Page 1

Wirtschaftsuniversitat Wien

Abteilung flr Wirtschaftsinformatik

LV-Nr.: 1826 SS 2006
Vertiefungskurs VI: Projektseminar

LV-Leiter: Univ. Prof. Dr. Rony G. Flatscher

Seminararbeit
BSF4Rexx and OpenOffice.org

Nutshell-Examples

Autoren:
Gerhard Gorlich, Matr. Nr. 0251857
Asmund Realfsen, Matr. Nr. 0250879
David Spanberger, Matr. Nr. 0353637

Page 2

Table of Contents

T ADSEITACE ¢ ee ettt et e e et e et e baataaaantannnannnaaa 10
2 SYStEM-DESCHIPHION.....ceii ittt e e e e e e e e e e e e e e eeeeeeeeeeees 11
2.1 Bean Scripting FrameWOTIK..........uuuiiieeieieeeieiiee e e et e e e e e e e eeaaae s 11
D T I o 111 (o Y28 11
2.1.2 AFCRITECIUNE. ... e e e e e et ettt r e e e e e e e e eeeaaaeas 12

2.2 BSFAREGXX. ettt ettt ettt e e e e e et aaa s 13
D B o 1 (o] V2SS UPPPPPPPRRRN 13
2.2, 2AFChITECIUNE. ... 14

2.3 OOREXX ettt ettt ettt bt e e ettt ettt e e e eeeeettaaaae s 16
2.3 HISEOIY it 16
2.3.2 SYNTAX @NA USE...oiiiiiiiiiiee e e ettt es e e e e e e e e eeeeaaaanneeeeeeeaeeenaanes 17
2.3.2.1 Variables and OUIPUL...........cooiiiiiiiiiii e 17

2.3.2.2 LOOP S ettt ettt ettt e e et e e e et b eeeaaaans 17

2.3.2.3 ROULINES. ..o 18

2.4 OPENOTICE.OIG. ..ot e e e e e e e e e e et e e e e e e e eeeeraa s 19
A S B @e] 1] 0T =T 0| 1TSS 19

D o I I] (= TS TPRT PP 19

DA S A [0] o] =17 20

2403 MAth.ceeeee s 20

24714 DFQW. .ottt ettt e e e et e e e taa e e e eaaans 20

2.4.0.5 CalC. i s 20

24,710 BASE. .t 20

2.4.2 OpenOffiCe.0rg VEISIONSuuuuiiiiieiiiiiiiie ettt e e e e e eeaae e e e aeeaaees 21
2.4.3 Universal Network Objects (UNO)........cooiiiiiiiiiiieeeeeeiiie e e e e 21
2.4.4 OpenOFfiCE.0IG APL.... .o e e e e e e e e e e e e e e eeeaaaes 23
2.4.5 SErVICE MaANQQEIS....eetiiiiiiiiiiiiiiititiee ettt ettt 23
2.4.6 Component CONEXL.......iiiiiiiiiie e e e e e 24
2.4.7 OpenOffice.org automation with BSFAREXX.........ccceveviiiiiiiiiiiieieieieeceecees 24
248 UNO.CLS....c oottt ————————_ 25

2.5 Interaction of COMPONENTS.......coviiiiiiieei e e e e e e e e e aar s 26

2.6 How to Get @ RUNNING SYStEML.....ciiiiiiiieeee e 27

2.6.1 Java, OpenOffice.org and OOREXX......ccceiiiiuuuiiieeeiiiiiiiee e e e e e e e e e eeeaees 27
2.6.2 BSFAREXX. .. uuuutuuuuuuiuiuiuiieauaiaatauaataaaataeesssassassasasassassssssassnsaaansnsnnnsnsnnnnnnnnnnnnnnnnns 28
2.6.3 External Java LIbraries. ...t 28
B EXAMIPIES et e e e e e et et — e aaeeeeaeaa— e aaaearaaa———————— 29
3.1 C1 — LearNing BSFAREXX.....cuuuueiieieeeeiicee ettt e e e e e e e e e e e ae e 29
3.1.1 Example C1-1 Java Randomizer Class........ccooeviviiiieeeiiiiiieeeeeecee e, 29
3.1 1.1 EXPlaN@tioN....ce e e e e e 30

3.1.2 Example C1-2 — Regular EXPresSsSioNnS........ceveeeieiiiiiiiee e e e e eeeaees 32
3.1.2. 1 EXPlaNation. ... i 32

3. 1.3 Example CT-3 Math. ..o e e 34
3.1.3. 1T EXPlan@atioN......oee e 35
3.1.4Example C1-4 Java awt and swing ClasSes..........ccoeeeeeeeeiiiiiiiiiiiiieeee e 37
3.1.4.1 EXPlanatioN. e i e 38

3.1.5 Example C1-5 MeSSaQe BOXES......ciiiiiiiiiiiiiiiieeeeeeeeeeiiee e e e e e e e e e e e eeeaens 40
3.1.5. 1T EXPlanation....... e e e e 40

3.1.6 Example CT1-6 SiMPle SWING...cccoeiiiiiiieee e e e e eevaee e eeeeees 43
3.1.6. 1T EXPlaNatioN......ciiiiiiieeeee e 45

3.1.7 Example C1-7 Java Midi ClasSSeS.....ccceeviiiiiiiiiiiiiiieee e 48
3. 1.7 EXPlan@atioN......eei e e e 48

3.1.8 Example C1-8 RefleCtion...........uooeiiiiiiiiiiiee e 50
3.1.8.1T EXPlanatioN.......ceeeiicceeeeee e 51

3.1.9 EXamPIe CT-O HaSh . ..ueeiiiee e e 53
3.1.9.1T EXPlanatioN.......eee e e e e e aaaaen 54
3.1.10 Example C1-10 Java.net Server Classes.......c.ccueeeeiiiiiiieeeeiiiiee e, 56
3.1.10.7 EXPlanation. ... e 56
3.1.11 Example C1-11 Java.net Classes for a simple client............cccccveeeeerrnnennnnns 58
G 20 I I R B o] =T g - T RSP OUPUPRPRPRR 58
3.1.12 Example C1-12 — Drawing Charts........ccoeeiiiiiiiiieieeeiiee e 60
3.1.12.1 The JFreeChart Library........cccoooiiiiiiiieiieee e 60
31122 EXPlanatioN. ... i 61
3.1.13 Example C1-13 Text-to-Speech with FreeTTS........ccooiiiiiiiiiiiieeieeeeee e, 63
31131 EXPlanatioN. ... i 65

3.1.13.1.1 The Text-to-Speech Functionality............ccccceeereeeririrnnnnnn.. 65

3.1.13.1.2 Position a Frame to the Middle of the Screen.................. 65

3.1.14 Example C1-14 — Playing MP3'Sooiiiiiieeeeeeeeee e 67
3.1.14.1 The JLayer LIDrary........ooooeeiiiiiiee et e e e eeeaeees 67
3.1.14.2 EXPlaN@tioN.t 67
3.1.15 Example C1-15 Parse XML with JDOM........ccooiiiiiiiiiiiiiiiiiiiiee e 68
31151 EXPlanation......ccce i 69
3.1.16 Example C1-16 Java.net Classes for sending an HTTP/GET Request........ 71
3.1.16. 1 EXPlanatioN.o 72
3.1.17 Example C1-17 3D GraphiCS.....cccvuueiiiiiieeeeiieeeeiiiee e e e eaaens 73
311771 JAVA BD e e e e e e e e e e e 73
3117 2 EXPlanatioN.o 74
3.1.18 Example C1-18 Read ID3 Tags from MP3 files...........ccoovviriiiriiiiiiiiiiiiiiiinnnns 76
3. 1181 EXPlaN@atioN.oee i 76
3.1.19 Example C1-19 Java.calender Classes for Creating a Calendar.................. 78
3.1.19.1T EXPlanation......cee i aaaaa 79
3.1.20 Example CT1-20 JDBC......couiiiiiiiiee e e e e e eeaaaans 82
3.1.20.1 Explanation — createDB.ReXX.......ccecevviiieeiiiiiiiieeeeiceee e 83
3.1.20.2 Explanation - IogDB.REXX.cccvvviiiuiiieieeieiiiiiiicee e 87

3.2 C2 — Automating OpenOffice.org With ReXX.........cccooiiiiiiiiiii, 89
3.2.1 Example C2-1 Update a Database using BSFAREXX.......ccceceiviiiiiiiiieeeeeeninnnn, 89
3.2 1.1 EXPlanatioN......ooe i 89

3.2.2 Example C2-2 — Clipb0ard..........coeeeeiiiieeieicee e e 91
3.2.2.1 The Clipboard ServiCe........ccoeiiiiiiiiiiiiieie e e 91
3.2.2. 2 EXPlaNatioN. ... iiiiiiieeeeee e 92

3.2.3 Example C2-3 Print with OpenOffiCe.0rg......cooeeiiiiiiiiiiieeeieiicee e 94
3.2.3. 1T EXPlanatioN......oeeei i e e 94

3.2.4 EXample C2-4 TRESQUIUS.........uuiiiiiieeeeeiee et e et e e e e e eeeeaeeeanens 95
3.2.4.7 EXPlan@tioN......uueeit e 95

3.2.5 Example C2-5 Cells and Charts in OO-Chart............ccooviiiiiiiiiinniiiiiiiicieeeeeees 97
3.2.5. 1T EXPlanation.......coeeiiiie e 99

3.3 C3 — Combining Java APIs and OpenOffice.org with 0OOREeXX.........ccceeeeeiiiiivivvennnn... 101
3.3.1 Example C3-1 Inserting Charts in OpenOffice.org Draw............cccceevvvvvennnnn. 101

33,11 EXPlaNatioN....uuee e 103

3.3.2 Example C3-2 Regexp and Charts.........ccouoieeiiiiiiiiiie e 106
3.3.2. 1 EXPlaNatioN. ... i i 107

3.3.3 Example C3-3 FreeTTS and OpenOffice.org..........ccoevviiiiiiiiviieeiiiiinn 109
3.3.3. 71 EXPlanation......ccuuuuiiiiiiiiiiiiiiiiiiiiieteee e e e e ee e 110

4 Conclusion and FUtUre ProSPECESceeiiiiiiiiiiee et e e 111

D R B EIEINCES. .. e e e 112

Page 6

lllustration Index

Figure 1: Architectural Overview [Han€05].......cceii i 12
Figure 2: Communication between Rexx and Java with BSF4Rexx [Flat06]...................... 14
Figure 3: Code Example for connecting to Java [FIat06]............ccoovviiiieiiiiiiiiiieiieieeeeee 14
Figure 4: Communication between Rexx and Java using BSF.cls [FlIat06]......................... 15
Figure 5: Code example for connecting to Java using BSF.cls [FIat06].............cccceevevennnnee. 15
Figure 6: UNO component COMMUNICAtION..........ooiiiiiiiiiieieee e e e e eeeeeens 22
Figure 7: OO component based architeCture...............uoiiieiiiiiiiiiicciee e 22
Figure 8: Interfaces, Service and Implementation [devel05, p. 70].....ccccvvveeeeiiiiiieeeiiieeeee, 23
Figure 9: Component Context and Service Manager [devel05, p. 90]..........cceeeeeeieeieiennnne. 24
Figure 10: Concept of remote controlling OpenOffice.org with Rexx [Aug05]..................... 26
Figure 11: Output from eXxample CT-To eeeaees 29
Figure 12: The code of @Xample Cl=T ... it e e e e e e e e e e e e e e e e e e aeaaeaeas 30
Figure 13: The code of example CT-2......coooiiiiiiiiieee et e e e e e e e e eeeaaeees 32
Figure 14: Output Of @Xample CT=2. .. .u ittt ee e e e ae e e e e e e e e e e aeaeaeaaaaeas 33
Figure 15: The code for example CT-3......cooiiiiiiiiirre e 34
Figure 16: Output from example CT-3.... ... e e eeeeaaes 34
Figure 17: Error message from example CT-3.. ... oo 36
Figure 18: Screenshot of example Cl-4... ... e eeeeaaes 37

Figure 19: The code of example CT-4.......oooriiiiiiie et e e e e e e e eeeaaaees 38

Figure 20: Output of example CT-5... ..o e e e e e e e e eeeaaeees 40
Figure 21: JOptionPane - MeSSageBoX 2.........oooiiiiiiiiiiiiiiiiiiiiiiiiee e 40
Figure 22: JOptionPane - MeSSageBOX T......coeiiiiiiiiiiiie e ee e eeeeeaees 40
Figure 23: JOptionPane - DialogBOX.......ccoeeiiiiiiiiiiiiiiiiiee e 41
Figure 24: JOptionPane - INPUIBOX.........uiiiiiiiiiiiiiiiiiiiee e eeeee e 41
Figure 25: BSF.DIALOG - M@SSAQEBOX......ccciiiiiiiiiiiiiieeeeee et e e et e e e e e e e eeeaaaees 42
Figure 26: BSF.DIALOG INPUBOX......ccuuiiiiiieiiiiiee et e e e e e e e e eeaees 42
Figure 27: BSF.DIALOG - DIalogBOX........ccoiiiiiiiiiiiiiiiiiiiiiieeeieeit e 42
Figure 28: Screenshot of example CT-6....cccovieiiiiiiiii e 43
Figure 29: The code of example CT-6......ccoeiriiiiiiiiiieiiiiieee e e e 44
Figure 30: The code of @xample Ch=7. ..ot ee e e e e 48
Figure 31: The code of @Xample CT=8........uuuiuiiiiiiiiiiiiiiiiiieieeeeeee e e e e e e e e e e e e e e e e e aaeeeas 51
Figure 32: Output Of @Xample CT=8........uuuiiiiiiiiiiiiiiiiiiiieeeeeeeeee e ee e e e e e e e e e e e e eeaeeaaaaaeas 51
Figure 33: The code for eXxample CT-9... ... e e eeeaees 53
Figure 34: Output of example CT-T0......cooiiiiiiiiiiee e e e e e e e e e e eaaaees 56
Figure 35: The code for example CT-T0.......cooiiiiiiiiiiiiii e 56
Figure 36: Output from example CT-TT ... e eeeaees 58
Figure 37: The code of example Cl-TT .. e 58
Figure 38: The code for example CT-T2.. ..ot 60
Figure 39: Pie Chart Framie......ccooeeeiieee e e e 61
Figure 40: Screenshot of example Cl-13. . e 63

Figure 41:
Figure 42:
Figure 43:
Figure 44:
Figure 45:
Figure 46:
Figure 47:
Figure 48:
Figure 49:
Figure 50:
Figure 51:
Figure 52:
Figure 53:
Figure 54:
Figure 55:
Figure 56:
Figure 57:
Figure 58:
Figure 59:
Figure 60:

Figure 61:

The code for example CT-13. ... e e e 64
The code for eXample CT-T4.......coeiiiiiieee e 67
Output from example CT-T5. .. e 68
The code for example CT-T5. . e e e e e 69
Output from example CT-T6.....ccooiiiiiieieiieeeeeeere e e e e e e e e e e e e e 71
The code of eXample CT-T6......ccooeeiiiiieieeee e 71
The code of example C1-17 (based on [J3D00, p. 1-21]).ceveeeeiiiiiieeeiiiee e, 73
Output of @XamPle CT-T7. e e 74
The code for eXxample CT-18... ..o 76
Output from example C1-19, part T......ooooiiiiieiiiceee e 78
Output from example CT-19, PArt 2.......oeiiiiiiiieiiee e 78
Output from example CT1-19, Part 3.... ..o 78
The code of example CT-19... ..o 79
The code for example C1-20, createDB.ReXX........ccccvvvvvrviiiiiiiiieeeeeeeeeeeeieiiannen 83
The code for example C1-20, logDB.Rexx, part T........ccoovvieeeiiiiiieeeeeiiiieeeeeeeeenn. 86
Output from example CT-20........ceiiiieeiiiiie e e 88

The code for eXample C2-T.....ovu et 89
The code for @XamPple C2-2........ceeiiiiiieee e 92
Output from example C2-2.........oiiiiiieieeee e 93
The code for example C2-3.......ouueiiiiiiiieee e e e e e 94

The code of example C2-4........ccoooiiiiiiieeeee e 95

Figure 62: Output from example C2-4.........coouuiiiiiiiiiiiieeee e 96
Figure 63: Screenshot of example C2-5........cooiiiiiie e 97
Figure 64: The code for example C2-5..........uiiiiiiiiiiiiiiiieeeee et 98
Figure 65: Screenshot of example C3-T......cooiiiiiiiii e 101
Figure 66: The code of example C3-1, Part 1. 102
Figure 67: The code of example C3-1, Part 3.......coe i 103
Figure 68: Screenshot of example C3-2.........i i e 108

Figure 69: The code for example C3-3.......cooiiiiiiii e 109

Page 10

1 Abstract

In this paper a series of nutshell examples for BSF4Rexx' are presented.

BSF4Rexx is a software that makes it possible for Open Object Rexx (0oRexx) to use Java
functions an libraries. In addition BSF4Rexx makes it possible for Java applications to use

ooRexx as a scripting engine. Only the first topic is covered in this work.

With BSF4Rexx all kinds of applications that provide a Java programming interface can be
accessed and controlled using ooRexx. OpenOffice.org provides a Java API for all its

modules, and is because of this controlable from ooRexx with the help of BSF4Rexx.

This work consist of two parts. In the first part the theory of ooRexx, BSF4Rexx and
programming within OpenOffice.org is explained. In the second part a series of nutshell

examples of how to access and utilize Java from ooRexx is presented.
The examples are divided into three categories.

In the first category (C1) BSF4Rexx is used to connect ooRexx with the standard Java API,

and perform some simple operations. In addition some external libraries are used.

In the second category (C2) ooRexx is used to control OpenOffice.org. These examples
contain automation of common tasks like printing, opening documents, inserting data into

a spreadsheet or create a chart.

In the third category (C3) the knowledge from category one and two is used in order to

create a bit more advanced examples.

' Bean Scripting Framework for Rexx

Page 11

2 System-Description

This chapter describes the technologies of ooRexx, BSF4Rexx and OpenOffice.org in a

theoretical way and builds the base for the practical examples in chapter 3.

2.1 Bean Scripting Framework

».Bean Scripting Framework (BSF) is a set of Java classes which provides scripting lan-
guage support within Java applications, and access to Java objects and methods from
scripting languages. BSF allows one to write JSPs in languages other than Java while

providing access to the Java class library...“ [AJP06]

A Bean Scripting framework enables scriping langauges like Tcl, Python, ooRexx to ac-
cess Java Classes, Objects and their methods. But it also enables Java to execute pro-

grams written in a supported scripting language.
2.1.1 History

The development of BSF started in 1999 at the Watson Research Center. The initial inten-
tion was to make Java Beans available from scripting languages, so that they can access
the enormous archive of Java components. More and more developers noticed the useful-
ness of this framework. So the global interest in this technology grew very fast. In 2002
BSF get added to Jakarta Project which is part of the Apache Software Foundation and of-
fers open source Java solutions. Until nowadays, many improvements had been made and
BSF has reached its version 2.3. [AJP06]

Page 12

2.1.2 Architecture

Java Application

Script Script Script g:;;li
Code Code Code 4
Code

Figure 1: Architectural Overview [Hane05].

There are two major components of BSF:

“The BsrFmanager handles all scripting execution engines running under its control,
and maintains the object registry that permits scripts access to Java objects. By cre-
ating an instance of the BsrFmanager class, a Java application can gain access to
scripting services.“ [AJP06]

The BSFManager cares about the scripting execution engines of the supported lan-
guages. So by creating an instance of it, Java programs can execute Code for the

scripting languages.

The other way round, the BSFManager handles the object registry of Java and al-
lows scripting languages to access these objects.

»The BsFEngine provides an interface that must be implemented for a language to
be used by BSF. This interface provides an abstraction of the scripting language's
capabilities that permits generic handling of script execution and object registration
within the execution context of the scripting language engine. “[AJP06]

The BSFEngine provides the interfaces, which are doors between Java and the
scripting languages. It offers a common interface for all the supported languages. So
a Java program can executed code for different scripting languages via the same in-

terface.

Page 13

2.2 BSF4RexXx

BSF4Rexx is a Bean Scripting Framework for the scripting language ooRexx. With
BSF4Rexx Java Classes, Objects and methods can be accessed by ooRexx and ooRexx

scripts can be executed by Java. [Burger05]

2.2.1 History

 “Essener Version”

This version was developed by Prof. Flatscher and his student Peter Kalender in the
years 2000/2001. In this version only Java could execute ooRexx code.

* “Augsburger Version”

This version was developed by Prof. Flatscher in 2003. With this version it was pos-
sible to access Java Classes, objects and methods from ooRexx.

* “Vienna Version”

This is the latest version of BSF4Rexx. Among other improvements this version of-
fers the usage of typeless variables and support for using automating

OpenOffice.org.

Page 14

2.2.2Architecture

The following figure shows the architecture of the “Vienna Version”.

-~

y
(

BSF()
BsfDropFuncs()
BsfinvokedBy()
BsfLoadFuncs()

BsfLoadJaval()
BsfQueryAll Functlon s()

BsfQueryReqg IStE.‘FEdFLIﬂCtIUﬂS

&\

BsfUnloadJava()
Bsfversion()

N

_\\/—\/ Y

>/

Java Program
. & D
BSF (Java)
e bl BSFdRexx RE‘:}(K
GenEngmi < 1 SCFIptS
o —— | (C++) |
Hanuuﬁmuf \\\ /j/
RexxAndJava}\) e - x;. >
- "x.,______r)_/

Figure 2: Communication between Rexx and Java with BSF4Rexx [Flat06].

The following example should give a guess how Java can be addressed by ooRexx.

/* "getlavaVersion.rex":

/* load the BSF4Rexx functions and start a JVM, 1f necessary

if rxFuncQuery("BSF") = 1 then /* BSF() support not loaded yet 7 */

do
call rxFuncaAdd

call BsfLoadJava
end

"BsfLoadFuncs",
call BsfLoadFuncs /* registers all remaining BSF functions

/* loads Java

say "java.version:" bsT{'invoke®,

*/

Figure 3: Code Example for connecting to Java [Flat06]

classic Rexx version, querying the installed Java version */

"BSF4Rexx", "BsflLoadFuncs"
*/
*/
'System.class', 'getProperty', 'java.version')

Depending on the version of Java a possible output could be: Java.version: 1.5.0_06

Page 15

The newer versions come together with the file “bsf.cls”. It contains several functions,
which can save a lot of time. Importing this file in a ooRexx script with the line “::requires

bsf.cls” makes this support available.

e 2ha

/ BSF() I
BsfDropFuncs() .
)

/R BsfinvokedBy(
BsfLoadFuncs()
BsfLoadJ EI\I'E

}_ BszueryAllFunctlons \
BsfQueryRegisteredFunctions()

\ BsfUnloadJaval) j
,\ BSWersmnﬂ /{\

Java Program ooRexx environment
I (e.g. ".bsfdrexx")
BISF (Java
(_}_ JNI / BSF.cls | |0oRexx
S — BSF4Rexx .
< RexxEngine < |5C|'|pt5
o S——— (C++)
| BEF megistry |\ .ll
RexxAndJavab S]__,/ 7 >

Figure 4: Communication between Rexx and Java using BSF.cls [Flat06]

The following example should show, that in this simple case, the code length can be re-
duced by the factor 3.

/* "getJavaVersion.rex": classic Rexx version, guerying the installed Java version */

say "java.version:" bsf({'invoke', 'System.class', 'getProperty', 'java.version')
::requires bsf.cls /* load the Java support */

Figure 5: Code example for connecting to Java using BSF.cls [Flat06]

Although the code has only two lines the output, depending on the version of Java, is the

same: Java.version: 1.5.0_06

Page 16

2.3 ooRexx

Open Object Rexx (0oRexx) is a object oriented scripting language which is available on a

wide range of different platforms. ooRexx has several distinct features:[0oR05]

A syntax near natural English language,
e easy to use because of few rules,

e interpreted line for line,

e many built-in functions and

e typeless variables.

Additionally programming interfaces exist for many applications and operating systems.
2.3.1 History

The history of ooRexx starts in 1979 when Mike Cowlishaw started the development of the
Rexx language. (REstructured eXtended eXecutor) Cowlishaw worked for IBM and and he
tried to make a scripting language that could replace the EXEC and EXEC 2 languages. It
was designed to be a scripting language that could run on a wide range of systems, and
not dependent on one type of technology. Over the years IBM included Rexx as a scripting
language in almost all their own operating systems. They also made packages for other
famous operating systems like Novell Netware, Windows and Linux. Also several non IBM

versions was developed. [Wiki06]

In 1996 American National Standards Institute (ANSI) published an own standard for Rexx,
the ANSI X3.274-1996 standard. [Wiki06]

Rexx is a procedural language and it has no support for object oriented concepts. In 2004
IBM released an object oriended version of Rexx : Object Rexx. Object Rexx is the basis
for ooRexx that was first released in 2005. [Wiki06] ooRexx is open source software
licensed under the Common Public License (CPL) v1.0. The current version of ooRexx is
3.0.0 for Unix and 3.0.1 for Windows.

Page 17

2.3.2 Syntax and Use

In order to understand the examples provided in this work, a basic knowledge of the Rexx
language is necessary. In this chapter some basic Rexx language constructs are
explained. The ooRexx reference? guide can be consulted, if additional knowledge is

required.

2.3.2.1 Variables and Output

5
1

© o>
<

0
a a+b="a+hb

In the code above the number 5 is saved in variable A, and 10 is saved in variable b. In the
third line the command say is used in order to write first the text “a + b =“ on the screen,

and then the sum of variable A and b is added.

ooRexx is case insensitive, meaning the command “a = 5” is the same as “A = 5”. Because
of this ooRexx feature, the use of a lower case “a” in third line, and a upper case “A” in the

first line does not make any trouble.

Text surrounded by quotation marks is always interpreted as text, and not as a command

or a variable.

The code above gives the following output.

[a+b=15

2.3.2.2 Loops

In ooRexx loops are created with a DO END statement, that comes in many different

variations. One simple variation is demonstrated in the code below.

The output will be that the script prints all numbers from 5 to 9 on the screen.(inclusive)

2 http://www.ooRexx.org/Rexxref.pdf

Page 18

2.3.2.3 Routines

A routine is simply created with the command ::routine, and end with the return statement.

say pow3(2)

::routine powd
use arg a
return a * a * a

In the code above, the say command calls the pow3 routine with an argument with the
value 2. The pow3 routine returns the argument multiplied 3 times with is self. The output of

the code block above is “8”.

Page 19

2.4 OpenOffice.org

OpenOffice.org is an open source office suite developed by the OpenOffice.org project.
OpenOffice.org is distributed under the terms of the LGPL (see also C1-11 p. 62). This
licensing policy allows the usage of the code for the non open source StarOffice suite,
distributed by Sun Microsystems. This commercial OpenOffice.org version is
supplemented with some proprietary software components like the “Enterprise Tools”
package. The current version is 8.0 [Star06]. OpenOffice.org uses the vendor-neutral
OASIS open document format, an open, XML-based standard (ISO 23600) for office

documents [OASIS06].

The following Table shows the history and developement of OpenOffice.org:

The German company StarDivision created the first version of the StarOffice

1984 '
suite
1999 StarDivision was bought by Sun Microsystems. Sun offered StarOffice 5.2 as a
free download.
Sun Microsystems announced the OpenOffice.org project. In the same year the
5000 OpenOffice.org homepage was set up and the source code of StarOffice 6.0

could be downloaded and modified. Proprietary, non open source, software

components had been removed by Sun Microsystems.

2001 | The first version of OpenOffice.org was released, Build 638c

2002 | OpenOffice.org version 1.0 was released

2005 |The latest version, 2.0, was created.

2.4.1 Components

The OpenOffice.org office suite provides six major applications: Writer, Impress, Math,
Draw, Calc and Base [cp. O006]:

2.4.1.1 Writer
Writer is a modern word processing tool. It offers a large set of features for editing and
formatting documents. Wizards help the user creating standard documents such as letters

or faxes. The “AutoComplete” feature suggests common words and phrases to complete

Page 20

what the user is typing at the moment. A built-in spell checker checks the document on the
fly and the thesaurus feature can be used to get synonyms for words (see also example
C2-4). Furthermore Writer can import Microsoft Word documents and export documents to

HTML or Portable Document Format (.pdf) and has a built in interface to email software.

2.4.1.2 Impress

Impress is a tool for creating multimedia presentations. It offers multiple views at the
current presentation such as Slides, Notes, Outline or Handout view. A set of drawing tools
allow the creation of diagrams and pictures. Presentations can be enriched by using
animation effects or clip arts. Impress can import Microsoft PowerPoint presentations and
export presentations to many different Formats such as .pdf, Flash (.swf), pictures (JPEG)
or XHTML

2.4.1.3 Math

Math is a component for creating mathematical equitations. It can create well formatted
equitations in text documents or formulas for Calc. It can be used as a stand-alone

application or with other OpenOffice.org components.

2.4.1.4 Draw

Draw is a tool for creating diagrams. It offers various formatting and style options for 2D
and also 3D objects. Draw can import most common graphic formats like JPEG, PNG, GIF

and export graphics to Flash (.swf).

2.4.1.5 Calc

Calc is a spreadsheet program. It offers wizards for a wide range of spreadsheet functions
and diagrams. It allows to import and process data from external data sources and
databases. A “Scenario Manager” allows “what if...” analysis. Calc can import Microsoft

Excel documents and export documents among others to .pdf and Microsoft Excel format.

2.4.1.6 Base

Base allows to manipulate databases from OpenOffice.org. Base comes with a built-in
HSQL database engine (a database engine written in Java), but can also be used with
other database systems. Base enables the user to create reports, forms, SQL views and

manipulate data.

Page 21

2.4.2 OpenOffice.org Versions

Apart from StarOffice there are some other Office suites based on OpenOffice.org, e.g.
AOL Office, KaiOffice, MagyarOffice (Hungarian), NextOffice (for Mac) and Pladao Office
(Thai). Furthermore there is an OpenOffice.org version for Windows that can be installed
on USB sticks (86MB) called Portable OpenOffice.org, created by John Haller [portO006].

2.4.3 Universal Network Objects (UNO)

UNO is the base component technology of OpenOffice.org. UNO components are objects
in the form of compiled and bound libraries. They must implement certain interfaces and
run in a UNO context. These objects are specified by the interfaces they implement,
described in a language independent interface description language (UNOIDL) which is
similar to CORBA or MIDL. Communication between objects takes place only over calls to
these interfaces [devel05, p. 65]. This concept allows UNO components to be accessed
and implemented in every language for which a UNO language binding exists [udk06].

Currently complete language bindings exist for [udk06]:
C++
Java
Python

Additionally there exists bindings that allow access but not the development of new

components. These are bindings for [udk06]:
OpenOffice.org Basic

Common Language Infrastructure (CLI) from which Microsoft .NET is an

implementation

Object Linking and Embedding (OLE) Automation

UNO also provides a way of communication between it's components. So called “bridges”
can send method calls and receive return values between processes and objects written in
different programming languages. These bridges use a UNO specific remote protocol
(URP) and can communicate over sockets or pipes [devel05, p. 65]. Figure 1 illustrates the

communication of UNO components. Each of the components exists in a UNO

Page 22

environment which is provided as language binding. E.g. Component one could be written
in C++, accessed with the C++ language binding in a Unix context while component two

could be written in Java, running in a Java virtual machine on a Windows system:

Platform A URP-Messages Platform B

component) component

(e.g. TCP/IP
socket)

Figure 6: UNO component communication.

Figure 6 shows how the UNO components form different UNO applications®. The
applications have some specific components (e.g. a text document in the Writer), but they
also use common components (e.g. printer settings) or components from other
applications (e.g. diagrams in Impress). In this way code can be reused. Each component
can be exchanged easily with an other component if it provides the same interfaces which
makes the system flexible and easy to modify. Figure 7 lllustrages how the same

components can be used in differen OpenOffice.org applications®.

Applicatin A

Application B

(e.g. Writer) (e.g. Calc)
UNO Component UNO Component
UNO Compaonent
UNO Component UNO Compolkrent\UNO Component

UNO Component

UNO Component

Figure 7: OO component based architecture.

cp. [Burger05, p. 16].
cp. [Burger05, p. 15].

4

Page 23

2.4.4 OpenOffice.org API
The OpenOffice.org API is a language independent description of the OpenOffice.org

functionality [devel05, p. 66]. Objects are described by their interfaces. By convention, all
interfaces start with the letter 'X' (e.g. XDesktop). The API also uses special UNOIDL data
types that are mapped to the specific programming languages to describe the exchanged
data in an language independent way. The interfaces form the base for service

specifications. Since one interface Interfaces

should only describe one aspect of an
Service Specification

£45ATVICRDS

object (e.g. the object is “printable”),

Lo

UNO uses multiple-inheritance

interfaces in which more single-

inheritance interfaces are grouped

o>

together to describe components

[devel05, p. 69]. Furthermore, if an Service Implementation

«aCOmponents»

object shall be available as a general

service in a global component context,
Figure 8: Interfaces, Service and Implementation

an additional service description is [devel0s, p. 70].

needed that maps the service name to
such a “grouped interface” [devel05, p.
69].

2.4.5 Service Managers

A service manager is the root object for connections to UNO and serves as an entry point
for every UNO application. It is used to instantiate services by their service name, to
enumerate all implementations of a certain service and to add or remove factories for a
certain service at runtime. The service manager is passed to every UNO component
during initialization [devel05, p. 88]. The main interface of the service manager is the
com.sun.star.lang.XMultiServiceFactory interface. It offers three methods:
createlnstance() , createlnstanceWithArguments() and getAvailableServiceNames()
[develQ5, p. 88].

Page 24

2.4.6 Component Context

Often components need

more functionality or

information than a service
XComponentContext

manager can provide. ComponentContext

getValueByName ()
Therefore the concept of the getServiceManager ()

component context was

created. A component context

is basically a read only

container for named values. other Service XMultiComponentFactory
) Singletons Manager
One of these values is the cesingletonss cesingletars createlnstanceWithContext ()

service manager. The

component context was

designed to supersede the
] Figure 9: Component Context and Service Manager [devel05, p. 90].

service manager as the

central UNO object [devel05, p. 88f]. Figure 9 illustrates the connection between service

manager and component context:

A component context only supports the com.star.uno.XComponentContext interface. This
interface contains two Methods: getValueByName which returns a named value, and

getServiceManager which returns the service manager [devel05, p. 90].

2.4.7 OpenOffice.org automation with BSF4Rexx

As seen in chapter 3, the Bean Scripting Framework can be utilized to handle Java
classes with ooRexx. Via the Java language binding it is now also possible to use UNO
components. To use the Java UNO class files the Java classpath must contain at least the
files jurt.jar, unoiljar, ridljar and juh.jar from the <OfficePath>/program/classes directory.
The script setEnvironment4O0o0 that comes with the BSF4Rexx installation can help
doing this. With ScriptProviderforooRexx.jar, which is also installed with BSF4Rexx, it is
also possible to use ooRexx from within OpenOffice.org as a macro language. It only

needs to be added in the menu 'Extras’' — 'Package Manager' under 'My Packages'.

Page 25

2.4.8 UNO.CLS

The ooRexx class UNO.CLS is a helper class that automates common steps when
working with UNO. The line following line at the end of the ooRexx script makes this

support available.

|::requi res UNO CLS

The next code sample shows how UNO.CLS can be used to connect to OpenOffice.org:

xContext = UNO.connect ()

xMcf = xCont ext ~get Ser vi ceManager

The first line sums up a set of method calls that would be needed to connect to
OpenOffice.org and receive the component context service. In the second line the
getServiceManager Method is called and the component context returns a service
manager object (implementing the XMultiComponentFactory interface). In the next step,
the service manager can be used to get an instance of the desktop service manager, a
service manager for documents that can be used to load documents and open

OpenOffice.org applications.

Page 26

2.5 Interaction of Components

The following figure shows how the whole system is linked.

]
Java
o BSF
Resultat: Programm in
Fernsteuerung Skriptsprache
von OO
Java

Figure 10: Concept of remote controlling OpenOffice.org with Rexx [Aug05].

The orange squares on the right side are standing for script languages, which are suppor-
tet by a BSF Framework (see Chapter 3.3 for details). BSF is the bridge between a script

language and Java. Through BSF a script language can control Java.

The left, blue rectangle stands for Openoffice.org. It consists of several objects. The other
blue rectangle symbolises the UNO interface of OpenOffice.org. It allows Java to access

the objects of OpenOffice.org. So Java can control it.

This is the way how it works. Java controls Openoffice.org through UNO and Rexx controls

Java using BSF. So Rexx can remote control OpenOffice.org.

Page 27

2.6 How to Get a Running System

All the examples presented in this paper require ooRexx, Java and BSF4Rexx installed
and working on the system. Additionally some of the examples requires the installation of

external Java libraries.

In this chapter the installation and configuration of the necessary software is explained,

including download links and tips for how more information and help can be found.

2.6.1 Java, OpenOffice.org and ooRexx

Java can be downloaded from http://java.sun.com/

The examples in this paper are tested with Java 1.4.2, but any newer version should work

as well. It is recommended to use the latest released Java version.

OpenOffice.org can be downloaded from http://www.openoffice.org/.

OpenOffice.org is available in many languages, a list of all languages and links for
downloading can be found at this address: http://projects.openoffice.org/native-lang.htmil.
The examples in this paper is tested on version 2.0.2, but all subversions of version two

should work too.

ooRexx can be downloaded from http://www.ocoRexx.org/download.html.

The examples was developed on version 3.0.0. The newest stable version is 3.0.1 for

Windows and version 3.0.0 for Unix. It is also a beta version of the 3.1 version® available.

® ooRexx version 3.1 beta can be downloaded from this address:
http://sourceforge.net/project/showfiles.php?group_id=119701&package_id=130405&release_id=422462

http://java.sun.com/
http://java.sun.com/
http://java.sun.com/
http://sourceforge.net/project/showfiles.php?group_id=119701&package_id=130405&release_id=422462
http://sourceforge.net/project/showfiles.php?group_id=119701&package_id=130405&release_id=422462
http://java.sun.com/
http://www.oorexx.org/download.html
http://java.sun.com/
http://java.sun.com/
http://java.sun.com/
http://java.sun.com/
http://projects.openoffice.org/native-lang.html
http://java.sun.com/
http://java.sun.com/
http://java.sun.com/
http://www.openoffice.org/
http://java.sun.com/
http://java.sun.com/
http://java.sun.com/

Page 28

2.6.2 BSF4Rexx
BSF4Rexx can be downloaded from the following address: http://wi.wu-

wien.ac.at/rgf/Rexx/BSF4Rexx/current/.

The readmeBSF4Rexx.txt file also available from the link above, explain the installation of
BSF4Rexx in detall.

The examples in this paper was tested on version 2.6 (2006-06-11). BSF4Rexx is active

developed, and it is recommended to install the newest available version.

In case of Problems with installation or use of ooRexx or BSF4Rexx, the newsgroup

“comp.lang.Rexx* might be of help.

2.6.3 External Java Libraries

Some of the examples presented in this paper use external Java libraries to gain additional
functionality. E.g. the example C1-15 uses the external library JDOM in order to parse XML
data.

External libraries need to be installed and made available to Java. All libraries available to

Java, are also available to ooRexx with the use of BSF4Rexx.

The easiest way of doing this is to simply copy the external library into the “/ib/ext” directory
where Java is installed. On e.g. Suse Linux it is enough to copy the external library into this
folder: “/usr/lib/jre/lib/ext”.

This is the quickest and easiest method. However it might not be possible for normal users
to do this, because normal users might not have the rights to write into the “lib/ext”

directory of the Java installation.

An alternative method is to set the classpath to include the external library. The classpath
is an environment variable that Java reads. The classpath variable points to where Java

should look for the external libraries.

On a Linux system the content of the classpath variable can be inspected with the “env”

command, and set with the “export” command

More about the two methods can be found at this link:

http://mindprod.com/jgloss/classpath.html

http://mindprod.com/jgloss/classpath.html
http://wi.wu-wien.ac.at/rgf/rexx/bsf4rexx/current/
http://wi.wu-wien.ac.at/rgf/rexx/bsf4rexx/current/

Page 29

3 Examples

In this section the authors show how to use ooRexx, BSF4Rexx and OpenOffice.org by
providing little examples, which introduce the reader to the key-features of these technolo-

gies.

3.1 C1 — Learning BSF4Rexx

The C1 examples cover the usage of ooRexx and BAF4Rexx. These examples show how
to get access to and how to use classes of the standard Java API and external Java librar-

ies.
3.1.1 Example C1-1 Java Randomizer Class

This example is a command line program. It asks the user to guess a number between 0
and 9. Afterwards it uses the Java Randomizer to create a number between 0 and 9 and
compares it with the user input. Depending on the success of the user it writes an answer

to the command line.

Guezz a number hetween B and 9%
5]

Wrong? The right answer was:

Guezz a number hetween B and 9%

You are right?! Humber:

Guezz a number hetween B and 2t (e for exitl

Figure 11: Output from example C1-1

Page 30

/* inmport Java classes */
. bsf~bsf.inmport("java.util.Random', "Random') /* inport the Java Random zer O ass */

/* create objects */
r=. Random~new() ;

do whil e nunber<>"e" /* Start a |l oop which ends if the user enters "e" */
SAY M- s oo oo " /* output to console */
say "Quess a nunmber between O and 9! (e for exit) " /* output to console */
parse pul | number /* input fromconsole */
x=r ~next | nt (10) /* get a random nunber from the random zer */
if nunber=="e" then /* control structure if user enters "e" */
say "Good bye" /* output to console */
el se
do
i f nunber==x then /* control structure if user entered the right number */
say "You are right! Nunmber: " nunber /* output to console */
el se
say "Wong! The right answer was: " x /* output to console */
end
SAY M- - oo " [* output to console */
end /* end of |oop*/

/* make oo-like BSF4Rexx support available */
::requires BSF.CLS

Figure 12: The code of example C1-1

3.1.1.1 Explanation

/* inmport Java cl asses */
. bsf~bsf.inport("java.util.Randoni',"Randon') /* inport the Java Random zer C ass */

The method “bsf.import” of the class “bsf’ imports the “java.uti.Random” Class in the pro-

gram and assigns the name “Random” to it.

/* create objects */
r=. Randomnew() ;

This line creates an instance of the “Random Class” with the name “r”.

Ido whi | e nunber <>"e" /* Start a loop which ends if the user enters "e" */ |

This statement start a loop which ends if the variable “number” has the value “e”. Later the

user input will be assigned to this variable. So if the user enters “e” the loop will end.

SAY M- s o oo oo " /* output to console */
say "Quess a number between 0 and 9! (e for exit) " /* output to console */

Now write some output to the command line with the command “say”.

Iparse pul I nunber /* input from console */]

This line reads the input of the user from the command line. The command “pull” reads the
input and assigns it to the variable “number”. By default Rexx converts the whole input to

uppercase. Here the command “parse” is used to avoid this.

x=r ~next | nt (10) /* get a random nunber fromthe random zer */

Page 31

This Statement executes the method “nextint” of the Object “r’ with the argument “10”. This
method creates a random number between 0 and the argument — 1. The result gets as-

signed to the variable “x”.

i f nunber=="e" then /* control structure if user enters "e" */
say "Cood bye" /* output to console */

If the variable “number” has the value “e” then it writes “Good bye” to the command line.

el se
do
i f nunber==x then /* control structure if user entered the right nunber */
say "You are right! Nunber: " nunber /* output to console */
el se
say "Wong! The right answer was: " x /* output to console */
end

If the variable “number” has not the value “e”, the program compares the variable “number”
(user input) with the variable “x” (Random number from the Randomizer). If they are equal
it writes “You are right! Number “ and the number to the command line, if not it writes

“Wrong! The right answer was “ and the number.

This example is very simple and has no real difficulties. The only thing you have to be

aware is, that Rexx converts all input from “pull” to uppercase, if you do not use “parse”.

Page 32

3.1.2 Example C1-2 — Regular Expressions

This example demonstrates how to use the Java “regexp” library to parse strings.

The package java.util.regexp provides classes for matching character sequences against
patterns specified by regular expressions. The package contains two classes: the class
Pattern for representing regular expressions and the class Matcher for matching character

sequences against patterns [regexp06].

/* inmport Java cl asses */

. bsf~bsf.inport("java.util.regex. Pattern”, "Pattern”

. bsf~bsf.inport("java.util.regex. Matcher”, "Matcher"

str = "Did you know. You can use nessage boxes with the class bsf.dialog. Really!"
say str

pattern = .Pattern~conpile(": .*[.]")

mat cher = pattern~nmatcher(str)

if matcher~find() <> 0 then do
say matcher~group()

end

el se say "No nmatch found."

/* make o0o-1ike BSFARexx support avail able */
;:requires BSF.CLS

Figure 13: The code of example C1-2.

3.1.2.1 Explanation

First, the necessary classes Pattern and Matcher from the Java package java.util.regexp

are imported. Then a string 'str' with sample data is defined.

The following two lines create two objects: first an instance of the class Pattern is created.
This is done by a call to the static class method compile, with a regular expression pattern
as parameter. Then a call to the pattern objects method matcher returns an object of the

type Matcher which holds the string 'str' as input data:

pattern

.Pattern~conpile(": .*[.]")
mat cher

pattern~matcher(str)'

The matcher objects method 'find' attempts to find a subsequence in the matchers input

data:

if matcher~find() <> 0 then do
say matcher~group()

end

The 'find' method returns a boolean value indicating if a matching substring was found. If

so, the method 'group' returns the matching subsequence. If the find method would be

Page 33

called again, it would try to find the next matching substring in the input data and group
would return the next matching part.

This example has the following output:

> Rexx regexp simple.rex

Did you know: You can use message boxes with the class bsf.dialog.
Really!

: You can use message boxes with the class bsf.dialog.

Figure 14: Output of example C1-2.

The first line is the string with the input data, the second output line is the substring that
matches the specified pattern returned by the group method.

Another example how to use this package can be found in example C3-2.

Page 34

3.1.3 Example C1-3 Math

The following code demonstrates how to call static Java methods using BSF4Rexx. This is
done using some of the static methods in the java.lang.Math library. A static method is a
method that is directly available, and you do not need to create an object in order to use

the method.

669

In the following example the user is asked to input a number. If the user types an “e” or
“E”, the script is terminated. If the user inserts a number, the sinus, cosines, tangent,
square and the number raised to the power of itself is calculated and printed on the

screen.

/* inport classes */
. bsf~bsf.inport("java.lang. Math","Math")

do forever
say "lnput a nunber(e=exit):"
pul | nunber
I f nunber="E" then |eave
SAY M- - - oo "
/* This is all static nethods, hence we do not create an object - just call the nethod */
say "Sin of "nunber” ". Mat h~si n(nurber)
say "Cos of "nunber" ". Mat h~cos(nunber)
say "Tan of "numnber” ". Mat h~t an(nurber)
say nunber """ nunber” ". Mat h~pow(nunber , nunber)
say "Square root of "number" = ".Math~sqgrt(nunber)
SAY M- me oo "
say
say
end

/* make o0o0-1i ke BSF4Rexx support avail able */
;:requires BSF.CLS

Figure 15: The code for example C1-3

5 - 00 o

Sitzung Bearbeiten Ansicht Lesezeichen Einstellungen Hilfe

osmund@l i nux: ~/Document s/ !WJ/VK6-EC/code/mein> rexx example-c1-3.rexx
Input a number (e=exit)

Sin of 50 = -0.26237485370392877
Cos of 50 = 0.9649660284921133

Tan of 50 = -0.27190061199763077

50750 = 8.881784197001252E84

Square root of 50 = 7.0710678118654755

Input a number (e=exit)

A | | Befehlsfenster
__1_;___________J .

Figure 16: Output from example C1-3

Page 35

3.1.3.1 Explanation

At the last line of the script, the BSF.CLS file is loaded. This is essential in order to use
BSF4Rexx. An alternatively method is to load UNO.CLS, that is specially made for the
purpose of supporting ooRexx and BSF4Rexx development in relation to OpenOffice.org.
UNO.CLS automatically loads BSF.CLS. It is sufficient for scripts that do not work with
OpenOffice.org only to load BSF.CLS

UNO.CLS and the use of ooRexx in relation to OpenOffice.org is covered in detail later in
this paper.
On the the second line of the script the java.lang.Math library is loaded and made

available. The name Math can be used later in the script in order to refer to this library.

Inside the internal loop (do forever ... end) the user is prompted for a number, and the

number is passed to some static methods in the imported Java library.

say "Sin of "nunber”
say "Cos of "nunber”
say "Tan of "nunber” ". Mat h~t an(nunber)

say nunber """ nunber"” ". Mat h~pow(nunber , nunber)
say "Square root of "number" = ".Math~sqrt(nunber)

". Mat h~si n(nunber)
". Mat h~cos(nunber)

The code used in this example is just a simple extract of the possible mathematics
methods available to ooRexx with the help of BSF4Rexx. A complete list of all the functions

in the java.lang.Math library can be found in the APl documentation.®

| if nunmber="E" then | eave

Inside the loop, a check is done if the input value is the character “E” or “e”. If that is the
case the script will exit. It is only necessary to check for an capital “E”, because the “pull”

command used to retrieve the input value converts the input to capital letters.

If the user gives the script any input different from a number or an “e”, the script will fail.
The reason for this is that all the java.lang.Math methods used in this example requires

either an integer or a double value.

6 The API documentation for java.lang.Math can be found here:

http://java.sun.com/j2se/1.5.0/docs/api/index.html

http://java.sun.com/j2se/1.5.0/docs/api/index.html

- - 0o o

Sitzung Bearbeiten Ansicht Lesezeichen Einstellungen Hilfe

osmund@!| i nux: ~/Documents/ WJ/VK6-EC/code/mein> rexx example-c1-3.rexx =

Input a number (e=exit):
abc
Exception in thread "main" org.apache.bsf.BSFException: "invoke":
bean: [class java.lang.Math]
method: [SIN] not found!
Check method name or arguments (number and types):
arg # 1. [ABC] --> [ABC]

at org.rexxla.bsf.engines.rexx.RexxAndJava. javaCal IBSF(RexxAndJava. java: 2693)

777 *-* call BSF "invoke", "java.lang.Class@bd173", "SIN" , a.1

500 *-* forward to (.bsf~bsf.getJavaClassObjectProxy(sel f~bsf.FullJavaClassName)) M
ESSAGE (arg(1)) ARGUNENTS (arg(2))

47 *_* say "Sin of "number" = " .Math~sin(number)
REXO040E: Error 40 running /usr/bin/BSF.CLS line 500: Incorrect call to routine
REX0372E: Error 40.1: External routine "BSF" failed
osmund@! i nux: ~/Documents / WU/VK6-EC/ code/mein> J] =

= Befehlsfenster

Figure 17: Error message from example C1-3

-

If the user enters e.g. “abc” instead of a number, BSF4Rexx will try to find a method called
e.g. “sin” with the input value of type string within the java.lang.Math library. This method do

not exist, and BSF4Rexx will return the message bellow.

The error message contains the text “method: [SIN] not found !”, and the developer
might think that he or she used the wrong method name, or that something is wrong with
the import of the library. But a second inspection of the error message reveals the following
text that gives a hint about the real problem: “Check method name or arguments

(number and types)”.

It is possible to catch all errors in ooRexx with the “signal on” commands, as demonstrated

in example-C1-21. If the user enters a valid value, the following feedback will be given.

Page 37

3.1.4Example C1-4 Java awt and swing Classes

This example demonstrates how to create a GUI (Graphical User Interface). It contains 2
Radiobuttons and a label which shows different icons containing GIFs (Graphic Inter-

change Format) depending which radiobutton is activated.

i female i female

Figure 18: Screenshot of example C1-4

Page 38

/* inport Java classes */

. bsf~bsf.inport("javax.sw ng.JFrarTE”,"JFrane”g /* inport the Java Swing JFranme class */

. bsf~bsf.inport("|avax.sw ng.JLabel","JLabel " /* inport the Java Swing JlLabel class */

. bsf~bsf.inport("|avax.sw ng. JRadi oButton", "JRadi 0") /* inport the Java Swi ng JRadi obutton class */
. bsf~bsf.inport("|ava.awt.GidLayout","GidLayout") /* inport the Java Awt Gridl ayout class */

. bsf~bsf.inport("]avax.sw ng.|magelcon","lcon”) /* inport the Java Sw ng |mageicon class */

[* create objects */
| abel =. JLabel ~new("’

frame = . JFranme~ new(radi obut t on. Rexx")
mel e = . JRadi o~ new(" nal e");

femal e = . JRadi o~new("f emal e");

m con .lcon~new("male.gif");

flcon .lcon~new("female.gif");

frame~get Cont ent Pane() ~set Layout (. Gi dLayout ~new(2, 2, 5,5));
/* set the the frame to use the GidLayout */

frame~get Cont ent Pane() ~~add(mal e) ~~add(| abel) ~~add(f enal e) ;
/* Add | abel, icon and radiobuttons to frame */

/* Add event handling */
frame~set Def aul t Cl oseOper at i on(. bsf ~bsf. get Stati cVal ue("javax. swi ng. JFranme", "EXI T_ON_CLOSE"));

frane~bsf . addEvent Li st ener (' wi ndow , 'w ndowd osing', 'call BSF "exit"')
mal e~bsf. addEvent Li stener (" action', "', 'call setnale')
f enal e~bsf. addEvent Li stener (' action', '', 'call setfenale")

frame~set Locati on(500, 300); /* set the location of the frane on the screen */
frame~~pack()~~set Si ze(200, 150) ~~set Visi bl e(.true); /* Set the size of the frane and show it */

/* a never ending | oop which waits for nessages of the eventhandler */

do forever
a = bsf("poll Event Text") /* wait for nessages fromthe eventhandl er */
interpret a /* execute the nmessage fromthe eventhandl er as a Rexx program */
end
/* trlu s procedure is called fromthe eventhandl er for the "male" button */
set nal e:

| abel ~set | con(m con);
femal e~set Sel ected(". fal se");
return

/* this procedure is called fromthe eventhandl er for the "femal e" button */
setfemal e:
| abel ~set | con(flcon);
mal e~set Sel ected(". fal se");
return
i:requires BSF.CLS /* nmake oo-l|ike BSF4Rexx support avail able */

Figure 19: The code of example C1-4

3.1.4.1 Explanation

/* inmport Java cl asses */

. bsf ~bsf . i mport ("| avax. swi ng. JFrane", " JFr ame"g /* inport the Java Swing JFrane class */

. bsf ~bsf . i nport ("|avax. swi na. JLabel ", " JLabel " /* inport the Java Swing JLabel class */

. bsf ~bsf . inport("javax. swing. JRadi oButton","JRadi 0") /* inport the Java Swi ng JRadi obutton class */
. bsf~bsf.inport("|ava.awt.GidLayout","GidLayout") /* inport the Java Awt Gidl ayout class */

. bsf ~bsf.inport("]avax. swing.|magelcon","lcon”) [/* inport the Java Swing | nmageicon class */

The method “bsf.import” of the class “bsf’ imports the following class in the program and

assigns a name to it.

javax.swing.JFrame

e javax.swing.JLabel

javax.swing.JRadioButton

java.awt.GridLayout

e javax.swing.Imagelcon

[* create objects */

| abel =. JLabel ~new("'

frame = . JFranme~new(" radi obut t on. Rexx");
mal e = . JRadi o~new("male"):

Page 39

femal e = . JRadi o~new(" ferrale)
nml con .lcon~ ~new("nal e. gif"
flcon .l con~new(" f enal e. g|f);

These lines creates an instances of the imported Classes.

|f rane~get Cont ent Pane() ~set Layout (. G'i dLayout ~new(2, 2, 5,5));

This statement forces the frame to use “Grid Layout”.

If rame~get Cont ent Pane() ~~add(mal e) ~~add(| abel) ~~add(femal e);

Add the radiobuttons and the label to the frame.

frame~set Def aul t Cl oseCper at i on(. bsf ~bsf. get Stati cVal ue("j avax. swi ng. JFrame", "EXI T_ON_CLOSE"));
frame~bsf . addEvent Li stener (' wi ndow , 'w ndowCl osing', 'call BSF "exit"')

Add eventhandler which exits the program if the user clicks on the close icon of the win-

dow.
mal e~bsf . addEvent Li stener (" action', "', 'call setmale")
f enmal e~bsf. addEvent Li stener (' action', "', 'call setfenule")

Add eventlistener which starts procedures, which are defined a few lines lower. These pro-

cedures are named “setmale” and “setfemale”. They are called with the command “call”.

|frame~set Locati on(500,300); /* set the location of the frane on the screen */ |

Set the position, where the window should appear on the screen.

|frane~~pack()~~set Si ze(200, 150) ~~set Visi bl e(.true); /* Set the size of the frane and show it */

Set the size of the window and make it visible on the screen.

do forever
a = bsf("pol | Event Text") /* wait for messages fromthe eventhandl er */
interpret a /* execute the nessage fromthe eventhandl er as a Rexx program */
end

Start a never ending loop. Inside of the loop the messages of the eventhandler are ex-

ecuted as Rexx program lines.

/* t?is procedure is called fromthe eventhandl er for the "nale" button */
set nal e:

| abel ~set | con(m con)

f emal e~set Sel ected(". fal se");
return

/* this procedure is called fromthe eventhandl er for the "femal e" button */
set f ermal e:

| abel ~set | con(fl con);

mal e~set Sel ected(". fal se");
return

Procedures are defined just with their name and a

66,9

. In the last line there must be a
“return” statement. The first line inside the procedures assigns the icon to the frame, the

second line set the other radiobutton unselected.

This example is simple and has no real difficulties, if the programmer is familiar with the

usage of Java awt and Swing.

Page 40

3.1.5 Example C1-5 Message Boxes

This example displays various types of Input-, Dialog and Message Boxes.

Message Boxes are a simple way to make scripts and macros more user-friendly. This

example demonstrates two simple and easy ways to use them with ooRexx.

/* inport JoptionPane from Swing */
. bsf ~bsf.inport("javax.swing.JOptionPane”, "JOptionPane")

] JOpti onPane Message Boxes: */
. JOpt | onPane~show\essageDi al og n| |, "Message Box deno begins!", "Info", .JOptionPane~WARNI NG MESSAGE)
. JOpti onPane~showVessageDi al og(.ni |, "BSF4Rexx is great!")

1% YES _NO Di al og */

answer = "
do while answer <> .JOptionPane~YES_OPTI ON
answer = .JOptionPane~showConfirnDi al og(.nil, "do you |ike Rexx?", "choose one",
. JOpti onPane~YES I\D CPTI ON)
if (answer == .JOptionPane~YES OPTION) then say yes
if (answer == .JOptionPane~NO _CPTION) then say no
end
/* Modal dialog with OK cancel and a text field */
text = JQ)II onPane~show nput Di al og("Tel | nme sonething:", "type here..")

if (text == .nil) then say cancel
el se say text

/* O her way to display MessageBoxes: using .bsf.dialog */

answer = . bsf’. di al og~i nput Box("Tell ne nore","BSF |nput Box","question")

say answer

answer = .bsf.dial og~di al ogBox("Options for you:",, "BSF D al ogBox", "YesNoCancel")
say answer

answer = .bsf.dial og~messageBox("|1' m a BSF MessageBox", "lnportant nessage:","plain");
say answer

/* make o0o0-|i ke BSF4Rexx support avail able */
:requires BSF.CLS

Figure 20: Output of example C1-5.

3.1.5.1 Explanation
The Java class JOptionPane offers various static class methods to display different types
of Input-, Dialog- and Message Boxes without having to create extra objects. In the first line

of the code, this class is imported to be used in the Rexx script:

|. bsf ~bsf. i nport ("javax. swi ng. JOpti onPane", "JOptionPane")

In the following lines, two message boxes are created via calls to the static
showMessageDialog function with different parameters. Figures 21 and 22 show the

results:

bsfdrexx is great! Message Eox demo begins!

sk

0K OK

Figure 21: JOptionPane - MessageBox 2 Figure 22: JOptionPane - MessageBox 1

Page 41

’

The following loop shows a dialog box again and again until the user presses the “Yes’
Button. Figure 23 shows the output of this code part. The static method
showConfirmDialog of JOptionPane is therefore used. The method returns an integer value
which is compared to JOptionPane (constant) class variables like “YES_OPTION” or
“NO_OPTION”. This example also demonstrates how to access class constants. The .nil

object as first parameter represents the parent frame and equals to the null value in Java:

answer = .JOpti onPane~showConfirnDi al og(.nil, "do you |ike Rexx?", "choose one", -
. JOpt i onPane~YES_NO_CPTI ON)
if (answer == .JOptionPane~YES OPTION) then say yes

do yvou like rexx?

Ja Mein

Figure 23: JOptionPane - DialogBox

Another practical feature of JOptionPane are input dialogs. They can be used to receive

some text input from the user in a convenient way:

I text = .JOpti onPane~showl nput Di al og("Tel | nme sonething:", "type here..")

Tell me something:
type hers.. |

Ok Abbrechen

Figure 24: JOptionPane - InputBox

This method returns a string Java value. If the user entered no text, the result will be .nil.

Another, even more simple way to produce the same results as before is by using the class
BSF.DIALOG, provided by BSF.CLS. This class provides the methods messageBox,

dialogBox and inputBox. Figures 25 till 27 show the results of these methods.

Page 42

i

BSF Input Box 2 " Important mes sage: =

Tell me more

I'm a BSF MessageBox

OK Abbrechen

Figure 26: BSF.DIALOG InputBox Figure 25: BSF.DIALOG - MessageBox

Mes=age -2

Options for you:

| E‘I | | Mein | | Abbrechen

Figure 27: BSF.DIALOG - DialogBox

Internally, the BSF.DIALOG class also uses the Java class JOptionPane, but it provides the

functionality in a simpler way.

Page 43

3.1.6 Example C1-6 Simple Swing

The purpose of this example is to demonstrate how to use the swing library to create nice

looking Graphical User Interfaces. (GUI)

Swing is a built-in library in Java and can be used to build large an complex GUIs.

(=B sEsEmat

IR

i

Figure 28: Screenshot of

example C1-6

This example display a window with two buttons and label. In the label a number is
displayed. If the user pushes the “+” button, the event is caught from the script, and
dispatched to a method that increases the number displayed in the label. If the user

“ 9

pushes the “-” button, the number in the label will decrease.

Additionally, every time the user selects one of the buttons, a text will be written to the

console (standard out).

Page 44

/* inmport classes */

. bsf~bsf.inport("|avax.sw ng. JFranme", " JFranme")

. bsf~bsf.inport("|avax.sw ng.JButton","JButton")

. bsf ~bsf.inport("]avax. swi ng. JLabel ", "JLabel ")

. bsf~bsf.inport("]ava. an.Fl owlayout”,"Fl owlLayout™)

/* create objects */

but t onPl us=. JBut t on~new(" +") ;

but t onM nus=. JBut t on~new("-");

nunber =. JLabel ~new(" 0");

frame = . JFrame~new(" M/ Counter Frame !");

/* set the the frame to use the Fl owLayout */
frane~get Cont ent Pane() ~set Layout (. Fl owLayout ~new());

/* Add | abel and buttons to franme */
frane~get Cont ent Pane() ~~add(but t onM nus) ~~add(nunber) ~~add(but t onPl us);

/* Add event handling */
frane~set Def aul t Cl oseCperati on(. bsf ~bsf. get StaticVal ue("|avax. swi ng. JFranme", "EXIT_ON CLOSE"));

f rame~bsf . addEvent Li st ener (' wi ndow , 'wi ndowC osing', "call BSF "exit"')
but t onPl us~bsf. addEvent Li stener(' action', "', 'call increase")

but t onM nus~bsf . addEvent Li stener (' action', '', 'call decrease')

/* And finally show the franme .. */

frame~~pack() ~~set Vi si bl e(1);

/* do a loop and wait for the event handling to return with some text */

do forever
a = bsf("poll Event Text") /* wait for an eventText to be sent “
say "l got this text fromthe event handler :" a
di nterpret a /* execute as a Rexx program */

en

/* this procedure is called fromthe event handler for the plus button */
1 NCrease:

nunber ~set Text (nunber ~get Text () +1);

frame~pack();
return

{1* this procedure is called fromthe eventhandl er for the minus button */
ecrease:

nunber ~set Text (nunber ~get Text ()-1);

frame~pack();
return

/* make oo-like BSF4Rexx support avail able */
r:requires BSF.CLS

Figure 29: The code of example C1-6

Page 45

3.1.6.1 Explanation

/* inmport classes */

. bsf~bsf.inport("|avax.sw ng. JFrane", " JFrane")

. bsf ~bsf.inport("|avax. swi ng.JButton","JButton")

. bsf ~bsf.inport("|avax.sw ng.JLabel ", "JLabel ")

. bsf ~bsf.inport("]ava. ant . Fl owlayout”, " Fl owlLayout™)

In the first lines of the script BSF4Rexx is instructed to import some libraries. In Java it is
possible to import all classes in a library in one command. This is not possible with

BSF4Rexx, hence all the classes have to be imported one by one.

The JFrame class is the window displayed to the user, and the JButton and JLabel are the

buttons and the label added to, and displayed on the window.

All the imported swing classes represent a visible object for the user, the imported
FlowLayout on the other hand, is not a visible object, but a description of how the objects
are organized on the screen. Every time the JFrame is updated it asks the associated
layout manager for information about how to display the elements. FlowLayout is the layout
manager used in this example, and it specifies that all the objects added to the JFrame
should be ordered from left to right. But other layout managers exist as well, and they could
be used in order to achive a different look of the GUI.[UII05]

Under two other often used layout mangers are presented.

e The BorderLayout divides the available area in 5 sections: North, South, East, West

and Middle. A visual object can be assigned to each of the 5 areas.

e GridLayout organizes all the components into equal size, and insert them into a grid.
The programmer can define the dimension of the grid using the constructor of the
GridLayout. The dimension is defined by specifying the numbers of rows and

columns to use.

More information about layout managers and how to use them can be found on the page

“A Visual Guide to Layout Managers” on the Sun website.’

7 http:/fjava.sun.com/docs/books/tutorial/uiswing/layout/visual.html

Page 46

The next part of the code create objects of the imported classes. This is done by calling the
method new from the class. If an argument is given to the method new, it will be passed on

to the constructor of the class.

but t onPl us=. JBut t on~new(" +");

but t onM nus=. JButt on~ nevv()

nunber =. JLabel ~new(" 0")

frame = . JFranme~new(" M/ Counter Frane !");

Two objects, buttonPlus and buttonMinus, are created from the class JButton. The
argument passed on to the constructor is the caption of the button. The label and the frame
are created in the same way as the buttons. Be aware that even though all the visual
objects are created, they are not yet associated with the frame, and will not be displayed

on the screen before this is done.

|f ranme~get Cont ent Pane() ~set Layout (. Fl owLayout ~new()); |

Next in the example, the ContentPane of frame, need to be instructed to use the correct
layout manager. This is done by first getting the ContentPane object, and then call the

method setLayout on this object.

Using BSF4Rexx it is possible to connect a method to the result of another method using
the ~ (“Twiddle”) sign. An alternative to the code above could be to store the ContentPane
object in a variable, and then call the setLayout method on this object. The code block

below shows this alternative method:

/* set the the frame to use the FlowLayout — alternative nethod*/
CP = frane~get Cont ent Pane()
CP~set Layout (. Fl owLayout ~new()) ;

After the ContentPane has set the layout manager, the visual objects are added. As in

case of the layout manager, visual objects are also applied to the frame's ContentPane.

/* Add | abel and buttons to frane */
frame~get Cont ent Pane() ~~add(but t onM nus) ~~add(nunber) ~~add(but t onPl us) ;

If a method is connected with the signs ~~, this is a short way of repeating the whole

statement. Hence the code block above is equal the code block bellow.

/* Add | abel and buttons to frane — alternative nethod */

f rame~get Cont ent Pane() ~add(but t onM nus)
f rame~get Cont ent Pane() ~add(nunber)
f ranme~get Cont ent Pane() ~add(but t onPl us)

Page 47

After the visual objects are added to the frame, the event handling needs to be specified.

/* Add event handling */
frame~set Def aul t G oseQper at i on(. bsf~bsf. get St aticVal ue("javax. swi ng. JFranme","EXIT_ON_CLOSE"));

f rame~bsf . addEvent Li st ener (' wi ndow , 'w ndowd osing', ‘'call BSF "exit"')
but t onPl us~bsf . addEvent Li stener (' action', "', 'call Increase')
but t onM nus~bsf . addEvent Li stener (' action', '', 'call decrease')

First it is specified that the application has to be terminated if the user closes the window.

Then an eventlistener for the frame is set.

The two lines at the end specify the eventlistener for the buttons. The third argument is the
code that has to be executed when the button is pressed. In this case the ooRexx routine

increase is executed if the buttonPlus is pressed.

/* do a |l oop and wait for the event handling to return with some text */
do forever

a = bsf("pol | Event Text") /* wait for an event Text to be sent */

say "l got this text fromthe event handler :" a

di nterpret a /* execute as a Rexx program */
en

After the GUI is created the script goes into an eternal loop, only aborted if the user exit

the frame. The command bsf(“pollEventText”) waits for the event handler to parse an event.

The event the event handler will return is the third argument of the bsf.addEventListener
statement. If an event occurs it is written into the variable a and printed on the console

using the ooRexx say command.
The ooRexx command interpret executes the content of variable a as ooRexx code.

If the user press the plus button the ooRexx routine increase will be called. This routine

gets the number in the label, increase it by one, and write it back into the label.

Page 48

3.1.7 Example C1-7 Java Midi Classes

This example plays a short song using the Java Midi Classes. This example is based on a

Java example. [Kru04]

[* inmport Java classes */
. bsf~bsf.inport("javax.sound. m di .M di Systent,"Mdi Systeni') /* inport Java M di System class */
. bsf ~bsf. i nport ("] avax. sound. m di . Short Message", "Message")
/* inport Java Mdi Shortnessage class */
. bsf~bsf.inport("java.awt.Robot","Robot") /* inport Java awt Robot class */

/* conpose song by inserting notes in an array*/
=60;

song.l song. 1. 2=1; song. 1. 3=1
song. 2. 1=62; song.2.2:1; song. 2. 3=1
song.3.1:64; song. 3. 2=1; song. 3.3=1
song. 4. 1=65; song. 4.2=1; song.4.3=1
song. 5. 1=67; song.5.2=2; song.5.3=2
song. 6. 1=69; song. 6.2=1; song.6.3=4
song. 7. 1=67; song.7.2=4; song.7.3=1
song. 8. 1=69; song. 8.2=1; song.8.3=4
song. 9. 1=67; song.9.2=4; song.9.3=1
song. 10. 1= 65; song. 10. 2=1; song. 10. 3=4
song. 11. 1=64; song. 11. 2=2; song. 11. 3=2
song. 12. 1=62; song. 12. 2=1; song. 12. 3=4
song. 13. 1=60; song. 13. 2=4; song. 13. 3=1

/* get the Java M di Synthesizer */

Synt hesi zer =. M di Syst em~get Synt hesi zer ()

Synt hesi zer ~open()

/* get the Receiver of the Java Mdi Synthesizer */
Recel ver =Synt hesi zer ~get Recei ver ()

/* create new Message object */
msg . Message~new()
r bt . Robot ~new()
DO note=1 to 13
DO count=1 to song.note. 3
neg~set Message(144, 0, song.note.1l, 64)
/* Define Message to start playing a tone*/
Recei ver ~send(nmsg, -1) /* Send Message to the Receiver */
rbt ~del ay(song. note.2¥*400) /* wait the tinme a tone should be played */
nsg~set Message(128, 0, song.note.1, 64)
/* Define Nbssage to stop playing the tone*/
Recei ver ~send(nsg, -1) /* Send Message to the Receiver */

END
END
::requires BSF.CLS /* make oo-like BSF4Rexx support avail able */

Figure 30: The code of example C1-7
3.1.7.1 Explanation

/* conpose song by i

nserting notes in an array*/

song. 1. 1=60; song. 1.2=1; song.1.3=1
song.2.1 62; song.2.2=1; song. 2. 3=1
song. 3. 1=64; song. 3.2=1; song.3.3=1
song. 4. 1=65; song. 4.2=1; song.4.3=1
song. 5. 1=67; song.5.2=2; song.5.3=2
song. 6. 1=69; song. 6.2=1; song.6.3=4
song. 7. 1=67; song.7.2=4; song.7.3=1
song. 8. 1=69; song. 8.2=1; song.8.3=4
song. 9. 1=67; song.9.2=4; song.9.3=1
song. 10. 1=65; song. 10. 2=1; song. 10. 3=4
song. 11. 1=64; song. 11.2=2; song. 11. 3=2
song. 12. 1=62; song. 12. 2=1; song. 12. 3=4
song. 13. 1=60; song. 13.2=4; song. 13. 3=1

In this section an 2-dimensional array is defined. The structure is as follows:

99 99 29 99

“name of the array”.”position in the first dimension”.”position in the second dimension”="value”

The first dimension indicates the sequence the notes are played.In the second dimension
the first element defines the frequence of the note, second one shows how long a note has

to be played and the third one defines how often a note should be played at this moment.

Page 49

Synt hesi zer =. M di Syst em~get Synt hesi zer () ;
Synt hesi zer ~open()

Getting the Java Synthesizer by using the static method “getSynthesizer” of the Java class
“MidiSystem”

|Recei ver =Synt hesi zer ~get Recei ver ()

Get the Receiver of the Synthesizer

neg
r bt

. Message~new() ‘
. Robot ~new()

Create instances of these classes.

msg~set Message(144, 0, song.note.1l, 64) /* Define Message to start playing a tone*/
Recei ver ~send(nsg, -1) /* Send Message to the Receiver */

Assign a message to the message object. The argument “144” causes starting to play the

“song.note.1” note. Afterwards the message is send to the Receiver.

Irbt~de| ay(song. note.2*400) /* wait the tinme a tone should be played */]

Wait the time a note should be played.

msg~set Message(128, 0, song.note.1l, 64) /* Define Message to stop playing the tone*/
Recei ver ~send(nsg, -1) /* Send Message to the Receiver */

Send another message to the Receiver, with sending the argument “128” the playback of

the note gets stopped.

This example is simple and has no real difficulties, if the programmer is common with the
usage of Java Midi Classes. There is a problem with the newest Java version 1.5. No error
messages are shown, but no sound is played. This example was tested with Java 1.4.2

and with this version it works fine.

Page 50

3.1.8 Example C1-8 Reflection

This example shows how to get information about objects by using the reflection API.
The reflection API allows to [reflect06]:
Determine the class of an object.

Get information about a class's modifiers, fields, methods, constructors, and

superclasses.
Find out what constants and method declarations belong to an interface.
Create an instance of a class whose name is not known until runtime.

Get and set the value of an object's field, even if the field name is unknown to your

program until runtime.
Invoke a method on an object, even if the method is not known until runtime.

Create a new array, whose size and component type are not known until runtime,

and then modify the array's components.

This features might be interesting for debugging scripts that use BSF4Rexx or writing more

dynamic scripts and macros.

Page 51

/* inmport standard awt class TextField */
. bsf~bsf.inport("java.util.regex. Pattern”, "Pattern")

/* create a test object */
object = .Pattern~conpile(":.*")
class = object~get C ass()

supercl ass = cl ass~get Supercl ass()

/* get class and supercl ass nane */
say "C ass nane:" cl ass~get Nane()
say "Superclass: " superclass~get Nane

/* list the classes nethods */
say "Met hods: "
net hods = cl ass~get Met hods()
do met hod over nethods
ay M----eeemeoeiooooo
say "Method:" nethod~get Nanme
say "Return type:" method~get Retur nType~get Nane
ptypes = net hod~get Par anet er Types()
do type over ptypes
say "Paraneter:" type~getName
end
end
/* list the classes fields */
say "Fields:"
fields = class~get Fiel ds
do field over fields
say field~toString
end
/* make o00-1ike BSF4Rexx support avail able */
::requires BSF.CLS

Figure 31: The code of example C1-8.

3.1.8.1 Explanation

This example uses an object of the class Pattern (see also example C1-2) as a test object.
In the first part of the code, the necessary Java classes are imported and the object is

created.

> Rexx Reflection.rex

Class name: java.util.regex.Pattern
Superclass: java.lang.Object
Methods:

Method: compile

Return type: java.util.regex.Pattern

Parameter: java.lang.String

Fields:
public static final int java.util.regex.Pattern.UNIX LINES
public static final int java.util.regex.Pattern.CASE INSENSITIVE

Figure 32: Output of example C1-8

Page 52

The method getClass returns an object of the class java.lang.Class:

|c| ass = obj ect~get C ass()

Via this object, the relevant information about the test objects class can be accessed. The
Method getSuperclass returns a Class object representing the test objects parent class.
getName returns the class name for each Class object (i.e. the objects class, the parent

class and so on).

| met hods = cl ass~get Met hods() |

This line returns an array of objects with class java.lang.reflect. Method. Via these objects
the relevant information about the classes methods can be retrieved. The Method
getParameterTypes returns an array of java.lang.Class objects that describe the methods

pararameters. Also the return type of getReturnType is a Class object.

The class objects method getFields returns an array of java.lang.reflect.Field objects.
These objects can be used to get information about the classes fields, i.e. getName
returns the name of a field, but they also have get- and set-methods for manipulating field

values.

Page 53

3.1.9 Example C1-9 Hash

The following example reads a file and create a SHA-1 hash value for it.

/* inmport classes */

. bsf~bsf.inport("java.security. MessageDi gest", " MessageDi gest")
.bsf~bsf.inport("java.io. File","File")
.bsf~bsf.inport("|ava.io.FilelnputStrean,"FilelnputStreant)

. bsf~bsf.inport("]ava.lang. Byte", "Byte")

/* create the nessageD object using the static nmethod getlnstance */
nmessageD = . MessageDi gest ~get | nst ance(" SHA-1")

/* create a byte array with the size of 8192 bytes */
nd = bsf.createArray("byte.class", 8192)

/* create inputstreamfromfile */
inStream = . Filel nput Stream-new(. Fi | e~new(" exanpl e- C1-9. Rexx"))

/* this | oop read 8192 bytes fromfile and updates hash, |oop until eof */
DO FOREVER
n=i nStream-read(nd) /* streamreturns -1 if ECF */
if n=-1 then leave /* exit loop if EOF */
o messageD~updat e(nd, 0,n) /* update the hash value */

hash = messageD-~di gest ()
size = hash~itens

hashPrint = ""

i=1

/* this |l oop convert the resulting hash frombyte to hex */
DO until i>size

b=. Byt e~new(hash[i])~toString()
hashPrint = hashPrint d2x(b ,2)
i=i+1

END

/[* print the final result */
say "SHA-1(160 bit) hash of this file is :"
say hashPrint

/* make oo-like BSF4Rexx support available */
;:requires BSF.CLS

Figure 33: The code for example C1-9

Page 54

3.1.9.1 Explanation

In the first part of the script the libraries needed libraries are imported. All the libraries are

present in the standard Java API.

/* create the nmessageD object using the static nmethod getlnstance */
messageD = . MessageDi gest ~get | nst ance(" SHA-1")

Next a message digest object is creaded using the static method getinstance. Using this
method several other algorithms for hash creation can also be used. In Java version 1.5

the following the following algorithms are supported: [Sun04]
e MD2
e MD5
e SHA-1
e SHA-256
e SHA-348
e SHA-512

Even though MD5 might be the most famous algorithm, SHA-x algorithms are consider
safer in order to avoid problems with collisions. MD2 are not longer considered secure, and

should not be used, unless for compatibility reasons. [Wik06-1] [Wik06-2]

/* create a byte array with the size of 8192 bytes */
nd = bsf.createArray("byte.class", 8192)

Next a byte array of 8192 bytes is created. The byte array could be as long as the data to
hash, but because of performance reasons it is recommended to divide the data into

smaller parts, and parse them into the message digest function in sequential order. [UII05]

The script presented in this example only creates a hash value of it self, and performance
is not an issue. But with just small modifications this script could create a hash value for

any selected file.

Page 55

Next a Fileinputstream is created to the file example file it self.

/* this | oop read 8192 bytes fromfile and updates hash, |oop until eof */
DO FOREVER

n=i nStream-read(nd) /* streamreturns -1 if EOF */

if n=-1 then leave /* exit loop if EOF */

nmessageD~updat e(nd, 0, n) /* update the hash val ue */
END

In the code block above data is read from the stream, and filled into the array with 8192

bytes at the time. When the whole file is read, -1 is returned an the the loop is terminated.

In the last line of the loop the messageD object calls the method update, and parse the
byte array as an argument. The update method could be called a in definitive number of

times until the end of file is reached.

After the script has finished the processing of the file, the hash it self is created using the

digest method of the messageD object.

|hash = nessageD~di gest () |

This method returns a byte array with the value of the hash. In order to get a nice looking

hash value printed on the screen it is necessary to convert the byte array in to a string.

/* this | oop convert the resulting hash frombyte to hex */
DOuntll i >size
Byt e~ nevv(hash[l) toStrmg()
hashfrl nt = hashPr!nt d2x(b ,2)
1 =1+
END

In the code block above the resulting hash value is converted to string with the help of the
the toString method of the Byte object. The string itself is again converted to a
hexadecimal number using the ooRexx function d2x and added to the the value hashPrint.

At the end of the script the hashPrint variable will contain the complete hash value.

Page 56

3.1.10 Example C1-10 Java.net Server Classes

This example demonstrates how to create a running Server, which waits for messages
sent by a client. This client is explained in the next example. To get a running server the

script uses the Java.net classes

C:Dokumente und EinstellungenDavid-“Desktop“rexx—beispiele“fertigi*rexx example
cl—18.rexx

Server: Waiting for messages...

Got message: a message from the client

Figure 34: Output of example C1-10

srvSock=. bsf~new("j ava. net. Server Socket ", 8888)
/* inmport Java serversocket class an create a Instance on port 8888 */

SAY "Server: Wiiting for nessages..." /* output to console */

do whil e receivedData<>"e" /* create |oop, which runs until an "e" is received */
socket 2cl i ent =sr vSock~accept /* create an nessage accepting socket */
i nput FronCl i ent =socket 2cl i ent ~get | nput Stream /* get input stream from socket */
b=. bsf ~bsf.createArray('byte.class', 2048) /* create byte array */
recei ved=i nput FronCl i ent ~read(b) /* read inputstreamfromclient */
stroj ect =. bsf ~new(' java. |l ang. String', b, 0, received)

/* create String Object fromreceived data */
recei vedDat a=str Cbj ect~toString /* extract String from StringCbject */
g SAY "CGot nessage:" receivedData /* output to console */
en
::requires BSF.CLS /* make oo-like BSF4Rexx support avail able */

Figure 35: The code for example C1-10
3.1.10.1 Explanation

srvSock=. bsf ~new("j ava. net. Ser ver Socket", 8888)
/* inport Java serversocket class an create a |nstance on port 8888 */

Open a new Serversocket on port 8888.

I socket 2cl i ent =sr vSock~accept

This line creates a message-accepting socket.

IinputFrono i ent =socket 2cl i ent ~get | nput Stream /* get input stream from socket */

Page 57

Read the Data incoming from the socket and store it as an InputStream in the variable “in-

putFromClient”.

recei ved=i nput FronCl i ent ~read(b) /* read inputstreamfromclient */
strpoj ect =. bsf~new(' java.lang. String', b, 0, received)
recei vedDat a=str Cbj ect ~toString /* extract String from StringQObject */

These lines convert the InputStream to an String and assigns it to the “receivedData” vari-

able.

ISAY "Cot nessage:" receivedData /* output to console */

Finally write it to the screen.

This example is simple and has no real difficulties, if the programmer is common with the

usage of Java Net Classes.

Page 58

3.1.11 Example C1-11 Java.net Classes for a simple client

Eingabeaufforderung - rexoc ex-ample-cl-13.rexoc

C:xDokumente wund Einstellungen“David~Dezktopsrexx—heizpielesfertigirexx example—ll
cl-13.rexx .

Text to zend: <e for exitl:
a message from the client
Data sent.

Text to szend: <{e for exitl:

Figure 36: Output from example C1-11

This example demonstrates how to create a client, which sends messages to the server

explained above. To create a client the script uses the Java.net classes

| h=. bsf ~bsf.inmport('java. net.|netAddress') ~getLocal Host /* get the Local host as Java |netAddress */

do whi | e Datatosend<>"e" [* create |oop, which runs until an "e" is entered */
socket 2server =. bsf~new(' | ava. net. Socket', |h, 8888) /* open socket to server */
say "Text to send: (e for exit):" /* output to console */
parse pull Datatosend /* get user input to send to server */
str=. bsf_proxy~new(Dat at osend) /* create new proxy */
os=socket 2server ~get Qut put Stream /* get output stream */
os~write(str~getBytes) /* wite data to output stream*/
SAY "Data sent." /* output to console */
end
r:requires BSF.CLS /* make oo-l|ike BSF4Rexx support avail able */

Figure 37: The code of example C1-11

3.1.11.1 Explanation

|I h=. bsf~bsf.inmport('java.net.|netAddress') ~getLocal Host /* get the Local host as Java |netAddress */ |

In this example, the server and the client are on the same computer. So it needs Java Inet-
Address of the localhost. If you want to try this on different computer you have to use the

“getbyAdress” or the “getbyName” method of the Java.net.InetAddress class.

Ido whi | e Dat at osend<>"e"

This line creates an loop, which ends when the client sends an “e”.

|socket 2server =. bsf~new(' j ava. net. Socket', |h, 8888)

Page 59

Open a socket to the server using the above create Java InetAddress and the port number

8888 as arguments.

Iparse pul | Datatosend /* get user input to send to server */ |

Read the user input. The automatic converting to uppercase ist avoided using the com-

mand “parse”.

|str:. bsf _proxy~new(Dat at osend) /* create new proxy */

Converting the inputdata to an proxy.

os=socket 2ser ver ~get Qut put Stream / * get output stream */
os~wite(str~getBytes) /* wite data to output stream */

Get the Outputstream of the socket to the server and write the data of the above created

proxy to it.

Page 60

3.1.12 Example C1-12 — Drawing Charts

This example draws a pie-chart using the JFreechart library.

3.1.12.1 The JFreeChart Library

JFreeChart is a free, open source chart library written in Java. The JFreeChart project was
started in the year 2000 by David Gilbert. Today up to 50.000 developers are using this
chart library in their applications [JFree06]. JFreeChart is distributed under the terms of
the GNU Lesser General Public License (LGPL), which, other than the GNU General
Public License (GPL), also allows the use in non-free, commercial applications [LGPLO06].

Furthermore JFreeChart provides the following features [JFree06]:

a consistent, well documented API
- support of a wide range of chart types
- support of multiple output formats (images, Swing components, vector graphics)

- a flexible design which makes it easy to extend and suited for client sided

applications as well as server sided ones.

/* inport classes fromthe JFreeChart APl */

. bsf~bsf.inmport("org.jfree.chart.ChartUilities", "ChartUtilities")
.bsf~bsf.inport(“ora.ifree.chart.ChartFactory", "ChartFactory")

. bsf~bsf.inport(“org.jfree.chart.ChartFrame", "ChartFrane")

. bsf ~bsf.inport("org.|free. data. general . Def aul t Pi eDat aset”, "Defaul t Pi eDataset")

/* inmport Standard Java Cl asses */
. bsf~bsf.inport("java.io. File","File")
. bsf~bsf.inport("]ava.lang. I nteger”,"Integer")

/* create a pie chart with four areas */
pi eDat aset = . Defaul t Pi eDataset~new();

pi eDat aset ~set Val ue(" A", .Integer~new(75));

pi eDat aset ~set Val ue("B", .Integer~new(10));

pi eDat aset ~set Val ue("C', .Integer~new(10));

pi eDat aset ~set Val ue(" D', .Integer~new(5));

chart = .ChartFactory~createPieChart("A great Chart...", pieDataset, .true, .true, .false);

/* Define a Frame for the chart(using the pre-definde ChartFrame class)*/
chart Frame = . Chart Franme~new(" Sanpl e Chart”, chart);
chart Frame~set Def aul t Cl oseOper ati on(. bsf ~bsf. get StaticVal ue("javax. sw ng. JFranme", "EXI T_ON CLOSE"))

/* set size + make frame visible */
chart Frame~~set Si ze(300, 400) ~~set Vi si bl e(.true);

res = BSF("sleep”, 60.00) --wait for 60 seconds

/* make o00-1ike BSF4Rexx support avail able */
::requires BSF.CLS

Figure 38: The code for example c1-12

Page 61

The screenshot shows the result of the Rexx code: a Swing Frame that displays a pie
chart.

Sample Chart -2

A great Chart...

Figure 39: Pie Chart Frame

3.1.12.2 Explanation

After the import of the necessary Java classes a “PieDataset” object is created:

I

pi eDat aset = . Defaul t Pi eDat aset ~new();
pi eDat aset ~set Val ue . I nteger~new(75
pi eDat aset ~set Val ue . Integer~new(10
pi eDat aset ~set Val ue . Integer~new(10
pi eDat aset ~set Val ue . I nt eger ~new(5)

nAY
ng
nee !
"

JFreeChart provides the class “DefaultPieDataset” for creating pie chart data. The object is
initialized with some key-value pairs over the “setValue” function. There are different
dataset interfaces for the other chart types. In the next step the ChartFactory class is used

to create a chart object:

Page 62

chart = .ChartFactory~createPieChart("A great Chart...", pieDataset, .true, .true, .false);

The ChartFactory provides methods to create all kinds of charts supported by JFreeChart.
The method “createPieChart” expects an object implementing the “PieDataset” interface
providing the chart data. The following parameters configure the chart to display a legend,

tooltips and not to use URLSs.

After initializing the chart, a “ChartFrame” object is created, with the chart as parameter.
This class is provided by the JFreeChart API to display charts and extends the Swing class

“JFrame”.

Finally the chart is displayed by a call to the “setVisible” routine. A call to the BSF

Function “sleep” at the end of the script prevents the program from exiting immediately. An

Page 63

3.1.13 Example C1-13 Text-to-Speech with FreeTTS

This example implements the external Java library “FreeTTS” in order to create a text-to-
speech application. FreeTTS is written entirely in Java, and because of this true multi

platform applikations can be build in combination with ooRexx and BSF4Rexx.

In order to run this example the FreeTTS library need to be downloaded and installed.

FreeTTS can be downloaded from this address:

http://freetts.sourceforge.net/docs/index.php

A detailed description of how to install external Java libraries can be found in the beginning

of this paper.

In this example a GUI is created with Swing, and displayed in the middle of the screen. The
positioning is calculated dynamic, meaning that the resolution of the screen and the size of

the frame is investigated and used in order to find the correct position.

— % Kevin speaks | [SESE &)
[FreeTTs will be used to read this text || speak

A

Figure 40: Screenshot of example C1-13

The GUI contains a field where the user can enter text. When the user push the enter
button on the keyboard or push the speak button with the mouse, the text entered will be

read out load using the FreeTTS library.

In the following example only the relevant code for free TTS and the code that position the
window to the middle of the screen is explained. The creation of the GUI and the handling

of events is described in detail for example C1-6.

One Problem that could specially on Unix systems occur, is that the sound device is

occupied. An error message like this would be displayed:

|L| NE UNAVAI LABLE: Format is PCM SIGNED, 16000.0 Hz, 16 bit, nono, big-endian, audio data

To avoid this, all other applications using sound on the system should be closed.

http://freetts.sourceforge.net/docs/index.php

Page 64

/* inmport classes */

. bsf~bsf.inport("com sun. speech.freetts. Voice","JVoi ce")

. bsf ~bsf . i mport ("com sun. speech. freetts. Voi ceManager", " JVoi ceManager ")

. bsf ~bsf . i mport ("com sun. speech. freetts. audi o. Javad i pAudi oPl ayer™, " JavaCl i pAudi oPl ayer")
. bsf ~bsf . i mport("javax. swi ng. JFrane", " JFranme")

. bsf ~bsf.inport("|ava.awt.Fl owLayout”,"Fl onLayout™)

. bsf ~bsf.inport("|avax.swi ng.JButton","JButton")

. bsf~bsf.inport("]avax. swing. JTextField","JTextField")

nyvoi ce="kevi n16"

/* create object using static nethod */
voi ceManager = .JVoi ceManager ~get | nst ance();

/* get an instance of the voice engine */
voi ce = voi ceManager ~get Voi ce(nyVoi ce)

/* activate the voice engine */
voi ce~al | ocat e()

/* create GU Objects */

frame=. JFrame~new(" Kevi n speaks !")
text =. JText Fi el d~new() ~~set Col unms(30)
but t on=. JBut t on~new(" Speak")

/* set the the frame to use the Fl owLayout */
f ranme~get Cont ent Pane() ~set Layout (. Fl onLayout ~new()) ;

/* add the elenments to frame */
frame~get Cont ent Pane() ~~add(text)~~add(button)

/* Add event handling */
frame~set Def aul t C oseCper ati on(. bsf~bsf. getStaticVal ue("javax.swi ng. JFranme”,"EXI T_ON CLOSE"));

frame~bsf . addEvent Li stener (' wi ndow , 'wi ndowCl osing', "exitApp = .true")
but t on~bsf. addEvent Li stener(' action', "', 'call read")
t ext ~bsf . addEvent Li stener (' action', "', 'call read")

/* show the frame */

frame~~pack() ~~set Vi si bl e(1)

/* this routine center the frane to the mdle of the screen */
call centerFrane franme

/* do a loop and wait for the event handling to return with sone text */
exitApp = .fal se
do until exitApp = .true
a = bsf("pol | Event Text") /* wait for an eventText to be sent */
di nterpret a /* execute as a Rexx program */
en

/* unbi nd the voi ce engine */
voi ce~deal | ocat e()

read:

/* get the text fromthe JText Frame and pass it on to the voi ce engine */
voi ce~speak(text~get Text ())

text~set Text ("")

return

/* make oo-li ke BSF4Rexx support available */
::requires BSF.CLS

/* This routine center a frame to the mddle of the screen */
;:iroutine centerFrane

use arg franme

. bsf ~bsf.inport("java. ant . Tool kit","JTool kit")

t ool ki t =. JTool ki t ~get Def aul t Tool ki t ()

screenSi ze=t ool ki t ~get ScreenSi ze()-- returns a di mensi on obj ect

frame~pack()-- need to pack the frane before we get the frame size

frameSi ze=franme~get Si ze()-- returns a di nensi on obj ect

X=(screenSi ze~wi dt h()-frameSi ze~wi dth())/2

Y=(screenSi ze~hei ght ()-franeSi ze~hei ght ())/2

X=X%

Y=Y o

frame~set Locati on(X, Y) -- positions the frame on the screen
return

Figure 41: The code for example C1-13

Page 65

3.1.13.1 Explanation

The following text explains the two main blocks of code in the example. First FreeTTS is
used to output text as audio, then a routine is presented that positions a swing frame to the

middle of the screen.
3.1.13.1.1 The Text-to-Speech Functionality

The code block below shows the FreeTTS code used in this example.

. bsf ~bsf.inport("com sun. speech.freetts. Voice","JVoi ce")
. bsf ~bsf . i mport ("com sun. speech. freetts. Voi ceManager ", " JVoi ceManager ")
. bsf ~bsf . i mport ("com sun. speech. freetts. audi 0. Javad i pAudi oPl ayer", "JavaC i pAudi oPl ayer")

myvoi ce="kevi n16"

voi ceManager = .JVoi ceManager ~get | nst ance();
voi ce = voi ceManager ~get VoI ce(nyVoi ce)

voi ce~al | ocat e()

VVoi ce~speak (“hello”)

voi ce~deal | ocat e()

First the required classes are imported, then the name of the voice to use is written into
the variable myvoice. FreeTTS support several voices in different qualities, and kevin16 is

one of them.

Next the voice manager is created using the static method getinstance from the class
com.sun.speech.freetts.VoiceManager, that is given the name JvoiceManager in this

example.

Then the selected voice is loaded an allocated, and the command voice~speak() can be
called a number of times with an ooRexx variable as argument. The content of the

variable will be parsed to the voice engine, that will generate the audio.

At the end of the script the method deallocate of the object voice is called in order to free

resources hold by the FreeTTS engine.
3.1.13.1.2 Position a Frame to the Middle of the Screen

In this example a routine is presented that dynamically positions a frame to the middle of
the screen. Dynamically means that the size of the frame and the resolution of the screen

is used in order to find the exact middle position for the frame.

Page 66

The code block below shows the routine used in this example. This method is general an
could easy be copied into all other types of BSF4Rexx scripts that requires this

functionality.

;iroutine centerFrane
use arg frane
. bsf~bsf.inport("java.aw . Toolkit","JTool kit")
t ool ki t=.JTool ki t ~get Def aul t Tool kit ()
screenSi ze=t ool ki t ~get ScreenSi ze()-- returns a di nensi on obj ect

frame~pack()-- need to pack the frane before we get the frame size
frameSi ze=f rame~get Si ze()-- returns a di nensi on obj ect

X=(screenSi ze~wi dt h()-frameSi ze~wi dth())/2
Y=(screenSi ze~hei ght () -frameSi ze~hei ght ())/2

X=Xod.

Y=Yod o

frame~set Locat i on(X,Y) -- positions the frame on the screen
return

First the class java.awt. Toolkit is imported and given the name JToolkit. Normally the
import statement will be at the top of the script, but in order for developers to easy test

this code in other BSF4Rexx scripts, the import statement is placed inside of the routine.

Next a toolkit object is created and the resolution of the screen is investigated using the

getScreenSize method.

This method returns an object of type dimension. To get the the number of horizontal and

vertical pixels the methods width and hight have to be used.

Then the size of the frame is investigated with the getSize method of the frame object.

This method also return an object of type dimension.

After the new and centered X and Y value is calculated for the upper left position of the
frame, the values are converted to integers, and the frame is set to the new location with

the method setlLocation.

Page 67

3.1.14 Example C1-14 - Playing MP3's

This example demonstrates how to use the JLayer library to play MP3 files from Rexx.

3.1.14.1 The JLayer Library

The JLayer library provides Java classes that allow playing MP3 encoded music files. The
JLayer project was founded in 1999 and is completely volunteer driven. JLayer serves as a
base for multiple Java-based MP3 player applications, among others the jIGui music player
[Jlayer06]. JLayer, as well as JLayerME for J2ME, are licensed under LGPL (see also
example C1-11, p. 62)

/* inmport Player O ass fromthe JLayer APl */
. bsf~bsf.inport("javazoomj!|.player.Player”, "Player")

/* inmport standart Java C asses */
. bsf~bsf.inport("java.io.FilelnputStrean, "FilelnputsStreant)
. bsf ~bsf.inport("]ava.io.Bufferedl nput Streant', "Bufferedl nputStrean')

/* create Buffered input stream*/
fis = .FilelnputStreamnew"12. np3")
bis = .Bufferedl nput Stream-new(fis)

/* create a player (bject and play the MP3 file */
pl ayer = . Pl ayer~new bi 35
player~play();

/* make oo-1ike BSF4Rexx support avail able */
::requires BSF.CLS

Figure 42: The code for example c1-14

3.1.14.2 Explanation

First of all the necessary Java classes for the program need to be loaded. This is done by
the “bsf.import” function of the BSF class. Then a Java “FilelnputStream” is created with the
location of a valid “.mp3~ file as parameter. The “FilelnputStream” object is passed to a new
“BufferedinputStream” that serves as input for the constructor of “Player”. The JLayer class

“Player” already implements a simple player.

[player~play();

By a call to the player objects “play” method, the player starts playing the .mp3 file.

JLayer also offers more advanced options for playing audio files like an equalizer class,
classes for managing audio devices and decoding methods. These classes can be found in
the JLayer APl documentation and used in a similar way

(http://www.javazoom.net/javalayer/docs/docs1.0/index.html).

Page 68

3.1.15 Example C1-15 Parse XML with JDOM

This example uses JDOM to parse an Extensible Markup Language (XML) file in order to

read out selected values.
JDOM is an external Java library for accessing, manipulating and output XML data.

In order to run this example the JDOM library needs to be downloaded and installed.

JDOM can be downloaded from this address: http://www.jdom.org/

A detailed description of how to install external Java libraries can be found in the

beginning of this paper.

This example is delivered with an Really Simple Syndication (RSS) file with the name

“cnn-world.xml”. A RSS file is a XML file specialized for delivering news content.
The script reads the RSS file and return selected information from it.

The following screen shot shows the output from the script.

= [osmund@linux:/...mein/examplec1-15 - Befehisfenster Nr. 2 - Konsole a8 &
Sizung Bearbeiten Ansicht Lesezeichen Einstellungen Hilfe
osmund@l i nux: ~/Documents/ WJ/VK6-EC/code/mein/example-c1-15> rexx example-c1-15.rexx [*
The following information is extracted from the RSS file 'cnn-world.xml "' using jdom
and bsfdrexx.
Channel : CNN.com - World
Date . Sat, 22 Apr 2006 05:44:48 EDT

News nr.0: New mass protests in Nepal

News nr.1: Iragis pick new PM nominee in bid to break impasse

News nr.2: 'Time bomb' jibe for Solomons PM

News nr.3: Chile's top court rules Pinochet has no immunity

News nr.4: Nigeria makes final debt relief payment

News nr.5: Russia defies U.S. call to shun Iran

News nr.6: Another suspect charged in £53 million heist

News nr.7: Hu caps U.S. tour with Yale visit

News nr.8: Reports: lragi Shiites nominate PM

News nr.9: Heavy rains lash Danube flood zone
osmund@l i nux: ~/Documents/ IWJ/VK6-EC/code/mein/example-c1-15> D -

|| B Befehlsfenster | & Befehlsfenster Nr. 2 J & Befehlsfenster Nr. 3 if

Figure 43: Output from example C1-15

http://freetts.sourceforge.net/docs/index.php

Page 69

rssFile = "cnn_world. xm"

xpathltems ="/rss/channel /itemtitle"
xpat hChannel Titl e ="/rss/channel /title"
xpat hChannel Dat e ="/rss/channel / pubDat e"

/* import classes */

. bsf ~bsf . inport("org.|dom Docunment”, " Docunent ")

. bsf ~bsf.inport("org.|dominput.SAXBui |l der", " SAXBui | der")
. bsf~bsf.inport("java.io. File","File")

. bsf ~bsf.inport("org.jdom xpath. XPat h", " XPat h")

/* use sax to read file into docunent tree. */
bui | der = . SAXBui | der ~new()

[* create DOV nodel | */
doc = builder~build(.File~new(rssFile))

/* use XPpath to search the DOMtree. Return a list */
titl eEl ement = . XPat h~sel ect Nodes(doc, xpathChannel Title)
pubDat eEl enent = . XPat h~sel ect Nodes(doc, xpat hChannel Dat e)
ItenEl enents = . XPat h~sel ect Nodes(doc, xpat hltens)

/* Print out the channel nanme and date */
say -"The following information is extracted fromthe RSS file 'cnn-world.xm "' using j dom andBSF4Rexx. "
say

say "Channel :" titleEl ement~get (0)~get Text ()
say "Date :" pubDat eEl enent ~get (0) ~get Text ()
SAY M- e e e !
/* loop over all items in the rss feed, print out the itemtitle */
i =0
do until i = itenEl ements~size()
say " News nr."i": "itenEl ements~get (i)~get Text()
i =i +1
end

/* make oo-1ike BSF4Rexx support avail able */
::requires BSF.CLS

Figure 44: The code for example C1-15

3.1.15.1 Explanation

In the first line of the script the variable rssFile is set to the name of the RSS file to load.

Then three variables are set with three different XPath expressions.

XML Path Language (XPath) is a query language for XML data. XPath is developed from
W3C-Consortium and exist currently in version 1.0. [Wiki06-3] With XPath a developer can

address s specific element in a XML structure, or a set of elements.

After the required libraries are loaded, an object of the type SAXBuilder is created. This
object has a method build, that takes a file as an argument, an loads the file into an

internal memory structure. After this is done a object is returned into the variable doc.

With the selectNode method from the doc object, a Xpath expression can be used to query

the internal memory structure.

/* use XPpath to search the DOMtree. Return a list */
titl eEl ement = . XPat h~sel ect Nodes(doc, xpathChannel Title)
pubDat eEl ement = . XPat h~sel ect Nodes(doc, xpathChannel Dat e)

I tenEl ements = . XPat h~sel ect Nodes(doc, xpathltens)

First the title of the channel is queried with the XPath expression created on the top of the

script. Then the date of the channel is queried, and at the end all the news items.

Page 70

The method selectNodes returns an object with the reference to the queried element. This

reference object can contain one or more elements.

In order to get the text of the node, it is necessary to first use the method get to get
correct element, and then to apply the method getText to get the text of it, and not the
object it self. As demonstrated in the code under the first element is selected and then the

method getText is applied to get the text of the element.

Isay "Channel :" titleEl ement~get (0)~get Text () I

Almost the same is happening in the code block under. The object itemElements contains
all news elements in the RSS file. A loop is created in order to get the text of all elements,

and print them to the screen.

[* loop over all items in the rss feed, print out the itemtitle */
I =
do until i = itenEl ements~size()
say " News nr."i": "itenEl ements~get (i)~get Text ()
i =i +1
end

The method size of object itemElements returns all the elements in the itemElements

object.

Page 71

3.1.16 Example C1-16 Java.net Classes for sending an

HTTP/GET Request

This example demonstrates how to create a client, which sends a HTTP/GET Request to

an server and print the response of the server on the screen. To create a client the script

uses the Java.net classes.

ngabeaufforderung =& jﬂ
<Aecpipty
< hody> - |

</html>
='http:-/83.65.182.186/ads adx.js" >/ script>

gsc ipt language="JavaScript® type='text/javascript’'>
if {tdocument.phpAds_used? document.phpfAds_used =
phpfAids_random = new String {Math.random{>>; phphds_; Pandom = phpfAds_random.subst
Bring{2.113;
| document.urite Y o+ M"sepipt language="JavaScript’ type='text/javascript’ srcT
sy

L

i document.write (“"http:--83.65.182. 136/ad¢/ad3“.php7n " + phpAds_randomd;
document .write ("Bamp;what=zone:31"

document .write (“"&exclude=" + document phpfds _used>;

if {document.referrerd

document .write ("Bamp;referer=" + escape{document._referrerdl;

document .write 2" + “script>");

N >

</¢cr1pt><nogcript><a href="http:r-83.65.182. 186 ads adclick.php?n=a73£f9?B£f5" ta
rget="_hlank’ »>{img src="http:--B3_65_182_106/ads adview.php?uvhat=zone:31&n=a
73?93?5‘ border="0* alt='’>{/a>{/noscript><{/td>

<Atr>

{/tahle>

{script>

<t

var shouthox = *<{div id="shotboxpos" style=""position:absolute;top:18px;left =788
x;width:168px . he ight :6@0px;margin :Bpx;padding :@px">{iframe id="shouthox" align=t
op width=168 height=6B8 marginwidth=8 marginheight=A hspace=8 vspace=8 framehord
er=A scrolling=no s 'showads .php?subl=18&sub2=1_9><{ilayer id=""shouthox" align=t
op width=168 height=6BA src="showads.html">{/ilayer></iframe>{ div>’

if (screen.width > 8BBAY{

document .write{zhouthox>
H

A==
{/acript>
< /hody>

< html>

Figure 45: Output from example C1-16

| h=. bsf~bsf.inmport('java.net.|net Address')~get ByNane("http://wwmv. bundesliga.at")
/* Get the Java Inetaddress of the Host */

socket 2server =. bsf ~new(' j ava. net. Socket', Ih, 80) /* open socket to server */

out = socket 2server~get Qut put Strean() /* get output stream */

newLi ne = "0Oa0la"x

str=. bsf_proxy~new(" GET / bewer be/i ndex. php?&subl=1&sub2=1_9&sub3=1_9 2 HTTP/1.0" || newLine || - newLine)

/* create new proxy */

out~wite(str~getBytes) /* wite data to output stream */

Ib=. bsf~bsf.createArray('byte.class' , 200001) /* create byte array */
en=0

Dat af ronserver=""

do while len>=0 /* create |oop, which runs until no data is sent anynore */
I en = socket 2server ~get | nput St ream-r ead(b)/* read inputstream */
if len>0 then
strObj ect =. bsf ~new(' j ava.l ang. String', b, 0, |en)
/* create String Object fromreceived data */
Dat af ronserver = Datafronserver || strQbject~toString
. /* extract String from StringCbject and add It to the already received data */
en
SAY "Daten enpfangen:" || Datafronserver /* output to console */
::requires BSF.CLS /* mmke oo-|i ke BSF4ARexx support avail able */

Figure 46: The code of example C1-16

Page 72

3.1.16.1 Explanation

|I h=. bsf ~bsf.import (' java. net.| net Address')~get ByNane("http://wwmv. bundesliga.at")

The first line gets the Java InetAddress of the url “http://www.bundesliga.at”

socket 2server =. bsf~new(' j ava. net. Socket', Ih, 80) /* open socket to server */
out = socket 2server~get Cut put Strean() /* get output stream */

Create a socket to the server on port 80 and get the outputstream of the socket.

|newLi ne = "0ala"x |

The “x” after the string indicates that this is an hexadecimal string. A linebreak is defined

as “0ala” in hexadecimal format.

str=. bsf_proxy~new(" GET /bewer be/ i ndex. php?&ubl=1&sub2=1_9&sub3=1_9 2 HITP/1.0" || newLine || - new.ine)
/* create new proxy */
out~wite(str~getBytes) /* wite data to output stream */

Send an standard HTTP/GET Request to the server.

|b=. bsf~bsf.createArray('byte.class' , 200001) /* create byte array */ |

Create a new byte array with the size 200001, which will contain the response of the serv-

er.

[do while Ten>=0

This line starts a loop. Which runs until no data is received anymore.

|I en = socket 2server ~get | nput Stream-r ead(b)/* read inputstream */ |

Get the received Data and store it in the byte array “b”. The length of the received Data is

assigned to the variable “len”.

if len>0 then
stroj ect =. bsf ~new(' j ava.l ang. String', b, 0, len)
/* create String Object fromreceived data */
Dat af ronserver = Datafronserver || strQoject~toString

Convert the received Data to a string and add it to the already received Data.

Page 73

3.1.17 Example C1-17 3D Graphics

This example demonstrates how to invoke the Java 3D API with BSF4Rexx. Since this API
includes many classes and provides complex functionality, only a “proof of concept” can be

provided in the scope of this paper.

3.1.17.1 Java 3D
The Java 3D project started in 1996, when Intel, Silicon Graphics, Apple and Sun decided

to collaborate in creating a retained mode scene graph API. The first beta version was
released in March 1998. In 2004 Java 3D became a community source project, developed
by Sun and volunteers [wiki3D06]. The Java 3D API provides a collection of high-level
constructs for creating and manipulating 3D geometry and structures for rendering that
geometry [J3DO0O, p.1-1].

/* import classes fromthe Java 3D APl */

. bsf ~bsf . i mport ("“com sun.j3d.utils.universe. Si npl eUni verse", "Sinpl eUniverse")
. bsf~bsf.inport(“comsun.|3d. utils.geonetry. Col or Cube", "Col or Cube")

. bsf~bsf.inport(“"comsun.|3d. utils.geonetry. Sphere", "Sphere")

. bsf~bsf.inport("javax. nedi a.|3d. BranchG oup”, "Branch& oup”g

. bsf ~bsf.inport("|avax. nedi a.|3d. Transforn8D", "Transforn3D'

. bsf ~bsf . i nport ("] avax. nedi a. | 3d. Tr ansf or m& oup", "Transf or nG oup")

. bsf~bsf.inport("]ava.lang. Math", "Math")

/* create a 'SinpleUniverse' that will contain our objects */
uni verse = . Si npl eUni ver se~new();

/* create a transformation node */
rotate = . Transf or nBD~-new

/* rotate */

rot at e~r ot Y(. Mat h~PI / 5. 0)

/*attach the transfornati on node to a group */
obj Rotate = . Transf or & oup~new r ot at e)

/*add a cube object */
obj Rot at e~addChi | d(. Col or Cube~new(0. 4))

/* create a data structure to contain some objects */
/* and add the rotation group */
branchG oup = . BranchG oup~new()~~addChi | d(obj Rot ate);

/* set the canera "eye" */
uni ver se~get Vi ewi ngPl at f or () ~set Noni nal Vi ewi ngTr ansf or n() ;

/* add the objects to the universe*/
uni ver se~addBr anchG aph(branchG oup)

/* wait 10 seconds */
res = BSF("sl eep”, 10.00)

/* make oo-1ike BSF4Rexx support avail able */
::requires BSF.CLS

Figure 47: The code of example C1-17 (based on [J3DO00, p. 1-21]).

Page 74

Figure 48: Output of example C1-17.

3.1.17.2 Explanation

After the import of the necessary classes from the Java 3D API, a SimpleUniverse object
is created. This is the three dimensional space in which objects can be placed. This class
automates some steps that are needed when creating a scene graph [see also J3DO0O, p.
1-9].

|uni verse = . Sinpl eUni ver se~new();

In the next step, the transformation node rotation is created. This node represents a single
transformation step. The methods rotX and rotY allow rotation along X and Y axis. In this

case a rotation along the Y axis is performed.

[rot at e~r ot Y(. Mat h~PI /5. 0)

The transformation node is passed to the constructor of a TransformGroup. This is an

object, that can position, orient, and scale all of its children [see also J3DO0O0, p. 1-21ff].

|0bj Rot at e = . Tr ansf or mGr oup~new(r ot at e)

In the next step a cube is also added to the TransformGroup as a child. The transformation

specified in the Transform3D object will be applied to this cube.

|obj Rot at e~addChi | d(. Col or Cube~new(0. 4))

Page 75

Next, a BranchGroup object is created. A BranchGroup object is the root of a subgraph

(from the top-level scene graph) [J3DO00, p. 1-7]:

|branchGr oup = .BranchG oup~new()~~addChi | d(obj Rot ate);

In the same line the group node with the cube is attached to the graph.

The SimpleUniverse object has a ViewingPlatform member object. With a call to its
setNominalViewing Transform method, the position of the viewer (“eye” position) is set to a

centered position 2.41 meters in front of the scene [J3DO00, p. 1-12]

Iuni ver se~get Vi ewi ngPl at f or n{) ~set Nom nal Vi ewi ngTr ansf or n() ;

Finally the branch group (with the sphere and the cube) is added to the scene.
The result can be seen in figure 34 — a cube rotated along the Y-axis.

Java 3D is a complex API (over 100 core classes). Therefore many classes are involved in
more complex examples. This requires a good knowledge of the API, since no helper class
(like UNO.CLS, see 3.1) is available.

Page 76

3.1.18 Example C1-18 Read ID3 Tags from MP3 files

This example uses an external Java library called ID3 for reading meta data from mp3 files.

The meta data could be e.g. the name of the artist or the album.

The user needs to start the script with the name of a mp3 file as an argument. The script

then uses the ID3 library to output some essential meta data for the file.

In order to run this example the ID3 library need to be downloaded and installed. ID3 can

be downloaded from this address: http://www.ueberdosis.de/javal/id3.html

A detailed description of how to install external Java libraries can be found in the
beginning of this paper.

/* check if the user provided an argunent */

parse arg filenane

1f filename = "" then

do
say "Please use the name of a nmp3 file as first argument”
exit

end

/* inmport classes */

. bsf~bsf.inport("java.io. RandomAccessFile", " "RAFi | e")

. bsf ~bsf . inport("de. ueberdosis. mp3i nfo. | D3Reader", " | D3Reader ")
. bsf ~bsf . i mport (" de. ueberdosis.util.QutputCr","QutputCtr")

/* Instruct the ID3 library to print no debug nmessages on the screen*/
. Qut put Ctr~set Level (0)

/* open a Random Access File for reading */

/* use the static nmethod readTag in | D3Reader to get a |D3tag object */
tag = .| D3Reader ~r eadTag(. RAFi | e~new(fil enane, "r"))

/* use the I D3tag object to get sonme infornmation */
say "Extract IDtags fromfile:" filenane
say " Artist =" tag~getArtist()

say " Year =" tag~get Year ()
say " ALbum =" tag~get Al bun()
say " Title =" tag~getTitle()
say " Title =" tag~get GenreS()
say " Comment =" tag~get Conment ()

/* make oo-1ike BSF4Rexx support avail able */
::requires BSF.CLS

Figure 49: The code for example C1-18

3.1.18.1 Explanation

After the necessary classes are loaded, the log level of the ID3 level is set using the static

method setLevel from the de.ueberdosis.util. OutputCtr class.

|. Qut put Ctr ~set Level (0) |

By default the ID3 library writes quite much information to standard out. This is information

that might be interesting, specially for debugging purposes, but in a nhormal command line

http://freetts.sourceforge.net/docs/index.php

Page 77

script this might be a disturbance. To completely disable all log messages the log level has

to be set to “0”.

The usage of the ID3 library is quite easy. First the mp3 file has to loaded. This is done
using the static method readTag from the de.ueberdosis.mp3info.ID3Reader class, as

shown bellow.

[tag = .1 D3Reader ~r eadTag(. RAFi | e~new(fil ename, "r"))

This method requires a RandomAccessFile, and not just a simple File.

In order to read the actual meta data from the file, a get method is used, like the one

displayed in the box under.

Isay " Artist =" tag~getArtist()

The ID3 library can also be used for writing id3 meta data into mp3 files. More information

about this can be found at the ID3 homepage and in the APl documentation.®

8 http://www.ueberdosis.de/java/id3/doc/index.html

http://www.ueberdosis.de/java/id3/doc/index.html

Page 78

3.1.19 Example C1-19 Java.calender Classes for Creating a

Calendar

This example demonstrates how to create a calender of a whole year using the Java Cal-
ender Classes. The user is asked for a year and the program will print the calendar for this

year.

C:\Dokumente und Einstell
c1-19 . rexx
[Bitte das Jahr eingeben:

20086

We Th
3 45

11 12

2% 38

Figure 52:
P Output from
1113 13 example C1-
2 3¢ 35 5o Mo Tu Ve Th Fr
3 4 5 § i 19, part 3
1@ 11 12 13
Figure 50: 24 3% 50 39
Output from Figure 51:
example C1-19, Output from
part 1 example C1-

19, part 2

Page 79

B MBI N Program - --------c-c o oo ommom oo oo @
. bsf~bsf.inmport("java.util.Calendar”,"Calendar") /* inport Cal ender class from Java */

. bsf ~bsf.inmport("java.util.G egorianCal endar", " GCal endar")

/* inport G egorianCal ender class fromJava */

/* shet array which contains the names of the nonths */
nonth. = "'
nont h. 0=January
nont h. 1=Febr uary
nont h. 2=Mar ch
nont h. 3=Apri |
nont h. 4=May
nont h. 5=June
nont h. 6=Jul y
nmont h. 7= August
nmont h. 8=Sept enber
nmont h. 9=Cct ober
nmont h. 10=Novenber
nont h. 11=Decenber
é* set array which contains the nunber of days for each nonth */

om ="'

dom 11=31

say "Bitte das Jahr eingeben: "; /* output to console */

parse pull yy; /* input from console */

do nm=0to 11 by 1 /* call the function "print" for each of the twelve nonths of a year */
call print mnm vyy;

end
exit
print
parse arg mm yy
say ""; /* output to console */
say "-------------------- "/* output to console */
say month.mm" " yy /* output to console */
say "-------------------- "/* output to console */

say "So Mo Tu W Th Fr Sa"/* output to console */
daysi nMont h=dom nm / * get the nunber of days for the current nonth */
GC = . GCal endar ~new(yy, mm 1)
/* create a new G egorianCal ender oject for the first day in the current nonth */
| eadGap = GC~get (GC~DAY_OF WEEK) -1
/* get the nanme of the day e.g. "Mnday™ in the formof O(Sunday) to 6(Saturday). This information*/
/* 1's needed to know how nuch space we have to |eave free in the first line of a nmonth */
i f GC~i sLeapYear (GC~get (GC~Year))=1 & m¥1 then
/* if it is a |leapyear then the February has 29 days */
daysi nMont h = daysi nMonth + 1
output = ""
do1 =1to leadGp by 1
output = output || " "
/* wite blanks to get the nunber of a day under the right nane (e.g. "Su") */

end
doi =1 to daysinMonth by 1 /* wite the nunber of each day */
if i<10 then
output = output ||
output = output || i
if (leadGap+i)//7==0 | i==daysinMnth then
g /* make a line-break if it reaches the end of a week */
0
say out put
output = ""
end
el se
out put = output ||
end

return
::requires BSF.CLS /* nake oo-l|ike BSF4Rexx support avail able */

Figure 53: The code of example C1-19

3.1.19.1 Explanation

The first value of the following arrays has the index 0. This can be confusing because the

first month in the year has the index 0 and not 1 as in calendars.

month. ="'

nont h. 0=January
nmont h. 1=Febr uary
nont h. 2=Mar ch

Page 80

nmont h. 3=Apri |

nmont h. 4=NMay

nmont h. 5=June

nmont h. 6=Jul y

nmont h. 7=August
nmont h. 8=Sept ember
nmont h. 9=Cct ober
nont h. 10=Novenber
nmont h. 11=Decenber

Create an array containing the names of all the months of a year.

dom =""
dom 0=31
dom 1=28
dom 2=31
dom 3=30
dom 4=31
dom 5=30
dom 6=31
dom 7=31
dom 8=30
dom 9=31
dom 10=30
dom 11=31

“dom” stands for “days of month”. This array contains the number of days for each month.

e.g. January has 31 days. February has 28 days.

do Mm =0 to 11 by 1 /* call the function "print" for each of the twelve nonths of a year */
call print mm vyy;
end

For each of the months the procedure “print”, which is defined afterwards, gets executed

with the number of the month and the year.

print :
parse arg mm yy

With this line the definition of the procedure print begins. The second line receives the ar-

guments, which are needed for the execution of the procedure.

|GC = . GCal endar ~new(yy, nm 1)

Create a GregorianCalender instance for the currently processed month.

[l eadGap = GC-get (GC-DAY_OF VEEK)- 1 |

This line assigns the amount of space we need to leave free in the first line of each month

to get the first number under the right day-name.

if GC~i sLeapYear (GC~get (GC~Year))=1 & mm¥1l then
/* if it is a |leapyear then the February has 29 days */
daysi nMonth = daysi nMonth + 1

These lines adds a day to the number of days of February if the year is a leap year.

if i<10 then
output = output || " "

If the number of the day is lower than 10, a space have to be added in front of it to provide

each number with a length of two to get a pretty print on the screen.

if (leadGap+i)//7==0 | i==daysinMonth then /* make a line-break if it reaches the end of a week */
do

say out put
output = ""
end

Page 81

After each week or at the end of a month, the program has to print the current week and

start a new line.

While working with test classes you have to be aware that Java starts to count with “0”. So
January doesn't is the month with the number “1”, but has the number 0 and so on. Addi-
tionally in these classes a week starts with “Sunday” and not with “Monday”, what is com-

mon in most European Countries.

Page 82

3.1.20 Example C1-20 JDBC

This example uses HSQLDB to create a database, and read an write data from it.
HSQLDB is a SQL database that is completely programmed in Java, and hence it is multi
platform. This is also the same database OpenOffice.org uses as its database engine in

the OpenOffice.org Base component. [Hsq06]

Java Database Connectivity (JDBC) is a Java standard for how databases and Java

programs interface.

The HSQLDB-JDBC driver can be used as a standalone database, which is demonstrated
in this example. However scripts in this examples are so general, that other SQL-JDBC

drivers could be used with just minor changes to the code.

In order to run this example the HSQLDB-JDBC driver needs to be downloaded and
installed. HSQLDB can be downloaded from this address: http://hsqldb.org/

A detailed description of how to install external Java libraries can be found in the

beginning of this paper.

This example contains the following two scripts.
e createDB.Rexx
e logDB.Rexx.

The “createDB.Rexx” script creates a database using the HSQLDB-JDBC driver, and the
“logDB.Rexx” asks the user for some values to insert into the database. The existing data

from the database is also displayed to the user.

http://freetts.sourceforge.net/docs/index.php

Page 83

say "This script will create a new HSQLDB database in the directory ./data"
say "Do you want to continue ? (y/n)"

pul I answer

I f answer <> Y then exit

/* catch all errors */
signal on error

signal on failure

si gnal on syntax

si gnal on noval ue

/* set some variabels used to connect to the database */
dbJdbcDriver = "org. hsal db. i dbcDriver"

dbConnectionString = "jdbc: hsgl db: file:./data/"
dbName = "sa" /* the db user nane */
dbPassword = "" /* the password */

sgl CreateTabl e = "CREATE TABLE | og(id | NTEGER | DENTI TY, nane VARCHAR, | og VARCHAR) "

/* inmport classes */
. bsf~bsf.inport("java.sqgl.DriverManager","Driver Manager")

/* load the jdbc driver */
. BSF4ARexx~syst em cl ass~f or Nane(dbJdbcDri ver)

[* connect t o database, return connection object */
con = . Driver Manager ~get Connect i on(dbConnectionString, dbName, dbPasswor d)

/* get a statenment object from connection object */
stnmt = con~creat eSt at enent ()

/* This is a command to create a new table.. */
st nt ~execut eUpdat e(sql Cr eat eTabl e)

/* Fille the newtable with a row */
st mt ~execut eUpdat e(" | NSERT | NTO | og(nane, | og) VALUES(' Rexx',' This is the first row')")

/* cl ose connection to database */
st mt ~execut e(" SHUTDOM") ;

stnt ~cl ose()

con~cl ose()

say "Jippi ! HSQLDB-Database is created in ./data."
say "You are ready for the next step. Execute 'Rexx | ogDB. Rexx'"
exit

/* if an error occurs this code block will be executed */
error: failure: syntax: noval ue:

say

say " ---------- An error occourd ---------- "

say

say "M/ guesses are :"

say

say "- Java can't find the jdbc driver"

say " - solution : copy hsqgldb.jar to {your-java-installation-dir}/lib/ext/"
say

say "- you already have a database in ./data"

say " - solution : delete the directory ./data"

sa

sa¥ "- you have only read and no wite permssions in the current directory"
say " - you need this"

say

say "This is sone nore information about the error:

say condition("C') "line #" sigl": ["sourceli ne(5| gI) 1"

co=condi tion("Q") -- get the COndI'[I on obj ect

say "further information using the condition object:"
do idx over co
say " co~"idx"=["co~entry(idx)"]"
end
exit

/* make oo-|i ke BSF4Rexx support avail able */
:requires BSF.CLS

Figure 54: The code for example C1-20, createDB.Rexx

3.1.20.1 Explanation — createDB.Rexx

The “logDB.Rexx” script could be executed several times, but the “createDB.Rexx” should
only be executed once. If the “createDB.Rexx” is executed more than once, an error will
occur. Normally when it comes to an error, the script will terminate where the error

happened in the script, and all subsequent lines of code will not be executed. This can be

Page 84

avoided by catching the error with the coRexx command “signal on”, as demonstrated in

“createDB.Rexx”. Explanation - createDB.Rexx

First the script asks the user if he would like to create a new database. If the user confirms

this the script proceed. If not, the script exits at this point.

Then a series of “signal on xxx” is executed. This is code that instructs the ooRexx
compiler to not directly abort on errors, but instead look for the code in the box under, and

continue the execution of the script there in case of an error.

Ierror: failure: syntax: noval ue:

BSF4Rexx do not have the possibility to catch what type of error a Java objects throws, so
the type of error is more or less unknown. But of course the uncertainty depends on how

much code is placed between the signal on and the error: statements.

Next the dbConnectionString variable is set to the string “jdb:hsqldb:file:./data/’. This string
is later used to initialize the connection to the database. If the database does not already
exist in the ./data/ directory, it will be created. If the script is changed to access another
database, this connection string needs to be changed in order to reflect the use of different

jdbc driver.

The user name and the password of the database also set in their respective variables and

use later in the script.

After the necessary import statements, and the database driver is loaded, the connection

to the database is made, as displayed on the box below.

/* connect to database, return connection object */
con = . DriverManager ~get Connecti on(dbConnecti onString, dbName, dbPasswor d)

/* get a statenment object from connection object */
stmt = con~createSt at enent ()

The method createStatement is used on the connection Object, and the returning object is
the actually object used for sending Structured Query Language (SQL) statements to the

server.

When modifying data the executeUpdate method is used, as the case is for “CREATE
TABLE ...” and “INSERT INTO ...” SQL statements, as demonstrated in the code bellow.

Page 85

/* This is a command to create a new table.. */
st mt ~execut eUpdat e(sql Cr eat eTabl e)

If data is search for as the case is for a “SELECT ..” statement, the method executeQuery

is used instead.
After the the table is created an a row is insert into it using the “INSERT INTO ...” SQL

statement, the database is shutdown.

/* cl ose connection to database */
st mt ~execut e(" SHUTDOM") ;

Normally this is not necessary, because the server is supposed to serve several clients,
and it would be no point of shutting it down when the client program ends. But in this case
there is only one client, and the Java hsqldb engine will anyway terminate when the script
terminates. Sending the shutdown command to the server makes sure that the server
close it files and saves its data before exiting. Without the shutdown command, data in the
database might become inconsistent. After this the statement and connection objects are
closed. If no errors occurred, the script will terminate at this point. If errors occur the code

after “error: failure: syntax: novalue:” will be executed.

Page 86

/* set some variabels used to connect to the database */
dbJddbcDriver = "org. hsal db. | dbcDriver"
dbConnectionString = "jdbc: hsgldb:file:./data/"

dbNarme = sa

dbPassword = ""

sql Creat eTabl e = "CREATE TABLE | og(id | NTEGER | DENTI TY, nane VARCHAR, | og VARCHAR) "

/* catch all errors */
signal on error

signal on failure
signal on syntax

/* signal on noval ue */

/* inport classes */
. bsf ~bsf.inport("java.sql.DriverNManager", "DriverManager")

/* load the jdbc driver */
. BSF4Rexx~syst em cl ass~f or Nane(dbJdbcDri ver)

/* connect to database, return connection object */
con = . DriverMnager ~get Connecti on(dbConnecti onString, dbName, dbPassword)

/* get a statenment object from connection object */
stmt = con~createStat enent ()

/* loop : ask the user for nane and | og data and store it in the db */
do unti| anotherTinme = n
say
/* retrive row fromthe db */
result = stnt~e><ecuteQJery¥"SELECT * FROM | 0g")
/* set the pointer to the first row */
nor eRows =r esul t ~next ()
do until noreRows = 0
say "Log nr" result~getString("id") "fromuser" result~getString("name")" :" result~getString(log)
/* get the next rowor O if no nore rows */
g nmor eRows =r esul t ~next ()
en

say
say "What is you nane ?"
parse pul | name

say "What do you want to log ?"
parse pul | |ogText

/* wite a newrowinto the table */
st nt ~execut eUpdat e(" | NSERT | NTO | og(nare, |og) VALUES('"name"','"logText"')")

say "Wite another rowin the log ? (y/n)"
pul I another Ti ne
end

/* close connection to database */

stmt ~execut e(" SHUTDOM"'); /* this is hsqldb specific, (wite result to disk) */
stmt ~cl ose()

con~cl ose()

exit

/* if an error occurs this code block will be executed */
error: failure: syntax: noval ue:

say
say " ---------- An error occurred ---------- "

say

say "M/ guesses are :"

say

say "- Java can't find the jdbc driver"

say " - solution : copy hsqgldb.jar to {your-java-installation-dir}/lib/ext/"
say

say " - you don't have a HSQ.DB in the ./data directory"

say " - solution : execute the createDB. Rexx script"”

say

say "This is sone nore information about the error:"

say condition("C') "line #" sigl": ["sourceline(sigl)"]"

co=condi tion("Q") -- get the condition object

say "further infornmation using the condition object:"
do idx over co
say " co~"idx"=["co~entry(idx)"]"
end
exit

/* make oo-1ike BSF4Rexx support avail able */
::requires BSF.CLS

Figure 55: The code for example C1-20, logDB.Rexx, part 1.

Page 87

3.1.20.2 Explanation - logDB.Rexx.

The JDBC specific code in the “logDB.Rexx” is almost identical to the one in
“createDB.Rexx”. The only difference is that the “logDB.Rexx” at one point reads data from

the database.

/* retrive row fromthe db */
result = stm~executeQJery$” SELECT * FROM | 0g")

/* set the pointer to the first row */
nor eRows =r esul t ~next ()
do until noreRows = 0
say "Log nr" result~getString("id"') "fromuser" result~getString("nanme")" :" result~getString(log)
/* get the next rowor O if no nore rows */

nmor eRows =r esul t ~next ()

end

As the code box over shows the executeQuery method is used to retrieve data from the

database. The result of the “SELECT” SQL statement is saved to the variable result.

The result object is of type ResultSet, and is a collection of data retrieved from the
database. The ResultSet is logical divided into rows, and a pointer determines in which row
the ResultSet is.

In order to set set result object to the first row in the ResultSet, it is necessary to call the

method next.

When the pointer points to the first row in the DataSet the data can be retrieved using e.qg.

the getString method.
After all the data needed is retrieved from the ResultSet, the next method is called again.

This is repeated until the next method returns a false (0) value, meaning that all the rows in

the ResultSet are processed.

The following screenshot show the out put for the user after successfully adding a row to

the database.

Page 88

= = o=

Sitzung Bearbeiten Ansicht Lesezeichen Einstellungen Hilfe

osmund@l i nux: ~/Document s/ IWJ/VK6-EC/ code/mein/example-c1-21> rexx |ogDB. rexx [+]
Log nr 0 from user Rexx : This is the first row.

What is you name ?

Asmund

What do you want to log ?

This is a test of ooRexx, bsfdrexx, Java and JDBC !
Write another row in the log ? (y/n)

Y

Log nr O from user Rexx : This is the first row.
Log nr 1 from user Asmund : This is a test of ooRexx, bsfdrexx, Java and JDBC
1

What is you name ?

D

l @ Befehlsfenster | [Befehlsfenster Nr. 2 [| Befehlsfenster Nr. 3]

Figure 56: Output from example C1-20

Page 89

3.2 C2 — Automating OpenOffice.org with Rexx

In category 2 ooRexx and BSF4Rexx are used to control OpenOffice.org. The API of

OpenOffice.org is described in more detail in chapter 2.3.
3.2.1 Example C2-1 Update a Database using BSF4Rexx

This example demonstrates how to use BSF4Rexx to update an OpenOffice.org Database
by sending SQL-Statements with Rexx. This example is based on Java examples in the

OpenOffice.org Developers Guide [devel05]

xContext = UNO. connect() /* connect to server and retrieve the XContext object */
xMef = xCont ext ~get Servi ceManager /* get the XMWl ti Conponent Factory */
dbc = xMcf ~creat el nst anceW t hCont ext (" com sun. st ar. sdb. Dat abaseCont ext", xCont ext)
/* create a DatabaseContext Object */
xn = dbc~XNaneAccess /* get the NanmeAccess Object to the DatabaseContext Object */
xDS = xn~get byname("t eammenbers”) /* Get Datasource by Nane */
i nt er act i onHand| er =xMcf ~cr eat el nst anceW t hCont ext (" com sun. st ar. sdb. | nt eracti onHandl er", xCont ext)
/* create a InteractionHandl er Chject */
xl nt Han = interactionHandl er ~xI nteracti onHandl er /* get the Interface to the InteractionHandl er*/
xconpconn = xDS~XConpl et edConnection /* get the Connection Cbject to the Datasource */
xConnection = xconpconn~connect Wt hConpl et i on(xI nt Han)
/* create a connection using the Interactionhandl er */
xSt at enent = XConnecti on~createStatement /* create a Statement Interface in the connection */
xResul t = Xst at enment ~execut eUpdat e(" CREATE TABLE TEAMVEMBERS (NUMMVER | NT PRI I\/ARY/ KEY, NAME VARbC:-iAR(/SO). TORE I NT)")
* create a table *
xSt at ement ~execut eUpdat e(" | NSERT | NTO TEAMVENBERS (NUWWER, NAVE, TORE) VALUES (1, 'Asnund Real fsen', 7)")
/* insert an entry in the new table */

xSt at ement ~execut eUpdat e(" | NSERT | NTO TEAMVEMBERS (NUMVER, NAME, TORE) VALUES (2, 'Gerhard Gorlich', 8)")
/* insert an entry in the new table */

xSt at ement ~execut eUpdat e(" | NSERT | NTO TEAMVENBERS (NUMVER, NAVE, TORE) VALUES (3, 'David Spanberger', 3)")
/* insert an entry in the new table */

::irequires UNO CLS -- get UNO support

Figure 57: The code for example c2-1

3.2.1.1 Explanation

IxOont ext = UNO connect ()

Using the UNO.connect method, defined in UNO.cls, to get the xContext Interface.

IxM:f = xCont ext ~get Servi ceManager

Get the MultiComponentFactory

|dbc = xMecf ~creat el nst anceW t hCont ext (" com sun. st ar. sdb. Dat abaseCont ext", xCont ext)

Create the DatabaseContext Object in the above received xContext.

xn = dbc~XNaneAccess
xDS = xn~get bynane("teamrenbers")

Get the XNameAccess Interface and get a Datasource by its name.

i nteractionHandl er = xMf ~creat el nstanceW t hCont ext (“com sun. star. sdb. I nteracti onHandl er”, xCont ext)
xI nt Han = i nt eracti onHandl er ~xI nt er act i onHandl er

Page 90

Get an InteractionHandler interface.

xconpconn = xDS~XConpl et edConnection /* get the Connection Cbject to the Datasource */
xConnecti on = xconpconn~connect Wt hConpl et i on(xI nt Han)

Connect to the Database using the InteractionHandler

|xSt atement = XConnecti on~creat eSt at enent

Create an Xstatement interface for the Connection

IXRE'SUI t =Xst at enent ~execut eUpdat e(" CREATE TABLE TEAMVEMBERS (NUMVER | NT PRI MARY KEY, NAME VARCHAR(50), TORE INT)") I

Execute an update of the database by using the Xstatement Interface to send an SQL-

Statement.

Page 91

3.2.2 Example C2-2 — Clipboard

This example illustrates the wusage of the OpenOffice.org clipboard service
(com.sun.star.datatransfer.clipboard.SystemClipboard). The clipboard service is used for
data exchange between OpenOffice.org components or between OpenOffice.org
components and external applications, usually in the form of copy and paste operations
[devel05, p. 419].

3.2.2.1 The Clipboard Service

The architecture of the OpenOffice.org clipboard service is strongly conforming to the Java
clipboard specification [devel05, p. 419]. Since different platforms use different ways for
representing clipboard data, the OpenOffice.org clipboard service uses platform
independent DataFlavor objects as a representation for clipboard data in a certain format.
DataFlavor objects, as defined in com.sun.star.datatransfer.DataFlavor, have three
members devel05, p. 420]:

MimeType — a string that describes the data conform to RfC2045 and RfC2046.

HumanPresentableName — the human presentable name for the data format

represented by the DataFlavor object.

DataType — the type of data in this DataFlavor (the class of the data, String.class,
byte[].class in Java)

Page 92

. bsf ~bsf.inmport("java.lang. String", "String")) i
xCont ext = UNO connect() -- connect to server and retrieve the XContext object
xMcf = xCont ext ~get Servi ceManager -- get the XMWl ti Conponent Fact ory

/* get clipboard conponent*/
od i pboard = xMcf~creat el nstanceW t hCont ext (“com sun. st ar. dat atransfer. cli pboard. Syst enCl i pboar d", xCont ext)

xQd i pboard = od i pboard~Xd i pboard

/* retrieve clipboard content */
xTransferabl e = xd i pboar d~get Cont ent s

/* get an arra¥ "Dat aFl avor" obj ect s*/
df I vArr = xTransf erabl e~get Tr ansf er Dat aFl avor s()

througfh array an process the DataFl avor objects */
do f over df

m ne = df ~M neType
hp = df ~HumanPr esent abl eNane
dt = df ~Dat aType~toStri ng
SAY M--------eee oo
/* Check if DF is supported before retrieving the data object */
if xTransf erabl e~i sDat aFl avor Suppor t ed(df) then do
say "M ME:" mne
/* print only textdata in utf-8 fornmat */
if pos("utf-8",mme) <> 0 then do
data = xTransf erabl e~get Transf er Dat a(df)
str = .String~new data)
say "TEXT: " str~toString

end
end
end
;:requires UNO CLS -- get UNO support

Figure 58: The code for example c2-2

3.2.2.2 Explanation

First, a connection to OpenOffice.org is established by using the UNO object. The result is
a component context. In the next step, a service manager object is retrieved from the
component context. The service manager is an object that implements the
XMultiComponentFactoryFactory interface and can therefore create services (see also
3.1). By calling the createlnstanceWithContext method with the clipboard service as

parameter, a clipboard service object will be returned:

IoO i ppoard = xMcf~creat el nstanceWt hCont ext ("com sun. star. dat at ransfer. cli pboard. SystenCl i pboard", xCont ext) |

The data in the clipboard is carried by a transferable object that implements the interface

com.sun.star.datatransfer.XTransferable. This object contains one or more DataFlavors,

which can represent the clipboard data in different formats (e.g. in different encoded):

xTransferable = xd i Bboard~get Contents
df I vArr = xTransf erabl e~get Transf er Dat aFl avor s()

In the following loop, the format, the human presentable format and the data type for each
each DataFlavor object are printed to the screen. If the mime type contains “utf-8”, which
means the data is encoded in “utf-8” format (full mime type: “text/plain;charset=utf-8”), the

data will also be printed:

Page 93

|data = xTransf er abl e~get Tr ansf er Dat a(df)

The transferable object will return the data according to the matching DataFlavor (df).

The screenshot shows the output of this example:

e gerhard @iinux:/. exx/GG'00-Download - Berehlsfenster - Kunsnle_Eh

Sitzung Bearbeiten Ansicht Lesezeichen Einstellungen Hilfe

gerhard@l inux : ~/rexx/G6-00-Dounload> rexx clipboard.rex [:j

MIME: textrplain:charset=utf-16

MIME: textrplain:charset=utf-8
TEXT: fA Test text in clipboard

MIME: text-plain:charset=I130-10646-UC5-2

MIME: text-plain

MIME: textrplain:charset=utf-8
TEXT: nfA Test text in clipboard

MIME: textrplain:charset=utf-8
TEXT: nfA Test text in clipboard

E] || Befehlsfenster

() (]

Figure 59: Output from example C2-2

The clipboard data could have either type string (String.class) or byte array (byte[].class),
so it can not be printed directly with say. This would raise an error for byte array data. The
Java String class provides a constructor with a string parameter as well as one with byte

array. Therefore .String~new can be used to assure that the data is in string format before

printing.

Page 94

3.2.3 Example C2-3 Print with OpenOffice.org

This example prints a existing OpenOffice.org Writer document to the standard printer.

/* get the xConponent Loader interface */
conponent Loader = UNO. cr eat eDeskt op() ~XDeskt op~XConponent Loader

/* start OO Cal c and open a al ready existing docunment */
fileToQpen = "file:///"directory()"/cal c-print.ods"
cal c=conponent Loader ~| oadConponent Fr onJRL(fi | eToOpen, " _defaul t", 0, . UNO~-noPr ops)

/* get standard printer, then print */
printer = cal c~XPrintable
printer~print (. UNO-noPr ops)

cirequires UNO CLS -- |oad support for Open Ofice

Figure 60: The code for example C2-3

3.2.3.1 Explanation

First the xComponentLoader interface is retrieved. This interface is used to loads

components from an URL into OpenOffice.org. [00006]

Then the variable fileToOpen is set to point to a OpenOffice.org Calc document that

already exist.

The method loadComponentFromURL in the componentLoader object is used to load the

the file.

The code below shows the part that does the actually printing.

/* get standard printer, then print */
printer = cal c~XPrintable
printer~print(.UNO-noProps)

First the the XPrintable interface is loaded from the calc object. Then method print is called

from the printer object.

Page 95

3.2.4 Example C2-4 Thesaurus

This example demonstrates how to use the OpenOffice.org thesaurus service with
BSF4Rexx.

The thesaurus service is part of the OpenOffice.org Linguistic API
(com.sun.star.linguistiC2). This APl provides also services for spell checking or
hyphenation [devel05, p. 438ff]

. bsf~bsf.inport("com sun.star.beans. PropertyVal ue", "PropertyVal ue")
. bsf~bsf.inport("comsun.star.lang. Local e", "Locale")

xCont ext = UNO. connect() /* connect to server and retrieve the XContext object */
xMecf = xCont ext ~get Servi ceManager /* get the XMWl ti Conponent Factory */

/* get the linguistics service nanager */
atbj = xMcF~createl nstanceW t hCont ext ("com sun. star. | inguisti C2. Li nguServi ceManager"”, xContext)

mxLi nguSveMyr = aCbj ~XLi nguSer vi ceManager

/* get thesaurus service */
t hesaurus = nxLi nguSvcMyr ~get Thesaur us

us = .Local e~new("en","US","")
aEnpt yProps = bsf.creat eArray(. UNO-propertyVal ue, 1) -- create Java array

do forever
say "Enter a Word ('exit' for exit):"
pul | awrd
I1f awrd = "EXIT" then | eave

xMeani ngs = t hesaurus~queryMeani ngs(aWr d, us, aEnpt yPr ops)

do meani ng OVER xMeani ngs
say "Meaning: " nmeani ng~get Meani ng()
do alt over neani ng~querySynonyns
say "ALT.: " || alt
end
end
end

:irequires UNO CLS -- get UNO support

Figure 61: The code of example C2-4.

3.2.4.1 Explanation

First a connection to OpenOffice.org is established and a service manager object is
retrieved from the component context like in the examples before. Then a
LinguServiceManger service is retrieved from the service manager. This object manages
the interfaces for spell checker, thesaurus and hyphenation. The getThesaurus method
returns the thesaurus service. A locale object which holds the language settings for US-

English and an empty property array are prepared.

In the following loop the user can enter words, the loop is terminated with leave if the user
enters 'exit' (independent of capitalization). The users input, the Locale object created
before and the empty property array are the parameters for calling the thesaurus services

queryMeanings method:

Page 96

xMeani ngs = t hesaur us~quer yMeani ngs(awr d, us, aEnpt yPr ops) |

The method returns an array of objects implementing the XMeanings interface. Each
Meaning can have multiple synonyms. These are returned by the getSynonyms method of
the XMeaning object. The reason to subdivide the synonyms into different meanings is
because one word can have synonyms for its different meanings that are not related.
Therefore the synonyms are divided into smaller groups approximately the same definition
[devel05, p. 444].

The screenshot shows the output of this example:

e gerhard @hnux:/ .. exx/GG/O0-Download - Befehlsfenster - Kunsule_@.a

Sizung Bearbeiten Ansicht Lesezeichen Einstellungen Hilfe

gerhard@l inux : ™ srexx/66G-00-Dounload> rexx Thesaurus.rex [:j
Enter a Word ("exit’ for exit):
demno

Meaning: (noun) demonstration
ALT.: DEMONSTRATION

ALT.: VISUAL COMMUMNICATION
Meaning: (verb) =shouw

ALT. : SHOW

ALT.: EXHIBIT

ALT.: PRESENT

ALT.: DEMONSTRATE

AaLT. : SHOW []
Enter a Word ("exit’ for exit):
I g

E] || Befehlsfenster

Figure 62: Output from example C2-4

Page 97

3.2.5 Example C2-5 Cells and Charts in OO-Chart

This example opens a new OpenOffice.ord Calc document, writes some text into three
cells. Then is sets the font size and the background color the three cells, and fill in numbers

and formulas in 90 cells.
Next, the 90 cells containing data and formulas are used for creating a chart.

The output of the script is displayed in the screenshot below.

- [, Untitled1 - OpenOffice.org Calc 88 &
File Edit View Insert Format Tools Data Window Help
C-pEs 2 Yo PmdhBd-& -3 @l WV K| =E)os -] @
0] | Albany AMT - 14 A EBOQ E=M)) 3 ey ey f2iE OB - E - A - .
Al v g £ = [Number
A El C D I 5 [F & I H [| [J K L [+]
LlINumber |_SIN(A_) SIN(A*B) P
2 0.2 0.2 -0.46 Main title
3 04 039 -0.38 1
4 0.6 0.56 -0.54
5 0.8 0.72 0686 08
3 1 0.84 0.75
7 12 093 08 08
8 1.4 0.99 -0.83
9 16 1 oss 04
10 1.8 0.97 083 g2 I
1 2 091 -0.79 I B
12 22 081 072 0 I B =SIN:)'EJ
13 24 0.68 -0.63 I |
4 26 0.52 043 02 |
15 28 0.33 03,
16 3 0.14 0.14 ’
17 32 -0.06 006 g
18 3.4 -0.26 0.25
19 36 -0.44 043 -08
20 38 061 057
21 4 -0.76 0.69 i e s s s s s e B s B Y M L R R R
=2 | 42 087 0.77 0.0.0 011 11122 222 33333 444445550556
23] 44 095 0.81 2468 2468 2468 2468 2468 2468
24 46 -0.99 084
25 48 -1 084
26 5 -0.96 0.82
27 5.2 -0.88 0.77
28 5.4 -0.77 0.7
29 56 063 059
30 5.8 -0.46 0.45
31 6 -0.28 0.28 =
ER) b
Sheetl 1 fi |
Sheet1/3 Default 100% sTD [= Sum=0 y

Figure 63: Screenshot of example C2-5

Page 98

/* get the xConponent Loader interface */
conponent Loader = UNQO. cr eat eDeskt op() ~XDeskt op~XConponent Loader

/* start OO Calc with a blank docunment */
cal cConponent = conponent Loader ~| oadConponent Fr omURL(" pri vat e: factory/scal c*, "_blank", O,

/* get the first sheet in calc */
sheet =cal cConponent ~XSpr eadSheet Docunent ~get Sheet s~XI ndexAccess~get Byl ndex(0) ~XSpr eadSheet

/* Use a procedure in uno.cls to wite text into a cells */
CALL UNO setCel | sheet, 0, 0, "Nunber"

CALL UNO. setCel | sheet, 1, 0, "SINA)"

CALL UNO. set Cel | sheet, 2, 0, "SIN(A*B)"

/* select the range al: Cl, and apply formating */

headi ng = sheet ~get Cel | RangeByNar‘re(Al:

headi ng~XPr opert ySet ~set PropertyVal ue(" Cel | BackCol or", box("int", "00 00 77"x ~C2d))
headi ng~XPr opert ySet ~set PropertyVal ue(" Char Hei ght ", box(”f | oat "14.0"))

last_value = -1

do i=1to 30 by 1
/* wite content to a cell using a routine from UNO CLS */
CALL UNO.setCell sheet, 0, i, i/5

/* Wite content to a cell wthout help from UNO CLS, alternative nmehtod */
sheet ~get Cel | ByPosi tion(1,i)~set Formul a("=SI N(A"i +1")"
’ sheet ~get Cel | ByPosi ti on(2,i)~set Formul a("=SI N(A"i +30"-B"i +1")")
en

/* create dinensions for chart */

chartRec = . bsf~new("com sun. star.awt . Rectangl e")
chart Rec~X = 7000

chartRec~Y = 0

chart Rec~Wdth = 20000

chart Rec~Hei ght = 10000

/* select cell range for chart */
chart Cel | Range = sheet ~get Cel | RangeByNane(" Al: C31") ~xCel | RangeAddr essabl e~get RangeAddr ess

/* Create an array with data to insert into the chart */

CALL UNO | oadd ass "com sun. star.tabl e. Cel | RangeAddr ess"
chart AddressArray = bsf.createArray(. UNO-Cel | RangeAddr ess, 1)
chart AddressArray[1] = chartCel | Range

/* create and show chart */
chart = sheet ~xTabl eChart sSuppl i er ~get Charts
chart ~addNewByNane("nyChart", chartRec, chartAddressArray, .true, .true)

cirequires UNO CLS -- load support for Open Ofice

. UNO~noPr ops)

Figure 64: The code for example C2-5

Page 99

3.2.5.1 Explanation

First the xComponentLoader interface is used to start the OpenOffice.org Calc component.

Then the variable sheet is referenced to the first sheet in the document. The first sheet of

the document has the index 0.

Next, the code in the box bellow is executed.

/* Use a procedure in uno.cls to wite text into a cells */
CALL UNO. setCell sheet, 0, 0, "Nunber”

CALL UNO. set Cel | sheet, 1, 0, "SINCA)"

CALL UNO.setCel | sheet, 2, 0, "SINA*B)"

All UNO methods are methods provided from the file UNO.CLS. UNO.CLS contains
methods that makes it simpler to automate OpenOffice.org from ooRexx. UNO.CLS is a

part of the BSF4Rexx package.

The setCell method of UNO.CLS is method that writes values or formulas into cells. The
first argument is a reference to which sheet to use. The next arguments are the adress of

the cell, and the value or formula to insert.

The alternative to the method setCell from the UNO.CLS file, is to first get the cell position,

then use the setFormula method.

|sheet ~get Cel | ByPosi tion(1,i)~setFormula("=SIN(A"i +1")")

The alternative version as displayed above, is used later in the script.

After the headings are written the formatting is applied. The getCellRangeByName method

select a area in the spreadsheet. In this case the area A1 to C1 is selected.

/* select the range al:Cl, and apply formating */

headi ng = sheet ~get Cel | RangeByNane("Al: C1")

headi ng~XPr oper t ySet ~set Pr opert yVal ue(" Cel | BackCol or", box("int", "00 00 77"x ~C2d))
headi ng~XPr opert ySet ~set PropertyVal ue(" Char Hei ght", box("float", "14.0"))

In order apply formating on the selected area, the interface XpropertySet has to be used.
With this interface, information on the selected area can be retrieved and properties can be
set. With the setPropertyValue method the background color and the font size are

specified.

Page 100

The second argument of the setPropertyValue method is the value to set the property to
use. The box function is specified from BSF4Rexx and makes sure that the specified value
is returned. The C2d function on the line that sets the background color, is a coRexx
function that converts the hexadecimal value into a decimal value. This again returned as a

integer value because of the box function in BSF4Rexx.

After the formating of the first row is set, the script write values and formulas into the area

A2 to C31 in the sheet. This is done using the methods presented above.

Then the dimension of the chart is created using an object from the

com.sun.star.awt.Rectangle class.

Next the variable chartCellRange is set to the range A2 to C31. This is the data to use

when creating the chart.

A chart can contain data from several ranges of cells. To archive this functionality an array
of cell ranges has to be created. This example use only one cell range, but with just small

changes in the code, several cell ranges could be used.

After the cell range is inserted into an array, the chart it self is created.

Page 101

3.3 C3 — Combining Java APIs and OpenOffice.org with

ooRexx

In this section the usage of Java APIs for enhancing the abilities of OpenOffice.org is

shown.

3.3.1 Example C3-1 Inserting Charts in OpenOffice.org Draw

This example demonstrates how to use

BSF4Rexx to create a similar Chart with Haupttitel

JfreeChart and OpenOffice.org Calc | °

451
based on data from a database in el

35—

OpenOffice.org Base. The time it takes to

create each of the charts gets measured. |25{ created by scalc in

After creating these charts, they are inser- | | | 1.266000 Sekunden

ted into a Draw document together with a o
054+ —

box containing the measured time. |,

T T
Garlich Realfsen Spanherger
Gerhard Asmund David

JfreeChart has to be installed to run this

example.
Crealed by JFreeChant

This example is contains parts of Java ex- v
amples in the OpenOffice.org Developers |«

Guide ([devel05]) and parts of |*

OpenOffice.org Automation nutshell ex-

amples in [Aha05]. created by jFreeChart in

i 0.875000 Sekunden

byl
i

m
i

TR R PR AT R T

Figure 65: Screenshot of example C3-1

Page 102

[e create a New Draw Document ---------------------~-~---- */
oDeskt op UNO. creat eDesktop() /* get the desktop Object */
xConponent Loader oDeskt op~XDeskt op~XConponent Loader
/* get corrponent Loader interface of the Desktop Object */
url = "private:factory/sdraw' /* url to the blank *.sxw - file */
xDr awConponent = xConponent Loader ~| oadConponent FromJRL(urI " bl ank", 0, .UNO-noProps)

“/* open the url with no Properties */
xDMvsf = xDrawConponent ~XMul ti Servi ceFactory /* Get the Milti ServiceFactory of the draw Cbject */
xDr awPage=xDr awConponent ~XDr awPagesSuppl i er ~get DraV\.Pages~get Byl ndex(0) ~XDr awPage

/* get the first Page in the Praw Docunent */

R get the Database Connection ---------------cooommoonoo */
xCont ext = UNO. connect() /* connect to server and retrieve the XContext object */
XMef = xCont ext ~get Servi ceManager /* get the XMulti Conponent Factory */
oRowSet = xMf ~creat el nstanceW t hCont ext ("com sun. st ar. sdbc. RowSet ", xCont ext)

/* create RowSet Object */
xRowSet = oRowSet ~XRowSet /* get it's interface */
XProp = xRowSet ~XPropertySet /* create a Properties Object for the connection to the database */
xProp~set Propert yVal ue(" Dat aSour ceNane", "teamenbers")

/* the Name of database we want to connect to */
XxPr op~set Propert yVal ue(" ConmandType", box("int", bsf.getStaticVal ue("com sun. star.sdb. ConmandType", "COWAND")))
/* set the Command Type*/

XProp~set Propert yVal ue(" Cormand”, "SELECT Nachnane, Vornanme, Tore FROMtabl e _nanes ORDER BY |D")
/* The Command we want to execute */
xRowSet ~execut e /* execute the conmand */
;(Bow = oRowSet ~XRow /* get columm access to the row object */

R create Gaph using JFreeChart ----------------~---—~—-—-- */
nul | setzen=ti ne R) /* Reset Time to get the tinme it takes to create the Gaph */
bsf ~bsf.inport("org.jfree.chart. ChartFactory","JChart Factory")
/* inmport the JFreeChart Chartfactory Cass */
. bsf~bsf.import("org.jfree.chart.ChartUilities","JChartUtilities")
]* |rrp0rt the JFreeChart Chartutilities Class */
. bsf~bsf.inmport("org.jfree.chart.JFreeChart","JFreeChart"
/* inport the JFreeOnart JFreeChart dass */
. bsf~bsf.inmport("org.jfree.data. category. Def aul t Cat egor yDat aset ", " Def aul t Cat egor yDat aset C?
/* inport the JFreeChart’ Def aul t Cat egor yDat aset ass */
.bsf~bsf.inmport("java.io. File","JFile") /* inport the Java File 1/O Cass */
. bsf~bsf.inmport("org.jfree.chart.plot.PlotOrientation","PlotOientation")
/* inport the JFreeChart PlotOrientation Class */
dat aset =. Def aul t Cat egor yDat aset ~new() /* create a new Def aul t Cat egor yDat aset Cbj ect */
DO WHI LE xRowSet ~next > 0 /* create |oop, which runs until it has reached the end of the RowSet */
dat aset ~addVal ue(xRow~get String(3),xRow~;;et String(1) || " " || xRow-getString(2),"")
* add the Values to the Dataset *

END
chart=.JChart Fact ory~creat eBar Chart (" Created by JfreeChart","Spieler","Tore", dataset,.PlotOientati on~VERTICAL, .true, .true,.fal se)
/* create the Bar Chart */
fileName="t eanmenbers. pg" /* set the output file name */
chartFile=. JFile~new(fileName) /* create a new Java File Object */
JChart Ui lities~saveChart AsJPE¢(chartFile, chart, 800,500) /* save the file as JPG */
/* Insert the JPG in the Draw Document */
oG aph = xDMsf ~cr eat el nst ance(" com sun. st ar. dr awi ng. Gr aphi cObj ect Shape")
/* create a new G aphi cObj ect Shape Cbject */
xG'aph = oG'aph~xShape /* get the Interface to the G aphi cObject Shape Object */
size = .bsf~new('comsun.star.aw.Size") /* create a new Size Cbject */
point = bsf~new(com sun.star.awt.Point") /* create a new Point Gbject */
si ze~Hei ght 13000 /* set height */
si ze~Wdth 13000 /* set width */
point~x = 200 /* set coordinates on the x axis, where to insertthe Cbject */
poi nt ~y= 15000 /* set coordinates on the y axis, where to insertthe Cbject */
xGraph~set Si ze(si ze) /* apply the Size Object to the G aphi cQbject Shape Cbject */
xG aph~set Position(point) /* apply the Point Cbject to the G aphi cObj ect Shape Object */
xPropert ySet =xGr aph~xPropertySet /* get PropertySet Interface to the G aphi cCbjectShape Object */
xPr opert ySet ~set PropertyVal ue(" G aphi cURL", nakeURL("teamrenbers.jpg"))
/* set the Filename of the File to insert */
xDr awPage~add(xG aph) /* add Graph to the draw Page */
jfreetine=tine(E) /* get Tine it takes to create the graph with JFreeChart */

ol eShapePr ops~set PropertyVal ue("CLSI D', nsChartC assl D)
* set CLSID VaI ue to the Propertyset */
nodel = ol eShapeProps~get PropertyVal ue(" Mdel ") /* get the Nbdel Val ue
xChart Docunment = nodel ~xChart Docunent /* get the XChartdocunent |nterface */
xChar t Docunent ~at t achdat a(xDi agran) /* attach data to the xChartDocunent */
7ca| ctime=time(E) /* get Tine it takes to create the graph with scalc */
i

Figure 66: The code of example C3-1, part 1

Page 103

R add Rectangles with text to the Docunent -------------------------- */
/* Rectangle Nr. 1 */
shapeRectangl e = -
xDMsf ~cr eat el nst ance(" com sun. st ar. drawi ng. Rect an?l eShape")
* create new rectangl eShape Cbject */
xshapeRect angl e = shapeRect angl e~XShape /* Get the Xshape Interface */
shapeX = 13500
shapeY = 6000
xShapeRect angl e~set Posi ti on(. bsf ~new("com sun. star. awt. Poi nt", shapeX, shapeY))
/* set the position of the Rectangle */
shapeWdth = 7000
shapeHei ght = 3000
xShapeRect angl e~set Si ze(. bsf ~new("com sun. star. awt . Si ze", shapeW dth, shapeHei ght))
/* set the size of the Rectangle */

xDr awPage~add(xShapeRect angl e) /* add the Rectangle to the DrawPage */
xText = xShapeRect angl e~XText /* Get the Xtext Interface */
xText Cursor = xText ~cr eat eText Cur sor /* create the TextCursor */
xText Cur sor ~got oEnd(. f al se) /* set cursor to the end */
xText Range = XxText Cur sor ~XText Range /* get the XTextRange Interface */
xText Range~set String("created by scalc in " || "0Oa0a"x || scalctinme || " Sekunden")
/* add Text */

/* Rectangle Nr. 2 */
shapeRect angl e = xDMsf ~creat el nstance("com sun. star. draw ng. Rect angl eShaFe ?1

/* create new rectangl eShape Cbject */
xShapeRect angl e = shapeRect angl e~XShape /* Get the Xshape Interface */

shapeX = 13500
shapeY = 22000
xShapeRect angl e~set Posi ti on(. bsf ~new("com sun. star. awt. Poi nt", shapeX, shapeY))
/* set the position of the Rectangle */
shapeWdth = 7000
shapeHei ght = 3000
xShapeRect angl e~set Si ze(. bsf ~new("com sun. star. awt . Si ze", shapeWdth, shapeHeight))
/* set the size of the Rectangle */

xDr awPage~add(xShapeRect angl e) /* add the Rectangle to the DrawPage */
xText = xShapeRect angl e~XText /* Get the Xtext Interface */

xText Cursor = xText ~cr eat eText Cur sor /* create the TextCursor */

xText Cur sor ~got oEnd(. f al se) /* set cursor to the end */

xText Range = xText Cur sor ~XText Range /* get the XTextRange Interface */
xText Range~set String("created by jFreeChart in " || "Oa0a"x || Jfreetl me || " Sekunden")

* add Text */

tirequires UNO CLS /* | oad UNO support for OpenCfifice.org */
::routine nmakeUr| /* operating system independent */
return Convert ToURL(strean(arg(1l), "c", "query exists"))

Figure 67: The code of example C3-1, part 3

3.3.1.1 Explanation

A create a New Draw Document -------------------------- */
oDeskt op UNQ creat eDesktop() /* get the desktop Chject */
xConponent Loader oDeskt op~XDeskt op~XConponent Loader
/* get conponent Loader interface of the Desktop Object */
url = "private:factory/sdraw' /* url to the blank *.sxw - file */
xDr awConponent = xConponent Loader ~| oadConponent FronJRL(url, " _blank", 0, .UNO-noProps)
/* open the url with no Properties */

These lines open a new empty Draw document.

xDVsf = xDr awConponent ~XMul ti Servi ceFactory /* Get the Milti Servi ceFactory of the draw Cbject */
xDr awPage=xDr awConponent ~XDr awPagesSuppl i er ~get Dr awPages~get Byl ndex(0) ~XDr awPage

Get the MultiComponentFactory and assign the “XdrawPage” Interface of the first Page of

the document to the variable “xDrawPage”

|dbc = xMcf ~creat el nst anceW t hCont ext (" com sun. st ar. sdb. Dat abaseCont ext ", xCont ext) |

Create the DatabaseContext Object in the above received xContext.

[nul I setzen=ti ne(R)

Reset the time counter for measuring the time.

dat aset =. Def aul t Cat egor yDat aset ~nevv(? /* create a new Defaul t Cat egor yDat aset Cbj ect */
DO WH LE xRowSet ~next > 0 /* create |oop, which runs until it has reached the end of the RowSet */
dat aset ~addVal ue(xRow~get Stri ng(3), xRow~get String(1l) || " " || xRow-getString(2),"")
add the Values to the Dataset */

END

Create a new Dataset and assign the values from the database to it.

/* create the Bar Chart */

chart=. JChart Fact or y~cr eat eBar Chart -

("Created by JfreeChart","Spieler","Tore", dataset,.PlotOientati on~VERTI CAL, . true,.true,.fal se)
fileName="teammenbers.|pg" /* set the output file name */

chartFile=. JFile~new(fileNane) /* create a new Java File Cbject */

.JChartUtilities~saveChart AsJPEXchartFile, chart, 800,500) /* save the file as JPG */

Page 104

Create a Barchart and save it as an Jpg-Image.

/* create a new Graphi cObj ect Shape bj ect */
oG aph = xDMsf ~creat el nstance(”com sun. star. draw ng. Graﬁhi cQbj ect Shapeaj
xG aph = oG aph~xShape /* get the Interface to the G aphi cObj ect Shape Cbject */

Create a new GraphicObjectShape and get its Xshape Interface.

size = .bsf~new("com sun.star.awt.Size") /* create a new Size Cbject */

poi nt = .bsf~new("com sun.star.awt.Point") /* create a new Point Cbject */

size~Hei ght = 13000 /* set height */

size~Wdth = 13000 /* set width */

point~x = 200 /* set coordinates on the x axis, where to insertthe Cbject */

poi nt ~y= 15000 /* set coordinates on the y axis, where to insertthe Object */

XxG& aph~set Si ze(size) /* apply the Size Cbject to the G aphi cObject Shape Cbject */

xG aph~set Posi tion(point) /* apply the Point Cbject to the G aphi cQbj ect Shape Object */

Set the size and the position of the GraphicObjectShape.

xPropertySet =xGr aph~xPr0ﬁertySet /* get PropertySet Interface to the G aphi cObject Shape Object */
/* set the Filename of the File to insert */
xPr opert ySet ~set Proper tyVal ue(" G aphi cURL", makeURL("teammenbers.jpg"))

Define which image has to be inserted in the GraphicObjectShape.

xDr awPage~add(xG aph) /* add Graph to the draw Page */
jfreetime=tine(E) /* get Time it takes to create the graph with JFreeChart */

Add the GraphicObjectShape to the Draw document. Get the time since the last time reset

to know how long it took to create this chart.

props[1] = .UNO-PropertyVal ue~new / * nmake the array elenent to a property Value */
props[1] ~Name = "Hidden" /* set the property to open the file hidden */
props[1] ~Val ue = box("bool ean", .true) /* set the property Value .true */

Open the Calc component hidden. This means it is invisible to the user.

DO WH LE xRowSet~next > 0 /* create |oop, which runs until it has reached the end of the RowSet */
CALL UNO setCell xSheet, 0, i, xRow-getString(1l) || " " || xRow-getString(2)
/* put Data in the first colum */
CALL UNO setCell xSheet, 1, i, xRow-getString(3) /* put Data in the second colum */
i=i+1
END

Insert the values from the database into the cells of the Calc Document.

nyRange=xSheet ~XCel | Range~get Cel | RangeByNanme(" ALl: B" || i)

/* get Cell Range of Cells which are used for the graph */
nyAddr = nyRange~XCel | RangeAddr essabl e~get RangeAddress /* get the Address of the Cel |l Range */
CALL UNO. | o0add ass "com sun. star.tabl e. Cel | RangeAddress” /* create the Cel | RangeAddress for the Chart */
oAddr = bsf.createArray(.UNO-Cel | RangeAddress, 1) /* create Java array */
0Addr[1] = nyAddr

Select the Cell Range, which should be used for the chart.

oRect = .bsf-~new("comsun.star.aw.Rectangle") /* create a rectangle for the chart */
oRect ~X =0

oRect ~Y =0

oRect ~Wdth = 18000

oRect ~Hei ght = 8000

Create a rectangle, in which the chart will be inserted.

xTabl eCharts = xSheet ~XTabl eChar t sSuppl i er ~get Charts /* get the Sheet's ChartsSupplier */
xTabl eChart s~addNewByNane(" Tor e", oRect, oAddr, .true, .true) /* add the new Chart */

Create the new chart.

ol e2shape = xDr awFact or y~cr eat el nst ance("com sun. st ar. dr awi ng. OLE2Shape") ~xShape
/* create an OLE3Shape Object and its interface */
xDr awPage~add(ol e2shape) /* add the shape to the DrawPage */

Page 105

Create a new OLE2Shape and add it to the draw Page.

nmsChart C assl D = "12dcae26- 281f - 416f - a234- C3086127382e"

ol eShapeProps = ol e2shape~xPropertySet /* get Propertyset of the ol e2shape */

ol eShapePr ops~set PropertyVal ue(" CLSI D', nsChartClassID) /* set CLSID Value to the Propertyset */
nmodel = ol eShapePr ops~get PropertyVal ue("Mdel ") /* get the Mddel Value */

xChar t Document = nodel ~xChart Document /* get the XChartdocunent |nterface */

xChar t Document ~at t achdat a(xDi agram) /* attach data to the xChart Docunent */

Attach the diagram into the OLE2Shape.

xText = xShapeRect angl e~XText /* Get the Xtext Interface */

xText Qursor = xText~createTextCursor /* create the TextCursor */

xText Cur sor ~got oEnd(.false) /* set cursor to the end */

xText Range = xText Cur sor ~XText Range /* get the XTextRRange |nterface */

xText Range~set String("created by scalc in " || "0Oa0a"x || scalctinme || " Sekunden") /* add Text */

Write the measured time into the rectangles next to the graphs.

This example is big and complex. Therefore it is difficult to get the overview over the whole

program. But if you understand the examples above it, there is no real problem.

Page 106

3.3.2 Example C3-2 Regexp and Charts

This example combines the knowledge from example C1-2 (regular expressions) and C2—

6 (cells and charts).

The script downloads the pages from finance.yahoo.com for a list of stock symbols. Then
these pages are parsed via the Java regular expression classes. The values are inserted

into a Calc sheet and a chart is generated.

/* inport Java cl asses */

. bsf~bsf.inport("java.io.lnputStreanm’, "InputStrean')

. bsf~bsf.inport("|ava.net. URL", "URL")

. bsf ~bsf .inport("]ava.io. Datal nput Streant, "Datal nputStreant)

. bsf ~bsf.inport("]ava.io.Bufferedl nput Streant, "BufferedlnputStrean')

.bsf~bsf.inport("java.util.regex. Pattern”, "Pattern")
. bsf~bsf.inmport("java.util.regex. Matcher", "Matcher")

[xFxFxxFxxxK* Start NRIN routi Ne ******x*xkk kX kX kXXX XXX XXX XXXk k% [

/* get the xConponent Loader interface */
conmponent Loader = UNO. cr eat eDeskt op() ~XDeskt op~XConponent Loader

/* start OO-Calc with a blank document */
cal cConponent = conponent Loader ~| oadConponent FromURL(" pri vate: factory/scalc", "_blank", 0, .UNO-noProps)

/* get the first sheet in calc */
sheet = cal cConmponent ~XSpr eadSheet Docunent ~get Sheet s~XI ndexAccess~get Byl ndex(0) ~XSpr eadSheet

/* Use a procedure in uno.cls to wite text into a cells */
CALL UNO. setCel | sheet, 0, 0, "Stock" -- this is the heading of col one
CALL UNO. setCell sheet, 1, 0, "Last Trade" -- this is the heading of col two

/* select the range al:cl, and apply formating */
headi ng = sheet ~get Cel | RangeByNanme("Al: C1"

headi ng~XPr opert ySet ~set PropertyVal ue(" Cel | BackCol or", box("int", "00 00 77"x ~c2d))
headi ng~XPr opert ySet ~set PropertyVal ue(" Char Hei ght", box("float", "14.0"))

row = 1

/* Some stock synbols we want to quer */
stocks = bsf.createArray("String.class", 6

stocks[1] = ADBE
stocks[2] = GOOG
stocks[3] = YHOO
stocks[4] = DTE. DE
stocks[5] = | DS. DE
stocks[6] = TA .DE

/* retreive stocks fromyahoo stock service, may take a bit time */
do stock over stocks

/* Call sub_routine get_stock_info */

call get_stock_info (stock)

last _trade = result

/* wite result to a cell using a routine from UNO. CLS */

CALL UNO. setCel | sheet, 0, row, stock

CALL UNO. setCel | sheet, 1, row, |ast_trade

row = row +1
end

/* create dinensions for chart */

chartRec = . bsf~new("com sun. star.awt . Rect angl e")
chart Rec~X = 7000

chartRec~Y = 0

chart Rec~Wdth = 20000

chart Rec~Hei ght = 10000

/* select cell range for chart */
chart Cel | Range = sheet ~get Cel | RangeByNane(" Al: B7") ~xCel | RangeAddr essabl e~get RangeAddr ess

/* Create an array with data to insert into the chart */
CALL UNO. |l oadd ass "com sun. star.tabl e. Cel | RangeAddr ess"

chart AddressArray = bsf.createArray(. UNO-Cel | RangeAddr ess, 1)
chart AddressArray[1] = chart Cel | Range

/* create and show chart */
chart = sheet ~xTabl eChart sSuppli er ~get Charts
chart ~addNewByNane(" St ocks", chartRec, chartAddressArray, .true, .true)

exit

Page 107

/**************** Begl n functlon get StOCk Info **************************/
get _stock_i nfo:
parse arg synbol

/* create an url object */
url = .URL~new("http://finance.yahoo.com g/ bc?s="synbol " & =3ni")

[* open url as stream */
is = url~openStrean()

/* make stream a data input stream */
dis = . Datal nput Stream-new(. Buf f er edl nput St r eam~new(i s))

/* read the webpage line by |line */
s = dis~readLi ne({J

st = ""

do while s <> .nil

st = st s

/* say s */

s = di s~readLine()

end

say str

pattern = . Pattern~conpi | e("Last Trade:</td>["/]*");
mat cher = pattern~matcher (st)

found = 0

do while matcher~find() <> 0

group = matcher~group() /* " starting at index " matcher~start() " and ending at index
"mat cher~end() "." */

p2 = .Pattern~conpile("(.*)<")
m2 = p2~nat cher (gr oup)
m2~f i nd()
say "last Trade: " nR~group()
last _trade = n2~group()
found = 1
end

if found = 0 then say "No natch found."
i s~cl ose()
nrend = | ast_trade~length() - 5
say nrend
last _trade = | ast_trade~substr (4, nrend)

return |ast_trade

i:irequires UNO.CLS -- |oad support for Open Ofice

3.3.2.1 Explanation

This example is divided into two parts: the main routine and the getStockinfo function.

The main routine starts with importing the necessary classes, connecting to
OpenOffice.org and retrieving the service manager from the component context. The next
steps are like in example C2—-6: A new Calc document is created, the headlines are written
into cells and the cells are being formatted. Then an array is defined which contains the
stock symbols to be processed. In a loop, the last trade value for each symbol is received
from the getStockinfo function and then, as the stock symbol itself, written into a new cell in
a new row. The results are two columns filled with “stock symbol” - “value” pairs. Then a

chart is created, like in example C2-6, for the cell range A1:B7.

The getStockinfo function determines the last trade value for a stock symbol. It starts by

downloading a page from finance.yahoo.com with the passed stock symbol as a part of the

http://finance.yahoo.com/q/bc?s="

Page 108

URL. For downloading, the page is simply opened as a Java BufferedStream and then

read line by line:

The resulting string is used as input for the Pattern objects matcher method, as in example
C1-2. The resulting string still contains more characters than only the last trade value, so
another regular expression pattern is applied. Finally the substr method cuts of the last

dispensable characters and the plain value is returned.

Unbenannt] - OpenOffice.org Cal o)

Datel Bearbeften Ansicht Einfugen Format Exvas Daten Fensten Hife

DEEd 3 Fda s D &le 108 0 LVISS=EionHe]

=] - - E| 5 5 589 W 3 ew e |E Lwm o

i 53 [Abany AMT 10) (1) (U)| & E # = 55| 9 W23 e ee =] = -]

[B21 i E =1

A B | c | o [E [F [& [w [o+ [J T k [v [™ [N]

il Stock |Last Trade .

5 Toee = Haupttitel

5 |cooc w16 0

4 |YHOO 314

5 [pTE.DE 124 400

6 |DS.DE 15.3

7 _|TOI.DE 69 350

:Z 300

o |

Ea
13 200
[a |
(s |
B 150 |
17|
EE 100
7(9)7 50
2 — o
737 ADBE GOO0G YHOO DTE DE IDS.DE TOIDE
24|
25|
26 |
27|
26|
2|
30|
(311
A
(33| -
Iyl Tabener /FaBaEz (TaneiE AL | |
[Tabelle 1 /3 | Standana 100% s [= [[Summe=0

Figure 68: Screenshot of example C3-2

Page 109

3.3.3 Example C3-3 FreeTTS and OpenOffice.org

The following script use the text to speech engine FreeTTS presented in example C1-12 to

let the computer speak the text of an OpenOffice.org Writer document.

In order to run this example the FreeTTS library need to be downloaded and installed.

FreeTTS can be downloaded from this address:

http://freetts.sourceforge.net/docs/index.php

A detailed description of how to install external Java libraries can be found in the beginning

of this paper.
This script is designed to run within OpenOffice as a macro.
The best way to archive this is to copy the script into a new macro in OpenOffice.org.

A new macro is created from the Tools>>Macros>>Organize Macros>>00Rexx menu. First

a new library has to be created, and then a new macro can be placed inside of it.

The macro is executed from the Tools>>Macros>>Run Macro menu.

/* inmport classes */

. bsf ~bsf . i mport ("com sun. speech. freetts. Voi ce", "JVoi ce")

. bsf ~bsf . i mport ("com sun. speech. freetts. Voi ceManager", " JVoi ceManager ")

. bsf ~bsf. i nport (" com sun. speech. freetts. audi 0. Javad i pAudi oPl ayer”, "JavaC i pAudi oPl ayer")

/* get docunent and text in docunent */
doc=uno. get Scri pt Cont ext () ~get Docunent
t ext =doc~XText Docunent ~get Text

/* create object using static nethod */
voi ceManager = .JVoi ceManager ~get | nst ance();

/* get an instance of the voice engine */
voi ce = voi ceManager ~get Voi ce("kevi n16"

/* activate the voice engine */
voi ce~al | ocat e()

voi ce~speak(text~get String())

/* unbi nd the voi ce engine */
voi ce~deal | ocat e()

:irequires UNOCLS -- load UNO support for OpenOfifice.org

Figure 69: The code for example C3-3

http://freetts.sourceforge.net/docs/index.php

Page 110

3.3.3.1 Explanation

FreeTTS is explained in detail in example C1-12, and will not be explained in this example.

Running a script inside OpenOffice.org as a macro is simpler than trying to control

OpenOffice.org from outside.
This example only contains three OpenOffice.org specific lines of code.

First a reference to the document and the text in the document is loaded. The text object is
the object that holds the text and must not be confused with the text content it self. To get
the actual text, the method getString on the text object has to be used. The result is a
string with all the text in the document, regardless of the number of pages. Hence this

string can be quite long.

The resulting string is passed into FreeTTS for audio output as displayed in the box bellow.

Ivoi ce~speak(text~get String())

|

Page 111

4 Conclusion and Future Prospects

The BSF4Rexx is a very useful technology to enhance the functionality of ooRexx. With
BSF4Rexx it is possible to write ooRexx scripts which can use any Java library. This is par-

ticularly useful in cases where only Java libraries provide the required functionality.

In the first part of this work the system architecture and a guide of how to install all the
components are presented. The second part shows how to use these components to use
Java in ooRexx. This is demonstrated with the help of small nutshell examples, which are
developed by the authors of this paper. Additionally this work includes examples of how to

automate OpenOffice.org by using the UNO Component via Java and BSF4Rexx.

During development of this paper, some problems were encountered. This was special the
case of the part working with OpenOffice.org. The OpenOffice.org DevelopersGuide [de-
vel05] explains how to automate OpenOffice.org with Java. But there are several errors in
this guide. It is very difficult to develop programs, based on a guide with errors. The authors
had to use the mailing lists to ask the communities, why things that do not work that way

they are mentioned in the Developers Guide.

As the examples in this paper shows, BSF4Rexx can be applied to a wide range of user
scenarios. However, which scenarios that are really usefully in the real world, is something
time will show. In some cases it might be better to program directly in Java. In other cases
it might be better to solve the problem using only ooRexx. But there are certainly a lot of

scenarios where the connection between ooRexx and Java makes sense.

The problem with BSF4Rexx is that it until now there did not exist a lot of examples or doc-
umentation of how apply it in a real world context. This is specially the case for BSF4Rexx
in relation to OpenOffice.org. This paper covers a lot of possible scenarios, but none of
them are covered really deep. Hence, there is still a lot of room for future research and de-

velopment of possible user scenarios and use of BSF4Rexx in a real world context.

The authors of this paper hope that the examples presented in this work can serve as a
guide for people learning BSF4Rexx, and that this work will contribute to a wider accept-

ance and use of this technology.

Page 112

5 References

[Aha05]

[AJPO6]

[AJPO6al

[AugO05]

[Burger05]

[devel05]
[Flat06]

[Hsq06]

[J3D00]

Ahammer Andreas, OpenOffice.org Automation: Object Model, Scripting
Languages, "Nutshell"-Examples, 2005, Wirtschaftsuniversitat Wien
(Vienna University of Economics and Business Administration), Austria;
URL (2006-06-20):

http://wi.wu-wien.ac.at/rgf/diplomarbeiten/BakkStuff/2005/200511_OQo-

Ahammer/200511_OOoAutomation.pdf
Apache Jakarta Project homepage. URL (2006-06-22):

http://jakarta.apache.org
Apache Jakarta Project homepage: BSF Documentation, URL (2006-06-

22): http://jakarta.apache.org/bsf/manual.html
Augustin Walter, Examples for Open Office Automation with Scripting

Languages, 2005, Wirtschaftsuniversitat Wien (Vienna University of
Economics and Business Administration), Austria; URL (2006-06-20):
http://wi.wu-wien.ac.at/rgf/diplomarbeiten/BakkStuff/2005/200501_0O0Oo0-

Agustin/200501 BSF-Examples Augustin.pdf
Burger Martin, OpenOffice.org Automation with Object Rexx, 2005,

Wirtschaftsuniversitat Wien (Vienna University of Economics and Business
Administration), Austria; URL (2006-06-20):
http://wi.wu-

wien.ac.at/rgf/diplomarbeiten/BakkStuff/2006/200605_Burger/Bakk_Arbeit
_Burger20060519.pdf

OpenOffice.org 2.0 Developers Guide, Sun Microsystems, May 2005
Flatscher Rony G., The Vienna Version of BSF4Rexx, 2006, Presentation
at the 2006 International Rexx Symposium, USA; URL (2006-06-20):
HSQLDB. 2006-04-16. HSQLDB. URL (2006-06-21): http://hsqgldb.org/

Getting Started With Java 3D, Dennis J. Bouvier, Sun Microsystems 1999-
2000, URL (2006-05-10):

http://hsqldb.org/
http://wi.wu-wien.ac.at/rgf/rexx/orx17/2006_orx17_BSF_ViennaEd.pdf
http://wi.wu-wien.ac.at/rgf/diplomarbeiten/BakkStuff/2006/200605_Burger/Bakk_Arbeit_Burger20060519.pdf
http://wi.wu-wien.ac.at/rgf/diplomarbeiten/BakkStuff/2006/200605_Burger/Bakk_Arbeit_Burger20060519.pdf
http://wi.wu-wien.ac.at/rgf/diplomarbeiten/BakkStuff/2006/200605_Burger/Bakk_Arbeit_Burger20060519.pdf
http://www.openoffice.org/
http://wi.wu-wien.ac.at/rgf/diplomarbeiten/BakkStuff/2005/200501_OOo-Au
http://wi.wu-wien.ac.at/rgf/diplomarbeiten/BakkStuff/2005/200501_OOo-Au
http://jakarta.apache.org/bsf/manual.html
http://jakarta.apache.org/
http://wi.wu-wien.ac.at/rgf/diplomarbeiten/BakkStuff/2005/200511_OOo-Ahammer/200511_OOoAutomation.pdf
http://wi.wu-wien.ac.at/rgf/diplomarbeiten/BakkStuff/2005/200511_OOo-Ahammer/200511_OOoAutomation.pdf

Page 113

[JFree06]

[JLayer06]

[Kru05]

[LGPLO6]

[OASIS06]

[0006]

[00006]

[00RO05]

[portO006]

[reflect06]

[regexp06]

[Star06]

[Sun04]

[udkO6]

http://java.sun.com/developer/onlineTraining/java3d/j3d_tutorial_ch1.pdf
FreeChart Homepage, URL (2006-06-10):

http://www.jfree.org/jfreechart/
JLayer Homepage, URL (2006-06-10)

http://www.javazoom.net/javalayer/javalayer.html

Krager Guido, Handbuch der Java-Programmierung, 2005, 4™ edition
Addison Wesely. Online Version (URL 2006-06-20):

http://www linguistik.uni-erlangen.de/~arviktor/k100304.html

GNU Lesser General Public License, URL (2006-06-10):
http://www.gnu.org/licenses/Igpl.html

OASIS Open Document Format, URL (2006-06-13):
http://www.oasis-open.org/committees/office/charter.php

The OpenOffice.org project homepage, URL (2006-06-11):

http://www.openoffice.org
Interface XcomponentLoader. OpenOffice.org API. URL (2006-06-22):

http://api.openoffice.org/docs/common/ref/com/sun/star/frame/XComponen
tLoader.html

About Open Object Rexx. 2005-04-27. Rexx Language Association. URL
(2006-06-22): http://www.ooRexx.org/

Portable OpenOffice.org, URL (2006-06-13):

http://portableapps.com/apps/office/suites/portable_openoffice
The Java Tutorial, Trail: Reflection, by Dale Green, URL (2006-06-14):

http://java.sun.com/docs/books/tutorial/reflect/index.html
Java 1.4.2 API Documentation, java.util.regexp package, URL (2006-06-

10):
http://java.sun.com/j2se/1.4.2/docs/api/java/util/regex/package-

summary.html
The StarOffice homepage, URL (2006-06-13):

http://www.sun.com/software/star/staroffice/index.jsp

JavaTM Cryptography Architecture - APl Specification & Reference. 2004-
07-24. Sun Microsystems, Inc. URL (2006-06-21):
http://java.sun.com/j2se/1.5.0/docs/guide/security/CryptoSpec.html#AppA
UNO development Kit project homepage, URL (2006-06-11):

http://udk.openoffice.org/

http://udk.openoffice.org/
http://java.sun.com/j2se/1.5.0/docs/guide/security/CryptoSpec.html#AppA
http://www.sun.com/software/star/staroffice/index.jsp
http://java.sun.com/j2se/1.4.2/docs/api/java/util/regex/package-summary.html
http://java.sun.com/j2se/1.4.2/docs/api/java/util/regex/package-summary.html
http://java.sun.com/docs/books/tutorial/reflect/index.html
http://portableapps.com/apps/office/suites/portable_openoffice
http://www.oorexx.org/
http://api.openoffice.org/docs/common/ref/com/sun/star/frame/XComponentLoader.html
http://api.openoffice.org/docs/common/ref/com/sun/star/frame/XComponentLoader.html
http://www.openoffice.org/
http://www.oasis-open.org/committees/office/charter.php
http://www.gnu.org/licenses/lgpl.html
http://www.linguistik.uni-erlangen.de/~arviktor/k100304.html
http://www.javazoom.net/javalayer/javalayer.html
http://www.jfree.org/jfreechart/
http://java.sun.com/developer/onlineTraining/java3d/j3d_tutorial_ch1.pdf

Page 114

[UIIO5] Ullenboom, Christion. Java ist auch eine Insel. Galileo Press Gmbh, Bonn
2005

[Wik06-1] MD?2. Wikimedia Foundation, Inc. URL (2006-06-21.):
http://en.wikipedia.org/wiki/MD2

[Wik06-2] MDS5. Wikimedia Foundation, Inc. URL (2006-06-21.):
http://de.wikipedia.org/wiki/MD5

[Wiki06-3] XPath. Wikimedia Foundation, Inc. URL (2006-06-21):
http://de.wikipedia.org/wiki/XPATH

[Wiki06] Rexx. Wikimedia Foundation, Inc. URL (2006-06-22):

http://en.wikipedia.org/wiki/Rexx
[wiki3DO06] Wikipedia — Java 3D, URL (2006-06-20)

http://en.wikipedia.org/wiki/Java_3D

http://en.wikipedia.org/wiki/Java_3D
http://en.wikipedia.org/wiki/REXX
http://de.wikipedia.org/wiki/XPATH
http://de.wikipedia.org/wiki/MD5
http://en.wikipedia.org/wiki/MD2

	1 Abstract
	2 System-Description
	2.1 Bean Scripting Framework
	2.1.1 History
	2.1.2 Architecture

	2.2 BSF4Rexx
	2.2.1 History
	2.2.2Architecture

	2.3 ooRexx
	2.3.1 History
	2.3.2 Syntax and Use
	2.3.2.1 Variables and Output
	2.3.2.2 Loops
	2.3.2.3 Routines

	2.4 OpenOffice.org
	2.4.1 Components
	2.4.1.1 Writer
	2.4.1.2 Impress
	2.4.1.3 Math
	2.4.1.4 Draw
	2.4.1.5 Calc
	2.4.1.6 Base

	2.4.2 OpenOffice.org Versions
	2.4.3 Universal Network Objects (UNO)
	2.4.4 OpenOffice.org API
	2.4.5 Service Managers
	2.4.6 Component Context
	2.4.7 OpenOffice.org automation with BSF4Rexx
	2.4.8 UNO.CLS

	2.5 Interaction of Components
	2.6 How to Get a Running System
	2.6.1 Java, OpenOffice.org and ooRexx
	2.6.2 BSF4Rexx
	2.6.3 External Java Libraries

	3 Examples
	3.1 C1 – Learning BSF4Rexx
	3.1.1 Example C1-1 Java Randomizer Class
	3.1.1.1 Explanation

	3.1.2 Example C1-2 – Regular Expressions
	3.1.2.1 Explanation

	3.1.3 Example C1-3 Math
	3.1.3.1 Explanation

	3.1.4Example C1-4 Java awt and swing Classes
	3.1.4.1 Explanation

	3.1.5 Example C1-5 Message Boxes
	3.1.5.1 Explanation

	3.1.6 Example C1-6 Simple Swing
	3.1.6.1 Explanation

	3.1.7 Example C1-7 Java Midi Classes
	3.1.7.1 Explanation

	3.1.8 Example C1-8 Reflection
	3.1.8.1 Explanation

	3.1.9 Example C1-9 Hash
	3.1.9.1 Explanation

	3.1.10 Example C1-10 Java.net Server Classes
	3.1.10.1 Explanation

	3.1.11 Example C1-11 Java.net Classes for a simple client
	3.1.11.1 Explanation

	3.1.12 Example C1-12 – Drawing Charts
	3.1.12.1 The JFreeChart Library
	3.1.12.2 Explanation

	3.1.13 Example C1-13 Text-to-Speech with FreeTTS
	3.1.13.1 Explanation
	3.1.13.1.1 The Text-to-Speech Functionality
	3.1.13.1.2 Position a Frame to the Middle of the Screen

	3.1.14 Example C1-14 – Playing MP3's
	3.1.14.1 The JLayer Library
	3.1.14.2 Explanation

	3.1.15 Example C1-15 Parse XML with JDOM
	3.1.15.1 Explanation

	3.1.16 Example C1-16 Java.net Classes for sending an HTTP/GET Request
	3.1.16.1 Explanation

	3.1.17 Example C1-17 3D Graphics
	3.1.17.1 Java 3D
	3.1.17.2 Explanation

	3.1.18 Example C1-18 Read ID3 Tags from MP3 files
	3.1.18.1 Explanation

	3.1.19 Example C1-19 Java.calender Classes for Creating a Calendar
	3.1.19.1 Explanation

	3.1.20 Example C1-20 JDBC
	3.1.20.1 Explanation – createDB.Rexx
	3.1.20.2 Explanation - logDB.Rexx.

	3.2 C2 – Automating OpenOffice.org with Rexx
	3.2.1 Example C2-1 Update a Database using BSF4Rexx
	3.2.1.1 Explanation

	3.2.2 Example C2-2 – Clipboard
	3.2.2.1 The Clipboard Service
	3.2.2.2 Explanation

	3.2.3 Example C2-3 Print with OpenOffice.org
	3.2.3.1 Explanation

	3.2.4 Example C2-4 Thesaurus
	3.2.4.1 Explanation

	3.2.5 Example C2-5 Cells and Charts in OO-Chart
	3.2.5.1 Explanation

	3.3 C3 – Combining Java APIs and OpenOffice.org with ooRexx
	3.3.1 Example C3-1 Inserting Charts in OpenOffice.org Draw
	3.3.1.1 Explanation

	3.3.2 Example C3-2 Regexp and Charts
	3.3.2.1 Explanation

	3.3.3 Example C3-3 FreeTTS and OpenOffice.org
	3.3.3.1 Explanation

	4 Conclusion and Future Prospects
	5 References

