

55

56

57

58

59

60

61

62

63

64

65

66

67

68

-- create JDORFX handler

-- load and add the Java Rexx command handler, using default name: JDORFX

call addJdorFXHandler

-- set default environment to JDORFX

address jdorfx

say "Create a scene and add and transform 2D shapes"

-- creating a new window with size 500 x 500

newimage 500 500

-- transform following shapes and drawing elements with

-- translateX translateY scaleX scaleY shearX shearY

transform 50 50 1.1 1.1 0.2 0.2

-- move current x and y points

moveto 0 0

-- draw line from current x and y points to new x and y

drawline 0 200

-- rotate following shapes and drawing elements by angle

rotate (-20)

-- draw ellipse with x y width height

shape myEllipse ellipse 25 50 50 100

drawshape myEllipse

-- scale following shapes and drawing elements by y=1.5

scale 1 1.5

-- draw rectangle with x y width height

shape myRect rectangle2d 100 50 50 100

drawshape myRect

-- shear following shapes and drawing elements by x=0.2 y=0.6

shear 0.2 0.6

-- draw arc with x y width height start length type

shape myArc arc 175 (-50) 100 100 0 120 2

drawshape myArc

-- set draw and fill color to red

color red

-- create a path myPath and add elements

shape myPath path 1

pathmoveto myPath 300 50

pathlineto myPath 400 50

pathlineto myPath 400 100

pathlineto myPath 300 100

pathclose mypath

-- create transformation with name myTransform

transform myTransform (-350) 50 1 1.5 0.5 0

-- use transformation myTransform on path myPath

pathtransform myPath myTransform

35

Fig. 16. JDOR vs JDORFX - transform2d.rxj

5.4. Command List

After comparing the output of 2D capabilities of JDOR and JDORFX, a list of commands

is provided that correspond to 3D functionalities which are only accessible through

JDORFX. Afterwards, nutshell examples are provided which describe the commands in

more detail.

Command Arguments Description

shape3D String nickname Queries the 3D shape with the
supplied nickname.

If no such shape exists, return error
message.

69

70

71

72

73

74

75

76

77

78

--draw path

fillshape myPath

-- show created window

winshow

say

say "Sleep for 5 seconds and end program..."

sleep 5

-- get ooRexx-Java bridge, contains JDORFX Rexx command handler

::requires "jdorfx.CLS"

Listing 10. jdorfx_transform2d.rxj

36

 String nickname

“box”

Double x y z

Double width height depth

Creates a new named box at position
x,y,z, a size of width, height, depth
and stores it.

 String nickname

„cylinder“

Double x y z

Double radius height

Creates a new named cylinder at
position x,y,z, a size of radius and
height and stores it.

 String nickname

„sphere“

Double x y z

Double radius

Creates a new named sphere at
position x,y,z, a radius and stores it.

drawShape3D

or: draw3DShape

String nickname Draws the supplied 3D shape as wire
frame model.

If no such shape exists, return error
message.

fillShape3D

or: fill3DShape

String nickname Draws the supplied 3D shape with
filled vertices.

If no such shape exists, return error
message.

camera If no arguments supplied, query the
last camera that has been set to the
scene.

 String nickname

Queries the camera with the supplied
nickname.

If no such camera exists, return error
message.

 String nickname

“parallel”

Double x y z

Creates a new named parallel camera
at position x,y. The z value does not
influence its location.

A parallel camera looks at the xy
plane and possess a viewing volume
for parallel projection.

37

 String nickname

“perspective”

Double x y z

[Double

fieldOfView (optional)]

Creates a new named perspective
camera at position x,y,z and the
optional argument fieldOfView.

If the argument fieldOfView is not
supplied, it is set to the default of 30.

A perspective camera looks at the xy
plane and defines the viewing
volume for a perspective projection
(fieldOfView).

setCamera If no arguments are supplied, sets the
scene camera back to its default
parallel camera at position 0 0 0.

 String nickname Sets the named camera as the new
scene camera.

If no such camera exists, return error
message.

light String nickname Queries the light with the supplied
name.

If no such light node exists, return
error message.

 String nickname

“ambient”

[String color (optional)]

Creates a new named ambient light
with an optional color value. If no
color value is supplied, the default
color is white.

An ambient light is a light source that
radiates from all directions.

 String nickname

“point”

Double x y z

[String color (optional)]

Creates a new named point light at
position x, y, z and with an optional
color value. If no color value is
supplied, the default color is white.

A point light projects light in all
directions away from its position.

setLight String Nickname

[String turnOn/turnoff
(optional)]

Sets the named light source into the
scene. If the optional argument is set
to turnOn or the argument is not
supplied, the light source will be
turned on. If the optional argument is
set to turnOff, the named light source
will be turned off.

38

If no such light exists, return error
message.

rotateShape3D

or:
rotate3DShape

String nickname

Double angle

Double pivotX pivotY pivotZ

Double axisX axisY axisZ

Rotates the named 3D shape at an
angle with the coordinates for its
pivot point around the set axis.

The axis values define the coordinate
magnitude of the rotation axis (0 –
1.0). Values of 0 0 1 rotates the shape
on the z axis.

If no such 3D shape exists, return
error message.

scaleShape3D

or: scale3DShape

String nickname

Double x y z

Scales the named 3D shape along the
set axis. Values of 2 0 0 doubles the
size of the shape along the x axis.

If no such 3D shape exists, return
error message.

shearShape3D

or:
shear3DShape

String nickname

Double x y

Shears the named 3D shape along the
set axis.

If no such 3D shape exists, return
error message.

translateShape3D

or:
translate3DShape

String nickname

Double x y z

Moves the named 3D shape along the
set axis.

If no such 3D shape exists, return
error message.

map String NickName

String imagePath

Stores an image with given file path
as named variable.

 String NickName

String imagePath

Integer addWidth

Integer addHeight

Double angle

[String color (optional)]

Creates a new named image based on
the provided image with file path.

addWidth and addHeight will be
added to the image’s size and will
change its proportions. If the values
are negative, the image will be
cropped.

The image will be rotated at the
provided angle clockwise around its
centre.

39

A rotation value beyond a magnitude
of 90 degrees may lead to loss of
image quality.

If an optional color value is supplied,
all transparent pixels of the image
will be filled with said color.

material String Nickname

[String color (optional)]

Creates a new named material with
an optional color value. If no
argument is provided, then the
default color is white.

materialColor String NickName

String colorType

String color

[Double specularPower
(optional)]

Targets the named material and sets
the color property of the chosen
colorType (diffuse/diffuseColor or
specular/ specularColor).

If the chosen colorType is specular,
then the specularPower can be set. If
no argument is provided, its default
value is 32.

If no such material exists, return error
message.

A diffuse color represents the base
color of a surface material.

A specular color is the color value of
light that is reflecting from a surface
material. If no specular color is set,
the default specular color is white.

The specular power indicates the
level of smoothness of the material.
The smaller the value, the narrower
the reflections and the smoother the
surface appears.

materialMap String NickName

String mapType

String imagePath/nickname

Adds a new image as the chosen
mapType (bump/bumpMap,
diffuse/diffuseMap,
selfIllumination/selfIlluminationMap
or specular/ specularMap) to a
named material.

The image is selected via its file path
or a previously saved nickname as
string.

If no such material or image exist,
return error message.

A bump map acts as a normal map as
RGB image for a material. It adds
depth to the material’s surface image.

40

A diffuse map uses an image as the
surface of a material.

A self-illumination map lets light
emanate from a material.

A specular map defines the reflection
properties of a material.

setMaterial String sNickname

String mNickname

Sets the named material to the named
3D shape. If no such 3D shape or
material exist, return error message.

Tab. 1: List of 3D Commands in JDORFX

5.5. Drawing 3D Shapes

The first example shows the implementation of JavaFX’ “box” [37], “cylinder” [38] and

“sphere” [39], which are all subclasses of “Shape3D” [40], which stores common properties

for 3D geometric shapes, such as material [41], “drawMode” [42] and “cullFace” [43].

Similar to 2D shapes, the created 3D shapes are added to the group node “shape3DGroup”,

which is embedded in the scene graph.

The command “shape3d” instantiates such a shape3D object and uses the following

arguments for all subclasses:

• “String nickName”: set a name for the newly created shape.

• “String shapeType”: choose the type of 3D shape (box, cylinder or sphere).

• “Double x y z”: the coordinates of the 3D shape within the scene. In contrast to 2D

shapes, its anchor point is the shape’s center, which is set to the upper left corner of

the scene when the coordinates are x=0 and y=0).

The following arguments depend on the previously chosen type of 3D shape to define its

size.

• Box: “Double width height depth”

• Cylinder: “Double radius height”

• Sphere: “Double radius”

After its creation, the 3D shape gets stored and can be added to the scene graph with the

commands “draw3DShape” or “fill3DShape”. For easier access, the synonyms

“drawShape3D” and “fillShape3D” respectively have been implemented. Both commands

only use one argument, which is the “nickName” of the 3D shape one wishes to add. Using

“draw3DShape”, sets a 3D shapes “drawMode” property [42] to “DrawMode.LINE” and

41

draws the 3D object as a see through wireframe model. “fill3DShape” on the other hand sets

its “drawMode” property to “DrawMode.FILL”, which fills its interior.

The following example shows the implementation of all three basic 3D shapes. The shapes

still appear 2 dimensional because no perspective camera has been set to the scene, which

will be addressed in the next example.

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

49

50

51

52

53

54

55

56

-- create JDORFX handler

-- load and add the Java Rexx command handler, using default name: JDORFX

call addJdorFXHandler

-- set default environment to JDORFX

address jdorfx

say "Create a scene and add 3D shapes"

-- creating a new window with size 500 x 500

newimage 500 500

-- create new sphere with the name "mySphere" at location x=100, y=100, z=0

-- and a radius=50

shape3d mySphere sphere 100 100 0 50

-- create new box with the name "myBox" at location x=400, y=175, z=0

-- and size: width=100, height=250, depth=200

shape3d myBox box 400 175 0 100 250 200

-- create new cylinder with the name "myCylinder" at location x=100, y=350, z=0

-- and size: radius=50, height=150

shape3d myCylinder cylinder 100 350 0 50 150

-- place mySphere onto scene with filled vertices; also: fillshape3d

fill3dshape mySphere

-- place myBox onto scene as line / wireframe model; also: drawshape3d

draw3dshape myBox

-- place myCylinder onto scene with filled vertices; also: fill3dshape

fillshape3d myCylinder

-- show created window

winshow

say

say "Sleep for 5 seconds and end program..."

sleep 5

-- get ooRexx-Java bridge, contains JDORFX Rexx command handler

::requires "jdorfx.CLS"

Listing 11. jdorfx_shapes3d.rxj

42

Fig. 17. Output jdorfx_shapes3d.rxj

5.6. Parallel and Perspective Camera

The “Camera” class [44] defines how a scene’s coordinate space is mapped onto the

window. It has two subclasses, “ParallelCamera” [45] and “PerspectiveCamera” [46]. The

default camera of a scene is a “ParallelCamera” object with its position set at the centre of

the scene, looking at the xy plane. It possesses a viewing volume for parallel projection and

it cannot be moved along the z axis. On the other hand, a “PerspectiveCamera” defines the

viewing volume for a perspective projection, which can be changed with the value of its

“fieldOfView” property. It can be moved along the z axis.

The command “camera” creates a new camera object and uses the following parameters for

both subclasses:

• “String nickName”: set a name for the newly created camera.

• “String cameraType”: choose the type of camera (perspective or parallel).

43

• “Double x y z”: the coordinates of the camera. Setting the coordinates to 0 0 0

places the camera in the centre of the scene. A “parallelCamera” cannot be moved

along the z axis, hence changing its z does nothing.

A “PerspectiveCamera” has one additional optional argument:

• “Double fieldOfView” [optional]: sets the field of view angle of the camera's

projection plane. If this argument is not supplied, the value will be set to the default

of 30.

The command “setCamera” with the optional argument “nickName” sets the named object

as the scene camera. If no “nickName” is supplied, the scene camera will be set back to its

original default “ParallelCamera”.

The following example shows a scene which switches between “PerspectiveCameras” and

“ParallelCameras” during the runtime of its program. The cameras are set at different

positions, while the shown 3D shapes remain stationary. In Listing 12. the front face of the

box shape seems to disappear. This happens because the box is drawn as a wireframe model

and the properties of the scene’s only “LightBase” is set as ambient and white. The

“LightBase” class will be discussed in the next example.

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

-- create JDORFX handler

-- load and add the Java Rexx command handler, using default name: JDORFX

call addJdorFXHandler

-- set default environment to JDORFX

address jdorfx

say "Create a scene with the default parallel camera"

-- creating a new window with size 500 x 500

newimage 500 500

-- show created window

winshow

-- create new sphere with name "mySphere" at location x=50, y=200, z=0 and a radius=50

shape3d mySphere sphere 205 225 0 50

-- create new box with name "myBox" at location x=200, y=200, z=0

-- and size: width=100, height=100, depth=100

shape3d myBox box 325 150 0 100 100 100

-- create new cylinder with name "myCylinder" at location x=350, y=200, z=0

-- and size: radius=50, height=200

shape3d myCylinder cylinder 325 350 0 50 100

-- place mySphere onto scene with filled vertices; also: fillshape3d

fill3dshape mySphere

-- place myBox onto scene as line / wireframe model; also: drawshape3d

44

Listing 12. jdorfx_camera.rxj

47

48

49

50

51

52

53

54

55

56

57

58

59

60

61

62

63

64

65

66

67

68

69

70

71

72

73

74

75

76

77

78

79

80

draw3dshape myBox

-- place myCylinder onto scene with filled vertices; also: fillshape3d

fill3dshape myCylinder

say

say "Sleep for 5 seconds and then create a new perspective camera"

say "Location: x=-50 y=-100 z=-100, default fieldOfView=30"

sleep 5

--create perspectiveCamera1

camera perspectiveCamera1 perspective (-50) (-100) (-100)

-- set view to perspectiveCamera1

setcamera perspectiveCamera1

say

say "Sleep for 5 seconds and then create a new perspective camera"

say "Location: x=200 y=0 z=-50, fieldOfView=150"

sleep 5

--create perspectiveCamera2

camera perspectiveCamera2 perspective 200 0 (-50) 150

-- set view to perspectiveCamera1

setcamera perspectiveCamera2

say

say "Sleep for 5 seconds and then create a new parallel camera"

say "Location: x=0 y=100 z=-200"

say "Note: The z variable has no impact on a parallel camera"

sleep 5

--create parallelCamera

camera parallelCamera parallel 0 100 (-200)

-- set view to parallelCamera

setcamera parallelCamera

say

say "Sleep for 5 seconds and end program..."

sleep 5

 -- get ooRexx-Java bridge, contains JDORFX Rexx command handler

::requires "jdorfx.CLS"

45

Fig 18. Parallel Camera vs Perspective Camera 1 jdorfx_camera.rxj

Fig. 19. Perspective Camera vs Parallel Camera 2 jdorfx_camera.rxj

5.7. Light

In order to change the lighting of a scene, a new “LightBase” [47] object can be added,

which has properties of “color” and “lightOn”. “LightBase” has two subclasses,

“AmbientLight” [48] and “PointLight” [49]. The default lighting of a scene is white

“AmbientLight”, which is a light source radiating from all directions. In contrast, a

“PointLight” can be placed anywhere in 3D space and projects light in all directions away

from its position.

The implemented command “light” instantiates a new “LightBase” object and has the

following arguments for both subclasses:

• “String nickName”: set a name for the newly created light.

46

• “String lightBaseType”: choose the type of “lightBase” (ambient or point)

• “String color” [optional]: optional argument to set color of the light. If no such

argument is supplied, the default color will be white.

The class “PointLight” additionally requires arguments for its position:

• “Double x y z”: the coordinates of the “PointLight”. Setting the coordinates to 0 0

0 places the light at the upper left corner of the scene.

The new light will be added to the scene automatically after its creation, but it will be turned

off. The command “setLight” has the following arguments:

• “String nickName”: targets the camera with this name.

• “String turnOn / turnOff” [optional]: if the parameter is “turnOff”, the named light

will be turned off. If the parameter is “turnOn” or not supplied at all, the light will

be turned on.

The following example shows a combination of different light sources at different times in

the same program. Fig. 17 shows the scene once with only a red “AmbientLight” and once

with two additional “PointLights”. Using only an “AmbientLight” can make it difficult to

perceive the spatiality of 3D shapes. In Fig. 18 the “AmbientLight” is turned off again.

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

-- create JDORFX handler

-- load and add the Java Rexx command handler, using default name: JDORFX

call addJdorFXHandler

-- set default environment to JDORFX

address jdorfx

say "Create a new scene and set ambient light to red"

-- creating a new window with size 500 x 500

newimage 500 500

-- show created window

winshow

-- create new box shapes

shape3d ceiling box 250 110 0 500 20 500

shape3d floor box 250 410 0 500 20 500

-- place box shapes onto scene

fill3dshape ceiling

fill3dshape floor

-- create new cylinder shapes

shape3d leftPillar1 cylinder 10 260 (-200) 10 280

shape3d leftPillar2 cylinder 10 260 (-100) 10 280

shape3d leftPillar3 cylinder 10 260 0 10 280

shape3d leftPillar4 cylinder 10 260 100 10 280

47

47

48

49

50

51

52

53

54

55

56

57

58

59

60

61

62

63

64

65

66

67

68

69

70

71

72

73

74

75

76

77

78

79

80

81

82

83

84

85

86

87

88

89

90

shape3d leftPillar5 cylinder 10 260 200 10 280

shape3d rightPillar1 cylinder 490 260 (-200) 10 280

shape3d rightPillar2 cylinder 490 260 (-100) 10 280

shape3d rightPillar3 cylinder 490 260 0 10 280

shape3d rightPillar4 cylinder 490 260 100 10 280

shape3d rightPillar5 cylinder 490 260 200 10 280

-- place cynlinder shapes onto scene

fill3dshape leftPillar1

fill3dshape leftPillar2

fill3dshape leftPillar3

fill3dshape leftPillar4

fill3dshape leftPillar5

fill3dshape rightPillar1

fill3dshape rightPillar2

fill3dshape rightPillar3

fill3dshape rightPillar4

fill3dshape rightPillar5

-- create and add new sphere to scene

shape3d mySphere sphere 250 250 200 50

draw3dShape mySphere

-- create new perspective camera and set scene camera

camera perspectiveCamera perspective 0 0 (-150)

setcamera perspectiveCamera

-- create and add new ambient light to scene

light ambientLight ambient red

-- turn ambientLight on

setlight ambientLight

-- create and add new point lights to scene

light blueLight point 400 200 (-100) blue

light greenLight point 100 200 100 green

say

say "Sleep for 5 seconds and turn on point lights"

say "Location point light blue: x=400 y=200 z=-100"

say "Location point light green: x=100 y=200 z=100"

sleep 5

-- turn point lights on

setlight blueLight

setlight greenLight

say

say "Sleep for 5 seconds and turn off ambient light"

sleep 5

-- turn ambientLight off

setlight ambientLight turnoff

say

48

Fig. 20.AmbientLight vs PointLight jdorfx_light.rxj

91

92

93

94

95

say "Sleep for 5 seconds and end program..."

sleep 5

-- get ooRexx-Java bridge, contains JDORFX Rexx command handler

::requires "jdorfx.CLS"

Listing 13. jdorfx_light.rxj

49

Fig. 21. PointLight jdorfx_light.rxj

5.8. Transform 3D Shapes

Transformations of 3D shapes are similar to those of 2D shapes. Both implement the

“Affine” class [26], which performs a linear mapping from 2D / 3D coordinates to other 2D

/ 3D coordinates.

The following JDORFX commands and their arguments for transformations have been

implemented:

“rotate3DShape”:

• “Double angle”: the angle of rotation.

• “Double pivotX pivotY pivotZ”: the 3D pivot point around which the shape is being

rotated. Coordinates of 0 0 0 set the pivot point to the center of the shape.

50

• “Double axisX axisY axisZ”: defines the coordinate magnitude of the rotation axis.

Values of 0 0 1 rotates the shape on the z axis, while values of 1 1 0 rotates the

shape on the x axis and y axis by the same extent.

“scale3DShape” or “scaleShape3D”:

• “Double sx sy sz”: the scale factor of the coordinates. Values of 0 1.5 0 scales the

shape on the y axis by 1.5.

• “Double pivotX pivotY pivotZ”: the 3D pivot point about which the scale occurs.

Coordinates of 0 0 0 set the pivot point to the center of the shape.

“shear3DShape” or “shearShape3D”:

• “Double xy yx”: the shear coordinates.

• “Double pivotX pivotY”: the pivot point about which the shear occurs.

“translate3DShape” or “translateShape3D”:

• “Double tx ty tz”: moves the shape according to the values on each axis.

Fig. 19 shows all possible transformations set to 3D shapes: translate, shear, rotate and scale.

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

-- create JDORFX handler

-- load and add the Java Rexx command handler, using default name: JDORFX

call addJdorFXHandler

-- set default environment to JDORFX

address jdorfx

say "Create a scene and add and transform 3D shapes"

-- creating a new window with size 500 x 500

newimage 500 500

-- create new boxes

shape3d box1 box 360 280 0 200 20 200

shape3d box2 box 140 280 0 200 20 200

shape3d floor box 250 0 (-100) 500 20 500

--move box "floor" by x, y, z

translate3dshape floor 0 420 0

-- shear boxes with shx shy pivotX pivotY

shear3dshape box1 1 0 0 0

shear3dshape box2 (-1) 0 0 0

-- rotate shape 90 degrees on the z axis with its center as pivot point

rotate3dshape box1 90 0 0 0 0 0 1

-- rotate shape -90 degrees on the z axis with its center as pivot point

rotate3dshape box2 (-90) 0 0 0 0 0 1

-- create new cylinder

51

48

49

50

51

52

53

54

55

56

57

58

59

60

61

62

63

64

65

66

67

68

69

70

71

72

73

74

75

76

77

78

79

80

81

82

83

84

85

86

87

88

89

90

91

shape3d mySphere sphere 245 255 0 25

--scale the y axis of shape, pivot point is center of shape

scale3dshape mySphere 1 1.5 1 0 0 0

-- create new cylinder

shape3d cylinder1 cylinder 225 350 0 2 200

--rotate shape 45 degrees on the y axis, pivot point is 20px left of shape center

rotate3dshape cylinder1 45 20 0 0 0 1 0

--rotate shape 30 degrees on the z axis with its center as pivot point

rotate3dshape cylinder1 30 0 0 0 0 0 1

-- create new cylinder and apply rotation

shape3d cylinder2 cylinder 225 350 0 2 200

rotate3dshape cylinder2 90 20 0 0 0 1 0

rotate3dshape cylinder2 30 0 0 0 0 0 1

-- create new cylinder and apply rotation

shape3d cylinder3 cylinder 225 350 0 2 200

rotate3dshape cylinder3 135 20 0 0 0 1 0

rotate3dshape cylinder3 30 0 0 0 0 0 1

-- create new cylinder and apply rotation

shape3d cylinder4 cylinder 225 350 0 2 200

rotate3dshape cylinder4 180 20 0 0 0 1 0

rotate3dshape cylinder4 30 0 0 0 0 0 1

-- create new cylinder and apply rotation

shape3d cylinder5 cylinder 225 350 0 2 200

rotate3dshape cylinder5 225 20 0 0 0 1 0

rotate3dshape cylinder5 30 0 0 0 0 0 1

-- create new cylinder and apply rotation

shape3d cylinder6 cylinder 225 350 0 2 200

rotate3dshape cylinder6 270 20 0 0 0 1 0

rotate3dshape cylinder6 30 0 0 0 0 0 1

-- create new cylinder and apply rotation

shape3d cylinder7 cylinder 225 350 0 2 200

rotate3dshape cylinder7 315 20 0 0 0 1 0

rotate3dshape cylinder7 30 0 0 0 0 0 1

-- create new cylinder and apply rotation

shape3d cylinder8 cylinder 225 350 0 2 200

rotate3dshape cylinder8 360 20 0 0 0 1 0

rotate3dshape cylinder8 30 0 0 0 0 0 1

-- add shapes to scene

-- the order of placing shapes onto scene matters

-- later added shapes will cover previous ones, regardless of its distance to the camera

fillshape3d floor

fillshape3d box1

fillshape3d box2

fillshape3d cylinder4

52

92

93

94

95

96

97

98

99

100

101

102

103

104

105

106

107

108

109

110

111

112

fillshape3d cylinder5

fillshape3d cylinder6

fillshape3d cylinder7

fillshape3d cylinder8

fillshape3d mySphere

fillshape3d cylinder1

fillshape3d cylinder2

fillshape3d cylinder3

-- create new perspective camera and point light and add to scene

camera perspectiveCamera perspective 0 0 (-100)

setcamera perspectiveCamera

light myLight point 100 50 (-400) white

setlight myLight

-- show created window

winshow

say

say "Sleep for 5 seconds and end program..."

sleep 5

-- get ooRexx-Java bridge, contains JDORFX Rexx command handler

::requires "jdorfx.CLS"

Listing 14. jdorfx_transform3d.rxj

53

Fig. 22. Output jdorfx_transform3d.rxj

5.9. Material

The last example shows the implementation of the “PhongMaterial” [41] class. A

“PhongMaterial” can be added to shapes as surfaces, with its properties determining the

interaction with a light source.

The following properties of a “PhongMaterial” object can be set:

• “BumpMap”: acts as a normal map as RGB image. Combined with a diffuseMap,

adds depth to the surface image and increases the appearance of a 3-dimensional

surface.

• “DiffuseColor”: the color property of the surface.

• “DiffuseMap”: uses an image as the surface of a material.

54

• “SelfIlluminationMap”: an image which is used to create a self illumination effect

of a material. Brighter pixels of the image let these spots shine brighter on the

material surface.

• “SpecularColor”: specular color property of a material. It represents the color value

of light that is reflecting from a surface.

• “SpecularMap”: an image which defines the reflection properties of a material.

Brighter pixels of the image let these spots reflect light better on the surface.

• “SpecularPower”: defines the concentration or spread of highlighted reflection of a

material. The smaller the value, the narrower the reflections and the smoother the

surface appears.

The command “material” creates a new material and accepts the following arguments:

• “String nickName”: set a name for the newly created material.

• “String color” [optional]: sets the “diffuseColor” of the material. If this argument

is omitted, the color will be set to white as default.

“materialColor” sets the color properties of a material:

• “String nickName”: targets the material with provided name.

• “String type”: chooses which color property should be changed (diffuseColor /

diffuse or specularColor / specular).

• “String color”: sets the color of the color type.

• “Double specularPower” [only for type specular] [optional]: sets the power value

of the “specularColor”. If this argument is omitted, the value will be set to its default

of 32.

“materialMap” adds an image as map to a material:

• “String nickName”: targets the material with provided name.

• “String type”: chooses which map type the image will be set as (bump / bumpMap,

diffuse / diffuseMap, selfillumination / selfilluminationMap or specular /

specularMap).

• “String image”: select image via its file path, which will be added to the material as

its map type. The supported image formats [50] are “BMP”, “GIF”, “JPEG”,

“PNG”.

“setMaterial” adds a material to a shape:

• “String shapeName”: targets shape with provided name.

• “String materialName”: sets the named material to the shape.

55

The following example shows the use of different material properties. The image textures

of the materials have been downloaded from the following website and are licensed as “CC0

1.0 DEED” [51]:

https://3dtextures.me/ [52]

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

49

50

51

52

53

54

55

56

57

58

59

60

61

62

63

64

65

66

67

68

69

70

-- create JDORFX handler

-- load and add the Java Rexx command handler, using default name: JDORFX

call addJdorFXHandler

-- set default environment to JDORFX

address jdorfx

say "Create a new scene with 3D shapes and materials"

-- creating a new window with size 500 x 500

newimage 500 500

-- create different shapes

shape3d rockBox box 100 100 0 100 100 100

shape3d furSphere sphere 250 100 0 50

shape3d colCylinder cylinder 400 100 0 20 100

shape3d tileSphere1 sphere 100 350 0 50

shape3d tileBox box 250 350 0 100 100 100

shape3d tileSphere2 sphere 400 350 0 50

-- add shapes to scene

fill3dshape rockBox

fill3dshape furSphere

fill3dshape colCylinder

fill3dshape tileSphere1

fill3dshape tileBox

fill3dshape tileSphere2

-- create new material named rock

material rock

-- add image with pathname "rock_diffuse.jpg" as diffuse map to material rock

materialmap rock diffuse "rock_diffuse.jpg"

-- add material rock to rockBox

setmaterial rockBox rock

--create new material fur

material fur

-- add image with pathname "fur_bump.jpg" as bump map to material fur

materialmap fur bump "fur_bump.jpg"

-- add image with pathname "fur_diffuse.jpg" as diffuse map to material rock

materialmap fur diffuse "fur_diffuse.jpg"

-- add material fur to furSphere

setmaterial furSphere fur

-- create new material colBlue and set color to blue

https://3dtextures.me/

56

71

72

73

74

75

76

77

78

79

80

81

82

83

84

85

86

87

88

89

90

91

92

93

94

95

96

97

98

99

100

101

102

103

104

material colBlue blue

-- add material colBlue to colCylinder

setmaterial colCylinder colBlue

-- create new material tileDiff and set color to red

material tileDiff red

-- add image with pathname "tiles.jpg" as diffuse map to material tileDiff

materialmap tileDiff diffuse "tiles.jpg"

-- add material tileDiff to tileBox

setmaterial tileBox tileDiff

-- create new material tileSpec and set color to black

material tileSpec black

-- set material specularColor to white with specularPower of 10

materialcolor tileSpec specular white 10

-- add image with pathname "tiles.jpg" as specular map to material rock

materialmap tileSpec specular "tiles.jpg"

-- add material tileSpec to tileSphere1

setmaterial tileSphere1 tileSpec

-- create new material tileIll and set color to red

material tileIll red

-- add image with pathname "tiles.jpg" as selfillumination map to material tileIll

materialmap tileIll selfillumination "tiles.jpg"

-- add material tileIll to tileSphere2

setmaterial tileSphere2 tileIll

-- create perspective camera and add to scene

camera camera perspective 0 0 0

setcamera camera

-- show created window

winshow

say

say "Sleep for 5 seconds and end program..."

sleep 5

-- get ooRexx-Java bridge, contains JDORFX Rexx command handler

::requires "jdorfx.CLS"

Listing 15. jdorfx_material.rxj

57

Fig. 23. Output jdorfx_material.rxj

5.10. Map

Texture images can be effectively utilized as material maps for 3D shapes to enhance the
appearance of rendered objects. However, this approach presents limitations when pictures
or logos are used, especially when they are applied to spheres or cylinders. In such cases,
the images may appear distorted, due to the wrapping of the image around the shape's
surface. Furthermore, if the image contains fully transparent pixels, the corresponding area
of the shape will not be visible, and the shape of the rendered object will be unrecognisable.
Fig. 21 illustrates this scenario by applying a PNG image of an ooRexx logo to all basic 3D
shapes. While the pictures on the box’ surface generally maintain their form, the ones on
the sphere and cylinder are heavily distorted. Further, the transparent pixels of the image
are transferred to the rendered objects, resulting in obscured edges and overall shape.

58

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

49

50

51

52

53

54

55

56

57

58

59

60

61

62

63

64

-- create JDORFX handler

-- load and add the Java Rexx command handler, using default name: JDORFX

call addJdorFXHandler

-- set default environment to JDORFX

address jdorfx

say "Create a new scene with 3D shapes and png maps"

-- creating a new window with size 500 x 500

newimage 500 500

-- create different 3D shapes

shape3d myBox box 150 150 0 100 100 100

shape3d myCylinder cylinder 250 350 0 40 100

shape3d mySphere sphere 350 150 0 50

-- add shapes to scene

fill3dshape myBox

fill3dshape mySphere

fill3dshape myCylinder

-- rotate myBox and myCylinder

rotate3dshape myBox (-20) 0 0 0 1 0 0

rotate3dshape myBox 60 0 0 0 0 1 0

rotate3dshape myCylinder 60 0 0 0 0 0 1

rotate3dshape myCylinder (-20) 0 0 0 1 0 0

-- create perspective camera and add to scene

camera camera perspective 0 0 0 50

setcamera camera

-- create new material myMaterial and add png as diffuse map

material myMaterial

materialmap myMaterial diffuse "oorexx_256.png"

 -- add myMaterial to shapes

setmaterial myBox myMaterial

setmaterial mySphere myMaterial

setmaterial myCylinder myMaterial

-- show created window

winshow

say

say "Sleep for 5 seconds and end program..."

sleep 5

-- get ooRexx-Java bridge, contains JDORFX Rexx command handler

::requires "jdorfx.CLS"

Listing 16. jdorfx_map_unedited.rxj

59

Fig. 24. Output jdorfx_map_unedited.rxj

In order to mitigate these issues, one solution is to edit the image which is used as a map
within the program itself and store the new image in a variable. Behind the scene, JDORFX
uses the Java class “PixelReader” [53] to read the color of each pixel of the supplied image
and writes them via an instance of “PixelWriter” [54] onto a new “WritableImage” [55],
which will be used as the new map. This functionality is achievable with the command
“map”, which creates a new material and accepts the following arguments:

• “String nickName”: set a name for the image that will be saved.

• “String imagePath”: the file path of the image.

The following additional arguments can be supplied to edit the image:

• “Integer addWidth”: width that will be added to the size of the original image. If

the value is set as a negative number, the image will be cropped. If no color

argument is supplied, the added pixels will be transparent.

60

• “Integer addHeight”: height that will be added to the size of the original image. If

the value is set as a negative number, the image will be cropped. If no color

argument is supplied, the added pixels will be transparent.

• “Double rotation”: the angle of rotation. The image will be rotated clockwise with

its centre as pivot point.

• “String Color” [optional]: If the supplied image contains transparent pixels or

width and height have been added, the corresponding pixels on the material will be

filled with the set color value.

It is worth noting that rotating an image beyond a magnitude of 90 degrees may result in a
loss of quality. The rotated image may contain transparent pixels scattered across its surface,
which will be filled with an optionally supplied color value. The following example shows
how PNG images of ooRexx logos are edited and applied to box, sphere and cylinder
objects. For spheres and cylinders, it is essential to set “addWidth” to be significantly larger
than “addHeight” to preserve the original proportions of the images.

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

49

50

-- create JDORFX handler

-- load and add the Java Rexx command handler, using default name: JDORFX

call addJdorFXHandler

-- set default environment to JDORFX

address jdorfx

say "Create a new scene with 3D shapes and edited png maps"

-- creating a new window with size 500 x 500

newimage 500 500

-- create different 3D shapes

shape3d box1 box 100 100 0 100 100 100

shape3d box2 box 100 250 0 100 100 100

shape3d box3 box 100 400 0 100 100 100

shape3d sphere1 sphere 250 100 0 50

shape3d sphere2 sphere 250 250 0 50

shape3d sphere3 sphere 250 400 0 50

shape3d cylinder1 cylinder 400 100 0 40 100

shape3d cylinder2 cylinder 400 250 0 40 100

shape3d cylinder3 cylinder 400 400 0 40 100

-- add shapes to scene

fill3dshape box1

fill3dshape box2

fill3dshape box3

fill3dshape sphere1

fill3dshape sphere2

fill3dshape sphere3

61

51

52

53

54

55

56

57

58

59

60

61

62

63

64

65

66

67

68

69

70

71

72

73

74

75

76

77

78

79

80

81

82

83

84

85

86

87

88

89

90

91

92

93

94

fill3dshape cylinder1

fill3dshape cylinder2

fill3dshape cylinder3

-- rotate shapes

rotate3dshape box1 (-20) 0 0 0 1 1 0

rotate3dshape box1 60 0 0 0 0 1 0

rotate3dshape box2 60 0 0 0 0 1 0

rotate3dshape box3 20 0 0 0 1 1 0

rotate3dshape box3 (-60) 0 0 0 0 1 0

rotate3dshape cylinder1 40 0 0 0 0 0 1

rotate3dshape cylinder2 70 0 0 0 1 0 1

rotate3dshape cylinder2 30 0 0 0 0 1 0

rotate3dshape cylinder3 (-40) 0 0 0 0 0 1

-- create perspective camera and add to scene

camera camera perspective 0 0 0 50

setcamera camera

-- create new materials for each shape

material boxMaterial1

material boxMaterial2

material boxMaterial3

material sphereMaterial1

material sphereMaterial2

material sphereMaterial3

material cylinderMaterial1

material cylinderMaterial2

material cylinderMaterial3

-- create new images with name "boxMap1" based on image with image path "oorexx_256.png"

-- add width=50 and height=50 to image, set rotation angle=0 and set a color="cyan"

map boxMap1 "oorexx_256.png" 50 50 0 cyan

map boxMap2 "oorexx4ooo_256.png" 50 50 90 blue

map boxMap3 "bsf4oorexx_256.png" 50 50 180 green

map sphereMap1 "oorexx_256.png" 800 200 20 white

map sphereMap2 "oorexx4ooo_256.png" 800 200 0 yellow

map sphereMap3 "bsf4oorexx_256.png" 800 200 340 orange

map cylinderMap1 "oorexx_256.png" 600 200 0 pink

map cylinderMap2 "oorexx4ooo_256.png" 500 200 270 magenta

map cylinderMap3 "bsf4oorexx_256.png" 600 200 0 red

-- set maps as diffuse maps to each material

materialmap boxMaterial1 diffuse boxMap1

materialmap boxMaterial2 diffuse boxMap2

materialmap boxMaterial3 diffuse boxMap3

materialmap sphereMaterial1 diffuse sphereMap1

materialmap sphereMaterial2 diffuse sphereMap2

materialmap sphereMaterial3 diffuse sphereMap3

62

Listing 17. jdorfx_map_edited.rxj

95

96

97

98

99

100

101

102

103

104

105

106

107

108

109

110

111

112

113

114

115

materialmap cylinderMaterial1 diffuse cylinderMap1

materialmap cylinderMaterial2 diffuse cylinderMap2

materialmap cylinderMaterial3 diffuse cylinderMap3

--set materials to shapes

setmaterial box1 boxMaterial1

setmaterial box2 boxMaterial2

setmaterial box3 boxMaterial3

setmaterial sphere1 sphereMaterial1

setmaterial sphere2 sphereMaterial2

setmaterial sphere3 sphereMaterial3

setmaterial cylinder1 cylinderMaterial1

setmaterial cylinder2 cylinderMaterial2

setmaterial cylinder3 cylinderMaterial3

-- show created window

winshow

say

say "Sleep for 5 seconds and end program..."

sleep 5

-- get ooRexx-Java bridge, contains JDORFX Rexx command handler

::requires "jdorfx.CLS"

63

Fig. 25. Output jdorfx_map_edited.rxj

6. Limitations
While JDORFX demonstrates promising results in terms of functionality, it is important to

acknowledge its limitations as a first version. Firstly, JDORFX does not encompass all

commands available in JDOR, such as animations, the use of gradient paint or saving the

GUI output as images. Furthermore, despite its capabilities, JDORFX's architecture can be

improved upon to optimize performance, which is especially relevant within 3D graphics

rendering. Running long programs may lead to blocking of the UI and making it

unresponsive. Additionally, while JDORFX provides an extensive set of features for 2D

and 3D graphics, there is still room for expansion and refinement. Future iterations of

JDORFX could benefit from increasing its graphical functionalities.

64

7. Conclusion
In this thesis, the development of JDORFX is described, a JavaFX-based graphics

framework, and compared to its counterpart JDOR, which utilizes awt based Java2D classes.

The goal was to provide a JavaFX GUI for ooRexx programmers, which uses the same input

commands as JDOR. While different in their architectures, it has been shown that

functionalities and GUI output are almost identical for both frameworks aside from color

tones.

A significant advantage of JDORFX over JDOR is its newly implemented support for 3D

graphics rendering. Nutshell examples have shown the functionalities of ooRexx commands,

enabling the creation and transformation of 3D shapes, camera objects and light objects.

This is the first time ooRexx programmers are able to utilize JavaFX 3D graphics without

the need to learn about their classes or Java code itself.

Looking ahead, future developments in JDORFX could focus on enhancing its 3D graphics

capabilities, improving performance optimization and expanding on the wide variety of

JavaFX competences.

65

References

[1] R. G. Flatscher, "202209_JDOR_command_handler," [Online]. Available: https://

www.rexxla.org/presentations/2022/202209_JDOR_command_handler.pdf

(accessed: Oct. 20 2023).

[2] Oracle, 1 JavaFX Overview (Release 8). [Online]. Available: https://docs.oracle.com/

javase/8/javafx/get-started-tutorial/jfx-overview.htm (accessed: Oct. 20 2023).

[3] R. G. Flatscher, "202303_ISECON23_Flatscher_Proposing_ooRexx," [Online].

Available: https://www.rexxla.org/presentations/2023/202303_ISECON23_

Flatscher_Proposing_ooRexx.pdf (accessed: Oct. 20 2023).

[4] Rexx Language Association, Open Object Rexx. [Online]. Available: https://

www.oorexx.org/about.html (accessed: Oct. 16 2023).

[5] www.javatpoint.com, History of Java - Javatpoint. [Online]. Available: https://

www.javatpoint.com/history-of-java (accessed: Oct. 16 2023).

[6] www.javatpoint.com, Features of Java - Javatpoint. [Online]. Available: https://

www.javatpoint.com/features-of-java (accessed: Oct. 16 2023).

[7] C. Murcko, V. Orlikowski, and R. G. Flatscher, Apache Commons BSF™ - Bean

Scripting Framework. [Online]. Available: https://commons.apache.org/proper/

commons-bsf/ (accessed: Oct. 16 2023).

[8] Oracle, JFrame (Java Platform SE 8). [Online]. Available: https://docs.oracle.com/

javase/8/docs/api/javax/swing/JFrame.html (accessed: Nov. 2 2023).

[9] Oracle, JPanel (Java Platform SE 8). [Online]. Available: https://docs.oracle.com/

javase/8/docs/api/javax/swing/JPanel.html (accessed: Nov. 2 2023).

[10] Oracle, Graphics2D (Java Platform SE 8). [Online]. Available: https://

docs.oracle.com/javase/8/docs/api/java/awt/Graphics2D.html (accessed: Feb. 2

2024).

[11] Oracle, BufferedImage (Java Platform SE 8). [Online]. Available: https://

docs.oracle.com/javase/8/docs/api/java/awt/image/BufferedImage.html (accessed:

Nov. 2 2023).

[12] Oracle, Shape (Java Platform SE 8). [Online]. Available: https://docs.oracle.com/

javase/8/docs/api/java/awt/Shape.html (accessed: Feb. 2 2024).

[13] Oracle, Oracle Java SE Support Roadmap. [Online]. Available: https://

www.oracle.com/java/technologies/java-se-support-roadmap.html (accessed: Apr. 15

2024).

[14] BellSoft Corporation, Java Download | Java 8, Java 11, Java 17, Java 21 -

OpenJDK Builds for Linux, Windows & macOS. [Online]. Available: https://bell-

sw.com/pages/downloads/#jdk-8-lts (accessed: Mar. 2 2024).

66

[15] Sourceforge, Download ooRexx-5.0.0-12583.windows.x86_64.exe (ooRexx (Open

Object Rexx)). [Online]. Available: https://sourceforge.net/projects/oorexx/files/

oorexx/5.0.0/ooRexx-5.0.0-12583.windows.x86_64.exe/download (accessed: Mar. 2

2024).

[16] Sourceforge, Download BSF4ooRexx. [Online]. Available: https://sourceforge.net/

projects/bsf4oorexx/files/latest/download (accessed: Mar. 2 2024).

[17] Oracle, Application (JavaFX 8). [Online]. Available: https://docs.oracle.com/javase/

8/javafx/api/javafx/application/Application.html (accessed: Oct. 25 2024).

[18] Oracle, Stage (JavaFX 8). [Online]. Available: https://docs.oracle.com/javase/8/

javafx/api/javafx/stage/Stage.html (accessed: Oct. 25 2023).

[19] Oracle, Scene (JavaFX 8). [Online]. Available: https://docs.oracle.com/javase/8/

javafx/api/javafx/scene/Scene.html (accessed: Oct. 25 2023).

[20] Oracle, Pane (JavaFX 8). [Online]. Available: https://docs.oracle.com/javase/8/

javafx/api/javafx/scene/layout/Pane.html (accessed: Jan. 20 2024).

[21] Oracle, Group (JavaFX 8). [Online]. Available: https://docs.oracle.com/javase/8/

javafx/api/javafx/scene/Group.html (accessed: Jan. 20 2024).

[22] Oracle, ConcurrentLinkedDeque (Java Platform SE 8). [Online]. Available: https://

docs.oracle.com/javase/8/docs/api/java/util/concurrent/ConcurrentLinkedDeque.html

(accessed: Dec. 20 2023).

[23] Oracle, Runnable (Java Platform SE 7). [Online]. Available:

https://docs.oracle.com/javase%2F7%2Fdocs%2Fapi%2F%2F/java/lang/Runnable.ht

ml (accessed: Dec. 10 2024).

[24] Oracle, The switch Statement (The Java™ Tutorials > Learning the Java Language

> Language Basics). [Online]. Available: https://docs.oracle.com/javase/tutorial/

java/nutsandbolts/switch.html (accessed: Jan. 2 2024).

[25] Oracle, AffineTransform (Java Platform SE 7). [Online]. Available:

https://docs.oracle.com/javase%2F7%2Fdocs%2Fapi%2F%2F/java/awt/geom/Affine

Transform.html (accessed: Jan. 14 2024).

[26] Oracle, Affine (JavaFX 8). [Online]. Available: https://docs.oracle.com/javase/8/

javafx/api/javafx/scene/transform/Affine.html (accessed: Feb. 2 2024).

[27] Oracle, GraphicsContext (JavaFX 8). [Online]. Available: https://docs.oracle.com/

javase/8/javafx/api/javafx/scene/canvas/GraphicsContext.html (accessed: Jan. 2

2024).

[28] Oracle, Canvas (JavaFX 8). [Online]. Available: https://docs.oracle.com/javase/8/

javafx/api/javafx/scene/canvas/Canvas.html (accessed: Mar. 2 2024).

[29] Oracle, Shape (JavaFX 8). [Online]. Available: https://docs.oracle.com/javase/8/

javafx/api/javafx/scene/shape/Shape.html (accessed: Jan. 2 2024).

67

[30] W3 Schools, Java Packages. [Online]. Available: https://www.w3schools.com/java/

java_packages.asp (accessed: Feb. 24 2024).

[31] Oracle, Using JAR Files: The Basics (The Java™ Tutorials > Deployment >

Packaging Programs in JAR Files). [Online]. Available: https://docs.oracle.com/

javase/tutorial/deployment/jar/basicsindex.html (accessed: May 6 2024).

[32] R. G. Flatscher, "202403-01_JDOR," [Online]. Available: https://www.rexxla.org/

presentations/2024/202403-01_JDOR.pdf (accessed: May 6 2024).

[33] R. G. Flatscher, "202403-04_Releasing_BSF4ooRexx850," [Online]. Available:

https://www.rexxla.org/presentations/2024/202403-04_Releasing_

BSF4ooRexx850.pdf (accessed: May 6 2024).

[34] www.javatpoint.com, Java Color Codes - Javatpoint. [Online]. Available: https://

www.javatpoint.com/java-color-codes (accessed: Feb. 2 2024).

[35] Oracle, Color (JavaFX 8). [Online]. Available: https://docs.oracle.com/javase/8/

javafx/api/javafx/scene/paint/Color.html#GREEN (accessed: Feb. 2 2024).

[36] Oracle, HashMap (Java Platform SE 8). [Online]. Available: https://docs.oracle.com

/javase/8/docs/api/java/util/HashMap.html (accessed: Feb. 5 2024).

[37] Oracle, Box (JavaFX 8). [Online]. Available: https://docs.oracle.com/javase/8/javafx/

api/javafx/scene/shape/Box.html (accessed: Feb. 5 2024).

[38] Oracle, Cylinder (JavaFX 8). [Online]. Available: https://docs.oracle.com/javase/8/

javafx/api/javafx/scene/shape/Cylinder.html (accessed: Feb. 5 2024).

[39] Oracle, Sphere (JavaFX 8). [Online]. Available: https://docs.oracle.com/javase/8/

javafx/api/javafx/scene/shape/Sphere.html (accessed: Feb. 5 2024).

[40] Oracle, Shape3D (JavaFX 8). [Online]. Available: https://docs.oracle.com/javase/8/

javafx/api/javafx/scene/shape/Shape3D.html (accessed: Feb. 5 2024).

[41] Oracle, PhongMaterial (JavaFX 8). [Online]. Available: https://docs.oracle.com/

javase/8/javafx/api/javafx/scene/paint/PhongMaterial.html (accessed: Feb. 20 2024).

[42] Oracle, DrawMode (JavaFX 8). [Online]. Available: https://docs.oracle.com/javase/

8/javafx/api/javafx/scene/shape/DrawMode.html (accessed: Feb. 5 2024).

[43] Oracle, CullFace (JavaFX 8). [Online]. Available: https://docs.oracle.com/javase/8/

javafx/api/javafx/scene/shape/CullFace.html (accessed: Feb. 5 2024).

[44] Oracle, Camera (JavaFX 8). [Online]. Available: https://docs.oracle.com/javase/8/

javafx/api/javafx/scene/Camera.html (accessed: Feb. 7 2024).

[45] Oracle, ParallelCamera (JavaFX 8). [Online]. Available: https://docs.oracle.com/

javase/8/javafx/api/javafx/scene/ParallelCamera.html (accessed: Feb. 7 2024).

[46] Oracle, PerspectiveCamera (JavaFX 8). [Online]. Available: https://docs.oracle.com/

javase/8/javafx/api/javafx/scene/PerspectiveCamera.html (accessed: Feb. 7 2024).

68

[47] Oracle, LightBase (JavaFX 8). [Online]. Available: https://docs.oracle.com/javase/8/

javafx/api/javafx/scene/LightBase.html (accessed: Feb. 7 2024).

[48] Oracle, AmbientLight (JavaFX 8). [Online]. Available: https://docs.oracle.com/

javase/8/javafx/api/javafx/scene/AmbientLight.html (accessed: Feb. 7 2024).

[49] Oracle, PointLight (JavaFX 8). [Online]. Available: https://docs.oracle.com/javase/8/

javafx/api/javafx/scene/PointLight.html (accessed: Feb. 7 2024).

[50] Oracle, Image (JavaFX 8). [Online]. Available: https://docs.oracle.com/javase/8/

javafx/api/javafx/scene/image/Image.html (accessed: Feb. 20 2024).

[51] Creative Commons, CC0 1.0 Deed | CC0 1.0 Universal | Creative Commons.

[Online]. Available: https://creativecommons.org/publicdomain/zero/1.0/ (accessed:

Feb. 5 2024).

[52] 3D TEXTURES, 3D TEXTURES. [Online]. Available: https://3dtextures.me/

(accessed: Feb. 2 2024).

[53] Oracle, PixelReader (JavaFX 8). [Online]. Available: https://docs.oracle.com/javase/

8/javafx/api/javafx/scene/image/PixelReader.html (accessed: Apr. 29 2024).

[54] Oracle, PixelWriter (JavaFX 8). [Online]. Available: https://docs.oracle.com/javase/

8/javafx/api/javafx/scene/image/PixelWriter.html (accessed: Apr. 29 2024).

[55] Oracle, WritableImage (JavaFX 8). [Online]. Available: https://docs.oracle.com/

javase/8/javafx/api/javafx/scene/image/WritableImage.html (accessed: Apr. 29

2024).

	List of Abbreviations
	List of Figures
	List of Tables
	List of Listings
	Abstract
	1. Introduction
	2. Background
	2.1. Open Object Rexx
	2.2. Java
	2.3. Bean Scripting Framework for ooRexx
	2.4. JDOR
	2.5. JavaFX

	3. Requirements
	3.1. Java
	3.2. Open Object Rexx 5.0.0
	3.3. BSF4ooRexx850

	4. Development
	4.1. JavaFXDrawingHandler
	4.2. Packages in Java
	4.3. JDORFX
	4.4. Environment for Nutshell Examples

	5. JDORFX Commands and Examples
	5.1. Comparing JDOR and JDORFX - Drawing
	5.2. Comparing JDOR and JDORFX - 2D Shapes
	5.3. Comparing JDOR and JDORFX - 2D Transformations
	5.4. Command List
	5.5. Drawing 3D Shapes
	5.6. Parallel and Perspective Camera
	5.7. Light
	5.8. Transform 3D Shapes
	5.9. Material
	5.10. Map

	6. Limitations
	7. Conclusion

