00RexxTry Reengineering

Seminar Paper

Markus Moldaschl

0751916

0502 Projektseminar aus Wirtschaftsinformatik
Ao. Univ.-Prof. Dr. Rony G. Flatscher
Institute for Management Information Systems
Vienna University of Economics and Business Administration

Table of Contents Page 3

Table of Contents

Y 413 1 = (o S 7
Ao 101 R L= o A (=) PP 8
2.1 OOREXX BASICS. ..ot iiiiiiiiiiiiiiie ettt e ettt e e e e e e e et e e e e e eeaae 8
2.2 Functionality of 00REXXTIY ...cooeeieeeeeeeee e 10
2.3 LIBrary SUPPOITccooeeeeeeeeeeeeeee e 13

3 00REXXTTY.IX] CONCEPLS . .oeeeeiiiiiiii e e ee et e et e e e e e e e e e e 16
3.1 Java GUI LOOIKIISccevviiiiiiiiiiiieeeeeeeeeeee e 16
3.2 Leverage Java With BSFAOOREXXccccviviiiiiiiiiiiiiiiiiiiiiiiiiieeieeeeeeeeeeee 18

4 00REeXXTry.rxj in Detall.......ccoeeeeeeeeeeeeee e 21
4.1 Leveraged Java CIaSSESccuuuuiiiiiie et e e e e 22
4.2 Important Functionality and CIaSSEScceeiiieeiiiiiiiiiiii e 27
4.2.1 EXECULE COULuvviiiieee et e e e e e e e e e e e e eenees 27

4.2.2 Configuration Data Management...........cccccvevvvviviiieeiieeeeeeeeeeeeeeeen. 30

4.2.3 Code Execution HiStOryccoiiiiieiiiiiiiiie e 34

4.2.4 Monitor configurationcceeiieeeiiiiiiiiiee e 38

4.2.5 SOCKEet CONNECHION.......ceiiieeiiiiiie e e e e e eeeeees 42

4.2.6 Java Class Specialization in 00OREXXccevvviiiiiiiiiiiiiiiiiiiiiiienen, 48

I (00 [T U o TS 51
B REFEIENCES ... 52
A Y o] 01T [0 1) RN 54

EigenstandigKeitSerkIarung ... 60

List of Figures Page 4
List of Figures

Figure 1: GUI Of O0OREXXTTY ..uuuuiiiieeeeeieeiiiie e e e ettt e e e e e e e e e e e e e e eeeeenes 11
Figure 2: 00RexXTry Menu StrUCTUIEoooeiiiieeeeeeeeeeeeeee e 12
Figure 3: Input and Output Areas and Menu Bar Creation with ooDialog 14
Figure 4: AWT-Swing Component Inheritance Hierarchy [Flat10b] 17
Figure 5: Implement Java Interface Using BsfCreateRexXProxyc....... 20
Figure 6: ooRexxTry.rxj GUI featuring “Input” area..............ccccooeeeeei, 21
Figure 7: Access to Code EXECULIONccoovviieiieieieeeeeeeee 27
Figure 8: Result of Code EXECULIONciiiiieiiiiiiiiiie e 29
Figure 9: Trapped SYyNtax ErrOrooooviiiiii e e e 30
Figure 10: Using Syslni to Load Configuration Dataccccoeeeeeeeeeeeeeeeeeen, 31
Figure 11: Using ooRexx's Property Class to Load Configuration Data............ 32
Figure 12: SaveSettings Class Stores Configuration Data...............ccceeeeeeeeeens 33
Figure 13: Content of 00REXXTIY.IC ...cocvviueiiiiii e e e e e eeeanns 33

Figure 14:
Figure 15:
Figure 16:
Figure 17:
Figure 18:
Figure 19:

Figure 20:

Access to History Capacity Configuration and Respective Dialog ...34

Store Class Deposits Executed Code.........ccovveeeeiiiiiiiiiiiiiiieeeeeeeeeans 35
Access to History Dialog........cooovviiiiiiiiie e 35
CellRenderer Class.........coooiiiieiieieeeee e 36
Code History Dialogccooeeieeieeeeeeeeeeeeeeee 37
Restore Class Retrieves Previously Executed Code 38
GUIInputStream Class Substituting the Standard Input Monitor 39

List of Figures Page 5

Figure 21:
Figure 22:
Figure 23:
Figure 24:
Figure 25:
Figure 26:
Figure 27:
Figure 28:
Figure 29:
Figure 30:

Figure 31:

Access to Monitor Configuration and Respective Dialog 40

DestinationSwitch Class Sets the Destination for Each Monitor 42

ServerSocket Creation and Connection Initialization 42
SocketConnection Class Establishes a Connection to a Client 44
Access to Socket Configuration and Respective Dialog 44
Connected Client Sending Message to Servercccccvevvvvvineeeennn. 45
GUI Showing Processed Client Input.............cccceeeiiiiiiiiiiiiiicceeeeee, 45
Connected Client Receiving Output and Error Related Data 46
GUI Showing Tracing iN PrOCESSuuvuvririiiiiiiiiiiiiiiiiiiiieiiiniiniennns 47
Implement and Instantiate Java Class and Call Modified Method....49

Dimensioning Class Serving as Proxy Classccccccceeeeiieeeeeeeeennn, 50

List of Tables Page 6

List of Tables

Table 1: Classes from the java.awt Package Utilized in 00ORexxTry.rxj............. 23
Table 2: Classes from the javax.swing Package Utilized in ooRexxTry.rxj 25
Table 3: Classes from the java.lang Package Utilized in ooRexxTry.rxj 26

Table 4: Classes from the java.io Package Utilized in 00RexxTry.rxj 26

Abstract Page 7

1 Abstract

This paper discusses the functionality of the program ocorRexxTry and describes
the transformation from the original Windows bound version to a platform inde-
pendent one which leverages Java GUI libraries. Furthermore, it gives a brief
overview of ooRexx itself and important ooRexx concepts utilized in the project

work.

In addition, the paper briefly introduces the very exciting, before the time of writ-
ing, undocumented feature of Java class specialization in ooRexx and points
out some extensions made to the original coRexxTry such as a code execution

history and the ability to directly parse input from a file source.

00RexxTry.rex Page 8

2 00RexxTry.rex

ooRexxTry.rex IS a GUI based ooRexx script that can be used very much like
rexxtry.rex that is also distributed with Open Object Rexx. However, they
significantly vary in the way they run code and in their availability. rexxtry.rex
runs a string entered in the command prompt when you press the RETURN key.
ooRexxTry.rex starts the execution of your code when you click on the “Run”
button on its GUI. Since ooRexxTry.rex leverages Windows libraries for build-
ing its GUI, ooRexxTry.rex IS only available on the Windows platform. You
may also supply arguments to your code by specifying them in the arguments

section of the dialog (cf. figure 1). [Peed07]

00RexxTry runs on every Windows distribution with a version of ooRexx 3.2 or

higher installed.

2.1 ooRexx Basics

Open Object Rexx (0oRexx) is an Open Source project managed by Rexx Lan-
guage Association (RexxLA) providing a free implementation of Object Rexx.
ooRexx is distributed under Common Public License (CPL) v1.0. Object Rexx
is an enhancement of classic Rexx; a powerful, full-featured programming lan-

guage which has a human-oriented syntax. [0oORexXx]
The following list points out the main characteristics and benefits of ooRexx:
e Natural language-like

o0oRexx uses commands full of meaningful English words and a set of
self-explanatory instructions like SAY, IF ... THEN ... ELSE, DO ... END,
LEAVE and EXIT. That is why it is easy to learn and students may quick-

ly become productive with it.
e Syntax rules

A Rexx program is built from a series of clauses that are composed of

zero or more whitespace characters, a sequence of tokens (e.g. literal

00RexxTry.rex Page 9

strings, symbols, ...), zero or more whitespace characters and a semico-
lon (;) delimiter that the line end, certain keywords, or the colon () im-
plies. Please see [Flatintro] and subsequent slide sets for more informa-

tion on the syntax of ooRexx.

Conceptually, each clause is scanned from left to right before processing,
and the tokens composing it are identified. Instruction keywords are rec-
ognized at this stage, comments are removed, and sequences of whites-
pace characters (except within literal strings) are converted to single
blanks. Whitespace characters adjacent to operator characters and spe-
cial characters are also removed [RRef10].

Unlike languages like Java or C#, ooRexx uses the tilde character in-
stead of a dot to invoke methods on objects (send messages to the ob-

ject).
e Imposes few restrictions

Programs can be coded in a format that emphasizes their structure, mak-
ing them easier to read. For instance, a single instruction can span mul-
tiple lines. Since all characters of ooRexx statements are translated to
uppercase, case sensitivity basically does not have to be observed, un-
less you use literal strings (strings delimited by quotation marks) for vari-
able or label names. ooRexx also reduces the threat of name conflicts to

a minimum as keywords are only reserved in context.
e Weak typing

Variables do not have to be explicitly declared with a data type as data
types are recognized from the context.

e Object-orientation

ooRexx provides data encapsulation, polymorphism, an object class hie-
rarchy, class-based inheritance of methods, and concurrency. It includes
a number of useful base classes and allows you create new object

classes of your own. [RRefl10]

00RexxTry.rex Page 10

e Interpreted language

Unlike non-interpreted languages, which compile program code into ma-
chine code before they can be run, ooRexx is run by an interpreter. The
interpreter reads each line separately and runs it. That leads to faster

debugging and reruns.

2.2 Functionality of ooRexxTry

ooRexxTry IS not meant to be an IDE nor does it have all the bells and whistles
of an editor. It is designed for experimentally testing code that you may not be

ready to save as a file.

ooRexxTry uses its GUI for standard output instead of the command prompt. All
say Statements within your code are redirected to a specific area of the dialog.
The same is true for any values returned by your code. Errors, information and
returned values are also redirected to their specific area of the dialog. Standard
input (keyboard input) required by parse pull, lineIn and charIn instruc-

tions still needs to be made at the command prompt. [Peed07]

00RexxTry.rex Page 11

Figure 1 shows the Graphical User Interface of the program. The GUI consists
of two input areas for the main code and separate arguments and three output

areas.
e o SR | e)
File Edit Tools Help |

Arguments

Code

-
P
3
son N
-
] k

-

Figure 1: GUI of ooRexxTry

00RexxTry.rex Page 12

ooRexxTry.rex has the following characteristics [Peed07]:

e Size of the dialog is calculated on the basis of the screen resolution:
minimum supported screen resolution is 800x600,

e .ini File used for start-up instructions (dialog position/size, ...):
Arguments must be entered on separate lines.
Code input area can contain any valid ooRexx code (including direc-
tive instructions).

¢ Run code by using the menu option or the “Run” button
If selection made only selected code fragment will be run
Pressing enter key creates a new line but does not invoke the code
execution procedure

e The menu bar provides commands for code saving/opening, font mod-

ification, accessing the system’s clipboard et cetera (cf. Figure 2)

Menu Options

File Edit Tools Help
Run FontName Copy Current Settings
Saveds Lucida Console Args About
Open Courier New Code
Exit FontSize Says

8 Retums
10 Errors
12 All
14 Clear
16 Args
18 Code
Says
Returns
Errors
All
Silent
No
Yes
Save Settings
Save

Figure 2: ooRexxTry Menu Structure

00RexxTry.rex Page 13

2.3 Library support

The original ocorRexxTry leverages the functionality of the two classes ood-

win32.cls and winsystm.cls, thus is tightly coupled to the Windows platform.

oodwin32.cls: implements the external library package ooDialog, which is a
framework that aids ooRexx programmers in adding graphical elements to their
Rexx progamms. The framework provides the base infrastructure, through a
number of classes, that the programmer builds on to quickly produce Windows
dialogs. [DRef10]

For instance, Figure 3 demonstrates the creation of the five input and output

areas and the menu bar of the corRexxTry GUI by Lee Peedin using cobialog.

::class oort dialog subclass userdialog inherit AdvancedControls Mes-
sageExtensions

::method DefineDialog
expose u
u = .dlgAreaU~new (self)
if .nil \= u~lastError then
call errorDialog u~lastError

—————————— Arguments title & dialog area

at = .dlgArea~new (0,0,u~w,10)
self~addText (at~x,at~y,at~w,at~h, 'Arguments', 'CENTER' ,17)
ad = .dlgArea~new (0,at~y + 10,u~w,u~h('15%"))

self~addEntryLine (12, 'args data',ad~x,ad~y,ad~w,ad~h, -
'multiline hscroll wvscroll')

__________ Code title & dialog area

ct = .dlgArea~new (0,ad~y + ad~h,u~w,10)
self~addText (ct~x,ct~y,ct~w,ct~h, 'Code', 'CENTER',18)
cd = .dlgArea~new (0,ct~y + ct~h,u~w,u~h('40%"))

self~addEntryLine (13, 'code data',cd~x,cd~y,cd~w,cd~h, -
'multiline hscroll vscroll')

—————————— Says title & dialog area

st = .dlgArea~new(0,cd~y + cd~h,u~w('50%"),10)
self~addText (st~x,st~y,st~w,st~h, 'Says', 'CENTER',19)
sd = .dlgArea~new (0,st~y + st~h,u~w('50%") ,u~h('43%"))

self~addEntryLine (14, 'say data',sd~x,sd~y,sd~w,sd~h,
'notab readonly multiline hscroll vscroll')

—————————— Returns title & dialog area

rt = .dlgArea~new (sd~x + sd~w,cd~y + cd~h,u~w('50%"'),10)
self~addText (rt~x,rt~y,rt~w,rt~h, 'Returns', 'CENTER"',20)
rd = .dlgArea~new (rt~x,st~y + st~h,u~w('50%"),u~h('15%"))

self~addEntryLine (15, 'results data',rd~x,rd~y,rd~w,rd~h, -
'notab readonly multiline hscroll vscroll')

—————————— Errors/Information title & dialog area
et = .dlgArea~new (rt~x,rd~y + rd~h,u~w('50%"'),10)

00RexxTry.rex Page 14

self~addText (et~x,et~y,et~w,et~h,

'Errors / Information','CENTER',21)

ed = .dlgArea~new (rt~x,et~y + et~h,u~w('50%") ,u~h('17%"))
self~addEntryLine (16, 'error data',ed~x,ed~y,ed~w,ed~h,
'notab readonly multiline hscroll vscroll')

—————————— Run & Exit buttons for easier execution
self~AddButton (80,ed~x ,ed~y + ed~h + 2,35,10,'&¢Run',"'RunIt")
self~AddButton (81 ,ed~x + 40,ed~y + ed~h + 2,35,10,
'E&xit', "Cancel')

self~createMenu

self~AddPopupMenu ('&File')
self~addMenuItem('&Run' ,22, ,"RunIt')
self~addMenultem('&SaveAs',23, ,'FileDialog"')
self~addMenultem("'&Open' , 25, ,'FileDialog"')
self~addMenultem('E&xit’ ,24,"END', '"Cancel")

self~addPopUpMenu ('&Edit")

self~addPopupMenu ('Font&Name')
self~addMenultem('&Lucida Console', 30, -
,'onFontMenuClick")
self~addMenultem('&Courier New' -
,31,"'END', 'onFontMenuClick")

self~addMenuSeparator

self~addPopUpMenu ('Font&Size', 'END')

self~addMenultem('&8' ,40, ,'onFontMenuClick")
self~addMenultem('1&0"',41, ,'onFontMenuClick")
self~addMenulItem('1&2"',42, ,'onFontMenuClick")
self~addMenultem('1l&4',43, , 'onFontMenuClick'")
self~addMenultem('l&6',44, , 'onFontMenuClick'")
self~addMenultem('1&8"',45, 'END', 'onFontMenuClick")

self~AddPopUpMenu ('&Tools")
self~addPopupMenu ('&Copy")

self~addMenultem('&Args' ,50, ,'Clipboard'")
self~addMenultem('&Code' ,51, ,'Clipboard')
self~addMenulItem('&Says' ,52, ,'ClipBoard')
self~addMenultem('&Returns',53, ,'ClipBoard')
self~addMenultem('&Errors' ,54, ,'ClipBoard')
self~addMenultem('A&11" ,55,"END', 'ClipBoard"')

self~addMenuSeparator
self~addPopupMenu ('C&lear")

self~addMenultem('&Args' , 60, ,'ClearAll")
self~addMenultem('&Code' ,61, ,'ClearAll")
self~addMenultem('&Says' ,62, ,'ClearAll")
self~addMenultem('&Returns', 63, ,'ClearAll")
self~addMenulItem('&Errors' ,64, ,'ClearAall’)
self~addMenultem ('A&1ll’ ,65,"END', 'ClearAll")

self~addMenuSeparator

self~addPopupMenu ('&Silent")
self~addMenultem('&No' , 66, ,'Silent")
self~addMenultem('&Yes' ,67,"END','Silent")
self~addMenuSeparator

self~addPopupMenu ('Sa&ve Settings','END')

self~addMenultem('Sa&ve' ,72,"END','SaveSettings')
self~addPopupMenu ('&Help', "END')
self~addMenulItem('Current &Settings',71, ,'Settings’')
self~addMenultem ('&About' ,70,"END"', "Help")

Figure 3: Input and Output Areas and Menu Bar Creation with ooDialog

00RexxTry.rex Page 15

winsystm.cls': defines the windowsClipboard class which provides methods
to interact with a clipboard. Typically a clipboard is used to transfer data back

and forth between different windows in a graphical user interface.

Although ooRexx is by definition platform independent the GUI enhanced ver-
sion of coRexxTry cannot run on an operation system different than Windows
due to the aforementioned restrictions regarding component resources. To
achieve full platform independence some other GUI toolkit has to be leveraged.

Now here is the point where Java comes into play.

! [ERef10]

00RexxTry.rxj Concepts Page 16

3 00RexxTry.rxj® Concepts

This chapter provides an overview and evaluation of the three most popular Ja-
va GUI toolkits and points out which of them serves the transformation towards
a platform independent version of corexxTry the best. What is more, it briefly
describes the BSF400Rexx framework which enables Java support for ooRexx
and points out important functionality of BSF400Rexx incorporated in oo-

RexxTry.rxj.

3.1 Java GUI toolkits

Java GUI widget toolkits consist of libraries which provide building blocks for the
graphical user interface of a program. The major benefit is that such a GUI will
run unchanged with basically the same appearance on every computer with a

Java Runtime Environment installed.
AWT

AWT (the Abstract Window Toolkit) was the first Java GUI toolkit, introduced
with JDK 1.0 as one component of the Sun Microsystems Java platform. It is a
very simple tool kit with limited GUI components, layout managers, and events.
This is because Sun Microsystems decided to use a lowest-common denomina-
tor (LCD) approach for AWT. Only GUI components defined for all Java host

environments would be used. [FeigSA]

AWT depends on host GUI peer controls for building graphical components.
Basically it is a wrapper around native container and controls like dialogs, but-

tons and menus.

Most modern Java based GUls are built on Swing the “successor” of AWT.
Nevertheless AWT supplies the indispensable event model.

2 ooRexx files with Java support use the file extension .rxj instead of .rex.

00RexxTry.rxj Concepts Page 17

Swing

Swing was the next generation GUI toolkit introduced by Sun in J2SE 1.2.
Swing was developed in order to provide a richer set of GUI components than
AWT. Swing GUI elements are 100% Java with no native code: instead of
wrapping native GUI components, Swing draws its own components by using
Java2D to call low level operating system drawing routines. [FeigSA]

Most Swing components (JComponent and its subclasses) are emulated in
pure-Java code. This means that Swing is naturally portable across all hosts
[FeigSA]. Swing has the same look and feel regardless of the underlying operat-

ing system. Anywaly it is possible to simulate the host’s look and feel.

Swing uses the term heavyweight for peer-based components and lightweight
for emulated components. Many swing classes inherit their behavior from AWT
super classes as illustrated in Figure 4.

Component

i

T T T T T T T T

Canvas Checkbox Choice ‘ Container Label List Scrollbar

r T I T T) I_J_'

JComponent Panel Window TextArea

}

] e e o =

JButton JLabel Applet Frame JWindow

JApplet JFrame

Figure 4: AWT-Swing Component Inheritance Hierarchy [Flat10b]

Swing components are not thread-safe. Invoking them from different threads
risks thread interference or memory consistency errors. Java is designed to run
most method invocations on realized visual components on a single thread, the
event dispatch thread (EDT), and provides functionality for safely updating the
graphical user interface. Tasks on the EDT must finish quickly. If a task is very

computationally intensive it should not run on the EDT. Otherwise it may turn

00RexxTry.rxj Concepts Page 18

the GUI unresponsive. GUI updates can be scheduled via SwingUtili-

. . 3
ties.invokelLater"™.

SWT

The Standard Widget Toolkit (SWT) was originally developed by IBM and is
now maintained by the Eclipse Foundation and part of the Eclipse IDE. It does
not come with a standard Java runtime or SDK but can be download separately

from http://www.eclipse.org/swt/.

SWT is a lot like AWT in that it is based on a peer implementation. It overcomes
the LCD problem faced by AWT by defining a set of controls adequate to make
most office applications or developer tools. In cases where native platform GUI
libraries do not support the functionality required for SWT, it implements (emu-
lates) its own GUI code in Java, similar to Swing. In essence, SWT have a host
look and feel and host performance. [FeigSA]

The bottom line is that the Swing framework is most suitable for the platform
independence approach of corRexxTry.rxj since its host peer dependence is

minimal.

3.2 Leverage Java with BSF4o00Rexx

BSF4o0Rexx builds on the Bean Scripting Framework (BSF) maintained by the
Apache Software Foundation. BSF is a set of Java classes which provides
scripting language support within Java applications, and access to Java objects
and methods from scripting languages. The current release version 2.4.0 of
BSF builds on an API originally developed by IBM. BSF400Rexx is supported
with its own BSF engine and achieves to enable the use of ooRexx functionality

in Java and vice versa.

http://download.oracle.com/javase/6/docs/api/javax/swing/SwingUtilities.html#invokelLater%?28java.lang
.Runnable%29

00RexxTry.rxj Concepts Page 19

In order to facilitate the interfacing to Java from invoked Rexx programs quite a
comprehensive set of functions and sub functions have been devised. As a re-
sult of this endeavor all the functionality of Java as implemented in its class hie-
rarchies can be regarded as a huge external Rexx function library which can be
directly used! [FlatO4]

The BSF.cls is the heart of the BSF400Rexx package. It creates an object-
oriented wrapper for allowing transparently accessing the Java objects regis-
tered with BSF.

This opens up the following possibilities [FlatO1]:

e Java classes may get imported into the Object Rexx environment and
can thereafter be used as if they were Object Rexx classes,

e creating instances of the imported Java classes creates Object Rexx
objects serving as proxies for their Java counterparts,

¢ sending Object Rexx messages (terms right to the message operator
“twiddle”, which is the character tilde) to these proxy objects invokes the

methods on the Java side automatically.
RexxProxy

In order to work with Java GUI building blocks we need essentially two BSF
functions, .bsf~new and BsfCreateRexxProxy. .bsf~new takes the fully quali-
fied Java class name as first argument and Java class dependent constructor

arguments subsequently. For instance,

.bsf~new (“javax.swing.JTextField”, ‘', 10)

returns the instance of the JTextField class with blank content and of 10 col-

umns length.

The interactivity of a GUI is realized by the controller holding various event lis-
teners. But, e.g. an ActionListener interface needs its abstract methods to be
implemented in the context of the program. Hence, creating an instance of an
ActionListener and invoking methods on it is not enough. It is necessary to

implement the needed interface method(s) with an ooRexx genuine class and

00RexxTry.rxj Concepts Page 20

then give an instance of it to BsfCreateRexxProxy Which creates and returns

a proxy object that can be utilized as event listener.

Figure 5 demonstrates the use of the class KeyObserver as a proxy to listen for
keyPressed events. The first argument of BsfCreateRexxProxy IS the instance
of the proxy class. The second argument is an optional directory which in this
case holds important objects the proxy class needs access to. The last argu-
ment is the name of the Java interface. Note, that the interface can be ad-
dressed by the local nhame .KeyListener because it was previously imported
via

call bsf.importClass 'java.awt.event.KeyListener’, 'KeyListener'

Every time Java notices a key event on the specified area the event is propa-

gated to the rRexxProxy object.

hlist~addKeyListener (BsfCreateRexxProxy (.KeyObserver~new, -

userData, .KeylListener))

::class KeyObserver
: :method keyPressed
use arg eventObject, slotDir

userData = slotDir~userData

comp = eventObject~getComponent

key = eventObject~getKeyCode

if key == .KeyEvent~VK ENTER then
do

end

Figure 5: Implement Java Interface Using BsfCreateRexxProxy

00RexxTry.rxj in Detail Page 21

4 o0RexxTry.rxj in Detall

This section covers a complete list of Java classes utilized for the implementa-
tion of the platform independent version of ocorRexxTry. What is more, it de-
scribes core functionality, highlights selected alterations and discusses interest-

ing improvements and extensions.

The GUI of corexxTry.rxj features an additional input area which substitutes
the command-line when it comes to user terminal input in case of “parse pull”
instructions and the like. This input area shown in figure 6 is connected to a

stream which serves for primary inputs®.

|£| coRexdry E‘E‘g

File Edit Settings Help

a
-

o

N

4] | »

-

4] [¥] <] [»

|

OutputiSays

[Thiz area will receive the output of your commands. Try 'say hello world’ for example.

|

[4]

1] [v]

Errors/information

-

| Run | Get History || Exit ‘

Figure 6: ooRexxTry.rxj GUI featuring “Input” area

* For further information on standard input see chapter 4.2.4

00RexxTry.rxj in Detalil Page 22

4.1 Leveraged Java Classes

In the course of reproducing the functionality of the original program at an oper-
ation system neutral level the classes and their methods from basically four dif-

ferent packages were used.

The earlier mentioned java.awt package is mostly leveraged for layout tasks
and event handling (cf. table 1). The GUI the user interacts with is essentially
built from the javax.swing package with visual components like JFrame,

Jbialog, JList and JTextArea (cf. table 2).

Package: java.awt [JSEAPI]

java.awt.BorderLayout Lays out a container, arranging and resizing its com-
ponents to fit in five regions: north, south, east, west,
and center. Each region may contain no more than
one component.

Most outer layout on the GUI.

java.awt.Color The Color class is used to encapsulate colors in the
default SRGB color space or colors in arbitrary color
spaces.

java.awt.Cursor A class to encapsulate the bitmap representation of

the mouse cursor.

Transform cursor to visualize busy state.

java.awt.datatransfer.StringSelection Creates a Transferable capable of transferring the
specified String.

java.awt.Dimension The Dimension class encapsulates the width and
height of a component in a single object.

java.awt.event.ActionListener The listener interface for receiving action events. The
class that is interested in processing an action event
implements this interface, and the object created with
that class is registered with a component, using the
component's addActionListener method.

When the action event occurs, that object's action-
Performed method is invoked.

java.awt.event.WindowListener The listener interface for receiving window events. cf.
ActionListener

00RexxTry.rxj in Detall

Page 23

java.awt.FlowLayout

A flow layout arranges components in a left-to-right
flow, much like words of text in a paragraph.

Used on the dialog windows.

java.awt.Font

The Font class represents fonts, which are used to
render text in a visible way.

java.awt.Frame

A Frame is a top-level window with a title and a bor-
der.

In the context of the program only used to get access
to its constant values.

java.awt.GridBagConstraints

The GridBagConstraints class specifies con-
straints for components that are laid out using the
GridBagLayout class.

java.awt.GridBagLayout

The GridBagLayout class is a flexible layout man-
ager that aligns components vertically and horizontal-
ly, without requiring that the components be of the
same size.

Used for most of the components.

java.awt.Insets

It specifies the space that a container must leave at
each of its edges.

java.awt.KeyEvent

This low-level event is generated by a component
object (such as a text field) when a key is pressed,
released, or typed. The event is passed to every
KeyListener oOr KeyAdapter oObject which regis-
tered to receive such events using the component's
addKeyListener method.

java.awt.KeyListener

The listener interface for receiving keyboard events
(keystrokes).

Used for the “Input” area and the “History” dialog.

java.awt.MouseListener

This class processes mouse events.

Used to be aware of double clicks at the “History”
dialog.

java.awt.Toolkit

Binds various platform-independent components to
particular native toolkit implementations.

Used to get the screen size, to get access to the sys-
tem clipboard and used for shortcut making of the
host system.

Table 1: Classes from the java.awt Package Utilized in ooRexxTry.rxj

00RexxTry.rxj in Detalil

Page 24

Package: javax.swing [JSEAPI]

Java Class

Description/Usage in Program

javax.swing.ButtonGroup

This class is used to create a multiple-exclusion scope
for a set of buttons.

Arranges the monitor configuration buttons.

javax.swing.DefaultListModel

Provides methods components like JList use to get the
value of each cell in a list and the length of the list.

javax.swing.filechooser.FileFilter

A FileFilter, once implemented, can be set on a
JFileChooser to keep unwanted files from appearing
in the directory listing.

Implemented with a custom file filter class in coRexx.

javax.swing.JButton

An implementation of a "push" button.

javax.swing.JCheckBoxMenultem

This class represents a check box that can be included in
a menu.

javax.swing.JComponent

The base class for all Swing components except top-level
containers.

Used to allow certain arrow key navigation when the
“History” dialog is focused.

javax.swing.JDialog

The main class for creating a dialog window.

Used to display meta data and the code execution histo-
ry.

javax.swing.JFileChooser

JFileChooser provides a simple mechanism for the
user to choose a file.

Used for opening/saving data from/to an external file.

javax.swing.JFrame

An extended version of java.awt.Frame that adds
support for the JFC/Swing component architecture. Un-
like a Frame, a JFrame has some notion of how to re-
spond when the user attempts to close the window.

Main container which holds most of the GUI components.

javax.swing.JLabel

A display area for a short text string or an image, or both.

javax.swing.JList

A component that allows the user to select one or more
objects from a list. A separate model, ListModel,
represents the contents of the list.

Visual container of the code execution history.

javax.swing.JMenu

An implementation of a menu -- a popup window contain-
ing JMenultems that is displayed when the user selects
an item on the JMenuBar.

javax.swing.JMenuBar

You add JMenu objects to the menu bar to construct a
menu.

00RexxTry.rxj in Detall

Page 25

javax.swing.JMenultem

A menu item is essentially a button sitting in a list.

javax.swing.JPanel

JPanel is a generic lightweight container.

javax.swing.JRadioButton

Used with a ButtonGroup object to create a group of
buttons in which only one button at a time can be se-
lected.

javax.swing.JScrollPane

Provides a scrollable view of a lightweight component.

Most of the input and output areas are put into one.

javax.swing.JTabbedPane

A component that lets the user switch between a group
of components by clicking on a tab with a given title
and/or icon.

See Settings -> Current Settings.

javax.swing.JTextArea

A JTextArea is a multi-line area that displays plain text.

Represents the main input and output areas.

javax.swing.JTextField

JTextField is a lightweight component that allows the
editing of a single line of text.

javax.swing.ListSelectionModel

Represents the current state of the selection for any of
the components that display a list of values with stable
indices.

javax.swing.KeyStroke

A KeyStroke represents a key action on the keyboard, or
equivalent input device. KeyStrokes can correspond to
only a press or release of a particular key.

Used to enable Shortcuts.

javax.swing.UIManager

This class keeps track of the current look and feel and its
defaults.

Ensures system familiar look and feel of the GUI.

Table 2: Classes from the javax.swing Package Utilized in ooRexxTry.rxj

The use of the Runnable and the Thread class from java.lang package allow

simultaneously handling the code execution and socket connections without

making the GUI unresponsive (cf. table 3).

Package: java.lang [JSEAPI]

Java Class Description/Usage in Program

Runnable

The Runnable interface should be implemented by any class

whose instances are intended to be executed by a thread. The

class must define a method of no arguments called run.

00RexxTry.rxj in Detalil

Page 26

Thread

A thread is a thread of execution in a program. The Java Vir-
tual Machine allows an application to have multiple threads of

execution running concurrently.

Starting the thread invokes the run method of the Runnable

object.

Table 3: Classes from the java.lang Package Utilized in 00ORexxTry.rxj

The java.io package provides functionality for reading and writing data when

communicating with a client via socket connection (cf. table 4).

Package: java.io [JSEAPI]

Java Class

Description/Usage in Program

BufferedReader

Read text from a character-input stream, buffering characters
so as to provide for the efficient reading of characters, arrays,
and lines.

File

An abstract representation of file and directory pathnames.

Used to set the current path.

InputStreamReader

An InputStreamReader is a bridge from byte streams to cha-
racter streams. Each invocation of the read() method may
cause one or more bytes to be read from the underlying byte-

input stream.

Used to read inbound data from socket connection

PrintWriter

Print formatted representations of objects to a text-output
stream.

Used to write outbound data to a socket communication part-
ner.

Table 4: Classes from the java.io Package Utilized in ooRexxTry.rxj

00RexxTry.rxj in Detall Page 27

4.2 Important Functionality and Classes

The .rxj version written with the support of Java features two major extensions
to the original corRexxTry.rex. The first one is a code execution history which
remembers previously run code and displays code items at a dialog where the
user can select one to restore. The second feature allows the user to dynami-
cally switch the destination of the three monitors of ooRexx. As a result, the
program can directly parse input from a file source or write output or error re-

lated data automatically to a file instead of the assigned GUI areas.

ooRexxTry.rxj also incorporates a very exciting undocumented feature of
BSF4o00Rexx, the possibility to specialize Java classes in ooRexx. But first let's
have a close look at the code execution procedure and how ocoRexxTry.rx]

manages access to certain configuration data.
4.2.1 Execute Code

To start the execution of some code simply click the “Run” button or click menu
File > Run Of USe ALT-R Or CTRL-R (on Windows) or META-R (On Mac), if you

prefer shortcuts (cf. figure 7).

'@ ocoRexxTry
File | Edit Settings Help
New _ Run :H Get History H Exit |
Open ... Stg0 [
Save As ... Stg-S
Run Strg-R
Exit Strg-E

Figure 7: Access to Code Execution

The program first parses the input from the “Arguments” area and from the
“code” area and makes an array out of it while observing syntactical correct ar-
guments and looking for directive instructions (cf. C1 in the appendix). It is ne-
cessary to structure the initial arguments string in way that gives access to
every single argument spanning just one line of the string. This arguments array

allows identifying syntactically incorrect arguments on interpretation and gives

00RexxTry.rxj in Detalil Page 28

access to them. If no exception was thrown, the member items of the argu-
ments array are passed as arguments to the run method of the object class
(super class of the Executor class) later on. The code array follows the same
principle the arguments array does. The subsequent step is to create an in-
stance of the ExecuteThread class with the formatted code and arguments
handed over. The ExecuteThread class implements the java.lang.Runnable
interface. In order to run the literal code execution in a separate thread — not
interrupting GUI operations — the Runnable Objects gets passed to the instance

of a new thread.

On thread start (calling the run method of the ExecuteThread class) the Ex-
ecutor class gets instantiated and creates an executable representation of the

code (cf. C2 in the appendix).

Next the program calls the run method of the Executor class to run the created
code representation. This is accomplished in a final step by invoking the earlier
mentioned run method of the oObject class with the code and arguments

passed.

If an error occurs during code execution, the program raises a condition trapped
by “RunSyntax” (cf. C2 in the appendix.) Otherwise the successfully run code is
admitted to the history by calling the storebata method of the store class.
(See chapter 4.2.3 for more information on the history.) Possibly returned val-
ues are appended to the “Returns” area on the GUI. The results of “say”, “cha-
rout” or “lineout” instructions are appended to the “output/Says” area on the

GUI by the cuTzoutputstreanm (cf. figure 8).

00RexxTry.rxj in Detall

Page 29

| £ coRexxTry

File Edit Settings Help

say arg(l)
return "my Tittle halo”|

- "aloha"

1]

[«] 1>

my 1ittle halo

[1]

[4] 1>

Qutput/Says

aloha

4]

| »

| »

-

Errors/information

Code Execution Complete

a

[4]

| Run || Get History || Exit |

Error Handling

Figure 8: Result of Code Execution

ooRexxTry contains three condition traps (ArgSyntax, ExecSyntax, RunSyn-

tax) throwing exceptions in case of a syntax-based or logical error occurred.

Figure 9 demonstrates the result of a syntax-based error trapped by ExecSyn-

tax.

An appropriate message is appended at the “Errors/Information” area with

detailed information of the error like the error code/number, error type and

source code line involved (depending on the type of error). What is more, the

faulty code line gets highlighted on the GUI.

00RexxTry.rxj in Detalil

Page 30

|£| coRexxTry

.:.Eléj]

File Edit Settings Help

=ay arg(l) -

1] [+]
o e

- "aloha” -
< [

-

= =
Ll [*] < [

Output/Says

-

1]

IC

Errorsiinformation

[MESSAGE] : [Unmatched double quote ()] -
[PACKAGE]: [a Package] =
[POSITION]: [2]
[PROGRAM] : [oorexxtry.code] (.
[PROPAGATED] : [0]
[RC]: [6] =
[TRACEBACK] : [2] item(s)
[2 =-= return "my Tittle halo] —
553 *-* rt_method = .method~new(method_name, code)] -
< [»]
| Run H Get History || Exit ‘

Figure 9: Trapped Syntax Error

4.2.2 Configuration Data Management

The original corRexxTry uses the function sysini from the rRexxUtil package

for saving certain variables. However sysini requires the use of a Windows

OS. Fortunately ooRexx offers the properties class for processing application

option values. Figure 10 demonstrates the use of sysini for loading the font

name, font size and the current value of silent into the program while figure 11

shows in extracts the entirely platform independent way.

00RexxTry.rxj in Detall Page 31

-— 1

f the .ini file is present, use it for font/silent variables

.local~fontname = SysIni ('oorexxtry.ini','oorexxtry','fn'")
.local~fontsize = SysIni('oorexxtry.ini', 'oorexxtry', 'fs')
.local~silent = SysIni('oorexxtry.ini', 'oorexxtry','sl")

-—- Else use some defaults

if .fontname = 'ERROR:' | .useDefault then
.local~fontname = 'Lucida Console'

if .fontsize = '"ERROR:' | .useDefault then
.local~fontsize = 12

if .silent = 'ERROR:' | .useDefault then
.local~silent = .false

Figure 10: Using SyslIni to Load Configuration Data

ooRexxTry.rx7j oOffers a greater variety of fonts and incorporates 17 modifiable

settings including a changeable look & feel. The default font is chosen depend-

ing on whether you use a Windows, Linux or Mac operating system. Additional

fonts are provided after the program checked if certain fonts are installed on

your

system.

-- Load configuration data from the .rc file if present

if .mm.dir~useDefault then

do
if .mm.dir~opSys="W" then -
.local~mm.dir~fontname = 'Lucida Console'
else if .mm.dir~opSys="L" then .local~mm.dir~fontname = 'Monospace'
else if .mm.dir~opSys="M" then .local~mm.dir~fontname = 'Monaco'
else .local~mm.dir~fontname = 'Courier'
.local~mm.dir~fontsize = 12
.local~mm.dir~historySize = 20
.local~mm.dir~inputMonitorDestination = 'GUIInputStream'
.local~mm.dir~outputMonitorDestination = 'GUIOutputStream'
.local~mm.dir~errorMonitorDestination = 'GUIErrorStream'
.local~mm.dir~host = 'localhost'
.local~mm.dir~port = 8888
.local~mm.dir~enableInputSocket = .false
.local~mm.dir~enableOutputSocket = .false
.local~mm.dir~enableErrorSocket = .false
.local~mm.dir~useSystemLookAndFeel = .false
.local~mm.dir~silent = .false
return
end
.local~mm.dir~props = .properties~load ("ooRexxTry.rc")
props = .mm.dir~props
.local~mm.dir~fontname = props~getProperty ("FontName")
if .mm.dir~fontname == .nil then
do

i

f .mm.dir~opSys="W" then .local~mm.dir~fontname = 'Lucida Console'

0oRexxTry.rxj in Detalil Page 32

else if .mm.dir~opSys="L" then .local~mm.dir~fontname = 'Monospace'
else if .mm.dir~opSys="M" then .local~mm.dir~fontname = 'Monaco'
else .local~mm.dir~fontname = 'Courier'

end

.local~mm.dir~fontsize = props~getProperty ("FontSize", 12)
.local~mm.dir~historySize = props~getProperty ("HistorySize", 20)
.local~mm.dir~inputMonitorDestination = -
props~getProperty ("Input Monitor Destination", 'GUIInputStream')
.local~mm.dir~outputMonitorDestination = -
props~getProperty ("Output Monitor Destination", 'GUIOutputStream')
.local~mm.dir~errorMonitorDestination = -
props~getProperty ("Error Monitor Destination", 'GUIErrorStream')
.local~mm.dir~host = props~getProperty("Host", 'localhost')
.local~mm.dir~port = props~getProperty ("Port", 8888)
.local~mm.dir~enableInputSocket = -
props~getProperty ("Enable Input Stream On Socket", .false)
.local~mm.dir~enableOutputSocket = -
props~getProperty ("Enable Output Stream On Socket", .false)
.local~mm.dir~enableErrorSocket = -
props~getProperty ("Enable Error Stream On Socket", .false)
.local~mm.dir~useSystemLookAndFeel = -
props~getProperty ("Use System Look And Feel", .false)
.local~mm.dir~silent = props~getProperty("silentMode", .false)

Figure 11: Using ooRexx's Property Class to Load Configuration Data

Figure 12 stores the frame specifications, the font name, font size and the like

at ooRexxTry.rc.

::class SaveSettings
::method actionPerformed

self~saveSettings
::method saveSettings

-- Write out the configuration data like
-- size,position, fontname, fontsize, & silent to the .rc file

frame = .mm.dir~frame

props = .mm.dir~props

if frame~getExtendedState \= .Frame~iconified & -

frame~getExtendedState \= .Frame~maximized both then
do

props~setProperty ("Xpos", frame~getX)
props~setProperty ("Ypos", frame~getY)
props~setProperty ("Width", frame~getWidth)
props~setProperty ("Height", frame~getHeight)
end
props~setProperty ("FontName", .mm.dir~fontname)
props~setProperty ("FontSize", .mm.dir~fontsize)
props~setProperty ("HistorySize", . mm.dir~historySize)
props~setProperty ("Input Monitor Destination", -
.mm.dir~inputMonitorDestination)
props~setProperty ("Output Monitor Destination", -

00RexxTry.rxj in Detall Page 33

.mm.dir~outputMonitorDestination)
props~setProperty ("Error Monitor Destination", -
.mm.dir~errorMonitorDestination)
props~setProperty ("Host", .mm.dir~host)
props~setProperty ("Port", .mm.dir~port)

if .mm.dir~enableInputSocket then -
props~setProperty ("Enable Input Stream On Socket","yes")
else props~setProperty("Enable Input Stream On Socket","no")
if .mm.dir~enableOutputSocket then -
props~setProperty ("Enable Output Stream On Socket","yes'")
else props~setProperty("Enable Output Stream On Socket","no")
if .mm.dir~enableErrorSocket then -
props~setProperty ("Enable Error Stream On Socket","yes")
else props~setProperty("Enable Error Stream On_ Socket","no")
if .mm.dir~useSystemLookAndFeel then -
props~setProperty ("Use System Look And Feel",6"yes")

else props~setProperty("Use System Look And Feel","no")

if .mm.dir~silent then props~setProperty("silentMode","yes")
else props~setProperty("silentMode","no")

props~save ("ooRexxTry.rc")

.mm.dir~errorsArea~setText ("Settings Saved To ooRexxTry.rc")
return

Figure 12; SaveSettings Class Stores Configuration Data

The file extension .rc refers to a “settings” file containing startup instructions for
an application program. Nevertheless any other text file can be used. All proper-
ties are saved as name-value-pairs (cf. figure 13).

Xpos=0

HistorySize=20

Height=840

Ypos=0

Enable Error Stream On Socket=no

Error Monitor Destination=GUIErrorStream
Input Monitor Destination=GUIInputStream
Width=672

FontName=Lucida Console

FontSize=12

Output Monitor Destination=GUIOutputStream
Host=localhost

Port=8888

Enable Input Stream On Socket=no

Enable Output Stream On Socket=no

Use System Look And Feel=no
silentMode=no

Figure 13: Content of ooRexxTry.rc

00RexxTry.rxj in Detalil Page 34

4.2.3 Code Execution History

The Code Execution History — one of the extensions to the original coRexxTry —

is a convenient way to get access to previously run code.

This tool basically consists of a circular queue and a list model that together
constitute the logic and a Jrist where each item gets rendered in as a JTex-
tArea. The store class from figure 15 creates a circular queue. An object is

appended at the end of the queue and may replace earlier entries.

Every successfully run command queues the code input along with a time
stamp. Subsequently the model of the Jrist gets cleared and refreshed with

the current queue elements.

The size of the history can be adjusted at any time via Settings -> Set His-

tory Capacity .. (cf. figure 14)

History Capacity Configuration @

| £| coRexxTry

; - . Decrease or increase the amount of items the
£ §d|t|§ettmgr.| ficlo code execution history can hold. If the

- FontName)- previous size was larger than the new size,
- any extra i1tems are removed in the specified

FontSize [order.

Silent [Select "Fifo" to keep the most recently added
itemsz or "Lifo" to remove them.

Set History Capacity ...

Set Monitors ... Current Size 20

Socket Config ... New Size 30|

Save Settings Resize Order @ Fifo () Lifo

Current Settings ...

| OK || Cancel ‘

Figure 14: Access to History Capacity Configuration and Respective Dialog

The list will be extended or shortened observing the resize order specified.
Subsequently the makeQueue method of the Store class is called which resizes
the circular queue and updates the model of the Jrist (cf. else block of make-

Queue method in figure 15)

00RexxTry.rxj in Detall Page 35

/*Creates a circular queue and stores code execution data from the
JList's list model in it.*/
::class Store
: :method makeQueue
use arg items, order
-- Storing object for x elements (modifiable at any time);
-- newly items get inserted at the end of the queue
-- and replace earlier entries
if \self~circg~isInstanceOf (.circularQueue) then -
self~circq = .circularQueue~new (items)

else

do
listmodel = .mm.dir~listmodel
listmodel~clear

-- Resize storing object according to new settings
self~circg~resize (items, order)
circgarray = self~circg~makeArray ('F")
do i=1 to circgarray~size
listmodel~addElement (circgarray~at (1))

end

end

::method circg attribute

::method storeData
use arg data

listmodel = .mm.dir~listmodel
item = time () |]'0a'x]|]|"'-
'~copies (40)||'0Oa'x]||data||'0Oa'x||"'="'~copies (40) -- time stamp
self~circg~queue (item) -- Adds item at the end of the queue
-— Creates an array out of the queue elements
circgarray = self~circg~makeArray('F")

/* Clear list model and fill it with the current items of the cir-
cular queue*/
listmodel~clear
do i=1 to circgarray~size
listmodel~addElement (circgarray~at (1))
end
.mm.dir~historybutton~setEnabled(.true)

Figure 15: Store Class Deposits Executed Code

Clicking on the “cet History” Button as visualized in figure 16 opens a dialog

with all recently run code items (elements of the JrList).

‘ Run H(Getﬂlstory)” Exit ‘

Figure 16: Access to History Dialog

00RexxTry.rxj in Detalil Page 36

By default a J1.i st renders all elements from its list model with JLabels. A
JLabel is only capable of displaying its content in a single line. This is obviously
not suitable for displaying code. So the default single-line JLabels are replaced
by multi-line JTextAreas. This is accomplished by the cel1Renderer class,
which implements the ListCellRenderer interface and returns a JTextArea

as visual component for list items as shown in figure 17 and 18.

/*Custom list cell renderer; renders the elements from the listmodel
with seperate JTextAreas in a JList on the screen*/
::class CellRenderer
::method getlListCellRendererComponent
use arg list, value, index, isSelected, cellHasFocus

listarea = .JTextArea~new

listarea~setFont (.Font~new (.fontname, .Font~plain, "12"))
listarea~setText (value~makeString)
listarea~setLineWrap (.true)

if isSelected = .true then
do
listarea~setBackground (listarea~getSelectionColor)
listarea~setForeground(.Color~white)
.rb~setEnabled (.true)
end
laScrollPane = .JScrollPane~new(listarea, -
.JScrollPane~vertical scrollbar as needed,
.JScrollPane~horizontal scrollbar never)
return laScrollPane

Figure 17: CellRenderer Class

With the Code History Dialog from figure 18 the user can skim through previous

code fragments and select what should be restored.

00RexxTry.rxj in Detall Page 37

. Code Execution History (|

I — [

10:48:37 -

zay "aloha”

| 10:49:06 I
userData = .directory~new

wing. JFrame’, "My Frame")
awt.GridLayout ' ,3,1)
ontentPane

x.swing. JTextArea™)

ng.JLabel")
userData~Tlabel
button = .bsf~new(' jawv. JButton', "Click Me!™)
rpButtonEH P (. ButtonEventHandler~new,
userData, " onListener™)
button~addActionListener (rpButtonEH)

cp—add(textarea)~add(1abel)~~add(button)
frame~pack

. local-

frame-—~setVisible(. true)~tofront

::class ButtonEventHandler I
: :method actionPerformed
use arg , slotDir

Data~textArea

ced")

say copies("-",40)
a=2*3
b=a/6
do i=1 to 3
zay "i="1
zay "i*a/b="1*a/b ".dateTime~new-string:" .dat
ime~new~string

| [Restore | |

Figure 18: Code History Dialog

The restorebData method from the Restore class is called when an item from
the list is selected and the “Restore” button is clicked or the user double clicks
on the selected item or presses ENTER. After some formatting the code is res-

tored to the GUI's “code” area (cf. figure 19).

/*Retrieve code fragments from the execution histroy and display them
at the code input area again.*/
::class Restore
::method actionPerformed
use arg , slotDir

self~restoreData (slotDir~userData)

::method restoreData
use arg userData

hlist = userData~hlist
listitem = hlist~getSelectedValue
strippeditem = listitem~strip(, '=")
timestamp = strippeditem~substr(1l,8)
-- Modify the title bar to reflect the version currently working with
.mm.dir~frame~setTitle (.mm.dir~title|| -
" ——— Code Version of "||timestamp)
code string = strippeditem~substr (51)

00RexxTry.rxj in Detalil Page 38

code string alt = code string~substr(l, code string~length-1)
.mm.dir~codeArea~setText (code string alt)
.mm.dir~errorsArea~setText ("Previous Code Restored")

Figure 19: Restore Class Retrieves Previously Executed Code

4.2.4 Monitor configuration

Another new feature of oorRexxTry.rxj iS the possibility to configure the
.input, .output and the .error monitor by changing the destination of each
one. With the original corRexxTry.rex the monitors read/write data from/to their
standard streams which are .stdin, .stdout and .stderr. For instance, the
result of a say statement is displayed at the command line, provided that
.stdout is used. (In fact, corexxTry.rex switches the output monitor each time

.stdout was invoked to display output in the “says” area.)

Now, ooRexxTry.rxj makes the command prompt obsolete when it comes to
program input and output. All three monitors are connected via custom streams
to respective frame areas. For instance, .error writes error related data (includ-
ing trace protocols) to the GUIErrorstream that displays such data at the “Er-

rors/Information” area of the GUI as a result.

Figure 20 illustrates in extracts the GUIInputStream class, responsible for

managing keyboard input.

/* A stream that simulates the behavior of the standard input stream
and thus substitutes it
as destination object of the .input monitor.
Allows to gather keyboard input at the "input" area of the GUI in-
stead of the command prompt.*/
::class GUIInputStream subclass stream
::method init
-- control variable; set to .true when the Return key was pressed
expose vk enterPressed
vk enterPressed = .false

::method setControlVar
expose vk enterPressed

use arg cv

vk enterPressed = cv

00RexxTry.rxj in Detall Page 39

::method lineln
expose vk enterPressed
use arg line, count

-- look for bad arguments
if \line~equals ('LINE') then raise syntax 93.958
if count == 0 then return '0Oa'x
if count < 0 then raise syntax 88.907 array -
(2, 0, 4294967295, count)
inputArea = .mm.dir~inputArea
if count == | count~equals ('COUNT') then
if .mm.dir~clientConnected & .mm.dir~enablelInputSocket then
do
.mm.dir~socketInputRequired = .true
guard on when vk enterPressed \= .false
input = inputArea~getText
inputArea~setText ('")
.mm.dir~socketInputRequired = .false
self~setControlVar (.false)
return input
end
else
do
text = inputArea~getText
if text~length > 0 then
do
input = text
inputArea~setText ('")
return input
end
else
do
-- move the focus for keyboard input to the "input" area
inputArea~~setEditable (.true)~~requestFocus
-- Halt program flow until control variable is set to .true
guard on when vk enterPressed \= .false
-- Read the text content from the "input" area
input = inputArea~getText
inputArea~setText ('")
self~setControlVar (.false)
inputArea~setEditable (.false)
return input
end
end
else raise syntax 93.0

Figure 20: GUIInputStream Class Substituting the Standard Input Monitor

In order to simulate the .stdin stream and the behavior of the command prompt
in the course of keyboard input, it is necessary to overwrite the charin and 1i-
neIn methods of the stream class and to incorporate some mechanism to tem-
porary halt the program. For this purpose, the program uses a guard on In-

struction. Now, guard has great application spectrum but in the context of the

00RexxTry.rxj in Detalil Page 40

GUIInputStream it is used to halt the program flow until the user has made

some input at the “Input” area and completed it with the ENTER key.

But with coRexxTry.rxj the monitors are not statically bound to the GUI. The
user can change the destination object of each monitor at settings -> Set
Monitors .. as visualized in figure 21. This opens up the possibility to directly
read input from an external file source or write output and error related data to

one.

r Menitor Destination Configuration @
|£| ooRexry
File Edit |§ettings| Help Select the destination of the Input Monitor:
Fontlame b i@ Default) File

FontSize

Select the destination of the Qutput Monitor:

) Default ® File |outputFile.red

Set Monitors ... Select the destination of the Error Monitor:

Socket Config ... i@ Default File
Save Settings

Silent b

Set History Capacity ...

Current Settings ... ‘ OK H Cancel

Figure 21: Access to Monitor Configuration and Respective Dialog

Figure 22 shows the actionPerformed method of the DestinationSwitch

class which handles the switching and initiates and prepares new streams.

If the user approves the dialog with the “ok” button the program checks every
monitor, if the file option was chosen. If so, a new stream is created pointing to
the appropriate file. If both the output and the error monitor are about to write to

the same file, thus the same stream is utilized.

::class DestinationSwitch

/*Whenever settings in the the monitor option dialog gets approved the
method configures the monitors according
to the choosen configuration.*/
::method actionPerformed
expose source
use arg eventObject, slotDir

00RexxTry.rxj in Detall Page 41

mdialog = slotDir~userData~mdialog

if eventObject~getSource~equals (slotDir~userData~monitorOkButton)

then
do
incmd = slotDir~userData~ingroup~getSelection~getActionCommand
if incmd~equals ("indefault") then
do
.input~destination (.mm.dir~guilnputStream)
.mm.dir~inputMonitorDestination = 'GUIInputStream'
end
else
do

-- Create a new stream to use a file as the primary source for input
arguments
filename = slotDir~userData~infiletf~getText
.mm.dir~infilestream = .stream~new (filename)
.input~destination(.mm.dir~infilestream)
.mm.dir~inputMonitorDestination = filename
end
outcmd = slotDir~userData~outgroup~getSelection~getActionCommand
if outcmd~equals ("outdefault") then

do
.output~destination (.mm.dir~guiOutputStream)
.mm.dir~outputMonitorDestination = 'GUIOutputStream'
end
else
do

-- Create a new stream to write output arguments to a file
filename = slotDir~userData~outfiletf~getText
if \filename~equals (slotDir~userData~errfiletf~getText) -
then .mm.dir~outfilestream = .stream~new (filename)
else
do
if .mm.dir~errfilestream = -
.nil then .mm.dir~outfilestream = .stream~new (filename)
else .mm.dir~outfilestream = .mm.dir~errfilestream
end
.output~destination(.mm.dir~outfilestream)
.mm.dir~outputMonitorDestination = filename
end
errcmd = slotDir~userData~errgroup~getSelection~getActionCommand
if errcmd~equals ("errdefault") then
do
.error~destination(.mm.dir~guiErrorStream)
.mm.dir~errorMonitorDestination = 'GUIErrorStream'
end
else
do
-- Write error data to a file
filename = slotDir~userData~errfiletf~getText
if \filename~equals (slotDir~userData~errfiletf~getText) -
then .mm.dir~errfilestream = .stream~new (filename)
else
do
if .mm.dir~outfilestream = .nil -
then .mm.dir~errfilestream = .stream~new (filename)
else .mm.dir~errfilestream = .mm.dir~outfilestream
end
.error~destination(.mm.dir~errfilestream)
.mm.dir~errorMonitorDestination = filename
end

00RexxTry.rxj in Detalil Page 42

source = "ok"
mdialog~hide
end
else
do
source = "cancel"
mdialog~hide
end

Figure 22: DestinationSwitch Class Sets the Destination for Each Monitor

4.2.5 Socket Connection

ooRexxTry.rxj Now listens by default on port 8888 for requests from client
programs to establish a connection via socket. Using sockets two programs

communicate in a two-way scenario.

The computer running the server program is identified by 1P address Or host
name and port number. INput and output operations take place via streams.

The server program creates a serverSocket Which accepts requests. [Flat10c]

New connections are derived from this serverSocket and run in a separate
thread not interrupting the workflow. Figure 23 shows how ooRexxTry.rxj

manages connections

/*Create a server socket. While flagged for listening, start accepting
client
connections and manage them in a separate thread.*/
::class CreateServerSocket
: :method run

.mm.dir~srvSock = .bsf~new("java.net.ServerSocket", .mm.dir~port)
.mm.dir~listening = .true
do while .mm.dir~listening = .true

runnableSocket = -

BsfCreateRexxProxy (.SocketConnection~new, ,.Runnable)

.Thread~new (runnableSocket) ~~bsf.dispatch ("start")
end
.mm.dir~srvSock~close

Figure 23: ServerSocket Creation and Connection Initialization

00RexxTry.rxj in Detall Page 43

While flagged for listening the serverSocket accepts a new request and
creates a Java InputStreamReader from the socket’'s InputStream and a Ja-
va PrintWriter from the OutputStream (cf. Figure 24). The InputStrea-
mReader reads bytes from the Inputstream and decodes them into characters
which are subsequently buffered by the BufferedrReader (.local.mm.dir~in).
Invoking the readLine method on the BufferedReader returns a line of cha-
racters. The print1n method of the PrintwWriter (.local~mm.dir~out) prints
a formatted object representation to the outputsStream of the Socket object.

Subsequently, the outputstream writes byte data to the client.

/*Tap the server socket to listen for a incoming connection*/
::class SocketConnection
::method init
.local~mm.dir~clientConnected = .false
.local~mm.dir~socketInputRequired = .false
self~socket = .mm.dir~srvSock~accept

::method socket attribute

::method run
if \.mm.dir~listening then return
-— Writer for outband data
.local~mm.dir~out = -

.PrintWriter~new (self~socket~getOutputStream, .true)
-— reader for inbound data
.local~mm.dir~in = .BufferedReader~new(.InputStreamReader~new (self

~socket~getInputStream))
.mm.dir~out~println("Hello from Server. Type 'Exit' to gquit con-
nection.")
.mm.dir~errorsArea~setText ("Client connected.")
.mm.dir~clientConnected = .true
do while inputLine \= .nil
-- command that signals session end
if inputline~caselessEquals ("Exit") then
do
.mm.dir~out~println ("Exit")
.mm.dir~errorsArea~setText ("Client disconnected.")
.mm.dir~clientConnected = .false
leave
end
inputlLine = .mm.dir~in~readLine
if .mm.dir~enableInputSocket then
do
if .mm.dir~socketInputRequired then
do
.mm.dir~inputArea~setText (inputLine)
.mm.dir~guilnputStream~setControlVar (.true)
end
else .mm.dir~codeArea~setText (inputlLine)
end
end

00RexxTry.rxj in Detalil Page 44

-— Close writer and reader and terminate connection
.mm.dir~out~close
.mm.dir~in~close
self~socket~close

Figure 24: SocketConnection Class Establishes a Connection to a Client

The remote host and the port a socket is connecting to can be changed dynam-
ically via settings -> Socket Config .. as illustrated in figure 25. Such a
change only affects subsequently established connections. The lower part of
the dialog window is used to determine whether the program should actively

use the input and output stream from the socket connection or not.

Socket Connection Configuration Ié]

| 5| ooRexxTry

Specifiy the remote host: Specify the port number to listen on:
localhast | [sass |

File Edit | Settings | Help

FontHame L _
Parse keyboard instructions from the client and append her/his input to the Code Area.
Fontsize b @ Disabled (O Enabled
Silent D Write any OUTPUT data to client {in addition o monitor destination).
Set History Capacity ... i) Disabled ® Enabled
Set Monitors Write any ERROR data to client (in addition to monitor destination).
Socket Config ... ® Disabled () Enabled
Save Settings
Current Settings ...

Figure 25: Access to Socket Configuration and Respective Dialog

Provided that the input stream is “Enabled” client input is automatically ap-
pended to the “Code” area of the GUI. What is more, the client terminal is used

as primary source for keyboard input instead of the “Input” area.

Figure 26 shows this principle in action. With an “enabled” input stream the
“parse pull” instruction waits for input from the client and processes it after-

wards (cf. Figure 21). See C3 in the appendix for the source code of the input

related client script.

00RexxTry.rxj in Detall Page 45

B Administrator: Ch\Windows\system32\cmd.exe - rexx inputClient.rg |ﬂ|&]

Microsoft Windows [Version 6.0.686821]
Copyright <(c)> 2886 Microsoft Corporation. Alle Rechte wvorbehalten.

C:~UserssMarkus >cd desktop

C:sUserssMarkus Desktoprrexx inputClient.rxj
connected
waiting ...
: Hello from Server. Type 'Exit’ to guit connection.
Hello from client.
ToServer: Hello from client.

Figure 26: Connected Client Sending Message to Server

As visualized in Figure 27, the client input is processed as expression of the

say instruction and the result is displayed in the “output/says” area.

|£] coRexxTry =B %
File Edit Settings Help
parse pull input -
say input
4 3
ot
- -
4 3
Returns
-
[] » [] »
Output/Says
Hello from client. -
-
4 L3
Errorsinformation
Code Execution Complete -
4 3
Run Get History Exit

Figure 27: GUI Showing Processed Client Input

00RexxTry.rxj in Detalil Page 46

The two remaining options at the “socket Config” dialog enable or disable the
output or the error stream respectively to simultaneously write to the areas of
the GUI and to the socket client. Figures 28 and 29 demonstrate a trace

process while both the output and the error stream option is set to “Enabled”.

Output and error data is marked with [.ouTPUT] and [.ERROR] and is given to
the printwWriter object which sends the messages to the client. See C4 in the

appendix for the source code of the output related client script.

BN Administrator: C\Windows\system32\cmd.exe - rexx outputClient.ry |ﬂli-J

Microsoft Windows [Uersion 6.8.608821
Copyright (c> 2886 Microsoft Corporation. Alle Rechte vorbehalten.

C:~UserssMarkus>cd desktop outputClient.rxj
Das System kann den angegebenen Pfad nicht finden.

C:UserssMarkus>cd desktop
C:sUserssMarkus \Desktoprrexx outputClient.rxj
ED

Hello from Server. Type ’'Exit’ to guit connection.
-OUTPUT]
OUTPUTT i=1
.OUTPUT] i*arsh=6 .dateTime™new™string: 2811-@2-11TA1:58:85.7460008
.OUTPUT]
OUTPUT] i
OUTPUT] i 12 .dateTime™new™string: 2011-B2-11T81:58:85.7550008
.OUTPUT]
OUTPUT] i

i=1
-OUTPUT] i*arb=18 .dateTime”new™string: 2011-02-11T81:58:85.763008
JOUTPUT] ———
-ERROR] 23> N
-ERROR]1 +++ Interactive trace. "Trace Off" to end debug, ENIER to Conti]

.ERROR1] "WindowsNT METHOD oorexxtry.code"
-ERROR1] end

-.ERROR1 do 2

-ERROR1 say copies("-",.48>

-.ERROR1 T

-ERROR1]

-.ERROR1

-.ERROR1

.ERROR1

-ERROR1]
-OUTPUT]

Figure 28: Connected Client Receiving Output and Error Related Data

00RexxTry.rxj in Detall Page 47

[£] coRexidry == = |

File Edit Settings Help

do 2 a

zay copies("-",40) |
a=2%3
b=a/6
do =1 to 3
say "i="1
say "i*a/b="1*a/b ".dateTime~new-string:" .dateTime~new-string
cay "--"
end
call trace ?intermediate
end
zay center(” The end. ",40, "=") =
1] [*]
o T
- -
~|
1] [¥]
-
~ -
< [*] 4] []

OutputiSays

[»

i=1
i=a/b=6 .dateTime~new~string: 2011-02-11T01:58:05. 746000

i=1 1

i*a/b=12 .dateTime~new-string: 2011-02-11T01:58:05.755000

i=1 =

[[¥]
Errorsiinformation

e CNT -
H++ Interactive trace. "Trace Off" to end debug, ENTER to Continue. +++ "
+++ "WindowsNT METHOD corexxtry.code”
11 *-* end T
1 == do 2
2 F_% say copies("-",40)
ale h_w
e w_n
L wann

<] [

[4]

| Run H Get History H Exit |

Figure 29: GUI Showing Tracing in Process

If the connection is being cut or the client or the server wishes to terminate it (by
sending “exit”) the input and output stream and subsequently the socket con-

nection itself get closed (cf. figure 24).

00RexxTry.rxj in Detalil Page 48

4.2.6 Java Class Specialization in ooRexx

As mentioned initially ocorRexxTry.rxj also leverages the functionality to spe-
cialize Java classes in ooRexx using something called ProxyClass®. As re-
ferred to, RexxProxy Objects allow implementing Java interfaces and abstract
classes in ooRexx. Invoking a method on an implemented interface results in
Java sending a message to the appropriate RexxProxy object. Now with a
ProxyClass the same process flow can be realized but the rRexxProxy object is
also able to subsequently forward the original method call to the addressed Ja-

va class after some processing.

ooRexxTry.rxj uses this feature to implement the AWT Dimension class as a
ProxyClass along with its setsize method. In the context of the input and out-
put areas on the GUI, Dimension objects are used to determine the minimum
and preferred sizes of the components relative to the main frame. Thus ensure

smooth scaling.

The setsize method of a Dimension object would normally take the width and
height of the component. In order to demonstrate the functionality the section is
about, the signature of the initial setsize method call is modified to encapsu-
late the width and height setting and delegate it to the RexxProxy. AS a result,
“setsize” only takes two simple values standing for the size ratio between the
GUI's main frame and an inner component. Further instructions are appended
by the rexxProxy which also carries out the final method call to the addressed

Java (super) class.

® cf. Public Class BSF http://wi.wu-
wien.ac.at:8002/rgf/rexx/bsf4oorexx/current/additionalResources/refcardBSF4o0o0Rexx.pdf

http://wi.wu-wien.ac.at:8002/rgf/rexx/bsf4oorexx/current/additionalResources/refcardBSF4ooRexx.pdf
http://wi.wu-wien.ac.at:8002/rgf/rexx/bsf4oorexx/current/additionalResources/refcardBSF4ooRexx.pdf

00RexxTry.rxj in Detall Page 49

As demonstrated in figure 30 the first step is to create a proxyClass for a Java

class:
proxyClassObj = bsf.createProxyClass(javaClz, newClzName|.nil, javaMeth[, javaMeth2, ...]J)

The next step is to create a RexxProxy Which receives calls to the determined
method(s). This RexxProxy object is also passed as first argument when instan-
tiating the ProxyClass object. Arguments a specific Java constructor may re-

quires are passed subsequently:
javaObj = proxyClassObj~new(rexxProxyObij[, construcArg1, ...J)

Calling an implemented method ultimately leads to the invocation of the respec-
tive method of the rRexxProxy object. Calls to Java methods not implemented in

this way are dispatched as usual.

/*Rexx proxy class for Java class specialization in ooRexx;
first argument: Java super class
second argument: optional new class name, .nil for default
third argument: list of methods to specialize*/
dimpc = bsf.createProxyClass("java.awt.Dimension", -

.nil, "setSize")
-- Proxy object, receives method call
dimrp = BsfCreateRexxProxy (.Dimensioning~new)

/*Create an instance of the proxy class by supplying the proxy
object as first argument followed by
all other necessary arguments the Java constructor would take.*/
dim = dimpc~new (dimrp)~~setSize (1, 35)
argspanel~~setPreferredSize (dim) ~~setMinimumSize (dim)
codepanel~~setPreferredSize (dim) ~~setMinimumSize (dim)
dim2 = dimpc~new (dimrp)~~setSize (1, 12)
argsScrollPane~~setPreferredSize (dim2)~~setMinimumSize (dim2)

Figure 30: Implement and Instantiate Java Class and Call Modified Method

The Dimensioning class (RexxProxy) in figure 31 implements the method
“setsize” from java.awt.Dimension. Note that methods implemented in this
way get a directory object attached as the last argument when invoked. This
directory a.k.a. slotDir holds the entry javaObject representing the Java

class object.

00RexxTry.rxj in Detalil Page 50

The following command calls the appropriate method of the Java super class:
slotDir~javaObject~methName_forwardToSuper([arg1, arg2, ...])

In other words, the RexxProxy object dispatches the method call of a Java class

after some crucial processing in ooRexx.

/* Rexx proxy used to specialize the Java class java.awt.Dimension in
OORexx.*/
::class Dimensioning
::method setSize
-- slotDir: directory, which is attached to every call of
-- a Java method implemented in ooRexx.
-- Holds information about the method and the java object itself.
-- javaObject: messages addressed to the Java super class are sent
-- to this object.
use arg wdivider, hdivider, slotDir

width = .mm.dir~frame~getWidth
height = .mm.dir~frame~getHeight

/*Invoke the method in the Java super class.*/

slot-
Dir~javaObject~setSize forwardToSuper ((width/wdivider)~format(,0), -
(height/hdivider)~format (,0))

Figure 31: Dimensioning Class Serving as Proxy Class

Round-up Page 51

5 Round-up

ooRexxTry IS @ convenient GUI-based tool for becoming familiar with ooRexx
and for quick code testing. Just enter your Rexx code in the “code” area of the

graphical user interface and promptly “run” feedback.

Now with the support from Java widget libraries, which substitute the Windows-
genuine library packages, oorRexxTry runs on every system with a Java Run-
time Environment installed independently of the underlying operating system. A
great variety of classes from the java.awt, javax.swing, java.lang and ja-
va.io packages was leveraged to meet the requirements of the aforementioned

use cases.

The GUI of the Java-based ooRexxTry.rxj features a new “Input” area and
uses custom streams for the .input, .output and .error monitor instead of the
standard streams. As a result, the user is able to provide all input directly at the
GUI and receives all output there. So the command prompt becomes obsolete

and does not have to be observed.

ooRexxTry.rxj also enhances the basic functionality with a code execution
history. Previously run code is stored along with a time stamp in a history which
is displayed at a respective dialog. The user always has an overview of her/his
recent code executions and can select an item to retrieve from the history.

Now that corRexxTry.rx7j listens for socket connections a client may connect
via socket to remotely provide input to the program and to get output and error

data from it.

Last but not least, corRexxTry.rxj offers the possibility to dynamically switch
the destination objects (streams) the monitors of the program read from and
write to. Hence, the user can select a file source for primary input or output in-

stead of the assigned areas of the GUI.

References Page 52

6 References

[DRef10] Ashley D. W., Flatscher R. G. et al.. Windows OODialog Refer-
ence, Version 4.1.0 Edition, December 2010

[ERef10] Ashley D. W., Flatscher R. G. et al.: Windows Extensions Refer-
ence, Version 4.1.0 Edition, December 2010

[FeigSA] Feigenbaum B.: SWT, Swing or AWT: Which is right for you?

http://www.ibm.com/developerworks/qgrid/library/os-swingswt/

Requested in December 2010
[FlatO1] Flatscher R. G.: Java Bean Scripting with Rexx

http://wi.wu.ac.at/rgf/rexx/orx12/JavaBeanScriptingWithRexx orx
12.pdf

[FlatO4] Flatscher R. G.: Camouflaging Java as Object Rexx

http://wi.wu-wien.ac.at/rgf/rexx/orx15/2004 orx15 bsf-orx-
layer.pdf

[Flat10Db] Flatscher R. G.: Creating Portable GUIs for ooRexx Using
BSF4o00Rexx

http://wi.wu-
wien.ac.at:8002/rgf/wu/lehre/autojava/material/foils/AutoJava-

BSF400Rexx-02-GUl.pdf

[Flat10c] Flatscher R. G.: Creating Portable Socket- and SSL-Applications

in ooRexx Using BSF400Rexx

http://wi.wu-
wien.ac.at:8002/rgf/wu/lehre/autojava/material/foils/AutoJava-

BSF400Rexx-03-Sockets.pdf

http://www.ibm.com/developerworks/grid/library/os-swingswt/
http://wi.wu.ac.at/rgf/rexx/orx12/JavaBeanScriptingWithRexx_orx12.pdf
http://wi.wu.ac.at/rgf/rexx/orx12/JavaBeanScriptingWithRexx_orx12.pdf
http://wi.wu-wien.ac.at/rgf/rexx/orx15/2004_orx15_bsf-orx-layer.pdf
http://wi.wu-wien.ac.at/rgf/rexx/orx15/2004_orx15_bsf-orx-layer.pdf
http://wi.wu-wien.ac.at:8002/rgf/wu/lehre/autojava/material/foils/AutoJava-BSF4ooRexx-02-GUI.pdf
http://wi.wu-wien.ac.at:8002/rgf/wu/lehre/autojava/material/foils/AutoJava-BSF4ooRexx-02-GUI.pdf
http://wi.wu-wien.ac.at:8002/rgf/wu/lehre/autojava/material/foils/AutoJava-BSF4ooRexx-02-GUI.pdf
http://wi.wu-wien.ac.at:8002/rgf/wu/lehre/autojava/material/foils/AutoJava-BSF4ooRexx-03-Sockets.pdf
http://wi.wu-wien.ac.at:8002/rgf/wu/lehre/autojava/material/foils/AutoJava-BSF4ooRexx-03-Sockets.pdf
http://wi.wu-wien.ac.at:8002/rgf/wu/lehre/autojava/material/foils/AutoJava-BSF4ooRexx-03-Sockets.pdf

References

Page 53

[Flatintro]

[JSEAPI]

[oORexx]

[Peed07]

[RRef10]

Flatscher R. G.: An Introduction to Procedural and Object-
oriented Programming (0ooRexx)

http://wi.wu-
wien.ac.at:8002/rgf/wu/lehre/autowin/material/foils/ooRexx 1.pdf

Java™ 2 Platform, Standard Edition, v 1.4.2 API Specification

http://download.oracle.com/javase/1.4.2/docs/api/

http://www.oorexx.org/about.html

Requested in December 2010
Peedin L.: ooRexxTry Reference, November 2007

Ashley D. W., Flatscher R. G. et al.: Open Object Rexx Refer-
ence, Version 4.1.0 Edition, December 2010

http://wi.wu-wien.ac.at:8002/rgf/wu/lehre/autowin/material/foils/ooRexx_1.pdf
http://wi.wu-wien.ac.at:8002/rgf/wu/lehre/autowin/material/foils/ooRexx_1.pdf
http://download.oracle.com/javase/1.4.2/docs/api/
http://www.oorexx.org/about.html

Appendix Page 54

7 Appendix

C1 Runlt Class

Parses and formats arguments and code, traps argument errors and instan-
tiates the code execution thread.

-- Initialize code execution

::class RunIt

::method actionPerformed
expose slotDir
use arg , slotDir
self~runCode

: :method runCode
expose slotDir

frame = .mm.dir~frame

codeArea = .mm.dir~codeArea
returnsArea = .mm.dir~returnsArea
errorsArea = .mm.dir~errorsArea
saysArea = .mm.dir~saysArea

cursorpos = codeArea~getCaretPosition

frame~setTitle (.mm.dir~title)

frame~setCursor (.Cursor~getPredefinedCursor (.Cursor~wait cursor))
argsArea = .mm.dir~argsArea

if .mm.dir~hdialog \= .nil then -

if .mm.dir~hdialog~isShowing then .mm.dir~hdialog~hide

arg_array = .array~new
arg string = argsArea~getText
arg_array = arg_string~makeArray ('0Oa'x)

.local~mm.dir~code string = codeArea~getSelectedText

-- Clear any previous say data
saysArea~setText ('")

-- Clear any previous returns data
returnsArea~setText ('")

.local~mm.dir~emsg
.local~mm.dir~imsg =

errorsArea~setText ('Code Is Executing')

.local~mm.dir~Error? = .false
.local~mm.dir~badarg = "'
.local~mm.dir~say stg =
.local~mm.dir~error stg =
-- Interpret each argument so that expressions can be used
signal on syntax name ArgSyntax

do i = 1 to arg array~items
.local~mm.dir~badarg = i arg arrayl[il]
interpret 'arg array['i'] =' arg_arrayl[i]
end

signal off syntax

Appendix Page 55

-- Run the code in a dynamically created method

found cc = .false
if .mm.dir~code string \= .nil then
do
code array = .array~new
code array = .mm.dir~code string~makeArray ('0a'x)
end
else
do
.mm.dir~code string = codeArea~getText
code_array = .mm.dir~code string~makeArray ('0Oa'x)
end
do ca = 1 to code array~items
a _ca = code_arraylcal~strip()
if a ca~pos('::"'") = 1 then
do
found cc = .true
leave ca
end
end

if \found cc then

do
runnable = BsfCreateRexxProxy (.ExecuteThread~new ('oorexxtry.code', -
code array, arg_array, slotDir~userData), ,.Runnable)

.Thread~new (runnable) ~~bsf.dispatch ("start")
-- Run code in separate thread
end
else
do
/*Temporary code storage*/
.local~mm.dir~tempFile = 'ooRexxTry test9999.rex'
c_stream = .stream~new (.mm.dir~tempFile)
c_stream~open ('Write Replace')
do ca = 1 to code array~items
c_stream~lineout (code arrayl[cal)
end
Cc_stream~close
arg _string = "'
do ca = 1 to arg _array~items
arg ca = '""'arg arrayl[cal'"'
arg_string = arg string', 'arg ca
end
arg_string = arg string~strip('b',',")
runnable = BsfCreateRexxProxy (.ExecuteThread~new ('ocorexxtry.code', -
'call ooRexxTry test9999.rex' arg string, arg array,
slotDir~userData), ,.Runnable)
.Thread~new (runnable) ~~bsf.dispatch ("start")
-- Run code in separate thread
end

return

ArgSyntax:
errorarg = .mm.dir~badarg~subword (2)

call ppCondition condition("o")
if \.mm.dir~silent then

call beep 600,100
returnsArea~setText ('")

Appendix Page 56

argsArea~requestFocus

argsArea~select (arg_string~wordPos (errorarg), -
arg_string~wordPos (errorarg)+errorarg~length)
frame~setCursor (.Cursor~getDefaultCursor)

-— Close the file streams after the run or when an error occurred.
Allow to immediate (re)view file code or alternate it.
if .mm.dir~infilestream \= .nil then .mm.dir~infilestream~close
if .mm.dir~outfilestream \= .nil then .mm.dir~outfilestream~close
if \.mm.dir~errorMonitorDestination~equals ('GUIErrorStream') then
do
.mm.dir~errorsArea~setText ("An Arguments error occured. " -
"Please see "||slotDir~userData~errfiletf~getText|| -
" for further details.")
.mm.dir~errfilestream~close
end
return

C2 Executor Class

Creates an executable representation of the code, runs the code, traps errors
raised during execution, stores successfully run code in the history and ap-

pends returned values on the GUI.

-- Class that dynamically creates a method to take the arguments and
execute the code.
::class executor public
::method init
expose rt method userData
use arg method name,code, userData
.local~mm.dir~Error? = .false
.local~mm.dir~error stg = "'
signal on syntax name ExecSyntax
rt method = .method~new (method name, code)
return

-- Syntax trap similiar to rexxc.exe
ExecSynTax:
call ppCondition condition("o")

.local~mm.dir~Error? = .true
if .mm.dir~infilestream \= .nil then .mm.dir~infilestream~close
if .mm.dir~outfilestream \= .nil then .mm.dir~outfilestream~close
if \.mm.dir~errorMonitorDestination~equals ('GUIErrorStream') then
do
.mm.dir~errorsArea~setText ("An Execution error occurred. " -
"Please see "||userData~errfiletf~getText|| -

" for further details.")
.mm.dir~errfilestream~close
end

return

-- Method that actually runs our code

Appendix Page 57

::method run
expose rt method say string userData
signal on syntax name RunSyntax
.local~mm.dir~run_ results = .directory~new
.local~mm.dir~say stg = "'

my result = "'
if \.mm.dir~Error? then

do
-- Run the Code
args = arg(l)
self~run:super (rt_method, 'a', args)
-- Test if there was anything returned by the code
if symbol ('result') = 'VAR' then my result = result
-- Load the says and returns into environment variables
-- for updating the dialog areas
.local~mm.dir~run results['returns'] = my result
if .mm.dir~error stg == '' then -
.mm.dir~errorsArea~setText ("Code Execution Complete")
end

.mm.dir~storage~storeData (.mm.dir~code string)

if .nil \= .mm.dir~run results['returns'] then
.mm.dir~returnsArea~setText (.mm.dir~run results['returns'])
-- Let the user know when code execution is complete
if \.mm.dir~silent then
call beep 150,150
.mm.dir~frame~setCursor (.Cursor~getDefaultCursor)
-— Return the focus to the code input area
.mm.dir~codeArea~requestFocus

—— Close the file streams after the run or when an error occurred.
-— Allow to immediate (re)view file code or alternate it.

if .mm.dir~infilestream \= .nil then .mm.dir~infilestream~close

if .mm.dir~outfilestream \= .nil then .mm.dir~outfilestream~close

if .mm.dir~errfilestream \= .nil then .mm.dir~errfilestream~close
return

-- Syntax trap for errors in the code
RunSyntax:
call ppCondition condition ("o")

if \.mm.dir~silent then call beep 600,100
-- Let the user know when code execution is complete
if \.mm.dir~silent then
call beep 150,150
.mm.dir~frame~setCursor (.Cursor~getDefaultCursor)

-— Close the file streams after the run or when an error occurred.
-— Allow to immediate (re)view file code or alternate it.
if .mm.dir~infilestream \= .nil then .mm.dir~infilestream~close
if .mm.dir~outfilestream \= .nil then .mm.dir~outfilestream~close
if \.mm.dir~errorMonitorDestination~equals ('GUIErrorStream') then
do
.mm.dir~errorsArea~setText ("A Run error occurred. Please see " -
| |luserData~errfiletf~getText||" for further details.")
.mm.dir~errfilestream~close
end
return

Appendix Page 58

C3 Socket Client: Input

Simple script that establishes a connection to the server application via socket.

Parses terminal input and sends messages to the server application.

host = 'localhost' -—- server to connect to

port = 8888 -- port the application listens on
-— create socket and connect to server
socket2server=.bsf~new ('java.net.Socket', host, port)

say connected

say "waiting ..."

-—- output stream for messages destined for the server
out = .bsf~new("java.io.PrintWriter", -
socket2server~getOutputStream, .true)
-- input stream for messages from the server
in = .bsf~new("java.io.BufferedReader", -
.bsf~new ("java.io.InputStreamReader", socket2server~getInputStream))

-- stream for command line parsing

stdIn = .bsf~new("java.io.BufferedReader", -
.bsf~new("java.io.InputStreamReader", -
bsf~bsf.import ('java.lang.System')~in))

say ("Server: "||in~readLine) -- initial message from the server
toServer = stdIn~readLine -- parse client input
do while toServer \= .nil

say ("ToServer: "||toServer)

-- stop listening for client input when he/she wishes to
-- terminate connection by typing "exit"
if toServer~caselessEquals ("Exit") then leave
out~println (toServer)
toServer = stdIn~readLine
end
out~println ("exit")
say "Disconnected from Server."
-- close streams and socket and terminate connection
out~close
in~close
stdIn~close
socket2server~close

::requires bsf.cls

Appendix Page 59

C4 Socket Client: Output

Simple script that establishes a connection to the server application via socket.

Receives error and output related data from the server and displays it to the

user.
host = 'localhost' -- server to connect to
port = 8888 -—- port the application listens on

-—- create socket and connect to server
socket2server=.bsf~new ('java.net.Socket', host, port)
say connected

say "waiting ..."

-—- output stream for messages destined for the server
out = .bsf~new("java.io.PrintWriter", -
socket2server~getOutputStream, .true)

-- input stream for messages from the server
in = .bsf~new("java.io.BufferedReader", -
.bsf~new ("java.io.InputStreamReader", socket2server~getInputStream))

fromServer = in~readLine -- initial message from the server

do while fromServer \= .nil
serverMsg = fromServer~subStr (11l)
-- listen for messages from the server until "exit" is sent
if serverMsg~caselessEquals ("Exit") then leave
say ("Server: "||fromServer)
fromServer = in~readLine
end
out~println ("Exit")
say "Disconnected from Server."
-— close streams and socket and terminate connection
out~close
in~close
socket2server~close

::requires bsf.cls -- get Java support

Eigenstandigkeitserklarung Page 60

Eigenstandigkeitserklarung

Lehrveranstaltungsnummer: 0502 Semester: WS 2010/11
Lehrveranstaltung: Projektseminar aus Wirtschaftsinformatik

Lehrveranstaltungsleiter: ao.Univ.Prof. Dr. Rony G. Flatscher
Verfasser: Markus Moldaschl

Matrikelnummer: 0751916

Ich versichere / stimmte zu:

1. dass ich die Arbeit selbststéandig verfasst, andere als die angegebenen Quel-
len und Hilfsmittel nicht benutzt und mich auch sonst keiner unerlaubten Hilfe
bedient habe.

2. dass ich dieses Thema bisher weder im In- noch im Ausland (einer Beurteile-
rinfeinem Beurteiler zur Begutachtung) in irgendeiner Form als Prufungsarbeit
vorgelegt habe.

3. dass ich damit einverstanden bin, dass die vorliegende Arbeit oder Auszlge
dieser Arbeit im Rahmen von Forschungsprojekten und fur Publikationen wei-
terverwendet werden kdnnen.

Datum Unterschrift

