
Seminar paper

“mod_ooRexx”

A beginner’s guide for installing and using ooREXX on the
Apache webserver.

Institute for Management Information Systems

WS 2009/10

A seminar paper for the Vertiefungskurs VI – Wirtschaftsinformatik (LV 0902)

© 2009/10 Robert Maschek

Student ID: 8952711

Signaturwert vmium5Oe5kST9B4Aslf+EGzSTCIeg/3nWF8AiXq2BlHNClwzuFiCxM40VjXtOjI8

Unterzeichner Dipl.-HTL-Ing. Robert Maschek

Datum/Zeit-UTC 2010-01-29T21:02:47Z

Aussteller-Zertifikat CN=a-sign-Premium-Sig-02,OU=a-sign-Premium-Sig-02,O=A-Trust Ges.
f. Sicherheitssysteme im elektr. Datenverkehr GmbH,C=AT

Serien-Nr. 291878

Methode urn:pdfsigfilter:bka.gv.at:text:v1.1.0

Parameter etsi-bka-1.0@1264798967-9155984@30826-12441-0-10994-19345

Prüfhinweis Informationen zur Prüfung der elektronischen Signatur und des Ausdrucks finden Sie
unter: https://www.buergerkarte.at/signature-verification

Table of contents, List of figures; List of abbreviations

Dipl.-HTL-Ing. Robert Maschek III

Table of contents

1 Introduction .. 1

2 The Apache Webserver ... 2
2.1 History ... 2
2.2 Apache 2 Software Architecture .. 3

2.2.1 Overview ... 3
2.2.2 Operation .. 5

2.3 Apache2 Basic Concepts and Structures .. 6
2.3.1 Basic concept: Pools ... 6
2.3.2 Apache core objects ... 7

2.4 HTTP Request handling .. 10
2.4.1 Introduction ... 10
2.4.2 Hooks for requests .. 13

3 Mod_ooRexx ... 15
3.1 Introduction .. 15
3.2 Installation of mod_ooRexx on Windows Server 2008 16

3.2.1 Prerequisites ... 16
3.2.2 Installation from source code .. 16
3.2.3 Customization ... 18
3.2.4 Check the installation .. 19
3.2.5 Installation from a binary distribution ... 19

3.3 Installation of Mod_ooRexx on Fedora 12 ... 19
3.3.1 Prerequisites ... 19
3.3.2 Installation ... 19
3.3.3 Customization ... 21
3.3.4 Check the installation .. 22

4 Examples ... 23
4.1 Introduction .. 23
4.2 Hello World – A different way .. 23

4.2.1 Sample 01: The “quick and dirty” version .. 23
4.2.2 Sample 02: Using routines and procedures .. 26
4.2.3 Sample 03: Using Rexx Server Pages (RSP), Cascading Style Sheets
(CSS) and Frames .. 28
4.2.4 Sample 04: Using Object Oriented Programming 31

4.3 Using ooREXX to control access to the server .. 34
4.3.1 Sample 05: Our standard for the Browser is Internet Explorer 8 34
4.3.2 Sample 06: Access only for members of our IP-subnet 36

5 Conclusion ... 41

6 Bibliography ... 42

Table of contents, List of figures; List of abbreviations

Dipl.-HTL-Ing. Robert Maschek IV

7 Appendix A: Installation of VMware Workstation ... 43
7.1 Prerequisites ... 43
7.2 Installation ... 43

8 Appendix B: Setup Virtual machines: Window 2008 Server 47
8.1 Prerequisites ... 47
8.2 Installation ... 47
8.3 Initial configuration and customization ... 50

8.3.1 Initial configuration of the Windows 2008 Server 50
8.3.2 Add a second hard disc for Apache Data files 51
8.3.3 Activation of the Operating system ... 57

9 Appendix C: Setup Virtual machines: Fedora 12 ... 58
9.1 Prerequisites ... 58
9.2 Installation ... 58
9.3 Initial configuration and customization ... 68

9.3.1 Initial configuration of Fedora 12 ... 68
9.3.2 Enable Network Connection ... 70

10 Appendix D: Installing Apache on Windows 2008 Server 73
10.1 Prerequisites .. 73

10.1.1 Add Apache Website to the trusted sites .. 73
10.1.2 Download the software ... 73
10.1.3 Option: MD5 value check .. 74

10.2 Installation .. 75
10.3 Initial installation and customization ... 78

10.3.1 Changing htdocs ... 78
10.3.2 Adjusting Windows Firewall .. 80

11 Appendix E: Installing Apache on Fedora 12 ... 82
11.1 Prerequisites .. 82

11.1.1 Download the software ... 82
11.1.2 Option: MD5 value check .. 82

11.2 Installation .. 82
11.3 Customization: ... 85

11.3.1 Adding startup ... 85
11.3.2 Symbolic linking of the apache2 directory ... 88
11.3.3 Changing htdocs ... 89

12 Appendix F: Installing ooRexx on Windows Server 2008 91
12.1 Prerequisites .. 91
12.2 Installation .. 93

13 Appendix G: Installing ooRexx on Fedora 12 .. 98
13.1 Prerequisites .. 98
13.2 Installation .. 99

Table of contents, List of figures; List of abbreviations

Dipl.-HTL-Ing. Robert Maschek V

List of figures
Figure 1 Netcraft Survey of webserver marketshare .. 1
Figure 2 Apache software architecture overview (Kew 2007, p. 22) 3
Figure 3 Apache core objects ... 8
Figure 4 Apache 2 request handling .. 10
Figure 5 Apache request handling (detailed view) ... 12
Figure 6 Mod_ooRexx Installation – Finished installation ... 22
Figure 7 Sample 01: equilateral triangle – the simplest way – source code

(Sample01.rex) .. 24
Figure 8 Sample 01: equilateral triangle – the simplest way – the result 25
Figure 9 Sample 02: equilateral triangle – using routines and procedures – source

code (Sample02.rex) ... 27
Figure 10 Sample 02: equilateral triangle – using routines and procedures – the

result ... 28
Figure 11 Sample 03: equilateral triangle – using RSP and CSS – source code

(Sample03.html) .. 28
Figure 12 Sample 03: equilateral triangle – using RSP, CSS and frames – source

code (Samples.css) ... 29
Figure 13 Sample 03: equilateral triangle – using RSP, CSS and frames – source

code (Sample03_Top.html) ... 29
Figure 14 Sample 03: equilateral triangle – using RSP, CSS and frames – source

code (Sample03_Bottom.rsp) .. 30
Figure 15 Sample 03: equilateral triangle – using RSP and CSS – the result 31
Figure 16 Sample 04: equilateral triangle – using Objects – source code

(Sample04.rex) .. 33
Figure 17 Sample 04: equilateral triangle – using Objects – the result 33
Figure 18 Sample 05: Check Browser type and version

(check_browser_and_version.rex) .. 34
Figure 19 Apache configuration directive for checking webbrowser and version 35
Figure 20 Check Browser and version: Wrong browser used 35
Figure 21 Check Browser and version: Successful tested .. 36
Figure 22 Sample 06: Check IP - sourcecode .. 38
Figure 23 Apache configuration directive for checking webbrowser and version 40
Figure 24 Sample 06: Check IP - coming from a wrong one 40
Figure 25 Sample 06: Check IP - coming from a right one 40
Figure 26 VMware Workstation Setup – Startup Screen .. 43
Figure 27 VMware Workstation Setup – Setup Type .. 43
Figure 28 VMware Workstation Setup – Destination Folder 44
Figure 29 VMware Workstation Setup – Shortcuts ... 44
Figure 30 VMware Workstation Setup – Ready to Start installation 44
Figure 31 VMware Workstation Setup – Registration information 45
Figure 32 VMware Workstation Setup – Setup wizard completed 45
Figure 33 VMware Workstation Setup – Icon ... 45
Figure 34 VMware Workstation Setup – License agreement 46
Figure 35 VMware Workstation Setup – Main screen ... 46
Figure 36 VMware Workstation – Icon .. 47
Figure 37 Windows Server 2008 Installation – Creation of virtual machine 47
Figure 38 Windows Server 2008 Installation – Guest Operating System Sources ... 48

Table of contents, List of figures; List of abbreviations

Dipl.-HTL-Ing. Robert Maschek VI

Figure 39 Windows Server 2008 Installation – Easy Install Information 48
Figure 40 Windows Server 2008 Installation – Name the virtual machine 48
Figure 41 Windows Server 2008 Installation – Specify Disk Capacity 49
Figure 42 Windows Server 2008 Installation – Ready to create Virtual Machine 49
Figure 43 Windows Server 2008 Installation – Select Operating System 50
Figure 44 Windows Server 2008 Installation – Initial configuration tasks 50
Figure 45 Windows Server 2008 Installation – Windows Update 51
Figure 46 Windows Server 2008 Installation – Windows Update completed 51
Figure 47 Windows Server 2008 Installation – VMware Workstation Main Screen .. 52
Figure 48 Windows Server 2008 Installation – Virtual Machine Setup 52
Figure 49 Windows Server 2008 Installation – Add hardware wizard 52
Figure 50 Windows Server 2008 Installation – Add hardware wizard (Disk) - I 53
Figure 51 Windows Server 2008 Installation – Add hardware wizard - II 53
Figure 52 Windows Server 2008 Installation – Add hardware wizard –

Specify capacity .. 53
Figure 53 Windows Server 2008 Installation – Add hardware wizard –

specify disk file .. 54
Figure 54 Windows Server 2008 Installation – VMware Workstation

with second disk .. 54
Figure 55 Windows Server 2008 Installation – Administrative Tools 55
Figure 56 Windows Server 2008 Installation – Computer Management 55
Figure 57 Windows Server 2008 Installation – Initialize disk 55
Figure 58 Windows Server 2008 Installation – Volume creation 55
Figure 59 Windows Server 2008 Installation – New simple volume wizard 56
Figure 60 Windows Server 2008 Installation – System volume size 56
Figure 61 Windows Server 2008 Installation – Drive letter 56
Figure 62 Windows Server 2008 Installation – Format partition 56
Figure 63 Windows Server 2008 Installation – Completion 57
Figure 64 Windows Server 2008 Installation – Volume added 57
Figure 65 VMware Workstation – Icon .. 58
Figure 66 Fedora 12 installation – Creation of virtual machine 59
Figure 67 Fedora 12 Installation – Guest Operating System Sources 59
Figure 68 Fedora 12 Installation – Select Guest Operating System 59
Figure 69 Fedora 12 Installation – Name virtual machine .. 59
Figure 70 Fedora 12 Installation – Specify disk capacity .. 60
Figure 71 Fedora 12 Installation – Summary screen .. 60
Figure 72 Fedora 12 Installation – Change memory settings 60
Figure 73 Fedora 12 Installation – Ready to create virtual machine 61
Figure 74 Fedora 12 Installation – Setup welcome screen 61
Figure 75 Fedora 12 Installation – Disc Found ... 61
Figure 76 Fedora 12 Installation – Installation start .. 62
Figure 77 Fedora 12 Installation – Installation language .. 62
Figure 78 Fedora 12 Installation – Installation keyboard layout 62
Figure 79 Fedora 12 Installation – Drive initizialisation ... 63
Figure 80 Fedora 12 Installation – Set hostname ... 63
Figure 81 Fedora 12 Installation – Set timezone .. 63
Figure 82 Fedora 12 Installation – Set root password .. 64
Figure 83 Fedora 12 Installation – Weak root password warning 64
Figure 84 Fedora 12 Installation – Hard drive partitioning .. 64

Table of contents, List of figures; List of abbreviations

Dipl.-HTL-Ing. Robert Maschek VII

Figure 85 Fedora 12 Installation – Edit hard drive partitioning.................................. 65
Figure 86 Fedora 12 Installation – Edit lv_root ... 65
Figure 87 Fedora 12 Installation – lv_root new size ... 65
Figure 88 Fedora 12 Installation – Create a new logical volume 66
Figure 89 Fedora 12 Installation – LVM volume group: vg_www 66
Figure 90 Fedora 12 Installation – Changed hard drive settings 66
Figure 91 Fedora 12 Installation – Hard drive partitioning – write changes to disk ... 67
Figure 92 Fedora 12 Installation – Boot loader installation 67
Figure 93 Fedora 12 Installation – Change install packages 67
Figure 94 Fedora 12 Installation – VMware Workstation drive lock 68
Figure 95 Fedora 12 Installation – Initial configuration ... 68
Figure 96 Fedora 12 Installation – License information .. 68
Figure 97 Fedora 12 Installation – Create User .. 69
Figure 98 Fedora 12 Installation – Date and Time .. 69
Figure 99 Fedora 12 Installation – Hardware profile ... 69
Figure 100 Fedora 12 Installation – Hardware profile sending 70
Figure 101 Fedora 12 Installation – Initial configuration finished 70
Figure 102 Fedora 12 Installation – Desktop .. 70
Figure 103 Fedora 12 Installation – Network connections .. 71
Figure 104 Fedora 12 Installation – Ethernet connection ... 71
Figure 105 Fedora 12 Installation – Root user authentication needed 71
Figure 106 Fedora 12 Installation – System restart needed 72
Figure 107 Apache on Windows 2008 – Adjust trusted sites 73
Figure 108 Apache on Windows 2008 – Adjust trusted sites warning message 73
Figure 109 Apache on Windows 2008 – Download Apache software 74
Figure 110 Apache on Windows 2008 – Open download folder 74
Figure 111 Apache on Windows 2008 – MD5 hash value calculator 74
Figure 112 Apache on Windows 2008 – Apache MD5 hash value calculation 75
Figure 113 Apache on Windows 2008 – Installation welcome screen 75
Figure 114 Apache on Windows 2008 – Apache License .. 75
Figure 115 Apache on Windows 2008 – Read this first .. 76
Figure 116 Apache on Windows 2008 – Server information 76
Figure 117 Apache on Windows 2008 – Installation type ... 76
Figure 118 Apache on Windows 2008 – Destination folder 76
Figure 119 Apache on Windows 2008 – Ready to install ... 77
Figure 120 Apache on Windows 2008 – Access control warning I 77
Figure 121 Apache on Windows 2008 – Installation wizard completed 77
Figure 122 Apache on Windows 2008 – Test installation ... 78
Figure 123 Apache on Windows 2008 – httpd.conf file location 78
Figure 124 Apache on Windows 2008 – Apache servicemonitor 79
Figure 125 Apache on Windows 2008 – Server restart .. 79
Figure 126 Apache on Windows 2008 – Access control warning II 79
Figure 127 Apache on Windows 2008 – Test modified installation 80
Figure 128 Apache on Windows 2008 – Windows firewall 80
Figure 129 Apache on Windows 2008 – Windows firewall settings 80
Figure 130 Apache on Windows 2008 – Add a port ... 81
Figure 131 Apache on Windows 2008 – Testing connection from remote 81
Figure 132 Apache on Fedora 12 – Firewall setup ... 83
Figure 133 Apache on Fedora 12 – Authentication needed 83

Table of contents, List of figures; List of abbreviations

Dipl.-HTL-Ing. Robert Maschek VIII

Figure 134 Apache on Fedora 12 – Firewall port opened ... 84
Figure 135 Apache on Fedora 12 – Firewall configuration change 84
Figure 136 Apache on Fedora 12 – Connection test .. 84
Figure 137 Apache on Fedora 12: Startup script (automatically generated) 88
Figure 138 Apache on Fedora 12 – Connection test after reconfiguration 90
Figure 139 Apache on Fedora 12 – Connection test from remote 90
Figure 140 ooRexx on Windows Server 2008 – Create actual build 91
Figure 141 ooRexx on Fedora 12 – Build ready for download 92
Figure 142 ooRexx on Windows Server 2008 – Check build for any errors 92
Figure 143 ooRexx on Windows Server 2008 - Start installation 93
Figure 144 ooRexx on Windows Server 2008 - Security warning 93
Figure 145 ooRexx on Windows Server 2008 - Setup welcome screen 93
Figure 146 ooRexx on Windows Server 2008 - License agreement 94
Figure 147 ooRexx on Windows Server 2008 - Choose components 94
Figure 148 ooRexx on Windows Server 2008 - Install location................................. 95
Figure 149 ooRexx on Windows Server 2008 - rxapi process 95
Figure 150 ooRexx on Windows Server 2008 - Installation completed - I 96
Figure 151 ooRexx on Windows Server 2008 - Installation completed - II 96
Figure 152 ooRexx on Windows Server 2008 - Test successful 97
Figure 153 ooRexx on Fedora 12 – Create actual build ... 98
Figure 154 ooRexx on Fedora 12 – Build ready for download 99
Figure 155 ooRexx on Fedora 12 – Check build for any errors 99

List of abbreviations:

API Application Programming Interface
APR Apache Portable Runtime library
ASF Apache Software Foundation
ASP Active Server Pages
DSO Dynamic Shared Object
JSP Java Server Pages
MPM Multi-Processing Module
REXXLA Rexx Language Association
RSP Rexx Server Pages
TCP Transmission Control Protocol
URI Uniform Resource Identifier
URL Uniform Resource Locator
XML Extensible Markup Language
XSL Extensible Stylesheet Language
XSLT Extensible Stylesheet Language Transformation

Dipl.-HT

1 Int
The Ap

Open S

the mo

There a

share e

but one

Togeth

over th

powerf

Especia

languag

The ma

after a

installin

1 http://n

L-Ing. Rober

troduct
pache web

Source Sof

st recent s

are a lot of

even when

e reason is

er with be

he world to

ul.

ally there

ges like PH

ain focus o

theoretica

ng mod_oo

ews.netcraft

rt Maschek

tion
bserver is s

ftware dev

surveys fro

Figure

f different r

n commerc

s its modula

eing Open

o add mod

are a lot

HP, Perl or

of this pap

al introduc

oREXX and

t.com/archive

still the mo

velopment

om Netcraft

1 Netcraft S

reasons wh

cial produc

arity.

Source it

ules for sp

t of modu

r even REX

per is an i

ction to Ap

d getting in

es/web_serv

Introduction

ost popular

with a ma

t 1

urvey of web

hy Apache

cts (like M

has beco

pecific purp

ules for th

XX and oo

ntroductio

pache’s so

n touch wit

ver_survey.ht

n

r webserve

arket share

bserver mark

e is still so

Microsoft IIS

me very e

poses and

he direct i

REXX.

n on begin

oftware arc

th it providi

tml (2010-01

er and still

e of about

ketshare

popular an

S) appeare

easy for de

d makes A

ntegration

nner level.

chitecture

ing differen

-24)

the showc

60% acco

nd keeps it

ed on the

evelopers f

pache eve

of progra

. This mea

we will fo

nt example

1

case for

rding to

t market

market

from all

en more

amming

ans that

ocus on

es.

The Apache Webserver

Dipl.-HTL-Ing. Robert Maschek 2

2 The Apache Webserver

2.1 History

The roots of the Apache webserver date back to the early days of the Internet and

the NCSA-httpd daemon developed by Rob McCool at the National Center for

Supercomputing Applications (NCSA), University of Illinois.

When Rob was leaving the NCSA the further development of the web server got

stuck even having a big installed base at this time.

So a group of administrators joined a team in developing patches for the server and

in April 1995 the version 0.6.2 of the “a patchy server” was officially released even if

the Apache software foundation claims that “The name 'Apache' was chosen from

respect for the various Native American nations collectively referred to as Apache,

well-known for their superior skills in warfare strategy and their inexhaustible

endurance.” 2

The codebase was completely redesigned and a lot of additional features were

added until December 1995 when the version 1.0 was released.

In February 1997 after the release of the version 1.2 the webserver was undergoing

another major redesign. The aim for 2.0 was to ensure that the same code is used for

all operating systems with a set of platform-specific routines to handle anything that

varies between operating systems.

All the plans for Apache 2.0 were summarized in February 1998, Apache Week issue

1023. The major changes being discussed were multithreading, filtering, new process

models, better system configuration, API changes and changes to the configuration

syntax.

The alpha version of Apache 2.0 was presented at the ApacheCon in 2000 followed

by the Beta version in 2001. The first general available version 2.0.35 of the web

server was released in April 2002.

2 http://www.apache.org/foundation/faq.html#name (2010-01-24)
3 http://www.apacheweek.com/issues/98-02-13#apache20 (2010-01-24)

The Apache Webserver

Dipl.-HTL-Ing. Robert Maschek 3

2.2 Apache 2 Software Architecture

2.2.1 Overview

The Apache HTTP server in the version 2 consists of a relatively small core and

some modules which may be compiled statically into the server or held in a specific

directory (/modules or /libexec) and loaded dynamically at runtime4.

Figure 2 Apache software architecture overview (Kew 2007, p. 22)

The two most important parts of the architecture are the Apache Portable Runtime

(APR) library and the Multi-Processing Module (MPM).

The APR provides a standard application programming interface (API) for the core of

the Apache so that developers don’t need to care about operating system calls like

accessing files and memory management for example5. According to the Apache

Software Foundation (ASF) “The mission of the Apache Portable Runtime (APR)

project is to create and maintain software libraries that provide a predictable and

consistent interface to underlying platform-specific implementations. The primary goal

is to provide an API to which software developers may code and be assured of

predictable if not identical behavior regardless of the platform on which their software

is built, relieving them of the need to code special-case conditions to work around or

take advantage of platform-specific deficiencies or features.”6.

4 Kew (2007), p. 21
5 Wolfgarten (2003), p. 19
6 http://apr.apache.org/ (2010-01-24).

The Apache Webserver

Dipl.-HTL-Ing. Robert Maschek 4

The APR maintained by the ASF is not only used for the webserver. It is also used for

other Open Source projects like Tomcat7, an open source software implementation of

the Java Servlet, and JavaServer Pages technologies or Subversion8, an open

source version control system for software development.

The MPM is used to optimize Apache for the underlying operating system so that

incoming requests are mapped onto an execution primitive which could be either a

process or a thread depending on the operating system. For this reason it is the only

module talking directly to the operating system. Any other module uses the APR for

communication with the operating system.

To really understand the need for MPMs, it is important to look at how the former

versions of Apache (up to version 1.3) are working. These versions are pre-forking

servers, meaning that when Apache is started the original process forks a specified

number of copies of itself, which actually handle the requests. As more requests

come in, more copies are forked. The original process doesn't actually do anything

other than monitor the new processes to make sure there are enough of them. This

model works well on Unix variants and most mainframes but it doesn't work as well

on Windows. The original support for Windows actually re-wrote the section of code

that created the child processes. On Windows this section created just one child

process, which then had multiple threads to serve the requests.

Apache 2 now supports three different kinds of MPM. Some of them are used as a

default for the underlying operating systems (shown in brackets): 9

• Process based

MPM module: prefork (Unix) and beos (BeOS)

• Thread based

MPM module: mpm_netware (Netware) and mpm_winnt (Microsoft)

• Hybrid mode which is a mixture of process - and thread based

MPM module: worker, event and mpmt_OS2 (OS2)

7 http://tomcat.apache.org/ (2010-01-24)
8 http://subversion.tigris.org/ (2010-01-24)
9 Wolfgarten 2003, p. 19; http://httpd.apache.org/docs/2.2/en/mpm.html (2010-01-24)

The Apache Webserver

Dipl.-HTL-Ing. Robert Maschek 5

Each of these MPMs has strengths and weaknesses. For example, the process

based MPM will be more robust than the hybrid MPMs on the same platform. The

reason for this is quite simple: if a child process terminates unexpectedly,

connections will be lost. How many connections are lost is up to which MPM is used.

If the process based MPM is used, one connection will be lost. If a thread based

MPM is used, no more than 1/n connections, where n is the number of child

processes used, will be lost. If the hybrid based MPM is used, the number of lost

connections will depend on the OS the server is being run on.

However, the trade-off in robustness comes at a price: scalability. The process based

MPM is the least scalable MPM, followed by thread based, and then hybrid. Which

MPM is used will depend on what the site requires. If a given site must use a lot of

third-party nontrusted modules, then that site should use the process based MPM

because if the module is unstable, it will affect the site the least. However if all a site

is going to do is serve static web pages and doesn't require any modules but will

need to serve thousands of hits per second, then the hybrid based MPM is probably

the correct choice10.

2.2.2 Operation

Apache operation consists of two phases:

• Startup phase

• Operational phase

Actually there is no shutdown phase for Apache 2. Everything that needs to be done

is registered as a cleanup and run when the application stops11.

During the startup phase Apache reads and verifies the configuration files. The main

configuration file of the Apache web server is a plain text file called httpd.conf. Be

careful: This is just a convention. There are binary distribution available (like for

Debian GNU/Linux) which are using totally different conventions.

Further actions include loading modules, open network connection, and initialize

system resources such as log-files, shared memory segments 12

10 http://www.serverwatch.com/news/article.php/10824_1129161_1/An-Introduction-to-Apache-20.htm
(2010-01-24)
11 Kew (2007), p. 26).
12 Kew (2007) p. 22; Ford (2008), p. 2

The Apache Webserver

Dipl.-HTL-Ing. Robert Maschek 6

During this time Apache runs as a single-process, single-thread program and has full

system privileges.

Before entering the operational phase Apache relinquishes its system privileges. This

basic security measure helps to prevent a simple bug in the software or a module

from becoming a very dangerous system vulnerability like seen with “Code Red” or

“Nimda” on the Microsoft IIS13.

At the end of the startup phase the control is passed to the MPM which handles

Apache’s operation at system level.

Once Apache has entered its operational state the child processes or threads will

accept external connections.

2.3 Apache2 Basic Concepts and Structures

When it comes to system programming with Apache you need to know more about

the core objects and some the basic concept of “Pools” which are used to represent

the operation within the webserver.

2.3.1 Basic concept: Pools

APR pools are a main part of the Apache application design and are a grouped

collection of resources (i.e., file handles, memory, child programs, sockets, pipes,

and so on) that are released when the pool is destroyed. Almost all resources used

within Apache reside in pools, and if you don’t want to use them you should really be

very careful.

Pools can be hierarchically structured (Pool Subpool Subsubpool and so on).

Another interesting feature of pool resources is that many of them can be released

only by destroying the pool. When a pool is destroyed, all its subpools are destroyed

with it.

13 Kew (2007) p. 22

The Apache Webserver

Dipl.-HTL-Ing. Robert Maschek 7

During the startup phase Apache creates a pool from which all others are derived.

Configuration information is held in this pool (so it is destroyed and created new

when the server is restarted).

The next level of pools is created for each connection Apache receives and is

destroyed when the connection ends. A connection can span several requests and a

new pool is created (and destroyed) for each request.

In the process of handling a request, various modules create their own pools, and

some also create subrequests, which are processed like real requests. Each of these

pools can be accessed through the corresponding structures (i.e., the connect

structure, the request structure, and so on).

Is there a reason for not using pools?

For sure there is. In Apache prior to version 2 you can’t use pools when the lifetime of

the resource in question is bigger than the lifetime of the top pool.

“Apache 2.0 gives us both a new example and a new excuse for not using pools. The

excuse is where using a pool would cause either excessive memory consumption or

excessive amounts of pool creation and destruction, and the example is bucket

brigades (or, more accurately, buckets).”14.

A bucket brigade contains a sequence of buckets which represent both data content

and metadata and are especially used in connection with filtering15.

2.3.2 Apache core objects

Basically Apache provides the following core objects16:

• process_rec

• server_rec

• conn_rec

• request_rec

14 Laurie, Laurie (2003) p. 406
15 http://httpd.apache.org/docs/trunk/developer/output-filters.html (2010-01-24)
16 Kew (2007) p. 29

The Apache Webserver

Dipl.-HTL-Ing. Robert Maschek 8

Figure 3 Apache core objects

2.3.2.1 process_rec

The process_rec object is considered to be more a part of the operating system than

the belonging to the actual webserver.

The main goal for this object is the handling of pools (see chapter 2.3.1 for more

details).

2.3.2.2 server_rec

This object is created during the startup phase and defines a logical webserver17.

Since Apache is able to run “virtual hosts” (means running multiple instances of the

webserver on the same box) this object is created separately for each virtual server.

The object exists as long as the httpd daemon is running.

The server_rec object also uses only process pools maintained by the process_rec

object. It does not have any own pools18.

2.3.2.3 conn_rec

The core objects described so far are created during the startup phase of the server

and are available even there is no work for the server.

The conn_rec object is created when a client connects to the webserver.

There is a very important difference between (http) request and a connection.

17 Kew (2007) p. 35
18 Kew (2007) p. 35

The Apache Webserver

Dipl.-HTL-Ing. Robert Maschek 9

One connection can handle an amount of (means more than one) requests or more

technical – “the former is always a subcomponent of the later.”19

For this reason there can be more than one request_rec object (see chapter 2.3.2.4)

instantiated from one conn_rec object.

Mostly this object is ignored by programmers. You have to deal with it mainly when

you are writing connection-level filters or any kind of protocol module.

2.3.2.4 request_rec

The request_rec object is often called the heart and the soul of the Apache

webserver. This object deals with handling the http requests and is defined in the

httpd.h file. It is created whenever a request is accepted, stores and processes all the

relevant data for all stages of the entire request handling process (see chapter 2.4 on

page 10) and is destroyed when the request is finished. This object is passed to

every event handler implemented by any module20.

It also includes a number of fields used internally to maintain state and client

information by the webserver needed for processing the request:21

• A request pool, for management of objects having the lifetime of the request. It

is used to manage resources allocated while processing the request.

• A vector of configuration records for static request configuration (per-directory)

• A vector of configuration records for transient data used in processing.

• Tables of http input, output, and error headers.

• A table of Apache environment variables as seen in scripting extensions and a

similar “notes” table for request data that should not be seen by scripts.

• Pointers to all other relevant objects

• Pointers to the input and output filter chains.

• The Uniform Resource Identifier (URI) requested and the internal parsed

representation of it, including the handler and filesystem mapping.

19 Kew (2007) p. 37
20 Kew (2007) p. 30
21 Kew (2007) p. 30

The Apache Webserver

Dipl.-HTL-Ing. Robert Maschek 10

2.4 HTTP Request handling

2.4.1 Introduction

Now we know about the core objects making the webserver up and running. So it is

time to deal with the real “business” of such a server: Processing http requests from

clients.

At this stage we assume that the needed Transmission Control Protocol (TCP)

connection between the client and the server is already established.

Apache splits the request handling in different phases.

Figure 4 Apache 2 request handling 22

The “Processing Axis” describes the basic operation of a webserver.

After accepting the request during the “Metadata Processing” phase processes like

checking user authentication or processing of the Uniform Resource Identifier (URI)

mapping take place.

As soon as this is finished it comes to the “Content Generation” phase. Here the

server “creates” the webpage. By default it sends a file from the local disk.

Before returning to the client the request passes the “Logging” phase where the

logfiles are written.

22 Kew (2007) p. 47

The Apache Webserver

Dipl.-HTL-Ing. Robert Maschek 11

Apache 2 implemented a new concept: The filter chain was introduced and is

represented by the “Data Axis” in Figure 4. The reason for this was to enable a much

cleaner and more efficient data processing after or prior to reach the content

generator.

Filter might be used especially for modules that have both data inputs and outputs

like transforming Extensible Markup Language (XML) pages using the Extensible

Stylesheet Language Transformation (XSLT)23. In this case “Content handlers

requiring XSLT can simply output the XML as is, and leave the transformation to

Apache.”24.

A detailed view of the request handling process is shown in Figure 5.

23 http://en.wikipedia.org/wiki/XSL_Transformation (2010-01-24)
24 Kew (2007) p. 48

The Apache Webserver

Dipl.-HTL-Ing. Robert Maschek 12

Figure 5 Apache request handling (detailed view) 25

25 Gröne et.al (2004), p. 83

The Apache Webserver

Dipl.-HTL-Ing. Robert Maschek 13

2.4.2 Hooks for requests

The interaction between modules and the webserver is done using hooks.

A hook is a point at which a module can request to be called. Each hook specifies a

function prototype, and each module can specify functions that get called at the

appropriate moment. “When the moment arrives, the provider of the hook calls all the

functions in order. It may terminate when particular values are returned — the hook

functions can return either "declined" or "ok" or an error. In the first case all functions

are called until an error is returned (if one occurs, of course); in the second case

functions are called until either an error or "ok" is returned.”26.

Enclosed a list of standard hooks for request processing 27

• post_read_request: This is the first hook available to modules in normal

request processing.

• translate_name: Apache maps the request Uniform Resource Locator (URL)

to the filesystem. A module can insert a hook here to substitute its own logic.

• header_parser: This hook inspects the request headers. It is rarely used, as

modules can perform that task at any point in the request processing, and they

usually do so within the context of another hook.

• access_checker: Apache checks whether access to the requested resource is

permitted according to the server configuration (httpd.conf).

• check_user_id: If any authentication method is in use Apache will apply the

relevant authentication and set the username field. A module may implement

an authentication method with this hook.

• auth_checker: This hook checks whether the requested operation is permitted

to the authenticated user.

• type_checker: This hook applies rules related to the MIME type (where

applicable) of the requested resource, and determines the content handler to

use (if not already set).

• Fixups: This general-purpose hook enables modules to run any necessary

processing after the preceding hooks but before the content generator. Like

26 Laurie, Laurie (2003) p. 418
27 Kew (2007) p. 44

The Apache Webserver

Dipl.-HTL-Ing. Robert Maschek 14

the post_read_request it is something of a catch-all, and is one of the most

commonly used hooks.

• Handler: This is the content generator hook. It is responsible for sending an

appropriate response to the client. If there are input data, the handler is also

responsible for reading them. Unlike the other hooks, where zero or many

functions may be involved in processing a request, every request is processed

by exactly one handler.

• log_transaction: This hook logs the transaction after the response has been

returned to the client. A module may modify or replace Apache’s standard

logging.

Mod_ooRexx

Dipl.-HTL-Ing. Robert Maschek 15

3 Mod_ooRexx

3.1 Introduction

One of the great things of the Apache webserver is its modularity. If it does not do

what you want or is not capable to do so you can change it by adding a module.

This also happened to include the Open source scripting language REXX into the

Apache webserver by using the module mod_rexx.

A brief history: In the mid 1990s IBM offered a product called Object REXX.

In 2004 Object REXX was transferred from IBM to the Rexx Language Association

(RexxLA) and became an open-source project named Open Object REXX or

ooREXX28.

REXX and ooREXX are compatible. This means that REXX scripts work with

ooREXX (normally) without changes. Just to make sure: The other way round is only

possible as long as you don’t use object orientation.

This helps protecting investment in old traditional REXX code whereas new

developments can be done using the new object orient style and features.

The source code of mod_REXX has been rewritten to improve the performance and

to support the latest version (4.0) of ooREXX. This module will only support ooREXX

version 4.0 and later. To show this clearly to all of us the module has been renamed

to mod_ooRexx.

Mod_ooRexx is a Dynamic Shared Object (DSO) for the Apache webserver. “These

files usually stay inside a program-specific directory and there is no automatically

established link to the executable program where they are used. Instead the

executable program manually loads the DSO at run-time.”29.

28 Fosdick (2005) p. 496
29 http://httpd.apache.org/docs/2.0/dso.html (2010-01-24)

Mod_ooRexx

Dipl.-HTL-Ing. Robert Maschek 16

3.2 Installation of mod_ooRexx on Windows Server 2008

!
ATTENTION: There is a bug in the Windows thread part of ooRexx 4.0

which causes mod_ooRexx to crash.

So at the moment it is not possible to run mod_ooRexx on Windows.

3.2.1 Prerequisites

Before installing Mod_ooRexx you have to complete the following steps

• Windows Server 2008 installation (see Appendix B: Setup Virtual machines:

Window 2008 Server on page 47 for more details)

• Apache Webserver installation and customization (see Appendix D: Installing

Apache on Windows 2008 Server on page 73 for more details

• ooRexx installation (see Appendix F: Installing ooRexx on Windows Server

2008 on page 91 for more details)

If you are not using a binary distribution you will also need

• The “wget for Windows” Utility installed on your system30

• Microsoft Visual C++ 2008 installed on the system for compilation of

mod_ooRexx

3.2.2 Installation from source code

We will use the latest version of the software for the seminarpaper which can be

downloaded from the incubator directory of the sourceforge project site.

Open a DOSbox and type the following command:
E:\>"C:\Program Files\GnuWin32\bin\wget.exe" --no-check-certificate -r

-erobots=off -w 2 --limit-rate=200

https://oorexx.svn.sourceforge.net/svnroot/oorexx/incubator/mod_oorexx

This downloads the content of the incubator website to the directory

oorexx.svn.sourceforge/svnroot/oorexx/incubator/mod_oorexx.

30 http://gnuwin32.sourceforge.net/packages/wget.htm (2010-01-24)

Mod_ooRexx

Dipl.-HTL-Ing. Robert Maschek 17

For a better handling move the created directory to a directory called mod_ooRexx

using the explorer. Open a DOSbox and switch to the directory
E:\# cd mod_oorexx

Download the Apache Source distribution for Windows (httpd-2.2.14-win32-src.zip)

and unpack it to the mod_oorexx directory. You will get a subdirectory httpd-2.2.14.

For compiling Apache you will also need a utility called AWK31 copied to the binary

directory of Microsoft Visual Studio. Usually this is C:\Program Files\Microsoft Visual

Studio 9.0\VC\bin.

Open the “Visual Studio 2008 Command Prompt” from Start / Programs / Microsoft

Visual C++ 2008 Express Edition / Visual Studio Tools.

In the command prompt issue the following commands:
C:\Programme\Microsoft Visual Studio 9.0\VC>E:

E:\>

E:\>cd mod_oorexx\http-2.2.14

E:\mod_oorexx>nmake -f Makefile.win _apacher

To prepare the final compilation process of mod_ooRexx we have to copy some files

to the expected destinations. To do this issue the commands shown below:
E:\mod_oorexx>mkdir httpd-2.2.14\Release\include

E:\mod_oorexx>copy httpd-2.2.14\include*.* httpd-

2.2.14\Release\include*.*

E:\mod_oorexx>copy httpd-2.2.14\srclib\apr\include*.* httpd-

2.2.14\Release\include

E:\mod_oorexx>copy httpd-2.2.14\srclib\apr-util\include*.* httpd-

2.2.14\Release\include

E:\mod_oorexx>mkdir httpd-2.2.14\Release\lib

E:\mod_oorexx>copy httpd-2.2.14\srclib\apr\Release\libapr-1.lib httpd-

2.2.14\Release\lib\

E:\mod_oorexx>copy httpd-2.2.14\Release*.lib httpd-2.2.14\Release\lib\

31 http://cm.bell-labs.com/cm/cs/who/bwk/awk95.exe (2010-01-24)

Mod_ooRexx

Dipl.-HTL-Ing. Robert Maschek 18

To start the compilation of mod_ooRexx we need to adjust the makefile to our needs.

To do so open the makefile.nt located in the mod_oorexx directory and change the

following values:

AP_PATH = "c:\Program Files\Apache Software Foundation\Apache2.2"

to
AP_PATH = "E:\mod_oorexx\httpd-2.2.14"

Depending on your ooREXX installation path you might also need to change the

RX_PATH according to your needs.

After all this steps it is time for the final compilation:
E:\mod_oorexx>rexx make_mod_oorexx.rex

Next we need to copy the binary file to the needed locations.
E:\mod_oorexx> copy bin\mod_oorexx.dll “C:\Program Files\Apache Software

Foundation\Apache2.2\modules”

3.2.3 Customization

3.2.3.1 Copy sample pages

The distribution comes with some samples which can be used for testing the system.

For this reason we will copy them to the appropriate locations.

E:\mod_oorexx> copy rspcomp\rspcomp.rex “C:\Program Files\Apache Software

Foundation\Apache2.2\bin”

E:\mod_oorexx> copy rexscripts\Apache.cls “C:\Program Files\Apache Software

Foundation\Apache2.2”

E:\mod_oorexx> copy rexscripts*.rex E:\htdocs\mydomain.com\pages

E:\mod_oorexx> copy rspscripts*.rex E:\htdocs\mydomain.com\pages

3.2.3.2 Modify httpd.conf file

Last step is to edit the main configuration file httpd.conf located at C:\Program

Files\Apache Software Foundation\Apache2.2\conf

Add the following line to the end of the appropriate httpd.conf LoadModule list:
LoadModule oorexx_module modules/mod_oorexx.dll

Mod_ooRexx

Dipl.-HTL-Ing. Robert Maschek 19

The following lines should be added at the end of the http.conf file
AddType application/x-httpd-rexx-script .rex .rexx

AddType application/x-httpd-rexx-rsp .rsp

#Add these for ooRexx Server Page support

RexxTempFileNameTemplate "c:/temp/execrsp?????.rex"

RexxRspCompiler "c:/Program Files/Apache Group/Apache2/bin/rspcomp.rex"

Restart the webserver to reread the configuration file.

3.2.4 Check the installation

When accessing the test.rex script which comes with the distribution from a remote

webbrowser you should see the following page but as described at the beginning of

this chapter mod_ooRexx crashes due to a bug.

3.2.5 Installation from a binary distribution

At the moment there is no binary distribution available.

3.3 Installation of Mod_ooRexx on Fedora 12

3.3.1 Prerequisites

Before installing Mod_ooRexx complete the following steps

• Fedora 12 installation (see Appendix C: Setup Virtual machines: Fedora 12 on

page 58 for more details)

• Apache Webserver installation and customization (see Appendix E: Installing

Apache on Fedora 12 on page 82 for more details

• ooRexx installed (see Appendix G: Installing ooRexx on Fedora 12 on page 98

for more details)

3.3.2 Installation

Like the windows version we will use the latest version of the software and download

it from the incubator directory of the sourceforge project site.

[mod_rexx@www ~]$ su

Password: *****

[root@www mod_rexx]# wget -r -erobots=off –w 2 --limit-rate=20

https://oorexx.svn.sourceforge.net/svnroot/oorexx/incubator/mod_oorexx

Mod_ooRexx

Dipl.-HTL-Ing. Robert Maschek 20

This downloads the content of the incubator website to the directory

oorexx.svn.sourceforge/svnroot/oorexx/incubator/mod_oorexx.

For a better handling move the created directory to a directory called mod_oorexx

and switch to this directory
[root@www mod_rexx]# mv

 oorexx.svn.sourceforge/svnroot/oorexx/incubator/mod_oorexx mod_oorexx

[root@www mod_rexx]# cd mod_oorexx

Prior to compilation and installation we need to adjust the makefile.linux according to

our needs. Open the file in your favorite editor and change
INCLUDES = -I/usr/include/httpd –I/usr/include/apr-l

to
INCLUDES = -I/usr/local/apache2/include

Save the file.

Create the binaries by issuing the following command.
root@www mod_oorexx]# rexx make_mod_oorexx.rex

Next we need to copy the files to the needed locations.
[root@www mod_oorexx]# cp bin/mod_oorexx.so /usr/local/apache2/modules

[root@www mod_oorexx]# cp rexx.conf /usr/local/apache2/conf/

[root@www mod_oorexx]# cp rspcomp/rspcomp.rex /usr/local/apache2/bin

[root@www mod_oorexx]# cp rexscripts/Apache.cls /usr/bin

Mod_ooRexx

Dipl.-HTL-Ing. Robert Maschek 21

3.3.3 Customization

3.3.3.1 Copy sample pages

The distribution comes with some samples which can be used for testing the system.

For this reason we will copy them to the appropriate locations.

[root@www mod_oorexx]# mkdir /var/htdocs/mydomain.com/scripts

[root@www mod_oorexx]# cp rspscripts/*.rsp

 /var/htdocs/mydomain.com/scripts/

[root@www mod_oorexx]# cp rexscripts/test.rex

/var/htdocs/mydomain.com/pages/

[root@www mod_oorexx]# cp rexscripts/otest1.rex

/var/htdocs/mydomain.com/pages/

[root@www mod_oorexx]# cp rexscripts/footer.rex

 /var/htdocs/mydomain.com/pages/

[root@www mod_oorexx]# cp rexscripts/access.rex

 /var/htdocs/mydomain.com/pages/

3.3.3.2 Modify rexx.conf file

For including RSP (Rexx Server Pages) we need to adjust the compiler parameter in

the configuration file rexx.conf.

To do so move to the Apache server configuration directory by issuing the following

command.
[root@www mod_oorexx]# cd /usr/local/apache2/conf

Open the file rexx.conf in your favorite editor and change the following lines in the

section Rexx Server Page Support:
RexxRspCompiler "/usr/bin/rspcomp.rex"

to
RexxRspCompiler "/usr/local/apache2/bin/rspcomp.rex"

3.3.3.3 Include RSP support in the Apache main configuration file

Open the file httpd.conf in the configuration directory of the Apache webserver

(/usr/local/apache2/conf/) and append the following lines:
Mod_ooRexx support

Include conf/rexx.conf

Mod_ooRexx

Dipl.-HTL-Ing. Robert Maschek 22

3.3.3.4 Modifying selinux configuration

Fedora 12 comes with the Security-Enhanced Linux enabled by default.

“Security-Enhanced Linux (SELinux) is a Linux feature that provides a mechanism for

supporting access control security policies, including U.S. Department of Defense

style mandatory access controls, through the use of Linux Security Modules (LSM) in

the Linux kernel.”32

We need to change the SELinux security context of the mod_oorexx.so file.

Otherwise Apache won’t be able to start with error message similar to the one shown

below:
[root@www bin]# ./apachectl start

httpd: Syntax error on line 414 of /usr/local/apache2/conf/httpd.conf:

Syntax error on line 16 of /usr/local/apache2/conf/rexx.conf: Cannot load

/usr/local/apache2/modules/mod_oorexx.so into server:

/usr/local/apache2/modules/mod_oorexx.so: cannot restore segment prot after

reloc: Permission denied

To do so issue the following command:
[root@www bin]# chcon -t textrel_shlib_t

 '/usr/local/apache2/modules/mod_oorexx.so’

3.3.4 Check the installation

When accessing the test.rex script included in the distribution from remote ebbrowser

you should see the following page.

Figure 6 Mod_ooRexx Installation – Finished installation

32 http://en.wikipedia.org/wiki/Selinux (2010-01-24)

Examples

Dipl.-HTL-Ing. Robert Maschek 23

4 Examples

4.1 Introduction

The following section should show you some example of scripts using ooREXX and

mod_ooREXX which have been developed by “playing” around during the creation of

this seminar paper.

Some further description is included as well.

4.2 Hello World – A different way

As usual when starting to learn a programming language the first program developed

is the “Hello World” example. In our case I have used a little bit more sophisticated

version - drawing an equilateral triangle with sizes based on user input.

4.2.1 Sample 01: The “quick and dirty” version

For the first example we just add the code to the script.

1: /*******************************/
2: /* Draw a equilateral triangle */
3: /* (c)2010 Robert Maschek */
4: /*******************************/
5:
6: /* Apache return codes used */
7: OK = 0 /* Module has handled this stage. */
8:
9: /* get the Apache request record pointer */
10: r = arg(1)
11:
12: /* set content-type and send the HTTP header */
13: CALL WWWSendHTTPHeader r, "text/html"
14:
15: /* start sending the html page */
16: SAY '<HTML>'
17: SAY '<HEAD>'
18: SAY '<TITLE>My first HTML Page From Rexx</TITLE>'
19: SAY '</HEAD>'
20: SAY '<BODY>'
21: SAY '<H1><U>My first HTML Page From

Rexx</U>
'
22: SAY 'Let us draw a equilateral triangle</H1>'
23:
24: SAY '<FORM method="post" action="./Sample01.rex">'
25: SAY '<P>Enter number of characters: '
26: SAY '<INPUT type="text" name="visibletext" size="5">'
27: SAY '
'
28: SAY '<INPUT type="submit" value="Start to draw">'
29: SAY '</FORM>'
30:
31: CALL WWWGetArgs r
32: IF wwwargs.0 > 0 THEN DO
33: numberChar=wwwargs.1.!value
34: SAY '<P>Number of characters: 'numberChar'</P>'
35:

Examples

Dipl.-HTL-Ing. Robert Maschek 24

36: /* We need an uneven number to draw a triangle */
37: IF (numberChar//2) == 0 THEN numberChar = numberChar + 1
38:
39: SAY ''
40: SAY ''
41:
42: /* Draw hypotenuse */
43: DO numberChar
44: SAY '*'
45: END
46: SAY '
' /* adds the carriage return at EOL*/
47:
48: /* Draws the triangle */
49: DO a = 1 TO numberChar/2
50: /* left side */
51: DO b = 1 TO a
52: SAY ' '
53: END
54: SAY '*'
55: /* right side */
56: DO c = 1 TO numberChar - (2 * b)
57: SAY ' '
58: END
59: IF c <> 1 THEN /* This is needed to draw the tip */
60: DO
61: SAY '*'
62: SAY '
'
63: END
64: END
65: SAY ' '
66: END
67: SAY '</BODY>'
68: SAY '

'
69: SAY 'Running on: 'wwwserver_software''
70: SAY '</HTML>'
71:
72: RETURN OK

Figure 7 Sample 01: equilateral triangle – the simplest way – source code (Sample01.rex)

Detailed description:

At the beginning of the script (line 6 and 7) there is the definition of the return codes

when the script ends. In our case we just need the one even there are a few more

available. The webserver uses these returncodes to continue with its operation. For

example it is used to distinguish between different error messages being displayed

on the browser (like 404 not found).

The next two steps are taking the Apache request record pointer (line 9) and sending

back the http header (line 12) to the browser. Please keep in mind that the last call

has to be in the script.

The other Call statement that has to be in your script is shown in line 32. Using this

function we return the GET/POST request arguments.

The script is actually processed twice:

Examples

Dipl.-HTL-Ing. Robert Maschek 25

• During the first run we just show the first part of the homepage. Since there is

no number (argument) entered wwwargs.0 is also 0. This changes once we

entered a number and the [Start to Draw] button is pressed.

• After pressing the button the script is executed for the second time. Now there

is a value in the wwwargs.0 (not 0) so that we can really start to draw.

The other parts of the source code are pretty simple.

The start is to check whether an uneven number was entered (line 38). Since we use

characters for the drawing we can’t split one of them. That is the reason for the need

of an uneven number. If an even number was entered we just add one to it.

Line 40 and 41 just set the font and the color for the triangle.

Between line 49 and 65 we are actually drawing the triangle using some loops. The

only piece to mention is that we need to use a non breaking space () to get to

the needed points. Otherwise the leading spaces will be removed automatically.

Finally we add a footer line (line 70) which displays some information about the

server.

The result is shown below.

Figure 8 Sample 01: equilateral triangle – the simplest way – the result

Examples

Dipl.-HTL-Ing. Robert Maschek 26

4.2.2 Sample 02: Using routines and procedures

As a first improvement we structure the sourcecode using procedures, functions and

routines.

The main difference between procedures and functions in ooREXX is that “functions

can return a value ("functionvalue") to the caller via the RETURN-statement”33

whereas a procedure is just a “grouping of statements which repeatedly get executed

by different parts in a program”34.

Routines are handled like external procedures/functions. This means a routine is

more or less like running a program in the program.

They represent procedures and functions and after a successful syntax check they

are made available in the scope of the program itself, and in addition in all

superordinate (calling) programs, if the keyword PUBLIC is given35.

1: /********************************/
2: /* Draw a equilateral triangle */
3: /* with Procedures and Routines */
4: /* (c)2010 Robert Maschek */
5: /********************************/
6:
7: /* Apache return codes used */
8: OK = 0 /* Module has handled this stage. */
9:
10: /* get the Apache request record ptr */
11: r = arg(1)
12:
13: /* set content-type and send the HTTP header */
14: CALL WWWSendHTTPHeader r, "text/html"
15:
16: /* start sending the html page */
17: '<HTML>'
18: SAY '<HEAD>'
19: SAY '<TITLE>My second HTML Page From Rexx</TITLE>'
20: SAY '</HEAD>'
21: SAY '<BODY>'
22: SAY '<H1><U>My second HTML Page From

Rexx</U>
'
23: SAY 'Let us draw a equilateral triangle
'
24: SAY '(Now we add routines and procedures)</H1>'
25:
26: SAY '<FORM method="post" action="./Sample02.rex">'
27: SAY '<P>Enter number of characters: '
28: SAY '<INPUT type="text" name="visibletext" size="5">'
29: SAY '
'
30: SAY '<INPUT type="submit" value="Start to draw">'
31: SAY '</FORM>'
32:
33: CALL WWWGetArgs r
34: IF wwwargs.0 > 0 THEN DO
35:
36: numberChar=wwwargs.1.!value
37: SAY '<P>Number of characters: 'NumberChar'</P>'
38:
39: /* We need an uneven number to draw a triangle */

33 Flatscher (2009a) p. 5
34 Flatscher (2009a) p. 3
35 Flatscher (2009b) p. 16

Examples

Dipl.-HTL-Ing. Robert Maschek 27

40: IF (numberChar//2) == 0 THEN numberChar = numberChar + 1
41:
42: SAY ''
43: SAY ''
44:
45: /* Draw hypotenuse */
46: CALL DRAW_HYPOTENUSE
47:
48: /* Draws the triangle */
49: DO a = 1 TO numberChar/2
50: CALL DRAW_LEFT_SIDE
51: /* right side */
52: CALL DRAW_RIGHT_SIDE
53: IF c <> 1 THEN CALL DRAW_TIP /* needed to draw the tip */
54: END
55: SAY ' '
56: END
57: SAY '</BODY>'
58: SAY '

'
59: SAY 'Running on: 'wwwserver_software''
60: SAY '</HTML>'
61: RETURN OK
62: /************************/
63: /* Procedures/Functions */
64: /************************/
65: DRAW_HYPOTENUSE:
66: DO numberChar
67: SAY '*'
68: END
69: SAY '
' /* adds the carriage return at the end of the line */
70: RETURN
71:
72: DRAW_LEFT_SIDE:
73: DO b = 1 TO a
74: SAY ' '
75: END
76: SAY '*'
77: RETURN
78:
79: DRAW_RIGHT_SIDE:
80: DO c = 1 TO numberChar - (2 * b)
81: SAY ' '
82: END
83: RETURN
84:
85: /************/
86: /* Routines */
87: /************/
88: :: ROUTINE DRAW_TIP PUBLIC
89: SAY '*'
90: SAY '
'
91:
92: EXIT 0

Figure 9 Sample 02: equilateral triangle – using routines and procedures – source code

(Sample02.rex)

Detailed description:

The behavior of the program is the same as described in section 4.2.1 on page 23.

We have taken out often used parts from the sourcecode and placed them into the

procedures and routines after the final Return statement in line 62.

They are used with the Call statement (line 47, 51 and 53).

In our case there is also no return value from the procedures.

Examples

Dipl.-HTL-Ing. Robert Maschek 28

The result is shown below.

Figure 10 Sample 02: equilateral triangle – using routines and procedures – the result

4.2.3 Sample 03: Using Rexx Server Pages (RSP), Cascading Style
Sheets (CSS) and Frames

Rexx Server Pages are dynamic webpages using server side scripting similar to Java

Server Pages (JSP), Active Server Pages (ASP) or PHP for example. For this we

place normal REXX statements in the HTML code. These statements are executed

on the webserver at run time and the result is delivered to the client.

1: <HTML>
2: <HEAD>
3: <TITLE>My third HTML Page from REXX </TITLE>
4: </HEAD>
5: <FRAMESET ROWS="20%,*">
6: <FRAME Name="Top" SRC="Sample03_Top.html">
7: <FRAME Name="Bottom" SRC="Sample03_Bottom.rsp">
8: </FRAMESET>
9: </HTML>

Figure 11 Sample 03: equilateral triangle – using RSP and CSS – source code (Sample03.html)

This is the HTML code for the main page. In our case the main page just provides the

“Frame” for the frames.

1: h1 { color: indigo;
2: text-align:left;
3: font-family: Arial,sans-serif;
4: font-size: 12pt;
5: }
6: body { background-color: lightblue;
7: font-family: Arial,sans-serif;
8: font-size: 12pt;
9: }
10: p.blue { color: blue;
11: font-family: Courier;
12: font-weight: bold;
13: }

Examples

Dipl.-HTL-Ing. Robert Maschek 29

14: p.footer { color: black;
15: text-align:left;
16: font-family: Arial,sans-serif;
17: font-size: 8pt;
18: }

Figure 12 Sample 03: equilateral triangle – using RSP, CSS and frames – source code (Samples.css)

A CSS is a style sheet used to describe the presentation semantics (that is, the look

and formatting) of a document written in a markup language36. The advantage of

CSS is that webpages stay consistent over the entire website and the design can be

changed very easy.

1: <HTML>
2: <HEAD>
3: <TITLE>My third HTML Page from REXX </TITLE>
4: <LINK REL="stylesheet" TYPE="text/css" HREF="Samples.css">
5: </HEAD>
1:
2: <BODY>
3: <H1><U>My third HTML Page From Rexx</U></H1>
4: Let us draw a equilateral triangle.

5: (Now we add Cascading Style sheets and Frames. So we have to use RSP.)

6: <FORM method="post" action="Sample03_Bottom.rsp" target="Bottom">
7: Enter number of characters:
8: <INPUT type="text" name="visibletext" size="5">
9:

10: <INPUT type="submit" value="Start to draw">
11: </FORM>
12: </BODY>
13: </HTML>

Figure 13 Sample 03: equilateral triangle – using RSP, CSS and frames – source code

(Sample03_Top.html)

Detailed description:

The Top frame states only plain HTML covering the input of the amount of

characters. After pressing the [Start to draw] button (line 10) the

Sample03_Bottom.rsp page is called from the webserver and displayed in the Bottom

frame according to the FORM instruction in line 6.

1: <HTML>
2: <HEAD>
3: <LINK REL="stylesheet" TYPE="text/css" HREF="Samples.css">
4: </HEAD>
5:
6: <BODY>
7: <SCRIPT type="rexx">
8: /* Apache return codes used*/
9: OK = 0 /* Module has handled this stage. */
10:
11: IF wwwargs.0 > 0 THEN DO
12: numberChar=wwwargs.2.!value
13: SAY 'Number of characters: 'NumberChar'

'
14:
15: /* We need an uneven number to draw a triangle */
16: IF (numberChar//2) == 0 THEN numberChar = numberChar + 1
17:
18: SAY '<P CLASS="blue">'

36 http://en.wikipedia.org/wiki/Cascading_Style_Sheets (2010-01-24)

Examples

Dipl.-HTL-Ing. Robert Maschek 30

19: /* Draw hypotenuse */
20: CALL DRAW_HYPOTENUSE
21: /* Draws the triangle */
22: DO a = 1 TO numberChar/2
23: CALL DRAW_LEFT_SIDE
24: /* right side */
25: CALL DRAW_RIGHT_SIDE
26: IF c <> 1 THEN CALL DRAW_TIP /*Needed to draw tip*/
27: END
28: SAY '</P>'
29: END
30:
31: SAY '<P CLASS="footer">Running on: 'wwwserver_software'</P>'
32: RETURN OK
33:
34: /************************/
35: /* Procedures/Functions */
36: /************************/
37: DRAW_HYPOTENUSE:
38: DO numberChar
39: SAY '*'
40: END
41: SAY '
' /* adds the carriage return at the eol */
42: RETURN
43:
44: DRAW_LEFT_SIDE:
45: DO b = 1 TO a
46: SAY ' '
47: END
48: SAY '*'
49: RETURN
50:
51: DRAW_RIGHT_SIDE:
52: DO c = 1 TO numberChar - (2 * b)
53: SAY ' '
54: END
55: RETURN
56:
57: /************/
58: /* Routines */
59: /************/
60: :: ROUTINE DRAW_TIP PUBLIC
61: SAY '*'
62: SAY '
'
63:
64: EXIT 0
65: </SCRIPT>
66: </HTML>

Figure 14 Sample 03: equilateral triangle – using RSP, CSS and frames – source code

(Sample03_Bottom.rsp)

Detailed description:

Now we are calling a page from the webserver ending with .rsp. From the directive

“AddType application/x-httpd-rexx-rsp .rsp” placed in the rexx.conf file the server

knows that this page includes server side scripting and needs to be executed in a

proper way.

When such a request is made it is processed in four stages by Mod_ooRexx and a

ooRexx program/script (the RSP compiler. See the directive RexxRspCompiler in the

rexx.conf file).

Examples

Dipl.-HTL-Ing. Robert Maschek 31

1. Mod_ooRexx creates a temporary file for the compiled version of the RSP file.

2. RSPCOMP.REX (the RSP compiler) is called to compile the RSP file into a

real ooRexx program and place it in the temporary file.

3. Mod_ooRexx calls the newly created ooRexx program.

4. Mod_ooRexx removes the temporary file.

The execution of the sourcecode is similar to Sample 02: Using routines and
procedures on page 26.

The result is shown below.

Figure 15 Sample 03: equilateral triangle – using RSP and CSS – the result

4.2.4 Sample 04: Using Object Oriented Programming

Since “Open Object Rexx is a fully object-oriented superset of standard Rexx”37 why

not to use it?

“Open Object Rexx is a powerful, object-oriented language that retains the ease of

use of classic Rexx. The product lies at the intersection of three of today’s key

software trends:

• High-level scripting

• Object-oriented programming

• Open-source software”38

For this reason we have updated the program to use OO technology.

37 Fosdick (2005) p. 459
38 Fosdick (2005) p. 473

Examples

Dipl.-HTL-Ing. Robert Maschek 32

1: /********************************/
2: /* Draw a equilateral triangle */
3: /* with Procedures and Routines */
4: /* (c)2010 Robert Maschek */
5: /********************************/
6:
7: /* Apache return codes used */
8: OK = 0 /* Module has handled this stage. */
9:
10: /* get the Apache request record ptr */
11: r = arg(1)
12:
13: /* set content-type and send the HTTP header */
14: CALL WWWSendHTTPHeader r, "text/html"
15:
16: /* start sending the html page */
17: SAY '<HTML>'
18: SAY '<HEAD>'
19: SAY '<TITLE>My Fourth HTML Page From Rexx</TITLE>'
20: SAY '</HEAD>'
21: SAY '<BODY>'
22:
23: SAY '<H1><U>My fourth HTML Page From

Rexx</U>
'
24: SAY 'Let us draw a equilateral triangle
'
25: SAY '(Now we add Object Oriented Programming)</H1>'
26:
27: SAY '<FORM method="post" action="./Sample04.rex">'
28: SAY '<P>Enter number of characters: '
29: SAY '<INPUT type="text" name="visibletext" size="5">'
30: SAY '
'
31: SAY '<INPUT type="submit" value="Start to draw">'
32: SAY '</FORM>'
33:
34: CALL WWWGetArgs r
35: IF wwwargs.0 > 0 THEN DO
36:
37: numberChar=wwwargs.1.!value
38: SAY '<P>Number of characters: 'NumberChar'</P>'
39:
40: /* We need an uneven number to draw a triangle */
41: IF (numberChar//2) == 0 THEN numberChar = numberChar + 1
42:
43: SAY ''
44: SAY ''
45:
46: /* Instantiate new object */
47: triangle1 = .triangle~New(numberChar)
48:
49: /* Draw hypotenuse */
50: triangle1~~draw_hypotenuse()
51:
52: /* Draws the triangle */
53: triangle1~~draw_triangle()
54: SAY ' '
55: END
56: SAY '</BODY>'
57: SAY '

'
58: SAY 'Running on: 'wwwserver_software''
59: SAY '</HTML>'
60:
61: RETURN OK
62:
63: /***********/
64: /* Classes */
65: /***********/
66: ::CLASS triangle
67:
68: ::METHOD init
69: EXPOSE numberChar
70: USE ARG numberChar
71:
72: ::METHOD numberChar ATTRIBUTE
73:

Examples

Dipl.-HTL-Ing. Robert Maschek 33

74: /********************/
75: /* Start of methods */
76: /********************/
77: ::METHOD draw_hypotenuse
78: /* Draws the hypotenuse of the triangle */
79: DO self~numberChar
80: SAY '*'
81: END
82: SAY '
' /* adds the carriage return at eol */
83:
84: ::METHOD draw_triangle
85: /* Draws the other two sides of the triangle */
86: DO a = 1 TO self~numberChar/2
87: /* left side */
88: DO b = 1 TO a
89: SAY ' '
90: END
91: SAY '*'
92: /* right side */
93: DO c = 1 TO self~numberChar - (2 * b)
94: SAY ' '
95: END
96: IF c <> 1 THEN /* Needed to draw the tip */
97: DO
98: SAY '*'
99: SAY '
'
100: END
101: END

Figure 16 Sample 04: equilateral triangle – using Objects – source code (Sample04.rex)

Detailed description:

Up to line 46 the sourcecode is similar to the examples shown before.

Line 47 instantiates a new object of the class “triangle” and in line 50 and 53 we call

the methods of the class.

The class consists of two methods:

• draw_hypotenuse: Draws the hypotenuse of the triangle.

• draw_triangle: Draws the other two sides of the triangle.

The result is shown below.

Figure 17 Sample 04: equilateral triangle – using Objects – the result

Examples

Dipl.-HTL-Ing. Robert Maschek 34

4.3 Using ooREXX to control access to the server

The usage ooREXX for Apache is not limited to create webpages. It is also possible

to use it for controlling or changing the behavior of the Apache webserver.

4.3.1 Sample 05: Our standard for the Browser is Internet Explorer 8

One of the common problems within a corporate infrastructure is the enforcement of

standards. In our case we want to deny the access to the webserver for all other

browsers than our standard.

The sourcecode shown in Figure 18 is able to do this.

1: /**/
2: /* Check Browser for MSIE and Version 8.0 */
3: /* (c)2010 Robert Maschek */
4: /**/
5: /* Apache return codes used */
6: OK = 0 /* Module has handled this stage. */
7: FORBIDDEN = 403 /* Display an Error 403 webpage */
8:
9: /* get the Apache request record ptr */
10: r = arg(1)
11:
12: /* Extract the needed information */
13: PARSE VAR wwwhttp_user_agent part_1 "MSIE " part_2
14: PARSE VAR part_2 before ";" after
15:
16: IF before = 8.0 then DO
17: /* MSIE 8.0 used */
18: CALL WWWLogInfo r, "Check Browser: IE and version checked o.k.

(requested:"wwwscript_name")"
19: END
20: ELSE DO
21: /* other browser used */
22: CALL WWWLogWarning r, "Check Browser: Wrong browser or version

(requested:"wwwscript_name")"
23: RETURN FORBIDDEN
24: END
25:
26: RETURN OK

Figure 18 Sample 05: Check Browser type and version (check_browser_and_version.rex)

Detailed description:

The program takes the Apache request record pointer (line 10) and extracts the

needed information from the variable wwwhttp_user_agent. If we are using the

corporate standard the content of wwwhttp_user_agent must be “Mozilla/4.0

(compatible; MSIE 8.0; Windows NT 5.1; Trident/4.0; Mozilla/4.0 (compatible; MSIE

6.0; Windows NT 5.1; SV1) ; .NET CLR 2.0.50727; .NET CLR 3.0.04506.30; .NET

CLR 1.1.4322; .NET CLR 3.0.04506.648; InfoPath.2; .NET CLR 3.0.4506.2152; .NET

CLR 3.5.30729; AskTB5.5)”. Line 13 extracts the part on the right side from the first

Examples

Dipl.-HTL-Ing. Robert Maschek 35

occurrence of the string MSIE and the result is used in line 14 to extract the version

number.

The next step is to check the values (line 16) and place either a success message

(line 18) or an error message (line 22) in the Apache error logfile.

If there is an error (means using the wrong browser) we will also RETURN the value

403 (line 23) which results in displaying the 403 Error page (You don’t have

permission to access…) from the Apache webserver.

To arm this program we need to place a directive in the main configuration file

(httpd.conf) as shown below.

Directives for Sample 05

<Directory "/var/htdocs/mydomain.com/pages/sample05">

 RexxAccessHandler

'/var/htdocs/mydomain.com/scripts/check_browser_and_version.rex'

</Directory>

Figure 19 Apache configuration directive for checking webbrowser and version

Once everything is up and running it will lead to the following result when requesting

a webpage when using the wrong browser …

Figure 20 Check Browser and version: Wrong browser used

… and the following entry to the Apache error logfile
[Sat Jan 23 01:55:58 2010] [warn] [client 192.168.174.1] Check Browser:

Wrong browser or version (requested:/sample05/Sample05.html

When using the standard browser the following webpage will be displayed …

Examples

Dipl.-HTL-Ing. Robert Maschek 36

Figure 21 Check Browser and version: Successful tested

… and the following entries placed in the Apache error logfile
[Mon Jan 04 00:23:54 2010] [info] [client 192.168.174.1] Check Browser: IE8

and version checked o.k. (requested:/sample05/Sample05.html)

[Mon Jan 04 00:23:54 2010] [info] [client 192.168.174.1] Check Browser: IE8

and version checked o.k. (requested:/sample05/Samples.css), referer:

http://192.168.174.137/sample05/Sample05.htm

4.3.2 Sample 06: Access only for members of our IP-subnet

Today companies live in globalized “internal world”. So there is a good reason to

protect your data. We want to do this by limiting access to the webserver to people

residing in the same IP-subnet as the server is.

The following code takes the ip-address from the server, calculates subnet- and

broadcast address and checks that the ip-address from the requestor is in that range.

1: /**/
2: /* Provide ACL based on IP-addresses and Subnetmask */
3: /* (c)2010 Robert Maschek */
4: /**/
5: /* Apache return codes used */
6: OK = 0 /* Module has handled this stage. */
7: FORBIDDEN = 403 /* Display an Error 403 page */
8: INT_ERROR = 500 /* Display an Error 500 page */
9:
10: /* get the Apache request record ptr */
11: r = arg(1)
12:
13: /* Create entity */
14: ipcalculation1 = .ipcalculation~NEW()
15:
16: /* Setup net ip-address and the subnetmask which are allowed */
17: serverip="192.168.174.137"
18: subnetmask="255.255.0.0"
19:
20: PARSE VAR serverip ip1"."ip2"."ip3"."ip4
21: PARSE VAR subnetmask sn1"."sn2"."sn3"."sn4
22:
23: /* Calculate SubnetID */
24: ipcalculation1~~binarycalculation(ip1, sn1, 'subnetid')
25: subnetid1 = ipcalculation1~netaddrd
26: ipcalculation1~~binarycalculation(ip2, sn2, 'subnetid')

Examples

Dipl.-HTL-Ing. Robert Maschek 37

27: subnetid1 = subnetid1 || ipcalculation1~netaddrd
28: ipcalculation1~~binarycalculation(ip3, sn3, 'subnetid')
29: subnetid2 = ipcalculation1~netaddrd
30: ipcalculation1~~binarycalculation(ip4, sn4, 'subnetid')
31: subnetid2 = subnetid2 || ipcalculation1~netaddrd
32:
33: /* Calculate Broadcast Address */
34: ipcalculation1~~binarycalculation(SUBSTR(subnetid1,1,3), sn1, 'broadcastid')
35: broadcastid1=ipcalculation1~netaddrd
36: ipcalculation1~~binarycalculation(SUBSTR(subnetid1,4,3), sn2, 'broadcastid')
37: broadcastid1 = broadcastid1 || ipcalculation1~netaddrd
38: ipcalculation1~~binarycalculation(SUBSTR(subnetid2,1,3), sn3, 'broadcastid')
39: broadcastid2 = ipcalculation1~netaddrd
40: ipcalculation1~~binarycalculation(SUBSTR(subnetid2,4,3), sn4, 'broadcastid')
41: broadcastid2 = broadcastid2 || ipcalculation1~netaddrd
42:
43: /* Get requestors IP-address */
44: PARSE VAR wwwremote_addr ip1"."ip2"."ip3"."ip4
45:
46: /* Build string from ip-address */
47: ipcalculation1~~buildthreedigits(ip1)
48: requestorip1 = ipcalculation1~iprebuild
49: ipcalculation1~~buildthreedigits(ip2)
50: requestorip1 = requestorip1 || ipcalculation1~iprebuild
51: ipcalculation1~~buildthreedigits(ip3)
52: requestorip2 = ipcalculation1~iprebuild
53: ipcalculation1~~buildthreedigits(ip4)
54: requestorip2 = requestorip2 || ipcalculation1~iprebuild
55:
56: /* Check that ip is in the range */
57: IF (requestorip1 >= subnetid1) & (requestorip1 <= broadcastid) & (requestorip2 >

subnetid2) & (requestorip2 < broadcastid2) THEN DO
58: /* IP-Address in range */
59: CALL WWWLogInfo r, "Check IP: Request checked and o.k. (requested:"wwwscript_name")"
60: END
61: ELSE DO
62: /* not in range --> unauthorized access */
63: CALL WWWLogWarning r, "Check IP: Unauthorzied access attempt

(requested:"wwwscript_name")"
64: RETURN FORBIDDEN
65: END
66:
67: RETURN OK
68:
69: /***********/
70: /* Classes */
71: /***********/
72: ::CLASS ipcalculation
73:
74: ::METHOD init
75:
76: ::METHOD ip ATTRIBUTE /* Ip-Address */
77: ::METHOD subnet ATTRIBUTE /* Subnetmask */
78: ::METHOD netaddrd ATTRIBUTE /* Return value */
79: ::METHOD snbc ATTRIBUTE /* Subnet(ID) or Broadcast */
80: ::METHOD iprebuild ATTRIBUTE /* 3digit ip-address */
81:
82: /********************/
83: /* Start of methods */
84: /********************/
85: ::METHOD binarycalculation
86: /* Does all the needed binary calculations */
87: EXPOSE ip subnet netaddrd
88: USE ARG ip, subnet, snbc
89:
90: /* Calculate binary values */
91: ipb=X2B(D2X(self~ip))
92: SELECT
93: WHEN snbc='subnetid' THEN
94: subnetb=X2B(D2X(self~subnet));
95: WHEN snbc='broadcastid' THEN
96: subnetb=X2B(D2X(255-self~subnet));
97: OTHERWISE RETURN INT_ERROR
98: END
99:
100: netaddr=""

Examples

Dipl.-HTL-Ing. Robert Maschek 38

101: /* We need to have 8Bit numbers */
102: temp=""
103: DO a = 1 TO 8 - LENGTH(ipb)
104: temp=temp||'0'
105: END
106: ipb=temp||ipb
107:
108: temp=""
109: DO a = 1 TO 8 - LENGTH(subnetb)
110: temp=temp||'0'
111: END
112: subnetb=temp||subnetb
113:
114: /* Binary AND/ OR calculation of IP and SN */
115: DO a=1 TO 8
116: a1 = SUBSTR(ipb,a,1)
117: a2 = SUBSTR(subnetb,a,1)
118: SELECT
119: WHEN snbc='subnetid' THEN
120: a3 = a1 & a2;
121: WHEN snbc='broadcastid' THEN
122: a3 = a1 | a2;
123: END
124: netaddr = netaddr||a3
125: END
126:
127: /* Calculate decimal value */
128: netaddrd = X2D(B2X(netaddr))
129:
130: /* We need 3digit numbers */
131: temp=""
132: DO a = 1 TO 3 - LENGTH(netaddrd)
133: temp=temp||'0'
134: END
135: netaddrd=temp||netaddrd
136: EXIT 0
137:
138: ::METHOD buildthreedigits
139: /* Creates strings which are 3 digits long */
140: EXPOSE iprebuild
141: USE ARG ip
142:
143: temp=""
144: DO a = 1 TO 3 - LENGTH(ip)
145: temp=temp||'0'
146: END
147: iprebuild=temp||ip
148:
149: EXIT 0

Figure 22 Sample 06: Check IP - sourcecode

Detailed description:

As usual it starts with passing the Apache request record pointer (line 11). Afterwards

we instantiate an object from the class “ipcalculation” (line 14). This class covers all

the needed calculations.

Line 17 and 18 provide the ip-address and the subnetmask of the webserver. These

values will be split up in four parts (line 20 and 21).

The next step is to calculate the subnet and the broadcast address. This is done by

calling the method “binarycalculation” of the instantiated object (line 24 to 40). The

Examples

Dipl.-HTL-Ing. Robert Maschek 39

return value is put together in two blocks (192168 and 174000 in our example). The

reason for doing this is that ooREXX is having problems when we want to do

calculations with numbers like 19216817400.

The method “binarycalculation” takes the part of the ip-address and converts it into

the binary value (line 91). For the subnetmask we need to distinguish between

“subnetid” (convert the value line 94) and the “broadcastid” (convert 255-value

line 96).

Lines 100 to 112 are used to get 8Bit values for both values every time. We just put

the proper amount of “0” in front to get a string like 00000111 for the decimal value 7.

This is followed by the binary calculation (line 115 to 128). We cut the strings down to

one character (line 116,117) do the binary “and” operation for calculating the subnet

part (line 120) or the ”or” operation for calculating the broadcast address. (line 122).

Line 124 “collects” the results and rebuilds the string before it is transformed back to

a decimal value (line 128).

The last step prior to returning the value is to make sure that we always will return

three digits numbers by entering the needed leading zeros (line 131 to 135)

Building the same two blocks from the requestor ip-address (wwwremote_addr) is

done in the next step. This is done similar than stated above. We take the value and

split it into parts (line 44). We will call the method “buildthreedigits” to make sure that

we have three digit numbers and put the string together (line 47 to 54).

After having done the hard bits we need to make sure to check that we are in the

range (line 57) and place an entry in the Apache logfile (line 59). If this is not the

case we will add an entry in the Apache logfile and return a 403 error page (line 62 to

64)

Like in Sample 05 to arm this program we need to place a directive in the main

configuration file (httpd.conf) as shown below.

Examples

Dipl.-HTL-Ing. Robert Maschek 40

Directives for Sample 06

<Directory "/var/htdocs/mydomain.com/pages/sample06">

 RexxAccessHandler

'/var/htdocs/mydomain.com/scripts/check_ip.rex'

</Directory>

Figure 23 Apache configuration directive for checking webbrowser and version

Once everything is up and running it will lead to the following result when requesting

a webpage when coming from the wrong ip-address …

Figure 24 Sample 06: Check IP - coming from a wrong one

… or an equivalent according to your language settings and an entry in the Apache

error logfile:
[Mon Jan 23 01:35:21 2010] [warn] [client 192.168.174.1] Check IP:

Unauthorzied access attempt (requested:/sample06/Sample06.html)

In case of a successful attempt the following webpage will be shown …

Figure 25 Sample 06: Check IP - coming from a right one

… and the following entries will be placed in the Apache error logfile:
[Mon Jan 23 01:40:54 2010] [info] [client 192.168.174.1] Check IP: Request

checked and o.k. (requested:/sample06/Sample06.html)

[Mon Jan 23 01:40:54 2010] [info] [client 192.168.174.1] Check IP: Request

checked and o.k. (requested:/sample06/Samples.css), referer:

http://192.168.174.137/sample06/Sample06.htm

Conclusion

Dipl.-HTL-Ing. Robert Maschek 41

5 Conclusion
Apache and mod_ooREXX are a very powerful package even we have only

discovered very few parts of the possibilities so far.

Limitations in the future development might come from the lack of resources.

There are tons of books about Apache focusing on setting up, configuring and

administration but as soon as it comes to system programming resources are getting

rare. In combination with REXX or ooREXX it changes for the worse.

This makes it very difficult and very timeconsuming task to discover the possibilities.

Another issue is the existing bug in the Windows version. Today there are a lot of

systems relying on this operating system. So can’t serving this marketshare is not an

option.

On the other hand could further investigations lead to new additional perspectives in

using mod_ooREXX. An example would be the combination of BSF4REXX and

mod_ooREXX in a web environment.

Bibliography

Dipl.-HTL-Ing. Robert Maschek 42

6 Bibliography
Ford, Andrew (2008): Apache 2 Pocket reference, O’Reilly, ISBN:978-0-596-51888-2

Flatscher, Rony (2009a): An Introduction to Procedural and Object-oriented

Programming (ooRexx) 2; http://wi.wu-

wien.ac.at/rgf/wu/lehre/autowin/material/foils/ooRexx_2.pdf (2010-01-24)

Flatscher, Rony (2009b): An Introduction to Procedural and Object-oriented

Programming (ooRexx) 3; http://wi.wu-

wien.ac.at/rgf/wu/lehre/autowin/material/foils/ooRexx_3.pdf (2010-01-24)

Fosdick, Howard (2005): Rexx Programmer’s Reference, Wiley Publishing, Inc.,

Indiana, ISBN: 0-7645-7996-7

Gröne, Bernhard; Knöpfel, Andreas; Kugel, Rudolf; Schmidt, Oliver (2004): The

Apache Modeling Project; http://www.fmc-

modeling.org/download/projects/apache/the_apache_modelling_project.pdf (2010-

01-24)

Kew, Nick (2007): The Apache Modules Book, Prentice Hall, ISBN 0-13-240967-4

Laurie, Ben; Laurie, Peter (2003): Apache: The Definitive Guide, 3rd Edition, O’Reilly,

ISBN: 978-0-596-00203-3

Wolfgarten, Sebastian (2003): Apache Webserver 2.0, Addison-Wesley, Munich

Appendix A: VMware Workstation installation

Dipl.-HTL-Ing. Robert Maschek 43

7 Appendix A: Installation of VMware Workstation

7.1 Prerequisites

You can download the latest version of VMware Workstation directly from the

manufacturer by following this link http://www.vmware.com/de/products/ws/ .

VMware offers a 30 day trial version for free.

Download the file to a local disk drive of your PC

7.2 Installation

Doubleclick on the downloaded file to start the installation process.

The setup starts with loading some libraries. Afterwards the following screen will be

displayed

Figure 26 VMware Workstation Setup – Startup Screen

Click on the [Next] button or press ALT-N to continue.

Figure 27 VMware Workstation Setup – Setup Type

Appendix A: VMware Workstation installation

Dipl.-HTL-Ing. Robert Maschek 44

Choose typical installation by clicking on the [Typical] Button or press ALT-T an

continue by clicking on the [Next] button or press ALT-N to continue.

Figure 28 VMware Workstation Setup – Destination Folder

Choose an appropriate destination folder for the program files by clicking on the

[Change] button or by pressing ALT-C.

We will the default values here.

Click on the [Next] button or press ALT-N to continue.

Figure 29 VMware Workstation Setup – Shortcuts

Choose the shortcuts you want to create by marking the checkboxes or leave the

default values like we do.

Click on the [Next] button or press ALT-N to continue.

Figure 30 VMware Workstation Setup – Ready to Start installation

Appendix A: VMware Workstation installation

Dipl.-HTL-Ing. Robert Maschek 45

The installation is now ready for starting

Click on the [Continue] button or press ALT-C to start the installation.

VMWare Workstation will now be installed on your system.

After the completion of the installation the following screen appears.

Figure 31 VMware Workstation Setup – Registration information

Type in the serial number for the trail version which can be found on the download

page of the software or by clicking on the hyperlink in the mail you received.

Clicking on the [Enter] button or press ALT-E to continue.

If you want to do this later click on the [Skip] button or press ALT-S to continue.

Figure 32 VMware Workstation Setup – Setup wizard completed

The Installation of the software is finished now but the PC needs to be restarted.

Restart PC by clicking on the [Restart now] button or press ALT-N.

After the reboot of the system start the application by doubleclicking on the icon

Figure 33 VMware Workstation Setup – Icon

Appendix A: VMware Workstation installation

Dipl.-HTL-Ing. Robert Maschek 46

or under All programs / VMware / VMware Workstation.

If you start the application the first time you have to accept the license agreement.

Figure 34 VMware Workstation Setup – License agreement

Mark “Yes, I accept the terms in the license agreement” and click on the [Ok] button

to continue.

VMware Workstation is now ready for usage.

Figure 35 VMware Workstation Setup – Main screen

Dipl.-HT

8 Ap
Se

8.1 Pr

You ne

more in

The ins

well.

8.2 Ins

Start th

or unde

The ma

To star

the me

Click o

L-Ing. Rober

ppendix
erver

rerequisi

eed to hav

nformation

stall media

stallation

he applicat

er All progr

ain window

rt the creat

nu or pres

Figure

n the [Nex

Appendix B

rt Maschek

x B: S

ites

ve VMware

see Appe

a for Windo

n

ion by dou

F

rams / VMw

w of the ap

tion of a n

 Ctrl+N

e 37 Window

xt] button o

B: Setup Virtu

Setup V

e Workstat

ndix 7 on p

ows Serve

ubleclicking

Figure 36 VM

ware / VMw

plication (s

ew virtual

ws Server 200

r press AL

ual machines

Virtual

tion installe

page 43).

r 2008 (inc

g on the ico

Mware Works

ware Work

see Figure

machine s

08 Installatio

LT-N to con

s: Windows 2

machin

ed and co

cluding a p

on

station – Ico

kstation.

35 on pag

select File

on – Creation

ntinue.

2008 Server

nes: W

nfigured o

product key

n

ge 46) will

/ New Virt

n of virtual m

Window

on the syst

y) are requ

appear.

tual Machi

achine

47

2008

tem (for

uired as

ne from

Appendix B: Setup Virtual machines: Windows 2008 Server

Dipl.-HTL-Ing. Robert Maschek 48

Figure 38 Windows Server 2008 Installation – Guest Operating System Sources

Choose the location of the installation directory by either browsing to the appropriate

directory using the [Browse] button or typing the pathname.

Click on the [Next] button or press ALT-N to continue.

Figure 39 Windows Server 2008 Installation – Easy Install Information

Type the Product Key for Window Server 2008 in the right fields.

Click on the [Next] button or press ALT-N to continue.

Figure 40 Windows Server 2008 Installation – Name the virtual machine

During the next step in the process you have to name the Virtual machine.

Appendix B: Setup Virtual machines: Windows 2008 Server

Dipl.-HTL-Ing. Robert Maschek 49

Feel free to use any name you like or which suits your environment.

Afterwards click on the [Next] button or press ALT-N to continue.

Figure 41 Windows Server 2008 Installation – Specify Disk Capacity

Here we will use the defaults recommended by VM Ware.

Click on the [Next] button or press ALT-N to continue.

Figure 42 Windows Server 2008 Installation – Ready to create Virtual Machine

Final chance for checking the settings prior to the creation of the virtual machine and

the begin of the installation process.

Click on the [Finish] button or press ALT-F to continue.

Setup is now copying the needed files from the installation media.

Appendix B: Setup Virtual machines: Windows 2008 Server

Dipl.-HTL-Ing. Robert Maschek 50

Figure 43 Windows Server 2008 Installation – Select Operating System

We will use “Windows Server 2008 Standard installation” Select this application in the

menu and click on “Next or press ALT-N to continue.

After the completion of the installation and the first login the following screen will be

displayed.

Figure 44 Windows Server 2008 Installation – Initial configuration tasks

8.3 Initial configuration and customization

8.3.1 Initial configuration of the Windows 2008 Server

Perform the following initial configuration tasks by clicking on the hyperlinks in the

Window shown in Figure 44 on page 50:

• Set time zone

• Provide Computer name and domain

• Enable automatic updating

• Download and install updates (see below)

After clicking on the hyperlink you will get the following window.

Appendix B: Setup Virtual machines: Windows 2008 Server

Dipl.-HTL-Ing. Robert Maschek 51

Figure 45 Windows Server 2008 Installation – Windows Update

Click on the button [Install updates] to continue.

Once the installation of updates is completed the following window will appear.

Figure 46 Windows Server 2008 Installation – Windows Update completed

Prior to continuing you might need to reboot the server by clicking on the [Restart

now] or by pressing ALT-R to continue.

After the reboot no further customization is needed and the initial configuration is

completed.

8.3.2 Add a second hard disc for Apache Data files

Prior to adding the device you need to shutdown the Virtual machine by shutting

down the server.

Appendix B: Setup Virtual machines: Windows 2008 Server

Dipl.-HTL-Ing. Robert Maschek 52

Figure 47 Windows Server 2008 Installation – VMware Workstation Main Screen

Click on the hyperlink “Edit virtual machine settings” to enter the setup screen.

Figure 48 Windows Server 2008 Installation – Virtual Machine Setup

Click on the [Add] button to add hardware devices.

Figure 49 Windows Server 2008 Installation – Add hardware wizard

Select “Hard Disk” and click on the [Next] button to continue.

Appendix B: Setup Virtual machines: Windows 2008 Server

Dipl.-HTL-Ing. Robert Maschek 53

Figure 50 Windows Server 2008 Installation – Add hardware wizard (Disk) - I

Click on the [Next] button to continue

Figure 51 Windows Server 2008 Installation – Add hardware wizard - II

Click on the [Next] button to continue

Figure 52 Windows Server 2008 Installation – Add hardware wizard – Specify capacity

Adjust the disk size to your needs. We will use 4GB which is more than enough in our

case.

Click on the [Next] button to continue

Dipl.-HT

Click o

Afterwa

disk the

Click o

Finally

For this

on the

After lo

L-Ing. Rober

Figure 53 W

n the [Finis

Figure 54 W

ards the ap

ere.

n the [OK]

we need t

s we need

hyperlink “

ogging in g

Appendix B

rt Maschek

Windows Serv

sh] button

Windows Ser

pplication

button to f

o make the

to power o

“Power on

o to Start /

B: Setup Virtu

ver 2008 Inst

to create t

rver 2008 Ins

will return

finish the s

e disk avai

on the virtu

this virtua

/ Run / Con

ual machines

tallation – Ad

the disk.

stallation – V

to the ma

setup.

ilable to th

ual machin

l machine”

ntrol Panel

s: Windows 2

dd hardware

Mware Work

ain window

e system.

ne again by

”.

l / Adminis

2008 Server

wizard – spe

kstation with

w showing y

y pressing

strative Too

ecify disk file

second disk

you the ne

 Ctrl+B or

ols

54

e

k

ew hard

clicking

Appendix B: Setup Virtual machines: Windows 2008 Server

Dipl.-HTL-Ing. Robert Maschek 55

Figure 55 Windows Server 2008 Installation – Administrative Tools

Open the Computer Management by doubleclicking on the menu entry.

Figure 56 Windows Server 2008 Installation – Computer Management

In the Computer Management click on Storage / Disk Management. The Initialize

Disk window appears automatically.

Figure 57 Windows Server 2008 Installation – Initialize disk

Click on the [OK] button to continue.

Figure 58 Windows Server 2008 Installation – Volume creation

Right Click on Disk 1 on select New Simple Volume from the appearing menu.

Appendix B: Setup Virtual machines: Windows 2008 Server

Dipl.-HTL-Ing. Robert Maschek 56

Figure 59 Windows Server 2008 Installation – New simple volume wizard

Click on the [Next] button or press ALT-N to continue.

Figure 60 Windows Server 2008 Installation – System volume size

Click on the [Next] button or press ALT-N to continue.

Figure 61 Windows Server 2008 Installation – Drive letter

Change the drive letter so that it suits your need and click on the [Next] button or

press ALT-N to continue.

Figure 62 Windows Server 2008 Installation – Format partition

Click on the [Next] button or press ALT-N to continue.

Appendix B: Setup Virtual machines: Windows 2008 Server

Dipl.-HTL-Ing. Robert Maschek 57

Figure 63 Windows Server 2008 Installation – Completion

Click on the [Finish] button to complete the addition of the disk.

Figure 64 Windows Server 2008 Installation – Volume added

8.3.3 Activation of the Operating system

Since Windows 2008 is not Open Source or freeware you need to activate it to use all

features.

To do this there are a lot of different ways depending on the license you are having.

For this reason we are not able to care about this.

Dipl.-HT

9 Ap

9.1 Pr

You ca

followin

http://d

a-12-i3

Prior t

downlo

For mo

burning

9.2 Ins

Start th

or unde

The ma

To star

the me

L-Ing. Rober

ppendix

rerequisi

an downloa

ng hyperlin

ownload.fe

386-DVD.is

o the ins

oaded file.

ore inform

g-isos/en_U

stallation

he applicat

er All progr

ain window

rt the creat

nu or pres

Appe

rt Maschek

x C: Set

ites

ad Fedora

nk:

edoraproje

so

tallation it

mation how

US/sn-valid

n

ion by dou

F

rams / VMw

w of the ap

tion of a n

 Ctrl+N

endix C: Setu

tup Virtu

a 12 from

ect.org/pub

t is recom

w to do t

dating-files

ubleclicking

Figure 65 VM

ware / VMw

plication (s

ew virtual

up Virtual ma

ual mac

the homep

b/fedora/lin

mmended

this visit:

s.html

g on the ico

Mware Works

ware Work

see Figure

machine s

achines: Fedo

chines:

page of th

ux/release

that you

http://doc

on

station – Ico

kstation.

35 on pag

select File

ora 12

Fedora

he Fedora

es/12/Fedo

verify the

s.fedorapr

n

ge 46) will

/ New Virt

a 12

project us

ora/i386/iso

e integrity

roject.org/r

appear.

tual Machi

58

sing the

o/Fedor

of the

readme-

ne from

Appendix C: Setup Virtual machines: Fedora 12

Dipl.-HTL-Ing. Robert Maschek 59

Figure 66 Fedora 12 installation – Creation of virtual machine

Click on the [Next] button or press ALT-N to continue.

Figure 67 Fedora 12 Installation – Guest Operating System Sources

Choose the location of the installation directory by either browsing to the appropriate

directory using the [Browse] button or typing the pathname.

Click on the [Next] button to continue.

Figure 68 Fedora 12 Installation – Select Guest Operating System

Click on the [Next] button to continue.

Figure 69 Fedora 12 Installation – Name virtual machine

Dipl.-HT

Click o

Accord

the disk

Click o

Click o

Click o

summa

L-Ing. Rober

n the [Nex

ing to the

k size to 12

n the [Nex

n the [Cus

n the [OK]

ary screen.

Appe

rt Maschek

xt] button to

Figure 70

system req

2GB.

xt] button to

Figure

tomize Ha

Figure 72 F

 button to

.

endix C: Setu

o continue.

0 Fedora 12

quirements

o continue.

71 Fedora 1

ardware] bu

Fedora 12 Ins

finalize the

up Virtual ma

.

Installation –

s Fedora 1

.

2 Installation

utton to cha

stallation – C

e change a

achines: Fedo

– Specify dis

2 needs u

n – Summary

ange the m

Change mem

and check

ora 12

k capacity

p to 9GB.

y screen

memory se

mory settings

the chang

So we cha

ettings to 5

ged setting

60

ange

12MB

gs in the

Appendix C: Setup Virtual machines: Fedora 12

Dipl.-HTL-Ing. Robert Maschek 61

Figure 73 Fedora 12 Installation – Ready to create virtual machine

Click on the [Finish] button to start the creation of the virtual machine and continue

with the installation.

Figure 74 Fedora 12 Installation – Setup welcome screen

Choose “Install or upgrade an existing system” and press [Enter] or wait until the

installation starts.

Figure 75 Fedora 12 Installation – Disc Found

Press the [Skip] button to continue.

Appendix C: Setup Virtual machines: Fedora 12

Dipl.-HTL-Ing. Robert Maschek 62

Figure 76 Fedora 12 Installation – Installation start

Click on the [Next] button or press ALT-N to continue.

Figure 77 Fedora 12 Installation – Installation language

Choose your language for the setup process and click on the [Next] button or press

ALT-N to continue.

Figure 78 Fedora 12 Installation – Installation keyboard layout

Select the appropriate keyboard and click on the [Next] button or press ALT-N to

continue.

Appendix C: Setup Virtual machines: Fedora 12

Dipl.-HTL-Ing. Robert Maschek 63

Figure 79 Fedora 12 Installation – Drive initizialisation

Click on the [Re-initialize drive] button or press ALT-R to continue.

Figure 80 Fedora 12 Installation – Set hostname

Enter the full qualified name (FQN) of the machine and click on the [Next] button or

press ALT-N to continue.

Figure 81 Fedora 12 Installation – Set timezone

Click on the [Next] button or press ALT-N to continue.

Appendix C: Setup Virtual machines: Fedora 12

Dipl.-HTL-Ing. Robert Maschek 64

Figure 82 Fedora 12 Installation – Set root password

Type the root password twice and click on the [Next] button or press ALT-N to

continue.

If you don’t choose an appropriate password you will get a warning

Figure 83 Fedora 12 Installation – Weak root password warning

Click on the [Cancel] button or press ALT-C to return to the Set root password menu

again.

Providing weak passwords can be dangerous for the system. For this reason clicking

on the [Use Anyway] button is not recommended.

Figure 84 Fedora 12 Installation – Hard drive partitioning

Mark the checkbox “Review and modify partitioning layout” and click on the [Next]

button or press ALT-N to continue.

Appendix C: Setup Virtual machines: Fedora 12

Dipl.-HTL-Ing. Robert Maschek 65

Figure 85 Fedora 12 Installation – Edit hard drive partitioning

Select the LVM volume group vg_www and click on the [Edit] button or press ALT-E

to continue.

Figure 86 Fedora 12 Installation – Edit lv_root

Select the logical volume lv_root and click on the [Edit] button or press ALT-E to

continue.

Figure 87 Fedora 12 Installation – lv_root new size

Set the Size (MB) to 10000 and click on [Ok] or press ALT-O to continue.

In the previous menu (see Figure 86 on page 65) click on the [Add] button or press

ALT-A to create a new logical volume.

Appendix C: Setup Virtual machines: Fedora 12

Dipl.-HTL-Ing. Robert Maschek 66

Figure 88 Fedora 12 Installation – Create a new logical volume

Set the Size (MB) to 4152 and click on [Ok] or press ALT-O to continue.

Figure 89 Fedora 12 Installation – LVM volume group: vg_www

Check the new settings and click on the [OK] button or press ALT-O to continue.

Figure 90 Fedora 12 Installation – Changed hard drive settings

Click on the [Next] button or press ALT-N to continue

Appendix C: Setup Virtual machines: Fedora 12

Dipl.-HTL-Ing. Robert Maschek 67

Figure 91 Fedora 12 Installation – Hard drive partitioning – write changes to disk

A warning will be displayed prior to saving the new layout. Click on the [Write

changes to disk] or press ALT-W to continue.

Fedora has now created the filesystem.

Figure 92 Fedora 12 Installation – Boot loader installation

For the Boot loader installation we will leave the settings unchanged. Click on the

[Next] button or press ALT-N to continue.

Figure 93 Fedora 12 Installation – Change install packages

From the default installation remove “Office and productivity” and add “Software

Development and Webserver” by marking or unmarking the checkbox. Click on the

[Next] button or press ALT-N to continue.

Appendix C: Setup Virtual machines: Fedora 12

Dipl.-HTL-Ing. Robert Maschek 68

The installation is now started.

Figure 94 Fedora 12 Installation – VMware Workstation drive lock

During the installation the above shown warning message appears.

Click on the [Yes] button to continue.

The installation is now finished and a reboot of the server is needed.

9.3 Initial configuration and customization

9.3.1 Initial configuration of Fedora 12

Figure 95 Fedora 12 Installation – Initial configuration

After the reboot and logging in you will see the following startup screen. Click on the

[Forward] button or press ALT-F to continue.

Figure 96 Fedora 12 Installation – License information

Accept the license information by clicking on the [Forward] button or press ALT-F to

continue.

Appendix C: Setup Virtual machines: Fedora 12

Dipl.-HTL-Ing. Robert Maschek 69

Figure 97 Fedora 12 Installation – Create User

Once you have filled in the needed fields click on the [Forward] button or press ALT-F

to continue.

Figure 98 Fedora 12 Installation – Date and Time

Click on the [Forward] button or press ALT-F to continue.

Figure 99 Fedora 12 Installation – Hardware profile

Mark the checkbox “Do not send profile” and click on the [Finish] button or press

ALT-F to continue.

Appendix C: Setup Virtual machines: Fedora 12

Dipl.-HTL-Ing. Robert Maschek 70

Figure 100 Fedora 12 Installation – Hardware profile sending

We still haven’t changed our mind. So click on the [No, don not send] button or press

ALT-N to continue.

Now the final configuration takes place. The system needs to be restarted afterwards.

Figure 101 Fedora 12 Installation – Initial configuration finished

After the reboot you will see the following login screen.

9.3.2 Enable Network Connection

The network connection for the system is disabled by default and needs to be

enabled now.

Figure 102 Fedora 12 Installation – Desktop

Appendix C: Setup Virtual machines: Fedora 12

Dipl.-HTL-Ing. Robert Maschek 71

After logging in with the created account (see Figure 97 on page 69)

Click on System / Preferences / Network Connections

Figure 103 Fedora 12 Installation – Network connections

Click on “System eth0” and the [Edit] button or press ALT-E to continue.

Figure 104 Fedora 12 Installation – Ethernet connection

Mark the checkbox “Connect automatically” and Apply (there is no keyboard shortcut

for this).

Figure 105 Fedora 12 Installation – Root user authentication needed

This change needs to be done using the root user. So enter the root password and

click on the [Authenticate] button or press ALT-A to continue.

Appendix C: Setup Virtual machines: Fedora 12

Dipl.-HTL-Ing. Robert Maschek 72

Figure 106 Fedora 12 Installation – System restart needed

After this change the system needs to be restarted once more.

Once the system is up again the installation and configuration has been finished.

Appendix D: Installing Apache on Windows 2008 Server

Dipl.-HTL-Ing. Robert Maschek 73

10 Appendix D: Installing Apache on Windows 2008 Server

10.1 Prerequisites

10.1.1 Add Apache Website to the trusted sites

Open Tools / Internet Options / Security

Figure 107 Apache on Windows 2008 – Adjust trusted sites

Type http://httpd.apache.org in the field “Add the website to the zone” and click on

the [Add] button or press ALT-A to continue.

Otherwise the following message will be displayed.

Figure 108 Apache on Windows 2008 – Adjust trusted sites warning message

10.1.2 Download the software

Download the Apache Webserver from the Apache homepage

http://httpd.apache.org/download.cgi

Click on the file “Win32 Binary including OpenSSL 0.9.8k (MSI Installer)” (Filename:

apache_2.2.14-win32-x86-openssl-0.9.8k.msi) to start the download.

Appendix D: Installing Apache on Windows 2008 Server

Dipl.-HTL-Ing. Robert Maschek 74

Figure 109 Apache on Windows 2008 – Download Apache software

Click on the [Save] button or press ALT-S to continue.

Figure 110 Apache on Windows 2008 – Open download folder

After the completion of the download click on the [Open folder] button or press ALT-F

to continue.

10.1.3 Option: MD5 value check

To verify the integrity of the downloaded file we will calculate the MD5 hash value of

the downloaded file. This can be done for example by using the MD5 calculator

available for download at http://www.softpedia.com/get/System/File-

Management/MD5-calculator.shtml

Figure 111 Apache on Windows 2008 – MD5 hash value calculator

Appendix D: Installing Apache on Windows 2008 Server

Dipl.-HTL-Ing. Robert Maschek 75

Figure 112 Apache on Windows 2008 – Apache MD5 hash value calculation

For the file apache_2.2.14-win32-x86-openssl-0.9.8k.msi the MD5 value should be

461ffea74a651eacdc6c06a6da207ed2.

10.2 Installation

Start the installation by running apache_2.2.14-win32-x86-openssl-0.9.8k.msi file

either from the command prompt or by doubleclicking on the downloaded file.

Figure 113 Apache on Windows 2008 – Installation welcome screen

Click on the [Next] button or press ALT-N to continue.

Figure 114 Apache on Windows 2008 – Apache License

Select “I accept the terms in the license agreement” and lick on the [Next] button or

press ALT-N to continue.

Appendix D: Installing Apache on Windows 2008 Server

Dipl.-HTL-Ing. Robert Maschek 76

Figure 115 Apache on Windows 2008 – Read this first

Click on the [Next] button or press ALT-N to continue.

Figure 116 Apache on Windows 2008 – Server information

Type in all the needed configuration details for the server and click on the [Next]

button or press ALT-N to continue.

Figure 117 Apache on Windows 2008 – Installation type

Select “Typical” for the setup type and click on the [Next] button or press ALT-N to

continue.

Figure 118 Apache on Windows 2008 – Destination folder

Choose the appropriate installation folder (we will use the default) and click on the

[Next] button or press ALT-N to continue.

Appendix D: Installing Apache on Windows 2008 Server

Dipl.-HTL-Ing. Robert Maschek 77

Figure 119 Apache on Windows 2008 – Ready to install

After entering the needed details we are now ready to install the software. So click on

the [Install] button to start installing the application.

Figure 120 Apache on Windows 2008 – Access control warning I

To prevent unauthorized changes Windows comes up the “User Account Control”

window. Click on Allow to continue.

Figure 121 Apache on Windows 2008 – Installation wizard completed

The software is being installed now and the above shown window is displayed as

soon as the installation is finished. Click on the [Finish] button or press ALT-F to

continue.

Appendix D: Installing Apache on Windows 2008 Server

Dipl.-HTL-Ing. Robert Maschek 78

Finally we will check that the Webserver is up and running. To do so we open the

browser on the server and go to http://localhost

Figure 122 Apache on Windows 2008 – Test installation

If you are able to see the message shown in Figure 122 the installation has been

finished successfully.

10.3 Initial installation and customization

10.3.1 Changing htdocs

The default location for the htdocs directory is located in the Apache program

directory. We want to switch it to another directory for security reasons but this need

to be done from and Administrator account.

Open the main configuration file of the Webserver which is located at

C:\Program Files\Apache Software Foundation\Apache2.2\conf\httpd.conf.

Figure 123 Apache on Windows 2008 – httpd.conf file location

Search for the following sections
DocumentRoot "C:/Program Files/Apache Software Foundation/Apache2.2/htdocs"

and change it to the new directory
DocumentRoot "E:/htdocs/mydomain.com/pages"

The same procedure for

This should be changed to whatever you set DocumentRoot to.

Appendix D: Installing Apache on Windows 2008 Server

Dipl.-HTL-Ing. Robert Maschek 79

<Directory "C:/Programme/Apache Software Foundation/Apache2.2/htdocs">

which should be changed to
<Directory "E:/htdocs">

as well.

Copy the content of the old htdocs Directory to the new one.

To finish change the server needs to read the httpd.conf file again. For this reason

we need to restart the server by opening the Apache Servicemonitor

Figure 124 Apache on Windows 2008 – Apache servicemonitor

Figure 125 Apache on Windows 2008 – Server restart

and click on the [Restart] button or press ALT-R to restart the server.

Figure 126 Apache on Windows 2008 – Access control warning II

Once more Windows tries to prevent unauthorized changes and displays the “User

Account Control” window. Click on [Allow] to continue.

After the restart we will check again that the Webserver is up and running. To do so

we open the browser on the server and go to http://localhost .

Appendix D: Installing Apache on Windows 2008 Server

Dipl.-HTL-Ing. Robert Maschek 80

Figure 127 Apache on Windows 2008 – Test modified installation

10.3.2 Adjusting Windows Firewall

To allow external connection we need to adjust the Windows firewall.

Go to Start /Control Panel / Windows Firewall

Figure 128 Apache on Windows 2008 – Windows firewall

Click on the hyperlink Change Settings

Figure 129 Apache on Windows 2008 – Windows firewall settings

and select Expections. Click on the [Add Port] button or press ALT-O to continue.

Dipl.-HT

Type th

window

Check

If you a

succes

L-Ing. Rober

he name (h

ws.

that acces

Figur

are able to

ssfully.

Appendix

rt Maschek

Figure

http) and th

ss to the W

re 131 Apach

see the m

x D: Installing

130 Apache

he port num

Webserver i

he on Window

message sh

g Apache on

e on Window

mber (80).

is possible

ws 2008 – T

hown in Fig

Windows 20

s 2008 – Add

Click on [O

 from a rem

esting conne

gure 131 th

008 Server

d a port

Ok] twice t

mote mach

ection from re

he work ha

to close all

hine.

emote

as been fin

81

open

ished

Appendix E: Installing Apache on Fedora 12

Dipl.-HTL-Ing. Robert Maschek 82

11 Appendix E: Installing Apache on Fedora 12

11.1 Prerequisites

We have decided to build the software from the source code and not to use

precompiled rpm packages so that it is easier to use these instructions for other UX

systems as well.

11.1.1 Download the software

Login to the system and open a terminal window. Switch to the root user for

download and installation
[mod_rexx@www ~]$ su

Password: ******

[root@www mod_rexx]# wget http://archive.apache.org/dist/httpd/httpd-

2.2.14.tar.gz

11.1.2 Option: MD5 value check

Download the MD5 signature file for the Apache file.
[root@www mod_rexx]# wget http://www.apache.org/dist/httpd/httpd-

2.2.14.tar.gz.md5

Read the content of the file.
[root@www mod_rexx]# cat httpd-2.2.14.tar.gz.md5

MD5 (httpd-2.2.14.tar.gz) = 2c1e3c7ba00bcaa0163da7b3e66aaa1e

Calculate the MD5 hash value of the downloaded file.
[root@www mod_rexx]# md5dsum httpd-2.2.14.tar.gz

2c1e3c7ba00bcaa0163da7b3e66aaa1e httpd-2.2.14.tar.gz

Both values have to be identical.

11.2 Installation

Unpack the file.
[root@www mod_rexx]# tar xvzf httpd-2.2.14.tar.gz

Change to the directory with the unpacked files.

Appendix E: Installing Apache on Fedora 12

Dipl.-HTL-Ing. Robert Maschek 83

[root@www mod_rexx]# cd httpd-2.2.14

Install the software (for future need we also include some optional modules).
[root@www httpd-2.2.14]# ./configure

[root@www httpd-2.2.14]# make

[root@www httpd-2.2.14]# make install

Start the Webserver.
[root@www httpd-2.2.14]# /usr/local/apache/bin/apachectl start

Close the terminal session
[root@www httpd-2.2.14]# exit

[mod_rexx@www ~]$ exit

To allow access to the system we need to adjust the firewall of the system.

Go to System / Administration /Firewall

Figure 132 Apache on Fedora 12 – Firewall setup

Click on the [Close] button or press ALT-C to continue

Figure 133 Apache on Fedora 12 – Authentication needed

Enter root password and click on the [Authenticate] button or press ALT-A to

continue.

Appendix E: Installing Apache on Fedora 12

Dipl.-HTL-Ing. Robert Maschek 84

Figure 134 Apache on Fedora 12 – Firewall port opened

Scroll down and mark the checkbox by WWW (HTTP). To change the firewall ruleset

click on [Apply].

Figure 135 Apache on Fedora 12 – Firewall configuration change

Click on the [Yes] button or press ALT-Y to continue.

The Installation is finished now and we need to check that it works.

Open the Webbrowser on the server and go to http://localhost

Figure 136 Apache on Fedora 12 – Connection test

You should see the screen shown in Figure 136.

Appendix E: Installing Apache on Fedora 12

Dipl.-HTL-Ing. Robert Maschek 85

11.3 Customization:

11.3.1 Adding startup

There’s already a startup file for the Apache Webserver in the /etc/init.d directory but

this file is for the version of the Webserver which comes with the distribution. So we

need to replace the content of the existing file with the following lines:

#!/bin/bash

httpd Startup script for the Apache HTTP Server

chkconfig: - 85 15

description: The Apache HTTP Server is an efficient and extensible \

server implementing the current HTTP standards.

processname: httpd

config: /usr/local/apache2/conf/httpd.conf

pidfile: /usr/local/apache2/httpd.pid

BEGIN INIT INFO

Provides: httpd

Required-Start: $local_fs $remote_fs $network $named

Required-Stop: $local_fs $remote_fs $network

Should-Start: distcache

Short-Description: start and stop Apache HTTP Server

Description: The Apache HTTP Server is an extensible server

implementing the current HTTP standards.

END INIT INFO

Source function library.

. /etc/rc.d/init.d/functions

if [-f /etc/sysconfig/httpd]; then

 . /etc/sysconfig/httpd

fi

Start httpd in the C locale by default.

HTTPD_LANG=${HTTPD_LANG-"C"}

This will prevent initlog from swallowing up a pass-phrase prompt if

Appendix E: Installing Apache on Fedora 12

Dipl.-HTL-Ing. Robert Maschek 86

mod_ssl needs a pass-phrase from the user.

INITLOG_ARGS=""

Set HTTPD=/usr/sbin/httpd.worker in /etc/sysconfig/httpd to use a server

with the thread-based "worker" MPM; BE WARNED that some modules may not

work correctly with a thread-based MPM; notably PHP will refuse to start.

Path to the apachectl script, server binary, and short-form for messages.

apachectl=/usr/local/apache2/bin/apachectl

httpd=${HTTPD-/usr/local/apache2/bin/httpd}

prog=httpd

pidfile=${PIDFILE-/usr/local/apache2/logs/httpd.pid}

lockfile=${LOCKFILE-/var/lock/subsys/httpd}

RETVAL=0

The semantics of these two functions differ from the way apachectl does

things -- attempting to start while running is a failure, and shutdown

when not running is also a failure. So we just do it the way init

scripts

are expected to behave here.

start() {

 echo -n $"Starting $prog: "

 LANG=$HTTPD_LANG daemon --pidfile=${pidfile} $httpd $OPTIONS

 RETVAL=$?

 echo

 [$RETVAL = 0] && touch ${lockfile}

 return $RETVAL

}

When stopping httpd a delay of >10 second is required before SIGKILLing

the

httpd parent; this gives enough time for the httpd parent to SIGKILL any

errant children.

stop() {

 echo -n $"Stopping $prog: "

 killproc -p ${pidfile} -d 10 $httpd

 RETVAL=$?

 echo

 [$RETVAL = 0] && rm -f ${lockfile} ${pidfile}

}

reload() {

Appendix E: Installing Apache on Fedora 12

Dipl.-HTL-Ing. Robert Maschek 87

 echo -n $"Reloading $prog: "

 if ! LANG=$HTTPD_LANG $httpd $OPTIONS -t >&/dev/null; then

 RETVAL=$?

 echo $"not reloading due to configuration syntax error"

 failure $"not reloading $httpd due to configuration syntax error"

 else

 killproc -p ${pidfile} $httpd -HUP

 RETVAL=$?

 fi

 echo

}

See how we were called.

case "$1" in

 start)

 start

 ;;

 stop)

 stop

 ;;

 status)

 status -p ${pidfile} $httpd

 RETVAL=$?

 ;;

 restart)

 stop

 start

 ;;

 condrestart|try-restart)

 if status -p ${pidfile} $httpd >&/dev/null; then

 stop

 start

 fi

 ;;

 force-reload|reload)

 reload

 ;;

 graceful|help|configtest|fullstatus)

 $apachectl $@

 RETVAL=$?

 ;;

Appendix E: Installing Apache on Fedora 12

Dipl.-HTL-Ing. Robert Maschek 88

 *)

 echo $"Usage: $prog

{start|stop|restart|condrestart|reload|status|fullstatus|graceful|help|conf

igtest}"

 RETVAL=3

esac

exit $RETVAL

Figure 137 Apache on Fedora 12: Startup script (automatically generated)

The easiest way to do this is to copy the above shown content to a file named http.

Transfer this file to the system via FTP; USB-Stick; Webmail, … .

Open a Terminal and go to the directory of the file. There execute the commands

shown below.
[mod_rexx@www Downloads]$ su

Password: *****

[mod_rexx@www Downloads]$# mv –f httpd /etc/init.d/httpd

[mod_rexx@www Downloads]$# chmod 755 /etc/init.d/httpd

[mod_rexx@www Downloads]$# chkconfig --level 2345 httpd on

[mod_rexx@www Downloads]$# chkconfig --list | grep httpd

http 0:off 1:off 2:on 3:on 4:on 5:on

Each time the system is restarted now Apache will start automatically.

11.3.2 Symbolic linking of the apache2 directory

For better maintenance we will use a symbolic link instead of the apache2 directory.

So in future you just need to adopt the link when moving to another version. Fallback

is also very easy in this case.

This is done by issuing the following commands in a Terminal session.
[mod_rexx@www ~]$ su

Password: *****

[root@www mod_rexx]# cd /usr/local

[root@www local]# mv apache2 apache-2.2.14

[root@www local]# ln –s apache2.2.14/ apache2

[root@www local]# exit

Appendix E: Installing Apache on Fedora 12

Dipl.-HTL-Ing. Robert Maschek 89

11.3.3 Changing htdocs

The default location for htdocs is in the Apache program directory. For improving

security (making it more difficult to place malicious code directly in the program

directory) you should switch it to another directory.

This is done by issuing the following commands in a Terminal session.
[mod_rexx@www ~]$ su

Password: *****

[root@www mod_rexx]# mkdir /var/htdocs

[root@www mod_rexx]# mkdir /var/htdocs/mydomain.com

[root@www mod_rexx]# mkdir /var/htdocs/mydomain.com/pages

[root@www mod_rexx]# mv /usr/local/apache2/htdocs/index.html

/var/htdocs/mydomain.com/pages/index.html

[root@www mod_rexx]# rmdir /usr/local/apache2/htdocs/

[root@www mod_rexx]# exit

Open /usr/local/apache2/conf/httpd.conf in your preferred editor

Step 1.)

Search for the following sections:
DocumentRoot " /usr/local/apache2/htdocs"

Change to the new directory
DocumentRoot "/var/htdocs/mydomain.com/pages"

Step 2.)

Search for the following sections:

This should be changed to whatever you set DocumentRoot to.

<Directory " /usr/local/apache2/htdocs">

Change the directory directive to
<Directory "/var/htdocs/mydomain.com/pages">

These changes need a restart of the server.
[root@www mod_rexx]# /usr/local/apache2/bin/apachectl restart

Check again that it works by going to the webpage http://localhost.

Dipl.-HT

Check

L-Ing. Rober

Figur

that acces

F

App

rt Maschek

e 138 Apach

ss to the W

Figure 139 Ap

pendix E: Ins

he on Fedora

Webserver i

pache on Fe

stalling Apac

a 12 – Conne

is possible

dora 12 – Co

he on Fedora

ection test af

 from a rem

onnection tes

a 12

fter reconfigu

mote mach

st from remo

uration

hine.

ote

90

Appendix F: Installing ooRexx on Windows Server 2008

Dipl.-HTL-Ing. Robert Maschek 91

12 Appendix F: Installing ooRexx on Windows Server 2008

12.1 Prerequisites

Prior to the installation we need to build and download the actual version of ooRexx

via the ooRexx website.

Go to http://build.oorexx.org/build.html select “Windows XP i386 EXE”, enter your e-

mail address (used for information) and click on the button [Create ooRexx

interpreter].

Figure 140 ooRexx on Windows Server 2008 – Create actual build

A view minutes later you will receive an e-mail notification that the build is completed

and the appropriate download link.

Open the included link in your favorite webbrowser

Appendix F: Installing ooRexx on Windows Server 2008

Dipl.-HTL-Ing. Robert Maschek 92

Figure 141 ooRexx on Fedora 12 – Build ready for download

Before continuing we need to check the txt file Win32RelLog.txt for errors occurred

during the build process.

Figure 142 ooRexx on Windows Server 2008 – Check build for any errors

If there is no error message in the txt file you can download the release file (the file

which ends not with debug ;-)) to the target system.

Appendix F: Installing ooRexx on Windows Server 2008

Dipl.-HTL-Ing. Robert Maschek 93

12.2 Installation

Figure 143 ooRexx on Windows Server 2008 - Start installation

Click on Start / Run and type the filename or browse to its location. Click on [OK] to

continue.

Figure 144 ooRexx on Windows Server 2008 - Security warning

By default you will get the security warning shown above. Click on [Run] to continue.

Figure 145 ooRexx on Windows Server 2008 - Setup welcome screen

Click on [Next] to continue.

Appendix F: Installing ooRexx on Windows Server 2008

Dipl.-HTL-Ing. Robert Maschek 94

Figure 146 ooRexx on Windows Server 2008 - License agreement

Read through the License Agreement and click on [I agree] to continue as soon as

you have understood it.

Figure 147 ooRexx on Windows Server 2008 - Choose components

We will use the default and install all components. So just click on the [Next] button to

continue.

Appendix F: Installing ooRexx on Windows Server 2008

Dipl.-HTL-Ing. Robert Maschek 95

Figure 148 ooRexx on Windows Server 2008 - Install location

Now we choose the location for the installation of ooRexx. Normally the default is o.k.

so we click on the [Next] button to continue.

Figure 149 ooRexx on Windows Server 2008 - rxapi process

We will install the rxapi as a service. So leave the default values unchanged and click

on the [Install] button to start the installation.

Appendix F: Installing ooRexx on Windows Server 2008

Dipl.-HTL-Ing. Robert Maschek 96

Figure 150 ooRexx on Windows Server 2008 - Installation completed - I

Once the installation is completed you will see the above shown screen. Check for

any error message by scrolling through the installation log. Once you are finished

click on the [Next] button.

Figure 151 ooRexx on Windows Server 2008 - Installation completed - II

The installation is completed. Click on the [Finish] button to complete the installation.

To check that ooRexx works we will use Rexxtry. Rexxtry is a utility for interactive

trying of REXX statements.

Open a DOSbox and type

E:\> rexx rexxtry

Then issue the simple Rexx command “say “This is a test”.

You should see a screen as shown in Figure 152.

Appendix F: Installing ooRexx on Windows Server 2008

Dipl.-HTL-Ing. Robert Maschek 97

Figure 152 ooRexx on Windows Server 2008 - Test successful

After this check the installation is completed.

Appendix G: Installing ooRexx on Fedora 12

Dipl.-HTL-Ing. Robert Maschek 98

13 Appendix G: Installing ooRexx on Fedora 12

13.1 Prerequisites

Prior to the installation we need to build and download the actual version of ooRexx

via the ooRexx website.

Go to http://build.oorexx.org/build.html select “Fedora 12 i386 rpm” enter your e-mail

address (used for information) and click on the button [Create ooRexx interpreter].

Figure 153 ooRexx on Fedora 12 – Create actual build

A view minutes later you will receive an e-mail notification that the build is completed

and the appropriate download link.

Open the included link in your favorite webbrowser

Appendix G: Installing ooRexx on Fedora 12

Dipl.-HTL-Ing. Robert Maschek 99

Figure 154 ooRexx on Fedora 12 – Build ready for download

Before continuing we need to check the txt file for errors occurred during the build

process

Figure 155 ooRexx on Fedora 12 – Check build for any errors

13.2 Installation

Open a terminal session on the target system and issue the following commands
[mod_rexx@www ~]$ su

Password: *****

Download the build using the wget command.
[root@www mod_rexx]# wget http://build.oorexx.org/builds/interpreter-

main/5435/fc12.i586/ooRexx-4.0.0-5435.i686.rpm

Appendix G: Installing ooRexx on Fedora 12

Dipl.-HTL-Ing. Robert Maschek 100

Install and check the rpm file on the target system.
[root@www mod_rexx]# rpm -i ooRexx-4.0.0-5435.i686.rpm

[root@www mod_rexx]# rpm -qa | grep ooRexx

ooRexx-4.0.0-5435.i686

Leave the administrator account and check that ooRexx works by using Rexxtry.
[root@www mod_rexx]# exit

[mod_rexx@www ~]$ rexx rexxtry

REXX-ooRexx_4.0.0(MT) 6.03 18 Dec 2009

 rexxtry.rex lets you interactively try REXX statements.

 Each string is executed when you hit Enter.

 Enter 'call tell' for a description of the features.

 Go on - try a few... Enter 'exit' to end.

say "This is a test"

This is a test

 ... rexxtry.rex on LINUX

exit

[mod_rexx@www ~]$

After this check you have completed the installation.

