
Wirtschaftsuniversität Wien

Abteilung für Wirtschaftsinformatik

LV-Nr.: 0974 WS 2006

Vertiefungskurs VI: Projektseminar

LV-Leiter: Univ. Prof. Dr. Rony G. Flatscher

Term Paper

Automated email list analysis

 with Open Office.org

Author:

Istvan Szilagyi, Matr. Nr. 0250796

Table of Contents

1 Abstract ..2

1.1 Task Description...2

2 System Description...4

2.1 Rexx ...4

2.1.1 Basic Syntax ..4

2.1.2 OORexx...5

2.2 OOo..7

2.3 BSF4Rexx, UNO ..10

2.3.1 BSF4Rexx..10

2.3.2 UNO...12

3 Solution Description..15

3.1 Global variables..15

3.2 User interface...16

3.3 Open Office ..19

3.4 Mail sending ...25

3.5 Conclusion..27

4 References ...28

5 Source Code...30

Illustration Index

Figure 1 Rexx Hello World ..5

Figure 2 Rexx Array..5

Figure 3 OORexx example ...6

Figure 4 Inheritance [FLAT01] ...7

Figure 5 Ooo Evolution ...8

Figure 6 OOo main parts ..9

Figure 7 BSF Evolution ...11

Figure 8 BSF4Rexx communication [FLAT02] ...12

Figure 9 BSF4Rexx example [FLAT02] ...12

Figure 10 Component usage in UNO..13

Figure 11 Component Context..14

Figure 12 Snippet A 1 - variables..15

Figure 13 Snippet A 2 – Folder creation ...16

Figure 14 Snippet A 3 – BSF and UNO support ...16

Figure 15 Snippet B 1 – swing import ...17

Figure 16 Snippet B 2 – setting up the message box..17

Figure 17 Snippet B 3 – getting the actual screen size18

Figure 18 Screenshot 1 – Screen with message box..19

Figure 19 Snippet C 1 – connecting to the desktop ..19

Figure 20 Snippet C 2 – creating new calc documents and opening20

Figure 21 Snippet C 3 – getting the right sheet...20

Figure 22 Snippet C 4 – inserting new sheet ..20

Figure 23 Snippet C 5 – inserting data with „UNO.setCell“20

Figure 24 Snippet C 6 – reading out data ...20

Figure 25 Snippet C 7 – extending the array with items....................................21

Figure 26 Snippet C 8 – setting background values..21

Figure 27 Snippet C 9 – saving and closing..22

Figure 28 Snippet C 10 – loop with aborting criteria ...23

Figure 29 Snippet C 11 – creating new files for the departments24

Figure 30 Snippet C 12 – sorting data ..25

Figure 31 Snippet D 1 – connecting to mail system..25

Figure 32 Snippet D 2 – recipient and subject ..26

Figure 33 Snippet D 3 - attachment ..26

Figure 34 Snippet D 4 – sending message...26

Abstract Seite 2

1 Abstract

Object of this paper is the finding and description of a solution for automation

tasks for the city of Vienna.

The main scope is on finding an interoperable (Windows, Linux) and easy to

use solution to provide time saving automation for Open Office, which also is

easy to maintain and to deploy.

1.1 Task Description

Underlying task for this work is a workflow, which has to be completed manu-

ally. The department for information and communication techniques of the city

of Vienna is the host of all the email accounts used in all the municipalities of

the city.

Therefore more thousand accounts have to be analyzed month for month re-

garding their size and the usage data. Users, who exceed their mail account

limit, must be warned via an email.

This basic task is complicated with a bunch of rules, which must be applied at

the department, and is a task clearly determined for automation.

The description of the workflow is the following:

1.) A list of all users and their account information, including the maximal

size of their account and the actual usage, is generated by the mail

server, each month.

2.) This table has to be analyzed and split into four different groups, each

saved differently, namely:

Abstract Seite 3

- Usage exceeds the capacity of 80 MB, must be shown with grey back-

ground

- Usage exceeds a capacity under 80 MB, must be shown with red back-

ground

- Usage exceeds a capacity over 80 MB, must be shown with blue back-

ground

- List of accounts with a limit higher than 80 MB, which must be shown in

a separated list (even without exceeding the limit)

3.) For every department an own list must be generated, the lists of the de-

partments is to be found in a help list. A second help lists shows the rela-

tion between the accounts and the departments.

4.) After this, the head of the department is to be found in the second help

list and an email has to be generated and sent with the table of exceed-

ers attached.

5.) For documentation purposes a copy of this email has to be sent to the

View4 server (every order has its own email address)

Considering the planned switch from Microsoft’s proprietary products to open

source solutions, the department of information and communication techniques

wanted to use a solution which is able to run on both Windows and Linux sys-

tems, automating OpenOffice.org which is being installed on all the machines

used by the city of Vienna.

A solution with OORexx has been chosen, which is going to be described in this

paper.

System Description Seite 4

2 System Description

This section should give a brief overview about the technologies used for the

technical solution of the problem described in the abstract above.

2.1 Rexx

Rexx is an abbreviation standing for “Restructured Extended Executor”, and

was designed as a “human centric” interpreter for IBM. Mike F. Cowlishaw first

developed it in the year 1979. Since then a lot of development and addition

have been made to the interpreter, but the basic syntax stayed the same, which

should be visualized with some basic snippets. [FLAT01]

2.1.1 Basic Syntax

Being a human centric interpreter, the language structure is kept simple and

Rexx does not need any kind of variable declaration. It handles only string data

types and is case-insensitive. If it confronts with a command not known by the

interpreter it simply handles it over to the program, which executes the inter-

preter.

In our first snippet, we simply print the well-known “Hello world!” on the display

and remove all files recursively in the order.

say "Hello world!"
"rm -rf *"

System Description Seite 5

Figure 1 Rexx Hello World

Rexx neither features an array kind of data type, but the official recommenda-

tion is to use variable names extended with numbers, which than look and be-

have like an array. This is shown in figure 2, where an “array” is created with to

values which are then given back on the command line.

array.1 = “First Item”
array.2 = “Second Item”
l = 2

do i=1 to l
 say array.i
end

Figure 2 Rexx Array

The readability of Rexx is clearly to see.

2.1.2 OORexx

The original Rexx language is a procedural language with no support for object

orientation. Therefore in 2004 a non-profit oriented group of scientists took over

the Rexx source code, and is since then responsible for the deployment of

OORexx, the object oriented enhanced version of Rexx. Since then, under the

wings of the Rexx Language Association (RexxLA), Open Object-oriented Rexx

has been made available for almost all platforms.

The language structure stayed the same, but some new functions have been

introduced. The “twiddle” is used as message operator, classes and methods

are shown with two colons.

System Description Seite 6

OORexx features all common object oriented aspects, and also features an

easy to implement multiple inheritance.

.Liberalist ~new("Roosevelt") ~speak /*create a liberalist, let
him speak*/
.Communist ~new("Lenin")~speak /*create a communist, let him
speak*/
::class Liberalist
::method init /* constructor method */
 expose name /* establish direct access to attribute (object
variable)*/
 use arg name /* retrieve argument, assign it to attribute */
::method name attribute /* define set and get attribute methods
*/
::method speak
 say self~name":" "I believe in capitalism."
::class Communist subclass Liberalist
::method speak
 say self~name":" "I believe in it too, but I pretend not to!"

Figure 3 OORexx example

This snippet shows easy to follow examples how the message operator and the

colons are working. It shows the following output on the screen: „Roosevelt: I

believe in capitalism. Lenin: I believe in it too, but I pretend not to!” The method

of speaking is being overwritten in the subclass.

Figure 4 [FLAT01] shows how inheritance can be made. Here we mix the classes

of a road and a water vehicle to get an amphibian vehicle. It is also shown that

the interpreter can automatically create the “getter” and the “setter” methods for

an attribute within a class.

/* Multiple Inheritance */
.RoadVehicle ~new("Truck") ~drive
.WaterVehicle ~new("Boat") ~swim
.AmphibianVehicle~new("SwimCar")~show_off
::CLASS Vehicle /* define the vehicle base class */
::METHOD name ATTRIBUTE /* let interpreter define a getter and
setter method */
::METHOD init /* define constructor method */
 self~name=ARG(1) /* use the setter method to set the at-
tribute's value */
::CLASS RoadVehicle MIXINCLASS Vehicle

System Description Seite 7

::METHOD drive /* define a road vehicle method */
 SAY self~name": 'I drive now...'" /* use the attribute getter
method */
::CLASS WaterVehicle MIXINCLASS Vehicle
::METHOD swim /* define a water vehicle method */
 SAY self~name": 'I swim now...'" /* use the attribute getter
method */
::CLASS AmphibianVehicle SUBCLASS RoadVehicle INHERIT WaterVehi-
cle
::METHOD show_off /* demonstrate multiple (implementation)
inheritance */
 self ~~drive ~~swim /* using cascading messages (two twid-
dles) */
/* yields the following output:
 Truck: 'I drive now...'
 Boat: 'I swim now...'
 SwimCar: 'I drive now...'
 SwimCar: 'I swim now...'
*/

Figure 4 Inheritance
[FLAT01]

2.2 OOo

OOo is an abbreviation, standing for Open Office org, an open source office

application project available on the website, which is hinted on in the name of

the product.

System Description Seite 8

Figure 5 Ooo Evolution

Figure 5 illustrates the historical milestones of Open Office.org, being at its lat-

est version 2.1 in 2006. The first Version was available for download 2001 after

the source code for Sun Microsystems Staroffice, originally developed by a

German company since the mid 80-ies, was opened, and the OpenOffice.org

homepage was created, with the project for the creation of an open source of-

fice program. Since then Sun Microsystems and other companies deliver the

biggest parts to the development for Open Office. [SUN01]

Open Office.org is distributed under the LGPL (GNU Lesser General Public Li-

cense). This allows developers to sell their developments made with the source

code, available for public; they are also allowed to use the binaries for commer-

cial usage.

Of course this does not include the distribution of the SUN Star Office, as it is a

product of SUN Microsystems, sold under a different licensing contract.

When given the source code for public, Sun removed all proprietary compo-

nents of the product, and also components of third parties which can not be

used in an open source development. That’s why Star office has some features,

System Description Seite 9

mostly containing fonts, templates and databases, which Open Office does not

feature. [SUN02]

Figure 6 OOo main parts

Figure 6 shows the main parts of Open Office.org. All components of Open Of-

fice use the vendor independent file formats of OASIS. [OASIS1]

The Writer is the text-processing program in the OOo Package. It has powerful

tools and wizards for the creation of a large variety of documents. It is fully

compatible with the formats of Microsoft’s Word, and also provides support for

PDF and HTML.

Calc is the spreadsheet-handling unit within OOo. It also features full compati-

bility with Microsoft’s competing product Excel as it can read and write Excel

files. You can find easy to use wizards, support for natural language forms and

scenario managers. [CALC01]

Impress lets you create multimedia presentations. Under the exporting possibili-

ties, besides the Open Document format one will also find the possibility for Mi-

crosoft PowerPoint, and also Flash movies can be created from a presentation.

For writing scientific and professional equitation Math can be used. It makes

possible to draw such equitation easily and place them right into other Open

Office components such as the text-processing program Writer.

System Description Seite 10

Draw supports working with graphics. It allows you to draw diagrams and any

kind of graphics. A clip art gallery is included, as the possibilities to read and

export in almost every kind of known graphical format. Here again a flash ex-

porting possibility is provided.

Base is the database program for data manipulation. For basic usage it comes

with a java based, XML-storing database engine, called HSQL. It allows you to

manipulate data with SQL und simple wizards, or design views. Also for more

advanced requirements it features connection possibilities for Access, MySQL

and other popular databases, and is also compatible with any ODBC or JDBC

database drivers.

2.3 BSF4Rexx, UNO

The key for being able to automate Open Office simply with a Rexx are the un-

derlying techniques to connect Rexx to Java and Java to Open Office.

2.3.1 BSF4Rexx

BSF stands for Bean Scripting Framework.

“Bean Scripting Framework (BSF) is a set of Java classes which provides

scripting language support within Java applications, and access to Java objects

and methods from scripting languages.” [BSF01]

System Description Seite 11

This means, the BSF allows scripting programs to access java classes and all

their methods after importing. There are several different BSF versions and

programs for the different kind of popular scripting languages like Jacl for Tcl,

the version used to let Rexx access any kind of java classes and their methods

is BSF4Rexx.

The Evolution until the current version “The Vienna Version” can be seen in fig-

ure 7.

Figure 7 BSF Evolution

Figure 8 provides information about the general architecture of BSF4Rexx.

[FLAT02]

System Description Seite 12

Figure 8 BSF4Rexx communication
[FLAT02]

This means, that after importing the BSF.cls file, you have the ability to import

any kind of java classes and use them like they are described in the java API.

As the later solution uses a lot of features of BSF, here only a small snippet is

provided to demonstrate to way of working with BSF. Figure 9 [FLAT04] shows,

how to require the BSF.cls file and how to use it to tell the user the actually in-

stalled java version.

/* "getJavaVersion.rex": classic Rexx version, querying the in-
stalled Java version */
say "java.version:" bsf('invoke', 'System.class', 'getProperty',
'java.version')
::requires bsf.cls /* load the Java support */

Figure 9 BSF4Rexx example
[FLAT02]

2.3.2 UNO

System Description Seite 13

UNO stands for Universal Network Object. It is the underlying component model

for OpenOffice.org. UNO components are compiled and bound libraries. These

objects must implement certain interfaces, which are described in a language

independent interface description language (UNOIDL). The communication

takes place with calls between the different components, and is not bound on a

location, therefore UNO components can (could) connect to other components

via the intranet, internet or just connected machines. [BURGER01]

Furthermore, these components might be implemented and accessed from any

kind of programming language, which has an UNO implementation, and an ap-

propriate bridge.

These bridges also allow the communication between different components in

different platform surroundings. The communication can take place via sockets

(like TCP/IP) or pipes.

Figure 10 Component usage in UNO

Within Open Office.org there are different components for each application and

there are components serving different applications. This means that there is a

high reusability between the components. As an example there are specific

components for Calc while the printer component is shared between all other

applications. This is demonstrated in figure 10.

System Description Seite 14

A service manager is the root object for connections to UNO and serves as an

entry point for every UNO application. It is used to instantiate services by their

service name, to enumerate all implementations of a certain service and to add

or remove factories for a certain service at runtime. The service manager is

passed to every UNO component during initialization. The main interface of the

service manager is the “com.sun.star.lang.XMultiServiceFactory” interface. It

offers three methods: “createInstance()” , “createInstanceWithArguments()” and

“getAvailableServiceNames()” [DEVEL01, p. 88]

When a component needs more functionality or information than the central

service manager can provide, it can supersede the service manager to get its

own component context service managers. [DEVEL01, p. 88f]

Figure 11 Component Context

Solution Description Seite 15

3 Solution Description

The resulting script for this work is covering many different parts of BSF4Rexx.

It includes not just the Open Office automation, but also features a small java

swing based user interface, and also refers to the local, standard email sending

program.

With BSF4Rexx it was possible to find a compact and easy to maintain solution,

as the program is clearly structured and the syntax is almost completely human

readable.

It might be of interest, that in order to achieve the skills for writing the automa-

tion scripts for a task with this complexity, it only took 4 weeks to learn the all-

over syntax of Rexx and to be able to deal with Open Office.

With the help of small snippets, the general layout of the program and the clarity

of Rexx should be visualized.

3.1 Global variables

As a start for our automation, some kind of global variables have to be set, and

also the folder for the created documents must be created.

datum = date("S") /*todays datum*/
FolderName = "C:\Analyse"datum /*working folder name*/

Figure 12 Snippet A 1 - variables

Solution Description Seite 16

This shows how easy it is to declare variables which then can be reused all over

the script. Here the name of the folder we want to work in has been created with

today’s date in the form “YYYYMMDD”.

As Rexx is able to pass on unknown commands to the program, which executes

it, the following line is simply passed to the commander and results in creating

the desired folders.

mkdir FolderName /*creating the folder*/

Figure 13 Snippet A 2 – Folder creation

In addition, the packages for Java and UNO support have to be loaded.

::requires BSF.CLS --Java support
::requires RXREGEXP.CLS –support for regular expressions
::requires UNO.cls --UNO support

Figure 14 Snippet A 3 – BSF and UNO support

These commands are at the end of the script.

3.2 User interface

As mentioned above, java swing was used to create an interface to inform the

user about the status of the program, and to provide possibilities for human in-

teraction with the program, when desired.

This was necessary as the program might take a long time with ordering the

rather big lists, and also there are numerous possibilities for failures, which

should not cause the program to crash, as they are mostly easy to correct, like

bad abbreviations in the linking tables.

Solution Description Seite 17

To be able to use a java class in Rexx, the java class has to be imported at the

beginning of the program.

.bsf~bsf.import("javax.swing.JLabel","JLabel") /* import the
Java Swing JLabel class */

Figure 15 Snippet B 1 – swing import

Snippet B1 illustrates, how the JLabel class can be imported into BSF. After this

line of command, this java class is available for usage with all its methods and

interfaces. A name is always assigned to it, in this case “JLabel”, under which

Rexx can identify the class.

After importing all desired classes of swing the same way we have just illus-

trated, we are able to create our information panel. We can easily do so by de-

fining the objects, and then placing them into the desired layout.

label= .JLabel~new("");

frame = .JWindow~new();

icon = .Icon~new("ma.gif");

frame~getContentPane()~setLayout(.GridBagLayout~new());

frame~getContentPane()~~add(labelp)~~add(action);

Figure 16 Snippet B 2 – setting up the message box

It was in the interest of the user to create an information panel, which cannot be

closed, and also always stays on top of the screen, as there is no need for hu-

man interaction during the program is running, except of errors.

Solution Description Seite 18

Therefore a position for the window must be calculated, which, in a Windows

environment, is the best right above the task bar, in the right corner.

For this, the overall dimensions of the display have to be emitted, and the right

position has to be calculated.

Such a function is provided by java; it simply calculates the dimensions of the

screen minus the place the task bar needs.

ge = .GraphicsEnvironment~getLocalGraphicsEnvironment()
maximumWindowBounds = ge~getMaximumWindowBounds();
h = maximumWindowBounds~toString()

Figure 17 Snippet B 3 – getting the actual screen size

This information then is parsed into the variables „resx“ and „resy“, standing for

resolution x and resolution y. After this we are ready to calculate the right posi-

tion and just need to show our window. (Screenshot 1)

Solution Description Seite 19

Figure 18 Screenshot 1 – Screen with message box

3.3 Open Office

For the main automation task, open office must be loaded and several docu-

ments have to be loaded, as the splitting of the tables is done.

To load an Open Office document, and also to create new ones, the desktop

object must be emitted to connect to UNO.

xcomponentLoader = UNO.createDesktop()~XDesktop~XComponentLoader

Figure 19 Snippet C 1 – connecting to the desktop

For the first workflow step, namely the analysis of all email account regarding

their size and exceedance, we need two tables, the one containing the informa-

tion, and a new one for sorting out the table.

Solution Description Seite 20

xCalcComponent = xcomponentLoader~loadComponentFromURL(url,
"_blank", 0, .UNO~noProps)
/*Open a new File for the results*/
newCalcComponent = xcomponentLoader~loadComponentFromURL
("private:factory/scalc","_blank", 0, .UNO~noProps)

Figure 20 Snippet C 2 – creating new calc documents and opening

After this we are getting the first sheets of the tables, and we create a new one

in the result table.

xSheet = XDocument~getSheets~XIndexAccess~
getByIndex(0)~XSpreadSheet

Figure 21 Snippet C 3 – getting the right sheet

fullList = xSheets~insertNewByName("User mit Limit überschrei-
tung",0)

Figure 22 Snippet C 4 – inserting new sheet

With a direct call on UNO we set the cell values. First we just set the headers in

the result table, but this function is also used later for filling in the variables into

the cells.

CALL UNO.setCell newSheet, 0,0, "Rechner"

Figure 23 Snippet C 5 – inserting data with „UNO.setCell“

For the first sorting the abort criteria is if the program confronts with an empty

line. After an empty line there is no search for any other data in the table.

For comparing, the values are read in from each line from the according cells

with the command shown in snippet C 6.

Rechner = XSheet~getCellByPosition(0,x)~getFormula()

Figure 24 Snippet C 6 – reading out data

Solution Description Seite 21

Also considering the next sorting step an array with all the departments is cre-

ated. As there are no real arrays in Rexx, a variable is used with a counter ex-

tended. If a new department is found, the counter is simply raised by one and

added to the variable name.

if DSTList.k <> DST then do
 k = k+1
 DSTList.k = DST
 action~setText("Neue Diensstelle: "||DST)
 end

Figure 25 Snippet C 7 – extending the array with items

In snippet C 7 the last item of the Department (Dienststelle, DST) is compared

to the Department name just found in the table. If the department does not exist,

it is added to the list, and the user is informed in the information panel about the

new department found.

Depending on which exceedance was found, the data must be filled in, like de-

scribed in the workflow. For this, the background property of each cell in the

whole line must be set to the according color with the command shown in snip-

pet C 8.

 if Limit = 80 then do
 NewRechnerCell~xPropertySet~setPropertyValue
("CellBackColor", box("int","CCCCCC"x~c2d))

Figure 26 Snippet C 8 – setting background values

Now the line is ready to get filled with the data just read out, and this is done

with the UNO command setCell like in snippet C 5.

After inserting the colored data, the account information is selected which has to

be shown on a new spreadsheet, containing only the accounts with a limit

higher than 80 MB.

If the aborting criterion is reached, the open spreadsheet has to be closed and

saved into the working directory, and the tables are closed.

Solution Description Seite 22

 if Rechner = "" then do
 i = 2
 /*document saving in working path and ending sort*/
 StoreLimit = newDocument~XStorable
 Path = FolderName"\Limit_Mailboxes".ods
 SaveUrl = ConvertToURL(Path)
 StoreLimit~storeAsURL(SaveURL, .UNO~noProps)
 end

/*closing documents*/
newCalcComponent~dispose()
xCalcComponent~dispose()

Figure 27 Snippet C 9 – saving and closing

The two next workflow steps are solved in one loop, which causes a complex

structure.

In the first structure, the numbers used internally by the department for informa-

tion and communication techniques have to be found, which relate to the “Di-

enststellen” saved in the array, as described before. This internal number will

then provide the connection to the custodian of the “Dienststelle” and his email

address, where the according table has to be sent to.

For this, the table with the classifications between internal number and depart-

ment name is opened, and searched for the term, which is saved in the array.

During the development of this program, it has been realized that the depart-

ment for information and communication sometimes uses wrong abbreviations

for the other departments. This would have caused the program to search end-

lessly, or to fail. Therefore it was agreed on an end line at the end of the table,

which indicates the program to stop and ask for the right abbreviation.

do while Reln < 1
 RelDST = RelationsDocument-
Sheet~getCellByPosition(1,Relx)~getFormula()
 if RelDST = SearchDST then do
 PSP = RelationsDocument-
Sheet~getCellByPosition(0,Relx)~getFormula()
 Reln = 3
 end
 /* "ENDE" is aborting criteria. User intervention necessary
to find according data*/
 if RelDST = "ENDE" then do

Solution Description Seite 23

 action~setText("Hinweis beachten!!")
 input = .bsf.dialog~inputBox(SearchDST || " nicht ge-
funden. Richtigen Kürzel eingeben:", AnaDST)
 SearchDST = input
 Relx = 0
 end
 Relx = Relx + 1
end

Figure 28 Snippet C 10 – loop with aborting criteria

In the next step the custodians with their email addresses have to be found.

This happens with almost the same looping technique as shown in the snippet

before.

After we have found the custodian and his email address, a new table for the

department is created.

Solution Description Seite 24

 /*new file for each departement*/
 DSTComponent = xcompo-
nentLoader~loadComponentFromURL("private:factory/scalc","_blank"
, 0, .UNO~noProps)
 DSTDocument = DSTComponent~XSpreadSheetDocument
 DSTSheets = DSTDocument~getSheets()
 DSTList = DSTDocu-
ment~getSheets~XIndexAccess~getByIndex(0)~XSpreadSheet

Figure 29 Snippet C 11 – creating new files for the departments

In the next loop, the result table of the first loop is opened and the records are

analyzed for their department, and sorted into the right table.

 /*filling table with data*/
 do while DSTi < 1
 Rechnerk = SortedDocument-
Sheet~getCellByPosition(0,DSTx)~getFormula()
 Kurz = SortedDocument-
Sheet~getCellByPosition(1,DSTx)~getFormula()
 Name = SortedDocument-
Sheet~getCellByPosition(2,DSTx)~getFormula()
 Plattenplatz = SortedDocument-
Sheet~getCellByPosition(3,DSTx)~getFormula()
 Limitk = SortedDocument-
Sheet~getCellByPosition(4,DSTx)~getFormula()
 DST = SortedDocument-
Sheet~getCellByPosition(6,DSTx)~getFormula()
 if Plattenplatzk = "" then Plattenplatzk = 0
 if Limit = "" then Limit = 0
 if DST = "" then DST = 0
 if DST = AnaDST then do
 DSTn = DSTn + 1
 CALL UNO.setCell DSTList, 0,DSTn, Rechnerk
 CALL UNO.setCell DSTList, 1,DSTn, Kurz
 CALL UNO.setCell DSTList, 2,DSTn, Name
 CALL UNO.setCell DSTList, 3,DSTn, Platten-
platz
 CALL UNO.setCell DSTList, 4,DSTn, Limitk
 Ueber = Plattenplatz - Limit
 CALL UNO.setCell DSTList, 5,DSTn, Ueber
 CALL UNO.setCell DSTList, 6,DSTn, DST
 end
 DSTx = DSTx + 1
 if Rechnerk = "" then do
 DSTi = 2
 end

Solution Description Seite 25

Figure 30 Snippet C 12 – sorting data

The same way the documents were saved and close at the former workflow

step (snippet C 9) the filled document is closed.

These loops are run so many times, as many items the array, containing the

department names, has, causing the creation of a table for each department.

3.4 Mail sending

After the tables have been created they have to be sent to the email address of

the custodian, and to the email address of the Wiev4 file system, which is used

at the department for storage.

As the script should be able to run on different kind of machines, the „simple

mail system“ class is used to get the mail-sending program of the user to send

the emails. For this, an instance of this class has to be registered within rexx.

/*creating mail and attaching created file*/
 SimpleMailSystem = localSM~
createInstanceWithCon-
text("com.sun.star.system.SimpleSystemMail", localCC)
 XSimpleMailClientSupplier = SimpleMailSys-
tem~XSimpleMailClientSupplier
 XSimpleMailClient = XSimpleMailClientSup-
plier~querySimpleMailClient
 mail = XSimpleMailClient~createSimpleMailMessage

Figure 31 Snippet D 1 – connecting to mail system

After this is registered the manipulation of this instance, saved in the variable

„mail“, can be done very easily, which is demonstrated in snippet D 2, where the

recipient and the subject are set.

Solution Description Seite 26

mail~setRecipient(Mailadress)
mail~setSubject("Überschreitungsliste." || Mailadress)

Figure 32 Snippet D 2 – recipient and subject

The according table must then be attached to the mail, here the java class re-

quires an array as parameter, which is created with the according functions of

bsf.

 attach = bsf.createArray(.bsf4rexx~string.class, 1)
 attach[1] = SaveUrl
 mail~setAttachement(attach)

Figure 33 Snippet D 3 - attachment

In snippet D 3 the variable „SaveUrl“ is the variable used to determine the path

for saving the created table in the last loop.

The now created message is ready to send with attachment. For this the mes-

sage must be „marked“ for the email program, which is done with the function

„flag“. The marked message is then sent.

flag =
bsf.getConstant("com.sun.star.system.SimpleMailClientFlags",
"NO_USER_INTERFACE")

 /*sending message*/
 XSimpleMailClient~sendSimpleMailMessage(mail, flag)

Figure 34 Snippet D 4 – sending message

At the department for information and communication techniques, it is not al-

lowed to send automated emails to prevent abuse. For each email the user

must confirm the email.

Solution Description Seite 27

This is granted, as all the email programs used at the department (Microsoft

Outlook and Thunderbird) do not allow rexx to send the email without notifying

the user about the procedure.

3.5 Conclusion

The department for information and communication techniques is managing

approximately 19000 registered email accounts for the city of Vienna. This large

amount of records makes this case an ideal situation for automation where the

benefit of automation is extremely high.

Even with a high failure rate within the provided data (missing links, bad email

addresses) and the need to confirm every single email sent, the work load can

be reduced dramatically for the employees of the department.

It is to assume that a work load for about 4-5 days is to be saved after introduc-

ing the automated system, and only one workday is needed for the enrolment of

the employees.

This is a huge benefit regarding the overall development and installation time of

four months, including the time for the developer to get used and known to the

Rexx language structure.

Also the soon planned migration from Windows to Linux will not cause any trou-

ble as Rexx is able to automate Open Office on both platforms.

References Seite 28

4 References

BSF01 Bean Scripting Framework, The Apache Software foundation,

URL (2006-12-05): http://jakarta.apache.org/bsf/

Burger01 Burger Martin, Open Office.org automation with Oorex, 2005,

Wirtschafsuniversität Wien (Vienna University of Businnes Ad-

ministration), Austira.

CALC01 OpenOffice.org, Product description – Calc, SUN Microsystems,

URL (2006-12-4): http://www.openoffice.org/product/calc.html

DEVEL01 OpenOffice.org 2.1 Developers Guide, Sun Microsystems, May

2005

FLAT01 Flatscher Rony G, Ressurecting Rexx, Introducing Object Rexx,

May 2006, Wirtschaftsuniversität Wien (Vienna University of Bus-

innes Administration), Austria

FLAT02 Flatscher Rony G., The Vienna Version of BSF4Rexx, 2006,

Presentation at the 2006 International Rexx Symposium, USA;

URL (2007-01-02):

http://wi.wu-

wien.ac.at/rgf/rexx/orx17/2006_orx17_BSF_ViennaEd.pdf

OASIS01 Open Document Format for Office Applications, OASIS OPEN,

2006, URL (2006-12-04):

http://www.oasis-open.org/committees/office/charter.php

SUN01 About OpenOffice.org, SUN Microsystems, URL (2006-01-2):

http://about.openoffice.org/index.html

SUN02 Licensing FAQ, SUN Microsystems, URL (2006-01-2):

References Seite 29

http://www.openoffice.org/FAQs/mostfaqs.html

UNO01 Uno Developement Kit Project, SUN Micorsystem, 2006, URL

(2006-10-3): http://udk.openoffice.org/

Source Code Seite 30

5 Source Code

.bsf~bsf.import("javax.swing.JLabel","JLabel") /* import the Java Swing JLabel class */
.bsf~bsf.import("java.awt.FlowLayout","FlowLayout") /* import the Java Awt Gridlayout class */
.bsf~bsf.import("javax.swing.ImageIcon","Icon") /* import the Java Swing Imageicon class */
.bsf~bsf.import("javax.swing.JButton","JButton") /* import the Java Swing Imageicon class */
.bsf~bsf.import("javax.swing.JPanel","JPanel") /* import the Java Swing Imageicon class */
.bsf~bsf.import("java.awt.GridBagLayout","GridBagLayout") /*import the Java Awt GridBagLayout class */
.bsf~bsf.import("java.awt.Toolkit","Toolkit") /*import the Java Awt Toolkit class*/
.bsf~bsf.import("java.awt.GraphicsEnvironment", "GraphicsEnvironment") /*import the Java Awt GraphicsEnvironment
class*/
.bsf~bsf.import("javax.swing.JWindow","JWindow") /* import the Java Awt Gridlayout class */
.bsf~bsf.import("javax.swing.JOptionPane","JOptionPane") /*import the JOptionPane*/

datum=date("S") /*todays datum*/
FolderName = "C:\Analyse"datum /*working folder name*/
mkdir FolderName /*creating the folder*/

localCC = UNO.connect() /* Connect to Local UNO */
localSM = localCC~getServiceManager /* create its ServiceManager */

/*creating frames, buttons, etc. for JAVA interface*/
label= .JLabel~new("");
frame = .JWindow~new();
icon = .Icon~new("ma.gif");
jbuttonp = .JPanel~new();
labelp = .JPanel~new();
text = .JLabel~new("Arbeite..");
action = .JLabel~new("Arbeite..");

jbuttonp~setLayout(.Flowlayout~new(1))
labelp~~add(label)

/* set the the frame to use the GridBagLayout */
frame~getContentPane()~setLayout(.GridBagLayout~new());
frame~getContentPane()~~add(labelp)~~add(action);

/*dimensions of information frame */
boxw = 300
boxh = 100

/*getting desktop size to position the box*/
ge = .GraphicsEnvironment~getLocalGraphicsEnvironment()
maximumWindowBounds = ge~getMaximumWindowBounds();
h = maximumWindowBounds~toString()

/*parsing desktop size */
parse var h token.1 '=' token.2 '=' token.3 '=' token.4 '=' token.5 '='
parse var token.4 resx ','
parse var token.5 resy ']'

/*positioning the box*/
boxpx = resx - boxw
boxp = resy - boxh

/* Add eventhandling */
frame~bsf.addEventListener('window', 'windowClosing', 'call BSF "exit"')
frame~setLocation(boxpx,boxp); /* set the location of the frame on the screen */
frame~~pack()~~setSize(boxw,boxh)~~setVisible(.true); /* Set the size of the frame and
show it */

/*Show Frame*/
frame~toFront()
frame~setAlwaysOnTop(.true)
label~setIcon(icon);

/*get the desktop */
xcomponentLoader = UNO.createDesktop()~XDesktop~XComponentLoader

/*Open the Source File to analyse */
url = ConvertToURL("C:\Analyse\Mailboxes_28092006.ods")

xCalcComponent = xcomponentLoader~loadComponentFromURL(url, "_blank", 0, .UNO~noProps)

/*Open a new File for the results*/
newCalcComponent = xcompo-
nentLoader~loadComponentFromURL("private:factory/scalc","_blank", 0, .UNO~noProps)

Source Code Seite 31

/* get first sheet in spreadsheet (Results/Source)*/
xDocument = xCalcComponent~XSpreadSheetDocument
newDocument = newCalccomponent~XSpreadSheetDocument

xSheet = XDocument~getSheets~XIndexAccess~getByIndex(0)~XSpreadSheet

/*create and mark new sheets for results (differentiation btw Limit sizes)*/
xSheets = newDocument~getSheets()
fullList = xSheets~insertNewByName("User mit Limit¸berschreitung",0)
higherList = xSheets~insertNewByName("User mit erh¿htem Limit ohne ¿berschreitung",1)
newSheet = newDocument~getSheets~XIndexAccess~getByIndex(0)~XSpreadSheet
higherSheet = newDocument~getSheets~XIndexAccess~getByIndex(1)~XSpreadSheet

/* setting headers*/
CALL UNO.setCell newSheet, 0,0, "Rechner"
CALL UNO.setCell newSheet, 1,0, "Kurzzeichen"
CALL UNO.setCell newSheet, 2,0, "Name"
CALL UNO.setCell newSheet, 3,0, "Plattenplatz"
CALL UNO.setCell newSheet, 4,0, "Limit"
CALL UNO.setCell newSheet, 5,0, "Ueberschreitung"
CALL UNO.setCell newSheet, 6,0, "DST"
CALL UNO.setCell higherSheet, 0,0, "Rechner"
CALL UNO.setCell higherSheet, 1,0, "Kurzzeichen"
CALL UNO.setCell higherSheet, 2,0, "Name"
CALL UNO.setCell higherSheet, 3,0, "Plattenplatz"
CALL UNO.setCell higherSheet, 4,0, "Limit"

CALL UNO.setCell higherSheet, 5,0, "Ueberschreitung"

CALL UNO.setCell higherSheet, 6,0, "DST"

/*counters for the loops*/
i = 0
x = 1
n = 1
p = 1
k = 0
lashn = 2

/*sorting Source until an empty line is reached*/
do while i < 1
 Rechner = XSheet~getCellByPosition(0,x)~getFormula()
 Kurz = XSheet~getCellByPosition(1,x)~getFormula()
 Name = XSheet~getCellByPosition(2,x)~getFormula()
 Plattenplatz = XSheet~getCellByPosition(3,x)~getFormula()
 Limit = XSheet~getCellByPosition(4,x)~getFormula()
 DST = XSheet~getCellByPosition(6,x)~getFormula()
 if Plattenplatz = "" then Plattenplatz = 0
 if Limit = "" then Limit = 0
 if DST = "" then DST = 0
 /*sorting DST in an array to be able to resort again later*/
 if Plattenplatz > Limit then do
 if DTSList.k = DST then action~setText("Diensstelle: "||DST)
 if DSTList.k <> DST then do
 k = k+1
 DSTList.k = DST
 action~setText("Neue Diensstelle: "||DST)
 end
 action~setText("Verarbeite: "||Kurz || " " || Name)
 n = n + 1
 NewRechnerCell = newSheet~getCellByPosition(0,n)
 NewKurzCell = newSheet~getCellByPosition(1,n)
 NewNameCell = newSheet~getCellByPosition(2,n)
 NewPlattenplatzCell = newSheet~getCellByPosition(3,n)
 NewLimitCell = newSheet~getCellByPosition(4,n)
 NewUeberCell = newSheet~getCellByPosition(5,n)
 NewDSTCell = newSheet~getCellByPosition(6,n)
 /*sorting according to limitation criteria*/
 if Limit = 80 then do
 NewRechnerCell~xPropertySet~setPropertyValue("CellBackColor",
box("int","CCCCCC"x~c2d))
 NewKurzCell~xPropertySet~setPropertyValue("CellBackColor",
box("int","CCCCCC"x~c2d))
 NewNameCell~xPropertySet~setPropertyValue("CellBackColor",
box("int","CCCCCC"x~c2d))
 NewPlattenplatzCell~xPropertySet~setPropertyValue("CellBackColor",
box("int","CCCCCC"x~c2d))
 NewLimitCell~xPropertySet~setPropertyValue("CellBackColor",

Source Code Seite 32

box("int","CCCCCC"x~c2d))
 NewUeberCell~xPropertySet~setPropertyValue("CellBackColor",
box("int","CCCCCC"x~c2d))
 NewDSTCell~xPropertySet~setPropertyValue("CellBackColor",
box("int","CCCCCC"x~c2d))
 end
 if Limit > 80 then do
 NewRechnerCell~xPropertySet~setPropertyValue("CellBackColor",
box("int","0000CC"x~c2d))
 NewRechnerCell~xPropertySet~setPropertyValue("CellBackColor",
box("int","0000CC"x~c2d))
 NewKurzCell~xPropertySet~setPropertyValue("CellBackColor",
box("int","0000CC"x~c2d))
 NewNameCell~xPropertySet~setPropertyValue("CellBackColor",
box("int","0000CC"x~c2d))
 NewPlattenplatzCell~xPropertySet~setPropertyValue("CellBackColor",
box("int","0000CC"x~c2d))
 NewLimitCell~xPropertySet~setPropertyValue("CellBackColor",
box("int","0000CC"x~c2d))
 NewUeberCell~xPropertySet~setPropertyValue("CellBackColor",
box("int","0000CC"x~c2d))
 NewDSTCell~xPropertySet~setPropertyValue("CellBackColor",
box("int","0000CC"x~c2d))
 end
 if Limit < 80 then do
 NewRechnerCell~xPropertySet~setPropertyValue("CellBackColor",
box("int","CC0000"x~c2d))
 NewRechnerCell~xPropertySet~setPropertyValue("CellBackColor",
box("int","CC0000"x~c2d))
 NewKurzCell~xPropertySet~setPropertyValue("CellBackColor",
box("int","CC0000"x~c2d))
 NewNameCell~xPropertySet~setPropertyValue("CellBackColor",
box("int","CC0000"x~c2d))
 NewPlattenplatzCell~xPropertySet~setPropertyValue("CellBackColor",
box("int","CC0000"x~c2d))
 NewLimitCell~xPropertySet~setPropertyValue("CellBackColor",
box("int","CC0000"x~c2d))
 NewUeberCell~xPropertySet~setPropertyValue("CellBackColor",
box("int","CC0000"x~c2d))
 NewDSTCell~xPropertySet~setPropertyValue("CellBackColor",
box("int","CC0000"x~c2d))
 end
 /*inserting*/
 CALL UNO.setCell newSheet, 0,n, Rechner
 CALL UNO.setCell newSheet, 1,n, Kurz
 CALL UNO.setCell newSheet, 2,n, Name
 CALL UNO.setCell newSheet, 3,n, Plattenplatz
 CALL UNO.setCell newSheet, 4,n, Limit
 Ueber = Plattenplatz - Limit
 CALL UNO.setCell newSheet, 5,n, Ueber
 CALL UNO.setCell newSheet, 6,n, DST
 end
 if Limit > 80 then do
 if Plattenplatz <= Limit then do
 p = p + 1
 CALL UNO.setCell higherSheet, 0,p, Rechner
 CALL UNO.setCell higherSheet, 1,p, Kurz
 CALL UNO.setCell higherSheet, 2,p, Name
 CALL UNO.setCell higherSheet, 3,p, Plattenplatz
 CALL UNO.setCell higherSheet, 4,p, Limit
 Ueber = Plattenplatz - Limit
 CALL UNO.setCell higherSheet, 5,p, Ueber
 CALL UNO.setCell higherSheet, 6,p, DST
 end
 end
 x = x + 1
 /*empty line is aborting criteria*/
 if Rechner = "" then do
 i = 2
 /*document saving in working path and ending sort*/
 StoreLimit = newDocument~XStorable
 Path = FolderName"\Limit_Mailboxes".ods
 SaveUrl = ConvertToURL(Path)
 StoreLimit~storeAsURL(SaveURL, .UNO~noProps)
 end
end
/*closing documents*/
newCalcComponent~dispose()

xCalcComponent~dispoe()

Source Code Seite 33

/*opening help tables and the generated table for resorting*/
url = ConvertToURL(FolderName"\Limit_Mailboxes.ods")
SortedListComponent = xcomponentLoader~loadComponentFromURL(url, "_blank", 0,
.UNO~noProps)
SortedDocument = SortedListComponent~XSpreadSheetDocument
SortedDocumentSheet = SortedDocument~getSheets~XIndexAccess~getByIndex(0)~XSpreadSheet

Relationsurl = ConvertToUrl("C:\Analyse\zuordnungen.ods")
RelationsListComponent = xcomponentLoader~loadComponentFromURL(Relationsurl, "_blank",
0, .UNO~noProps)
RelationsDocument = RelationsListComponent~XSpreadSheetDocument
RelationsDocumentSheet = RelationsDocu-
ment~getSheets~XIndexAccess~getByIndex(0)~XSpreadSheet

Mailurl = ConvertToUrl("C:\Analyse\berater.ods")
MailListComponent = xcomponentLoader~loadComponentFromURL(Mailurl, "_blank", 0,
.UNO~noProps)
MailDocument = MailListComponent~XSpreadSheetDocument

MailDocumentSheet = MailDocument~getSheets~XIndexAccess~getByIndex(0)~XSpreadSheet

/*setting counters for loops*/

do l = 1 to k
 DSTx = 2
 DSTi = 0
 DSTn = 1
 Reln = 0
 Relx = 1
 Mailn = 0
 Mailx = 1
 AnaDST = DSTList.l
 SearchDST = AnaDST
 /*searching for Infrastructure numbers insted of "Diensstellen"*/
 do while Reln < 1
 RelDST = RelationsDocumentSheet~getCellByPosition(1,Relx)~getFormula()
 if RelDST = SearchDST then do
 PSP = RelationsDocument-
Sheet~getCellByPosition(0,Relx)~getFormula()
 Reln = 3
 end
 /* "ENDE" is aborting criteria. User intervention necessary to find ac-
cording data*/
 if RelDST = "ENDE" then do
 action~setText("Hinweis beachten!!")
 input = .bsf.dialog~inputBox(SearchDST || " nicht gefunden.
Richtigen K¸rzel eingeben:", AnaDST)
 SearchDST = input
 Relx = 0
 end
 Relx = Relx + 1
 end
 /*getting Mail Adresses related to PSPs*/
 do while Mailn < 1
 MailDst = MailDocumentSheet~getCellByPosition(5,Mailx)~getFormula()
 if MailDst = PSP then do
 Mailman = MailDocument-
Sheet~getCellByPosition(3,Mailx)~getFormula()
 Mailadress = Mailman || "@xxx.wien.ac.at"
 Mailn = 3
 end
 /* "ENDE is aborting critera. User intervention necessery to retrieve
relevant data*/
 if MailDst = "ENDE" then do
 action~setText("Hinweis beachten!!")
 input = .bsf.dialog~inputBox(PSP || ": Den dazugeh¿rigen K¸rzel
eingeben:", "K¸rzel")
 Mailman = input
 Mailadress = Mailman || "@xxx.wien.ac.at"
 Mailn = 3
 end
 Mailx = Mailx + 1
 end
 action~setText("Sortiere Dienststelle: "||AnaDST)
 /*new file for each departement*/
 DSTComponent = xcompo-
nentLoader~loadComponentFromURL("private:factory/scalc","_blank", 0, .UNO~noProps)
 DSTDocument = DSTComponent~XSpreadSheetDocument

Source Code Seite 34

 DSTSheets = DSTDocument~getSheets()
 DSTList = DSTDocument~getSheets~XIndexAccess~getByIndex(0)~XSpreadSheet
 /*creating header*/
 CALL UNO.setCell DSTList, 0,0, "Rechner"
 CALL UNO.setCell DSTList, 1,0, "Kurzzeichen"
 CALL UNO.setCell DSTList, 2,0, "Name"
 CALL UNO.setCell DSTList, 3,0, "Plattenplatz"
 CALL UNO.setCell DSTList, 4,0, "Limit"
 CALL UNO.setCell DSTList, 5,0, "Ueberschreitung"
 CALL UNO.setCell DSTList, 6,0, "DST"
 /*filling table with data*/
 do while DSTi < 1
 Rechnerk = SortedDocumentSheet~getCellByPosition(0,DSTx)~getFormula()
 Kurz = SortedDocumentSheet~getCellByPosition(1,DSTx)~getFormula()
 Name = SortedDocumentSheet~getCellByPosition(2,DSTx)~getFormula()
 Plattenplatz = SortedDocument-
Sheet~getCellByPosition(3,DSTx)~getFormula()
 Limitk = SortedDocumentSheet~getCellByPosition(4,DSTx)~getFormula()
 DST = SortedDocumentSheet~getCellByPosition(6,DSTx)~getFormula()
 if Plattenplatzk = "" then Plattenplatzk = 0
 if Limit = "" then Limit = 0
 if DST = "" then DST = 0
 if DST = AnaDST then do
 DSTn = DSTn + 1
 CALL UNO.setCell DSTList, 0,DSTn, Rechnerk
 CALL UNO.setCell DSTList, 1,DSTn, Kurz
 CALL UNO.setCell DSTList, 2,DSTn, Name
 CALL UNO.setCell DSTList, 3,DSTn, Plattenplatz
 CALL UNO.setCell DSTList, 4,DSTn, Limitk
 Ueber = Plattenplatz - Limit
 CALL UNO.setCell DSTList, 5,DSTn, Ueber
 CALL UNO.setCell DSTList, 6,DSTn, DST
 end
 DSTx = DSTx + 1
 if Rechnerk = "" then do
 DSTi = 2
 end

 end

 /*saving table and closing*/
 xStorable = DSTDocument~XStorable
 Path = FolderName"\"AnaDST"_"datum".ods"
 SaveUrl = ConvertToURL(Path)
 xStorable~storeAsURL(SaveURL, .UNO~noProps)
 DSTComponent~dispose()

 action~setText("Sende Mail. Bitte dr¸cken Sie auf 'Ja'")

 /*creating mail and attaching created file*/
 SimpleMailSystem = lo-
calSM~createInstanceWithContext("com.sun.star.system.SimpleSystemMail", localCC)
 XSimpleMailClientSupplier = SimpleMailSystem~XSimpleMailClientSupplier
 XSimpleMailClient = XSimpleMailClientSupplier~querySimpleMailClient
 mail = XSimpleMailClient~createSimpleMailMessage

 mail~setRecipient("szilagyi_istvan@lecomtesse.com")

 mail~setSubject("¿berschreitungsliste." || Mailadress)
 attach = bsf.createArray(.bsf4rexx~string.class, 1)
 attach[1] = SaveUrl
 mail~setAttachement(attach)
 flag = bsf.getConstant("com.sun.star.system.SimpleMailClientFlags",
"NO_USER_INTERFACE")
 /*sending message*/
 XSimpleMailClient~sendSimpleMailMessage(mail, flag)
end

action~setText("Danke f¸r das Rexxen! Ich hoffe ich war hilfreich. Auf wiedersehen!")

/*ending*/

SortedListComponent~dispose()
RelationsListComponent~dispose()
MailListComponent~dispose()

frame~setVisible(.false)

Source Code Seite 35

::requires BSF.CLS
::requires RXREGEXP.CLS
::requires UNO.cls --UNO support

