
WIRTSCHAFTSUNIVERSITÄT WIEN
SEMINARARBEIT

Titel der Seminararbeit:

Vergleich der Einbindungsmöglichkeiten von AJAX-Komponenten mittels
Apache MyFaces und Ruby on Rails

Englischer Titel der Seminararbeit:

Comparison of the possibilities to implement AJAX-Components with
Apache MyFaces and Ruby on Rails

Verfasser: Clemens Friedrich
Matrikel-Nr.: 0450510
Studienrichtung: J033 526 Bakkalaureat Wirtschaftsinformatik
Kurs: 1224 IT-Spez: Vertiefungskurs VI - Electronic

Commerce
Textsprache: Englisch
Betreuerin/Betreuer: ao. Univ. Prof. Dr. Rony G. Flatscher

Page 2

Table of Contents
 1 Abstract...5

 2 Introduction to AJAX...6

 2.1 The classic web model..6

 2.2 The Ajax web model..8

 2.3 AJAX analyzed..9

 2.4 The XMLHttpRequest Object...10

 2.5 AJAX on the Network Layer..12

 2.6 Advantages of AJAX-Applications...16

 2.7 Disadvantages of AJAX-Applications..16

 2.7.1 Usability problems..17

 2.7.2 Security Risks in AJAX-Applications..19

 3 The Model-View-Controller pattern...22

 4 Ruby on Rails..24

 4.1 AJAX-Components..24

 4.2 Installation..25

 4.2.1 First Ruby on Rails Project...26

 4.3 Code Examples in Ruby on Rails..28

 4.4 Prototype...30

 4.5 script.aculo.us..34

 5 Apache MyFaces..41

 5.1 JavaServer Faces..42

 5.2 AJAX-Components..45

 5.3 Installation..46

 5.4 The Toolkit Dojo...47

 5.4.1 Code example of Dojo..48

 5.5 Code Examples in Apache MyFaces..49

 6 Comparison...54

 6.1 Advantages of Apache MyFaces / Ruby on Rails...54

 6.2 Disadvantages of Apache MyFaces / Ruby on Rails..55

 7 Conclusion..56

 8 References..57

Page 3

Table of Figures
Figure 1: The classic web application model [Garr05]... 7

Figure 2: The classic web application model including the time axis [Garr05].................8

Figure 3: The AJAX web application Model [Garr05]...8

Figure 4: The AJAX web application model including the time axis [Garr05]...................9

Figure 5: Code of a XMLHttpRequest Object cycle..11

Figure 6: Start Page of Google Suggest...13

Figure 7: Google Suggest: Searching Status 1..13

Figure 8: Google Suggest: Searching Status 2..14

Figure 9: Wireshark: Result of the network analysis..14

Figure 10: Wireshark: HTTP GET request to Google...15

Figure 11: Wireshark: Suggestions received from the Google Server...........................15

Figure 12: URL-problem example on map24.com..19

Figure 13: Critical JavaScript Login Code..20

Figure 14: The Model-View-Controller pattern [SunM02]...22

Figure 15: Screenshot of Locomotive...26

Figure 16: Screenshot of Locomotive when creating a new application........................ 26

Figure 17: Screenshot of Locomotive containing the new application........................... 27

Figure 18: Terminal-Output of the Ruby on Rails structure of files and folders............. 27

Figure 19: Terminal commands to create helloworld example.......................................28

Figure 20: Code in the helloworld.rhtml file..28

Figure 21: Screenshot of the "Hello World" page...29

Figure 22: Code of the helloworld.rhtml file..29

Figure 23: Screenshot of the AJAX response in the web-browser.................................30

Figure 24: Code of the layout file appliaction.rhtml..31

Figure 25: Code of the controller file prototypeonrails_controller.rb.............................. 31

Figure 26: Code of the index.rhtml file of prototypeonrails...32

Figure 27: Initial State of prototypeonrails..32

Figure 28: Loading State of prototypeonrails..33

Figure 29: Final State of prototypeonrails...33

Figure 30: HTML file generated by the server for prototypeonrails34

Figure 31: Code of the index.rhtml of scriptaculousonrails.. 35

Page 4

Figure 32: Code of the controller scriptaculousonrails_controller.rb..............................36

Figure 33: Initial state of scriptaculousonrails...37

Figure 34: Second State of scriptaculousonrails with a moved "target" div................... 38

Figure 35: Final State of scriptaculousonrails...39

Figure 36: HTML output of scriptaculousonrails...40

Figure 37: Life-cycle of a JavaServer Faces request [BaHüRö07, page 118]............... 45

Figure 38: Test-page of the Tomcat servlet container..47

Figure 39: Code for the "Hello World!" application with Dojo...49

Figure 40: Screenshot of the Hello World application of the Dojo Toolkit......................49

Figure 41: Code of the Hello World example in MyFaces..50

Figure 42: Screenshot of the Hello World application in MyFaces.................................51

Figure 43: Screenshot of the TableSuggestAJAX example...52

Figure 44: Code of the TableSuggestAjax example...53

Index of Tables
Table 1: States of a XMLHttpRequest..11

Abstract Page 5

 1 Abstract

This term paper deals with the question which possibilities the two web-application

frameworks Apache MyFaces and Ruby on Rails provide to implement AJAX

components.

The first part of the paper gives an introduction to the term AJAX and explains what is

defined by it. As AJAX offers a lot of advantages for interactive web-applications there

are also a lot of drawbacks that have to be considered which are also covered in this

chapter.

The next two chapters discuss the two mentioned web-application frameworks. Both

are introduced and the basics are explained. Later on the focus is set on the

possibilities of implementing AJAX components with the help of these frameworks. In

both frameworks the JavaScript Libraries that stand behind the frameworks are

explained and code examples will be given.

After analyzing the frameworks a comparison identifies both the advantages and

disadvantages of the two frameworks.

Keywords:

AJAX, Ruby on Rails; Apache MyFaces; JavaServer Faces; XMLHttpRequest;

Prototype; script.aculo.us; Dojo Toolkit

Introduction to AJAX Page 6

 2 Introduction to AJAX

“Ajax is an acronym for Asynchronous Javascript And XML. Ajax is not a new

programming language, it's an umbrella term which describes a group of features

and enhancements to improve appearance and functionality of traditional web sites.”

[PaFe06]

As mentioned above Ajax is not a new programming language, but a so-called

“umbrella term”, it is necessary to take a closer look what is under the umbrella. The

core of Ajax embraces the following techniques [Garr05]:

● XHTML and CSS for presentation

● Document Object Model for dynamic presentation

● XML and XSLT for data interchange and manipulation

● XMLHttpRequest for asynchronous data retrieval

● JavaScript that binds together the components

As it is getting clearer, Ajax has something to do with asynchronous transfer of data.

Actually it is the transfer of data between a client which is a web-browser and a server.

To understand this concept it is essential to have a look on both the classic and the

Ajax web model.

Foremost it is crucial to mention that the techniques behind AJAX are not really new.

That means that the idea of updating web-pages incrementally using the eXtensible

Markup Language and the HyperText Transmission Protocol rose several years ago

but gained its popularity when the popular name AJAX was mentioned first by Jesse

James Garrett in February 2005 and used by some important internet companies like

Amazon or Google [Garr05] [Gibs06].

 2.1 The classic web model

In the classic web model, a user-action, like clicking on a hyperlink on a web-page,

results in a request to the server. This server receives the request and performs actions

Introduction to AJAX Page 7

to fulfill the request of the user. These actions could be for example a database query

accessing other systems or simply calculating something. After that the server is able to

deliver the requested file to the user which is mostly a HTML file. Figure 1

demonstrates this model [Garr05].

The main problem of this this model is, that the user has to wait while the server is

processing the request. So the user has to consider a break in his workflow every time

the application needs information from the server. Figure 2 shows this problem in the

context of the time.

Figure 1: The classic web
application model [Garr05]

Introduction to AJAX Page 8

To bypass this problem the Ajax technique comes into play.

 2.2 The Ajax web model

The Ajax model gives an application the possibility to send HTTP-requests to a server

without refreshing a whole page, not even giving the user any notice of the request.

Ajax is then able to present changes to the user without reloading the whole page by

using the Document Object Model, DOM [PaFe06].

In the basic web model, each user interaction would lead to a HTTP-request. Within the

Figure 3: The AJAX web
application Model [Garr05]

Figure 2: The classic web application model including the time axis
[Garr05]

Introduction to AJAX Page 9

Ajax web model this user interaction leads to a JavaScript call to the Ajax engine.

Simple actions, like validating a form, can be done by the Ajax engine itself without

requesting data from the server. But if the engine needs data that are not loaded yet it

requests the data asynchronously using XML without interrupting the users work

[Garr05]. Figure 3 shows this model in the technical way while Figure 4 shows the

model in the context of the time.

 2.3 AJAX analyzed

As the previous section showed, AJAX stands for a simple communication between

server and client at a sub-page level. Some time ago there have been several

approaches to accomplish this goal. One of those were Java Applets, which did not

really succeed because of slow Java implementations and suffering cross-browser

compatibility [Raym07].

Nowadays the XMLHttpRequest Object is the widely used solution for building AJAX

applications. Its original implementation was by Microsoft in the Internet Explorer 5

called XMLHTTP using ActiveX and was cloned by other browsers and called

XMLHttpRequest [Raym07].

Figure 4: The AJAX web application model including the time axis
[Garr05]

Introduction to AJAX Page 10

As AJAX stands for Asynchronous JavaScript and XML these terms are now analyzed

and reasons why AJAX is more a term than a definition of the used technologies are

shown.

Asynchronous means that all the calls back to the server, the XMLHttpRequest, are

nonblocking which implies that the client is able to execute further code while waiting

for the response from the server. If there were no nonblocking characteristic, users

would have to wait for the response without doing anything, because the browser is not

able to work. So the browser would seem to freeze while the server responds to the

request [Raym07].

JavaScript, which was originally called LiveScript, is a powerful scripting language that

is supported more-or-less in every modern web-browser. Especially with the use of the

numerous libraries that support JavaScript and development support tools, JavaScript

is a very agreable platform. But as Internet Explorer supports Visual Basic scripting as

well and Adobe Flash is widely deployed and both technologies are capable of calls to

the server, it is not a necessity to use JavaScript [Raym07].

The Extensible Markup Language (XML), is the last term defined under the umbrella

term AJAX and is the easiest technique to substitute. Actually the XMLHttpRequest

Object is able to transfer every type of content, HTML code as well as for example

images. Ruby on Rails for example transfers HTML and JavaScript rather than XML

data [Raym07].

In the personal opinion of the author the most important piece of AJAX is the

XMLHttpRequest Object, which is the heart of every AJAX application. As for

frameworks like Ruby on Rails it is not necessary to code JavaScript code or

understand XML to create a simple applications, the following section will cover just the

XMLHttpRequest Object because the author is convinced to understand the basics of

the object is crucial to understand the examples that are presented later.

 2.4 The XMLHttpRequest Object

The Object XMLHttpRequest is part of most web-browsers and responsible for sending

requests to the server and receiving the responses. In most open-source web-browsers

like Mozilla Firefox the regular XMLHttpRequest Object is implemented. Microsofts

Introduction to AJAX Page 11

Internet Explorer 5 and 6 contain a XMLHTTP Object which is part of the ActiveX

component while Internet Explorer 7 implements the regular XMLHttpRequest Object

[Lubk07].

The actual cycle of using the object is to use the method open to create a new object,

send to transmit the request. For defining what is going to happen after the response

was received the onreadystatechange is used [Lubk07]. Figure 5 shows this cycle

in a simplified way.

The first line creates a new xmlHttpRequest object by calling the function

getRequestObject() which checks the type of the browser. The second line opens

a new request with some parameters. The first one is 'GET' and defines that

information is submitted in the link that is called. It would also be able to use 'POST'
which sends information in the data part or 'HEAD' which does not send the content of

the document with it. The second parameter is the URL that will be called and the third

one is a boolean parameter that defines whether the request is asynchronous or not.

Line 3 finally sends the request to the server. Line 4 checks the value of

xmlHttpRequest.readyState which defines the state of the query and is changed

several times during the lifetime of a request. There are five different states [Lubk07]:

Figure 5: Code of a XMLHttpRequest Object cycle

Introduction to AJAX Page 12

Value Meaning
0 open was not called yet

1 open was called but send was not

2 request was sent
3 data transfer from the server is in progress
4 data transfer is completed

Table 1: States of a XMLHttpRequest

As Table 1 shows the last status is 4, so if the value of

xmlHttpRequest.readyState is 4 the transfer is completed and the received data

is ready to use as it is done in line 8.

 2.5 AJAX on the Network Layer

To provide a closer look at AJAX and what it actually does it makes sense to have a

look what happens on the network while AJAX is working. Therefore a network protocol

analyzer was used combined with a web-browser that executed AJAX commands.

The author of this paper decided to choose the web-browser Mozilla Firefox. Firefox is

an Open-Source product of the Mozilla Foundation which provides all its products on

Microsoft Windows, Mac OS X and Linux [Mozi07]. Furthermore Firefox is the worlds

second most widely used web-browser with a market share of 15.6% measured in

November 2007 [Mark07]. The data that is going to be analyzed derive from the Google

Project called Google Suggest which is a typical Google search page that provides

suggestions in real time while typing the search term [Goog07]. Figure 6 shows the

start-page of Google Suggest.

Introduction to AJAX Page 13

To analyze the activities on the network while performing Google Suggest the network

analyzer Wireshark which was formerly known as Ethereal was used. It supports the

inspection of numerous protocols, such as HTTP, which is very important for this

purpose [Wire07]. To demonstrate how Google Suggest works Figure 7 and Figure 8

show what happens when you start typing and searching for the term “Apache

MyFaces”.

While typing Google Suggest is trying to find matching suggestions and presents them

in a list below the textbox. The more information the user types the narrower the

suggestions are.

Figure 6: Start Page of Google Suggest

Figure 7: Google Suggest: Searching Status 1

Introduction to AJAX Page 14

As the search term “Apache MyFaces” is typed, the network analyzer Wireshark

monitors the network traffic all the time. After recording the result is filtered to provide

just HTTP traffic. Figure 9 shows the result of the monitoring.

A closer look on the “Info” column shows that every keystroke leads to a HTTP request

to Google that transfers the current input of the text-box, where the search terms can

be entered. The specific command that is executed for example after typing “Apac” is

“GET /complete/search?hl=en&client=suggest&js=true&q=apac HTTP/1.1”. Obviously a

search function of Google is called and the “q” attribute defines the term that should be

looked up, which in this case is “Apac”. Figure 10 shows this specific request.

Figure 8: Google Suggest: Searching Status 2

Figure 9: Wireshark: Result of the network analysis

Introduction to AJAX Page 15

The response of the server is right below the GET request in Figure 10. A closer look

into the body of this package shows the results that are provided in the suggestion list.

Figure 12 shows the results in Wireshark which are, as expected, the same as in Figure

7. Examples are “Apache Tomcat” with 2,100.000 results or the “Apache Helicopter”

with 1,370.000 results.

Figure 10: Wireshark: HTTP GET request to Google

Figure 11: Wireshark: Suggestions received from the Google Server

Introduction to AJAX Page 16

 2.6 Advantages of AJAX-Applications

With AJAX developers are able to avoid some typical problems of web-applications.

One of these is that users have to wait until a new page has loaded. AJAX makes it

possible to load further data in the background so that the user does not recognize. A

very famous example is the application Google Maps. It pre-fetches the map

information that lies right next to the part of the map viewed by the user. So there is no

time of waiting until the new part of the map is loaded if the user drags the map. This

advantage relates to the A in AJAX, which stands for Asynchronous and implies that

data can be exchanged between browser and server without an interaction of the user

[Zuck07].

Another advantage of AJAX is the improved user interactivity with the application. AJAX

applications try to act more like desktop applications. This means no refreshing of a

whole site or no long waiting times while the application gets the necessary information

from the server, but still retaining its benefits like no need of downloading an

application, no updates that have to be installed and a wide compatibility over various

Operating Systems an web-browsers. A good example for the improved user

interactivity is GMail, an email service provided by Google. In its web-interface it is not

necessary to press the refresh button of the web-browser to reload the whole page to

see if there are new mails. Instead, only the new mail is added to the inbox without

reloading the whole page [Zuck07].

Those are the two major benefits that developers and users can earn when using AJAX

for dynamic web-pages. But as AJAX is more a bunch of technologies than a

standalone technique, it has to face a lot of problems and developers have to consider

a lot of wattles to use AJAX appropriate and not to penalize the user by providing low

usability applications.

Therefore the next part of this paper covers the problems and risks of AJAX

applications.

 2.7 Disadvantages of AJAX-Applications

So far Ajax sounds to be a good way to bring more dynamic life into the static web

model. But there are several drawbacks and issues that have to be considered when

Introduction to AJAX Page 17

talking about Ajax. This part is subdivided into an usability and a security part, to get a

perspective of both issues.

First there is a general drawback: AJAX is widely based on JavaScript, which implies

that Web-Browsers have to support JavaScript to show the contents of the page. This

might be a problem for mobile and text-only browsers. Furthermore the World Wide

Web Consortium Web Content Accessibility Guidelines (WCAG) 1.0 requires to run

web-sites with turned off JavaScript support. Even if version 2.0 of the guidelines,

which is not recommended yet, removes this requirement, this issue has to be

considered at the moment [Gibs06].

 2.7.1 Usability problems

The experience of looking at AJAX-driven web-pages is new for many internet users.

Of course the new possibilities, provided by AJAX, are a good and easy way to

implement more dynamically acting web-pages, but some users will face several

problems or worries.

User related problem

Web-pages that contain AJAX components are basically designed to update a web-

page dynamically. Users may not expect changes to the current page, because the

classic way of surfing through the internet is to click on a hyperlink and waiting for a

new page to load. To give an example: Just imagine a shopping cart of an online-store

that updates the selected goods, prices, shipping costs and taxes automatically without

asking for it. Some users may be unaware of these changes which could lead to

confusion of the customers [Gibs06].

Another problem of some AJAX applications is that they do not provide a distinct

Unified Resource Identifier which the user could simply add to the bookmarks [Gibs06].

Search engine problem

Search engines and their crawlers comb through web-pages looking for link tags like

HREF or SRC. So these crawlers are not looking for any AJAX or JavaScript parts.

Furthermore, the search engines do not know which values they have to pass to the

server to call the right state of the application. To make AJAX web-pages reachable

Introduction to AJAX Page 18

from search engines developers have to write two versions of their web-pages: One

with the actual AJAX code and one with the HTML code for the web-crawlers [Schw06].

Back button problem

As the XMLHttpRequest circumvents the web-browsers history function, pushing the

“back” button mostly does not lead to the desired result [Inma06]. Users normally want

to go back one step when pushing the “back” button. In an AJAX application this could

be revoking the last action as like deleting an item that was put in the shopping-cart

accidently. The web-browser would instead call the last-visited web-page. Despite

several workarounds of this problem like working with IFrames, this issue is very

important regarding the usability of web-pages.

URL problem

As the communication of AJAX applications happens in the background and is working

asynchronously, the user requests the URL only once when entering the web-page and

might change the state of the web-page by interacting with the AJAX application. If the

user wants somebody else to see the same thing, usually he would copy the URL of the

web-page and send it to the person he wants to share the page with. Since the

communication happens in the background, the URL does not change while navigating

through the AJAX application. Thus the URL does not contain the information of the

users actual status in the application. Figure 12 shows an example of this problem. The

web-site http://www.us.map24.com is loaded and a route between two US-Cities has

been searched. As the result appears on the screen the URL stays the same, so it is

not possible to send this link and open it in another web-browser.

http://www.us.map24.com/
http://www.us.map24.com/
http://www.us.map24.com/

Introduction to AJAX Page 19

Assistive technologies problem

Another problem may occur to people that use assistive technologies. Normally screen

readers “read” the page line by line, so it is likely that the screen reader never

recognizes a change that has been made in a part of the web-page it has already read

[Weba07]. Applications that always focus on changed data could confuse the reader of

an article for example by jumping to different points every time something is updated on

the page [Gibs06].

 2.7.2 Security Risks in AJAX-Applications

As the flexibility of web-applications is rising by using the AJAX technology, some

security problems are rising as well. Compared to classic web-applications that base

upon the classic web-model, there are three major security issues [Ritc07]:

● client-side security controls

● increased attack surfaces

Figure 12: URL-problem example on map24.com

Introduction to AJAX Page 20

● new possibilities for Cross-Site Scripting

These issues are now going to be discussed.

Client-side security controls

As AJAX relies on a lot of client-side controls, many developers act frivolously and put

security relevant code into the control of the client. The problem of this fact is that as

code is executed on the client-side, every user has access to the code and is able to

manipulate it [Hayr06]. To mention an example it is just necessary to imagine a simple

login page. After entering username and password the site calls a JavaScript function

instead directing all the information directly to the server. The client-side function that is

called could for example validate the format of the input before the login is requested

using the XMLHttpRequest object. When the server responds and the login information

was correct, another JavaScript function is called that executes the application behind

the login. The security risk of this procedure is that the user could simply call the

JavaScript function after the login instead of going through the whole login process

[Ritc07]. Figure 13 shows the critical JavaScript code where the loginUser() function

could be called anytime without validating the login data first.

Increased attack surfaces

Through the use of AJAX most web-applications consist of many small applications,

such as looking up the city of a customer when entering the ZIP-Code. Each of these

small applications is a security risk of its own thus it is necessary to consider the

security aspects of every of those small applications. This is leading from a single point

of entry to a multiple point of entry concept which offers more vulnerabilities [Hayr06].

Figure 13: Critical JavaScript Login Code

Introduction to AJAX Page 21

New possibilities for Cross-Site Scripting

Cross-Site Scripting, also called XSS, includes all the efforts to infiltrate malicious code

into a web-application that is later on executed on the client side. This is typically

possible where HTML or JavaScript Code is accepted as an input to a web-page that

later returns the values to the browser. For example a clickable URL containing

malicious JavaScript Code could be created and sent by email to somebody. As the

recipient clicks on the URL the malicious code is executed and the attacker could steal

the session, create a fake login, log the keystrokes or execute any other Script Code

[Ritc07].

For several reasons, the risks of Cross-Site Scripting are rising through the usage of

AJAX components. Usually XSS lasts as long as a page is loaded. One characteristic

of AJAX applications is that there is mostly only one page loaded so that a permanent

XSS could be created. In this scenario an attacker for example would be able to log all

the keystrokes made within the application [Ritc07].

The Model-View-Controller pattern Page 22

 3 The Model-View-Controller pattern

As both Ruby on Rails as well as Apache MyFaces are based on the Model-View-

pattern it is crucial to introduce this concept briefly.

“The Model-View-Controller (MVC) pattern separates the modeling of the domain,

the presentation, and the actions based on user input into three separate classes”

[Micr07]

The duties of the three classes are as follows [Micr07]:

● Model: The model contains the data of the application and is responsible to

respond to requests usually from the View and to respond to changes in the

state usually from the Controller.

● View: The presentation of the information.

● Controller: The Controller receives the input from the user and informs the

Model respectively the View of the changes.

Figure 14 illustrates the MVC pattern and the interactions of the three parts among

each other.

Figure 14: The Model-View-Controller pattern [SunM02]

The Model-View-Controller pattern Page 23

One important fact of the MVC is that the View as well as the Controller depend on the

Model but the Model depends on neither the Controller nor the View. This allows the

building and testing of the Model without the View or the Controller [Micr07].

Advantages resulting from this pattern are a reduction of duplicate code as well as code

that is easier to maintain. As the business logic is kept separately, adding new data

sources as well as changes in the presentation of data is easier [SunM02].

Ruby on Rails Page 24

 4 Ruby on Rails

“Ruby on Rails (or more commonly, just Rails) is a full-stack MVC web development

framework for the Ruby language.” [Raym07, page 8]

The term full-stack stands for the fact, that the framework includes nearly everything

that is necessary to create a finished product. At least this is true on the application

layer, because mostly a database is needed as well as a web server [Raym07].

This chapter will give a few historical aspects of Ruby and Ruby on Rails as well as the

capabilities to implement AJAX components and will provide some code examples to

give a closer look what code looks like in Ruby on Rails applications. Ruby on Rails is

released under the MIT license while Ruby itself is licensed under the Ruby License

[Ruby07]. The official link to the Ruby on Rails web page is http://www.rubyonrails.org/.

The history behind Ruby on Rails is not very extensive as Ruby on Rails was first

developed and released in 2004 by David Heinemeier Hansson who was born in

Copenhagen, Denmark in 1979 and nowadays works at 37signals, a web-application

company. The first stable release was in 2005 [Hein07].

Ruby itself, which is the basis for Ruby on Rails, is an object-oriented programming

language with roots in List, Perl and Smalltalk. Ruby is developed by Yukihiro

Matsumoto and was first released in 1995 [Raym07].

In this paper the Ruby on Rails Version 1.2.3 was used with Ruby Version 1.8.6. On

December 17 2007 the Version 2.0 of Ruby on Rails was released which was too late

to analyze all the changes between the different versions.

 4.1 AJAX-Components

Ruby on Rails and AJAX correlate in two different ways. On the one hand there are two

JavaScript frameworks namely Prototype and script.aculo.us. Both of them come along

with Ruby on Rails and are developed with Ruby on Rails but are also available in other

programming languages like PHP or Java. Prototype provides access to the

XMLHttpRequest Object as well as methods for manipulations using DOM and

JavaScript data structures. script.aculo.us works on the top of Prototype and has its

http://www.rubyonrails.org/
http://www.rubyonrails.org/
http://www.rubyonrails.org/

Ruby on Rails Page 25

strengths in visual effects and advanced user-interface options, like drag and drop

[Raym07].

The second way are the Rails helpers which are Ruby methods that are called within

the controller and later invoke JavaScript functions in Prototype and script.aculo.us.

Those make it possible to create extensive AJAX applications without coding

JavaScript itself. Especially important regarding the title of this paper are the so called

Rails Helper callbacks which give the possibility to make things happen during the life-

cycle of a XMLHttpRequest. In detail there are eight different callbacks that define

different states of the life-cycle of the request. An example of these callbacks will be

given later [Raym07].

In the following sections some code examples of Ruby on Rails AJAX applications will

be provided. Later on the two JavaScript Libraries Prototype and script.aculo.us will be

presented and code examples will be given.

 4.2 Installation

As the author of this paper uses Mac OS X 10.4 there are two major possibilities to

install the Ruby on Rails framework. The latest version of Mac OS X 10.5 also known

as Leopard, already ships with Ruby on Rails [Augu07]. The first possibility is to

download and compile the components on the machine by following the instructions

that can be found on http://hivelogic.com/articles/ruby-rails-mongrel-mysql-osx. The

primary steps are to install Ruby first and then install the Ruby package manager called

RubyGems that will install then Ruby on Rails. The second option to get Ruby on Rails

onto a Mac OS X 10.4 is to use the pre-packaged tool called Locomotive which

contains Ruby, Rails and some other tools [Loco07]. As this papers focus is more on

the AJAX capabilities of Ruby on Rails than on Ruby on Rails itself, the author decided

to install Locomotive. After installing Locomotive, it provides a simple user interface that

allows to control the current projects which is shown in Figure 15.

For Windows there is also a pre-packaged tool called InstantRails which comes with

Ruby, Ruby on Rails, Apache Web-Server and MySQL [Inst07].

http://hivelogic.com/articles/ruby-rails-mongrel-mysql-osx
http://hivelogic.com/articles/ruby-rails-mongrel-mysql-osx
http://hivelogic.com/articles/ruby-rails-mongrel-mysql-osx

Ruby on Rails Page 26

 4.2.1 First Ruby on Rails Project

Most of the Ruby on Rails commands are executed in the terminal, so this section will

show how to create a project and how to implement simple applications. The first step

is to create a skeleton which can be referred as a project. The skeleton is called

firstrails.

Figure 16 shows how to create an application in Locomotive while Figure 17 shows the

status when the application is created and port 3000 is assigned to the application.

Figure 15: Screenshot of Locomotive

Figure 16: Screenshot of Locomotive when creating a new
application

Ruby on Rails Page 27

Locomotive calls the rails functions that create all the necessary files and folders.

Figure 18 shows how the file structure of Ruby on Rails applications look like. The root

folder for Ruby on Rails applications is ˜/Rails where the folder firstrails was

created. The most important folder in the project is the app folder, where all the Rails

specific code is saved in. As Figure 18 shows at the bottom the app folder contains

subfolders that are called controllers, models and views which refers to the

MVC pattern.

Figure 17: Screenshot of Locomotive containing the new
application

Figure 18: Terminal-Output of the Ruby on Rails structure of files and folders

Ruby on Rails Page 28

 4.3 Code Examples in Ruby on Rails

Based on the setup of a new application in the previous section this section will show

some code examples in Ruby on Rails. First of all an example is shown how to create

the classical “Hello World” application. The first step is to create a new controller

referring to the MVC pattern of the previous chapter. Figure 19 shows the shell

commands that have to be executed to create the controller with the name example
and an action with the name helloworld.

After creating the controller the view which is located in the subfolder

app/views/example/helloworld.rhtml has to be modified. Figure 20 shows the

code that includes a hyperlink which calls a JavaScript alert box.

After saving the file, the “Hello World!” page can be opened in a web-browser as Figure

21 shows. The URL to the page consisits of the controller followed by the action, in this

case the URL is http://localhost:3000/example/helloworld. Clicking the link that is shown

on the page, the JavaScript alert box is opened which shows the “Hello World!”.

Figure 19: Terminal commands to create helloworld example

Figure 20: Code in the helloworld.rhtml file

http://localhost:3000/example/helloworld
http://localhost:3000/example/helloworld
http://localhost:3000/example/helloworld

Ruby on Rails Page 29

Now it is time to create a simple AJAX application, that means that we are using

JavaScript and the XMLHttpRequest Object to communicate with the server. Therefore

it is necessary to create a new action named ajaxresponse in the controller

example that is located in the app/controllers/example_controller.rb
file. Furthermore a new view has to be created in the views folder that is called

ajaxresponse.rhtml. This file just contains a string that will be “This is an AJAX

response”. Figure 22 shows the code of the ajaxresponse.rhtml file while Figure

23 shows the web-browser page after clicking on the hyperlink that says “Give me an

AJAX example”. The specialty of this example is that the JavaScript Code creates an

XMLHttpRequest Object to request the string that appears in the alert box from the

server.

Figure 21: Screenshot of the "Hello World" page

Figure 22: Code of the helloworld.rhtml file

Ruby on Rails Page 30

The function getRequestObject() checks if the web-browser supports the typical

XMLHttpRequest object or if it supports the XMLHttpRequest Object as an ActiveX

Object as Microsoft's Internet Explorer 6 does [Raym07].

This example was a very basic one that did not make use of the JavaScript Libraries

Prototype and script.aculo.us that Ruby on Rails supports. In the following sections the

two named Libraries are introduced and code examples are given how to use them with

Ruby on Rails.

 4.4 Prototype

Prototype is a JavaScript Framework developed by Sam Stephenson that extends core

JavaScript classes and implements additional ones to provide new features. Its focus is

especially on AJAX and DOM manipulations. The possibilities it supports can be

divided into four major sections [Raym07]:

● AJAX support (wrappers for the XMLHttpRequest Object)

● DOM manipulation

● form manipulation (DOM manipulations especially for forms)

● core extensions (especially for working with data structures)

As Ruby on Rails ships with full Prototype support, the following section will present

Figure 23: Screenshot of the AJAX response in the web-browser

Ruby on Rails Page 31

some code examples how to implement AJAX components with Prototype in Ruby on

Rails using the Rails Helpers that have been mentioned before.

For this section a new controller is created while the old application called firstrails will

be still used. The new controller will be called prototypeonrails with an action called

get_time. This example is going to show a simple web-page that provides a link which

requests the time from the server using AJAX. To provide a nicer look of the web-page,

the author adopted the Cascading Style Sheet that is used in the book “AJAX on Rails”

from Scott Raymond. The Style Sheets are saved in the public/stylesheets/
folder of the Rails application. Furthermore a simple layout file was created, which is

saved in the app/views/layouts/ folder and is called application.rhtml.

Figure 24 shows the layout file which starts with a common XHTML definition. The

specialties are definitely in line 6, 7 and 11. The tags

<%= ... %> define a Ruby Expression. The one in line 6 defines that the JavaScript

Libraries Prototype and script.aculo.us will be included, the one in line 11 defines

where the dynamic content will be inserted.

Figure 25 shows the code of the controller that was created previously and defines the

method get_time. First there is a sleep period of three seconds followed by rendering

the actual time of the server.

Figure 24: Code of the layout file appliaction.rhtml

Figure 25: Code of the controller file prototypeonrails_controller.rb

Ruby on Rails Page 32

Finally Figure 26 presents the code of the index.rhtml file which is located in the

app/views/prototypeonrails/ folder.

This file defines the JavaScript functionalities. Actually Prototype is used, but the code

in the Figure are the Rails helpers, that have been mentioned in the Ruby on Rails

introduction section. The code consists of a link that will be created by using the

link_to_remote command. The commands starting with a colon are options of the

Rails helper. The options :before, :success and :complete are the so called Rails

Helper callbacks that have been introduced earlier. The $() function is a wrapper for

the DOM method document.getElementById that offers some advantages like the

possibility to hand it more than just one argument. But in general it defines the place

where the content should be inserted [Raym07]. So line 4 defines that before the

XMLHttpRequest Object is created the span element in line 7 should be shown. But

now it is time to look at the output in the web-browser.

Figure 27 shows the initial state of the application that presents a link that has been

clicked in Figure 28. In this figure it is also possible to see the span element that is now

visible until the XMLHttpRequest is complete.

Figure 26: Code of the index.rhtml file of prototypeonrails

Figure 27: Initial State of prototypeonrails

Ruby on Rails Page 33

Figure 29 shows the final state in which the final state is presented. The time of the

server is retrieved and presented in the div element with the id=“current_time” is

shown.

Finally it is interesting to see the HTML Code of the page that comes from the server

because in this example Prototype itself was not used directly because the Rails

Helpers did their work. Figure 30 shows the HTML file that was generated by the

server. In line 6 it can be seen that the JavaScript library Prototype is loaded and used

for example in line 16 with the Ajax.Updater() function which is a Prototype

function.

Figure 28: Loading State of prototypeonrails

Figure 29: Final State of prototypeonrails

Ruby on Rails Page 34

As this section dealt with the Rails helpers and the JavaScript Library Prototype the

next section will cover to the JavaScript Library script.aculo.us and the Rails Helpers

that use it.

 4.5 script.aculo.us

The development of script.aculo.us and Prototype happens in concert with Ruby on

Rails and is very close. Some parts that were Prototype parts in the beginning are now

parts of script.aculo.us which is built on Prototype. But anyway, script.aculo.us has a

different goal, it is designed to provide the following features [Raym07]:

● Visual Effects

● Transitions

● Drag-and-Drop elements

The script.aculo.us Framework works with most modern web-browsers that are

Microsoft Internet Explorer 6 and up, Mozilla Firefox, Apple Safari and most Linux web-

browsers like Konqueror [Raym07].

Figure 30: HTML file generated by the server for prototypeonrails

Ruby on Rails Page 35

As a code example was given for Prototype used with Ruby on Rails an example of

script.aculo.us in Ruby on Rails is given as well. It will contain examples for the Visual

Effects and for the Drag-and-Drop functionality. script.aculo.us offers five core effects

that control the fundamental attributes of an element which are Opacity, Scale,
Move, Highlight and Parallel. Most of them will be used in the code example.

Transition is an option to determine the pattern of a specific change. It was left out

because the relevance is not too important for simple AJAX applications [Raym07]. The

code itself will make use of the Rails helpers as well as script.aculo.us code itself. At

the end a look at the HTML file will be given.

Again the same application called firstrails is going to be used but a new controller

called scriptaculousonrails is going to be created. The layout from the previous

example is used again. Figure 31 shows the code of the new index.rhtml which

contains the HTML, JavaScript and Rails Helper code.

The link_to_function Helper that is used very often creates a hyperlink which

directly calls JavaScript functions which are for example Effect.Opacity or

Effect.Move. These functions are part of the script.aculo.us Framework. All the

Effect.* functions refer to the div element target and make possible to control the

Figure 31: Code of the index.rhtml of scriptaculousonrails

Ruby on Rails Page 36

div element like to move it or do scale it up or down. All controls can be seen in BILD.

Line 19 defines that the div target is a draggable item while in line 21 the Rails Helper

drop_receiving_element defines that the div with the id dropDIV is able to receive

a dropped element and sets the action receive_drop when an item is dropped on it.

Figure 32 shows the receive_drop method that was added in the controller of the

application that is called scriptaculousonrails_controller.rb.

The method defines to return the string that can be seen in line 7. After the

receive_drop request is complete, which is an AJAX call by the way, the last div in

line 22 with the id status is updated. But let's have a look on the output in the web-

browser. Again there will be three screenshots provided in the different states.

Figure 32: Code of the controller scriptaculousonrails_controller.rb

Ruby on Rails Page 37

Figure 33 presents the links to the JavaScript functions as well as the green div which

is draggable and the pink one that is droppable. Figure 34 presents the green div,

which actually has the target id, moved and resized.

Figure 33: Initial state of scriptaculousonrails

Ruby on Rails Page 38

Figure 35 presents the final state where the green div was dragged and dropped in the

pink div. After the drop, a AJAX call has been sent to request the receive_drop
method. As the response from the server arrived the last div status has been updated

with the text that was just received. Finally, it is interesting to have a look on the HTML

file that is sent by the server, which is presented in Figure 36. Line 6 to 10 show that

the JavaScript Frameworks Prototype and script.aculo.us are loaded. Line 15 to 29

show the Visual Effect functions of script.aculo.us which have been called directly

instead of using Rails Helpers. Line 49 on the other side shows the use of the Rails

Helper, if the output code is compared with the code in the view file in Figure 31 Line

21.

Figure 34: Second State of scriptaculousonrails with a moved "target" div

Ruby on Rails Page 39

Figure 35: Final State of scriptaculousonrails

Ruby on Rails Page 40

Figure 36: HTML output of scriptaculousonrails

Apache MyFaces Page 41

 5 Apache MyFaces

Apache MyFaces is a project of the Apache Software Foundation and an

implementation of the JavaServer Faces standard and is licensed under the Apache

Software License. The JavaServer Faces standard has been developed since 2001.

The Austrians Manfred Geiler and Thomas Spiegl started developing MyFaces which

became an Apache Software Foundation project in 2004. MyFaces is the first free

implementation of the JavaServer Faces standard and has some advantages

compared to other implementations like many additional components that can be used

by developers very fast and easy [MaScMü07].

Another major advantage is that the MyFaces Framework can be used like every other

JavaServer Faces implementation, so it is not necessary to spend much time to learn

MyFaces if a developer learned JavaServer Faces already. MyFaces comes up with

some additional functions that can be divided into the following areas [MaScMü07]:

● Functions for simple reuse of site definitions (Tiles and Portlet support)

● Improved reuse of existing JavaScript and CSS Libraries

● A more comprehensive component library, especially for the user interface

● Components that allow the use of AJAX

● A multiplicity of additional settings that can improve the performance of

JavaServer Faces applications dramatically

Apache MyFaces is compatible to most containers but here are the most important

ones that are definitely supported [MaScMü07]:

● Tomcat 4.X, 5.X and 6.X

● JBoss 3.2.X and 4.0.X

● BEA Weblogic 8.1

● Websphere 5.1.2

Apache MyFaces Page 42

For the installation the container Tomcat 5.5.25 was used as it is recommended on the

Apache MyFaces site but the installation will be explained in the installation section.

First let's have a look on the JavaServer Faces standard on which Apache MyFaces is

based.

Apache MyFaces is divided into several sub-projects that are listed below [MyFa07a]:

● MyFaces API and MyFaces Impl Modules: JavaServer Faces

implementation

● MyFaces Tomahawk, Trinidad and Tobago: Component Libraries that

contain user interface widgets

● MyFaces Sandbox: Subproject that tests ground for new developments in

the Tomahawk project

● MyFaces Orchestra: Extension packages for JavaServer Faces

● MyFaces Portlet Bridge: Integration module for the Portlet standard

The focus of this paper will be on the Tomahawk project because it provides a

component called “Dojo Initializer” that allows to integrate the Dojo Toolkit which is a

open-source JavaScript Framework [MyFa07c].

 5.1 JavaServer Faces

JavaServer Faces, also known as JSF, is a Java based web application framework

standard that follows as mentioned in an earlier chapter the MVC pattern [MyFa07b]. It

enables developers to create web interfaces that are based on Java web-applications.

It was for the first time officially released by Sun Microsystems in 2004. The goal was to

create the best java-based web-solution as there were some others with known

weaknesses [BaHüRö07] . The first official release was held on the Java Specification

Request 127 (JSR 127) and defines JavaServer Faces versions 1.0 and 1.1, latter

released on May 27th 2004 [Java07a]. Some intentions were to make things like

internationalization, input validation or site navigation easier. The second major release

with the version JSR 252 was published on May 11th 2006, two years after the last

Apache MyFaces Page 43

release. Currently, JSR 314 that is going to define JavaServer Faces 2.0 is in progress

[Java07b].

To understand the basic concepts of the JavaServer Faces a short introduction into the

specifics and differences to other frameworks is now given.

As mentioned in an earlier chapter the JavaServer Faces specification implements the

Model-View-Controller pattern. The JavaServer Faces, from now on called JSF, differs

from most other web-application frameworks as it defines a User-Interface component

tree for every executed page. As a request is sent there is a defined life-cycle of this

request that takes responsibility for duties like validation or calling the business-logic in

the controller [BaHüRö07].

A view consists of hierarchical ordered user interface components like simple input

boxes, buttons, tables or menus. The structure of the tree defines the design of the

presented page and as it is hierarchical, for example a table can hold buttons or

anything else as well. The root of every tree is a instance of the type UIViewRoot.

Nearly every attribute of a component can be associated with Value Bindings that save

the actual value to a specific destination. That offers the possibility to save for example

the input of a text-box into the model or request it from the model. Referred to the Value

Bindings, it is also possible to create Method Bindings that call a method when the

action that defines the binding is activated, like a button or a hyperlink [BaHüRö07].

As the basics of the site-definition are explained let's have a look on the earlier

mentioned life-cycle of a JSF request. As a Server receives a JSF request it is

executed in six steps that follow the Request Processing Life-cycle, shortened RPL that

are [BaHüRö07]:

● Restore View

● Apply Request Values

● Process Validations

● Update Model Values

● Invoke Application

Apache MyFaces Page 44

● Render Response

Regularly all steps are executed unless there are errors that can cause a shortening of

the execution like an error in the validation process. The first step is called Restore

View and it rebuilds the saved component tree of a user or creates a new one if no one

exists. The following Apply Request Values fills the component tree with the values that

came with the request in the HTML parameters, Cookies or the HTTP header. Before

data can be written in a model the data has to be validated and converted into the

target format. This happens in step three, the Process Validations, which creates

messages when errors in the validation happen and marks the values as not valid. If a

validation throws an error the next steps will be skipped and the last one called Render

Response will be executed. A simple example for an error in the validation could be a

violation of the minimum length property of an input field. But as the conversion and the

validation succeed the Update Model Values step is executed. It writes the valid data

into to model referring to the Value Bindings that have been set. When the Invoke

Application phase is started all the data has been written and the methods of the

business-logic in the controller are called that are defined by the Method Bindings.

Once completed the application creates a so-called “Outcome” that represents a value

that defines the next view that should be created defined by a navigation path. If an

error occurres in the Invoke Application step the actual view that created the request

will be presented including error messages. A Renderer defines how a component

looks on the client and how an application codes and decodes its parameters. Figure

37 shows the whole life-cycle in a graphical way [BaHüRö07].

Apache MyFaces Page 45

 5.2 AJAX-Components

JavaServer Faces was created to develop classic web-applications like they have been

introduced at the beginning. JSF tries to keep the whole business logic at the server but

AJAX applications try to bring some of the logic to the client, so there are several

problems with the combination of JSF and AJAX but some approaches have been

developed on Apache MyFaces which are now introduced [MaScMü07].

There are two major possibilities to implement AJAX functionalities into MyFaces

applications. One way is to implement ready-to-use components that ship with

MyFaces and the other one is that a developer has to code the JavaScript

functionalities himself.

Apache MyFaces offers some AJAX components in its Sandbox Project that are still in

development, so the API can be changed anytime. The components that are provided

at the moment are [MaScMü07]:

● AJAX Suggest: Automatically completion of user input through a list of

suggestions (Like Google Suggest uses it)

● Auto Update Data Table: Content of a tagged component are refreshed

Figure 37: Life-cycle of a JavaServer Faces request [BaHüRö07, page 118]

Apache MyFaces Page 46

automatically

● AJAX Form Components: Automatic update of the data model when a user

is editing a form

● Partial Page Rendering: A page is divided into a static and and reloading

parts

For the use of AJAX components it is crucial to use a JavaScript Framework. Prototype

and script.aculo.us are two examples, but both of them are not useable with MyFaces,

because Prototype for example creates class names like Event. This name could be

used by other frameworks or by self-written JavaScript code too, so incompatibilities

can occur very fast. The only framework that is able to deal with this problem and

provides the same grade of distribution and functionality is the Toolkit Dojo

[MaScMü07].

 5.3 Installation

The installation consists of three major parts that are Java, Apache Tomcat and

Apache MyFaces with the MyFaces Tomahawk Support. For the examples Java in the

version 5 for Mac OS X was used. As Java is installed on most systems there is no

information provided how to install Java in this paper. The second step is to install

Apache Tomcat which can be downloaded from the official Apache site under

http://tomcat.apache.org/. Actually the latest release is 6.0.14 but for the examples

version 5.5.25 was used because it is recommended by MyFaces at the moment. Once

Tomcat is installed the server can be started. The /bin folder of the installation

contains a startup.sh as well as a shutdown.sh that start and stop the server. If

the server is started and the standard configuration is used, the server is availiable

under http://localhost:8080/. If this site is called, the Tomcat Testpage appears that can

be found in Figure 38.

http://localhost:8080/
http://localhost:8080/
http://localhost:8080/
http://tomcat.apache.org/
http://tomcat.apache.org/
http://tomcat.apache.org/

Apache MyFaces Page 47

Finally the MyFaces packages for MyFaces and the Tomahawk packages can be

downloaded from http://myfaces.apache.org/download.html and copied to Tomcats

web-application folder.

 5.4 The Toolkit Dojo

The Open-Source Toolkit Dojo is very adequate for the use with MyFaces because it is

divided into packages to avoid collisions with the same names. Furthermore the library

is separated into functional parts with the advantage that only the used modules have

to be imported by the developer and not the whole library. This results in the fact that

the web-browser does not have to load the whole packages, but just the necessary

ones. Dojos functionalities can be separated into the following categories [MaScMü07]:

● dojo.event: Event-handling by registering the element and the type of event

● dojo.validate: Module to execute client-side validation

● dojo.dnd: Drag-and-Drop functionalities

Figure 38: Test-page of the Tomcat servlet container

http://myfaces.apache.org/download.html
http://myfaces.apache.org/download.html
http://myfaces.apache.org/download.html

Apache MyFaces Page 48

● dojo.animation: Changing the attributes of elements dynamically

● dojo.io: Access to platform-independent resources e.g. local files or AJAX

requests

● dojo.widget: Client-Side control elements

Besides the Dojo Core project two more projects exist. The first one is called dijit and is

a set of internationalized widgets and design themes [Dojo07c]. The second one is

called dojox and provides some features like a drawing API, Offline functions or a

charting functio [Dojo07d].

Dojo supports all major web-browsers, in detail there is support for Microsoft's Internet

Explorer 6+, Mozilla Firefox 1.5+, Konqueror 3.5+ and the latest version of Apples

Safari, 3.0 [Dojo07a].

 5.4.1 Code example of Dojo

To provide a small code example for the Toolkit Dojo too, a simple “Hello World!”

application is created as well. Figure 39 shows the code for the application that was

created with Dojo. Line 5 defines a stylesheet that is loaded from the Toolkit. The next

important line is number 7 which loads the dojo.js that contains all the further

information of the Toolkit. Line 14 loads a button from the Dojo Library while line 16

through 18 assign the event when the button is clicked [Dojo07b].

Apache MyFaces Page 49

Figure 40 shows the output in the web-browser in the state when the button is already

clicked. The special thing is most likely the design of the button which was imported in

the code and comes from the Toolkit.

 5.5 Code Examples in Apache MyFaces

Apache MyFaces ships with a lot of examples about MyFaces itself as well as the

Tomahawk package. Furthermore there are sample applications of the Sandbox project

available online. As this paper wants to see how JavaScript elements are implemented

in Apache MyFaces, some of these examples are going to be introduced and a look at

the source code will be given. To implement the examples oneself would lead to a very

high amount of time setting the right parameters in the configuration files like the

Figure 39: Code for the "Hello World!" application with Dojo

Figure 40: Screenshot of the Hello World application of the Dojo Toolkit

Apache MyFaces Page 50

web.xml and the faces-config.xml and to write the java classes that are necessary to let

these applications work.

Dojo Integration

The first code example is a MyFaces Hello World example that makes use of both the

packages JavaServer Faces Core and MyFaces Tomahawk and implements a Widget

of the Toolkit Dojo to show how simple it is to implement Dojo widgets. Figure 41 shows

the code part of the JavaServer Faces file.

The file itself is written into a JavaServer Pages file as it is recommended by the JSF

specification [MaScMü07]. Line 2 through 4 show the definition of the packages that are

used and a prefix is assigned that is used later to define the right package. The next

important code part is in line 12 where a <f:view> tag that is also specified by the

JSF specification and has to enclose all the JSF tags. The tag <h:panelGroup>
defines a HTML tag like the h: prefix shows and creates a span element. As

mentioned in the MyFaces introduction, line 14 defines the <t:dojoInitializer/>
tag which is defines by the Tomahawk package and is able to import a Dojo

component. In this example a Text-Editor is loaded while line 15 through 19 define a

inputTextarea which is a simple input box to enter text which can be designed with the

Text-Editor component that was inserted before.

Figure 41: Code of the Hello World example in MyFaces

Apache MyFaces Page 51

Finally, let's have a look at the output of the file in a web-browser that is shown in

Figure 42. At the top of the page the inserted text-editor bar is shown which controls the

input field that is right below it and has the default value “Hello World!”.

The submit button could cause an AJAX call that saves the current input of the input

field but this functionality is not implemented in this example.

Sandbox-AJAX example

As mentioned earlier, the MyFaces project Sandbox contains several components to

implement AJAX functionalities. Several Sandbox examples are available on

http://www.irian.at/myfaces-sandbox/tableSuggestAjax.jsf. This example contains just

the view component and the controller is left out. In this case it is useful to provide the

screenshot of the application first and have a look at the JavaServer Faces file later.

Figure 43 shows the screenshot of the application. After two characters are typed, a

request is sent to request suggestions for the input. The Sandbox component

TableSuggestAjax was used to request the informations from the server. Once a

item is selected the two text-boxes at the bottom of the page are filled out with the

information that was retrieved by the server.

Figure 42: Screenshot of the Hello World application in MyFaces

http://www.irian.at/myfaces-sandbox/tableSuggestAjax.jsf
http://www.irian.at/myfaces-sandbox/tableSuggestAjax.jsf
http://www.irian.at/myfaces-sandbox/tableSuggestAjax.jsf

Apache MyFaces Page 52

Figure 44 shows an abstract of the code, the code at the end defines the text and

combo boxes at the bottom are left out to keep the code compact. Line 2 through 4

again define the familiar Core, HTML and Tomahawk components. New is Line 5 which

defines the Sandbox package with an own prefix. Line 9 again defines the <f:view>
that was used in the last example as well. The <f:verbatim> tag in line 11 enables

the possibility to include raw HTML code into the JSF file as it is done in line 14 as well.

Lines 15 through 18 are the crucial code-part of this example as the

<s:tableSuggestAjax> tag defines the use of the Sandbox component with the

same name. The parameter startRequest with the value of 2 defines that the AJAX

request starts first when two characters are typed. Value defines the inputted value in

the text box and calls a Java bean in its parameter. That is a Java class on the server

that processes the request. That is called inputSuggestAjax and the method

suggestValue that hands the inputted value to the server. BetweenKeyUp defines a

period in milliseconds in which no AJAX request is sent if another character has been

entered. Finally suggestedItemsMethod requests the suggestions from the server.

Line 18 through 35 create the table that is shown below the input box with its three

columns that are the City name, the ZIP code and the State and request the data for

the suggestions with the notation address.city, address.zip and

address.stateName. The for parameters in line 22, 28 and 34 set the values into

Figure 43: Screenshot of the TableSuggestAJAX example

Apache MyFaces Page 53

other fields. For example for="suggest" enters the suggestion into the input text

field so that the first suggestion is suggested completely in the input box. The

zipField and stateField values that are used in line 26 and 34 put the values into

the text-boxes that are left out in this code example but can be seen in Figure 43.

Figure 44: Code of the TableSuggestAjax example

Comparison Page 54

 6 Comparison

As both web-application frameworks have been introduced and the basic concepts

have been explained it is time to point out advantages and disadvantages of the two

frameworks.

 6.1 Advantages of Apache MyFaces / Ruby on Rails

Let's start with some advantages of both frameworks. One advantage that both

frameworks share is that they are open-source and are so free to use, even for

commercial use.

Apache MyFaces

Apache MyFaces comes up with a very powerful JavaScript Toolkit namely Dojo. Dojo

brings the major advantage that it does not have to transfer the whole Library to the

web-browser that requests functions of it. Instead just the packages that are explicitly

requested are going to be transferred.

Furthermore the component library of MyFaces brings some very convenient AJAX

components that are still in the Sandbox project. That means that the API can be

changed anytime and is so still in development. To mention some examples those

components bring support for functions like a auto-complete function for user input

fields or automatic updating data-tables.

Ruby on Rails

The major advantage of Ruby on Rails is that the JavaScript Frameworks Prototype

and script.aculo.us that have been introduced earlier are developed in concert with

Ruby on Rails. This brings the advantages that both are adjusted to each other.

Another advantage of Ruby on Rails are the Rails Helpers that are very easy to use

and avoid the writing of JavaScript Code. They also avoid the writing of redundant code

parts in several parts of a web-page. Furthermore new versions of the JavaScript

Libraries do not have to be considered as new versions of Ruby on Rails will provide

revised Helpers.

Comparison Page 55

Last but not least Ruby on Rails brings the advantage that it is actually designed for

dynamic and interactive web-applications and so no new concepts are needed to

implement AJAX components.

 6.2 Disadvantages of Apache MyFaces / Ruby on Rails

After having a look on the advantages in Ruby on Rails and Apache MyFaces its

disadvantages are discussed now.

Apache MyFaces

Apache MyFaces has a drawback that results from the fact that the JavaServer Faces

specification was developed to create classic web-applications. Server side

components are provided to make the development of complex applications easier.

The concept is to keep the business logic on the server side. But the AJAX idea is to

bring some business logic to the client, so solutions are needed to bring both concepts

to work. Furthermore the Dojo Toolkit is the only JavaScript Library that can be used

with Apache MyFaces, this is not necessarily a drawback, because it is one of the most

famous frameworks, but still it is a constraint to be bound to a special Library.

Another drawback is that the mentioned component library of MyFaces is still in the

Sandbox project so the use of these components in critical applications could become

kind of risky.

Ruby on Rails

In the opinion of the author of this paper the major drawback of Ruby on Rails is that

Rails does not have such a powerful programming language standing behind it as

Apache MyFaces has, namely Java. With powerful not the language itself is meant, but

the power of the Java- and Apache Community. Companies like Oracle, Borland and

IBM created the JavaServer Faces specification so really big companies out of the IT

sector will be supporting and providing input into the JavaServer Faces project.

From the viewpoint of AJAX it is difficult to find severe drawbacks. After doing a lot of

investigation regarding the topic AJAX and testing some basic examples Ruby on Rails

can be seen as a best practice example how to implement AJAX components in a web-

application. From the viewpoint of enterprise applications the author personally is not

Comparison Page 56

able to judge the capabilities of Ruby on Rails.

 7 Conclusion

There are two major conclusions that should be mentioned. The first one deals with

AJAX in general and the second one with the two web-application frameworks.

The first conclusion of this paper is that AJAX brings a lot of advantages into the web-

development but also has some issues that have to be considered. The introduction

chapter showed that web-developers that want to implement AJAX components have to

be aware of usability problems as well as new security risks of their applications. Even

though AJAX is a very fancy term these days, especially for critical applications the use

of AJAX components should be thought of twice.

The second conclusion of this paper is that both Apache MyFaces and Ruby on Rails

provide the capabilities to implement AJAX components into web-applications. While

Ruby on Rails was basically created to implement highly interactive web-applications

the JavaServer Faces specification bases on the classic web-model. Despite this fact

the JavaServer Faces respectively Apache MyFaces provide several ways to

implement AJAX components. But in the end both frameworks have their strengths and

weaknesses that have to be traded off to find the appropriate web-application

framework for a specific requirement.

References Page 57

 8 References

[Augu07] August, David; Ruby on Rails Weblog;

http://weblog.rubyonrails.org/2006/8/7/ruby-on-rails-will-ship-with-os-x-10-

5-leopard; retrieved on 2007-12-27

[BaHüRö07] Bartetzko, Detlef; Hülsebus, Arvid; Röwekamp, Lars; Im Angesicht des

Web – Grundlagen der Java Server Faces; iX Special; Volume 2007;

Issue 1; page 111-116

[Bosw07] Bosworth, Alex; Ajax Mistakes;

http://alexbosworth.backpackit.com/pub/67688; retrieved on 2007-11-18

[Dojo07a] The Dojo Toolkit; http://dojotoolkit.org/support/faq/what-browsers-does-

dojo-support; retrieved on 2007-12-27

[Dojo07b] The Dojo Toolkit; http://dojotoolkit.org/book/dojo-book-0-9/hello-world-

tutorial; retrieved on 2007-12-27

[Dojo07c] The Dojo Toolkit; http://dojotoolkit.org/projects/dijit; retrieved on 2007-12-

28

[Dojo07d] The Dojo Toolkit; http://dojotoolkit.org/projects/dojox; retrieved on 2007-

12-28

[Garr05] Garrett, Jesse James; Ajax: A New Approach to Web Applications;

http://www.adaptivepath.com/ideas/essays/archives/000385.php;

retrieved on 2007-11-18

[Gibs06] Gibson, Becky; AJAX Accessibility Overview; April 2006; IBM; http://www-

03.ibm.com/able/resources/ajaxaccessibility.html#issue; retrieved on

2007-11-18

[Goog07] Google; Google Suggest FAQ; http://labs.google.com/suggestfaq.html;

retrieved on 2007-12-18

[Hayr06] Hayre, Jaswinder; Ajax Security Basics;

http://www.securityfocus.com/infocus/1868; 2006-06-19; retrieved on

2007-12-08

[Hein07] David Heinemeier Hansson; http://www.loudthinking.com/about.html;

retrieved on 2007-12-27

[Inma06] Inman, Shaun; Responsible Asynchronous Scripting;

http://www.loudthinking.com/about.html
http://www.loudthinking.com/about.html
http://www.loudthinking.com/about.html
http://www.securityfocus.com/infocus/1868
http://www.securityfocus.com/infocus/1868
http://www.securityfocus.com/infocus/1868
http://labs.google.com/suggestfaq.html
http://labs.google.com/suggestfaq.html
http://labs.google.com/suggestfaq.html
http://www-03.ibm.com/able/resources/ajaxaccessibility.html#issue
http://www-03.ibm.com/able/resources/ajaxaccessibility.html#issue
http://www-03.ibm.com/able/resources/ajaxaccessibility.html#issue
http://www-03.ibm.com/able/resources/ajaxaccessibility.html#issue
http://www-03.ibm.com/able/resources/ajaxaccessibility.html#issue
http://www-03.ibm.com/able/resources/ajaxaccessibility.html#issue
http://www.adaptivepath.com/ideas/essays/archives/000385.php
http://www.adaptivepath.com/ideas/essays/archives/000385.php
http://www.adaptivepath.com/ideas/essays/archives/000385.php
http://dojotoolkit.org/projects/dojox
http://dojotoolkit.org/projects/dojox
http://dojotoolkit.org/projects/dojox
http://dojotoolkit.org/projects/dijit
http://dojotoolkit.org/projects/dijit
http://dojotoolkit.org/projects/dijit
http://dojotoolkit.org/book/dojo-book-0-9/hello-world-tutorial
http://dojotoolkit.org/book/dojo-book-0-9/hello-world-tutorial
http://dojotoolkit.org/book/dojo-book-0-9/hello-world-tutorial
http://dojotoolkit.org/book/dojo-book-0-9/hello-world-tutorial
http://dojotoolkit.org/book/dojo-book-0-9/hello-world-tutorial
http://dojotoolkit.org/book/dojo-book-0-9/hello-world-tutorial
http://dojotoolkit.org/support/faq/what-browsers-does-dojo-support
http://dojotoolkit.org/support/faq/what-browsers-does-dojo-support
http://dojotoolkit.org/support/faq/what-browsers-does-dojo-support
http://dojotoolkit.org/support/faq/what-browsers-does-dojo-support
http://dojotoolkit.org/support/faq/what-browsers-does-dojo-support
http://dojotoolkit.org/support/faq/what-browsers-does-dojo-support
http://alexbosworth.backpackit.com/pub/67688
http://alexbosworth.backpackit.com/pub/67688
http://alexbosworth.backpackit.com/pub/67688
http://weblog.rubyonrails.org/2006/8/7/ruby-on-rails-will-ship-with-os-x-10-5-leopard
http://weblog.rubyonrails.org/2006/8/7/ruby-on-rails-will-ship-with-os-x-10-5-leopard
http://weblog.rubyonrails.org/2006/8/7/ruby-on-rails-will-ship-with-os-x-10-5-leopard
http://weblog.rubyonrails.org/2006/8/7/ruby-on-rails-will-ship-with-os-x-10-5-leopard
http://weblog.rubyonrails.org/2006/8/7/ruby-on-rails-will-ship-with-os-x-10-5-leopard
http://weblog.rubyonrails.org/2006/8/7/ruby-on-rails-will-ship-with-os-x-10-5-leopard

References Page 58

http://www.thinkvitamin.com/features/ajax/responsible-asynchronous-

scripting; retrieved on 2007-12-01

[Inst07] InstantRails Wiki; http://instantrails.rubyforge.org/wiki/wiki.pl; retrieved on

2007-12-27

[Java07a] The Java Community Process Program, JSR 127;

http://www.jcp.org/en/jsr/detail?id=127; retrieved on 2007-12-27

[Java07b] The Java Community Process Program, JSR 314;

http://www.jcp.org/en/jsr/detail?id=314; retrieved on 2007-12-27

[Loco07] Locomotive; http://locomotive.raaum.org/; retrieved on 2007-12-27

[Lubk07] Lubkowitz, Mark; Webseiten programmieren und gestalten; 3rd Edition;

Galileo Press Bonn; 2007

[Mark07] Network Solutions LLC; Market share for browsers, operating systems

and search engines; http://marketshare.hitslink.com/report.aspx?qprid=3;

retrieved 2007-12-18

[MaScMü07] Marinschek, Martin; Schnabl, Andrea; Müllan, Gerald; JSF@Work; 1st

Edition; dpunkt.verlag; 2007

[McEv05] McEvoy, Chris; Why Ajax Sucks (Most of the Time);

http://www.usabilityviews.com/ajaxsucks.html; retrieved on 2007-11-18

[Micr07] Microsoft Developer Network; Model-View-Controller;

http://msdn2.microsoft.com/en-us/library/ms978748.aspx; retrieved on

2007-12-08

[Mozi07] Mozilla Foundation; About Mozilla; http://www.mozilla.com/en-US/about/,

retrieved on 2007-12-18

[MyFa07a] Apache MyFaces; http://myfaces.apache.org/index.html; retrieved on

2007-12-27

[MyFa07b] Apache MyFaces; http://wiki.apache.org/myfaces/; retrieved on 2007-12-

27

[MyFa07c] Apache MyFaces Tomahawk;

http://myfaces.apache.org/tomahawk/dojoInitializer.html; retrieved on

2007-12-27

[PaFe06] Di Paola, Stefano; Fedon, Giorgio; Subverting Ajax, 23rd CCC

Conference; December 2006

[Raym07] Raymond, Scott; Ajax on Rails; O'Reilly; 2007

[Ritc07] Ritchie, Paul; The security risks of AJAX/web 2.0 applications; Network

http://myfaces.apache.org/tomahawk/dojoInitializer.html
http://myfaces.apache.org/tomahawk/dojoInitializer.html
http://myfaces.apache.org/tomahawk/dojoInitializer.html
http://wiki.apache.org/myfaces/
http://wiki.apache.org/myfaces/
http://wiki.apache.org/myfaces/
http://myfaces.apache.org/index.html
http://myfaces.apache.org/index.html
http://myfaces.apache.org/index.html
http://www.mozilla.com/en-US/about/
http://www.mozilla.com/en-US/about/
http://www.mozilla.com/en-US/about/
http://msdn2.microsoft.com/en-us/library/ms978748.aspx
http://msdn2.microsoft.com/en-us/library/ms978748.aspx
http://msdn2.microsoft.com/en-us/library/ms978748.aspx
http://www.usabilityviews.com/ajaxsucks.html
http://www.usabilityviews.com/ajaxsucks.html
http://www.usabilityviews.com/ajaxsucks.html
mailto:JSF@Work
mailto:JSF@Work
mailto:JSF@Work
http://marketshare.hitslink.com/report.aspx?qprid=3
http://marketshare.hitslink.com/report.aspx?qprid=3
http://marketshare.hitslink.com/report.aspx?qprid=3
http://locomotive.raaum.org/
http://locomotive.raaum.org/
http://locomotive.raaum.org/
http://www.jcp.org/en/jsr/detail?id=314
http://www.jcp.org/en/jsr/detail?id=314
http://www.jcp.org/en/jsr/detail?id=314
http://www.jcp.org/en/jsr/detail?id=127
http://www.jcp.org/en/jsr/detail?id=127
http://www.jcp.org/en/jsr/detail?id=127
http://instantrails.rubyforge.org/wiki/wiki.pl
http://instantrails.rubyforge.org/wiki/wiki.pl
http://instantrails.rubyforge.org/wiki/wiki.pl
http://www.thinkvitamin.com/features/ajax/responsible-asynchronous-scripting
http://www.thinkvitamin.com/features/ajax/responsible-asynchronous-scripting
http://www.thinkvitamin.com/features/ajax/responsible-asynchronous-scripting
http://www.thinkvitamin.com/features/ajax/responsible-asynchronous-scripting
http://www.thinkvitamin.com/features/ajax/responsible-asynchronous-scripting
http://www.thinkvitamin.com/features/ajax/responsible-asynchronous-scripting

References Page 59

Security, Volume 2007, Issue 3, March 2007, Pages 4-8

[Ruby07] Ruby on Rails; http://www.rubyonrails.org/; retrived on 2007-12-27

[Schw06] Schwarz, Michael; AJAX and the Search Engine Problems;

http://weblogs.asp.net/mschwarz/archive/2005/08/06/421761.aspx;

retrieved on 2007-11-18

[SunM02] Sun Microsystems; Designing Enterprise Applications with the J2EE

Platform, Second Edition;

http://java.sun.com/blueprints/guidelines/designing_enterprise_application

s_2e/app-arch/app-arch2.html#1105855, retrieved on 2007-12-08

[Weba07] Unknown Author, Accessibility of AJAX Applications;

http://webaim.org/techniques/ajax/#whynotajax; retrieved on 2007-11-18

[Wire07] Wireshark; Wireshark:About; http://www.wireshark.org/about.html;

retrieved on 2007-12-18

[Zuck07] Zucker, Daniel; What Does Ajax Mean for You?; interactions, September

and October 2007; page 10-12

http://www.wireshark.org/about.html
http://www.wireshark.org/about.html
http://www.wireshark.org/about.html
http://webaim.org/techniques/ajax/#whynotajax
http://webaim.org/techniques/ajax/#whynotajax
http://webaim.org/techniques/ajax/#whynotajax
http://java.sun.com/blueprints/guidelines/designing_enterprise_applications_2e/app-arch/app-arch2.html#1105855
http://java.sun.com/blueprints/guidelines/designing_enterprise_applications_2e/app-arch/app-arch2.html#1105855
http://java.sun.com/blueprints/guidelines/designing_enterprise_applications_2e/app-arch/app-arch2.html#1105855
http://java.sun.com/blueprints/guidelines/designing_enterprise_applications_2e/app-arch/app-arch2.html#1105855
http://java.sun.com/blueprints/guidelines/designing_enterprise_applications_2e/app-arch/app-arch2.html#1105855
http://java.sun.com/blueprints/guidelines/designing_enterprise_applications_2e/app-arch/app-arch2.html#1105855
http://weblogs.asp.net/mschwarz/archive/2005/08/06/421761.aspx
http://weblogs.asp.net/mschwarz/archive/2005/08/06/421761.aspx
http://weblogs.asp.net/mschwarz/archive/2005/08/06/421761.aspx
http://www.rubyonrails.org/
http://www.rubyonrails.org/
http://www.rubyonrails.org/

	 1 Abstract
	 2 Introduction to AJAX
	 2.1 The classic web model
	 2.2 The Ajax web model
	 2.3 AJAX analyzed
	 2.4 The XMLHttpRequest Object
	 2.5 AJAX on the Network Layer
	 2.6 Advantages of AJAX-Applications
	 2.7 Disadvantages of AJAX-Applications
	 2.7.1 Usability problems
	 2.7.2 Security Risks in AJAX-Applications

	 3 The Model-View-Controller pattern
	 4 Ruby on Rails
	 4.1 AJAX-Components
	 4.2 Installation
	 4.2.1 First Ruby on Rails Project

	 4.3 Code Examples in Ruby on Rails
	 4.4 Prototype
	 4.5 script.aculo.us

	 5 Apache MyFaces
	 5.1 JavaServer Faces
	 5.2 AJAX-Components
	 5.3 Installation
	 5.4 The Toolkit Dojo
	 5.4.1 Code example of Dojo

	 5.5 Code Examples in Apache MyFaces

	 6 Comparison
	 6.1 Advantages of Apache MyFaces / Ruby on Rails
	 6.2 Disadvantages of Apache MyFaces / Ruby on Rails

	 7 Conclusion
	 8 References

