WIRTSCHAFTS
UNIVERSITAT

WIEN VIENNA
UNIVERSITY OF
ECOMOMICS
AND BUSINESS

IDL-XML-Converter
A Package For Transforming IDL into XML

Seminar Paper

Lukas Schreier
0525061

0675 I1S-Projektseminar SS 2010
Ao. Univ.-Prof. Dr. Rony G. Flatscher
Institute for Management Information Systems
Vienna University of Economics and Business Administration

Table of Contents

2 1o 10 SO 4
I S CET o LU =T 0 0= o S 4
b o T e Yo [T 4o o 1 (o T 5 S 5
K | B I (o] @ o =T 1@ 17> o] (o IO PP PP PP SPPPPPI 7
3.1 IDL-TYPES iN UNO-IDL......ci i ittt e e e e e e e e e e e aaaaeeeaeeeeesannnnsnsnnneees 8
/o T L] 8

] L0 L= = Lo U PPPPPORR 8

(O] 0 5] ¢ |] 7SR 9

ST 0o (1] =P PREEEERRR 9

TYPEAET ...t e e e e 9
(1= o 0] o < 7 10

] Te| (=3 o] o F PP PPPPPPPRRR 10

0 (=T = o = SR 10

S BIVICES. ettt ettt e e e e e e e e et e e e e —————— e e aaeeaaaaeeeeeerra————————— 12

4 The Compilation Process of UNO..........cooiiiiiiiiiiiiie et a e 14
5 The OpenOffiCE-REGISIIY.......cco it eeaaaaaas 16
5.1 Structure of the ReGISIIY......oouuiiiiiiii e 16
5.2 Structure of the BiNary-ArTaY..........c.uuiiiiiie et e e e 18
HE A DD ...ttt e e e e e e e e e e e e e e e e ——ara—a— ittt ea e et aaaaaeeeaaaaaaaannnnnes 18
CoNStANTS-POOI (CP)......eiiiiiiieeeeeeee e 21

1= Lo USSP PPPPPR 22

=31 o o £ RSP 24
ParAMELEIS. ... e e ——————— 25
REfEreNCE-DIOCK........oeiiiiieeee e e e e e 26

5.3 Overview of the regiStry........ouuiiiiiiiii e 27

6 Writing UNO-IDL-FIleS iN XIML.......uuuiiiiiiiiiiiie ettt e e e e e e e e aaaaaaeaaaeas 28
G 1Y I =T L3S 28
6.2 General rules about writing correct XML files [14].....cccooii i 28
6.3 Skeletal Structure of the XML-UNO-IDL-File............ouuuuiiiiiiiieiieeeeeee e 29
8.4 XIML-UNO - DL ATYPES. ... ittt e e e e e e et e s e s nennreeaaaaaaaeaens 31
g TU T LT = LT SRRt 31

O] 0] ¢] 7SS 32

0o (1] = TP 33

TYPEAET ...t e e e 33

(1= o) 1 0] o SR 34

] Te| (=3 o] o F PP PPPPPPPRRR 35

T (=T = o = R 35

S BIVICES. ettt ettt ettt e e e e e e et et e e e — b —— e aaaeaaaaeeeeeerrar———————— 39

6.5 Service Initializations / Register components in XML.............uuiiiiiiiiiiiiiiieeeeeeee 41

7 IDL-XML-CONVEMEr-PacCKage.oooviiiiiiiiiiii e e e e e e e e e e e 42
7.1 RUN The Programs........oouiuii it e e et s e e e e et e e e e e e et e e e e e eeaaaaeeaeeees 42
Setting up CLASSPATHS for WINAOWS..........uuiiiiiiiiiiiiieee e 42

Setting up CLASSPATH on UNIX variants and MacOS...............ccccciiiiiiiiiiiiiieeeeeeee, 42

7.2 SHArtiNg @ PrOGIaIM. ...ttt ettt e e e e e e e e e e e e e e e e et e e e e e aaaeeeeeeaas 43

TAIZXIML e 45

(0] 124 =T T 45
L=T0 12 (o 1 U PP PP PPPPPPPPP 46
[=T0 0 a1T fo = T PP PP PP PUPPPPPPPPPPPPPPRPPIN 46
= 0 1] 0] [U UUEUPPPURPPRT 47
8 RouNd-Up @nd OUIOOK............eeeeiiiiiieee e e e e e e e e as 48
8 Y o] 1= o 1 SN 50
(O TS Qo 7 o To L1 o =3 URPPPPPP 54
= e) 0] = Ao o LR 55
12 LISt OF TaADIES. ...ttt e e e e e e e e e 55

13 Literature

1 About

The IDL-XML-Converter-Package is used to convert IDL to XML files. Those XML files can then be

used to write an appropriate OpenOffice-Registry.
The package includes the following functions:

* Converting IDL-files into XML files

* Converting XML files into an OpenOffice-Registry format
* Converting OpenOffice-Registries into XML files

* Merging two OpenOffice-Registries

The content of the package consists of six Java programs, which are published under the LGPLv3-

license.

o idI2xml.jar
This program converts an existing OpenOffice.org IDL file into an XML file.
* XMLReg.jar
Writes an XML file which contains OpenOffice IDL-types into an OpenOffice-Registry file.
* RegXML jar
Extracts a given OpenOffice-Registry key into an XML file.
* RegMerge.jar

Merges two specified OpenOffice-Registries into one.

1.1 Requirements

To use this package it is necessary to have at least JAVA 1.5 and the OpenOffice 3.2. installed. For
development the OpenOffice SDK 3.2 is needed as well as to make changes to the idl2xml-
Interpreter JAVACC is needed.

2 An introduction to IDL

Imagine the following case: Mr. C++ wrote a method which is called dWord. This method generates
a String-value and returns some value to the method-caller. Ms. Java wants to call this method to
get that value. Since she is programming in Java and not in C++, she has no idea about C++
characteristics and the specific implementation of the function. As a result she cannot call this

function with Java.

Word:dWord(char *s, int & i) Word w = new Word()

String *text(*Hello*) (/\:ing striWord = w.dWord('a",5)

Mr, C++ Ms. Java
lllustration 1: Communication error without IDL

Now, a so called Interface Description Language (IDL), comes into scope. With an Interface
Description Language it is possible to write language-independent sets of definitions, so that a
language-depending system can understand the implementation. The Objects Management Group
(OMG) defines those sets of definitions as “..interfaces that both client and server object
understand and can use easily, regardless of their platform, operating system, programming

language, network connection, or other characteristics” [1].

Let's say Mr. C++ is now using an Interface Description Language to enable Ms. Java to call his
method: To do so, Mr. C++ needs to write an IDL-File which holds the method-signature of dWord
in a language-independent way. After that the file needs to be compiled by an IDL-Compiler. The
IDL-Compiler produces “stub”-files for Ms. Java and “skeleton” files for Mr. C++ which are used for

communication with each other. [2]

IDL

Compiler
speaks speaks
C++ Java
- .
receives receives
C++ Java
Mr. C++ Ms. Java

%
IDL

A possible implementation of that method can look something like that:

lllustration 2: Communication with IDL

interface myWrd {
const string text = “Hello”;
Word dword ([in] char ¢, [in] int i);

}s

Coding 1: Hello IDL

This language-independent definition of the method dWord can now be compiled by the IDL-

Compiler for a language-depending method-call.

3 IDL for OpenOffice.org

Since components for OpenOffice can be written in different languages, OpenOffice needs a
concept which collects all the different components and makes them available for other
programming languages. The framework which makes this possible is called UNO (Universal
Network Objects).

The UNO framework draws upon such an Interface Description Language which describes UNO
components in a language-independent way. [4]

The Interface Description Language of OpenOffice is call UNO-IDL. UNOI-DL stands for Universal
Network Objects Interface Description Language and is quite similar to CORBA IDL and MIDL [5].
However, there are some differences between UNO-IDL and CORBA IDL:

UNO-IDL does not support Unions and Arrays but it implements an inheritance for exceptions and
structures, it is possible to set values for enumeration types and a completely new type was
introduced which is called 'service' [16].

Currently the UNO framework supports the following programming languages: Java, C++ and
Python. Additionally, UNO allows the control through some scripting-languages and StarBasic can
access the whole UNO-API [7].

Components in UNO therefore need an implementation of the component itself and also a UNO-
IDL-specification. The implementation is the language-depending code in which the component
was programmed. This part of a component is never accessed by any component of the UNO-
framework [6]. While the UNO-IDL-specification is the abstraction through the UNO-IDL of a UNO
component which was written in a specific programming language.

Not until the implementation and specification is provided to the UNO-framework the component

cannot be called by any other one in the framework.

‘ UNO Runtime Environment

: UNO-IDL '
H Specifications

Implementation

Implementation .
jl C++ [Java [Python

E C++ / Java | Python

Source: OpenOffice.com

lllustration 3: UNO-Components

3.1 IDL-Types in UNO-IDL
The following types are currently defined in UNOIDL.:

* Modules

¢ Enumerations
« Constants

e Services

¢ Interfaces

e Structures

o Typedef

* Exceptions

* Singleton

Preferable each UNO-IDL type should get its own definition-file.

Modules
Modules serve as a kind of path to the UNO components. Here the location is set with “module” at

the beginning of a UNO component definition.
UNO Exanpl e BNF not ati on

nodul e com { nodul e-decl ::= "nodule™ identifier "{" declaration®* "}" ™;"
nmodul e sun {

}s

ook WwWN K

Coding 2: Modules in UNOIDL

In the file system 'com/sun’' is a directory-structure. Modules are closed with “};”. The concept is
quite similar to Java-packages or C++-namespaces. OpenOffice recommends using module-

structures for every IDL-Type created [10].

Enumerations
An enumeration defines a finite amount of elements at once. The elements in an enumeration

which can be accessed with their names defined.

UNO Exanpl e BNF notation
1 [enum nyEnun{ enumdecl ::= "enunf identifier "{"
2 el emrent One, enum menber -decl ("," enum nmenber-decl)* "}" ";"
3 el enent Two,
4 el ement Three enum nenber-decl ::= identifier ["=" expr]
51 h
6

Coding 3: Enumerations in UNOIDL

An enumeration starts with the keyword enum and an id (here: myEnum), followed by the names of
the elements in the enumeration separated with a comma (*,’). Additionally, it is possible to add a
value to the elements. If no value is defined, the value of each element will be raised incrementally

starting with zero.

Constants
Constants are fixed values. There a two different kinds of definitions. First, single constants are
defined in a module and are initialized with the key word ‘const’. Second, a set of constants as an

own UNO-IDL type. A set of constants as a type starts with the keyword ‘constants’.

UNO Exanpl e BNF not ati on

1 nmodul e com { constants-decl ::= "constants" identifier
2 nmodul e sun { "{" const-decl* "}" ";n
3 const |ong myConst = 100;

4 const float nyFloat = 100.4; const-decl ::= "const" type identifier "=" expr ";"
5 nmodul e star {

6 constants aSet Of Constants {

7 const long ONE = 1;

8 const long TWO = 2;

9 const float THREE = 3.1;

10 | B

11 | b

12

13

14

15

Coding 4: Constants in UNOIDL

Structures

With structures it is possible to store a specific amount of variables in one construction. Therefore
a structure is a kind of data container. The name of a variable in a specific structure must be

unique. A structure is initialized with the key word ‘struct’ followed by its members:

UNO Example BNF notation
1 struct myStruct { struct-decl ::= "struct" identifier [single-inheritance]
2 long varOne; "{" struct-member-decl+ "}" ";"
3 float varTwo;
4 string varThree; struct-member-decl ::= type identifier ";"
5 }i
6 struct-params ::= "<" identifier ("," identifier)* ">"
7

Coding 5: Structures in UNOIDL

In a structure a variable has no value. Furthermore every declaration ends with a semicolon ;.

Structure definitions with just one member are wrong defined.

Typedef
A Typedef sets an alternative name to an already existing hame. OpenOffice.org recommends not

to use Typedefs or, if necessary, carefully [17].

UNO Example BNF notation

1| typedef byte nyByte; typedef-decl ::= "typedef"” type i1dentifier ";"

Coding 6: Typedef in UNOIDL

Exceptions
An exception describes a situation in a program which can throw an error. A defined exception
interrupts the program in an error situation for a special handling. In OpenOffice.org exceptions are

the general error handling concept [18].

UNO Example BNF notation
1 | exception ErrorCccoured { exception-decl ::= "exception"” identifier [single-inheritance]
2 | ong errorNum "{" struct-nmenber-decl* "}" ";"
3
4
Coding 7: Exceptions in UNOIDL
Singleton

A Singleton can be seen as an alias for UNO-services. When a singleton is defined the specific

component can be instantiated only once.

UNO Example BNF notation
si ngl eton nyAll as{ singleton ::= "singleton" i1dentifier "{" "service" name ";" "}"

servi ce nyService; ;

1

B WN R

Coding 8: Singleton in UNOIDL

In this example the UNO-component 'myService' gets the alias myAlias'.

Interfaces

With interfaces in UNO-IDL it is possible to describe attributes and methods of an UNO-component
in a language-independent way. Every interface in OpenOffice needs to inherit from another
interface. On writing a new interface and no inheritance is possible, the interface must be derived
from the base-interface com/sun/star/uno/XInterface. In general the UNO-IDL allows a
single-inheritance only. The inheritances in the UNO-IDL are always the fully qualified name of the
derived interface. The fully qualified name holds the whole package-structure to the interface
separated with ': :".

According to the convention by OpenOffice interfaces should always start with an 'X' in the
interface-name.

The general form of an interface-declaration in UNO-IDL:

UNO Example BNF notation for an interface header
interface nylnterface : interface-decl ::= "interface” identifier [single-
com:sun::star::lang:: XInterface { [inheritance]

“{" interface-nmenber-decl* "}" ";

NETEEE

GORWNER

Coding 9: Interfaces in UNOIDL

10

Attributes in interfaces
The attributes in interfaces store values in a specific data type. This type can be a primitive data
type like 'char' or 'byte', but as well as complex type. When the type is a complex type the fully

qualified name must be declared, separated with the scope-operator ': :".

UNO Example BNF notation for attributes in interfaces

Interface nylnterface : attribute-decl ::= attribute-flags type identifier”;"
com:sun::star::lang:: XlInterface {

attribute-flags ::=

[readonly,attribute] long attrl “[" (attr-flag ",")* "attribute" ("," attr-flag)* "]

[attribute] com:sun::conplex attr2

3

attr-flag ::= "bound" | "readonly"

O~NOUTA WN

Coding 10: Interface with Attributes in UNOIDL

This example shows two attributes 'attr1'and 'attr2'. The first one is an attribute which can only
be read and not written. This is marked by an additional attribute flag in the squared parenthesis.
For all possible attribute flags see the appendix. The second attribute 'attr2' is defined through

the complex type 'com/sun/complex' and is separated with the scope-operator.

Methods in interfaces
Interfaces can also contain methods. If a method is defined in an interface, the signature of the
method is added into the interface-declaration. This includes the name of the method, the return
type, the parameter-list and, if necessary, an exception-handling.
The parameter-list of a method is quite similar to the definition of attributes in interfaces. However,
the attribute flag will be changed with a parameter mode option. Every parameter in the list needs
to get set with one of the three parameter mode options:

* in —defines the parameter as input-parameter

* out —defines the parameter as an output-parameter

* inout — specifies the parameter as both input- and output-parameter.

An exception is added to the method with the keyword 'raises' and the fully qualified name of the

specific exception. On adding more than one exception, they get separated with a comma (',).

UNO Example BNF notation for attributes in interfaces
1 interface nylnterface : met hod-decl ::=["[" "oneway™ "]"] type identifier
2 com:sun::star::lang:: Xinterface { "(" [method-param ("," nethod-param*] ")"
3 [excepti on- spec]
4 I ong myMet hod(
5 [in] byte parant, met hod-param ::= "[" direction "]" type identifier
6 [out] long paran?
7 direction ::="in" | "out" | "inout"
8 rai ses(com:sun::star:lang:!llegal Arg)
9 exception-spec ::= "raises" "(" name ("," name)* ")"
10 | }
11

Coding 11: Interface with Method in UNOIDL

1

Services

“The specification of an interface or service is abstract, that is, it does not define how objects
supporting a certain functionality do this internally. Through the abstract specification of the
OpenOffice.org API, it is possible to pull the implementation out from under the APl and install a
different implementation if required.” [11]. If a service is defined it will get implemented into the
object’s service manager under the name specified in the UNO-IDL-specification. Every time an
implementation changes its class names or implementations, the service name is always the same
and the service manager decides which implementation should be started.

There are two different kinds of services in OpenOffice. First, “old-styled” service and second, the
“new-styled” service which was introduced with OpenOffice2.0. The new-styled service inherits one
single interface while the old-styled service can contain further services, more than one interface-

inheritances and properties which are attribute-definitions similar to interface-attributes.

New-styled service / interface service

UNO Exanpl e BNF notation for a newstyled service
1 interface-service-decl ::= "service” identifier ":" nanme
2 servi ce UnoUrl Resol ver : ["{" constructor-decl* "}"] ";"
3 XunoUr | Resol ver;
4
5 constructor-decl ::=identifier "(" [constructor-parans] ")"
6 [excepti on- spec]
7
8
9 constructor-parans ::= rest-param
10 | ctor-param ("," ctor-param*
11
12
13 rest-param::= "[" "in" "]" "any" "..." identifier
14
15
16 ctor-param::= "[" "in" "]" type identifier
17

Coding 12: Interface Service in UNOIDL

Old-stvled service / accumulated service

UNO Example BNF notation for a old-styled service
1 module com { accumul at ed-service-decl ::= "service” identifier ":" name
2 module sun | "{" service-nmenber-decl+ "}"
2 module star {
5 modUI? xsd { servi ce- menber - decl = servi ce-inheritance-decl
6 service Year ({ | interface-inheritance-decl
7 | property-decl
8 interface XdataType;
9 service-inheritance-decl ::=["[" "optional" "]"] "service"
10 [property, maybevoid] name ";"
11 short MaxInclusivelnt . L.
12 b property-decl ::= property-flags type identifier ";"
13 !
14 bi property-flags ::= "[" (property-flag ",")* "property" (","
15 bi property-flag)* "]"
16 }i
17 } property-flag ::= "bound" | "constrained" | "nmaybeanbi guous"
18 | "maybedefault" | "maybevoid" | "optional” | "readonly" |
19 "renmovabl e" | "transient"
20

Coding 13: Accumulated Service in UNOIDL

12

This examples shows, that attributes in a service are called properties and marked with the flag

'property'in squared parentheses.

Further readings

For further information about writing IDL files see the official OpenOffice documentation about
UNOIDL [19]. There is also a good tutorial about IDL by IBM. This tutorial is actually about
CORBA-IDL but since CORBA-IDL and UNO-IDL is quite similar it can be quite useful [20].

13

4 The Compilation Process of UNO

After both implementation and specification was written, the component needs to be registered in
UNO. Fortunately, there are some tools which register components in OpenOffice. The next

illustrations shows a typical compilation process for registering UNO components in Java.

lidl lurd

Specification
javamaker

types.rdb

Implementation

.java .jar Library
:: jar

Source: OpenOffice.org

lllustration 4: Compilation Chain

First the UNO-IDL-specification file is loaded into idlc which compiles the specification-file into a
registry file. After a compilation with idlc an *.urd registry-file is established. This *.urd file can
be seen as a temporary type-registry file with all value-pairs of an IDL type. If more then one
component is compiled with idlc the *.urd files needs to get merged (regmerge) into a registry-
database. This registry-databases ends with the suffix * . rdb.

In the next step the IDL type has to be translated, so that other languages can call the members of
the component. For the translation, which is actually called language-binding, all types and
references of a component which are used in the implementation need to be in this * . rdb registry-
database. OpenOffice has a registry-database for all components used at runtime. This file is
called 'types.rdb'. [8]

The above shown illustration binds a component written in Java with javamaker. If the
component is in C++, then the cppumaker is taken[3]. Javamaker/cppumaker produces some

additional files which are used for the language binding. In case javamaker was used in the

14

compilation process a *.class file will be created. This *. class file needs to be packed together
with the implementation files into a *.jar-archive. This *.jar-archive is then copied to
<OpenOfficePath>/programs/classes.

The language-binding process ends with that step.

To make the component available in the OpenOffice Runtime Environment some more steps are
necessary. The newly generated * . rdb file must now be loaded against regcomp, which makes
the registration of the components in the *.rdb file to OpenOffice. Finally the registration file
needs to be set in a file called uno.ini on Windows or unorc on Linux/Unix-Systems. [8] For
more information about the registration process of an OpenOffice component see the Developer's

Guide, and here in particular section 4.2.2 Generating Source Code from UNO-IDL Definitions.

15

5 The OpenOffice-Registry

The OpenOffice-Registry, or in the following short registry, is an ordered binary-array which holds
the compiled *.idl files of OpenOffice [3]. The registry is used to invoke the registered
components from OOoBasic or other supported programming languages of OpenOffice. By using
this kind of registry it's possible that any bridge to a programming language can use this kind of
information [4].

One binary-array in a registry holds all the values of one single key. Therefore each key in the

registry has its own binary-array. Here the key-name can be seen as the name of the compiled IDL

type.

5.1 Structure of the Registry
The keys are ordered hierarchically in the registry [4]. While the hierarchy depends on the

'module'-structure set in the * . id1-file.

An example:
* . idl file * urd/*.rdb file
module com { /
module sun { /com
module star { /Su? t
module test { S/ ?;st
struct myStruct { / mySt ruct
long varOne; field 0: varOne
float varTwo; field 1. varTwo
string varThree; field 2: varThree
}:
Yilritids

Coding 14: Registry Structure
The next example extends the previous one through adding a new interface 'myInterface' with

the same module-structure:

*.idl file * urd/*.rdb file
interface nylnterface : /
com:sun::star::lang:: Xlnterface { /com
/ sun
I ong nyMet hod(/ star
[in] byte parant, /test
[out] Tong paran? / myStruct
field 0: varOne
rai ses(com:sun::star:lang:1llegal Arg) field 1: varTwo
field 2: varThree
}s /nyl nterface
met hod 0: nyMet hod
param 0: paraml
param 1: paran®
rai ses: |llegal Arg

Coding 15: Registry Structure after a Second Key

16

As this example shows the registry hierarchy remains the same as adding a new IDL type when
the IDL type has the same module-structure. Otherwise a new hierarchy will be appended to the

registry.

Furthermore, every key itself holds value-pairs which describe the properties of a specific key, orin
more detail, the value-pairs are the fragmented definition-sets of an *.id1-file. In general the

value-pairs are in the form of 'value-name : value'.

A key can be divided into two main blocks: a head- and a body-block, while the body can contain
three different types of registry entries:

¢ Fields
¢ Methods
* References

Head

The head of a registry-key holds general information about the whole key.

Fields
Fields contain the attributes of the following IDL-Types: structures, constants, exceptions,

enumerations, attributes of services and interfaces.
Methods
A method is written when the IDL type is an interface and the functions of this certain interface can

be called.

References

A reference is set in the registry when a service imports an interface.

17

5.2 Structure of the Binary-Array

Since the OpenOffice-Registry is stored in a binary format and therefore not human-readable, the
bytes in the array must have a special order to extract the values with an algorithm which presents
the data in a human-readable form. Depending on the IDL type the registry array can be extended
with blocks for fields, methods and references (see Structure of the Registry).

Each block in the array is subdivided into fields which represents a single information and those
fields have a special size measured in bytes. However, there are only two different sizes for the
fields in general — 2 bytes or 4 bytes. That means for example, if a field has 2 bytes, the field holds
two values between -127 and 127. When the field has 4 bytes it holds four values between -127
and 127.

An exception to this rule is the constants-pool, which has a variable length, however, this will be

described later in this chapter.

Because the fields store the information in bytes, the value needs to be calculated into the decimal
format to get the necessary information from a specific field. An example: Let's say a field has the
size of 2 bytes with the values [1, 23]. The first byte has the value 1 and the second byte is set
to 23. Converted to the decimal format the field has the value '279'. Depending on the field, the
value can have two different meanings. First, it is a 'direct'-value, which means, that the value is
directly stored in the field. This could be, for example, the amount of fields in the registry for a
specific key. Or, second, the value points to a particular position in the binary of a key. Then the
value is an index. In general the index-values point into the constants-pool where all the names

and values of the fields, methods and references are stored.

The binary-array in its basic form always has the same structure. It starts with the HEAD and is
then extended with field-, method- and reference-blocks, depending on the IDL type.

In the following all blocks and its fields will be explained in detail.

HEAD
Above is a list of all fields of the HEAD-block. For a graphical view see section Overview of the
registry.
HEAD
o F
L/S) /& $ s /S
L £ N) &
Y/ ¢ /& /o) E
Q /& S S)G)RS £/8/ % (’5}(9
F /88 /E/ 8/ C/ 887 S/ G SESE S
S/ S/ S/ S RS SRS S G TS)

lllustration 5: HEAD Block

18

Field Name |Direct/Index |Description

Magi ¢ Direct The 'magic’ marks the start of an array of values in a registry for a
specific key. The ‘magic’ has always the hex-value of “12345678’.
This value is for internal use only.

Si ze Direct The size describes the length of a key's array. This includes the
whole head, the constants-pool and, if any, the fields, the methods
and references. The size is the sum of all bytes written into the
registry.

M nor _ Direct This field should stand for a version control mechanism of the IDL-

Versi on files. But currently OpenOffice doesn't version control [9].
Therefore the value of Minor_Version is set to ‘0’ (zero) by default.

Maj or _ Direct This field should stand for a version control mechanism of the IDL-

Ver si on files. But currently OpenOffice doesn't version control [9].
Therefore the value of Major_Version is set to ‘1’ by default.

N_Entries |Direct This field stands for the amount of entries in the head of a key.
OpenOffice writes by default the value ‘6'.

Type_ Direct This field holds the name of the language name in which the

Sour ce component was written. This could be 'UNO-IDL', 'CORBA-IDL' or
'Java'. Because 'UNO-IDL' is only supported the current value is by
default an empty value.

Type_ Direct This entry describes the IDL type. For example number '2' stands

A ass for 'module’ or '7' marks the IDL type as a service.

For the enumeration list of the IDL types see the Appendix.

Thi s_Type |Index The entry 'This Type' holds the fully qualified name of the IDL
type. This means, that the package path is listed in front of the
name. For example 'com/sun/star/test/myService’'.
While 'com/sun/star/test' is the path of the package and
'myService' is the name of the IDL type.

U K Direct UIK stands for a unique identifier. Formally the UIK was used to
identify UNO interfaces but this field is deprecated. This field now
has the value ‘0’ (zero) by default.

Docu Index This field holds a general documentation about the IDL type. The
documentation should be written in a JavaDoc-style.

Fi | enane Index The filename entry holds the name of the IDL file, typically ending
with a * . id1-suffix.

N Direct This field holds the amount of supertypes of a specific key. This

Supertypes

field is only set when the IDL-Type is an exception, an interface, a

19

service or a structure because this IDL-Types can inherit from
other IDL-Types. In short, the supertypes holds the inheritances of
an IDL-Type.

Supertype |Index Holds the name of the supertype. For each supertype, a new 2
byte field is appended. This means, that the standard structure of a
registry array is extended by 2 bytes for every supertype. If
N_Supertypes equals zero, no supertype field is added.

CP_Si ze Direct CP_Size is a 2 byte field which holds the overall amount of strings
and values used in a specific key.

CP Direct If CP_Size is greater than zero, then CP-blocks are added for each
string or value in a key. For further information see section CP-
block in this chapter.

Field_ Direct The Field_Count holds the amount of fields stored in the array.

Count

Met hod_ Direct Holds the amount of methods in the array.

Count

Ref er ence_ Direct This field stores the amount of reference when the IDL-Type is a

Count service.

Table 1: HEAD Block of a Registry's Binary Array

Supertypes

As mentioned if N Supertypes is greater than zero Supertype fields will be added to the HEAD

which extends the HEAD with N_Supertypes-fields. In the next example two supertypes should be

added:

Values

0|2 0]3 0la

Decoded

2 3 4

Illustration 6: Two Supertypes Added to the HEAD

The field N_Supertypes has now the value [0,2] which means decoded '2' and two Supertype

fields were added. The first Supertype field is pointing to the third CP-block which contains the

name of the supertype. The second Supertype field holds the index-value 4 which means that the

name of the supertype is in CP-block 4.

20

Constants-Pool (CP)
The CP-block has this general form:

lllustration 7: Constants-Pool Block

Fi el d Nane

Direct/Index

Description

CP_Length

Direct

Length is the size measured in bytes of a single CP-block. This
includes the 4-bytes of the CP_Length, 2-bytes for the CP_Type,
and n-bytes for the content. The CP_Length is stored directly in
the field.

CP_Tag

Direct

Currently there are three CP-tags only:

String values: ‘12’
Long value: ‘%’
Single value: ‘3’
This also means, that other types like float- or hyper-types are

not supported yet. This issue is based on the architecture of the
registry itself. A hyper value is bigger than a long value and a
float value cannot be mapped to long-types. Therefore
OpenOffice writes instead of the float-value just ‘float’ into the
value field of the registry. The CP_Type is stored directly in this
field.

CP_Dat a

Direct

Depending on the CP_Type the byte-values in the CP_Data
fields have different meanings. When the CP_Type is ‘12’ — that
means a String value — each byte value stands for a letter in the
ASCIl code. When the CP_Type is a number, then the byte
values represents the number stored in the registry. The

CP_Data is stored directly as well.

Table 2: CP Block of a Registry's Binary Array

This example shows a CP-block which holds the String 'myEntry'.

21

Values [0]0[0]|13 | 0]12 | 109]|121]|69]|110]|116]|114|121

Decoded 13 12 myEntry

This example shows the CP_Length which is a 4 byte-binary-array with the value [0,0,0,13],
the CP_Tag which is a 2 byte-binary-array with the value [0,12] and followed by the CP Data
itself which holds the encoded ASCIl-values. This abstract description of a CP-block means that
the CP-block has a length of 13 bytes, the CP_Data is of type String and the entry holds in this

block is 'myEntry' (without the quotation marks).

Field

If the field count is greater than zero then this block is added to the array. Constants,
enumerations, exceptions, interfaces, services and structures could extend the array with the field-
block. After the field_count entry an offset mark follows, which is set once and has currently the

value '6'.

lllustration 9: Field Block

22

Field Name |Direct/Index |Description

Field_ Direct Sets the kind of accessibility for the field. For example:

Access readonly Or bound.

Fi el d_Nane |Index This field holds the pointer to the name in the constants-pool.

Field_ Direct Specifies the type of the field which is stored as string in the

Type constant-pool. The type could be a primitive type like 'char' or
'long' or a complex type which is hold with its fully qualified name.

Field_ Index If a value was specified, the field holds the pointer to the

Val ue constant-pool where the value is stored. If no value was specified
the field holds a zero.

Fi el d_Docu Index Holds the documentation of the field as index for the constant-
pool.

Field_ Index Sets the filename where the value comes from.

Fi | enane

Table 3: Field Block of a Registry's Binary Array

23

Methods
Only when an interface has methods, then the method-block is added for providing information

about a specific interface-method. Since methods can hold parameter, it is possible, that an
additional block about parameters is added to the method-block. Furthermore, if a method throws
an exception, an exception-block will be added as well. The internal offset for the method-block is

by default '5' and the offset for parameters is '3'.

Method

.,

« /&

§‘(.:

s

o~ A

A S &'/ 9
.E’C?r‘ésqﬁ?o&%mg
TATISTTSININ
[B TS TN L T T < T <
g /o/o/o/ 0o/ o/ /0
Q SO

lllustration 10: Method Block

24

Fiel d Nane Direct/Index |Description

|\S/Ft220d_ Direct The method_size holds the size of the method measured in
bytes. This includes the whole method-block, the Param-block
and Exception-block.

%bgOd_ Direct Specifies the access mode of the method. This can be for
example oneway or synchronous.

Met hod_ Index Holds the index-value for the constant-pool. This string in the

Name constants-pool holds the name of the current method.

'I\?/teet Erog_ Index Specifies the index in the constants-pool which holds the fully
qualified name of the type which is return by the method.

&EEOd_ Index This field holds the documentation for the current method. The
documentation in this field is an index-value which points to the
constant-pool-block where the content is stored.

|\P/§E gﬁg(_:ount Direct Holds the amount of parameters defined for this method.

gggg?i_on Direct The field Method Exception_Count stores the amount of

Count - exceptions which could be thrown be the current method

Met hod_ Index If Method_Exception_Count is greater zero, then the same

Exception_

Nane amount of Method_Exception_Name-fields as the
Method_Exception_Count-field holds will be added. The name of
the exception is an index-value which points to the specific
constant-pool-block where the name is stored.

Table 4: Method Block of a Registry’s Binary Array

Parameters

The Param-block is added when the current method has parameters defined.

25

Fiel d Nane Direct/Index |Description

Param_Type |Index This field specifies the type of the current parameter. This could
be whether a primitive data type like 'char' or 'byte' or a complex
type. If the param_type field holds a complex type the fully
qualified name is stored in the constants-pool.

Param Name |Index Param_Name holds an index-value where the name of the
current parameter is stored in the constants-pool.

Param Mode | Direct The param_mode specifies the direction from which the

parameter is passed. This could be in, out, inout.

Table 5: Parameter Block of a Registry's Binary Array

Reference-block

The reference-block will be added when the IDL-Type is a service and this service holds interfaces

or other services. Again, if reference count is greater than zero, an additional offset entry is
added. This offset has by default the value '4'.

lllustration 12: Reference Block

Fi el d Nane Direct/Index |Description

Ref _Fl ag Direct The Ref_Flag specifies if the reference is optional or invalid.

Ref _Name Index Specifies the fully qualified name as an index in the constants-
pool.

Ref _Docu Index This field holds the index-value where the documentation of the
this reference is stored.

Ref _Type Direct Holds the value about the accessibility of the reference. This

could be exports, needs Or supports.

Table 6: Reference Block of a Registry's Binary Array

26

5.3 Overview of the registry

Overview about the whole Structure of the binary-array for a single key in the OpenOffice-Registry

HEAD

Magic

Minor_Yersion

Major_Version

M_Entries

Type_Source

Type_Class

This_Type

UK

Diocu

Filename

MN_Supertypes

CP_Size

CP

Field_Count

Method Count

Ref Count

Size "?

lllustration 13: Registry Overview

27

6 Writing UNO-IDL-Files in XML

This section will be an introduction about how to write a UNO-IDL-File within an XML-format.
Basically, the structure and keywords/tags of an XML-UNO-IDL-file is derived from the same
abstract syntax specification as OpenOffice defines the UNO-IDL in the Developer's Guide [12].
First, this chapter gives an short introduction about how to write XML files in general. Then follows
a section about the skeletal structure of the XML-UNO-IDL-file and lastly some examples of each
UNO-IDL type will be mentioned.

6.1 XML-Basics
XML stands for eXtensible Markup Language and was designed to describe data as structured
information, whereby each information is tagged with a markup in the XML-document. [13]

Let's say there is contact information about Chuck Norris:

Chuck Norris, Actor
Milkyway 23

Ryan, Oklahoma
chuck@noris.com

The contact can be translated into an XML-format to structure the information like this:

<person>
<name>Chuck Norris</name>
<email>chuck@norris.com</email>
<profession>actor</profession>
<address>Milkyway 23</address>
<city>Ryan</city>
<state>Oklahoma</state>

</person>

Coding 16: Hello XML

This examples shows that each information of the business-card was tagged with markups to

specify the “meaning” of certain information.

6.2 General rules about writing correct XML files [14]
* Each starting tag must have a closing tag
That means that every information in the XML file must be surrounded with a start-tag
<myTag> and an end-tag like </myTag>. A closing tag always has a '/' between the less-
symbol and the tag name itself

* The tags are case sensitive

28

mailto:chuck@noris.com

The tag <myTag> and <MyTag> are two different tags
* Nesting of the XML-Tag is possible
* Every XML document has a root-element
As shown in the previous example the root-element of the business-card was <person>.

All XML files need such a root element.

There are more rules about writing correct XML files and since this is just a small introduction its

recommended to read through the XML-tutorial at w3schools.com [14].

6.3 Skeletal Structure of the XML-UNO-IDL-File

Before every XML-UNO-IDL-file starts a header needs to be set. This header includes a link to a
DTD-schema which checks the correctness of the XML-UNO-IDL-file.

The skeletal structure of the XML-UNO-IDL-file starts with the root-element called <xm1id1>. After
the root element one or more UNO-IDL-types can follow. The markup, that an IDL-type starts is
<idl object>, while the name of the type is set in the tag as an attribute: <idl object
name='idl object name'>. If a package-structure should be defined, then this can be done
with the tag <module>. The tag module has the same meaning in the XML-UNO-IDL as in UNO-
IDL — which is the keyword module. The module-tag nests the whole content of the idl_object.

If an UNO-IDL-Type refers to other UNO-IDL-types, the specific referred UNO-IDL-type needs to
get imported with the <import>-tag. The import-tag is the equivalent of the preprocessor-
command #include in the UNO-IDL specification.

Then the content of the UNO-IDL-type follows. Each UNO-IDL-type has its own tag-name and its
own content-definition. Both will be discussed in the next section.

The next example shows the skeleton of an XML-UNO-IDL-file:

UNO IDL - skeleton XML-UNO-IDL
1 # fndef _ comtest | Oexception_idl__ [<?xml version="1.0" encodi ng="UTF- 8" ?>
2 #i ncl ude <com test/| OException.idl> <! DOCTYPE xm idl SYSTEM "idl ToXM._schena. dt d">
3 #endi f
4 <xmidl >
5 nodul e com { <i dl _obj ect name="UNO XM.- skel et on" >
6 nodul e test { <i mport >conitest/| OException. xm </ i nport>
7 <modul e name="cont >
8 /1 An | DLType <modul e name="test">
9 //An | DLType
10 1 </ modul e>
11 | }; </ nodul e>
12 </idl _object>
13 </ xmidl >
14

Coding 17: XML-UNO-IDL-Skeleton

The XML file starts with the root-element <xm1dil> and is followed by the start of an UNO-IDL-

type with <idl object name='UNO-XML-skeleton'>. This name is usually the name of the

29

UNO-IDL-file itself. After the idl_object-tag an import tag will follow, if necessary. In this example,
the IDL-type has one import. The path to the referred IDL-type is mentioned with the #include-
commend in UNO-IDL while XML-UNO-IDL marks it with an <import>. This IDL-type has the
package-structure com/sun/star/test which are stated with the 'module’-keyword in UNO-IDL and
marked up in XML-UNO-IDL with <module>. The module-tag in XML-UNO-IDL is as nested as in
UNO-IDL. The header is marked with a <! DOCTYPE>-tag and holds the name of the root-element
xmlidl and the link to the DTD-schema id1ToxXML schema.dtd.

After the modules were defined, the content of a certain IDL-type follows. All UNO-IDL-types are

discussed in the next section.

30

6.4 XML-UNO-IDL-Types

All the currently defined UNO-IDL-types are available in the XML-UNO-IDL as well:

¢ Enumerations
* Constants

e Services

¢ Interfaces

e Structures

* Typedef

* Exceptions

* Singleton

The modules are not mentioned here because those are part of the skeletal structure of the XML-
UNO-IDL-file. For an explanation of the UNO-IDL-types see section IDL for OpenOffice. The

following examples show UNO-IDL-specifications and these examples will be converted into an
XML-format to see the similarities and differences between UNO-IDL and XML-UNO-IDL. The

outcome of this section is that there are more similarities than differences and those differences

are due to a better legibility of the XML file.

Enumerations

UNO IDL XML-UNO-IDL
1 <?xm version="1.0" encodi ng="UTF-8"?7>
2 <I DOCTYPE xmidl SYSTEM "idl ToXM._schena. dt d">
3
4 | nodul e com{ <xmlidl >
5 modul e sun { <i dl _obj ect nanme="Ti ni ng">
6 nmodul e star { <nmodul e name="coni >
7 nodul e ani mations { <nmodul e name="sun">
8 o <modul e name="star">
9 enum Timng { <nodul e nane="ani mati ons" >
10 <enuner ation isPublished="fal se">
11 | NDEFI NI TE, <i d>Ti m ng</id>
12 VEDI A <enum cont ent >
13 <enune
14 1 <i d>| NDEFI NI TE</ i d>
15 } <val ue></ val ue>
16 }; </ enunp
16 1 <enune
17 |} <i d>MEDI A</ i d>
18 <val ue></val ue>
19 </ enunm>
20 </ enum_cont ent >
21 </ enuner ati on>
22 </ modul e>
23 </ modul e>
24 </ modul e>
25 </ modul e>
26 </idl _object>
27 </xmidl>
28
Coding 18: Enumerations in XML-UNO-IDL
The enumeration example shows the UNO-IDL-file of

com/sun/star/animations/Timing.idl which was converted into an XML-format. After the

31

standard skeleton of the XML-UNO-IDL an enumeration type is defined with <enumeration>. The
next child-element of an enumeration-tag is an <id> which specifies the name of the enumeration.
In this case the name is 'Timing'. After that the content of the enumeration is set with
<enum_content> which is the equivalent to the '{' in line 6. Each element in the enumeration
starts with the markup <enum>-tag which has the child-elements <id> for the name of the
enumeration-element and a <value>-tag which sets the value of the element. In this example for
both no value was specified. That means the <value>-tag is empty.

Due to the rules of correct XML all opened tags also need closing-tags - this extends the XML file.

Constants
UNO IDL XML-UNO-IDL

1 <?xm version="1.0" encodi ng="UTF-8"?>

2 <! DOCTYPE xm i dl SYSTEM "idl ToXM._schena. dtd" >

3

4 nmodul e com { <xmidl >

5 modul e sun { <i dl _obj ect nane="Rel Ori entation">

6 nmodul e star { <nmodul e nanme="coni' >

7 nodul e text { <modul e nane="sun">

8 <nmodul e nane="star">

9 publ i shed constants Rel Orientation{ <nodul e nanme="text">
10 const short FRAME = O; <constants isPublished="true">
11 const short PRINT_AREA = 1; <id>Rel Ori entation</id>
12 1 <constants_content >
13 }; <const >
14 }s <type>short</type>
15 1 <i d>FRAME</ i d>
16 1 <val ue>0</ val ue>
16 </ const >
17 <const >
18 <type>short </type>
19 <i d>PRI NT_AREA</i d>
20 <val ue>1</val ue>
21 </ const >
22 </ const ants_cont ent >
23 </ const ant s>
24 </ modul e>
25 </ modul e>
26 </ nodul e>
27 </ modul e>
28 </i dl _object>
29 </xmidl>
30

Coding 19: Constants in XML-UNO-IDL

This shortened example shows the UNO-IDL-type com/sun/star/text/RelOrientation,
which is of type constants. Therefore the type is marked with the tag <constants>. In addition,
this type is published, so the isPublished attribute is set to 'true'. The name of the constants-
field is Re1Orientation which was marked with an <id> tag right under the <constants>-tag.
The content of the constants-field starts with <constants content>, where every single
constant can be defined. In the UNO-IDL-file each constant is specified with the keyword const. In
XML-UNO-IDL the definition of an constant start with the tag <const> as well. The <const>-tag
holds three compulsory child-elements. The first one is the data type of the constant, followed by
the name and the value. Compared with UNO-IDL the sequence of the definition of a constant is

almost the same.

32

Structures

UNO IDL

XML-UNO-IDL

nmodul e com {
nmodul e sun {
nodul e star {
nodul e geonetry {
struct Real Point 2D {
doubl e X;
doubl e Y;

O©O~NOUTD WN

10 b

<?xm version="1.0" encodi ng="UTF-8"?7>
<I DOCTYPE xm idl SYSTEM "idl ToXM._schenma. dtd">

<xmidl >
<i dl _obj ect nanme="Real Poi nt 2D"'>
<nodul e nane="coni >
<nodul e nane="sun">
<nmodul e nane="star">
<nmodul e nane="geonetry">
<structure isPublished="fal se">
<i d>Real Poi nt 2D</ i d>
<struct_content >
<nenber >
<t ype>doubl e</ t ype>
<id>X</id>
</ menber >
<menber >
<t ype>doubl e</ type>
<id>Y</id>
</ menber >
</ struct _content>
</ structure>
</ modul e>
</ modul e>
</ nodul e>
</ modul e>
</idl _object>
</xmidl>

Coding 20: Structures in XML-UNO-IDL

The XML-UNO-IDL structure type is quite similar to the XML-UNO-IDL constants type. A structure

begins with a <structure>-tag followed by its name in an <id>-tag. Attributes are defined

between the <struct content>-tag. While a constants-type has <const>-tags for each

element in the content, the structure type has <member>-tags. Those tags contain child-elements

which specify the type and the name of a certain element within a structure. Unlike the constants-

type a structure-type does not define a value of an element.

Typedef
UNO IDL XML-UNO-IDL
1 | module com { <?xm version="1.0" encodi ng="UTF-8"?>
2 module sun { <! DOCTYPE xm idl SYSTEM "idl ToXM._schema. dtd">
3 module star ({
4) <xnmidl >
5 module util { <i dl _obj ect nane="Col or">
6 . <nodul e nane="coni >
7 published typedef long Color; <nodul e name="sun">
8 <nmodul e nane="star">
9 }i <nodul e nane="util">
10 }i <typedef isPublished="true">
11 }; <t ype>l ong</t ype>
121, <i d>Col or </ i d>
13 ’ </ typedef >
14 </ modul e>
15 </ modul e>
16 </ modul e>
16 </ nodul e>
17 </idl _object>
18 </ xmidl>
19

Coding 21: Typedef in XML-UNO-IDL

33

This example shows a type definition of com/sun/star/util/Color.idl. Here, the primitive
data type long gets a new name which is 'Color'. In the XML-UNO-IDL the typedef-type is marked

with a <typedef>-tag. This tag has two compulsory tags called <type> and <id>. While <type>

specifies the data type which gets an alias name defined in <id>.

Exception
UNO-IDL XML-UNO-IDL
1 [nodul e com { <?xm version="1.0" encodi ng="UTF- 8" ?>
2 nodul e sun { <! DOCTYPE xm idl SYSTEM "idl ToXM__schena. dt d">
3 nodul e star {
4 nodul e enmbed { <xm i dl >
5 <i dl _obj ect name="UseBackupException">
6 exception UseBackupException : <i mport >coni sun/star/iol | OException.idl </inport>
7 com:sun::star::io::|OException { <nmodul e nane="coni >
8 string TenporaryFil eURL; <modul e nane="sun">
9 <nmodul e nanme="star">
10 }s <nmodul e nane="enbed" >
11 }; <exception isPublished="fal se">
12 }; <i d>UseBackupExcepti on</i d>
13 | }; <i nheritance>
14 <conpl ex_t ype>
15 <i d>conx/i d>
16 <i d>sun</i d>
16 <id>star</id>
17 <i d>i o</i d>
18 <i d>| OExcepti on</i d>
19 </ conpl ex_t ype>
20 </inheritance>
21 <exception_content >
22 <nmenber >
23 <type>string</type>
24 <i d>TenporaryFi | eURL</i d>
25 </ menber >
26 </ exception_cont ent >
27 </ exception>
28 </ nodul e>
29 </ nodul e>
30 </ modul e>
31 </ nodul e>
32 </idl _object>
33 </ xmidl >
34
Coding 22: Exception in XML-UNO-IDL
The above shown example about a conversion of the

com/sun/star/embed/UseBackupException.idl is an exception with an additional
attribute. A UNO-IDL exception type starts with the tag-name <exception> which holds the
isPublished attribute. The name of the exception is specified in the <id> tag, under the
<exception>-tag. This exception inherits from an exception called TOException. The start-tag
of a single-inheritance is <inheritance> which is the equivalent to the "-operator in line 6 of the
UNO-IDL. The inheritance is another UNO-IDL-type and it needs to get imported, which was done
with the <import>-tag in line 6 of the XML-UNO-IDL-file. Since I0Exception is a type defined in
another UNO-IDL-file it therefore gets a special markup which is called <complex type>. The
<complex_ type>-tag has at least one <id>-child-element which specifies the package-structure

of the imported type while each <id>-tag stands for one single package-directory.

34

If an exception also has additional attributes, an <exception content>-tag must be set with all
its child-tags. In this example the exception holds an exception content with one attribute. This
attribute is of data type string and its name is 'TemporaryFileUrl'. Nevertheless, if an exception
does not hold an exception-attribute, an empty <exception content> -tag must be set tough.

This empty tag is of the form <exception content></exception content>.

Singleton
UNO-IDL XML-UNO-IDL
1 [nodul e com { <?xm version="1.0" encodi ng="UTF- 8" ?>
2 nodul e sun { <! DOCTYPE xm i dl SYSTEM "idl ToXM._schena. dtd" >
3 nodul e star {
4 nodul e test { <xmidl >
5 <i dl _obj ect nanme="t hePackageManager Fact ory">
6 si ngl et on t heManager Factory : <nmodul e nanme="coni >
7 com :sun::star:: XPackageManager ; <nmodul e nane="sun">
8 <nodul e name="star">
9 }s <nmodul e nane="test">
10 }; <si ngl eton isPublished="fal se">
11 }; <interface_singl eton>
12 |}, <i d>t heManager Fact ory</i d>
13 <conpl ex_t ype>
14 <i d>conx/i d>
15 <i d>sun</id>
16 <id>star</id>
17 <i d>XPackageManager </ i d>
18 <conpl ex_t ype>
19 </interface_singl eton>
20 </ si ngl et on>
21 </ modul e>
22 </ modul e>
23 </ nodul e>
24 </ modul e>
25 </idl _object>
26 </xmidl>
27

Coding 23: Singleton in XML-UNO-IDL

This example implements a singleton over the interface com/sun/star/XPackageManager. A
singleton is marked with a <singleton>-tag. Followed by an <interface singleton>-tag or,
if the singleton implements a service then a <service singleton>-tag follows. Both the
<interface singleton>-tag and <service singleton> -tag have the same child-elements:
First, an <id>-tag for the alias/singleton name of the implemented interface or service. In this
case, the alias/singleton name is theManagerFactory. Second a <complex type> which
holds the path and the name of the implemented interface/service. This example implements the

interface XxPackageManager in the package com/sun/star.

Interfaces
To keep the samples as easy as possible, there are two examples with interfaces. The first
example shows an interface with attributes and the second example is an interface with methods

only. Of course one interface can hold both attributes and methods.

35

Interface with attributes

UNO IDL XML-UNO-IDL

1 [#i ncl ude <xm 1 dl >

2 | <com sun/star/uno/ Xl nterface.idl> <i dl _obj ect name="XCore">

3 | nodul e com { <i mport >coni sun/ star/uno/ Xl nterface. xm </i nport >

4 nodul e sun { <nmodul e nane="coni' >

5 nmodul e star { <nmodul e nane="sun">

6 nodul e oooi nprovenent { <modul e nanme="star">

7 <nmodul e nane="o000i nprovenent ">

8 interface XCore { <interface isPublished="fal se">

9 [readonly, attribute] <i d>XCor e</i d>
10 | ong Sessi onLogEvent Count ; <interface_content>
11 <attribute>
12 [readonly, attribute] <attr_flag>readonly</attr_flag>
13 bool ean U Event sLogger Enabl ed; <t ype>l ong</type>
14 }; <i d>Sessi onLogEvent Count </ i d>
15 }; </attribute>
16 }s <attribute>
17 }; <attr_flag>readonly</attr_flag>
18 | }; <t ype>bool ean</type>
19 <i d>Ui Event sLogger Enabl ed</i d>
20 </attribute>
21 </interface_content>
22 </interface>
23 </ nodul e>
24 </ nodul e>
25 </ modul e>
26 </ nodul e>
26 </idl _object>
27 </xmidl >
28

Coding 24: Interface with Attributes in XML-UNO-IDL

As this sample file of com/sun/star/ocooimprovment/XCore shows, the interface only holds
attributes in the content. An interface-definition in an XML-UNO-IDL-file starts with the tag
<interface> and the attribute isPublished. The name of the interface is XCore and is
specified in the next <id>-tag. Attributes are defined inside the <interface content> with
<attribute>. Each attribute tag consists of some tags which describe tag attribute. The first tag
<attr flag> sets flags like 'readonly' or 'bound' to the attribute. As the UNO-IDL-file shows,
these flags are normally surrounded by squared parentheses and also holds the flag 'attribute’. In
XML-UNO-IDL this is not necessary any more, because the tag <attribute> represents this flag
already. If no <attr flag> is set in the XML-UNO-IDL-specification of an interface-attribute, the
attribute is 'readwrite' by default. For all possible attribute flags see the appendix.

Next in the sequence is the compulsory attribute <type> which defines the data type of the
attribute. Followed by the name of the attribute. Lines 16 till 20 are analogical.

Since the interface needs to be derived from another interface, an additional <import>-tag was

set to import the base-interface 'XInterface'in line 3 of the XML-UNO-IDL-file.

36

Interface with methods

UNO IDL XML-UNO-IDL
1]/ <xm 1 dl >
2 [* #include-section <i dl _obj ect name="XAni mation">
3 <nmodul e nanme="conl' >
4 <nmodul e nane="sun">
5 | nmodul e com{ nodule sun { nodul e <nmodul e nane="star">
6 | star { nodule rendering { <nmodul e nanme="rendering">
7 <interface isPublished="fal se">
8 [interface XAnination : <i d>XAni mati on</id>
9 ;:.com:sun::star:: <i nheritance>
10 uno: : Xl nterface { <scope>
11 <id>conx/id>
12 [oneway] void render (<i d>sun</i d>
13 [in] XCanvas canvas, <id>star</id>
14 [in] ViewState viewState, <i d>uno</id>
15 [in] double t <id>XInterface</id>
16) </ scope>
17 | rai ses(com:sun::star::lang:: </inheritance>
18 | Il | egal Argunent); <interface_content>
19 | }; <met hod>
20 <met hod_at t r >oneway<oneway >
21 (}; 0 b <type>voi d</type>
22 <i d>render</id>
23 <param cont ent >
24 <par anp
25 <param attr>i n</paramattr>
26 <scope>
27 <i d>XCanvas</i d>
28 </ scope>
29 <i d>canvas</i d>
30 </ par an
31 <par anp
32 <param attr>out</paramattr>
33 <scope>
34 <i d>Vi ewSt at e</ i d>
35 </ scope>
36 <i d>vi ewSt at e</ i d>
37 </ par an
38 <par anp
39 <param attr>i n</paramattr>
40 <t ype>doubl e</ t ype>
41 <id>t</id>
42 </ par an
43 </ param cont ent >
44 <rai ses>
45 <scope>
46 <1 d>conx/id>
47 <i d>sun</id>
48 <id>star</id>
49 <i d>l ang</i d>
50 <id>l11egal Argunent </i d>
51 </ scope>
52 </rai ses>
53 </ met hod>
54 </interface_content>
55 </interface>
56 </ modul e>
57 </ nodul e>
58 </ modul e>
59 </ modul e>
60 </idl _object>
61 </xmidl>
62

Coding 25: Interface with Method in XML-UNO-IDL

This example about the interface xAnimation has been shortened a bit so that the example is not
too detailed. The interface XAnimation inherits form the base-interface XInterface, this was
specified within the <inheritance>-tag. The interface holds one method which is called render
(<id>-tag) and has no return-value (<type>void<type>). The first element in the <method>-tag
is a method-flag. In this case the method is a oneway-method. UNO-IDL marks the flags of a
method in squared parentheses — see line 12 in the UNO-IDL-file. In general this tag is not

compulsory. For all possible method_flags see the appendix.

37

A parameter-list of a method is defined within a <param content>-tag. If a method doesn't hold
any parameter then the <param content> is left empty like <param content>
</param_content>.

Otherwise the tag will be extended with the definition of all parameters in the list. For each
parameter a parameter flag must be specified in the <param flag>-tag, followed by the data type
and the name of the parameter. The method render holds three parameters.

Sometimes a method throws an error or an so called exception for special treatments. If this is the
case as it is in the example, then the tag <raises> is appended to the <method>-tag. Within
the <raises>-tag the fully qualified name of the exception must be defined. The method
'render' of the XAnimation interface throws the exception

com/sun/star/lang/IllegalArgument.

38

Services

Since OpenOffice differs between two Service-types. It is necessary to show two examples of the

different Service-types in XML-UNO-IDL.

The 'new-styled'-service / interface-service

UNO IDL XML-UNO-IDL
1| nodule com{ <?xm version="1.0" encodi ng="UTF- 8" ?>
2 nmodul e sun { <I DOCTYPE xm i dl SYSTEM "idl ToXM__schena. dtd">
3 nodul e star {
4 nodul e bridge { <xmidl >
5 service UnoUrl Resol ver : <i dl _obj ect name="UnoUr| Resol ver">
6 XunoUr | Resol ver; <nodul e nanme="coni' >
7 }; <nodul e nanme="sun">
8 }; <nmodul e nane="star">
9 }s <nodul e nanme="bri dge">
10 | }; <servi ce i sPublished="fal se">
11 <i d>UnoUr | Resol ver</id>
12 <i nheritance>
13 <conpl ex_t ype>
14 <1 d>XUnoUr | Resol ver </id>
15 </ conpl ex_t ype>
16 </inheritance>
17 <interface_service />
18 </ servi ce>
19 </ modul e>
20 </ modul e>
21 </ modul e>
21 </ modul e>
22 </idl _object>
23 </xmidl>
24

Coding 26: Interface Service in XML-UNO-IDL

This example sets a service to the global service manager of OpenOffice over the interface

XUnoUrlResolver. A 'new-styled'-service

starts with the tag <service> and the attribute

isPublished followed by the <id>-tag which specifies the name of the service. As the service is

just a derivative of an implemented interface, the service needs to inherit from this interface. In

XML-UNO-IDL this is specified with an <inheritance>-tag like in line 12 till 16. The next tag in

this example is an empty <interface service>-tag. This tag normally stands for constructor-

methods. For the specification of constructors see the syntax specification of the IDLtoXML-

schema in the appendix.

39

The “old-styled” service / accumulated service

UNO IDL

XML-UNO-IDL

module com {
module sun {
module star {
module xsd {
service Year {

interface XdataType;

O©OO~NOUITA WN

10 [property, maybevoid]
11 short MaxInclusivelnt

14 [property, maybevoid]
15 short MaxExclusivelInt;

17 [property, maybevoid]
18 short MinInclusivelnt;

[property, maybevoid]
short MinExclusivelInt;

23 yi
24 }i
25 }i

26 }i

27 | };

<xm i dl >
<i dl _obj ect nanme="Year">
<modul e nanme="conl' >
<modul e nane="sun">
<nmodul e name="star">
<modul e nanme="xsd">
<servi ce isPublished="fal se">
<i d>Year </id>
<accunul at ed_servi ce>
<servi ce_nenber s>
<interface_inheritance isOptional ="fal se">
<conpl ex_type>
<I d>XDat aType</i d>
</ conpl ex_type>
</interface_inheritance>
<servi ce_property>
<property_flag>maybevoi d</property_fl ag>
<type>short</type>
<I d>MaxI ncl usi vel nt </ i d>
</ servi ce_property>
<servi ce_property>
<property_flag>naybevoi d</ property_fl ag>
<type>short </type>
<i d>MaxExcl usi vel nt </ i d>
</ service_property>
<servi ce_property>
<property_fl ag>maybevoi d</ property_fl ag>
<type>short </type>
<i d>M nl ncl usi vel nt </ i d>
</ servi ce_property>
<servi ce_property>
<property_flag>maybevoi d</property_fl ag>
<type>short</type>
<i d>M nExcl usi vel nt </ i d>
</ service_property>
</ servi ce_nenber s>
</ accurul at ed_servi ce>
</ servi ce>
</ modul e>
</ nodul e>
</ modul e>
</ modul e>
</idl _object>
</xmidl >

Coding 27: Accumulated Service in XML-UNO-IDL

This example of an “old-styled’-service is much more complex than the “new-styled”-service. The

accumulated service-type can contain interface-inheritances, service-inheritances and service-

properties which are similar to attributes of an interface.

Service-inheritances are defined within a <service inheritance>-tag followed by the fully

qualified name of the derived service. Interface-inheritances are analogical to service-inheritances.

Service-properties are like interface-attributes and follow almost the same sequence of definition.

Unlike the <property flag>, this is a specific flag for service-properties which are listed in the

appendix.

Since the accumulated services are an old concept in OpenOffice it is recommended not to use

them anymore [15].

40

6.5 Service Initializations / Register components in XML

In order to register a component in OpenOffice the location, the name and the activator of the
component needs to be specified. For more details about that see the Developer's Guide in section
4.9 Deployment Options for Components [22]. For a registration of components using XML a

specific XML structure is needed. This structure holds the implementation keys and the key values

as followed:
Component to register XML-File
1 |Service-nane: <?xm version="1.0" encodi ng="UTF- 8" ?>
2 |comsun. star.stoc. OServi ceManager |<!DOCTYPE service_ini SYSTEM " Servi cet oReg_schena. dt d">
3
4 <servi ce_ini >
5 |Activator: <key name="| MPLEVENTATI ONS" >
6 |com sun. star.| oader. SharedLibrary <key name="com sun. star. stoc. CServi ceManager" >
7 <key nanme="UNO' >
8 <key name="ACT| VATOR' >
9 |Location: <dat a_i t enrcom sun. st ar. | oader. SharedLi brary</data_i tenm>
10 |vnd. sun. st ar . expand: </ key>
11 |$URE_|I NTERNAL_LI B_DI R/ boot st r ap. <key nane=" SERVI CES" >
12 |uno.dylib <key name="com sun. star. Ml ti Servi ceFact ory" ></ key>
13 <key nanme="com sun. star.| ang. Servi ceManager " ></ key>
14 </ key>
15 | Supported Services: <key name="LOCATI ON'>
16 |com sun. star. Ml ti Servi ceFactory, <data_i t enmpvnd. sun. st ar. expand:
17 |com sun. star. | ang. Servi ceManager $URE_|I NTERNAL_LI B_DI R/ boot strap. uno. dylib
18 </data_itenr
19 </ key>
20 </ key>
21 </ key>
22 </ service_ini>

Coding 28: Register a Component with XML

This service is called com.sun.star.stoc.0ServiceManager which is located in
vnd.sun.star.expand: SURE INTERNAL LIB DIR/bootstrap.uno.dylib. The service
gets activated by SharedLibrary which fully qualified name is
com.sun.star.loader.SharedLibrary. The service OServiceManager consists of other
services which are specified under the <key>-tag SERVICES. The content of every key is defined
with a <data item>-tag, which always holds the fully qualified package name of the component.
As the example shows the <key>-tag can hold more then one <key>. This is necessary because
a component can include more then one service.

When registering a component with XML keep in mind, that the header of the XML changes a bit:
The underlying DTD-schema is called ServiceToReg schema.dtd and not

id1ToXML schama.dtd!

41

7 IDL-XML-Converter-Package

7.1 Run the Programs

Before the programs of the package IDL-Convert can be run, the CLASSPATH must be set to the
file system. The CLASSPATH is an environment-variable which acts globally on the system. Java
looks into this CLASSPATH variable to get the paths where it can find executable Java files. That

means that Java looks for path-references where Java programs are stored.

Setting up CLASSPATHS for Windows
One possibility of setting a reference path to the programs of the IDL-Converter is by using the

Windows console.

First open a new console-window and use the command 'set'":

set CLASSPATH = Path\to\IDL Converter jars\package name.jar

or if the new CLASSPATH should be appended to the existing one then:

set CLASSPATH = %CLASSPATHS%;Path\to\IDL Converter jars\package name.jar

Here the old values of CLASSPATH are considered when using $%CLASSPATH% and
'Path\to\IDL Converter jars\package name.jar' is appended. Every path is separated

with a semicolon ';".

Example:
$ set CLASSPATH = $CLASSPATH%;C:\XMLReg.jar;C:\idl2xml.Jjar

In this example only the *.jar-packages XMLReg.jar and idl12xml.jar are added to the

CLASSPATH.
The more convenient way is to use the 'System Properties'. Go to Start > Settings > Control Panel

> System Properties. Then click 'Environment' and choose the entry 'CLASSPATH' for editing. In

the next dialog window the CLASSPATH can be set.

Setting up CLASSPATH on UNIX variants and MacOS

For UNIX variants and MacOS the procedure of setting up environment variables is almost the

42

same as on Windows. Note that the following command 'export'is only available

at 'bash'-consoles. On using a c-Shell like csh, the commend for setting variables is 'set'.

For using bash
First open a new console-window and use the command 'export"

export CLASSPATH=/path/to/IDL Converter jars/package name.jar

or if the new CLASSPATH should be appended to the existing one:
Sexport \
CLASSPATH=SCLASSPATH:/path/to/the/IDL Converter jars/package name.jar

Here the old values of CLASSPATH are considered when using S$CLASSPATH and
'vath/to/the/IDL Converter jars/package name.jar' is appended. Every path is

separated with a colon ':'. Note that there are no spaces between the equal sign.
Example:

$ export CLASSPATH=SCLASSPATH:/IDL Converter/RegXML.jar: \
/IDL Converter/XMLReg.Jjar:/IDL Converter/idl2xml.jar

7.2 Starting a program

After setting the CLASSPATH the program can be run from any directory on the file-system just
use the command java and the package name and if necessary some additional options - those
options will be described later. The general form of using those programs are:

$ java program name filename [filename?2]

First enter the command java followed by the program which should be run and lastly enter the

input file for the program.

Example:

$ java reg2xml XControl.urd

Here the converter tool reg2xml is called for reading a registry file and converts it into an XML file

43

Specials for MacOS

It seems that OpenOffice has a problem with finding the correct path to the OpenOffice installation.
This is actually a well known problem [21]. In this case every time a program of the IDLXML-
Converter package is executed, a special parameter in the program call needs to be set:

$java

-Dcom.sun.star.lib.loader.unopath="/Applications/OpenOffice.org.app/Conte
nts/MacOS" reg2xml XControl.urd

44

idl2xml

This program converts an existing UNO-IDL-file into an XML file

Syntax

java idl2xml filename [-c | --comment] [--output] [-i | —--import]
[--nxDTD]

filename Specifies the name of the file which should be converted to XML. In general

this should be one single file ending with "idl'. If a '." is set in filename the
interpreter includes all files ending with an ".idl' and converts them to XML.

-c | --comment | If this parameter is set all JavaDoc-styled comments will be taken into account.
This parameter fills the <docu>-tag in an XML file.

-i | --import This parameter is needed when the *.idl file contains an #include-command
or a complex type which refers to another *.idl file.

--nxDTD When using this parameter the DTD for checking the syntactical correctness of
the XML file will not be exported. However, other programs may need this file.

--output This parameter specifies the output directory of the XML file as fully qualified
path.

xml2reg

This program parses an XML-file, which contains UNOIDL types and - if syntactically correct —
converts it into an *.urd or *.rdb file. Second, the program can write service initializations as well.
The program creates a new registry file if the registry doesn't exist or it writes into an existing

registry. When writing in an existing registry the equal keys will be overwritten.

Syntax

java xml2reg filename [--key][--service] [--output] [--path] [--merge]
[--suffix] [--xnDTD]

filename Specifies the name of the file which needs to be converted into a registry. In

general this should be one single file ending with 'xml'. If a "' is set in
filename the program includes all files ending with '.xml' and converts them
into an Open Office registry. Each XML file then gets its own registry file.

--key This parameter specifies under which key the XML data should be written. The
key always starts with a “/“followed by the key name. If key is not set, the root-
node will be taken by default.

--service This parameter tells xml2reg that the underlying data is service initialization
data.

45

--path If the XML file holds a <complex type>-tag or an <import>-tag the path to
the IDL-type must be set with this parameter. Otherwise xml2reg returns an
error that it cannot find the complex type or the imported IDL-type.

--merge If a ' is specified in £ilename this option can be used to merge all *.xml-files
into one registry.

--suffix This parameter specifies if the output registry should be ".urd' or *.rdb’

--xnDTD This prevents xml2reg from extracting DTD-schemas

--output This parameter specifies the output directory of the XML file as absolute path.

reg2xml

This program extracts an Open Office registry into an XML-format.

Syntax

java reg2xml regfilename [--output] [--key] [--xnDTD]

regfilename The name of the registry which needs to be extracted into an XML-format. This
can be *.urd or *.rdb.

--output This parameter specifies the output directory of the XML file as absolute path.

--key Specifies a certain key which should be extracted from the registry. The key
always starts with a “/. If the key is not specified the root will be taken and all
keys are then extracted.

--xnDTD This prevents reg2xml from extracting DTD-schemas

regmerge

Regmerge merges two registries into one. This program can be used to extract specific keys into a

new registry as well.

Syntax

java regmerge regfilel regfile2 [--keyl] [--key2]

regdfile1 Name of the registry which needs to be merged into another one. This can
be an *.urd or a *.rdb file

regfile2 Name of the registry which needs to get data from another registry. This
can be an *.urd or a *.rdb file

--key1 | --regkey The key name of regfile1 which needs to get merged into regfile2. This
key always starts with a “/“. If this parameter isn't set all keys will be
transferred.

46

The key into which the data needs to get merged in regfile2. If no key is
specified the default key is the root-node of the registry.

--key2 | --mergekey

Examples
For examples see the provided example-folder. This folder contains for each program some

examples for testing. There are README files which help you through the programs.

47

8 Round-up and Outlook

With an Interface Description Language it is possible to write a language-independent definition of
a language-depending software module. The specification can then be used to enable other
language-depending clients to use this module even it was written in a completely different
programming language. Since Open Office allows different programming languages for the
development of components such an approach is absolutely necessary. The Interface Description
Language of Open Office is called UNO-IDL. This paper gives a short introduction about the
different UNO-IDL types which can be specified in UNO-IDL.

Furthermore, Open Office uses a registry which collects all the UNO-IDL specifications to enable
the usage of components for language-depending clients. The registry is a binary file and the
content is organized hierarchically with keys and value-pairs. Unfortunately, Open Office hasn't
provided a satisfactory documentation regarding the fields and structure of the registry. To go
further into the development process of the IDLXML-Converter it was first necessary to establish a
documentation of the structure and all the fields of the Open Office registry. The basic form and all

its extensions are described in the paper.

The primary objectives were to set up an approach for writing UNO-IDL-components in XML,
transforming registry data into XML, converting UNO-IDL files into an XML format and to convert
XML-based UNO-IDL specifications into a registry format. With XML-UNO-IDL it becomes possible
to get a structured form of IDL types. XML-UNO-IDL specifications can be published quite easily on
web pages and through XML parsing technologies a lot of programming languages can handle
XML quite well, especially Java. Therefore it is realistic to imagine using an XML-based registry
instead of a binary-based registry. This would solve the problems with float- and hyper-values

which cannot be stored in the binary-based registry yet.

To make all this possible a package has been written which is called IDLXML-Converter. The
IDLXML-Converter consists of four programs:

e idI2xml — for converting UNO-IDL files into an XML-document
* xml2reg — writes UNO-IDL types specified in XML into a registry
* reg2xml — reads keys from the registry and writes them into an XML-document

* regmerge — merges two binary-based registries into one single registry

Nevertheless, there is still some further work to do. First, even if the above-mentioned XML-UNO-

IDL examples look quite structured and meaningful, the description of particular interfaces can turn

48

out to be quite big. The result is that the XML file looks overloaded, barely human-readable and
hard to edit. To solve this issue a graphical interface is needed which presents the XML-UNO-IDL
specifications in a more fancy way, as well as generating these XML files. A graphical interface also
brings the advantage that the user doesn’t need to learn the UNO-IDL specification nor the XML-

UNO-IDL specification and all its tags because the graphical interface will generate the code.

Second, since some of the IDLXML-Converter programs use Open Office commands every time
on executing, the programs have to set up a connection to an Open Office instance. As a result this
slows down the performance of the programs. Therefore there is a need to become independent of

these Open Office commands and to increase the performance of the package.

49

9 Appendix
DTD-Schemata which are used by the IDL-XML-Package
IDL to XML Schema

<?xm version="1.0" encodi ng="UTF-8"?>

<! ELEMENT xmlidl (idl_object+)>

<! ELEMENT i dl _object (inport*, modul e+)>

<! ATTLI ST i dl _obj ect nanme CDATA #REQUI RED>
<! ELEMENT i nport (#PCDATA) >

<l-- Mdule -->

<IELEMENT nodule (docu?,(module | enunmeration | single_const | structure | exception |

interface forward | interface | typedef | constants | service | singleton)+)>
<! ATTLI ST nodul e nane CDATA #REQUI RED>

<!-- Enuneration -->

<! ELEMENT enuneration (id, enumcontent)>

<I ATTLI ST enuneration isPublished (true | false) "fal se">
<! ELEMENT enum content (enumt)>

<! ELEMENT enum (i d, val ue?, docu?)>

<l ELEMENT si ngl e_const (docu?, (type | conplex_type | sequence),id,val ue)+>

<l-- Constant -->
<! ELEMENT const (docu?, (type | conplex_type | sequence),id, val ue)+>

<l-- Constants -->

<l ELEMENT constants (docu?,id , constants_content)+>
<! ATTLI ST constants isPublished (true | false) "fal se">
<I ELEMENT constants_content (const+)>

<l-- Struct -->

<I ELEMENT structure (docu?,id, (inheritance? | struct_parant), struct_content)>
<I ATTLI ST structure isPublished (true | false) "false">

<!-- inheritance -->

<! ELEMENT st ruct _param (#PCDATA) >

<I ELEMENT struct_content (menber)+>

<! ELEMENT nenber ((type | conplex_type | sequence), id, docu?)>

<l-- Exception -->

<! ELEMENT exception (docu?,id, (inheritance)?, exception_content+)>
<I ATTLI ST exception isPublished (true | false) "false">

<! ELEMENT exception_content (nenber*)>

<I--Interface_Forward -->
<I ELEMENT interface_forward (docu?,id)>
<I ATTLI ST interface_forward isPublished (true | false) "fal se">

<I--Interface -->

<! ELEMENT interface (docu?,id, (inheritance)?, interface_content)>

<I ATTLI ST interface isPublished (true | false) "false">

<IELEMENT interface_content (attribute| interface_inheritance | method)*>

<! ELEMENT attribute (attr_flag*, (type | conplex_type | sequence), id, (get_attr | set_attr)*)>

<I ELEMENT attr_flag (#PCDATA)> <!-- bound or readonly -->
<I ELEMENT get_attr (raises+)>
<! ELEMENT set_attr (raises+)>
<I ELEMENT i nterface_i nheritance (docu?, conplex_type)>
<I ATTLI ST interface_i nheritance
i sOptional (true|false) "false">

<! ELEMENT nethod ((rmethod_attr)?, (type | conplex_type | sequence), id, paramcontent
docu?)>

<I ELEMENT method_attr (#PCDATA) >

<! ELEMENT param content (parant)>

<! ELEMENT param (param attr, (type | conplex_type | sequence), id)>

<l ELEMENT param attr (#PCDATA) >

<!-- TypeDef-->

<! ELEMENT typedef (docu?, (type | conplex_type | sequence), id)>

<! ATTLI ST typedef isPublished (true | false) "fal se">

<l-- Service -->

<! ELEMENT service (docu?,id, inheritance?, (accunulated_service | interface_service))>

<I ATTLI ST service isPublished (true | false) "fal se">

<I ELEMENT accumul at ed_servi ce (service_nenbers)>

<! ELEMENT servi ce_nenbers (service_inheritance | interface_inheritance | service_property)+>

<! ELEMENT service_i nheritance (docu?, conplex_type)>
<! ATTLI ST servi ce_i nheritance
i sOptional (true|false) "false">
<! ELEMENT service_property (property_flag*, (type | conplex_type | sequence), id, docu?)>
<! ELEMENT property_flag (#PCDATA) >

rai ses*,

50

<! ELEMENT
<! ELEMENT

interface_service (constructor)*>
constructor (id, paramcontent,raises*,

<!-- Singleton -->

<! ELEMENT
<l ATTLI ST
<! ELEMENT
<! ELEMENT

<l--
<! ELEMENT
<! ELEMENT
<! ELEMENT
<! ELEMENT

<! ELEMENT
<! ELEMENT

<! ELEMENT
<! ELEMENT

Cener al

si ngl eton (docu?, (interface_singleton |
singleton isPublished (true | false) "false">
interface_singleton (id, conplex_type, docu?)>
service_singleton (id, conplex_type, docu?)>

el ements-->
id (#PCDATA) >
val ue (#PCDATA) >
docu (#PCDATA) >
type (#PCDATA) >

rai ses (conpl ex_type)+>
conpl ex_type (id)+>

sequence (type | conplex_type |
i nheritance (conplex_type)+>

sequence) >

Service To XML Schema

<?xm version="1.0" encodi ng="UTF-8"?>

<! ELEMENT
<! ELEMENT
<! ATTLI ST
<! ELEMENT

service_ini (key+)>

key (key | data_item)*>
key nane CDATA #REQUI RED>
dat a_i t em (#PCDATA) >

Registry to XML Schema

<?xm version="1.0" encodi ng="UTF-8"?>

<! ELEMENT
<l ATTLI ST

reg (key*)>
reg

regnane CDATA #REQUI RED>

<! ELEMENT
<l ATTLI ST

key (key
key

values | data_item)*>

nane CDATA #REQUI RED>

<! ELEMENT

<! ELEMENT
<! ELEMENT
<! ELEMENT
<! ELEMENT
<! ELEMENT
<! ELEMENT
<! ELEMENT
<l ATTLI ST

<! ELEMENT
<! ELEMENT
<! ELEMENT

<! ELEMENT
<! ELEMENT
<! ELEMENT
<! ELEMENT
<! ELEMENT
<! ELEMENT
<! ELEMENT

<! ELEMENT
<! ELEMENT
<! ELEMENT
<! ELEMENT
<! ELEMENT
<! ELEMENT
<! ELEMENT
<! ELEMENT

<! ELEMENT
<! ELEMENT
<! ELEMENT

<! ELEMENT
<! ELEMENT
<! ELEMENT
<! ELEMENT

data_i t em (#PCDATA) >

val ues (val ue_type,
ver si on (#PCDATA) >
val ue_type (#PCDATA) >
val ue_si ze (#PCDATA) >
data (version?, docu,
docu (#PCDATA) >

type_cl ass (#PCDATA) >
type_cl ass isPublished (true |

val ue_si ze, data)>

file_nane, type_class,

false) "false">
supertype (supertype_count,
supertype_count (#PCDATA) >
supertype_nane (#PCDATA) >

fields (field_count, field*)>
field_count (#PCDATA) >

field (docu, file_nane,flags+,
file_name (#PCDATA) >

nanme (#PCDATA) >

type_nane (#PCDATA) >

val ue (#PCDATA) >

supertype_name*) >

nanme, type_nane,

met hods (et hod_count,
net hod_count (#PCDATA) >
met hod (docu, flags, name, return_type, parans,
flags (#PCDATA) >

return_type (#PCDATA)>

parans (paramcount, parant)>

param count (#PCDATA) >

param (fl ags, nanme, type_nane)>

met hod*) >

exceptions (exception_count,
exception_count (#PCDATA) >
exception (#PCDATA) >

exception*)>

refs (ref_count, ref*)>
ref _count (#PCDATA)>
ref (docu, flags, sort,
sort (#PCDATA) >

type_nane) >

docu?) >

type_nane,

servi ce_singl eton)) >

supertype, fields, nethods,

val ue) >

exceptions) >

refs)>

51

Tables of possible 'direct-values' in the registry

Primitive Data Types

Name Internal name Internal number
none RT_TYPE_NONE 0
bool ean RT_TYPE_BOCL 1
byte RT_TYPE BYTE 2
short RT_TYPE_|I NT16 3
unsi gned short RT_TYPE Ul NT16 4
| ong RT_TYPE_I NT32 5
unsi gned | ong RT_TYPE Ul NT32 6
hyper RT_TYPE_I NT64 7
unsi ngned hyper RT_TYPE_Ul NT64 8
fl oat RT_TYPE_FLQOAT 9
doubl e RT_TYPE_DOUBLE 10
string RT_TYPE_STRI NG 11
IDL-Types

Name Internal name Internal number
Invalid RT_TYPE_I NVALI D 0

i nterface RT_TYPE | NTERFACE 1
nodul e RT_TYPE_MODULE 2
struct RT_TYPE_STRUCT 3
enum RT_TYPE_ENUM 4
exception RT_TYPE_EXCEPTI ON 5
t ypedef RT_TYPE_TYPEDEF 6
service RT_TYPE_SERVI CE 7
si ngl et on RT_TYPE_SI NGLETON 8
constants RT_TYPE_CONSTANTS 10

Attributes/Property-Flags

Name Internal name Internal number
invalid RT_ACCESS_| NVALI D 0

readonl y RT_ACCESS_READONLY 1

opti onal RT_ACCESS_OPTI ONAL 2

maybevoi d RT_ACCESS_MAYBEVQ D 4

bound RT_ACCESS_BOUND 8

constrai ned RT_ACCESS_CONSTRAI NED 16

transi ent RT_ACCESS_TRANSI ENT 32

maybeanbi guous RT_ACCESS_MAYBEAMBI GUOUS |64

52

maybedef aul t RT_ACCESS_MAYBEDEFAULT 128
renovabl e RT_ACCESS REMOVEABLE 256
attribute RT_ACCESS_ATTRI BUTE 512
property RT_ACCESS_PROPERTY 1024
const RT_ACCESS_CONST 2048
readwite RT_ACCESS READVWRI TE 4096
paraneterized RT_ACCESS PARAMETERI ZED T 16384
YPE
publ i shed RT_ACCESS_PUBLI SHED 32768

Parameter-Flags

Name Internal name Internal number
invalid RT_PARAM | NVALI D 0
in RT_PARAM | N 1
out RT_PARAM OQUT 2
i nout RT_PARAM | NOUT 3
rest RT_PARAM REST 4

Method-Flags

Name Internal name Internal number
invalid RT_MODE_| NVALI D 1
oneway RT_MODE_ONEVWAY

attribute get

RT_MODE_ATTRI BUTE_GET

attribute set

RT_MODE_ATTRI BUTE_SET

| O N

Reference-Flags

Name Internal name Internal number
invalid RT_REF_| NVALI D 0
support RT_REF_SUPPORTS 1
exports RT_REF_EXPORTS 2
needs RT_REF _NEEDS 4
5

par anet er

RT_REF_TYPE_PARAMETER

53

10 List of Codings

Coding 1:
Coding 2:
Coding 3:
Coding 4:
Coding 5:
Coding 6:
Coding 7:
Coding 8:
Coding 9:
Coding 10
Coding 11
Coding 12
Coding 13
Coding 14
Coding 15
Coding 16
Coding 17
Coding 18
Coding 19

Coding 20:
Coding 21:
Coding 22:
Coding 23:
Coding 24:
Coding 25:
Coding 26:
Coding 27:
Coding 28:

[1Yo 1 | S 6
MOAUIES IN UNOIDL.......ccoie et e e e e e e et e e e e e e e e e e e e e e e eaeeanssnsreeenees 8
Enumerations in UNOIDL...........uiiiiiiii et e e e e e e e e e e e e e e e e e e ans 8
Constants iN UNOIDL..........oooieeee ettt e e e e e e e e et e e e e e eaeaeeeeeeeaaaaannenes 9
SrUCIUrES IN UNOIDL.ottt e e e e e e e e aeeeeeeeeaereaeaaananas 9
TYPEAES IN UNOIDL......c ettt et e e e et e e e s et e e e e e e bt e e e e e ansteeeeeeennsraeeaeeennnees 9
EXCEPLIONS IN UNOIDL.coiiiiiiiiiiee ittt e ettt e e s e e e e e e bt ee e e e e e nnbeeeeeeannnees 10
SiNGIETON IN UNOIDL......c ittt e et e e e e sttt e e e e s aatteeaeessstaeeeeessstaeeeeesanseeeeaaeanns 10
INterfaces iN UNOIDL...........oooiii et e e e e e e e e e e e e e e e e e et eaeeaaeeaeaaeaeees 10
. Interface with Attributes iN UNOIDL.............oooiieeeeeeee e 11
: Interface with Method in UNOIDL..........oooviiiiiiiiie e 11
s Interface Service iN UNOIDL...........ooooi i e e e e e e e e e e 12
s Accumulated Service iN UNOIDL...........ooooiiiiccee et 12
T REGISITY STIUCTUE. ... et e e e et e e e e e et e e e e e e nbaeeeeeennnees 16
: Registry Structure after @ SECoNd KeY........cooo i 16
THEIO XMLttt e e e e e e e e ettt e e e e e e e e e e e e e eeeeeeeeannsbsraeneees 28
P XML-UNO-IDL-SKEIBION. ...t a e e e e e e e 29
s Enumerations in XML-UNO-IDL.........coooieeeee et 31
1 Constants iN XIML-UNO-IDL........oiiii et e e e e e e e e e e e e 32

Structures iN XML=UNO-IDL.......ouiiiiieiiecceeceeeceeeee et e e e e e e e e e e e e e e eaanaaes 33
Typedef in XIML=UNO-IDLe.....coi ettt e e e e s et e e e e s s eata e e e e e s snraeeeeeaanes 33
EXCeption in XML-UNO-IDL......ooooiiiii ettt e e e e e e e e e e e e e aaaeeeeees 34
SiNGIeton iN XIML-UNO-IDL. ...t e e e e e e e e e 35
Interface with Attributes in XML-UNO-=IDL............coooiiiiiiiieeeee e 36
Interface with Method in XML-UNO-IDL.........coooiiiiicceceee et eeeens 37
Interface Service iN XML-UNO-IDL........oooviiiiii e e e 39
Accumulated Service in XML-UNO-IDL.........coooiiiiciee e, 40
Register a Component With XIML..........cooiiiiiiiiie e e e e e e e e e 41

54

11 List of lllustrations

lllustration 1: Communication error WithOUE IDL.............coiiiiiiiii e 5
lllustration 2: Communication With IDL............ooi e e e e e e e e e 6
lllustration 3: UNO-COMPONENTS.........uiiiiiiiiiiiie ettt e et e e e e e e bt e e e e e e st e e e e e e anbeeeeeeeannbeeeeeeanneeas 7
lllustration 4: Compilation ChaiN..............euiiiiiiiiii e e e e e e e e e e e e e e aeeeees 14
Hustration 5: HEAD BIOCK..........ou ettt ettt e e e e e e e e e e e e e e e e et eaeaeeeans 18
lllustration 6: Two Supertypes Added t0 the HEAD............ooiiiiiiiiie e 20
lllustration 7: ConstantS-PO0Il BIOCK.............uuiiiiiiiiiiiiieeeee et e e e e e e e e e e e e e e e e e eeeesaaaaaaaas 21
lllustration 8: CP Block EXample: MYENTNY.......ooiiiiiii e 22
HUSErAtion 9: FlA DIOCK. e et e e e e e e e e e e e e e e e e e et ae bbb aeeeeeeeaeaeeeseeeeanras 22
lllustration 10: Method BIOCK............uuueiiiii ettt e e e e e e e e e e e e e e e e e e e st s e e aeeeeas 24
lllustration 11: Parameter BIOCK............oouei ittt 25
lllustration 12: REfErenCe BIOCK............uuuieiiiiiiiiiec e e e e e e e e e e e e e raeeee s 26
lllustration 13: REGISIIY OVEIVIEW.ccoiiiiiiiii et e e e e et e e e e e e nbe e e e e e e ennreeas 27

12 List of Tables

Table 1: HEAD Block of @ Registry's BiNary AITay............occuuiiiei ittt e e et e e e s e enaeeeeeeanns 20
Table 2: CP Block of @ Registry's BiNary ATaAY..........couooiiiieiieeiiiiiee ettt et e e e e e 21
Table 3: Field Block of @ Registry's BiNary AITAY.........cccuuiiieiiiiiiie ettt eee e e e etaee e e e e snnneee e e e e nnneeas 23
Table 4: Method Block of @ Registry's BiNary ArTay...........ocueiiii i ee e 25
Table 5: Parameter Block of @ Registry's BiNary AITaY..........ccuuiiiiiiiiiiiiie ittt 26
Table 6: Reference Block of a Registry's Binary Array.........coooo i 26

55

13 Literature

[1]

[2]

[3]

[4]

[5]

[6]

[7]

[8]

OMG-IDL Details, OMG.org
http://www.omg.org/gettingstarted/omg_idl.htm. Last visited on 15 July 2010

CORBA-FAQ - How about a high-level overview , OMG.org
http://www.omg.org/gettingstarted/corbafaq.htm#HowWork. Last visited on 14 July 2010

Understanding UNO, OpenOffice.org

http://wiki.services.openoffice.org/wiki/Uno/Article/Understanding_Uno.
Last visited on 2 July 2010

Registries in OpenOffice, OpenOffice.org

http://udk.openoffice.org/common/man/tutorial/uno_registries.html.
Last visited on 15 July 2010

Introduction to Professional Usage of UNO, OpenOffice

http://wiki.services.openoffice.org/wiki/Documentation/DevGuide/ProUNO/Introduction.
Last visited on 21 June 2010

Java Eclipse Tutorial, OpenOffice.org

http://wiki.services.openoffice.org/wiki/JavaEclipseTuto. Last visited on 26 June 2010

FAQ about the OpenOffice-API, OpenOffice.org
http://de.openoffice.org/doc/faa/api/index.html. Last visited on 21 June 2010

Generating Source Code from UNOIDL Definitions, OpenOffice.org

http://api.openoffice.org/docs/DevelopersGuide/Components/Components.xhtml#1 2 2 Generatin

g_Source_Code_from_UNOIDL_Definitions.

[9]

Last visited on 2 July 2010

The Registry Type Reader, OpenOffice.org

http://api.openoffice.org/docs/cpp/ref/names/RegistryTypeReader.
Last visited on 15 July 2010

56

http://api.openoffice.org/docs/cpp/ref/names/RegistryTypeReader
http://api.openoffice.org/docs/DevelopersGuide/Components/Components.xhtml#1_2_2_Generating_Source_Code_from_UNOIDL_Definitions
http://api.openoffice.org/docs/DevelopersGuide/Components/Components.xhtml#1_2_2_Generating_Source_Code_from_UNOIDL_Definitions
http://de.openoffice.org/doc/faq/api/index.html
http://wiki.services.openoffice.org/wiki/JavaEclipseTuto
http://wiki.services.openoffice.org/wiki/Documentation/DevGuide/ProUNO/Introduction
http://udk.openoffice.org/common/man/tutorial/uno_registries.html
http://wiki.services.openoffice.org/wiki/Uno/Article/Understanding_Uno
http://www.omg.org/gettingstarted/corbafaq.htm#HowWork
http://www.omg.org/gettingstarted/omg_idl.htm

[10] Grouping Definitions in Modules, OpenOffice.org
http://wiki.services.openoffice.org/wiki/Documentation/DevGuide/WritingUNO/Grouping_Definitions
_in_Modules.

Last visited on 10 July 2010

[11] Using Services, OpenOffice.org
http://wiki.services.openoffice.org/wiki/Documentation/DevGuide/FirstSteps/Using_Services.
Last visited on 18 July 2010

[12] The UNOIDL Syntax Specification, OpenOffice.org

http://api.openoffice.org/docs/DevelopersGuide/Appendix/IDLSyntax/IDLSyntax.xhtml#1_UNOIDL
Syntax_Specification.

Last visited on 20 July 2010

[13] A Technical Introduction to XML, xml.com

http://www.xml.com/pub/a/98/10/guide0.htmI?page=2#AENS8. Last visited on 13 July 2010

[14] XML Syntax of XML, w3schools.com
http://www.w3schools.com/xml/xml_syntax.asp. Last visited on 13 July 2010

[15] Objects, Interfaces, and Services, OpenOffice.org
http://wiki.services.openoffice.org/wiki/Documentation/DevGuide/FirstSteps/Objects, Interfaces, a
nd_Services.

Last visited on 20 July 2010

[16] Comparison of the UNO — CORBA Object Models, OpenOffice.org
http://udk.openoffice.org/common/man/comparison_uno_corba.html.
Last visited on 21 June 2010

[17]1 Typedefs, OpenOffice.org
http://wiki.services.openoffice.org/wiki/Documentation/DevGuide/AppendixA/Typedefs.
Last visited on 15 June 2010

[18] Exceptions, OpenOffice.org

http://wiki.services.openoffice.org/wiki/Documentation/DevGuide/AppendixA/Exceptions.
Last visited on 15 June 2010

57

http://wiki.services.openoffice.org/wiki/Documentation/DevGuide/AppendixA/Exceptions
http://wiki.services.openoffice.org/wiki/Documentation/DevGuide/AppendixA/Typedefs
http://udk.openoffice.org/common/man/comparison_uno_corba.html
http://wiki.services.openoffice.org/wiki/Documentation/DevGuide/FirstSteps/Objects,_Interfaces,_and_Services
http://wiki.services.openoffice.org/wiki/Documentation/DevGuide/FirstSteps/Objects,_Interfaces,_and_Services
http://www.w3schools.com/xml/xml_syntax.asp
http://www.xml.com/pub/a/98/10/guide0.html?page=2#AEN58
http://api.openoffice.org/docs/DevelopersGuide/Appendix/IDLSyntax/IDLSyntax.xhtml#1_UNOIDL_Syntax_Specification
http://api.openoffice.org/docs/DevelopersGuide/Appendix/IDLSyntax/IDLSyntax.xhtml#1_UNOIDL_Syntax_Specification
http://wiki.services.openoffice.org/wiki/Documentation/DevGuide/FirstSteps/Using_Services
http://wiki.services.openoffice.org/wiki/Documentation/DevGuide/WritingUNO/Grouping_Definitions_in_Modules
http://wiki.services.openoffice.org/wiki/Documentation/DevGuide/WritingUNO/Grouping_Definitions_in_Modules

[19] Using UNOIDL to Specify New Components, OpenOffice.org
http://wiki.services.openoffice.org/wiki/Documentation/DevGuide/WritingUNO/Using_ UNOIDL _to_S

pecify New_Components.
Last visited on 21 July 2010

[20] Interface Definition Language, IBM.com

http://publib.boulder.ibm.com/infocenter/wasinfo/v4r0/index.jsptopic=/com.ibm.websphere.v4.doc/w

asee_content/corbaio/ref/rcidlop1.htm.
Last visited on 21 July 2010

[21] Forum entry about MacOS problem, dev@api.openoffice.org

http://comments.gmane.org/gmane.comp.openoffice.devel.api/20877
Last visited on 22 July 2010

[22] Deployment Options for Components, OpenOffice.org

http://api.openoffice.org/docs/DevelopersGuide/Components/Components.xhtml#1_9 Deployment

_Options_for_Components
Last visited on 22 July 2010

58

http://api.openoffice.org/docs/DevelopersGuide/Components/Components.xhtml#1_9_Deployment_Options_for_Components
http://api.openoffice.org/docs/DevelopersGuide/Components/Components.xhtml#1_9_Deployment_Options_for_Components
http://comments.gmane.org/gmane.comp.openoffice.devel.api/20877
mailto:dev@api.openoffice.org
http://publib.boulder.ibm.com/infocenter/wasinfo/v4r0/index.jsp?topic=/com.ibm.websphere.v4.doc/wasee_content/corbaio/ref/rcidlop1.htm
http://publib.boulder.ibm.com/infocenter/wasinfo/v4r0/index.jsp?topic=/com.ibm.websphere.v4.doc/wasee_content/corbaio/ref/rcidlop1.htm
http://publib.boulder.ibm.com/infocenter/wasinfo/v4r0/index.jsp
http://wiki.services.openoffice.org/wiki/Documentation/DevGuide/WritingUNO/Using_UNOIDL_to_Specify_New_Components
http://wiki.services.openoffice.org/wiki/Documentation/DevGuide/WritingUNO/Using_UNOIDL_to_Specify_New_Components

