
OOo: Selected Pitonyak' Nutshells – Michael Gmeiner Page 1

OpenOffice.org:
Selected Pitonyak' Nutshells

in ooRexx

Michael Gmeiner
Vienna University of Economics and Business Administration
Reg. No. 0150323
E-Mail: h0150323@wu-wien.ac.at

Seminar Paper
Department of Business Informatics
Prof. Dr. Rony G. Flatscher
Department Chair "Information Systems and Operations"

OOo: Selected Pitonyak' Nutshells – Michael Gmeiner Page 2

Table of Contents

1 Introduction...5

1.1 Abstract..5

1.2 Problem Discussion...5

1.3 Approach...5

2 Technical Requirements...6

2.1 Open Object Rexx..6

2.1.1 History..6

2.1.2 Language aspects...7

2.1.3 Syntax..8

2.2 Java and the Bean Scripting Framework (BSF)......................................10

2.2.1 Java...10

2.2.2 Bean Scripting Framework (BSF)..11

2.2.3 BSF4Rexx..12

2.2.4 History..13

2.3 OpenOffice.org..14

2.3.1 History..14

2.3.2 Applications...15

2.3.3 Programming OOo...15

2.3.4 UNO architecture...16

2.3.5 Object Model of OpenOffice.org..17

2.3.6 Adding UNO support to Rexx: UNO.CLS.......................................20

2.4 Roundup and “Hello World” example:..21

3 Examples..24

3.1 Writer examples...24

3.1.1 DisplayAllStyles.rex...24

3.1.2 ShowDocumentSummary.rex..26

3.1.3 SearchAndFormat.rex..28

3.1.4 FontSummary.rex..30

3.1.5 InsertBitmap.rex...32

3.1.6 FilePicker.rex...34

3.1.7 StatusIndicator.rex...35

3.2 Calc macros...37

OOo: Selected Pitonyak' Nutshells – Michael Gmeiner Page 3

3.2.1 CellValues.rex..37

3.2.2 FillCells.rex..39

3.2.3 NamedRanges.rex...40

3.2.4 ProtectSheets.rex..41

3.2.5 SelectRange.rex..43

3.3 Impress Example...44

3.3.1 CustomPresentation.rex..44

4 Conclusion..48

5 Outlook: UNO Magic...50

5.1 Introduction..50

5.2 UNO Magic example ...51

6 References...53

OOo: Selected Pitonyak' Nutshells – Michael Gmeiner Page 4

List of Figures

Figure 1: Built in Rexx functions [Flat01]...8

Figure 2: BSF4Rexx linking Java and Rexx [Flat02]...13

Figure 3: The urp protocol [Flat03]..17

Figure 4: Service example [Flat03]..18

Figure 5: The service manager [Flat03]...19

Figure 6: From ooRexx to OpenOffice.org [Augu05] cited by [Aham05]...........21

Figure 7: HelloWorld.rex..21

Figure 8: HelloWorld.rex output...23

Figure 9: DisplayAllStyles.rex..25

Figure 10: ParagraphStyles...26

Figure 11: ShowDocumentSummary.rex...27

Figure 12: Document summary...28

Figure 13: SearchAndFormat.rex..29

Figure 14: Input box..29

Figure 15: Message box..30

Figure 16: FontSummary.rex...31

Figure 17: Miscellaneous fonts..32

Figure 18: InsertBitmap.rex...33

Figure 19: Web graphic inserted...33

Figure 20: FilePicker.rex..35

Figure 21: File dialog...36

Figure 22: StatusIndicator.rex...37

Figure 23: Hello from ooRexx..37

Figure 24: Cell Types..38

Figure 25: CellValues.rex..39

Figure 26: Empty cell...39

Figure 27: Cell with a formula..39

Figure 28: FillCells.rex...40

Figure 29: Data input...40

Figure 30: NamedRanges.rex...41

Figure 31: Three named ranges..42

Figure 32: ProtectSheets.rex...43

Figure 33: Sheet selection list...43

Figure 34: SelectRange.rex...44

Figure 35: Cell selection..45

Figure 36: CustomPresentation.rex...47

Figure 37: Presentation selection..47

Figure 38: Rehearsal timer..47

Figure 39: UNO Magic info popup...51

Figure 40: DisplayAllStyles.rex (UNO Magic)..52

OOo: Selected Pitonyak' Nutshells – Michael Gmeiner Page 5

1 Introduction

1.1 Abstract

This paper tries to find out how Open Object Rexx (ooRexx) can be used to au-

tomate OpenOffice.org using various concepts like BSF and UNO. It explains

which software components are needed and what benefits can be expected

from writing OpenOffice.org macros. The theoretical aspects are backed up by

various nutshell examples which demonstrate how to apply OpenOffice.org

macro knowledge.

1.2 Problem Discussion

The automation of Microsoft Office via VBA is well documented and approved.

Is it also possible to automate OpenOffice.org applications to benefit from this

free, platform-independent office suite? Is ooRexx a suitable macro language to

achieve this goal? Can existing OOo Basic macros be used as a guideline?

The result should also follow OpenOffice.org's cross-platform approach, i.e. no

platform-specific concepts should be used, additionally no proprietary software

tools must be used.

1.3 Approach

The necessary software components are listed and briefly described in the first

step. An introduction to the script language ooRexx is provided in order to un-

derstand the nutshell examples in later chapters. These examples try to illus-

trate the capabilities of OpenOffice.org in conjunction with a powerful macro

language like ooRexx. The basic concepts of the UNO framework are explained

at first theoretically and later on practically, in the provided examples. The em-

phasis of this paper lies on the examples which can be used as a guideline to

create own OpenOffice.org macros. Most macros are based on Andrew

Pitonyak's OOo Basic nutshells ([Pito04] and [Pito08])

OOo: Selected Pitonyak' Nutshells – Michael Gmeiner Page 6

2 Technical Requirements

2.1 Open Object Rexx

Open Object Rexx ("ooRexx" or simply "Rexx") is a scripting language originally

developed by IBM, roughly comparable to Tcl or Python. The main goal was to

create a powerful yet easy to learn macro language for any system. It is a high

level programming language which is very close to human language, in fact it

resembles pseudo code regarding its simplicity. IBM open-sourced ooRexx in

December 2004, today it is freely available on virtually any platform, including

Windows, Linux, MacOS, Amiga OS as well as on portable systems like Palm

OS, EPOC and Windows CE.

2.1.1 History

The first specification for the language (originally called REX) was dated 29

March 1979. IBM programmer Mike Cowlishaw wanted to create a new macro

language for IBM mainframes in order to replace EXEC 2, a powerful macro

language which was, however, lacking readability because of its complex syn-

tax. Cowlishaw aimed to develop a similarly powerful language with a more

classical syntax of high level languages like Pascal.

The first implementation was available in late 1979 and was spread via IBM's

world-wide internal network. It quickly gained popularity because of its simplici-

ty, and benefited from numerous contributions over the network. Because of

ample feedback it quickly evolved to meet the user's requirements. Not only in-

ternal IBM programmers were avid users of the language, it also became very

popular among IBM's customers, which also led to a strong commitment of IBM

towards Rexx.

In 1985 the first non-IBM implementation of Rexx was released for PC-DOS, a

commercial software known as Personal Rexx. 1992 was the birth year of the

first Open Source ports: Ian Collier's REXX/imc for Unix and Anders Chris-

tensen's Regina (later adopted by Mark Hessling) for Windows and Linux. 1996

was another landmark year, as the ANSI standard for Rexx has been complet-

ed and published.

OOo: Selected Pitonyak' Nutshells – Michael Gmeiner Page 7

In 2004, IBM announced to release the object oriented version of Rexx,

ooRexx, under the Common Public License (an Open Source license published

by IBM). In 2005, the Rexx Language Association (RexxLA) took over the de-

velopment.

IBM has also released an other Rexx-spinoff called “NetRexx”, which was de-

signed to run Rexx programs on the Java Virtual Machine. The syntax as well

as the object model differ considerably from Classic/Open Object Rexx, so it

will not be discussed any further in this paper.

The following chapter will outline basic programming concepts of ooRexx. It is

not meant to be a comprehensive programming guide, instead it should provide

general knowledge and fundamentals of the language in order to understand

the OpenOffice.org nutshell examples in later chapters.

2.1.2 Language aspects

As mentioned before, the Rexx language facilitates English-like statements,

which highly eases the understanding of the code. Examples would be for in-

stance the SAY statement, which prints text to the default output device (usual-

ly the screen). Other statements, which are similar to other high level program-

ming languages include the IF THEN ... ELSE statement, or the

DO END block/loop statement. All statements and instructions are case in-

sensitive, strings (delimited via quotation marks) of course are processed as

provided by the user (i.e., case sensitive).

Rexx has only twenty three instruction (like SAY, CALL and PARSE) which results

in a fast learning experience; furthermore Rexx has no explicit data types (like

Integers, Strings, floating-point numbers etc.), which means that no variable

declarations have to be performed, and variables are processed automatically

in the right way.

Beside of the aforementioned instructions, Rexx offers a limited number of

built-in functions:

OOo: Selected Pitonyak' Nutshells – Michael Gmeiner Page 8

Figure 1: Built in Rexx functions [Flat01]

These Functions are available to the programmer to perform different tasks like

String operations (legth() or substr()) or file operations (filespec(),

lineout()). As these functions are not used in the examples in the following

chapters, the listing is provided for the sake of completeness. Additional func-

tions can be added easily by including libraries in order to extend the Rexx

functionality. An example for such a library will be discussed in later chapters.

Comments can be placed at any position within the code. Rexx offers two ways

to mark text as a comment: Two hyphens (--) signal that the rest of the follow-

ing line is a comment. Using the comment pattern known from C/C++/Java

(/* ... */) more lines of code can be marked as comments, and even nested

comments are allowed.

2.1.3 Syntax

Block

A block of code starts with DO and ends with END:

DO

<instructions>

END

Flow control

The well known IF – THEN – ELSE concept is also available in Rexx:

IF <condition> THEN <instruction> ELSE <instruction>

OOo: Selected Pitonyak' Nutshells – Michael Gmeiner Page 9

Use the block concept in order to execute more instructions:

IF <condition> THEN

DO

<instructions>

END

Loops

Loops can be realized in several ways, all of them are based on the DO block in-

struction. The well known BASIC/C etc. FOR-loop looks like this for instance:

DO i = 1 TO 99

SAY i

END

This loop prints the value of i every time it iterates through the loop.

Procedures

Rexx offers the concept of routines to program procedures:

::routine foo

use arg x, y

<instructions>

return z

This procedure “foo” has two arguments (x and y) and returns the value of z. It

can be called from within the code like this:

a = foo(x, y)

If a procedure has no return value, it can be called in an easier manner:

CALL foo x y

Requires – directive

In order to access functionality from other Rexx programs, the ::REQUIRES di-

rective has to be used. For programming in OOo, the class UNO has to be de-

clared in every program. It acts as the binding link between Rexx and OOo, and

offers additional functionality. [Flat03]

::requires UNO.CLS (to get OOo support)

Interaction with objects

OOo: Selected Pitonyak' Nutshells – Michael Gmeiner Page 10

The object oriented paradigm is based on objects communicating with each

other. The communication is realized via messages. The “Twiddle” (~) symbol

after an object signals such a message:

object~message

A message could be a function the object provides, so an example for this

would be a Person (object aPerson) which says something (function/message

saySomething()):

aPerson~saySomething(“Hello!”)

For programmers familiar with C++ or Java, the Twiddle is equals the . in Java

and returns the outcome of the message.

Arrays

Classic Rexx does not offer real arrays (as known from Java for example).

ooRexx however offers array functionality via the array object. Note the mes-

sage (new) after the Twiddle!

anArray = .array~new

2.2 Java and the Bean Scripting Framework

(BSF)

2.2.1 Java

The huge success of the programming language Java led to a boom Java pro-

grams for both the desktop market (Java standalone programs) as well as for

web applications (Java applets). Thanks to the platform independent concept

programmers can easily develop software for virtually any available platform,

with no or only minor modifications needed.

Java however has certain drawbacks depending on the scope of the software

project. (Refer to [King01]) It is not only a rather difficult language (heavily influ-

enced by C/C++), but it also tends to create rather large code because of its

strict syntax and object oriented concepts. Even for a small 'Hello World' pro-

gram a class has to be created, the main function has to be implemented, etc.

OOo: Selected Pitonyak' Nutshells – Michael Gmeiner Page 11

Additionally, Java programs have to be compiled first in order to execute the

program.1

Example: HelloWorld in Java vs. Rexx:

<HelloWorld.java>

Class HelloWorld

{

public static void main (String[] args)

{

System.out.println (“Hello, world! This is Java speaking.”);

}

}

Rexx:

<HelloWorld.rex>

SAY “Hello, world! This is Rexx speaking.”

As shown in the example above, script languages like Rexx offer a much easier

and intuitive way of coding, which in turn leads to a dramatically increased cod-

ing speed. These languages lack however the huge class library offered by

Java. Java features by default a vast class library which can be used to perform

various tasks, ranging from a GUI development, 2D/3D graphics development

to client/server communication etc. Additional Java libraries created by individu-

al programmers can be found in various Java web communities.

In order to combine the advantages of Java and script languages (“best of both

worlds”, so to speak), the Bean Scripting Framework has been created.

2.2.2 Bean Scripting Framework (BSF)

The BSF is a class library for Java which enables script languages to access

Java functionality (classes), and vice versa, Java to run script language code

within Java. Using the BSF, script language programmers can utilize the huge

array of Java classes in their own scripts, and Java programmers can use script

languages to automate Java applications and benefit from the convenient pro-

gramming style these languages offer.

The BSF was born in 1999 as a project of IBM and later handed over to the

Apache Software Foundation. It is now part of Apache's Jakarta project which

fosters and supports Java Open Source Software. The latest release is version

2.4.0, however a beta version of 3.0 is already available

1 The javac compiler will compile the source code first, and the java interpreter will run the bytecode
created by the compiler.

OOo: Selected Pitonyak' Nutshells – Michael Gmeiner Page 12

“The two primary components of BSF are the BSFManager and the

BSFEngine.

The BSFManager handles all scripting execution engines running

under its control, and maintains the object registry that permits

scripts access to Java objects. By creating an instance of the BSF-

Manager class, a Java application can gain access to scripting ser-

vices.

The BSFEngine provides an interface that must be implemented for

a language to be used by BSF. This interface provides an abstrac-

tion of the scripting language's capabilities that permits generic han-

dling of script execution and object registration within the execution

context of the scripting language engine.

An application can instantiate a single BSFManager, and execute

several different scripting languages identically via the BSFEngine

interface. Furthermore, all of the scripting languages handled by the

BSFManager are aware of the objects registered with that BSFMan-

ager, and the execution state of those scripting languages is main-

tained for the lifetime of the BSFManager.” [ApJa01]

Currently (version 2.4.0) there are many languages directly supported by BSF,

for example Python, Tcl, JavaScript and NetRexx. Some other languages are

also supported, they however require a separate engine in order to gain BSF

functionality. Among these languages is ooRexx, which has to rely on the

BSF4Rexx engine.

2.2.3 BSF4Rexx

BSF4Rexx is the implementation of the BSF engine for Rexx. It is written in

C++ and acts like a bridge between Java, the BSF and Rexx:

OOo: Selected Pitonyak' Nutshells – Michael Gmeiner Page 13

Figure 2: BSF4Rexx linking Java and Rexx [Flat02]

2.2.4 History

The first proof of concept was done in 2000/2001 by a student named Peter

Kalender. As he was a student of the University Essen the first BSF4Rexx ver-

sion was named „Essener Version“. Work went on and in Spring 2001 BS-

F4Rexx was presented to the RexxLA. Two years later a new version of BS-

F4Rexx, called the „Augsburger Version“, was introduced. It had some bugs

fixed and external Rexx functions added, including the loading of Java on Win-

dows and Linux platforms. [Flat02]

“Vienna Version”

The current Version, named “Vienna Version”, has been developed at the Vien-

na University of Economics by Prof. Dr. Rony G. Flatscher, is a complete revi-

sion of the Essener Version: fully compatible, and with extended functionality

for an easier usage. The most recent version is 2.6 and is freely available for

download.

OOo: Selected Pitonyak' Nutshells – Michael Gmeiner Page 14

Getting BSF functionality in Rexx

In order to get access to the vast Java resources, the BSF4Rexx class

(BSF.CLS) has to be included in the Rexx script. The two alternate methods are

either via the CALL statement, which has to be placed before any code which

needs the BSF4Rexx functionality. Another method would be the inclusion of

BSF4Rexx via a ::REQUIRES directive, which has to be placed at the end of the

script; the Rexx interpreter will invoke the directive at the beginning of the script,

thus the BSF4Rexx functionality will be given for the whole script2.

The two methods demonstrated in code snippets:

/* Including BSF4Rexx in a script, method one */

/* 1. via the CALL statement */

CALL BSF.CLS

/* BSF4Rexx functionality now available */

/* Including BSF4Rexx in a script, method two */

/* 2. via the ::REQUIRES directive */

/* BSF4Rexx functionality is available from the beginning! */

::REQUIRES BSF.CLS

2.3 OpenOffice.org

OpenOffice.org (OOo) is an Open Source office suite similar to Microsoft Office.

The most recent version is 2.4, and one key feature of the suite is its cross-plat-

form approach utilizing the JRE (Java Runtime Environment). Supported plat-

forms include Windows, Linux, BSD, MacOS X and Solaris. [Port01]

2.3.1 History

The application, originally titled “Star Office”, was developed by the German

company StarDivision. In 1999 the code was purchased by Sun Microsystems,

which soon released the code under the the GNU LGPL, creating an Open

Source office suite which should be in the future developed by the community.

The mission statement of OOo:

2 Note: The examples in this paper will all use the ::REQUIRES directive

OOo: Selected Pitonyak' Nutshells – Michael Gmeiner Page 15

"To create, as a community, the leading international office suite that will run on

all major platforms and provide access to all functionality and data through

open-component based APIs and an XML-based file format." [OOo01]

2.3.2 Applications

The functionality of OOo is offered by several different components. The main

components of OOo in a nutshell:

Writer Word processor

Calc Spreadsheet calculation

Impress Presentation program

Base Database

Draw Vector graphics editor

Math Formula editor

2.3.3 Programming OOo

OOo features an own macro language, OOo Basic, in order to perform repeti-

tive tasks and expand the functionality of the office suite. OOo Basic is compa-

rable to VBA (Visual Basic for Applications) found in Microsoft's Office suite.

The OOo macro language is very flexible and powerful, and as it is based on

the BASIC programming language, so many programmers are already familiar

with the concepts of this language.

OOo offers a library concept in order to organize macros: OOo Basic code is

stored as a “macro”, and related macros are stored in modules. Modules can

be grouped in a library, and libraries are stored in a library container. The OOo

application can act as a library container, as can any OOo document.

OOo macros can be accessed and executed via Extras – Macros – Organize

Macros. Note that the macros are separately organized for each programming

language!

OOo: Selected Pitonyak' Nutshells – Michael Gmeiner Page 16

With OOo 2.0 and above, the office suite also supports various other program-

ming languages like JavaScript and Python beside OOo Basic. Thanks to a

standardized architecture, which will be discussed in the following chapter, pro-

grammers are no longer bound to a single macro language and thus free to use

their preferred language.

An additional way to create macros is via the macro recorder. The macro

recorder, in essence, records the keystrokes and the mouse inputs performed

by the user and creates OOo Basic code which replicates the outcome of the

user input. While this is a very convenient method to create macros, it allows

only little control over the created code and does not allow the user to take full

advantage of the OOo Basic capability. It is thus only recommended for inexpe-

rienced users or very simple tasks.

2.3.4 UNO architecture

The internals of OOo are based on Universal Network Objects (UNO). The

UNO structure is a component model that offers interoperability between differ-

ent programming languages, object models, machine architectures and pro-

cesses.[Pito04] It is somewhat comparable to Java packages, in a way that

UNO follows the object oriented concept, allows inheritance, objects offer cer-

tain interfaces, communicate with each other etc.

In essence, various internal components of OOo are implemented using UNO,

and programming languages can access these objects and manipulate them.

Programming OOo is thus independent of the programming language and fol-

lows the UNO structure.

Additionally, UNO also facilitates a client/server architecture. Usually the client

and the server will run on the same machine, but it is also possible to separate

these two. The communication is realized via TCP/IP sockets, the protocol

used is called urp (UNO remote protocol) and the operating system of the client

as well as of the server machine is irrelevant.[Flat03]

OOo: Selected Pitonyak' Nutshells – Michael Gmeiner Page 17

Figure 3: The urp protocol [Flat03]

2.3.5 Object Model of OpenOffice.org

It is important to understand how the object model of OOo is realized in order to

automate OOo applications.

Services

Simply stated, objects in OOo are called services.3

”A service abstractly defines an object by combining interfaces and properties.

A UNO service typically consists of one or more interfaces and one or more

UNO structures combined to encapsulate some useful functionality. A UNO in-

terface defines how an object interacts with the outside world; a UNO structure

defines a collection of data; and a UNO service combines them together.”

[Pito04]

One of the most frequently needed services is for example the Desktop service.

It is used to load documents, create new documents and navigate between

open documents.

Interfaces

Every service exposes a range of interfaces to manipulate the object. An exam-

ple for an interface would be a function which returns data from the service, or

a method used to modify data within a service.

Interfaces are identified via the leading “X” in the name, for example the service

TextCursor offers an interface called XTextCursor.

3 Strictly speaking, a service is only the abstract definition of an object. For simplicity's sake, the word
“object” will be used as a synonym for “service” in the following chapters of this paper.

OOo: Selected Pitonyak' Nutshells – Michael Gmeiner Page 18

UNO structures

The properties of a service are called structs (structures). The properties of an

object are used to describe an object itself. An real-world example for the prop-

erties of an apple would be the color, the weight and the size. Properties, or ac-

tually structs, of an UNO service from the Writer application could be font

weight, font size and font color.

Examples for services

Figure 4 on the next page illustrates two services in UML notation. The two ser-

vices offer three interfaces each, and each interface in turn offers several meth-

ods. The OfficeDocument closely inspected:

OfficeDocument

● XPrintable

● getPrinter()

● setPrinter()

● print()

● XStoreable

● hasLocation()

● getLocation()

● isReadOnly()

● store()

● XModel

● attachResource()

● getURL()

● getArgs()

Figure 4: Service example [Flat03]

OOo: Selected Pitonyak' Nutshells – Michael Gmeiner Page 19

Note that the TextDocument service is a child of the OfficeDocument service,

hence it supports and implements all the interfaces declared by OfficeDocu-

ment.

Service Manager

The service manager in OOo is responsible for providing access to various ser-

vices (objects) from the UNO framework. Before an object can be manipulated,

it has to be requested from the service manager. It is used to control and create

services, and could be pictured as a factory offering various services:

Figure 5: The service manager [Flat03]

It is important to note that in OOo there is no single service manager; instead it

is available from various objects. Each document has its own service manager

for instance. It is used to manipulate data within the document, and hence only

provides access to document-related services. The Writer document service

manager, for instance, offers different services than the Calc service manager.

Of course, some services and interfaces are supported by more than one docu-

ment type, for instance the XPrintable interface (to print data) or the XCloseable

interface (to close the document). It is important to note that content within a

specific document can only be accessed via its respective document service

manager.

To get access to services beyond the document's scope, OOo provides access

to a global service manager. It is used to create and obtain instances of general

UNO services, for example to utilize the FilePicker dialog. As indicated before,

the global service manager has no access to objects within a document.

OOo: Selected Pitonyak' Nutshells – Michael Gmeiner Page 20

2.3.6 Adding UNO support to Rexx: UNO.CLS

OOo does not support Rexx as a macro language by default - it does, however,

support Java. The chapter “BSF4Rexx” explained how the bean scripting

framework can be used to bridge Rexx with Java, so utilizing BSF4Rexx there

is a possibility to use Rexx to automate OOo applications.

The previous chapter has explained the UNO framework, and Rexx, like any

other programming language, has to use this concept in order to access OOo

objects. The Viennese version of BSF4Rexx includes a Rexx class called

UNO.CLS which offers additional UNO support and eases UNO programming

considerably.

Key features of UNO.CLS

● Works closely together with BSF4Rexx

● Initializes the OOo session

● Makes it easy to get the XInterfaces of the object

● Offers public routines to inspect/handle UNO objects (e.g. uno.queryIn-

terfaceNames())

● Generalizes interaction at the granular level of "UNO" service objects

[Flat03]

Loading UNO.CLS works similar to loading BSF.CLS. The most convenient way

is to use the ::REQUIRES directive at the end of the code:

/* Adding UNO.CLS functionality */

::REQUIRES UNO.CLS

Note that the UNO class already invokes BSF.CLS, so loading the BSF.CLS sep-

arately is not necessary!

The following figure tries to illustrate the communication process from Rexx to

OOo. It shows that a number of different layers is used to automate OOo appli-

cations via UNO and the Java “bridge”:

OOo: Selected Pitonyak' Nutshells – Michael Gmeiner Page 21

Figure 6: From ooRexx to OpenOffice.org [Augu05] cited by [Aham05]

2.4 Roundup and “Hello World” example:

To summarize the previous chapters, Rexx can be used as a macro language

in OOo thanks to several concepts and tools.

First of all, UNO.CLS has to be loaded in every script. It invokes BSF4Rexx, the

“Java bridge”, and offers control over the UNO services offered by OOo. Rexx

can now be used manipulate these services and to automate OOo applications.

UNO services are documented in the OOo API (application programming inter-

face), which can be found at http://api.openoffice.org.

The following “Hello World” example, which is automatically pasted into the

macro editor when a new ooRexx macro is created4, is used to explain the UNO

concept and components in practice. To run this macro, open an instance of

the OOo Writer component and create an empty document.

/* Hello World in ooRexx, cf. http://www.ooRexx.org, version: 2007-09-21, */

/* Original version by rgf */

/* Simplified version by Michael Gmeiner */

xScriptContext=uno.getScriptContext() /* get the xScriptContext object */

oDoc=xScriptContext~getDocument -- get the document service (a XModel) object

str="Hello world by http://www.ooRexx.org!" /* define some text */

xTextDoc=oDoc~XTextDocument /* get the XTextDocument interface */

xTextDoc~getText~getEnd~setString(str) /* add text at the end of the text
document */

::requires UNO.CLS /* load UNO support (OpenOffice/StarOffice) for ooRexx */

Figure 7: HelloWorld.rex

4 The Hello World snippet has been stripped down to the necessary instructions in for simplicity's sake.

OOo: Selected Pitonyak' Nutshells – Michael Gmeiner Page 22

After the first two lines, which are comment lines, the UNO function

getScriptContext() is used to get a reference to the default script context,

which is stored in the variable xScriptContext.

From the xScriptContext, the getDocument method returns the active com-

ponent (the empty Writer document). This method returns a reference to the

document service object, which can now be used to manipulate the active do-

cument.

The next line defines a variable, which will be used to store the infamous Hello

World text. It is obviously not UNO-related at all, as there is no object involved

in this case.

In the next line, the XTextDocument interface is retrieved from the current docu-

ment. Remember that interface names can be identified with the leading “X” in

the name. The XTextDocument was already discussed in the UNO chapter

(“Examples for services”), and offers a method to obtain the text the document

contains (getText()).

This function is used in the next line to get the text of the document. In order to

append text to the end of text, the function getEnd() is used, which returns the

end of the specified text. Finally, the text contained by the variable str is inser-

ted into the text document using the setString() method.

Both functions getEnd() and setString() are derived from the XTextRange

interface, which is implemented by the Text service object the function get-

Text() returned. To get to know which interfaces are supported by a service,

either the UNO function uno.queryInterface() can be used, or the OOo API

reference must be consulted. Example 3.2.1 in the following chapter will provide

an example for the use of the function uno.queryInterface().

The last line is needed to enable UNO support in Rexx: the ::REQUIRES direc-

tive loads the class UNO.CLS.

OOo: Selected Pitonyak' Nutshells – Michael Gmeiner Page 23

Figure 8: HelloWorld.rex output

OOo: Selected Pitonyak' Nutshells – Michael Gmeiner Page 24

3 Examples

3.1 Writer examples

3.1.1 DisplayAllStyles.rex

This example examines the document libraries and displays available all styles.

After getting the xScriptContext and the active component (document), the

XTextDocument interface is requested. This interface is needed to get access

to text document-specific functions.

xxTextDoc = oDoc~XTextDocument

The available style families are retrieved via the method getStyleFamilies

from the XStyleFamiliesSupplier. This supplier-concept is very common in

the UNO framework. Many objects or properties have to be requested through

a supplier interface.

The getStyleFamilies function returns a collection of style families. To iterate

through the collection the following construction is used:

DO style OVER vStyleNames

This DO loop iterates through all items in the collection. In every cycle an item

from the collection vStyleNames is assigned to the variable style. The names

of the elements are determined via the getElementNames function. A message

box is displayed which usually contains 34 elements. The message box functi-

on is provided by BSF4Rexx:

.bsf.dialog~MessageBox(s, n)

There are three different dialog types available, MessageBox (which displays a

simple message only), DialogBox (which can be customized, e.g. buttons can

be defined) and InputBox (which requests a user input).

Note that the square brackets can be used to address a single element in an

array/a collection, for example:

vFamNames[n]

returns the nth element of vFamNames.

OOo: Selected Pitonyak' Nutshells – Michael Gmeiner Page 25

/* DisplayAllStyles.rex, version 08-08-22 */

/* ported from OOo Basic as found in Pitonyaks "OOo Macros Explained" */

/* Listing 12, page 179cf */

/* Rexx code by M. Gmeiner*/

xScriptContext=uno.getScriptContext() /* get the xScriptContext object */

oDoc=xScriptContext~getDocument -- get the document service (a XModel) object

xTextDoc = oDoc~XTextDocument -- get the XTextDocument interface

vFamilies = xTextDoc~XStyleFamiliesSupplier~getStyleFamilies

vFamNames = vFamilies~getElementNames -- get the available styles

DO n OVER vFamNames -- iterate through the styles

 s = ""

 vStyles = vFamilies~getByName(n)

 xStyleNames = vStyles~XNameAccess

 vStyleNames = xStyleNames~getElementNames

 j = 1

 DO style OVER vStyleNames

 s = s j ":" style "0a"x

 IF ((j + 1) // 35 = 0) THEN -- display 35 elements each time

DO

 .bsf.dialog~MessageBox(s, n)

 s = ""

 END

 j = j + 1

 END

 IF Length(s) > 0 THEN

.bsf.dialog~MessageBox(s, n)

END

::requires UNO.CLS /* load UNO support (OpenOffice/StarOffice) for ooRexx */

Figure 9: DisplayAllStyles.rex

OOo: Selected Pitonyak' Nutshells – Michael Gmeiner Page 26

Figure 10: ParagraphStyles

3.1.2 ShowDocumentSummary.rex

This nutshell can be used to display additional document information. A mes-

sage box is displayed which contains information like the author of the docu-

ment and the creation date.

At first a useful concept is used to check whether or not an object offers a cer-

tain interface. Using the function uno.queryInterfaceName() provided by

UNO.CLS this can be achieved easily:

oDoc~uno.queryInterfaceName("XDocumentInfoSupplier")

In the next step, the document info is retrieved. First the filename, which is re-

turned by the oDoc component in URL notation. The function uno.convert-

FromUrl() converts to URL notation to a simple file name.

Afterwards, the document info is obtained using the XDocumentInfoSupplier.

The properties of the document are accessed via the getPropertyValue func-

tion, which needs a string argument containing the desired property name.

OOo: Selected Pitonyak' Nutshells – Michael Gmeiner Page 27

The dates (creationDate, modifyDate) are no simple data types but structu-

res. Because of that, they cannot be processed like other properties which con-

tain a string only. In order to properly display the date and time, the following

method is used:

sCreationDate~Hours /* or */ sCreationDate~Minutes –- etc.

Finally a message box is displayed containing the retrieved information. Figure

12 shows the document summary of Andrew Pitonyak's macro document

([Pito08]).

/* ShowDocumentSummary.rex --- display document info */

/* Based on A. Pitonyak's OOo Basic macro: */

/* http://www.pitonyak.org/AndrewMacro.odt */

/* Page 54, Listing 5.45, Chapter 5.18.1 */

/* Rexx code by M. Gmeiner, May 2008 */

xScriptContext=uno.getScriptContext() /* get the xScriptContext object */

oDoc=xScriptContext~getDocument -- get the document service (a XModel object)

LF = "0a"x -- linefeed control character (Hex

IF (oDoc~uno.queryInterfaceName("XDocumentInfoSupplier") <> "") THEN

DO

 infoString = ""

 infoString = " File:" uno.convertFromUrl(oDoc~getURL) LF -- the file
-- name

 .bsf.dialog~messageBox("trying to fetch the document infos...")

 docInfo = oDoc~XDocumentInfoSupplier~getDocumentInfo -- document info
-- read properties

 infoString = infoString "Title:" -

docInfo~XPropertySet~getPropertyValue("Title") LF

 infoString = infoString "Author:" -

 docInfo~XPropertySet~getPropertyValue("Author") LF

 sCreationDate = docInfo~XPropertySet~getPropertyValue("CreationDate")

 creationDate = sCreationDate~Year || "-" || -

 sCreationDate~Month || "-" || sCreationDate~Day "@" -

 sCreationDate~Hours || ":" || sCreationDate~Minutes

 infoString = infoString "Creation date:" creationDate LF

 infoString = infoString "Description:" -

docInfo~XPropertySet~getPropertyValue("Description") LF

 infoString = infoString "Keywords:" -

docInfo~XPropertySet~getPropertyValue("Keywords") LF

 infoString = infoString "Last modified by:" -

docInfo~XPropertySet~getPropertyValue("ModifiedBy") LF

 sModifyDate = docInfo~XPropertySet~getPropertyValue("ModifyDate")

 modifyDate = sModifyDate~Year || "-" || sModifyDate~Month || -

"-" || sModifyDate~Day "@" sModifyDate~Hours || -

":" || sModifyDate~Minutes

 infoString = infoString "Modify date:" modifyDate LF

 .bsf.dialog~messageBox(infoString)

END

::requires UNO.CLS /* load UNO support (OpenOffice/StarOffice) for ooRexx */

Figure 11: ShowDocumentSummary.rex

OOo: Selected Pitonyak' Nutshells – Michael Gmeiner Page 28

Figure 12: Document summary

3.1.3 SearchAndFormat.rex

The next macro is used to demonstrate how to perform a search, and addition-

ally how to format text.

Character/font properties are usually defined via constants, for example the font

weight. In order to get a constant, the BSF4Rexx function bsf.getConstant()

is used. As the font weight requires a FLOAT value, the constant has to be con-

verted accordingly using the box() function.

The search descriptor has to be retrieved fist using the XSearchable interface.

Afterwards the search term (searchString) is defined. This can be achieved

either via an interface and the setSearchString method, or directly via the

search descriptor:

oDescriptor~SearchString = sWord -- our search term (DIRECT ACCESS)

oDescriptor~XSearchDescriptor~setSearchString(sWord) -- interface access

The findFirst function tries to find the first occurrence of the search term. If

there is matching text in the document, the findNext function continues to

search. The .nil object (which basically stands for “nothing”) is returned in

case that nothing is found.

The font properties of the found text are accessed via the XPropertySet inter-

face. Using the setPropertyValue method, the property charWeight is set to

bold (using the constant that was retrieved in the beginning)

Finally, the number of occurences found is displayed in a popup (Figure 15).

OOo: Selected Pitonyak' Nutshells – Michael Gmeiner Page 29

/* SearchAndFormat.rex: search a text and set the font weight to BOLD */

/* Based on A. Pitonyak's OOo Basic macro: */

/* http://www.pitonyak.org/AndrewMacro.odt */

/* Page 185, Listing 7.41, Chapter 7.14 */

/* Rexx code by M. Gmeiner, May 2008 */

xScriptContext=uno.getScriptContext() /* get the xScriptContext object */

oDoc=xScriptContext~getDocument -- get the document service (a XModel object)

fwBold = box("float", bsf.getConstant("com.sun.star.awt.FontWeight", "BOLD"))

sWord = .bsf.dialog~inputBox("Please enter a search term!", "ooRexx", -
"question") -- request a search term

-- use the XSearchable-Interface to get a com.sun.star.util.SearchDescriptor

oDescriptor = oDoc~XSearchable~createSearchDescriptor

-- Method 1: our search term (DIRECT ACCESS)

-- oDescriptor~SearchString = sWord

-- Method 2: our search term (INTERFACE ACCESS)

oDescriptor~XSearchDescriptor~setSearchString(sWord)

-- don't search complete words only

oDescriptor~setPropertyValue("SearchWords", .false)

-- search is case insensitive

oDescriptor~setPropertyValue("SearchCaseSensitive", .false)

found = 0

oFound = oDoc~XSearchable~findFirst(oDescriptor)

DO WHILE (oFound <> .nil)
 -- get the property set of the text range

 props = oFound~XTextRange~XPropertySet

 -- set the font weight -> bold

 props~setPropertyValue("CharWeight", fwBold)

 found = found + 1

 -- find the next occurrence

 oFound = oDoc~XSearchable~findNext(oFound~XTextRange~getEnd, oDescriptor)

END

.bsf.dialog~messageBox(found "occurrence(s) found!", "ooRexx", "information")

::requires UNO.CLS /* load UNO support (OpenOffice/StarOffice) for ooRexx */

Figure 13: SearchAndFormat.rex

Figure 14: Input box

OOo: Selected Pitonyak' Nutshells – Michael Gmeiner Page 30

Figure 15: Message box

3.1.4 FontSummary.rex

This is a useful macro which creates a sample text in all available fonts in-

stalled on the system.

It first requests a sample phrase from the user, which will be formatted in vari-

ous font styles. Should the user enter no text, a standard phrase will be used

instead ("ooRexx owns OpenOffice. Nice, innit?").

The method lockControllers in the next line could be used to disable screen

updates. If desired, this prevents that the process of filling the document with

sample phrases can be masked this way.

The TextCursor interface is used to format text. Using the XPropertySet in-

terface of the TextCursor the font is changed at the position of the text cursor,

thus any text entered afterwards will have the new font style.

The available font list is obtained from the XDevice interface (function get-

FontDescriptors). The following DO loop iterates through the font collection

and displays the sample text in all available font styles.

Text is pasted into the document using the insertString method provided by

the XText interface:

xText~insertString(xText~getEnd, "Font Name: " fontName || LF, .false)

The first parameter ensures that the text is inserted at the end of the document;

the next parameter is the string to be inserted, and the last parameter specifies

whether or not the text will be replaced (in case that it is not inserted at the end

of the document).

OOo: Selected Pitonyak' Nutshells – Michael Gmeiner Page 31

If the controller was locked at the beginning of the macro, it is important to un-

lock it at the end. Otherwise the document will not be updated (refreshed) prop-

erly, resulting in an odd behavior.

/* FontSummary.rex -- displays a sample text in all available fonts */

/* Based on A. Pytoniak's second macro (Listing 2) found in: */

/* http://www.pitonyak.org/AndrewFontMacro.odt */

/* Rexx code by M. Gmeiner, June 2008 */

xScriptContext=uno.getScriptContext() /* get the xScriptContext object */

oDoc=xScriptContext~getDocument -- get the document service (a XModel object)

sampleText = .bsf.dialog~ -

inputBox("Please enter a phrase for the sample text", "ooRexx", -
"question") -- request a sample text

-- Set a default text if no text is entered by the user

IF sampleText = "" THEN sampleText = "ooRexx owns OpenOffice! Nice, innit?"

-- oDoc~lockControllers /* could be used to freeze the screen */

xText = oDoc~XTextDocument~getText -- get the XText interface

-- create the TextCursor interface

xCursor=xText~createTextCursorByRange(xText~getEnd)

-- get the ContainerWindow for the XDevice

xWindow = oDoc~getCurrentController~getFrame~getContainerWindow

xDevice = xWindow~XDevice -- the XDevice knows all available fonts

-- the function getFontDescriptors returns a collection

oFonts = xDevice~getFontDescriptors

-- save the original font

originalFont = xCursor~XPropertySet~getPropertyValue("CharFontName")

LF = "0a"x -- line feed control character

lastFont = ""

DO font OVER oFonts

 fontName = font~name -- get the font name

 IF fontName <> lastFont THEN -- used to eliminate duplicate fonts

 DO

 lastFont = fontName

 xText~insertString(xText~getEnd, "Font Name: " fontName || -

LF, .false) -- insert the name

-- switch font

 xCursor~XPropertySet~setPropertyValue("CharFontName", fontName)

-- insert the sample text

 xText~insertString(xText~getEnd, sampleText, .false)

-- back to original font

 xCursor~XPropertySet~setPropertyValue("CharFontName", originalFont)

 -- two line feed characters

 xText~insertString(xText~getEnd, LF || LF, .false)

 END

END

-- oDoc~unlockControllers /* unlock the screen */

::requires UNO.CLS /* load UNO support (OpenOffice/StarOffice) for ooRexx */

Figure 16: FontSummary.rex

OOo: Selected Pitonyak' Nutshells – Michael Gmeiner Page 32

Figure 17: Miscellaneous fonts

3.1.5 InsertBitmap.rex

This code example shows how to insert a bitmap (actually any image file sup-

ported by OOo) into a Writer document.

First of all a graphic has to be specified, as always with OOo in URL notation.

This is especially handy as it also allows inserting images from a remote loca-

tion, e.g. a graphic hosted on a web server.

The following line requests the service factory of the document. It is used to

create an instance of a TextGraphicsObject, which will be used to internally

store the graphic.

xServiceManager = oDoc~XMultiServiceFactory

oTextGraphic = xServiceManager -

 ~createInstance("com.sun.star.text.TextGraphicObject")

The object's properties are accessed via the already known XPropertySet in-

terface. It should be clear by now that all objects supporting the XPropertySet

interface behave the same (ie. offer the same functions to get and set proper-

ties). The first property (“GraphicURL”) contains the URL of the file. The An-

chorType property determines how a graphic is anchored. Using the value

“AS_CHARACTER” the graphic will be inserted like a character at the desired cur-

sor position. Other anchor types would result in a centered image across the

paragraph, etc.

OOo: Selected Pitonyak' Nutshells – Michael Gmeiner Page 33

In the next step the image is inserted at the text cursor position. Finally, the

XGraphicObjectsSupplier interface from the current document is used in or-

der to get access to the graphic objects in the document. The number of gra-

phics in the document is displayed using a message box.

/* InsertBitmap.rex --- how to insert a bitmap into a Writer document */

/* loosely based on Christian Lohmaier's Java snippet found at */

/* http://codesnippets.services.openoffice.org/Writer/ ~ */

/* Writer.EmbedAGraphicIntoATextdocument.snip */

/* Rexx code by M. Gmeiner, June 2008 */

xScriptContext=uno.getScriptContext() /* get the xScriptContext object */

oDoc=xScriptContext~getDocument -- get the document service (a XModel object)

-- Web source, requires an active internet connection!

sGraphicURL = "http://api.openoffice.org/branding/images/logonew.gif"
xServiceManager = oDoc~XMultiServiceFactory -- get the document's
 -- service manager

-- create a new graphic object which contains the image

oTextGraphic = xServiceManager -

 ~createInstance("com.sun.star.text.TextGraphicObject")

xGraphicProperties = oTextGraphic~XPropertySet -- get the object's properties

-- set the image URL and the anchor type

xGraphicProperties~setPropertyValue("GraphicURL", sGraphicURL)

xGraphicProperties~setPropertyValue("AnchorType", -

 bsf.getConstant("com.sun.star.text.TextContentAnchorType", "AS_CHARACTER"))

xText = oDoc~XTextDocument~getText -- get the XText interface

xCursor=xText~createTextCursor() -- create the TextCursor interface

-- insert the TextContent of the image

-- at the TextCursor position

xText~insertTextContent(xCursor, oTextGraphic~XTextContent, .false)

-- get the GraphicObjects collection

graphicObjects = oDoc~XTextGraphicObjectsSupplier~getGraphicObjects

-- display the number of images in the collection

.bsf.dialog~messageBox("Number of graphic objects:" -

graphicObjects~XIndexAccess~getCount)

::requires UNO.CLS /* load UNO support (OpenOffice/StarOffice) for ooRexx */

Figure 18: InsertBitmap.rex

Figure 19: Web graphic inserted

OOo: Selected Pitonyak' Nutshells – Michael Gmeiner Page 34

3.1.6 FilePicker.rex

This example uses the FilePicker dialog to open a Writer document.

First of all the service manager is requested. Note that this time not the docu-

ment's service manager is used, but the xContext service manager instead. As

explained before, the document service manager can only offer document-rela-

ted services. Using the global service manager an instance of the FilePicker

object is created:

sm = xContext~getServiceManager /* get the service manager */

-- get FilePicker service

s_FileDialog = -

sm~createInstanceWithContext("com.sun.star.ui.dialogs.FilePicker", -

xContext)

Via the XFilterManager the filter is set in order to display Writer documents

only (*.odt). Furthermore the title of the dialog is set, and the MultiSelection-

Mode is set to false, hence only one file can be selected only.

The execute function displays the file dialog. As it is modal, the code has to

wait until the dialog is closed again. The function will return either TRUE if a file

has been selected or FALSE in case that no file was selected (usually the user

pressed 'Cancel'). If a file has been selected, the macro tries to open the file via

the XComponentLoader. The newDoc variable is used to store the reference to

the new document. Should OOo be unable to open the file (a user could still se-

lect an other file type than *.odt, even with the filter set properly) a NIL object is

returned.

/* FilePicker.rex -- open a Writer file using the FilePicker dialog */

/* Based on a Rexx snippet by R. G. Flatscher */

/* Example by M. Gmeiner, June 2008 */

xScriptContext=uno.getScriptContext() /* get the xScriptContext object */

oDoc=xScriptContext~getDocument -- get the document service (a XModel object)

xDesktop=xScriptContext~getDesktop /* get the desktop (XDesktop) object */

xContext=xScriptContext~getComponentContext /* get the context (a
XComponentContext) object */

sm = xContext~getServiceManager /* get the service manager */
-- get FilePicker service

s_FileDialog = -

sm~createInstanceWithContext("com.sun.star.ui.dialogs.FilePicker", -
xContext)

x_FileDialog = s_FileDialog~XFilePicker -- get XFilePicker interface

x_FileDialogFilters = s_FileDialog~XFilterManager -- get XFilterManager int.

x_FileDialogFilters~appendFilter("ODT *.odt", "*.odt") -- set file extension

x_FileDialog~setTitle("Select OOo Writer document") -- set title
-- allow multi selection mode (but in this example we want a single file only)

-- x_FileDialog~setMultiSelectionMode(.true)

x_FileDialog~setMultiSelectionMode(.false) -- dis-allow multi selection mode

OOo: Selected Pitonyak' Nutshells – Michael Gmeiner Page 35

IF x_FileDialog~execute = .true THEN

DO

 files = x_FileDialog~getFiles

 odtFile = files[1] -- only one file could be selected!

 -- try to open the file

 .bsf.dialog~messageBox("file chosen:" uno.convertFromUrl(odtFile))

 newDoc = xDesktop~XComponentLoader~LoadComponentFromUrl(odtFile, -

 "_blank", 0, .uno~noProps)

 IF (newDoc = .nil) THEN

 .bsf.dialog~messageBox("Sorry - could not open" -

 uno.convertFromUrl(odtFile) || "!")

END ELSE

DO

 .bsf.dialog~messageBox("no file chosen!")

END

::requires UNO.CLS /* load UNO support (OpenOffice/StarOffice) for ooRexx */

Figure 20: FilePicker.rex

Figure 21: File dialog

3.1.7 StatusIndicator.rex

This code snippet explains how to write text to the status bar using the Sta-

tusIndicator service.

In order to get to the desired XStatusIndicatorFactory interface, the XFrame

interface has to be requested from the current document (oDoc). The Sta-

OOo: Selected Pitonyak' Nutshells – Michael Gmeiner Page 36

tusIndicator is now created using the method createStatusIndicator of-

fered by the XStatusIndicatorFactory interface.

In order to display text for the first time, the start method has to be used. It as-

pects two arguments, the first one contains the text to be displayed, the second

argument (numerical) can be used to set the status (progression) bar. So for

example if the macro calculates or processes some data, the progression can

be displayed.

Once the StatusIndicator has been started, further text can only be dis-

played via the setText method. Another call of the start method would not

work, unless the StatusIndicator service has been stopped using the end

method before.

/* StatusIndicator.rex -- display text in the status bar */

/* Original OOo Basic macro found in A. Pitonyak's AndrewMacros.odt: */

/* http://www.pitonyak.org/AndrewMacro.odt */

/* Page 27, Listing 5.1 (Chapter 5.1) */

/* Original author: Sasa Kelecevic */

/* Rexx code by M. Gmeiner, May 2008 */

xScriptContext=uno.getScriptContext() /* get the xScriptContext object */

oDoc=xScriptContext~getDocument -- get the document service (a XModel) object

xDesktop=xScriptContext~getDesktop /* get the desktop (XDesktop) object */

xFrame = oDoc~getCurrentController~getFrame -- get the XFrame interface

-- this interface lets us create an Indicator

xStatusIndicatorFactory = xFrame~XStatusIndicatorFactory

xStatusIndicator = xStatusIndicatorFactory~createStatusIndicator

xStatusIndicator~start("Hello from ooRexx! ", 0) -- start the service

xStatusIndicator~setText("...some more text!") -- display more text

::requires UNO.CLS /* load UNO support (OpenOffice/StarOffice) for ooRexx */

Figure 22: StatusIndicator.rex

Figure 23: Hello from ooRexx

OOo: Selected Pitonyak' Nutshells – Michael Gmeiner Page 37

3.2 Calc macros

3.2.1 CellValues.rex

The first Calc macro demonstrates how to actually address cells and read their

contents.

First of all the sheets collection from the current document is obtained via the

XSpreadsheetDocument interface (using the function getSheets). In order to

access individual sheets one possibility would be via the sheet's name. The na-

mes can be requested using the getElementNames function which returns an

array of all sheet names. In this macro we simply choose the first sheet of the

document:

xSheets = oDoc~XSpreadsheetDocument~getSheets

sheetNames = xSheets~getElementNames
xSheet1 = xSheets~getByName(sheetNames[1])~XSpreadSheet

There are several methods to access a certain cell. This macro shows four

ways how to obtain a cell object:

xCell = xSheet1~getCellByPosition(0, 0) -- method 1

xCell = uno.getCell(xSheet1, 0, 0) -- method 2 provided by UNO.CLS

xCell = xSheet1~getCellRangeByName("A1")-- method 3, alphanumeric address
xCell = uno.getCell(xSheet1, "A1") -- method 4 provided by UNO.CLS

Method one and three are via the XSheet interface, either via a numerical ad-

dress (format col, row) or via an alphanumerical address usually preferred by

users (format “A1B1”). Method two and four are shortcuts provided by

UNO.CLS. Internally the cells are addressed via the XSheet interface, but it sa-

ves few characters and makes life easier.

A cell can have either of four different cell types:

TYPE Contains Functions

TEXT Standard text (strings), not processed getString (XText interface)

VALUE Numerical values getValue

FORMULA Mathematical formulae/expressions getFormula, getValue

EMPTY Empty cell -

Figure 24: Cell Types

These cell types are obtained via the bsf.getConstant function which looks

up the respective constant value. The cell type is needed in order to process

OOo: Selected Pitonyak' Nutshells – Michael Gmeiner Page 38

the content of the cell accordingly. Cells with text values cannot be used for ma-

thematical operations for instance. Note that FORMULA cells can both return

the value of the formula as well as the formula itself (eg. “SUM(A1:B1)”)

In order to test the cell type against the obtained constants, the function UN-

O.areSame is used. A regular comparison via the “=” operator will not work as

the two operands are not compared by value in this case; instead, the refe-

rences are compared.

/* CellValues.rex --- read cell values and determine the cell type */

/* Loosely based on Sasa Kelecevic' example found in AndrewMacro.odt: */

/* http://www.pitonyak.org/AndrewMacro.odt */

/* Page 117, Listing 6.3 (Chapter 6.2) */

/* Rexx code by M. Gmeiner, May 2008 */

xScriptContext=uno.getScriptContext() /* get the xScriptContext object */

oDoc=xScriptContext~getDocument /* get the document service (a XModel)
object */

xSheets = oDoc~XSpreadsheetDocument~getSheets

sheetNames = xSheets~getElementNames

-- select the first sheet of the active document

xSheet1 = xSheets~getByName(sheetNames[1])~XSpreadSheet

xCell = xSheet1~getCellByPosition(0, 0) -- method 1

xCell = uno.getCell(xSheet1, 0, 0) -- method 2 provided by UNO.CLS

xCell = xSheet1~getCellRangeByName("A1")-- method 3, alphanumeric address

xCell = uno.getCell(xSheet1, "A1") -- method 4 provided by UNO.CLS

cellType = xCell~getType -- determine the cell type (text, value, formula)

/* Define the cellType values */

enumTEXT = bsf.getConstant("com.sun.star.table.CellContentType", "TEXT")

enumVALUE = bsf.getConstant("com.sun.star.table.CellContentType", "VALUE")

enumFORMULA = bsf.getConstant("com.sun.star.table.CellContentType", "FORMULA")

enumEMPTY = bsf.getConstant("com.sun.star.table.CellContentType", "EMPTY")

LF = "0a"x -- line feed control character

IF uno.areSame(enumTEXT, cellType) THEN

 msg = "Cell type is TEXT" || LF || "Cell content:" xCell~XText~getString

ELSE IF uno.areSame(enumVALUE, cellType) THEN

 msg = "Cell type is VALUE" || LF || "Cell content:" xCell~getValue

ELSE IF uno.areSame(enumFORMULA, cellType) THEN

 msg = "Cell type is FORMULA" || LF || "Cell content:" -

xCell~getFormula || LF || "Cell value:" xCell~getValue

ELSE IF uno.areSame(enumEMPTY, cellType) THEN

 msg = "Cell type is EMPTY" || LF || "(Obviously no cell content)"

ELSE -- should never arrive here...

 msg = "Unknown cell type!"

.bsf.dialog~messageBox(msg, "ooRexx calc_CellValues.rex")

::requires UNO.CLS /* load UNO support (OpenOffice/StarOffice) for ooRexx */

Figure 25: CellValues.rex

OOo: Selected Pitonyak' Nutshells – Michael Gmeiner Page 39

Figure 26: Empty cell Figure 27: Cell with a formula

3.2.2 FillCells.rex

This next short example demonstrates how to fill cells with values. It uses the

same mechanism to access sheets and address a single cell like in the previ-

ous example.

The user is asked to enter some data for the cell, using the inputBox function

provided by BSF4Rexx. The data is afterwards stored in cell A1 using the follo-

wing UNO.CLS shortcut:

CALL uno.setCell xSheet1, "A1", s

This method puts the value of the third parameter (s in this case) into the sheet

object xSheet1 (first parameter) into the cell A1 (second parameter)

/* FillCell.rex -- fill a cell with a value entered by the user */

/* Based on Sasa Kelecevic' OOo Basic macro found in AndrewMacro.odt */

/* http://www.pitonyak.org/AndrewMacro.odt */

/* Page 118, Listing 6.4 (Chapter 6.3) */

/* Rexx code by M. Gmeiner, May 2008 */

xScriptContext=uno.getScriptContext() /* get the xScriptContext object */

oDoc=xScriptContext~getDocument -- get the document service (a XModel) object

xSheets = oDoc~XSpreadsheetDocument~getSheets

sheetNames = xSheets~getElementNames

/* select the first sheet of the active document */

xSheet1 = xSheets~getByName(sheetNames[1])~XSpreadSheet

s = .bsf.dialog~inputBox("Enter some data for cell A1!")

CALL uno.setCell xSheet1, "A1", s -- function provided by UNO.CLS

::requires UNO.CLS /* load UNO support (OpenOffice/StarOffice) for ooRexx */

Figure 28: FillCells.rex

OOo: Selected Pitonyak' Nutshells – Michael Gmeiner Page 40

Figure 29: Data input

3.2.3 NamedRanges.rex

Named ranges are a useful concept both for programming macros as well as

for using the front-end of the spreadsheet application. It allows to label (name)

certain cells or ranges and access them via the given name. This makes life

much easier for both programmers as well as end users, especially because

named ranges shift with their contents. So one does not need to bother with ab-

solute cell ranges like “A1:D20”, but can address this range with a name like

“Sales 2007”.

The interface XNamedRanges, which provides all necessary functions, can be

obtained from the current component (document). In order to define a new na-

med range, the function addNewByName is used:

xNamedRanges~addNewByName("Name", "content", aCellAddress, 0)

This would create a new named range with the name “Name”, a content “con-

tent” and a cell address aCellAddress (which must have a XCellAddress for-

mat).

This example creates three named ranges, and outputs a list of all named ran-

ges into the document. The method used for this is again offered by XName-

dRanges and is called outputList. It only needs a cell address which will be

used to contain the list of named ranges.

/* NamedRangeDemo.rex --- demonstrates the basics of named ranges */

/* Idea from A. Pitonyak's OOo Basic macro found in AndrewMacros.odt */

/* http://www.pitonyak.org/AndrewMacro.odt */

/* Page 134, Listing 6.29 (Chapter 6.19) */

/* Rexx code by M. Gmeiner, May 2008 */

xScriptContext=uno.getScriptContext() /* get the xScriptContext object */

oDoc=xScriptContext~getDocument -- get the document service (a XModel) object

xSheets = oDoc~XSpreadsheetDocument~getSheets

sheetNames = xSheets~getElementNames

OOo: Selected Pitonyak' Nutshells – Michael Gmeiner Page 41

-- select the first sheet of the active document

xSheet1 = xSheets~getByName(sheetNames[1])~XSpreadSheet

oNamedRanges = oDoc~XPropertySet~getPropertyValue("NamedRanges")

xNamedRanges = oNamedRanges~XNamedRanges -- get the XNamedRanges interface

/* define three named ranges (A1, B1, C1) */

xCell = uno.getCell(xSheet1, "A1")

a = xCell~XCellAddressable~getCellAddress

-- add the first named range

xNamedRanges~addNewByName("NameA1", "contentA1", a, 0)

xCell = uno.getCell(xSheet1, "B1")

a = xCell~XCellAddressable~getCellAddress

-- add the second named range

xNamedRanges~addNewByName("NameB1", "contentB1", a, 0)

xCell = uno.getCell(xSheet1, "C1")

a = xCell~XCellAddressable~getCellAddress

-- add the third named range

xNamedRanges~addNewByName("NameC1", "contentC1", a, 0)

/* dump the list of named ranges into the sheet, starting at position A3 */

xCell = uno.getCell(xSheet1, "A3")

a = xCell~XCellAddressable~getCellAddress

xNamedRanges~outputList(a)

::requires UNO.CLS /* load UNO support (OpenOffice/StarOffice) for ooRexx */

 Figure 30: NamedRanges.rex

Figure 31: Three named ranges

3.2.4 ProtectSheets.rex

Protecting sheets is a nice way to prevent unintentional changes, or even

changes made by purpose (manipulation). It is also a nice way to control the

contents through the macro, as it can protect and unprotect the sheets at will

(assuming that the password is known), whereas the “typical user” has no clue

on how to unlock the sheet. Of course the password is stored within the macro,

but most users do not know how to access the macro code, let alone interpret

it. Especially if the password variable is not declared in an obvious way, or if a

function generates the password from an algorithm, this method of protecting

sheets is actually quite safe and proven.

OOo: Selected Pitonyak' Nutshells – Michael Gmeiner Page 42

In this example, after the password has been set (in a very unsafe way), the

user is prompted to select a sheet from the document. The function .bsf.dia-

log.inputBox is used again, this time with an additional parameter: the sheet

names, contained in an array variable. The inputBox function will handle this

parameter in a way that it creates a list of items from the contents of the array.

The user will see a list of available sheet names and can select one of it.

sheetName = .bsf.dialog~inputBox("Choose a sheet to protect the contents", -

 "ProtectSheets.rex", "OkCancel", , sheetNames)

Setting the password is rather easy: select the sheet using its name and use

the XProtectable interface to set the password, using the protect method.

Finally, the status of the sheet is checked in respect of the protection: the func-

tion isProtected returns true or false depending on the protection status.

/* ProtectSheets.rex -- protect single sheets from a spreadsheet document */

/* Based on A. Pitonyak's OOo Basic macro found in AndrewMacro.odt */

/* http://www.pitonyak.org/AndrewMacro.odt */

/* Page 132 (Chapter 6.16) */

/* Rexx implementation by M. Gmeiner, June 2008 */

xScriptContext=uno.getScriptContext() /* get the xScriptContext object */

oDoc=xScriptContext~getDocument -- get the document service (a XModel) object

xSheets = oDoc~XSpreadsheetDocument~getSheets

sheetNames = xSheets~getElementNames -- get all sheet names

password = "trustno1" -- set a password

-- display an inputBox with the sheet names as option values

sheetName = .bsf.dialog~inputBox("Choose a sheet to protect the contents", -

"ProtectSheets.rex", "OkCancel", , sheetNames)

IF sheetName <> "" THEN -- if a sheet was selected, protect the sheet!

DO

 xSheet = xSheets~getByName(sheetName)~XSpreadSheet

 xSheet~XProtectable~protect(password)

-- check the 'protected'-status:

 IF xSheet~XProtectable~isProtected THEN

 .bsf.dialog~messageBox("Sheet '" || sheetName || "' protected!")

END

::requires UNO.CLS /* load UNO support (OpenOffice/StarOffice) for ooRexx */

Figure 32: ProtectSheets.rex

OOo: Selected Pitonyak' Nutshells – Michael Gmeiner Page 43

Figure 33: Sheet selection list

3.2.5 SelectRange.rex

This macro example shows how to select a range in a spreadsheet document.

Additionally, is explains how to determine the used area of the sheet (ie, the

range that contains data). This is useful for example for copying all the data in a

sheet, if the whole sheet cannot be copied for certain reasons.

Again in this example, the first sheet is used, and a cell object is needed in or-

der to get the XCursor interface, which implements the function gotoEndO-

fUsedArea from the XUsedAreaCursor interface:

xCursor~XUsedAreaCursor~gotoEndOfUsedArea(.true)

This method places the (invisible) cursor to the last used cell, and it's address

can now be extracted. The parameter .true specifies that the cursor should

span the whole range from the start cell to the last used cell.

In order to select the determined range, a range object is created with the ad-

dresses of the first and last cell. This range object is afterwards passed on to

the XSelectionSupplier, which is used to select data in a document:

xSelection = oDoc~getCurrentController~XSelectionSupplier
xSelection~select(xRange)

The method select is used to select the range, which now contains all the data

of the sheet. The selection could now be copied to the clipboard for instance, or

processed otherwise.

/* SelectRange.rex --- select the used area in a spreadsheet */

/* Based on a Basic macro found in Pitonyak's AndrewMacro.odt submitted */

/* by Gerrit Jasper: */

/* http://www.pitonyak.org/AndrewMacro.odt */

/* Page 138 (Chapter 6.19) */

/* Rexx code written by M. Gmeiner, June 2008 */

xScriptContext=uno.getScriptContext() /* get the xScriptContext object */

oDoc=xScriptContext~getDocument -- get the document service (a XModel) object

xSheets = oDoc~XSpreadsheetDocument~getSheets

OOo: Selected Pitonyak' Nutshells – Michael Gmeiner Page 44

sheetNames = xSheets~getElementNames

-- select the first sheet of the active document

xSheet1 = xSheets~getByName(sheetNames[1])~XSpreadSheet

xCell = uno.getCell(xSheet1, 0, 0) -- get a cell object

-- create a cursor

xCursor = xSheet1~createCursorByRange(xCell~XSheetCellRange)

xCursor~XUsedAreaCursor~gotoEndOfUsedArea(.true) -- obtain the used area

-- extract the address

address = xCursor~XCellRangeAddressable~getRangeAddress

/* specify a range object with the determined address */

xRange = xSheet1~getCellRangeByPosition(address~startColumn, -

address~startRow, address~endColumn, address~endRow)

-- select the range via the supplier

xSelection = oDoc~getCurrentController~XSelectionSupplier

xSelection~select(xRange)

::requires UNO.CLS /* load UNO support (OpenOffice/StarOffice) for ooRexx */

Figure 34: SelectRange.rex

Figure 35: Cell selection

3.3 Impress Example

3.3.1 CustomPresentation.rex

The last example of this paper demonstrates how to set up a custom presenta-

tion using the Impress application. It will also show how to address individual

slides, and how to select (jump to) slides.

OOo: Selected Pitonyak' Nutshells – Michael Gmeiner Page 45

First of all the XCustomSupplier interface is used to request the custom pre-

sentation service from the current document. It contains all custom presentati-

ons already stored in the document and can be used to define new ones.

Access to the individual slides of the presentation is gained via the XDraw-

PagesSupplier interface: it returns a collection of all slides.

In the next step two custom presentation are defined. To avoid double definiti-

ons, the current presentation is checked for existing custom presentations.

Note that the “\“ operator is used to negate the boolean expression returned by

the hasName function (true becomes false and vice versa)! A new custom pre-

sentation is inserted using the createInstance method provided by the XSin-

gleServiceFactory interface.

IF \oPresentations~hasByName("backwards") THEN

xCustom = oPresentations~XSingleServiceFactory~createInstance

For the first presentation, all slides are defined in backward order. The DO loop

iterates through all slides and adds them to the presentation accordingly. A sli-

de is added using the insertByIndex method:

xCustom~XIndexContainer~insertByIndex(<index>, <draw page>)

An other possibility would be to insert a slide via a name, but in order to ensure

the correct sequence of the slides, the index-function seemed more reliable.

The actual presentation is informed about the custom selection via a property of

the presentation. If the value “CustomShow“ contains a valid show (actually the

name of the show), it will be used for the next presentation.

Before the presentation starts, the user is asked to select a custom presentati-

on. This time the inputBox is used again to display a number of options (the

two presentation names in this case).

Another important step is to select the first slide of the presentation before it

starts to run. Should the last slide of the selected presentation be selected,

which would be slide #1 for the “backwards“ presentation, the show will end af-

ter this very slide.

To select a slide, the XSelectionSupplier is used again. The first slide is han-

ded over to the select method, which selects the slide

OOo: Selected Pitonyak' Nutshells – Michael Gmeiner Page 46

s0 = selectedCustom~XIndexContainer~getByIndex(0)

/* ... */

xSelection~select(s0)

Finally, the presentation is started with the method rehearseTimings, which

displays a stopwatch in order to check the timing of each slide.

/* CustomPresentation.rex -- setting up a custom presentation */

/* Based on A. Pitonyak's OOo Basic macro found in his book */

/* "OpenOffice.org Macros Explained", listing 30, page 402cf */

/* Rexx code by M. Gmeiner, June 2008 */

xScriptContext=uno.getScriptContext() /* get the xScriptContext object */

oDoc=xScriptContext~getDocument -- get the document service (a XModel) object

-- get the custom presentation service

oPresentations = oDoc~XCustomPresentationSupplier~getCustomPresentations

oPages = oDoc~XDrawPagesSupplier~getDrawPages -- get all slides

IF \oPresentations~hasByName("backwards") THEN
-- insert the custom presentation called "backwards"

DO

xCustom = oPresentations~XSingleServiceFactory~createInstance

 j = oPages~getCount – 1

 DO i = 0 TO (oPages~getCount - 1)
-- add all slides starting from the last one

 xCustom~XIndexContainer~insertByIndex(i, oPages~getByIndex(j)

 j = j – 1

 END

 oPresentations~insertByName("backward", xCustom)

 .bsf.dialog~messageBox("Presentation 'backward' added!")

END

IF \oPresentations~hasByName("simple") THEN
-- insert the custom presentation "simple"

DO

 xCustom = oPresentations~XSingleServiceFactory~createInstance

 DO i = 0 TO 4 -- add only the first 5 slides

 xCustom~XIndexContainer~insertByIndex(i, oPages~getByIndex(i))

 END

 oPresentations~insertByName("simple", xCustom)

 .bsf.dialog~messageBox("Presentation 'simple' added!")

END

/* let the user select the custom presentation */

custom = .bsf.dialog~inputBox("Please select a custom presentation", -

"CustomPresentation.rex", "question", , "backwards simple")

IF custom <> "" THEN DO -- start the presentation

 oPres = oDoc~XPresentationSupplier~getPresentation

 -- add the CustomShow property

 oPres~XPropertySet~setPropertyValue("CustomShow", custom)

 selectedCustom = oPresentations~XNameAccess~getByName(custom)

 -- get the first slide

 s0 = selectedCustom~XIndexContainer~getByIndex(0)

-- select the range via the supplier

 xSelection = oDoc~getCurrentController~XSelectionSupplier

 xSelection~select(s0)

OOo: Selected Pitonyak' Nutshells – Michael Gmeiner Page 47

 oPres~rehearseTimings -- start the presentation in training mode

END

::requires UNO.CLS /* load UNO support (OpenOffice/StarOffice) for ooRexx */

Figure 36: CustomPresentation.rex

Figure 37: Presentation selection

Figure 38: Rehearsal timer

OOo: Selected Pitonyak' Nutshells – Michael Gmeiner Page 48

4 Conclusion

Examining the problem statement again, this paper has clearly demonstrated

how to use ooRexx to automate OpenOffice.org: Using concepts like UNO and

BSF the bridge between ooRexx and OpenOffice.org has been spanned, hence

ooRexx can be used to write OpenOffice.org macros. All components which

were used are open source and thus freely available, and the cross-platform

obligation has also been met.

The provided examples gave a broad overview on how to automate various ap-

plications (Writer, Calc, Impress) and furthermore gave an insight into the appli-

cation of the UNO framework. Fundamentals of the framework, like services, in-

terfaces and structures have been explained both theoretically as well as practi-

cally.

Most macro examples are based on OOo Basic nutshells, which were found to

be a good guideline on macro programming. As OOo Basic offers various short-

cuts and sometimes follows different approaches, however, OOo Basic code

most often cannot be directly ported to ooRexx. One crucial difference between

the two programming languages is how functions and methods are accessed.

In OOo Basic the appropriate interface is usually automatically provided, which

eases coding quite a lot. Using ooRexx all interfaces have to be requested first

in order to access their functions and methods. Figuring out the complex inter-

face structure of UNO services is a tedious and time consuming task, however,

programming “the hard way” eases portability as all other programming lan-

guages also require a dedicated access via interfaces too. Porting OOo macros

from other languages, like Java, is much easier because of the common use of

interfaces. Example 3.1.5 for instance is based on a Java snippet, and as the

proper interfaces can be already found in the code, no additional API reference

is needed in order to port the snippet.

Working with OpenOffice.org internals yields a steep learning curve, the com-

plex architecture of the UNO framework however slows down the process of

creating macros considerably, especially in the beginning phase, where the

huge UNO concept can seem intimidating and confusing. Also lacking a "prop-

er" IDE for ooRexx macros with class/object browsers etc. means that the pro-

OOo: Selected Pitonyak' Nutshells – Michael Gmeiner Page 49

grammer constantly has to consult the UNO API documentation in order to find

the right mechanisms (services, interfaces, properties) needed to manipulate

objects.

UNO.CLS, on the other hand, offers many useful functions and tools which aid

the programmer, but the time consuming and often tedious task to find out the

required interfaces and methods needed to solve a programming task accord-

ingly still has to performed by the programmer.

For ooRexx there actually exists a similar programming shortcut similar to the

OOo Basic approach: UNO Magic, which enables the programmer to access

functions and methods without requesting the appropriate interface first. As this

additional feature has officially been released after the creation of this seminar

paper, chapter 5 only briefly discusses this topic. Further empirical research is

definitely worthwhile as UNO Magic offers a lot of benefits which have to be ex-

plored and documented.

All in all OpenOffice.org automation bears a lot of potential, especially since

version 2.0 the office suite is a serious competitor to Microsoft Office. The

macro capabilities offered by OpenOffice.org are on par with the ones from the

expensive office suite offered by it's big competitor. The flexibility of the UNO

framework actually offers additional freedom (platform independence, support

of various macro languages) at the cost of a more complex programming expe-

rience, but these drawback however could be offset in the future by UNO Mag-

ic.

OOo: Selected Pitonyak' Nutshells – Michael Gmeiner Page 50

5 Outlook: UNO Magic

5.1 Introduction

The recent version of UNO.CLS (dist. 20080901) includes an additional feature

which makes transcribing OOo Basic macros tremendously easier: UNO Magic.

This feature was actually developed some years ago by R. G. Flatscher and

aids the programmer in a way that functions and methods of services can be

accessed directly without the proper interface, very similar to the solution OOo

Basic offers.

UNO Magic was never officially released before, because of several draw-

backs:

● Transcribing ooRexx macros to languages other than OOo Basic gets

significantly harder, as those languages expect the 'proper' access via in-

terfaces (e.g. Java)

● Without the knowledge of the UNO framework structure it is actually

more difficult to create own macros because of the missing "basics"

● Reproducing code programmed in such a way with the aid of the online

API is very confusing as one needs to guess which interface a function

or method is derived from

Transcribing OOo Basic macros however gets significantly faster, so UNO Mag-

ic offers help in a way that it displays an error message once a function or

method is called without the appropriate interface. The message box contains

valuable information including the proper path (via interfaces) to the desired

method/function (refer to figure 22 for an example). The execution of the macro

stops at this "incomplete" line and the programmer can now use the informa-

tion to adapt the code accordingly. So in essence, if a programmer tries to port

an OOo Basic example 1:1, or simply omits the interface when he tries to call a

method or function, UNO Magic provides a message box with all information

needed to complete the code in the "proper" way.

OOo: Selected Pitonyak' Nutshells – Michael Gmeiner Page 51

This solution offers a nice shortcut, because there is no longer the need to con-

sult the API documentation for interfaces and thus speeds up the coding pro-

cess. Using the information provided results in a nicely coded program which

can serve as a nutshell example for any other programming language.

Figure 39: UNO Magic info popup

Using the following instruction UNO Magic does not stop after the info message

box, instead it tries to continue the program using the interfaces found by UNO

Magic:

.uno~bAutoResolve=.true

Using this feature an OOo Basic code can be more or less transcribed 1:1 to

ooRexx. Even if this seems tempting, one has to be aware of the drawbacks

this shortcut entails. The execution of the macro is also interrupted by the info

popups everytime an unknown function or method (access without an interface)

is encountered.

5.2 UNO Magic example

The following example shows a simplified version of example 1 (DisplayAll-

Styles.rex, page 24cf), where no interfaces are invoked:

/* DisplayAllStyles.rex, version 08-08-22 */

/* ported from OOo Basic as found in Pitonyaks "OOo Macros Explained" */

/* Simplified version using UNO Magic capabilities */

/* Listing 12, page 179cf */

/* Rexx code by M. Gmeiner */

.uno~bAutoResolve=.true –- continue after info popups

xScriptContext=uno.getScriptContext() /* get the xScriptContext object */

oDoc=xScriptContext~getDocument -- get the document service (a XModel) object

OOo: Selected Pitonyak' Nutshells – Michael Gmeiner Page 52

vFamilies = oDoc~getStyleFamilies -- **** UNO-Magic DIRECT ACCESS ****

vFamNames = vFamilies~getElementNames -- get the available styles

DO n OVER vFamNames -- iterate through the styles

 s = ""

 vStyles = vFamilies~getByName(n)

 vStyleNames = vStyles~getElementNames -- ** UNO Magic DIRECT ACCES **

 j = 1

 DO style OVER vStyleNames

 s = s j ":" style "0a"x

 IF ((j + 1) // 35 = 0) THEN -- display 35 elements each time

 DO

 .bsf.dialog~MessageBox(s, n)

 s = ""

 END

 j = j + 1

 END

 IF Length(s) > 0 THEN

 .bsf.dialog~MessageBox(s, n)

END

::requires UNO.CLS /* load UNO support (OpenOffice/StarOffice) for ooRexx */

Figure 40: DisplayAllStyles.rex (UNO Magic)

Compared to the original macro UNO Magic allows some shortcuts like

vFamilies = oDoc~getStyleFamilies

instead of

xTextDoc = oDoc~XTextDocument

vFamilies = xTextDoc~XStyleFamiliesSupplier~getStyleFamilies

Note the complete lack of interfaces like XTextDocument and

XStyleFamiliesSupplier!

In order to execute the macro listed above a recent version of UNO.CLS is man-

datory!

OOo: Selected Pitonyak' Nutshells – Michael Gmeiner Page 53

6 References

[Aham05] Andreas Ahammer, OpenOffice.org Automation: Object Model,

Scripting Languages, „Nutshell“-Examples, Bachelor Course Pager, 2005

[Augu05] Walter Augustin, Examples for Open Office Automation with Scripting

Languages, Bachelor Course Pager, 2005

[ApJa01] The Jakarta Project, http://jakarta.apache.org/bsf/manual.html, re-

trieved on 2008-05-30

[Flat01] Flatscher, Rony G.: Automatisierung von Java Anwendungen (2)

(Course slides), http://wwwi.wu-wien.ac.at/Studium/LVAUnterlagen/rgf/autojava/

folien/

[Flat02] Flatscher, Rony G.: Automatisierung von Java Anwendungen (7)

(Course slides), http://wwwi.wu-wien.ac.at/Studium/LVAUnterlagen/rgf/autojava/

folien/

[Flat02] Flatscher, Rony G.: Automatisierung von Java Anwendungen (10)

(Course slides), http://wwwi.wu-wien.ac.at/Studium/LVAUnterlagen/rgf/autojava/

folien/

[King01] King, K. N: The Case for Java as a First Language,

http://www2.gsu.edu/~matknk/java/reg97.htm, retrieved on 2008-05-22

[Lohm07] Lohmaier, Christian: OO-Snippets: Embed a Graphic into a Textdocu-

ment, http://codesnippets.services.openoffice.org/Writer/Writer.EmbedA-

GraphicIntoATextdocument.snip, retrieved on 2008-06-01

[OOo01] OpenOffice.org, http://www.openoffice.org/about_us/ooo_re-

lease.html, retrieved on 2008-05-21

[Pito04] Pitonyak, Andrew: OpenOffice.org Macros Explained (2004)

[Pito08] Pitonyak, Andrew: Useful Macro Information For OpenOffice, revision

1035, http://www.pitonyak.org/AndrewMacro.odt, retrieved on 2008-06-01

OOo: Selected Pitonyak' Nutshells – Michael Gmeiner Page 54

[Port01] Porting Project: The OpenOffice.org Porting project home,

http://porting.openoffice.org/, retrieved on 2008-06-03

