WIRTSCHAFTSUNIVERSITAT WIEN
SEMINARARBEIT

Titel der Seminararbeit:

Vergleich der Einbindungsmoglichkeiten von AJAX-Komponenten mittels
Apache MyFaces und Ruby on Rails

Englischer Titel der Seminararbeit:

Comparison of the possibilities to implement AJAX-Components with
Apache MyFaces and Ruby on Rails

Verfasser: Clemens Friedrich

Matrikel-Nr.: 0450510

Studienrichtung: J033 526 Bakkalaureat Wirtschaftsinformatik

Kurs: 1224 |IT-Spez: Vertiefungskurs VI - Electronic
Commerce

Textsprache: Englisch

Betreuerin/Betreuer: ;. iy, prof. Dr. Rony G. Flatscher

Page 2

Table of Contents

Y 015 4= T PSSR 5
2 INtrodUCHION 1O AJAX e e e e e e e e e e e e e e e e e eeeeaaaaes 6
2.1 The classiC Web MOEL........ .o 6
2.2 The AjJax Web mMOdel...........ouiiiii e 8
2.3 AJAX @NAIYZEA.....coiiiiiiiieee e 9
2.4 The XMLHttpRequest ObjJECt.........cccooiiiiiiiiee e 10
2.5 AJAX 0N the NetWOrk Layer.........cooi i 12
2.6 Advantages of AJAX-APPlICAtIONS.cccoeee e 16
2.7 Disadvantages of AJAX-AppPliCations.............uuuuuuiiiiiiiiiiieee e 16
2.7.1 Usability problemS..........uueiieei e 17
2.7.2 Security Risks in AJAX-Applications..........ccooooiiiiiiiiiiiee e 19

3 The Model-View-Controller pattern............ooooo oo 22
4 RUDY ON RaIIS.....euiiiiiiiiiiiie et 24
4.1 AJAX-COMPONENES.....uuiiiiiiieiicce ettt e et e e e e e e et e e e e e e e et e e eaeeeens 24
g | 1= = | =1 1o o 1 25
4.2.1 First Ruby on Rails Project.............ci e 26

4.3 Code Examples in Ruby on RailS...........ccoooiiiiiiiii 28
R g (o) (0] o= TSP 30
I Tor] o) o= Tt U] [0 T U PSP PURPPRPP 34

S APACNE MYFACES.coiiiiiiiieeee ettt 41
5.1 JaVaSErVer FACES........ccooiiiiiieeeeeeeere e e e e eeeeeennnnnnnnnnene e 2
5.2 AJAX-COMPONENTS......coiiiiiiii ettt e e e e e e e e e e e e e e e e e e esaaanns 45
5.3 INStallation.......coeeiiii e 4D
5.4 The TOOIKIt DOJO......uueieiiiiiiieiieeee e AT
5.4.1 Code example Of DOJO........uuuiiiiiiiiiiiiiee e 48

5.5 Code Examples in Apache MYFaCeES..............cooviiiiiiieiiiiiiree e 49

B COMPAIISON.......ccciiiiiiiieeeeee et e e e eee s e e aa b eeeeeeaeaaaaaaaaeeeees 54
6.1 Advantages of Apache MyFaces / Ruby on Rails.............cccccociiiiiniiiiiiii 54
6.2 Disadvantages of Apache MyFaces / Ruby on Rails.............cccooiiiiin, 55

7O e (1] T o TP 56

B RO O BN . .. et e e e 57

Page 3

Table of Figures

Figure 1: The classic web application model [Garr05]............ouuuueiiiiiiiiiiieeeee e 7
Figure 2: The classic web application model including the time axis [Garr05]................. 8
Figure 3: The AJAX web application Model [GarrO5]........ccccoeeeiiieiiiiiiiieeeen 8
Figure 4: The AJAX web application model including the time axis [Garr05]................... 9
Figure 5: Code of a XMLHttpRequest Object cycle...........cccuvviiiiiiiiiiiiiii 11
Figure 6: Start Page of Google SUQQEest............uuuiiiiiiiiiiiiii e 13
Figure 7: Google Suggest: Searching Status 1., 13
Figure 8: Google Suggest: Searching Status 2...........ccceeviiieiiiiiiiicee e, 14
Figure 9: Wireshark: Result of the network analysis.............ccccueiii 14
Figure 10: Wireshark: HTTP GET request to Google............ccuueiiiieiiiiiiiiiiiiiiiiee 15
Figure 11: Wireshark: Suggestions received from the Google Server........................... 15
Figure 12: URL-problem example on map24.Com...........ccoooiiiiiiiiiiiiiiiiiiee e 19
Figure 13: Critical JavaScript LOgin COde.........ooiiiiiiiiiiieiieeeee e 20
Figure 14: The Model-View-Controller pattern [SUNMO2]............cooorrmimiiiiiiiiciiieeeeeee, 22
Figure 15: Screenshot of LOCOMOLIVE.........c.coooiiiiiiiiii e, 26
Figure 16: Screenshot of Locomotive when creating a new application........................ 26
Figure 17: Screenshot of Locomotive containing the new application................cc......... 27
Figure 18: Terminal-Output of the Ruby on Rails structure of files and folders............. 27
Figure 19: Terminal commands to create helloworld example...............cooovviiiiiiiinniennn. 28
Figure 20: Code in the helloworld.rhtml file............cccmiiiii e 28
Figure 21: Screenshot of the "Hello World" page...........ooooiiiiiiiiiis 29
Figure 22: Code of the helloworld.rhtml file.............ooo s 29
Figure 23: Screenshot of the AJAX response in the web-browser.............................. 30
Figure 24: Code of the layout file appliaction.rhtml...............ccccooi 31
Figure 25: Code of the controller file prototypeonrails_controller.rb.............ccccccceeennnn. 31
Figure 26: Code of the index.rhtml file of prototypeonrails.............ccccoiiiiiiin, 32
Figure 27: Initial State of prototypeonrails............cccceeeeiiiiiiiiii 32
Figure 28: Loading State of prototypeonrails..............cccoveeiiiiiiiiiiiiieeeee e 33
Figure 29: Final State of prototypeonrails..............eeeeiiiiiiiiiiiie e 33
Figure 30: HTML file generated by the server for prototypeonrailscccccvvninneee. 34
Figure 31: Code of the index.rhtml of scriptaculousonrails.............ccccceeeiiiieiii. 35

Figure 32:
Figure 33:
Figure 34:
Figure 35:
Figure 36:
Figure 37:
Figure 38:
Figure 39:
Figure 40:
Figure 41:
Figure 42:
Figure 43:
Figure 44:

Code of the controller scriptaculousonrails_controller.rb.............................. 36
Initial state of scriptaculousonrails...........cccoovviiiiiiiiiiis 37
Second State of scriptaculousonrails with a moved "target” div................... 38
Final State of scriptaculousonrails...........ccccooiiiiiiiiiiis 39
HTML output of scriptaculousonrailS.............ccooooiiiiiioiiiiis 40
Life-cycle of a JavaServer Faces request [BaHURG07, page 118]............... 45
Test-page of the Tomcat servlet container...............ooovvviiiiiiiiiiiiiieeeee, 47
Code for the "Hello World!" application with Dojo.............coovvviiiiiiiiiiiieeenn. 49
Screenshot of the Hello World application of the Dojo Toolkit...................... 49
Code of the Hello World example in MyFaces..........ccccccciiiiie 50
Screenshot of the Hello World application in MyFaces.................ccccvvvvvnnnne. 51
Screenshot of the TableSuggestAJAX example............eeiiiiiiiiiieeienneeen.n. 52
Code of the TableSuggestAjax example.........cccoceeiiiiiiiiiiiiiiiieeee e 53

Index of Tables
Table 1: States of a XMLHUPREQUEST........oooviiiieieeeee e 11

Abstract Page 5

1 Abstract

This term paper deals with the question which possibilities the two web-application
frameworks Apache MyFaces and Ruby on Rails provide to implement AJAX

components.

The first part of the paper gives an introduction to the term AJAX and explains what is
defined by it. As AJAX offers a lot of advantages for interactive web-applications there
are also a lot of drawbacks that have to be considered which are also covered in this

chapter.

The next two chapters discuss the two mentioned web-application frameworks. Both
are introduced and the basics are explained. Later on the focus is set on the
possibilities of implementing AJAX components with the help of these frameworks. In
both frameworks the JavaScript Libraries that stand behind the frameworks are

explained and code examples will be given.

After analyzing the frameworks a comparison identifies both the advantages and

disadvantages of the two frameworks.

Keywords:

AJAX, Ruby on Rails; Apache MyFaces; JavaServer Faces; XMLHttpRequest;

Prototype; script.aculo.us; Dojo Toolkit

Introduction to AJAX Page 6

2 Introduction to AJAX

“Ajax is an acronym for Asynchronous Javascript And XML. Ajax is not a new
programming language, it's an umbrella term which describes a group of features

and enhancements to improve appearance and functionality of traditional web sites.’
[PaFe06]

As mentioned above Ajax is not a new programming language, but a so-called
‘umbrella term”, it is necessary to take a closer look what is under the umbrella. The

core of Ajax embraces the following techniques [Garr05]:
e XHTML and CSS for presentation
e Document Object Model for dynamic presentation
e XML and XSLT for data interchange and manipulation
e XMLHttpRequest for asynchronous data retrieval
e JavaScript that binds together the components

As it is getting clearer, Ajax has something to do with asynchronous transfer of data.
Actually it is the transfer of data between a client which is a web-browser and a server.
To understand this concept it is essential to have a look on both the classic and the

Ajax web model.

Foremost it is crucial to mention that the techniques behind AJAX are not really new.
That means that the idea of updating web-pages incrementally using the eXtensible
Markup Language and the HyperText Transmission Protocol rose several years ago
but gained its popularity when the popular name AJAX was mentioned first by Jesse
James Garrett in February 2005 and used by some important internet companies like
Amazon or Google [Garr05] [Gibs06].

2.1 The classic web model

In the classic web model, a user-action, like clicking on a hyperlink on a web-page,

results in a request to the server. This server receives the request and performs actions

Introduction to AJAX Page 7

to fulfill the request of the user. These actions could be for example a database query
accessing other systems or simply calculating something. After that the server is able to
deliver the requested file to the user which is mostly a HTML file. Figure 1

demonstrates this model [Garr05].

user interface

A
HTTP request

HTML+CSS data

Y
web server

Y A

datastores, backend
processing, legacy systems

Figure 1: The classic web
application model [Garr05]

The main problem of this this model is, that the user has to wait while the server is
processing the request. So the user has to consider a break in his workflow every time
the application needs information from the server. Figure 2 shows this problem in the

context of the time.

Introduction to AJAX Page 8

user activity user activity

user activity

data transmission

uOISSILUSLIEl] BYeP

uoISSILUSURI] BB
data tran Smission

system processing system processing

Figure 2: The classic web application model including the time axis
[Garr05]

To bypass this problem the Ajax technique comes into play.

2.2 The Ajax web model

The Ajax model gives an application the possibility to send HTTP-requests to a server
without refreshing a whole page, not even giving the user any notice of the request.

Ajax is then able to present changes to the user without reloading the whole page by

using the Document Object Model, DOM [PaFe06].

user interface

I
JavaScript call
J’ HTML+CSS data
|

Ajax engine
A
HTTP request

XML data

web and/or XML server

v A

datastores, backend
processing, legacy systems

Figure 3: The AJAX web
application Model [Garr05]

In the basic web model, each user interaction would lead to a HTTP-request. Within the

Introduction to AJAX Page 9

Ajax web model this user interaction leads to a JavaScript call to the Ajax engine.
Simple actions, like validating a form, can be done by the Ajax engine itself without
requesting data from the server. But if the engine needs data that are not loaded yet it
requests the data asynchronously using XML without interrupting the users work
[Garr05]. Figure 3 shows this model in the technical way while Figure 4 shows the

model in the context of the time.

user activity

display
[T
dfsﬂay
Sl
d.l‘ﬁplay
|
display
T

client-side processing

data transmission
uoissisue . eep
data transmission
data transmission

uoissIusUR L =ep

data transmission
uoissIusUR L =ep

uoIssILsSUR L Eep

server-side server-side server-side server-side
processing processing processing processing

Figure 4: The AJAX web application model including the time axis
[Garr05]

2.3 AJAX analyzed

As the previous section showed, AJAX stands for a simple communication between
server and client at a sub-page level. Some time ago there have been several
approaches to accomplish this goal. One of those were Java Applets, which did not

really succeed because of slow Java implementations and suffering cross-browser

compatibility [RaymOQ7].

Nowadays the XMLHttpRequest Object is the widely used solution for building AJAX
applications. Its original implementation was by Microsoft in the Internet Explorer 5
called XMLHTTP using ActiveX and was cloned by other browsers and called
XMLHttpRequest [RaymO7].

Introduction to AJAX Page 10

As AJAX stands for Asynchronous JavaScript and XML these terms are now analyzed
and reasons why AJAX is more a term than a definition of the used technologies are

shown.

Asynchronous means that all the calls back to the server, the XMLHttpRequest, are
nonblocking which implies that the client is able to execute further code while waiting
for the response from the server. If there were no nonblocking characteristic, users
would have to wait for the response without doing anything, because the browser is not
able to work. So the browser would seem to freeze while the server responds to the

request [RaymO7].

JavaScript, which was originally called LiveScript, is a powerful scripting language that
is supported more-or-less in every modern web-browser. Especially with the use of the
numerous libraries that support JavaScript and development support tools, JavaScript
is a very agreable platform. But as Internet Explorer supports Visual Basic scripting as
well and Adobe Flash is widely deployed and both technologies are capable of calls to

the server, it is not a necessity to use JavaScript [RaymO07].

The Extensible Markup Language (XML), is the last term defined under the umbrella
term AJAX and is the easiest technique to substitute. Actually the XMLHttpRequest
Object is able to transfer every type of content, HTML code as well as for example
images. Ruby on Rails for example transfers HTML and JavaScript rather than XML
data [RaymO7].

In the personal opinion of the author the most important piece of AJAX is the
XMLHttpRequest Object, which is the heart of every AJAX application. As for
frameworks like Ruby on Rails it is not necessary to code JavaScript code or
understand XML to create a simple applications, the following section will cover just the
XMLHttpRequest Object because the author is convinced to understand the basics of

the object is crucial to understand the examples that are presented later.

2.4 The XMLHttpRequest Object

The Object XMLHttpRequest is part of most web-browsers and responsible for sending
requests to the server and receiving the responses. In most open-source web-browsers

like Mozilla Firefox the regular XMLHttpRequest Object is implemented. Microsofts

Introduction to AJAX Page 11

Internet Explorer 5 and 6 contain a XMLHTTP Object which is part of the ActiveX
component while Internet Explorer 7 implements the regular XMLHttpRequest Object
[Lubk07].

The actual cycle of using the object is to use the method open to create a new object,
send to transmit the request. For defining what is going to happen after the response
was received the onreadystatechange is used [Lubk07]. Figure 5 shows this cycle

in a simplified way.

1| war =mlHbtpRequest = getRequestObjecti);

2 | xmlHEtpRequest .open 'GET', URL, true)

3 | xmlHtEpRequest czend (nul L)

4 if {=mlHttpRequest . readyitaote == 43

5

f A Code to execute

7 A4 Example:

8 alert (xmlHEtpRequest .responseText)

ol 3

10 | function getRequestObject() {

11 try { return new XMLHttpRequest() + catch (e} I3

12 try { return new ActivexObject("MzxmlZ.XMLHTTP"} T cotch (&) {1
13 try { return new ActiveRDbjectd"Microsoft SMLHTTP") } cotch {e) {3
14 return false

15 1

Figure 5: Code of a XMLHttpRequest Object cycle

The first line creates a new xmlHttpRequest object by calling the function
getRequestObject () which checks the type of the browser. The second line opens
a new request with some parameters. The first one is 'GET' and defines that
information is submitted in the link that is called. It would also be able to use 'POST'
which sends information in the data part or ' HEAD' which does not send the content of
the document with it. The second parameter is the URL that will be called and the third
one is a boolean parameter that defines whether the request is asynchronous or not.
Line 3 finally sends the request to the server. Line 4 checks the value of
xmlHttpRequest.readyState which defines the state of the query and is changed

several times during the lifetime of a request. There are five different states [Lubk07]:

Introduction to AJAX Page 12

Value |Meaning

0 open was not called yet

1 open was called but send was not

2 request was sent

3 data transfer from the server is in progress
4 data transfer is completed

Table 1: States of a XMLHttpRequest

As Table 1 shows the last status is 4, so if the value of
xmlHttpRequest.readyState is 4 the transfer is completed and the received data

is ready to use as it is done in line 8.

2.5 AJAX on the Network Layer

To provide a closer look at AJAX and what it actually does it makes sense to have a
look what happens on the network while AJAX is working. Therefore a network protocol

analyzer was used combined with a web-browser that executed AJAX commands.

The author of this paper decided to choose the web-browser Mozilla Firefox. Firefox is
an Open-Source product of the Mozilla Foundation which provides all its products on
Microsoft Windows, Mac OS X and Linux [Mozi07]. Furthermore Firefox is the worlds
second most widely used web-browser with a market share of 15.6% measured in
November 2007 [MarkQ07]. The data that is going to be analyzed derive from the Google
Project called Google Suggest which is a typical Google search page that provides
suggestions in real time while typing the search term [Goog07]. Figure 6 shows the

start-page of Google Suggest.

Introduction to AJAX Page 13

"aa A Loagle (=)
gl v iﬂ /I‘ At waw.goog e.com web hofcomplete— 1&hi—en v [ﬁ W r Wikipedia (English) Q,
Web |mages Maps News Soopping Smail row v iSoogle | Zigrin |
. [
i |
) Ta |
OQa
Suggest

Coocle 5earch | I'm Feeling Lucky |

As you tyoe, Google will offar suggestiors. Use the amow keys to navigats the resuts. Learm more

Eeecback - Dscess - Tarms of Uss - FAQ

E2007T Google

Figure 6: Start Page of Google Suggest

To analyze the activities on the network while performing Google Suggest the network
analyzer Wireshark which was formerly known as Ethereal was used. It supports the
inspection of numerous protocols, such as HTTP, which is very important for this
purpose [Wire07]. To demonstrate how Google Suggest works Figure 7 and Figure 8

show what happens when you start typing and searching for the term “Apache

7

MyFaces”.

Halals) Coogle =
ol é" ’I\ Iglhllrl Siweaw gnowl=_coemfwebhpTeompele=1&0=en ¥ | e '“.‘= W+ Wikipadia [Frglisk) Q
Web |mzges lMaps Mews Shooping Smal moe ¥ iGoogle | Sign in

T
TI
O - ,-Ii u
G OQaC
Sugqgest

ac
apachz

apacha temeat
apache ant

As you tyl apache web semver
d[:H[iIiH KEMVED

apAachs axis
apace”

apachs down cad
apachs indiens
apachz helicepter

Figure 7: Google Suggest: Searching Status 1

While typing Google Suggest is trying to find matching suggestions and presents them
in a list below the textbox. The more information the user types the narrower the

suggestions are.

Introduction to AJAX Page 14

oo Google o
gl - ‘f] /l‘ |Gl btp: / fanw.google.com iwebnpTecomplete = 1 &l=en ¥ | iﬂ W~ Wikipedia (Englishi a,
Web |ragse Mace Mews Sheppng Gmal o W iGeodls | Sigr in
=0 =
— I\ ™ |
GO OQal |
."--_.-f 1
Suggest
|Apache MyFaca Advansad feemh
apcehz mytases EAB,000 moats
apceha myfazses binidoc 623,000 mouts
apcehz myTaces tomabawk 101,000 mezaits
A you byp 050 | more

Feedoack - Discuss - Terms of lse - ZAD

E2007 Googe

Figure 8: Google Suggest: Searching Status 2

As the search term “Apache MyFaces” is typed, the network analyzer Wireshark
monitors the network traffic all the time. After recording the result is filtered to provide

just HTTP traffic. Figure 9 shows the result of the monitoring.

Fil= Edit View Go Capture Analyze Statistics Help

B il B EEx @8 Q@D F L @ @K XHE X O

Mﬁilten |http j ‘# Exgression... hl:earen V Anwenden
No . |Tir'1e | Sodrce | Destination |Pro:oco| | Info

E 4, 853668 172.16.122.66 74.135.47.147 HTTP GET /complete/search?hl=en&cliznt=suggest&js=t -uekg=ap HTTP/1. .

€ 4. 858072 74.125.47.147 172,16, 122, 66 HTTP HTTF/1. 1 200 0K (text/itmi)
1€ 5.444811 172.16.122.66 74.135.47.147 HTTP GET /complete/search?hl=en&cliznt=suggest&js=t -uekg=apa HT P/1.1
11 5.4748€0 74.125.47. 147 172.16. 122, 66 HTTP HTTP/1.1 200 0K |text/1tml)
13 6. 192846 172, 16,122, 66 74,135.47, 147 GET fcomplete/search?hl=enaclisnt=suggesthjs=t -uskq=apac HTP/.. 1
14 6. 221142 74.125.47. 147 172.16. 122, 6& HTTP HTTP/1.1 200 0K |text/1tml)
1E 6.792250 172.16.122.66 74,125.47.147 HTTP GET /complete/scarch?hl=cnéclicnt=suggesth)js=t -uckg=apach HTTR/1.1
17 6. 622444 74.125.47. 147 172.16. 122, 6& HTTP HTTP/1.1 200 0K |text/1tml)
15 F.th3bbd 174, 1b, 122, 6b M, 10,481,147 HIIF GLEI fcompletessearchynl=ensCllznt=suggeste) s=t uskg=apache HIIF/L. 1
26 7.585419 74.125.47. 147 172.16. 122, 6 HTTP HTTP/1.1 200 0K |text/1tml)
23 7.8557E5 172.16.122.66 74.135.47.147 HTTP GET /complete/search?hl=en&cliznt=suggesthjs=t -uekg=apache%20 HTTP /1.1
23 7.890973 74.125.47.147 172.16.132. 66 HTTP HTTR/1.1 200 O |text/itml)
25 B.207811 172.16.122.66 74.135.47.147 HTTP GET /complete/search?hl=en&cliznt=suggestsjs=t -uekq=apaches28m HTTF/1.1
31 8.620426 172.16.122.66 74.135.47.147 HTTP GET fromplelefsearch?hl=en&ul iznl=suygyes Laj ==L uckhy=dpac | y HTTP/1.1
34 B.7056E7 74.125.47. 147 172.16. 122, 6& HTTP HTTP/1.1 200 0K |text/1tml)
3E 9.215289 172.16.122.66 T4.135.47.147 HTTP GET fcomplete/search?hl=enicliznt=suggestéjs=t -uekg=apaches20myf HTTP/1.1
4E 9, 46646 74.125.47. 147 172.16. 122, 6 HTTP HTTR/1. 1 200 0K (text/+tml)
4% 9,515558 172.16.122.66 T4.135.47. 147 HTTP GET fcomplete/search?hl=enicliznt=suggestéjs=t -uekg=apache=20myfa HTTP/1.1
141 9.581778 71.125.147.117 172.16.132. 66 HTTP HTTR/1. 1 200 OK |text/1tml)
4E 9, 816544 172.16.122.66 T4.135.47. 147 HTTP GET fcomplete/search?hl=enicliznt=suggestéjs=t -uekq=apaches=20myfac HTTP/1.1
48 9. #1TOEE 74.125.47.147 172,16, 122, 66 HTTP HTTF/1. 1 200 0K (text/itmi)
S5E 108.120573 172.16.122.66 T4.135.47. 147 HTTP GET fcomplete/search?hl=enicliznt=suggestéjs=t -uekq=apaches20myfaces HTTP/1.1
51 109.153765 74.125.47.147 172.16. 122, 6& HTTP HTTP/1.1 200 0K |text/1tml)

Figure 9: Wireshark: Result of the network analysis

A closer look on the “Info” column shows that every keystroke leads to a HTTP request
to Google that transfers the current input of the text-box, where the search terms can
be entered. The specific command that is executed for example after typing “Apac” is
“GET /complete/search?hl=en&client=suggest&js=true&q=apac HTTP/1.1”. Obviously a
search function of Google is called and the “q” attribute defines the term that should be

looked up, which in this case is “Apac”. Figure 10 shows this specific request.

Introduction to AJAX Page 15

] 4. 47 1 HTTP GET /complete/search?hl=en&client=suggest&js=t ruefg=apac HTTP/1.1

74.125.47. 147 172,16, 122, 66 HTTP HTTP/1.1 200 0K (text/html)
Figure 10: Wireshark: HTTP GET request to Google

The response of the server is right below the GET request in Figure 10. A closer look
into the body of this package shows the results that are provided in the suggestion list.
Figure 12 shows the results in Wireshark which are, as expected, the same as in Figure
7. Examples are “Apache Tomcat” with 2,100.000 results or the “Apache Helicopter”
with 1,370.000 results.

File Edit Miew Go Capture Analyze Statistics Help

ey 1 FEH*x®E RevoF e EBE QQ@QFEE

!
E]Eilter‘. ||http hd + Expression... ‘ %I:eeren g Anwenden
MNo. - |Time | Source | Destination |Pmtoco| | Info
15 6.19286 172.16.132, 66 74.135.47.147 HTTP GET /complete/search?hl=en&client=suggest&]js=truekg=apac HTTP/1.1
14 B.221142 74.125.47.147 172.16.122. 66 HTTP HTTR/1.1 200 0K (text/html)
16 6, 792390 172,16, 122, 66 T4,125.47.147 HTTP GET /complete/search?hl=en&client=suggest&]js=truekg=apach HTTP/1.1
17 6.822444 74.125.47.147 172.16.122. 66 HTTP HTTR/1.1 200 0K (text/html)
19 7.553658 172.16. 122, 66 74.125.47.147 HTTP GET Jcomplete/search?hl=enkclient t&js=truskg=apache HTTP/1.1
9 ;] HTTR/1.1 200 0K (text/html)

Q00 77 69 Ge &4 &F T7 2e 67 &f 6T &7 GC 6% 2e 61 63 § window. g oogle, ac
0010 2= 53 75 &7 67 65 73 74 5 61 70 70 6c 79 28 66 J . Suggest _apply(f
0020 72 61 6d 65 45 6c 65 6d 65 Ge 74 2c 20 22 61 70 | rameElem ent, "ap
0030 61 63 BB 65 22 2c¢ 20 Ge GBS 77 2041 72 72 61 79 J ache", n ew Array
0040 28 32 2c 20 22 61 70 61 63 6B 65 20 74 &f 6d 63 § (2, "apa che tomc
0050 61 74 22 2c 20 22 32 2c 31 30 30 2c 30 30 30 20 § at", "2, 100,000
0060 T2 65 73 75 GBc T4 73 22 2c 20 22 61 7O 61 B3 68 § results" , “apach
0070 65 20 61l Ge 74 22 2c 20 22 32 2c 30 31 30 2c 30 § e ant", "2,010,0
0080 30 30 2072 65 73 75 Gc 74 73 22 2c 20 22 61 TO J @0 resul ts", "ap
0090 61 63 6B 65 20 77 65 62 20 73 65 72 76 65 72 22 W ache web server"
0050 2c 20 22 34 36 2c 39 30 30 2c 3030 30 20 72 65 | , "46,90 0,000 re
00bE 73 75 Bc 74 73 22 2c 20 22 61 70 6l 63 63 65 20 @ sults", ‘“apache
00cE 73 65 T2 76 G5 T2 22 2c 20 22 36 38 2c 33 30 30 J server", “68,300
0040 2c 30 30 30 20 72 65 73 75 6c 74 73 22 2c 20 22 § ,000 res ults", "
0020 61 70 6l 63 63 65 20 61 78 69 73 22 2c 20 22 31 § apache a xis", "1
00f0 2c 39 30 30 2c 3030 30 2072 65 73 75 6c 74 73 § ,900,000 results
0100 22 2c 20 22 61 70 61 63 63 65 20 &4 6 77 Ge Gc ", "apac he downl
0110 6&f 61 B4 22 2c 20 22 32 35 2c 36 30 30 2c 30 30 § cad", "2 5,600,00
0120 30 20 72 65 73 75 6c 74 73 22 2c 20 22 61 70 61 J @ result s", “apa
0130 A3 63 65 20 69 Ge A 69 61 Ge 73 22 2c 20 22 39 J che indi ans", "9
0140 36 33 2c 30 30 30 20 72 65 73 75 Bc T4 73 22 2c | 63,000 r esults",
0150 20 22 61 70 61 63 6B 65 20 6B 65 Gc 69 63 GF 7O "apache helicop
0160 74 65 72 22 2c 20 22 31 2c 33 37 30 2c 30 30 30 § ter", "1 ,370,000
0170 20 72 65 73 75 6c 74 73 22 2c 20 22 61 7O Bl &3 results ", "apac
0180 68 65 20 63 6f 6d 6d 6f Ge 73 22 2c 20 22 32 2c § he commo ns", "2,
0190 31 39 30 2c 30 3030 20 72 65 73 75 Gc 74 73 22 § 190,000 results"

01a0 2c 20 22 61 70 61 63 68 65 32 22 2c 20 22 33 2c § , "apach e2", "3,
01b0 36 38 30 2c 30 30 30 20 72 65 73 75 6c T4 73 22 § 680,000 results”
OlcO@ 29 2c 20 6e 65 77 2041 72726179 28 22 22 29), neWw A rray("")

01dd 29 3b Oa b

Frame (535 bytes) Uncompressed entity body (467 bytes) |

Figure 11: Wireshark: Suggestions received from the Google Server

Introduction to AJAX Page 16

2.6 Advantages of AJAX-Applications

With AJAX developers are able to avoid some typical problems of web-applications.
One of these is that users have to wait until a new page has loaded. AJAX makes it
possible to load further data in the background so that the user does not recognize. A
very famous example is the application Google Maps. It pre-fetches the map
information that lies right next to the part of the map viewed by the user. So there is no
time of waiting until the new part of the map is loaded if the user drags the map. This
advantage relates to the A in AJAX, which stands for Asynchronous and implies that
data can be exchanged between browser and server without an interaction of the user
[Zuck07].

Another advantage of AJAX is the improved user interactivity with the application. AJAX
applications try to act more like desktop applications. This means no refreshing of a
whole site or no long waiting times while the application gets the necessary information
from the server, but still retaining its benefits like no need of downloading an
application, no updates that have to be installed and a wide compatibility over various
Operating Systems an web-browsers. A good example for the improved user
interactivity is GMail, an email service provided by Google. In its web-interface it is not
necessary to press the refresh button of the web-browser to reload the whole page to
see if there are new mails. Instead, only the new mail is added to the inbox without

reloading the whole page [Zuck07].

Those are the two major benefits that developers and users can earn when using AJAX
for dynamic web-pages. But as AJAX is more a bunch of technologies than a
standalone technique, it has to face a lot of problems and developers have to consider
a lot of wattles to use AJAX appropriate and not to penalize the user by providing low

usability applications.

Therefore the next part of this paper covers the problems and risks of AJAX

applications.

2.7 Disadvantages of AJAX-Applications

So far Ajax sounds to be a good way to bring more dynamic life into the static web

model. But there are several drawbacks and issues that have to be considered when

Introduction to AJAX Page 17

talking about Ajax. This part is subdivided into an usability and a security part, to get a

perspective of both issues.

First there is a general drawback: AJAX is widely based on JavaScript, which implies
that Web-Browsers have to support JavaScript to show the contents of the page. This
might be a problem for mobile and text-only browsers. Furthermore the World Wide
Web Consortium Web Content Accessibility Guidelines (WCAG) 1.0 requires to run
web-sites with turned off JavaScript support. Even if version 2.0 of the guidelines,
which is not recommended yet, removes this requirement, this issue has to be

considered at the moment [Gibs06].

2.7.1 Usability problems

The experience of looking at AJAX-driven web-pages is new for many internet users.
Of course the new possibilities, provided by AJAX, are a good and easy way to
implement more dynamically acting web-pages, but some users will face several

problems or worries.

User related problem

Web-pages that contain AJAX components are basically designed to update a web-
page dynamically. Users may not expect changes to the current page, because the
classic way of surfing through the internet is to click on a hyperlink and waiting for a
new page to load. To give an example: Just imagine a shopping cart of an online-store
that updates the selected goods, prices, shipping costs and taxes automatically without
asking for it. Some users may be unaware of these changes which could lead to

confusion of the customers [Gibs06].

Another problem of some AJAX applications is that they do not provide a distinct

Unified Resource Identifier which the user could simply add to the bookmarks [Gibs06].

Search engine problem

Search engines and their crawlers comb through web-pages looking for link tags like
HREF or SRC. So these crawlers are not looking for any AJAX or JavaScript parts.
Furthermore, the search engines do not know which values they have to pass to the

server to call the right state of the application. To make AJAX web-pages reachable

Introduction to AJAX Page 18

from search engines developers have to write two versions of their web-pages: One
with the actual AJAX code and one with the HTML code for the web-crawlers [SchwO06].

Back button problem

As the XMLHttpRequest circumvents the web-browsers history function, pushing the
“back” button mostly does not lead to the desired result [Inma06]. Users normally want
to go back one step when pushing the “back” button. In an AJAX application this could
be revoking the last action as like deleting an item that was put in the shopping-cart
accidently. The web-browser would instead call the last-visited web-page. Despite
several workarounds of this problem like working with IFrames, this issue is very

important regarding the usability of web-pages.

URL problem

As the communication of AJAX applications happens in the background and is working
asynchronously, the user requests the URL only once when entering the web-page and
might change the state of the web-page by interacting with the AJAX application. If the
user wants somebody else to see the same thing, usually he would copy the URL of the
web-page and send it to the person he wants to share the page with. Since the
communication happens in the background, the URL does not change while navigating
through the AJAX application. Thus the URL does not contain the information of the
users actual status in the application. Figure 12 shows an example of this problem. The

web-site http://www.us.map24.com is loaded and a route between two US-Cities has

been searched. As the result appears on the screen the URL stays the same, so it is

not possible to send this link and open it in another web-browser.

http://www.us.map24.com/
http://www.us.map24.com/
http://www.us.map24.com/

Introduction to AJAX Page 19

AERA Mani4 - Maps and Driving Ciractions for USA, Canada and Europe (=]

el @J ’D‘ .1tp:,l,lwnw.us.map24.com,f v | iﬁl W v wikipadia (English) a4

Tap heve to see them all »

= s e & MyMap24: Login | for dovoapore: |
[z cwlsmnibia, su E=E d 0l
- m up24 &g B Map: otetic _rterective Developer
EE newyork, ny |+ Routa | == |anguage: Chatgs Slatwork
. Btarl MyMan24 m Sl | Lol et L @AM TG E S
Drsanvizw > Conhigure your rowte > Your route i lor-(WBJ‘I“!“&“" —="~' .
- . e
v Channels in New Yark ey g
Atlamtic Ocean
Yaur route: 70443 mi =
» Ehow it mao
P Colmbia 2C 23201
p Hew “ork, NY 10007 704 43 mi
124 h

b Cunfigure yuur roule

b Serchand bouk Buleks i New Yok New!

- WNETR ARAT WL DN -
Map21 Maobile

Cescription

; |A }\ " =nn
Y 4 -'LU'LLgh‘ ,.Lj.\'» |¢|\3D |: ari _vj : 5%*\ :

P ¥l 1A A HUQer 5 (US-176, LS-21, LS.531) and
y SREMaiding 701
b = RDLTL:LGIT + IDh-vIow - ZDOM

head mwers HaTpon S11SC-- 2 EAST] ‘or 320 yrd.

r Leave Hugaer St (US-1T6, US-21 . US-321)
and turn rght ante Hampten St (SC-12 1min v @B @ 2007 Massolhes, NAVYTCD

»d ty MagTP, Digita map dala provices 3y Europa Technokgiea, Tels Aflaa, NAVTEQ

L = #2307 Masasute GmEH - n
Contact Advertae STC Prosa Newslottor oy ae of th bjact fo the User-Terma of Mapsolse. rivacy Polcy

of the mep data 2 su

Irznsfarr ng czt@ from cdn faskchick.ret

Figure 12: URL-problem example on map24.com

Assistive technologies problem

Another problem may occur to people that use assistive technologies. Normally screen
readers “read” the page line by line, so it is likely that the screen reader never
recognizes a change that has been made in a part of the web-page it has already read
[Weba07]. Applications that always focus on changed data could confuse the reader of
an article for example by jumping to different points every time something is updated on
the page [Gibs06].

2.7.2 Security Risks in AJAX-Applications

As the flexibility of web-applications is rising by using the AJAX technology, some
security problems are rising as well. Compared to classic web-applications that base

upon the classic web-model, there are three major security issues [Ritc07]:
e client-side security controls

e increased attack surfaces

Introduction to AJAX Page 20

e new possibilities for Cross-Site Scripting

These issues are now going to be discussed.

Client-side security controls

As AJAX relies on a lot of client-side controls, many developers act frivolously and put
security relevant code into the control of the client. The problem of this fact is that as
code is executed on the client-side, every user has access to the code and is able to
manipulate it [HayrO6]. To mention an example it is just necessary to imagine a simple
login page. After entering username and password the site calls a JavaScript function
instead directing all the information directly to the server. The client-side function that is
called could for example validate the format of the input before the login is requested
using the XMLHttpRequest object. When the server responds and the login information
was correct, another JavaScript function is called that executes the application behind
the login. The security risk of this procedure is that the user could simply call the
JavaScript function after the login instead of going through the whole login process
[Ritc07]. Figure 13 shows the critical JavaScript code where the loginUser() function

could be called anytime without validating the login data first.

if {response != “Login Successful™) {
A4 Login Failed
alert{response’;

T oelse {
A4 Login Succeeded

logintser(} ;
I

Figure 13: Critical JavaScript Login Code

“d N LT e L P e

Increased attack surfaces

Through the use of AJAX most web-applications consist of many small applications,
such as looking up the city of a customer when entering the ZIP-Code. Each of these
small applications is a security risk of its own thus it is necessary to consider the
security aspects of every of those small applications. This is leading from a single point

of entry to a multiple point of entry concept which offers more vulnerabilities [Hayr06].

Introduction to AJAX Page 21

New possibilities for Cross-Site Scripting

Cross-Site Scripting, also called XSS, includes all the efforts to infiltrate malicious code
into a web-application that is later on executed on the client side. This is typically
possible where HTML or JavaScript Code is accepted as an input to a web-page that
later returns the values to the browser. For example a clickable URL containing
malicious JavaScript Code could be created and sent by email to somebody. As the
recipient clicks on the URL the malicious code is executed and the attacker could steal
the session, create a fake login, log the keystrokes or execute any other Script Code
[RitcO7].

For several reasons, the risks of Cross-Site Scripting are rising through the usage of
AJAX components. Usually XSS lasts as long as a page is loaded. One characteristic
of AJAX applications is that there is mostly only one page loaded so that a permanent
XSS could be created. In this scenario an attacker for example would be able to log all

the keystrokes made within the application [RitcO7].

The Model-View-Controller pattern Page 22

3 The Model-View-Controller pattern

As both Ruby on Rails as well as Apache MyFaces are based on the Model-View-

pattern it is crucial to introduce this concept briefly.

“The Model-View-Controller (MVC) pattern separates the modeling of the domain,
the presentation, and the actions based on user input into three separate classes”
[Micr07]

The duties of the three classes are as follows [Micr07]:

e Model: The model contains the data of the application and is responsible to
respond to requests usually from the View and to respond to changes in the

state usually from the Controller.
e View: The presentation of the information.

e Controller: The Controller receives the input from the user and informs the

Model respectively the View of the changes.

Figure 14 illustrates the MVC pattern and the interactions of the three parts among

each other.

Model
* Encapsulates application state
*Hesponds to state gueries
» Exposes application
functionality
» Notifies views of changes

=

. P
View Controller
« Renders the models * Delines application behavier

- Hequests updates from models * Maps user actions fo

* Sends usergesturesfocontroller 1" 1 1 1 1 model updates

* Allows controller o select view User Gestures <Gl Al 2 13
« One for each functionality

Method Invocations
(1 ¥] Events

Figure 14: The Model-View-Controller pattern [SunM02]

The Model-View-Controller pattern Page 23

One important fact of the MVC is that the View as well as the Controller depend on the
Model but the Model depends on neither the Controller nor the View. This allows the

building and testing of the Model without the View or the Controller [Micr07].

Advantages resulting from this pattern are a reduction of duplicate code as well as code
that is easier to maintain. As the business logic is kept separately, adding new data

sources as well as changes in the presentation of data is easier [SunM02].

Ruby on Rails Page 24

4 Ruby on Rails

“‘Ruby on Rails (or more commonly, just Rails) is a full-stack MVC web development

framework for the Ruby language.” [RaymQ7, page 8]

The term full-stack stands for the fact, that the framework includes nearly everything
that is necessary to create a finished product. At least this is true on the application

layer, because mostly a database is needed as well as a web server [Raym07].

This chapter will give a few historical aspects of Ruby and Ruby on Rails as well as the
capabilities to implement AJAX components and will provide some code examples to
give a closer look what code looks like in Ruby on Rails applications. Ruby on Rails is

released under the MIT license while Ruby itself is licensed under the Ruby License

[Ruby07]. The official link to the Ruby on Rails web page is http://www.rubyonrails.org/.

The history behind Ruby on Rails is not very extensive as Ruby on Rails was first
developed and released in 2004 by David Heinemeier Hansson who was born in
Copenhagen, Denmark in 1979 and nowadays works at 37signals, a web-application

company. The first stable release was in 2005 [Hein07].

Ruby itself, which is the basis for Ruby on Rails, is an object-oriented programming
language with roots in List, Perl and Smalltalk. Ruby is developed by Yukihiro
Matsumoto and was first released in 1995 [RaymO07].

In this paper the Ruby on Rails Version 1.2.3 was used with Ruby Version 1.8.6. On
December 17 2007 the Version 2.0 of Ruby on Rails was released which was too late

to analyze all the changes between the different versions.

4.1 AJAX-Components

Ruby on Rails and AJAX correlate in two different ways. On the one hand there are two
JavaScript frameworks namely Prototype and script.aculo.us. Both of them come along
with Ruby on Rails and are developed with Ruby on Rails but are also available in other
programming languages like PHP or Java. Prototype provides access to the
XMLHttpRequest Object as well as methods for manipulations using DOM and

JavaScript data structures. script.aculo.us works on the top of Prototype and has its

http://www.rubyonrails.org/
http://www.rubyonrails.org/
http://www.rubyonrails.org/

Ruby on Rails Page 25

strengths in visual effects and advanced user-interface options, like drag and drop
[RaymO7].

The second way are the Rails helpers which are Ruby methods that are called within
the controller and later invoke JavaScript functions in Prototype and script.aculo.us.
Those make it possible to create extensive AJAX applications without coding
JavaScript itself. Especially important regarding the title of this paper are the so called
Rails Helper callbacks which give the possibility to make things happen during the life-
cycle of a XMLHttpRequest. In detail there are eight different callbacks that define
different states of the life-cycle of the request. An example of these callbacks will be

given later [RaymO07].

In the following sections some code examples of Ruby on Rails AJAX applications will
be provided. Later on the two JavaScript Libraries Prototype and script.aculo.us will be

presented and code examples will be given.

4.2 Installation

As the author of this paper uses Mac OS X 10.4 there are two major possibilities to
install the Ruby on Rails framework. The latest version of Mac OS X 10.5 also known
as Leopard, already ships with Ruby on Rails [AuguQ7]. The first possibility is to
download and compile the components on the machine by following the instructions

that can be found on http://hivelogic.com/articles/ruby-rails-mongrel-mysql-osx. The

primary steps are to install Ruby first and then install the Ruby package manager called
RubyGems that will install then Ruby on Rails. The second option to get Ruby on Rails
onto a Mac OS X 104 is to use the pre-packaged tool called Locomotive which
contains Ruby, Rails and some other tools [Loco07]. As this papers focus is more on
the AJAX capabilities of Ruby on Rails than on Ruby on Rails itself, the author decided
to install Locomotive. After installing Locomotive, it provides a simple user interface that

allows to control the current projects which is shown in Figure 15.

For Windows there is also a pre-packaged tool called InstantRails which comes with
Ruby, Ruby on Rails, Apache Web-Server and MySQL [Inst07].

http://hivelogic.com/articles/ruby-rails-mongrel-mysql-osx
http://hivelogic.com/articles/ruby-rails-mongrel-mysql-osx
http://hivelogic.com/articles/ruby-rails-mongrel-mysql-osx

Ruby on Rails Page 26

F o]

a¥ala Locomotive 2.0.8 o
°® 0 [u

Restart Stop Info Preferences
' Name [Port ¥
O RailsApp 3000 v

+ = (¥ - Run at Locomotive Launch]) 4

Figure 15: Screenshot of Locomotive

4.2.1 First Ruby on Rails Project

Most of the Ruby on Rails commands are executed in the terminal, so this section will
show how to create a project and how to implement simple applications. The first step
is to create a skeleton which can be referred as a project. The skeleton is called

firstrails.

Create Rails Application

Create Rails Application

Application Name: firstrails

Application Directory: ~/Rails (" Choose...)

-

Eramework: | Standard Rails Mar 2007

(" Cancel \I(Create |

Figure 16: Screenshot of Locomotive when creating a new
application

Figure 16 shows how to create an application in Locomotive while Figure 17 shows the

status when the application is created and port 3000 is assigned to the application.

Ruby on Rails Page 27

r.'. P Y P -‘
Locomotive 2.0.8 =

Restart Stop Info Preferences

Marme Port ¥
© RailsApp 3005 v
O firstrails 3000 T
+‘-; - [+ - Run at Locomaotive Launch]

Figure 17: Screenshot of Locomotive containing the new
application

Locomotive calls the rails functions that create all the necessary files and folders.
Figure 18 shows how the file structure of Ruby on Rails applications look like. The root
folder for Ruby on Rails applications is ~/Rails where the folder firstrails was
created. The most important folder in the project is the app folder, where all the Rails
specific code is saved in. As Figure 18 shows at the bottom the app folder contains
subfolders that are called controllers, models and views which refers to the

MVC pattern.

P = = |
wllela lerminal — bash — 74x12
= cd Rail
~fRails
Railsapp firstrail
~fRails cd firstrai
~fRails/firstrails
README components doc 3 tmp
config lib 3 wendor
dl log
~fRails/firstrails cd
~fRails/firstrails/app
model =

~fRails/firstrails/app
Figure 18: Terminal-Output of the Ruby on Rails structure of files and folders

1
1

Ruby on Rails Page 28

4.3 Code Examples in Ruby on Rails

Based on the setup of a new application in the previous section this section will show
some code examples in Ruby on Rails. First of all an example is shown how to create
the classical “Hello World” application. The first step is to create a new controller
referring to the MVC pattern of the previous chapter. Figure 19 shows the shell

commands that have to be executed to create the controller with the name example

and an action with the name helloworld.

r.'. P T P T B -‘
bash

~fRails/firstrails script/generate controller example
helloworlc
‘controllers/

ample_controller.rh
ple_controller test.rhb

nple/helloworld. rhtml
~/Rails/firstrails |

Figure 19: Terminal commands to create helloworld example

After creating the controller the view which is located in the subfolder
app/views/example/helloworld.rhtml has to be modified. Figure 20 shows the

code that includes a hyperlink which calls a JavaScript alert box.

1| <hilzExamp led#he |l lowor Ld=/hil=
2| =p=Find me in appsviewsdexampleshel lowor ld..rhtml</p=
3| p—n biref="" onclick="olert{ 'Hello World! '};"=4n eosy examnple</0=— =

Figure 20: Code in the helloworld.rhtml file

After saving the file, the “Hello World!” page can be opened in a web-browser as Figure

21 shows. The URL to the page consisits of the controller followed by the action, in this

case the URL is http://localhost:3000/example/helloworld. Clicking the link that is shown

on the page, the JavaScript alert box is opened which shows the “Hello World!”.

http://localhost:3000/example/helloworld
http://localhost:3000/example/helloworld
http://localhost:3000/example/helloworld

Ruby on Rails Page 29

ia){alla) Mozilla Firefox f=1
2 = ™ G 1 v Wikinadia (Enalich

| e: @ hf 3 The page at http://localhost:3000 says:] W~ Wikipedia (English) Q

Example#hellov @ Hello World!

! Find me in app/views/example/hel

http:/ /localhost:3000 fexample/helloworld v

Figure 21: Screenshot of the "Hello World" page

Now it is time to create a simple AJAX application, that means that we are using
JavaScript and the XMLHttpRequest Object to communicate with the server. Therefore
it is necessary to create a new action named ajaxresponse in the controller
example that is located in the app/controllers/example controller.rb
file. Furthermore a new view has to be created in the views folder that is called
ajaxresponse.rhtml. This file just contains a string that will be “This is an AJAX
response”. Figure 22 shows the code of the ajaxresponse.rhtml file while Figure
23 shows the web-browser page after clicking on the hyperlink that says “Give me an
AJAX example”. The specialty of this example is that the JavaScript Code creates an

XMLHttpRequest Object to request the string that appears in the alert box from the

server.
1| l=Exampledhel Lowor Ld-</hl=
2| =p=Find me in appsviewssexanpleshel lowor ld.rhtml=/p=
3| ap href="#" onclick="glert{ 'Hallo World! '};"=An easy examples oz p=
4| «pm href="#" onclick="serverSideslert);"=Give me an AJAR example=/o=<p=
5| «=cript type="text/javazcript"=
6 function serverSidedlert() {
i/

function getRequestObject) [

8 try { return new XMLHttpRequest() 3 catch (e} I}

g try { return new ActiveRDbject("MzxmlZ. SMLHTTP") % cotch {e) {F
10 try I return new ActivexObject("Microsoft XMLHTTP") 1 cotch (&) {3
11 return false

12 1

13 war request = getRequestObject(;

14 request.opend 'get ', Yexanplesojaxresponse ', trued;

15 request .onreadystotechange = functiong) £

16 if {request .readyState == 4) alert{request.responseText’;

17

18 request .zendinul L;

19 1

20 | <f=cript=

Figure 22: Code of the helloworld.rhtml file

Ruby on Rails Page 30

The function getRequestObject () checks if the web-browser supports the typical
XMLHttpRequest object or if it supports the XMLHttpRequest Object as an ActiveX

Object as Microsoft's Internet Explorer 6 does [RaymQ7].

2 Wala) Mozilla Firefox

=
o e M o T v Wikinadia nalich | i
b o QJ E Qr 2 The page at http://localhost:3000 says: | W - Wikipedia (English) @
Example#hello @ L |
Find me in app/views/example/he
An easy example |
|
Give me an AJAX example
Done v

Figure 23: Screenshot of the AJAX response in the web-browser

This example was a very basic one that did not make use of the JavaScript Libraries
Prototype and script.aculo.us that Ruby on Rails supports. In the following sections the
two named Libraries are introduced and code examples are given how to use them with

Ruby on Rails.

4.4 Prototype

Prototype is a JavaScript Framework developed by Sam Stephenson that extends core
JavaScript classes and implements additional ones to provide new features. Its focus is
especially on AJAX and DOM manipulations. The possibilities it supports can be

divided into four major sections [RaymO7]:
e AJAX support (wrappers for the XMLHttpRequest Object)
e DOM manipulation
e form manipulation (DOM manipulations especially for forms)
e core extensions (especially for working with data structures)

As Ruby on Rails ships with full Prototype support, the following section will present

Ruby on Rails Page 31

some code examples how to implement AJAX components with Prototype in Ruby on

Rails using the Rails Helpers that have been mentioned before.

For this section a new controller is created while the old application called firstrails will
be still used. The new controller will be called prototypeonrails with an action called
get _time. This example is going to show a simple web-page that provides a link which
requests the time from the server using AJAX. To provide a nicer look of the web-page,
the author adopted the Cascading Style Sheet that is used in the book “AJAX on Rails”
from Scott Raymond. The Style Sheets are saved in the public/stylesheets/
folder of the Rails application. Furthermore a simple layout file was created, which is
saved in the app/views/layouts/ folder and is called application.rhtml.
Figure 24 shows the layout file which starts with a common XHTML definition. The
specialties are definitely in line 6, 7 and 11. The tags

= ... %> define a Ruby Expression. The one in line 6 defines that the JavaScript

o°

<
Libraries Prototype and script.aculo.us will be included, the one in line 11 defines

where the dynamic content will be inserted.

<IDOCTYPE html PUBLIC "-//W3C//DTD ®HTML 1.8 Transitionals/EM"
"http /A w3 org/ TRAxhEn lL/DTD xhtml1-transitional .dtd" =
<html oxmlns="http A A w3 .0rg 1999 xhtml " xml: lang="en">
<head=
<titlezPrototvpe on Rails< title=
<H= jovascript_include_tag e
<#= stylesheet_link_tag "application" -
= /head=
9| hodve
10 <hl=Prototype on Rails=/hl=
11 = wield ¥
12 | =/bodwv=
13 | < html=

e I = I~ B S T U

[=:]

Figure 24: Code of the layout file appliaction.rhtml

Figure 25 shows the code of the controller that was created previously and defines the
method get time. First there is a sleep period of three seconds followed by rendering
the actual time of the server.
clozs Prototwpeonrai lsController = ApplicationControl ler

def get_time

zleep 3.zecond

render =x Time.now.to_s
end

CURE. R, R S YR e

end

[=:]

Ruby on Rails Page 32

Finally Figure 26 presents the code of the index.rhtml file which is located in the

app/views/prototypeonrails/ folder.

<%= link_to_remote "Check the time",
updote == 'current_time',
wurl == { oction == 'get_time' },
thefore == "${ "indicator h.show ",
izuccess== "R 'current_time ' .visualEffect thighlight '3",
scomp letess "¢ M indicotor uhide ()" ke
<zpan id="indicator" style="displav:none;"=Loading.. .</ span=
=div id="current_time"== div=

[N Y. T ST e

This file defines the JavaScript functionalities. Actually Prototype is used, but the code
in the Figure are the Rails helpers, that have been mentioned in the Ruby on Rails
introduction section. The code consists of a link that will be created by using the
link to_ remote command. The commands starting with a colon are options of the
Rails helper. The options :before, :success and :complete are the so called Rails
Helper callbacks that have been introduced earlier. The $ () function is a wrapper for
the DOM method document.getElementById that offers some advantages like the
possibility to hand it more than just one argument. But in general it defines the place
where the content should be inserted [RaymO07]. So line 4 defines that before the
XMLHttpRequest Object is created the span element in line 7 should be shown. But
now it is time to look at the output in the web-browser.

"aPe Prototype on Rails = i

‘6@{&* v @: i‘ @hnp:f;racalhnstﬁE]E]E],fprmmvpeanrails v | @ W~ Wikipedia (Engli Q,

Prototype on Rails

Check the time

Done 4
Figure 27: Initial State of prototypeonrails

Figure 27 shows the initial state of the application that presents a link that has been
clicked in Figure 28. In this figure it is also possible to see the span element that is now

visible until the XMLHttpRequest is complete.

Ruby on Rails Page 33

E =

8eee Prototype on Rails =
=h : - £7% '@ hup://localnost:3000 /prototypeonrails v | b= (ol (W + Wikipedia (Engll Q) 2

Prototype on Rails

Check the time Loading..

Done v

Figure 28: Loading State of prototypeonrails

Figure 29 shows the final state in which the final state is presented. The time of the

server is retrieved and presented in the div element with the id="“current time” is

shown.
'®06 Prototype on Rails =1
gl v v o http://localhost:3000/prototypeonrails v | = r*;’: W~ Wikipedia (Engli CL

Prototype on Rails

Check the time
Sun Dec 30'17:48:21 +0100 2007

Cone %

Figure 29: Final State of prototypeonrails

Finally it is interesting to see the HTML Code of the page that comes from the server
because in this example Prototype itself was not used directly because the Rails
Helpers did their work. Figure 30 shows the HTML file that was generated by the
server. In line 6 it can be seen that the JavaScript library Prototype is loaded and used
for example in line 16 with the Ajax.Updater () function which is a Prototype

function.

Ruby on Rails Page 34

1
2
3
4
5
B
7

oo

]
10
11
12

13
14
15
16

17
18
19
20
21

<IDOCTYPE html PUBLIC “-//W3C//DTD ¥HTHL 1.8 Tronzitional//EW"

"http S S w3 org TR <hbm LLADTD xhtmll-tronsitional .dtd"=
<html =mlns="http i A w3 orgAA999 xhtml " xml: lang="en"=

ead=

=title=Prototype on Rails< title=

==cript sro="/javascripts/prototype.jsy1195769662" type="text jovascript "= script=
<zcript sro="/javascriptsseffects. jsv119876%9662" type="text/javascript == script=
<zcript sro="/javoscripts/dragdrop. j2¥l1968769e52" tyvpe="text/jowazcript"— script=
<zoript src="/javozcriptssoontrols. je2¥yl198760662" type="text/jowazcript"— scripts=
<zcript sro="/SjavascriptsSapplication.js¥l198769662" type="text/jawascript"=— zcript=

=link href="/stylesheetz application.css?11996026485" nedia="=creen" rel="5Stvlesheet" twpe="text/
ces" A=

< head=

oy

<hl=Prototype on Rails</hl=

= href="#" onclick="%{ 'indicotor 'J.zhow; new Ajox.Updoter 'current_time', '/prototypeonrai s/
get_time', fosyvhchronous:true, evalScriptz:true, onComplete:function{request W5 indicator ' .khide
1%, onhSuccess:function{request) 5 'current_time .visualEffect(thighlight ' return
false;"=Check the Lime< o=
-=pan id="indicotor" stwle="dizplay:none;"=Loading...</span=
-div id="current_time" == div=

A hody =

< html=

Figure 30: HTML file generated by the server for prototypeonrails

As this section dealt with the Rails helpers and the JavaScript Library Prototype the

next section will cover to the JavaScript Library script.aculo.us and the Rails Helpers

that use it.

4.5 script.aculo.us

The development of script.aculo.us and Prototype happens in concert with Ruby on

Rails and is very close. Some parts that were Prototype parts in the beginning are now

parts of script.aculo.us which is built on Prototype. But anyway, script.aculo.us has a

different goal, it is designed to provide the following features [Raym07]:

e Visual Effects
e Transitions

e Drag-and-Drop elements

The script.aculo.us Framework works with most modern web-browsers that are

Microsoft Internet Explorer 6 and up, Mozilla Firefox, Apple Safari and most Linux web-

browsers like Konqueror [RaymQ7].

Ruby on Rails Page 35

As a code example was given for Prototype used with Ruby on Rails an example of
script.aculo.us in Ruby on Rails is given as well. It will contain examples for the Visual
Effects and for the Drag-and-Drop functionality. script.aculo.us offers five core effects
that control the fundamental attributes of an element which are Opacity, Scale,
Move, Highlight and Parallel. Most of them will be used in the code example.
Transition is an option to determine the pattern of a specific change. It was left out
because the relevance is not too important for simple AJAX applications [RaymO07]. The
code itself will make use of the Rails helpers as well as script.aculo.us code itself. At
the end a look at the HTML file will be given.

Again the same application called firstrails is going to be used but a new controller
called scriptaculousonrails is going to be created. The layout from the previous
example is used again. Figure 31 shows the code of the new index.rhtml which

contains the HTML, JavaScript and Rails Helper code.

1| <= link_to_function "Opacity on", "new Effect.Opacity('torget',{to@.330" %=
2| %= link_to_function "Opacity off", "new Effect.Opocity('torget',Jto:ll)" k-
3| <br=

4| M= link_to_function "Pulzate", "new Effect.Pulsatef 'torget ') -

5| <br=

6| <%= link_to_function "Scale up","new Effect.Scolef 'torget',1683" M-

7| <br=

8| <= link_to_function "Scale down", "new Effect.Scalef 'torget',62.50" %

9| <=

10 | <%= link_to_function "Move up", "new Effect.Move('torget',[x:@,y:-1087%%" k-

11 |

12 | <= link_to_function "Move left", "new Effect.Move] 'target ', [<i-188,yi80 0" k=

13 | <%= link_to_function "Move right", "new Effect.Move('torget',lx:il88,y 810" k=

14 [<hr=

15 | <%= link_to_function "Move down", "new Effect.Move('target',l::B,w 18000 %

16 | =div id="target" class="green box"=

17 =div=I am a script.aculo.us on Rails DIV dive

18 | = dive

19 | <%= javascript_tag "new Droggobled 'torget)" k-

20 | div id="dropDI¥" clozs="pink box"=Drop here!="div=

21 | <%= drop_receiving_element . == 'howver', == "stotus", == {
== "receive_drop" } %=

22 | div id="statuz"z= divs

Figure 31: Code of the index.rhtml of scriptaculousonrails

The link to function Helper that is used very often creates a hyperlink which
directly calls JavaScript functions which are for example Effect.Opacity or
Effect.Move. These functions are part of the script.aculo.us Framework. All the

Effect.* functions refer to the div element target and make possible to control the

Ruby on Rails Page 36

div element like to move it or do scale it up or down. All controls can be seen in BILD.
Line 19 defines that the div target is a draggable item while in line 21 the Rails Helper
drop receiving element defines that the div with the id dropDIV is able to receive
a dropped element and sets the action receive drop when an item is dropped on it.
Figure 32 shows the receive drop method that was added in the controller of the
application that is called scriptaculousonrails controller.rb.

closs ScriptaculouzonrailsController = ApplicationControl ler

def index
ehnd

def receive_drop
render == "The element with the id haz been dropped"”
end

[
L= = - = ¥ B o R R

ehnd

Figure 32: Code of the controller scriptaculousonrails _controller.rb

The method defines to return the string that can be seen in line 7. After the
receive drop request is complete, which is an AJAX call by the way, the last div in
line 22 with the id status is updated. But let's have a look on the output in the web-

browser. Again there will be three screenshots provided in the different states.

Ruby on Rails Page 37

rﬁ a0 script.aculo.us on Rails C)i1

@' v @ ﬂ_“ ehltp:;flocalhoslﬁ000;scrimaculousonrails ¥ F":I :W'Wikipedia (Deutsch) Q) £

script.aculo.us on Rails

Opacity on Opacity off
Pulsate

Scale up
Scale down

Move up

Move left Move right
Move down

T AT &
ECRIFT. ACTULO . UZ
OH RAILE DIV!

I'EOF HERE!

Done P

Figure 33: Initial state of scriptaculousonrails

Figure 33 presents the links to the JavaScript functions as well as the green div which
is draggable and the pink one that is droppable. Figure 34 presents the green div,

which actually has the target id, moved and resized.

Ruby on Rails Page 38

r & s b |
aOn N script.aculo.us on Rails =

«- @ ’j_" @ hup:/ /lecalhost:3000/scriptaculeusenrails v | > @ W * Wikipedia (Deutsch) Q) 3

Move left Move right
Move down

I'EOF HERE!

Done S

Figure 34: Second State of scriptaculousonrails with a moved "target" div

Figure 35 presents the final state where the green div was dragged and dropped in the
pink div. After the drop, a AJAX call has been sent to request the receive drop
method. As the response from the server arrived the last div status has been updated
with the text that was just received. Finally, it is interesting to have a look on the HTML
file that is sent by the server, which is presented in Figure 36. Line 6 to 10 show that
the JavaScript Frameworks Prototype and script.aculo.us are loaded. Line 15 to 29
show the Visual Effect functions of script.aculo.us which have been called directly
instead of using Rails Helpers. Line 49 on the other side shows the use of the Rails
Helper, if the output code is compared with the code in the view file in Figure 31 Line
21.

Ruby on Rails Page 39

FQ 06 script.aculo.us on Rails =

@' @ {J} @ htp:/ /localhost:3000/scriptaculousonrails v |]'E W * Wikipedia (Deutsch) Q) 2

script.aculo.us on Rails

Opacity on Opacity off
Pulsate

Scale up
Scale down

Move up
Move left Move right

Move down

LEROF HERE!

The element with the id target has been dropped

Done P

Figure 35: Final State of scriptaculousonrails

Ruby on Rails Page 40

1| <!DOCTYPE html PUBLIC "-//W3C//DTD *HTHL 1.8 Transitional//EN"

2| "httpi/Awww w3 .org/TRAxhEm L1 DTD =htmll-transitional .dtd"=

3| =html xmlns="http:dwww w3 0rg 099 <kt " =ml: lang="en"=

4| <head=

5 =title=script.aculo.us on Rails</titles

B =zcript sro="/joavascripts/prototype. jsT11987696652" type="text/jovascript"=— script=

7| ==cript sre="/jovascriptsseffects.js?1198760662" ftype="text/javascript"—/script=

B| ==cript sro="/jovascripts/drogdrop.js?l198769662" type="text/jovascript"—/script=

9| ==cript sro="/jovascriptsscontrols.je?1198769662" type="text/jovazcript"—/script=

10 | «=cript src="/javascriptsfopplication.js?1193769682" tvpe="text/javascript" == script=

11 =link href="/stylesheetz application.css?1199626405" nedino="screen" rel="Stylesheet" twpe="text/ czs" /=

12 | =/head=

13 | <body=

14 <hl=script.oculo.us on Rails</hl=

15 <0 href="#" onclick="new Effect.0pacity('torget',fto:@.310; return false;"=Opacity on</o=

16 | <m href="#" onclick="new Effect.Opacity(torget',{to:ll); return false;"=Opacity of f</o=

17 | <br=

18 | =0 href="#" onclick="new Effect.Pulsotef torget '); return folse;"=Pulsote</o-

19 | <br=

20 | =0 href="#" onclick="new Effect.Scole('torget',1687; return folse;"=Scole up< o

21 | <br=

22 | -m href="#" onclick="new Effect.Scale('target',62.5); return false;"=Scale down</a=

23 | <hr=

24 | -m href="#" onclick="new Effect.Move('target ',{x:8,v:1-188}7; return false;"=Move up=/o=

25 | <hr=

26 | -m href="#" onclick="new Effect.Move('target ',{x:-108,yv:8}%; return false;"=Move left</o=

27 | =m href="#" onclick="new Effect.Move('torget ',{x:188,y:8}); return false;"sMove right</o>

28 | <hr=

29 | -m href="#" onclick="new Effect.Move('torget ', {x:8,v 186} ; return false;"sMove down</o>

30

31 | =div id="target" class="green box":=

32 =divel am a script.oculo.us on Rails DIV« dive

33 [< divs

34 | «=cript type="text/jovascript"=

35 | AA=! [CDATAL

36 | hew Droggobled 'target ')

EFRraNE

38 | wfscripb=

39 | div id="dropDI¥" clozs="pink box"=Drop here!«o divs

40 | w=oript type="text/jovascript"=

41 | =) [CDATAL

42 | Droppab Lles codd("dropD IV, Jhoverclass: 'hover ', onDrop:function(element M new Ajox.Updater{'stotus', '/
scriptaculousonrai lsfreceive_drop ', {asynchronous:true, evalScripts:true, parometers:'id=' +
encodelR IConponent (e lement 1d) H 0030

43 (/4]]=

44 | =/zcript=

45 | div id="stotuz">= div= < body=—/html=

Figure 36: HTML output of scriptaculousonrails

Apache MyFaces Page 41

5 Apache MyFaces

Apache MyFaces is a project of the Apache Software Foundation and an
implementation of the JavaServer Faces standard and is licensed under the Apache
Software License. The JavaServer Faces standard has been developed since 2001.
The Austrians Manfred Geiler and Thomas Spiegl started developing MyFaces which
became an Apache Software Foundation project in 2004. MyFaces is the first free
implementation of the JavaServer Faces standard and has some advantages
compared to other implementations like many additional components that can be used

by developers very fast and easy [MaScMUu07].

Another major advantage is that the MyFaces Framework can be used like every other
JavaServer Faces implementation, so it is not necessary to spend much time to learn
MyFaces if a developer learned JavaServer Faces already. MyFaces comes up with

some additional functions that can be divided into the following areas [MaScMu07]:
e Functions for simple reuse of site definitions (Tiles and Portlet support)
e Improved reuse of existing JavaScript and CSS Libraries
e A more comprehensive component library, especially for the user interface
e Components that allow the use of AJAX

e A multiplicity of additional settings that can improve the performance of

JavaServer Faces applications dramatically

Apache MyFaces is compatible to most containers but here are the most important

ones that are definitely supported [MaScMUu07]:
e Tomcat4.X, 5.Xand 6.X
e JBoss 3.2.Xand 4.0.X
e BEA Weblogic 8.1

e Websphere 5.1.2

Apache MyFaces Page 42

For the installation the container Tomcat 5.5.25 was used as it is recommended on the
Apache MyFaces site but the installation will be explained in the installation section.
First let's have a look on the JavaServer Faces standard on which Apache MyFaces is

based.
Apache MyFaces is divided into several sub-projects that are listed below [MyFa07a]:

e MyFaces APl and MyFaces Impl Modules: JavaServer Faces

implementation

e MyFaces Tomahawk, Trinidad and Tobago: Component Libraries that

contain user interface widgets

e MyFaces Sandbox: Subproject that tests ground for new developments in

the Tomahawk project
e MyFaces Orchestra: Extension packages for JavaServer Faces
e MyFaces Portlet Bridge: Integration module for the Portlet standard

The focus of this paper will be on the Tomahawk project because it provides a
component called “Dojo Initializer” that allows to integrate the Dojo Toolkit which is a

open-source JavaScript Framework [MyFa07c].

5.1 JavaServer Faces

JavaServer Faces, also known as JSF, is a Java based web application framework
standard that follows as mentioned in an earlier chapter the MVC pattern [MyFa07b]. It
enables developers to create web interfaces that are based on Java web-applications.
It was for the first time officially released by Sun Microsystems in 2004. The goal was to
create the best java-based web-solution as there were some others with known
weaknesses [BaHURG607] . The first official release was held on the Java Specification
Request 127 (JSR 127) and defines JavaServer Faces versions 1.0 and 1.1, latter
released on May 27" 2004 [JavaO7a]. Some intentions were to make things like
internationalization, input validation or site navigation easier. The second major release

with the version JSR 252 was published on May 11" 2006, two years after the last

Apache MyFaces Page 43

release. Currently, JSR 314 that is going to define JavaServer Faces 2.0 is in progress
[Java07b].

To understand the basic concepts of the JavaServer Faces a short introduction into the

specifics and differences to other frameworks is now given.

As mentioned in an earlier chapter the JavaServer Faces specification implements the
Model-View-Controller pattern. The JavaServer Faces, from now on called JSF, differs
from most other web-application frameworks as it defines a User-Interface component
tree for every executed page. As a request is sent there is a defined life-cycle of this
request that takes responsibility for duties like validation or calling the business-logic in
the controller [BaHURG07].

A view consists of hierarchical ordered user interface components like simple input
boxes, buttons, tables or menus. The structure of the tree defines the design of the
presented page and as it is hierarchical, for example a table can hold buttons or
anything else as well. The root of every tree is a instance of the type UlViewRoot.
Nearly every attribute of a component can be associated with Value Bindings that save
the actual value to a specific destination. That offers the possibility to save for example
the input of a text-box into the model or request it from the model. Referred to the Value
Bindings, it is also possible to create Method Bindings that call a method when the
action that defines the binding is activated, like a button or a hyperlink [BaHURG607].

As the basics of the site-definition are explained let's have a look on the earlier
mentioned life-cycle of a JSF request. As a Server receives a JSF request it is
executed in six steps that follow the Request Processing Life-cycle, shortened RPL that
are [BaHUROO07]:

e Restore View

e Apply Request Values
e Process Validations

e Update Model Values

e Invoke Application

Apache MyFaces Page 44

e Render Response

Regularly all steps are executed unless there are errors that can cause a shortening of
the execution like an error in the validation process. The first step is called Restore
View and it rebuilds the saved component tree of a user or creates a new one if no one
exists. The following Apply Request Values fills the component tree with the values that
came with the request in the HTML parameters, Cookies or the HTTP header. Before
data can be written in a model the data has to be validated and converted into the
target format. This happens in step three, the Process Validations, which creates
messages when errors in the validation happen and marks the values as not valid. If a
validation throws an error the next steps will be skipped and the last one called Render
Response will be executed. A simple example for an error in the validation could be a
violation of the minimum length property of an input field. But as the conversion and the
validation succeed the Update Model Values step is executed. It writes the valid data
into to model referring to the Value Bindings that have been set. When the Invoke
Application phase is started all the data has been written and the methods of the
business-logic in the controller are called that are defined by the Method Bindings.
Once completed the application creates a so-called “Outcome” that represents a value
that defines the next view that should be created defined by a navigation path. If an
error occurres in the Invoke Application step the actual view that created the request
will be presented including error messages. A Renderer defines how a component
looks on the client and how an application codes and decodes its parameters. Figure

37 shows the whole life-cycle in a graphical way [BaHUR®07].

Apache MyFaces Page 45

Response complete Respor‘se complele

Process]
Evenls

Foces

Apply Request ; EPre‘é-e.s-s'_ Process o
Values [-Events | Validiations |

Request ,i Eestlc;;- | |
2 View ’—'

Render Response

Respo 158 Com 3|ete Resporse complete
R o
FOCHR oo W | e = AR, AN
Response i. Render ' Process | Invoke | lPlOEBSS; | Updale Mode! &
| Response | Evants] Applicafion Events nfs | I Values
Er il =i
_________________________________ *
Ccnversiou Errors \:c idiction and/or
Render Response Conversion Errors /

Render R ‘(espf}nsc

= normal flow

-------- » allemale llow

Figure 37: Life-cycle of a JavaServer Faces request [BaHiiRo07, page 118]

5.2 AJAX-Components

JavaServer Faces was created to develop classic web-applications like they have been
introduced at the beginning. JSF tries to keep the whole business logic at the server but
AJAX applications try to bring some of the logic to the client, so there are several
problems with the combination of JSF and AJAX but some approaches have been

developed on Apache MyFaces which are now introduced [MaScMu07].

There are two major possibilities to implement AJAX functionalities into MyFaces
applications. One way is to implement ready-to-use components that ship with
MyFaces and the other one is that a developer has to code the JavaScript

functionalities himself.

Apache MyFaces offers some AJAX components in its Sandbox Project that are still in
development, so the API can be changed anytime. The components that are provided

at the moment are [MaScMUu07]:

e AJAX Suggest: Automatically completion of user input through a list of

suggestions (Like Google Suggest uses it)

e Auto Update Data Table: Content of a tagged component are refreshed

Apache MyFaces Page 46

automatically

e AJAX Form Components: Automatic update of the data model when a user

is editing a form

e Partial Page Rendering: A page is divided into a static and and reloading

parts

For the use of AJAX components it is crucial to use a JavaScript Framework. Prototype
and script.aculo.us are two examples, but both of them are not useable with MyFaces,
because Prototype for example creates class names like Event. This name could be
used by other frameworks or by self-written JavaScript code too, so incompatibilities
can occur very fast. The only framework that is able to deal with this problem and
provides the same grade of distribution and functionality is the Toolkit Dojo
[MaScMu07].

5.3 Installation

The installation consists of three major parts that are Java, Apache Tomcat and
Apache MyFaces with the MyFaces Tomahawk Support. For the examples Java in the
version 5 for Mac OS X was used. As Java is installed on most systems there is no
information provided how to install Java in this paper. The second step is to install
Apache Tomcat which can be downloaded from the official Apache site under

http://tomcat.apache.org/. Actually the latest release is 6.0.14 but for the examples

version 5.5.25 was used because it is recommended by MyFaces at the moment. Once
Tomcat is installed the server can be started. The /bin folder of the installation
contains a startup.sh as well as a shutdown. sh that start and stop the server. If
the server is started and the standard configuration is used, the server is availiable

under http://localhost:8080/. If this site is called, the Tomcat Testpage appears that can

be found in Figure 38.

http://localhost:8080/
http://localhost:8080/
http://localhost:8080/
http://tomcat.apache.org/
http://tomcat.apache.org/
http://tomcat.apache.org/

Apache MyFaces Page 47
aPpe Apache Tomcab(5.5.25 L=]
ol @ ,I‘ 'Ktp:,ulxalnx(:wao.f v | e iﬁl W v wikipadia (Deurschi Q)

Apache Tomeat/5.5.25
% ' T"* Apache Software Foundation

/ Ze http://www.apache.org/
R iation If you're seeing this page via a web browser, it means you've setup Tomcat successiully. Congratulations!
Status As you may have guessed by now, this is the default Tomeat home page. It can be faund on the local filesystem at
Tomcat Administration
Tomcat Manager ECATRLINA HOMEZ/webarps/ROCT/index.jap

where "SCATALINA_HOME" is the root of the Temeat installation directery. If you're seeing this page, and you don't think you

= shauld be, then either you're either a userwhao has amived at new installation of Tomeat, or you're an administrator who

Dacumentation hasn't gat hisfher setup quits right. Praviding the latter is the case, plzase refer to the Tameat Dacumentation far mare
Release Notes detfailed setur and adminisiratizn infarmatizn than is found in the INSTALL file.
Tomcat Documenlation NOTE: This page is precompiled. If you change it, this page will not change since it was compiled into a serviet at build time

(SeC SCATAZINA_HOME /‘webapps /RCOT/WEB-INF/web.xnl a5 to how itwas mapped.)

NOTE: For security reasons, using the administration webapp is restricted to usere with role "admin". The manager
Tomcat Cnline webapp is restricted to users with role "manager”. Lsars are defined in sca?arina HoME/conf /tomcat-users.xml.
::-:m—eF'agg Included with this release are a hosi of sample Servlets and JSPs (with assodatad source code), extensive documentation
EAQ {including the Servlet 2.4 and JSP 2.0 AP| JavaDoc), and an introductzry guide fo developing web applications.
Bug Dalabase
qu&_ 4 Tamzat mailing lists are available at the Tomeat pmject web sits:
Users Mailing List

Cevelopers Mailing List
RC

« uscrs@tomcat.apache.org for gencral questions related to configuring and using Tomeat
« dev@tomcatapache.org for developers working on Tomeat

Thanks for using Torrcat!

Examples Powared by
ISP Examles ~ .

WA RUALE e byl
Doae

Figure 38: Test-page of the Tomcat servlet container

Finally the MyFaces packages for MyFaces and the Tomahawk packages can be

downloaded from http://myfaces.apache.org/download.html and copied to Tomcats

web-application folder.

5.4 The Toolkit Dojo

The Open-Source Toolkit Dojo is very adequate for the use with MyFaces because it is
divided into packages to avoid collisions with the same names. Furthermore the library
is separated into functional parts with the advantage that only the used modules have
to be imported by the developer and not the whole library. This results in the fact that
the web-browser does not have to load the whole packages, but just the necessary

ones. Dojos functionalities can be separated into the following categories [MaScMUO07]:
e dojo.event: Event-handling by registering the element and the type of event
e dojo.validate: Module to execute client-side validation

e dojo.dnd: Drag-and-Drop functionalities

http://myfaces.apache.org/download.html
http://myfaces.apache.org/download.html
http://myfaces.apache.org/download.html

Apache MyFaces Page 48

e dojo.animation: Changing the attributes of elements dynamically

e dojo.io: Access to platform-independent resources e.g. local files or AJAX

requests
e dojo.widget: Client-Side control elements

Besides the Dojo Core project two more projects exist. The first one is called dijjit and is
a set of internationalized widgets and design themes [Dojo0O7c]. The second one is
called dojox and provides some features like a drawing API, Offline functions or a
charting functio [Dojo07d].

Dojo supports all major web-browsers, in detail there is support for Microsoft's Internet
Explorer 6+, Mozilla Firefox 1.5+, Konqueror 3.5+ and the latest version of Apples
Safari, 3.0 [Dojo07al].

5.4.1 Code example of Dojo

To provide a small code example for the Toolkit Dojo too, a simple “Hello World!”
application is created as well. Figure 39 shows the code for the application that was
created with Dojo. Line 5 defines a stylesheet that is loaded from the Toolkit. The next
important line is number 7 which loads the dojo. s that contains all the further
information of the Toolkit. Line 14 loads a button from the Dojo Library while line 16

through 18 assign the event when the button is clicked [Dojo07b].

Apache MyFaces Page 49

=html=
ead
<title=Hello World! =/ title=
<=tvle tyvpe="text czs"=
@import "jsSdijitAthenes/tundra/tundra.ces";
ety les
w=cript type="text/jovascript" sroc="js dojo/dojo.js"
djConfig="parselnLoad: true"-—Fzcript=
—=cript type="text/jovoscript"=
dojo.require{"dijit.form.Button";
<fzcriphb=
=head=
<body clozs="tundra"-
<button dojoType="dijit.form.Button" id="hel loButton":=
Click me!
<zcript type="dojosmethod" event="onClick"=
alert.{ 'Hello World!!'y;
18 wfscripts
19 < buttons=
20 < body=
21 | = html=

Figure 39: Code for the "Hello World!" application with Dojo

e I - I R L

I B R R I R S
= i oLh bW R DS o

Figure 40 shows the output in the web-browser in the state when the button is already
clicked. The special thing is most likely the design of the button which was imported in

the code and comes from the Toolkit.

OOy Oy Hello World! e

~ ¥ i ST T+ Wikinedia (Enn
e]] i = The page at http://cfriedrich.at says: | W v Wikipedia (Englis @

| Hello World!!

Done i

Figure 40: Screenshot of the Hello World application of the Dojo Toolkit

5.5 Code Examples in Apache MyFaces

Apache MyFaces ships with a lot of examples about MyFaces itself as well as the
Tomahawk package. Furthermore there are sample applications of the Sandbox project
available online. As this paper wants to see how JavaScript elements are implemented
in Apache MyFaces, some of these examples are going to be introduced and a look at
the source code will be given. To implement the examples oneself would lead to a very

high amount of time setting the right parameters in the configuration files like the

Apache MyFaces Page 50

web.xml and the faces-config.xml and to write the java classes that are necessary to let

these applications work.

Dojo Integration

The first code example is a MyFaces Hello World example that makes use of both the
packages JavaServer Faces Core and MyFaces Tomahawk and implements a Widget
of the Toolkit Dojo to show how simple it is to implement Dojo widgets. Figure 41 shows

the code part of the JavaServer Faces file.

1| <% page zezsion="falze" contentType="te:t himl;jcharset=utf-5"%-
2| = taglib uri="httprddjava.sun.cons jsfheml” prefis="h"%=

3| =@ taglib uri="httpiddjava.sun.condjef core” prefis="f"%

4 | 4@ taglib uri="httprsimyfaces .apache..orgs tomahawk"” prefis="+"%=
5

B

7

<html=
<head=
8 =meta HTTR-EQUIV="Content-Type" COMTEMT="te:t html;charset=UTF-8" /=
a =title=Hello World in MyFaces!=/titles
10 | =~ head=
11 | =hody=
12 <f twiews
13 <fpanelGroups
14 <=t:dojoInitializer require="dojo.widget.Editor" =
15 <hiform id="myForm"a
16 fiinputTer: tareq id="editareqz" styleClass="dojo-Editor" walus="Hello Yorld!"=
17 =/hiinputTes tareas
18 <commondlink action="submitted" id="=ubmitted" walue="[Submit]" =
19 =/hifarms
20 =/hipanelGroups
21 <A iviews
22 | =body=
23 | ='html=

Figure 41: Code of the Hello World example in MyFaces

The file itself is written into a JavaServer Pages file as it is recommended by the JSF
specification [MaScMU07]. Line 2 through 4 show the definition of the packages that are
used and a prefix is assigned that is used later to define the right package. The next
important code part is in line 12 where a <f:view> tag that is also specified by the
JSF specification and has to enclose all the JSF tags. The tag <h:panelGroup>
defines a HTML tag like the h: prefix shows and creates a span element. As
mentioned in the MyFaces introduction, line 14 defines the <t:dojoInitializer/>
tag which is defines by the Tomahawk package and is able to import a Dojo
component. In this example a Text-Editor is loaded while line 15 through 19 define a
inputTextarea which is a simple input box to enter text which can be designed with the

Text-Editor component that was inserted before.

Apache MyFaces Page 51

Finally, let's have a look at the output of the file in a web-browser that is shown in
Figure 42. At the top of the page the inserted text-editor bar is shown which controls the
input field that is right below it and has the default value “Hello World!”.

i aYala Hello World in MyFaces! =]

- Q‘J /I‘ hlip'_,',fIocaIhosl:EOBO,fmwaces—example—simple—1.1.6;dojo;lextarealesljs' | r'ﬂ W * Wikipedia (English) Q,
[F15ave XCancelilNormal :jIAriaI ;jiltSpt] _'j| B I U"&| = o | == = | i 4= | & [—
[ello World!

[Submit

Done

Figure 42: Screenshot of the Hello World application in MyFaces

The submit button could cause an AJAX call that saves the current input of the input

field but this functionality is not implemented in this example.

Sandbox-AJAX example

As mentioned earlier, the MyFaces project Sandbox contains several components to
implement AJAX functionalities. Several Sandbox examples are available on

http://www.irian.at/myfaces-sandbox/tableSuggestAjax.jsf. This example contains just

the view component and the controller is left out. In this case it is useful to provide the
screenshot of the application first and have a look at the JavaServer Faces file later.
Figure 43 shows the screenshot of the application. After two characters are typed, a
request is sent to request suggestions for the input. The Sandbox component
TableSuggestAjax was used to request the informations from the server. Once a
item is selected the two text-boxes at the bottom of the page are filled out with the

information that was retrieved by the server.

http://www.irian.at/myfaces-sandbox/tableSuggestAjax.jsf
http://www.irian.at/myfaces-sandbox/tableSuggestAjax.jsf
http://www.irian.at/myfaces-sandbox/tableSuggestAjax.jsf

Apache MyFaces Page 52

[N & N MyFaces - the free JSF Implementation =
el QJ /I‘ @ http:/ fwww.irian.at/myfaces-sandbox/tableSuggestA ¥ | | iﬂ W ~ Wikipedia (English) Q,
™
City Names starting with 'Sa’ -
Suggest starts with 2. char San Ag:;nlo Zi Stat;
p

San Antonio TEBEZ21 Texas

San Bernardino 78882 California [

San Clemente 78883 California |

San Diego 78884 California |)
Submit Query | San Dimas TEBEBS California
Zip Code San Fernando 7EBEBE California
San Francisco 78E8Y California

I San Gabriel TEBEE California | a

State San Jose 78889 California | ¥

I New York j

Dane

Figure 43: Screenshot of the TableSuggestAJAX example

B

Figure 44 shows an abstract of the code, the code at the end defines the text and
combo boxes at the bottom are left out to keep the code compact. Line 2 through 4
again define the familiar Core, HTML and Tomahawk components. New is Line 5 which
defines the Sandbox package with an own prefix. Line 9 again defines the <f:view>
that was used in the last example as well. The <f:verbatim> tag in line 11 enables
the possibility to include raw HTML code into the JSF file as it is done in line 14 as well.
Lines 15 through 18 are the crucial code-part of this example as the
<s:tableSuggestAjax> tag defines the use of the Sandbox component with the
same name. The parameter startRequest with the value of 2 defines that the AJAX
request starts first when two characters are typed. value defines the inputted value in
the text box and calls a Java bean in its parameter. That is a Java class on the server
that processes the request. That is called inputSuggestAjax and the method
suggestValue that hands the inputted value to the server. BetweenKeyUp defines a
period in milliseconds in which no AJAX request is sent if another character has been
entered. Finally suggestedItemsMethod requests the suggestions from the server.
Line 18 through 35 create the table that is shown below the input box with its three
columns that are the City name, the ZIP code and the State and request the data for
the suggestions with the notation address.city, address.zip and

address.stateName. The for parameters in line 22, 28 and 34 set the values into

Apache MyFaces

Page 53

other fields. For example for="suggest" enters the suggestion into the input text

field so that the first suggestion is suggested completely in the input box. The

zipField and stateField values that are used in line 26 and 34 put the values into

the text-boxes that are left out in this code example but can be seen in Figure 43.

LE=T r T B = I L I N L

L I T L I e R L I L o I e O I e e T I e e T T e
B T I I el = T T - - T T« s T O N Iy N e e T T R R i T ™ B - WU W i)

35
36

=4 page session="falze" contentType="te:t himl jcharset=utf-2"%=
=42 taglib uri="http:/djava.sun.coms j=fhtml" prefis="h"%=
=42 taglib uri="http:/djava.sun.comsjef/core” prefis="f"%%=
4@ taglib uri="http:/fmyfoces .apache .orgs tomahawk" prefis="+"%=
=S taglib uri="http:dsmyfaces .gpache..orgssandbo:” prefis="s"%%

=html=

Hdinclude File="inc/head.inc" %=

=hodys

=fiviews
<fiifarm id="ajaszform"=
=f iwerbatims—br—dr S a=brSabrS = iverbotim=
<h:panelGrid =

<h:panelGrid columnz="4"=
=fverbatims= City Names starting with "53° <brds Suggest starts with 2. char <ffrverbatins
=z :tableluggestajas var="oddresz" id="szuggest" startRequest="2"
value="& [inputiuggestdjas . suggestialuel” betweenkeylp="388"
zugges ted TtemsMethod="& [inputiuggestajas .getCitylizt]l" charset="utf-E8">
=t iColumns
=fF:facet name="header"s
=EaoutputTest value="City" =
= iface =
=zioutputTest for="suggest" label="# [address.cityl" =
=t rcolumns
=t rColumr:
=fifacet name="header"=
=ZioutputTest value="Zip" =
= iface =
<zioutputTest for="zipField" label="#[addrezz.zipl" =
< trcolumns
=t iCalumns
=f:facet name="header"s
=ZioutputTest value="5tate" /=
= Frface s
=zioutputTest forvalue="stateField" label="# [oddress.statelamel” wvalue="#

[addreszs . ztatelCode}" /=

=/t icolumns
=/zitableluggestAjans

Figure 44: Code of the TableSuggestAjax example

Comparison Page 54

6 Comparison

As both web-application frameworks have been introduced and the basic concepts
have been explained it is time to point out advantages and disadvantages of the two

frameworks.

6.1 Advantages of Apache MyFaces / Ruby on Rails

Let's start with some advantages of both frameworks. One advantage that both
frameworks share is that they are open-source and are so free to use, even for

commercial use.

Apache MyFaces

Apache MyFaces comes up with a very powerful JavaScript Toolkit namely Dojo. Dojo
brings the major advantage that it does not have to transfer the whole Library to the
web-browser that requests functions of it. Instead just the packages that are explicitly

requested are going to be transferred.

Furthermore the component library of MyFaces brings some very convenient AJAX
components that are still in the Sandbox project. That means that the API can be
changed anytime and is so still in development. To mention some examples those
components bring support for functions like a auto-complete function for user input

fields or automatic updating data-tables.

Ruby on Rails

The major advantage of Ruby on Rails is that the JavaScript Frameworks Prototype
and script.aculo.us that have been introduced earlier are developed in concert with

Ruby on Rails. This brings the advantages that both are adjusted to each other.

Another advantage of Ruby on Rails are the Rails Helpers that are very easy to use
and avoid the writing of JavaScript Code. They also avoid the writing of redundant code
parts in several parts of a web-page. Furthermore new versions of the JavaScript
Libraries do not have to be considered as new versions of Ruby on Rails will provide

revised Helpers.

Comparison Page 55

Last but not least Ruby on Rails brings the advantage that it is actually designed for
dynamic and interactive web-applications and so no new concepts are needed to

implement AJAX components.

6.2 Disadvantages of Apache MyFaces / Ruby on Rails

After having a look on the advantages in Ruby on Rails and Apache MyFaces its

disadvantages are discussed now.

Apache MyFaces

Apache MyFaces has a drawback that results from the fact that the JavaServer Faces
specification was developed to create classic web-applications. Server side
components are provided to make the development of complex applications easier.
The concept is to keep the business logic on the server side. But the AJAX idea is to
bring some business logic to the client, so solutions are needed to bring both concepts
to work. Furthermore the Dojo Toolkit is the only JavaScript Library that can be used
with Apache MyFaces, this is not necessarily a drawback, because it is one of the most

famous frameworks, but still it is a constraint to be bound to a special Library.

Another drawback is that the mentioned component library of MyFaces is still in the
Sandbox project so the use of these components in critical applications could become

kind of risky.

Ruby on Rails

In the opinion of the author of this paper the major drawback of Ruby on Rails is that
Rails does not have such a powerful programming language standing behind it as
Apache MyFaces has, namely Java. With powerful not the language itself is meant, but
the power of the Java- and Apache Community. Companies like Oracle, Borland and
IBM created the JavaServer Faces specification so really big companies out of the IT

sector will be supporting and providing input into the JavaServer Faces project.

From the viewpoint of AJAX it is difficult to find severe drawbacks. After doing a lot of
investigation regarding the topic AJAX and testing some basic examples Ruby on Rails
can be seen as a best practice example how to implement AJAX components in a web-

application. From the viewpoint of enterprise applications the author personally is not

Comparison Page 56

able to judge the capabilities of Ruby on Rails.

7 Conclusion

There are two major conclusions that should be mentioned. The first one deals with

AJAX in general and the second one with the two web-application frameworks.

The first conclusion of this paper is that AJAX brings a lot of advantages into the web-
development but also has some issues that have to be considered. The introduction
chapter showed that web-developers that want to implement AJAX components have to
be aware of usability problems as well as new security risks of their applications. Even
though AJAX is a very fancy term these days, especially for critical applications the use

of AJAX components should be thought of twice.

The second conclusion of this paper is that both Apache MyFaces and Ruby on Rails
provide the capabilities to implement AJAX components into web-applications. While
Ruby on Rails was basically created to implement highly interactive web-applications
the JavaServer Faces specification bases on the classic web-model. Despite this fact
the JavaServer Faces respectively Apache MyFaces provide several ways to
implement AJAX components. But in the end both frameworks have their strengths and
weaknesses that have to be traded off to find the appropriate web-application

framework for a specific requirement.

References

Page 57

8 References

[Augu07]

[BaHiR&07]

[Bosw07]

[Dojo074a]

[Dojo07b]

[Dojo07c]

[Dojo07d]

[Garr05]

[Gibs06]

[Goog07]

[Hayr06]

[Hein07]

[Inma06]

August, David; Rails Weblog;

http://weblog.rubyonrails.org/2006/8/7/ruby-on-rails-will-ship-with-os-x-10-

Ruby on

5-leopard; retrieved on 2007-12-27

Bartetzko, Detlef; Hulsebus, Arvid; Réwekamp, Lars; Im Angesicht des
Web — Grundlagen der Java Server Faces; iX Special; Volume 2007;
Issue 1; page 111-116
Bosworth, Alex; Ajax Mistakes;
http://alexbosworth.backpackit.com/pub/67688; retrieved on 2007-11-18

The Dojo Toolkit; http:/dojotoolkit.org/support/fag/what-browsers-does-

dojo-support; retrieved on 2007-12-27

The Dojo Toolkit; http://dojotoolkit.org/book/dojo-book-0-9/hello-world-
tutorial; retrieved on 2007-12-27

The Dojo Toolkit; http://dojotoolkit.org/projects/dijit; retrieved on 2007-12-
28

The Dojo Toolkit; http://dojotoolkit.org/projects/dojox; retrieved on 2007-
12-28

Garrett, Jesse James; Ajax: A New Approach to Web Applications;

http://www.adaptivepath.com/ideas/essays/archives/000385.php;

retrieved on 2007-11-18

Gibson, Becky; AJAX Accessibility Overview; April 2006; IBM; http://www-
03.ibm.com/able/resources/ajaxaccessibility.html#issue; retrieved on
2007-11-18

Google; Google Suggest FAQ; http://labs.google.com/suggestfaq.htmil;
retrieved on 2007-12-18

Hayre,

Jaswinder; Ajax Security Basics;

http://www.securityfocus.com/infocus/1868; 2006-06-19; retrieved on
2007-12-08

David Heinemeier Hansson; http://www.loudthinking.com/about.html;
retrieved on 2007-12-27

Inman,

Shaun; Responsible Asynchronous Scripting;

http://www.loudthinking.com/about.html
http://www.loudthinking.com/about.html
http://www.loudthinking.com/about.html
http://www.securityfocus.com/infocus/1868
http://www.securityfocus.com/infocus/1868
http://www.securityfocus.com/infocus/1868
http://labs.google.com/suggestfaq.html
http://labs.google.com/suggestfaq.html
http://labs.google.com/suggestfaq.html
http://www-03.ibm.com/able/resources/ajaxaccessibility.html#issue
http://www-03.ibm.com/able/resources/ajaxaccessibility.html#issue
http://www-03.ibm.com/able/resources/ajaxaccessibility.html#issue
http://www-03.ibm.com/able/resources/ajaxaccessibility.html#issue
http://www-03.ibm.com/able/resources/ajaxaccessibility.html#issue
http://www-03.ibm.com/able/resources/ajaxaccessibility.html#issue
http://www.adaptivepath.com/ideas/essays/archives/000385.php
http://www.adaptivepath.com/ideas/essays/archives/000385.php
http://www.adaptivepath.com/ideas/essays/archives/000385.php
http://dojotoolkit.org/projects/dojox
http://dojotoolkit.org/projects/dojox
http://dojotoolkit.org/projects/dojox
http://dojotoolkit.org/projects/dijit
http://dojotoolkit.org/projects/dijit
http://dojotoolkit.org/projects/dijit
http://dojotoolkit.org/book/dojo-book-0-9/hello-world-tutorial
http://dojotoolkit.org/book/dojo-book-0-9/hello-world-tutorial
http://dojotoolkit.org/book/dojo-book-0-9/hello-world-tutorial
http://dojotoolkit.org/book/dojo-book-0-9/hello-world-tutorial
http://dojotoolkit.org/book/dojo-book-0-9/hello-world-tutorial
http://dojotoolkit.org/book/dojo-book-0-9/hello-world-tutorial
http://dojotoolkit.org/support/faq/what-browsers-does-dojo-support
http://dojotoolkit.org/support/faq/what-browsers-does-dojo-support
http://dojotoolkit.org/support/faq/what-browsers-does-dojo-support
http://dojotoolkit.org/support/faq/what-browsers-does-dojo-support
http://dojotoolkit.org/support/faq/what-browsers-does-dojo-support
http://dojotoolkit.org/support/faq/what-browsers-does-dojo-support
http://alexbosworth.backpackit.com/pub/67688
http://alexbosworth.backpackit.com/pub/67688
http://alexbosworth.backpackit.com/pub/67688
http://weblog.rubyonrails.org/2006/8/7/ruby-on-rails-will-ship-with-os-x-10-5-leopard
http://weblog.rubyonrails.org/2006/8/7/ruby-on-rails-will-ship-with-os-x-10-5-leopard
http://weblog.rubyonrails.org/2006/8/7/ruby-on-rails-will-ship-with-os-x-10-5-leopard
http://weblog.rubyonrails.org/2006/8/7/ruby-on-rails-will-ship-with-os-x-10-5-leopard
http://weblog.rubyonrails.org/2006/8/7/ruby-on-rails-will-ship-with-os-x-10-5-leopard
http://weblog.rubyonrails.org/2006/8/7/ruby-on-rails-will-ship-with-os-x-10-5-leopard

References

[Inst07]

[Java07a]

[Java07b]

[Loco07]
[Lubk07]

[Mark07]

Page 58

http://www.thinkvitamin.com/features/ajax/responsible-asynchronous-

scripting; retrieved on 2007-12-01

InstantRails Wiki; http://instantrails.rubyforge.org/wiki/wiki.pl; retrieved on
2007-12-27

The Java Community Process Program, JSR 127,
http://www.jcp.org/en/jsr/detail ?id=127; retrieved on 2007-12-27

The Java Community Process Program, JSR 314;
http://www.jcp.org/en/jsr/detail ?id=314; retrieved on 2007-12-27

Locomotive; http://locomotive.raaum.org/; retrieved on 2007-12-27

Lubkowitz, Mark; Webseiten programmieren und gestalten; 3™ Edition;
Galileo Press Bonn; 2007

Network Solutions LLC; Market share for browsers, operating systems
and search engines; http://marketshare.hitslink.com/report.aspx?qprid=3;
retrieved 2007-12-18

[MaScMu07] Marinschek, Martin; Schnabl, Andrea; Millan, Gerald; JSEF@Work; 1°

[McEvO05]

[Micr07]

[Mozi07]

[MyFa07a]

[MyFa07b]

[MyFa07c]

[PaFe06]

[RaymO07]
[Ritc07]

Edition; dpunkt.verlag; 2007
McEvoy, Chris; Why Ajax Sucks (Most of the Time);

http://www.usabilityviews.com/ajaxsucks.html; retrieved on 2007-11-18

Microsoft Developer Network; Model-View-Controller;
http://msdn2.microsoft.com/en-us/library/ms978748.aspx; retrieved on
2007-12-08

Mozilla Foundation; About Mozilla; http://www.mozilla.com/en-US/about/,
retrieved on 2007-12-18

Apache MyFaces; http://myfaces.apache.org/index.html; retrieved on
2007-12-27

Apache MyFaces; http://wiki.apache.org/myfaces/; retrieved on 2007-12-
27

Apache MyFaces Tomahawk;

http://myfaces.apache.org/tomahawk/dojolnitializer.html; retrieved on
2007-12-27

Di Paola, Stefano; Fedon, Giorgio; Subverting Ajax, 23 CCC
Conference; December 2006

Raymond, Scott; Ajax on Rails; O'Reilly; 2007

Ritchie, Paul; The security risks of AJAX/web 2.0 applications; Network

http://myfaces.apache.org/tomahawk/dojoInitializer.html
http://myfaces.apache.org/tomahawk/dojoInitializer.html
http://myfaces.apache.org/tomahawk/dojoInitializer.html
http://wiki.apache.org/myfaces/
http://wiki.apache.org/myfaces/
http://wiki.apache.org/myfaces/
http://myfaces.apache.org/index.html
http://myfaces.apache.org/index.html
http://myfaces.apache.org/index.html
http://www.mozilla.com/en-US/about/
http://www.mozilla.com/en-US/about/
http://www.mozilla.com/en-US/about/
http://msdn2.microsoft.com/en-us/library/ms978748.aspx
http://msdn2.microsoft.com/en-us/library/ms978748.aspx
http://msdn2.microsoft.com/en-us/library/ms978748.aspx
http://www.usabilityviews.com/ajaxsucks.html
http://www.usabilityviews.com/ajaxsucks.html
http://www.usabilityviews.com/ajaxsucks.html
mailto:JSF@Work
mailto:JSF@Work
mailto:JSF@Work
http://marketshare.hitslink.com/report.aspx?qprid=3
http://marketshare.hitslink.com/report.aspx?qprid=3
http://marketshare.hitslink.com/report.aspx?qprid=3
http://locomotive.raaum.org/
http://locomotive.raaum.org/
http://locomotive.raaum.org/
http://www.jcp.org/en/jsr/detail?id=314
http://www.jcp.org/en/jsr/detail?id=314
http://www.jcp.org/en/jsr/detail?id=314
http://www.jcp.org/en/jsr/detail?id=127
http://www.jcp.org/en/jsr/detail?id=127
http://www.jcp.org/en/jsr/detail?id=127
http://instantrails.rubyforge.org/wiki/wiki.pl
http://instantrails.rubyforge.org/wiki/wiki.pl
http://instantrails.rubyforge.org/wiki/wiki.pl
http://www.thinkvitamin.com/features/ajax/responsible-asynchronous-scripting
http://www.thinkvitamin.com/features/ajax/responsible-asynchronous-scripting
http://www.thinkvitamin.com/features/ajax/responsible-asynchronous-scripting
http://www.thinkvitamin.com/features/ajax/responsible-asynchronous-scripting
http://www.thinkvitamin.com/features/ajax/responsible-asynchronous-scripting
http://www.thinkvitamin.com/features/ajax/responsible-asynchronous-scripting

References

[Ruby07]
[Schw06]

[SunMO02]

[Weba07]

[Wire07]

[Zuck07]

Page 59

Security, Volume 2007, Issue 3, March 2007, Pages 4-8
Ruby on Rails; http://www.rubyonrails.org/; retrived on 2007-12-27

Schwarz, Michael; AJAX and the Search Engine Problems;
http://weblogs.asp.net/mschwarz/archive/2005/08/06/421761.aspx;

retrieved on 2007-11-18

Sun Microsystems; Designing Enterprise Applications with the J2EE
Platform, Second Edition;
http://java.sun.com/blueprints/guidelines/designing_enterprise_application
s_2el/app-arch/app-arch2.html#1105855, retrieved on 2007-12-08
Unknown Author, Accessibility of AJAX Applications;

http://webaim.org/techniques/ajax/#whynotajax; retrieved on 2007-11-18

Wireshark; Wireshark:About; http://www.wireshark.org/about.html;
retrieved on 2007-12-18

Zucker, Daniel; What Does Ajax Mean for You?; interactions, September
and October 2007; page 10-12

http://www.wireshark.org/about.html
http://www.wireshark.org/about.html
http://www.wireshark.org/about.html
http://webaim.org/techniques/ajax/#whynotajax
http://webaim.org/techniques/ajax/#whynotajax
http://webaim.org/techniques/ajax/#whynotajax
http://java.sun.com/blueprints/guidelines/designing_enterprise_applications_2e/app-arch/app-arch2.html#1105855
http://java.sun.com/blueprints/guidelines/designing_enterprise_applications_2e/app-arch/app-arch2.html#1105855
http://java.sun.com/blueprints/guidelines/designing_enterprise_applications_2e/app-arch/app-arch2.html#1105855
http://java.sun.com/blueprints/guidelines/designing_enterprise_applications_2e/app-arch/app-arch2.html#1105855
http://java.sun.com/blueprints/guidelines/designing_enterprise_applications_2e/app-arch/app-arch2.html#1105855
http://java.sun.com/blueprints/guidelines/designing_enterprise_applications_2e/app-arch/app-arch2.html#1105855
http://weblogs.asp.net/mschwarz/archive/2005/08/06/421761.aspx
http://weblogs.asp.net/mschwarz/archive/2005/08/06/421761.aspx
http://weblogs.asp.net/mschwarz/archive/2005/08/06/421761.aspx
http://www.rubyonrails.org/
http://www.rubyonrails.org/
http://www.rubyonrails.org/

	 1 Abstract
	 2 Introduction to AJAX
	 2.1 The classic web model
	 2.2 The Ajax web model
	 2.3 AJAX analyzed
	 2.4 The XMLHttpRequest Object
	 2.5 AJAX on the Network Layer
	 2.6 Advantages of AJAX-Applications
	 2.7 Disadvantages of AJAX-Applications
	 2.7.1 Usability problems
	 2.7.2 Security Risks in AJAX-Applications

	 3 The Model-View-Controller pattern
	 4 Ruby on Rails
	 4.1 AJAX-Components
	 4.2 Installation
	 4.2.1 First Ruby on Rails Project

	 4.3 Code Examples in Ruby on Rails
	 4.4 Prototype
	 4.5 script.aculo.us

	 5 Apache MyFaces
	 5.1 JavaServer Faces
	 5.2 AJAX-Components
	 5.3 Installation
	 5.4 The Toolkit Dojo
	 5.4.1 Code example of Dojo

	 5.5 Code Examples in Apache MyFaces

	 6 Comparison
	 6.1 Advantages of Apache MyFaces / Ruby on Rails
	 6.2 Disadvantages of Apache MyFaces / Ruby on Rails

	 7 Conclusion
	 8 References

