
WIRTSCHAFTSUNIVERSITÄT WIEN

Institute for Management Information Systems

Projektseminar aus Wirtschaftsinformatik (Schiseminar)

ao.Univ.Prof. Dr. Rony G. Flatscher

Wintersemester 2010/11

Seminararbeit

Introduction to Android Programming

vorgelegt von:

Student: Dennis Robert Stöhr

Studiengang: Bachelorstudium Wirtschafts- und Sozial-
wissenschaften

Matrikelnummer: 0453244

Geburtsdatum: 29.08.1983

Adresse: Am Hundsturm 12/16, 1050 Wien

Telefon-Nr.: +43 676 4745320

E-Mail: h0453244@wu.ac.at

Wien, den 20.01.2011

Abstract

This seminar paper provides an introduction into Android

programming and can be divided into three parts.

The first part explains how to set up a development environment

for Android, create a first example project and run it in an

emulator. It also sheds a light on two basic tools (ADB and DDMS)

that assist the programmer in the development process.

The second part gives details on the Android system architecture

as well as the composition of a project. This includes the

components of an application, how it is set up by and lives with the

Android Runtime Environment as well as the project structure and

files.

In the third part the five components of an application are put into

one place in an exemplary way to illustrate their purpose

(Activities, Intents, Services, Content Providers, Broadcast

Receivers).

ii

Table of Contents

1 INTRODUCTION...1

2 SETTING UP THE DEVELOPMENT ENVIRONMENT..................................2
2.1 REQUIREMENTS...2

2.2 ANDROID SDK...2

2.3 ECLIPSE...4

2.4 ANDROID VIRTUAL DEVICES..6

3 FEATURES OF THE DEVELOPMENT ENVIRONMENT..............................8
3.1 CREATING A NEW ANDROID PROJECT BY EXAMPLE...8

3.2 RUNNING A ANDROID PROJECT IN AN AVD..9

3.3 ADB: ANDROID DEBUG BRIDGE...10

3.4 DDMS: DALVIK DEBUG MONITORING SERVER...12

4 BASICS OF ANDROID..14
4.1 BUILDING BLOCKS OF AN APPLICATION..14

4.1.1 Activities..14
4.1.2 Intents..14
4.1.3 Services..15
4.1.4 Content Providers..15
4.1.5 Broadcast Receivers..16

4.2 ANDROID SOFTWARE STACK..16

4.3 PROJECT SKELETON...18

4.4 ANDROIDMANIFEST.XML...18

4.5 RESOURCES..20
4.5.1 Drawable...20
4.5.2 Layout..20
4.5.3 Values...21

4.6 DIFFERENT SCREEN SIZES, INPUT INTERFACES AND LANGUAGES...22

4.7 R.JAVA...23

4.8 ACTIVITY LIFECYCLE..23

5 PROGRAMMING EXAMPLE..25

6 REFERENCES..31

iii

List of Figures
Figure 1: SDK Manager...2
Figure 2: Directory contents of the Android SDK..3
Figure 3: “Install” dialog with ADT Repository selected...5
Figure 4: “Preferences” dialog of the ADT plugin...6
Figure 5: “Create new AVD” dialog of the SDK Manager with exemplary parameters 7
Figure 6: “New Android Project” dialog with parameters for HelloAndroid.................8
Figure 7: Android Virtual Device “em23” running HelloAndroid...............................10
Figure 8: Output of adb logcat for the em23 AVD...11
Figure 9: Terminal of the em23 AVD with ps executed ..12
Figure 10: Dalvik Debug Monitor connected to the em23 AVD..................................13
Figure 11: An intent causes a Browser selection dialog [IntTut]..................................15
Figure 12: Android software stack [Samy, 2010]...17
Figure 13: Project skeleton of the HelloAndroid project...18
Figure 14: AndroidManifest.xml of the HelloAndroid project....................................19
Figure 15: main.xml of the HelloAndroid project..20
Figure 16: strings.xml of the HelloAndroid project...21
Figure 17: R.java of the HelloAndroid project...23
Figure 18: States and methods in the Activity Lifecycle [Gargenta, 2011]..................24
Figure 19: AndroidManifest.xml of the BrowserIntent example.................................26
Figure 20: UI layout of the BrowserIntent example as shown by the ADT plugin......26
Figure 21: res/layout/main.xml of the BrowserIntent example....................................27
Figure 22: BrowserIntent.java..28
Figure 23: BrowserIntent executed in an AVD...30

iv

List of Abbreviations
ADB Android Debug Bridge

ADT Android Development Tools

API Application Programming Interface

APK Android Package

AVD Android Virtual Device

BSD Berkeley Software Distribution

DDMS Dalvik Debug Monitor Server

EDGE Enhanced Data Rates for GSM Evolution

GPRS General Packet Radio Service

IDE Integrated Development Environment

JDK Java Development Kit

PID Process Identifier

SDK Software Development Kit

SMS Short Message Service

TCP Transmission Control Protocol

UI User Interface

UMTS Universal Mobile Telecommunications System

URI Uniform Resource Identifier

VM Virtual Machine

XML Extensible Markup Language

v

1. Introduction

1 Introduction

Android is an operating system for mobile devices. It was initially developed by

Android Inc., which was acquired by Google in July 2005.

Market share for Android has been growing steadily. In the third quarter of 2010

“Android accounted for 25.5 percent of worldwide smartphone sales, making it the No.

2 operating system (OS)” according to Gartner analysts [GartPress]. Market analyst

Canalys predicts that “Android will grow more than twice the rate of major competit-

ors in 2011” [CanaPress]. The result of this process is a broad and growing user base

that makes Android an attractive platform to build applications for.

From a technical perspective, “Android is an open source software stack that in-

cludes the operating system, middleware, and key mobile applications along with a set

of API libraries for writing mobile applications that can shape the look, feel, and func-

tion of mobile handsets” [Meier, 2010].

Android applications are programmed in the Java language and make use of Java

libraries which has been developed by Google's Android team. Therefore, at least basic

Java skills are a prerequisite to program for Android.

Besides this seminar paper, the Android developers website [Dev] is a good place to

start getting a general overview and also to find detailed information on all subjects re-

lated to Android, such as the architecture, framework design, the development environ-

ment, programming examples and many more topics.

While working on this seminar paper the following versions were used:

• Release number of the Android SDK: 8

• Installed Android API-Level: 9, revision 1

• Version of the ADT plugin: 8.0.1.v201012062107-82219

• Version of Eclipse: 1.3.1.20100916-1202

• Build id of Eclipse: 20100917-0705

1

2. Setting Up the Development Environment

2 Setting Up the Development Environment

2.1 Requirements

In order to start coding, the minimum software needed to be installed is Java and

the Android SDK. The following instructions are for Microsoft Windows.

The Java Development Kit (JDK) 5 or 6 is recommended, which can be obtained

from http://www.java.com/de/download/manual.jsp. The Android software develop-

ment kit (SDK) is available for Windows, Linux and Mac OS X. It can be obtained

from http://developer.android.com/sdk/.

2.2 Android SDK

End of 2010 the Android SDK is delivered via the ZIP-archive android-sdk_r08-

windows.zip and needs to be extracted to a directory, e.g. Z:\android-sdk-windows\.

Figure 1 shows the SDK Manager, which can be started via the shortcut SDK Man-

ager.exe (located in the root directory of the SDK). It must be started after extraction to

select, download and install the latest SDK resources and to update the SDK and its

components at a later date when desired. It is also used to create and configure AVDs

(Android Virtual Devices) which are explained in greater detail in chapter 2.4.

Based on whether a basic or full development environment is desired, from a range

of components can be selected in the “Available packages” tab. For example, at least

one “SDK Platform” is needed in order to compile applications and create an AVD to

2

Figure 1: SDK Manager

2. Setting Up the Development Environment

run them on it [DevInst]. This should be the platform version of Android one want to

develop for, maybe the latest one.

For the beginner it is recommended to set up a full environment, therefore selecting

“Android Repository”, “Third party Add-ons” and then “Install Selected” to install all

the packages. If no direct Internet access is available, a proxy can be configured in the

“Settings” tab.

Figure 2 shows the directory contents of the Android SDK, Release 8 (December

2010).

The directory platform-tools/ contains platform-dependent development tools like

ADB (Android Debug Bridge). Chapter 3.3 provides more information on the ADB

tool and it's usage.

The directory tools/ contains platform-independent development tools like the SDK

Manager, the emulator and the DDMS (Dalvik Debug Monitor Server). Chapter 3.4

provides more information on DDMS.

In samples/ there is sample code and applications available for specific platform

versions.

Different versions of the Android platform are located in platforms/. For example,

the sub-directory android-9 contains Android 2.3 Gingerbread. The number in the dir-

ectory name represents the API Level, in this case 9.

3

Figure 2: Directory contents of the Android SDK

2. Setting Up the Development Environment

See [DevInst] for more detailed information on the directory contents of the An-

droid SDK and also for recommendations regarding the choice of components to be in-

stalled.

2.3 Eclipse

Installation of the JDK 5+ and Android SDK is basically enough to perform devel-

opment. Yet a Java integrated development environment (IDE) can be very helpful be-

cause it aids the software development process. Features like syntax checking and

highlighting, auto-completion and integrated debugging are available to the developer.

As an IDE, Eclipse is very popular among Java developers for its rich set of features

and is directly supported for Android development via the Eclipse plug-in ADT (An-

droid Development Tools), which on the one hand integrates access to and control of

the SDK tools and features into Eclipse. On the other, it provides a New Project Wiz-

ard, a debug output pane, the DDMS as well as an Android code editor [DevADT]. Us-

ing Eclipse with ADT, creating and debugging applications is a lot easier and faster

than working with a standard editor and the command-line based SDK tools.

Eclipse can be obtained from http://www.eclipse.org/downloads/. Like the Android

SDK it comes as a ZIP-archive and needs to be extracted to a directory, e.g. Z:\eclipse\.

The installation procedure for the ADT plug-in is as follows [DevADT]:

• Start Eclipse and select “Help” → “Install New Software” from the menu

bar.

• Click on the “Add...” button on the top-right corner of the “Install” dialog.

Then the “Add Repository” dialog appears.

◦ For “Name” enter "ADT Plugin".

◦ For “Location” enter the following URL:

https://dl-ssl.google.com/android/eclipse/

◦ Click the “OK” button.

• You return to the “Install” dialog and can now select the newly created

“ADT Plugin” repository from the “Work with” drop-down list. Then select

the check-box next to “Developer Tools” as shown in Figure 3.

• Click on the “Next” button, then you can review the items to be installed.

• Click on the “Next” button again, then you must review the Apache and

BSD license terms.

4

2. Setting Up the Development Environment

• Finally click on the “Finish” button to initiate the download and installation

process.

• After the installation has finished you are asked to restart Eclipse.

After Eclipse has been restarted, what's left to do is to tell the ADT plugin the loca-

tion of the SDK. Select “Window” → “Preferences” from the menu bar. Then click on

“Android” on the left side of the “Preferences” dialog and type or browse the location

of the SDK next to the field “SDK Location”. Click on the “Apply” button and a list of

“SDK Targets” should appear against whose projects can be compiled and tested later

(see Figure 4). Click the “OK” button to close the “Preferences” dialog.

5

Figure 3: “Install” dialog with ADT Repository selected

2. Setting Up the Development Environment

Now Eclipse has full Android development support. Android projects can be cre-

ated, DDMS is available for debugging and managing devices (either virtual or physic-

al ones) and applications can be launched directly from inside Eclipse like Java pro-

jects.

As a next step, it is recommended to set up an AVD if you don't have a physical An-

droid device in order to be able to test your applications.

2.4 Android Virtual Devices

Development for Android doesn't necessarily require a physical Android device like

a (smart-)phone. The SDK incorporates an emulator toolkit for creation of AVDs

which can be used to easily run and test applications.

To set up a new AVD, start the SDK Manager and click on the “Virtual devices” tab

on the left. On the right you see a list of existing Android Virtual Devices. To create a

new one, click on the “New...” button. Fill in the required parameters and click on the

“Create AVD” button at the bottom of the “Create new AVD” dialog (see Figure 5).

6

Figure 4: “Preferences” dialog of the ADT plugin

2. Setting Up the Development Environment

The “Target” defines the Android platform version (e.g. 2.3 Gingerbread) the AVD

will run. Various display types with different resolutions can be selected via the “Skin”

field.

There are also many hardware device emulations available like SD cards or GPS.

Nevertheless in some cases it makes more sense to use a physical Android device, for

example for testing touch-screen functionality or acceleration.

Chapter 3.2 will illustrate how to start up and use an AVD.

7

Figure 5: “Create new AVD” dialog of the SDK Manager with exemplary parameters

3. Features of the Development Environment

3 Features of the Development Environment

3.1 Creating a New Android Project by Example

To create a new Android project within Eclipse, select “File” → “New” → “Other”

from the menu bar. Then click on “Android”, select “Android Project” and click

“Next”. The “New Android Project” dialog appears (see Figure 6).

“Build Target” specifies the Android platform version the application will be com-

piled against. This can be changed any time after the project was created.

8

Figure 6: “New Android Project” dialog with parameters for HelloAndroid

3. Features of the Development Environment

“Min SDK Version” is the minimum API Level the application will need to run. In

this case we entered “9” which means that the application will only run on Android 2.3

devices and not run on devices with Android Froyo or lower. This information is stored

in the AndroidManifest.xml (located in the project's main directory) as an attribute

called “android:minSdkVersion” of the element “<uses-sdk>”. More information on

the manifest file is provided in chapter 4.4.

More details on “Activities” will be given in chapter 4.1.

Click the “Finish” button and the project will be created.

3.2 Running a Android project in an AVD

Right-click on the newly created HelloAndroid project folder in the Package Ex-

plorer on the left side of Eclipse and select “Run As” → “1 Android Application”.

This will do all the following in succeeding order:

• Compile and package the project files into a .apk file (Android Package)

• Start an AVD via ADB

• Transfer the APK file to the virtual device via ADB

• Start the application on the virtual device

Figure 7 shows the AVD “em23” (which we created in chapter 2.4) running the Hel-

loAndroid application.

9

3. Features of the Development Environment

Note that we did not write one single line of code, but what we see is Android's

“Hello World” output. This is caused by the design specifications of an Android ap-

plication. Layouts are defined in XML files and a main.xml layout file defining a

standard layout is generated when creating a new project. Also strings are not hard-

coded in Android, but put in a file called strings.xml which is also auto-generated, con-

taining the above text “Hello World” plus the name of the activity by default.

More details on Layouts and Strings are given beginning with chapter 4.3.

3.3 ADB: Android Debug Bridge

As a client-server application, the task of ADB is to manage AVDs and physical An-

droid devices. It is located in the sub-directory platform-tools/ of the SDK.

When ADB is first started, it launches as a server daemon binding the local TCP

port 5037 and listens for commands. When ADB is started again, it acts as a client.

ADB is a command-line tool which you don't need when developing Android ap-

plications in Eclipse, because “the ADT plugin provides a transparent integration of

ADB into the Eclipse IDE. However, you can still use ADB directly as necessary [...]”

[DevADB].

The syntax for calling ADB is as follows:

10

Figure 7: Android Virtual Device “em23” running HelloAndroid

3. Features of the Development Environment

adb [-d|-e|-s <serialNumber>] <command>

• <command> specifies the ADB command. Examples are:

◦ devices prints a list of all attached physical/emulated devices.

◦ logcat prints log data to the screen.

◦ install <path-to-apk> transfers and installs an application.

◦ pull <remote> <local> copies a file from a device to to the PC.

◦ push <local> <remote> copies a file from the PC to a device.

◦ shell starts a remote shell in the device and connects to it.

• The -d option directs an ADB command to the only attached USB device.

• The -e option directs it to the only running emulator instance.

• The -s option directs it to the physical/emulated device with a specific seri-

al number.

 Figure 8 shows an example output of adb logcat when the em23 AVD is run-

ning.

Every log entry has a priority and a tag associated with it, e.g. D = Debug, I = Info,

W = Warning priority. The tag is the relevant system component, e.g. “dalvikvm”.

11

Figure 8: Output of adb logcat for the em23 AVD

3. Features of the Development Environment

Figure 9 shows a shell session created by the adb shell command on the em23

AVD with ps (listing all processes) executed.

HelloAndroid is running with PID (process ID) 414 under user “app_30”. It can be

seen from the list that each process has its own unique user. It is the Dalvik virtual ma-

chine causing this by sandboxing each application it executes. Details on the Dalvik

VM are provided in chapter 4.2.

3.4 DDMS: Dalvik Debug Monitoring Server

DDMS is a debugging tool which allows the developer to interrogate active pro-

cesses, watch and pause active threats, explore the file system of connected devices,

view logs generated by LogCat, simulate device states and activities (e.g. different

12

Figure 9: Terminal of the em23 AVD with ps executed

3. Features of the Development Environment

kinds of network speed and latency like GPRS, EDGE or UMTS, simulate phone calls

and SMS messages), and more. Generally speaking “it acts as a middleman to connect

the IDE to the applications running on the device.” [DevDDMS]

It is available in Eclipse via the ADT plugin and has an own Eclipse perspective

called “DDMS”. It can also be run from the command-line via the script ddms.bat

which is located in the sub-directory tools/ of the Android SDK.

Figure 10 shows the “Dalvik Debug Monitor” called via the ddms.bat script. Note

that the SDK's sub-directory platform-tools/ has to have been added to the system's

PATH variable beforehand, otherwise ddms.bat does not find ADB and DDMS doesn't

work.

Select “Device” from the menu bar to find other options like for example the “File

Explorer”, “Dump device/app/radio state” or “Screen capture”.

On the top-right side of the window there are tabs allowing you to control and mon-

itor the device and the applications running on it. In the “Sysinfo” tab for example you

can monitor performance-relevant data like “CPU load”, “Memory usage” and “Wake-

locks”.

13

Figure 10: Dalvik Debug Monitor connected to the em23 AVD

3. Features of the Development Environment

Inside Eclipse, the DDMS perspective provides the same functionality, the only dif-

ference is that the window is embedded in the Eclipse IDE.

4 Basics of Android

4.1 Building blocks of an application

Five fundamental objects are defined in the Android SDK that are the building

blocks of almost every Android application: Activities, Intents, Services, Content Pro-

viders and Broadcast Receivers.

4.1.1 Activities

“An activity is a single, focused thing that the user can do. Almost all activities in-

teract with the user, so the Activity class takes care of creating a window for you in

which you can place your UI […].” [DevAct]

Activities run through the activity lifecycle and have to take care of saving their

states. More on this can be found in chapter 4.8.

4.1.2 Intents

“An intent is an abstract description of an operation to be performed. […] Its most

significant use is in the launching of activities, where it can be thought of as the glue

between activities.” [DevInt]

An example would be that an application needs contact information and asks the

system for this via an intent. The system knows which applications provide such con-

tact information, because they registered themselves via an IntentFilter.

Another more illustrative example is an application that shows an URI to the user.

When the hyperlink is clicked or touched, the application issues an intent to the sys-

tem: “User wants to display URI: http://www.example.com”. The user may get a

prompt to select a browser if more than one has registered itself (see Figure 11).

14

4. Basics of Android

A very good introduction into the concept of Android intents is given by L. Vogel in

“Android Intents – Tutorial” [IntTut].

The example in chapter 5 also includes an intent to launch a browsing activity.

4.1.3 Services

Like on other systems, a service is a program that runs in the background without

direct user interaction [Burnette, 2010].

On Android, an idea would be to implement the base functionality of a music player

as a service. If the user switches between applications, the music would not stop play-

ing. Playback control would be implemented via one or more activities.

4.1.4 Content Providers

“Content providers store and retrieve data and make it accessible to all applications.

They're the only way to share data across applications; there's no common storage area

that all Android packages can access.” [DevCont]

Standard Android content providers are for example the audio and video collections

and personal contact information, which can be queried (if permissions to do so have

been acquired).

15

Figure 11: An intent causes a Browser selection dialog [IntTut]

4. Basics of Android

4.1.5 Broadcast Receivers

“Broadcast receivers enable applications to receive intents that are broadcast by the

system or by other applications, even when other components of the application are not

running.” [DevBro]

This attribute can be defined in the AndroidManifest.xml (see chapter 4.4) for the

components of an application.

4.2 Android Software Stack

On the lowest level of the Android architecture is the Linux Kernel 2.6, which

“provides the hardware abstraction layer for Android, allowing Android to be ported to

a wide variety of platforms in the future” [Burnette, 2010]. It is responsible for hard-

ware drivers, memory and process management, networking and other operating sys-

tem services. ADB allows to interact with the Linux system, e.g. via adb shell as

shown in chapter 3.3. Figure 12 provides a graphical representation of the layer model.

One layer above the Linux kernel are the core C/C++ libraries, which are compiled

for the specific hardware architecture used by the device Android is running on. For

example the OpenGL and the SGL is available for 3D-/2D-graphics, SQLite provides

database functionality, LibWebCore is a modern web browser engine (it powers the

Android browser and the embeddable web view) and various media libraries “support

playback of many popular audio and video formats, as well as status image files”

[DevWhat]. The core libraries do not stand by themselves, but are called by higher-

level programs.

Also on top of the kernel is the “Android Runtime” which is comprised of the

Dalvik virtual machine and the core Java libraries. Like for the Java VM, bytecodes

(the format is different from Java bytecodes) are generated from the sources and are

then executed by the Dalvik VM on a mobile device, isolated in a sandbox with its

own process ID and with an unique username. “Dalvik is optimized for low memory

and allows multiple VM instances to run at once and takes advantage of the underlying

operating system (Linux) for security and process isolation.” [Burnette, 2010]. Regard-

ing the Android core Java libraries, which are sitting next to the Dalvik VM, it should

be noted that they are different from Java SE (Standard Edition) or ME (Mobile Edi-

tion) libraries.

16

4. Basics of Android

The “Application Framework” layer, which sits on top of the Android Runtime, en-

ables the reuse and replacement of components. Those components are used by the

core applications, for example the browser, calendar or contact list. Developers have

full access to the APIs of the framework. For example “Content Providers” are objects

which encapsulate shared data, an “Activity Manager” controls the life cycle of applic-

ations (more on life cycles in chapter 4.8), a “Resource Manager” takes care of the re-

sources (images, sounds, textual data etc.) of an application and “Views” represents

widgets which has an appearance on the screen.

The highest layer is the “Application Layer”. End users will see and interact with

programs in this layer. Examples are pre-installed applications (like the browser or

contact list), “apps” which were downloaded from an Android store or applications de-

veloped by us which we pushed onto the device via ADB.

17

Figure 12: Android software stack [Samy, 2010]

4. Basics of Android

4.3 Project Skeleton

When creating a project like shown in chapter 3.1, the SDK resp. Eclipse generates

default project files automatically. Figure 13 shows this project skeleton.

The root directory holds the project's manifest file AndroidManifest.xml (see chapter

4.4). The default.properties file is used by the SDK's Ant build tool.

src/ contains the Java source code files.

gen/ contains only one file, R.java, by default. See chapter 4.7 for details.

res/ holds resources of the application (e.g. graphics, GUI layouts and values). See

chapter 4.5 for details.

assets/ can hold other static files that are packaged with the application.

4.4 AndroidManifest.xml

The manifest file is the foundation for every Android application. Inside that file the

contents of an application (activities, services, and so on – see chapter 4.1) are de-

clared.

The root is a <manifest> element. Underneath it, the following elements are

possible:

18

Figure 13: Project skeleton of the HelloAndroid project

4. Basics of Android

• <uses-permission> elements indicate the permissions the application

will need to run properly.

• <permission> elements declare permissions that activities or services

might require to use the application's data or logic.

• <instrumentation> elements indicate code that should be invoked on

key system events (e.g. starting up activities).

• <uses-library> elements to hook in optional Android components.

• <uses-sdk> element indicates for which version of Android the applica-

tion was built.

• <application> element specifies the application.

Figure 14 shows the manifest file for the HelloAndroid project created in chapter

3.1.

Attributes of the <manifest> element are the package and version name (human-

readable form) and version code (an integer) of the HelloAndroid application.

Attributes of the <application> element are the icon and application name.

Both will be shown in the application launcher of Android devices.

The children of the <application> element represent the ingredients of Hel-

loAndroid. There is one <activity> element with the name “Hello”. The <in-

tent-filter> element defines under which conditions this activity will be dis-

19

<?xml version="1.0" encoding="utf-8"?>

<manifest xmlns:android="http://schemas.android.com/apk/res/android"

 package="at.ac.wu.wise2010w.android.HelloAndroid"

 android:versionCode="1"

 android:versionName="1.0">

 <application android:icon="@drawable/icon"

 android:label="@string/app_name">

 <activity android:name=".Hello"

 android:label="@string/app_name">

 <intent-filter>

 <action android:name="android.intent.action.MAIN" />

 <category android:name="android.intent.category.LAUNCHER" />

 </intent-filter>

 </activity>

 </application>

 <uses-sdk android:minSdkVersion="9" />

</manifest>

Figure 14: AndroidManifest.xml of the HelloAndroid project

4. Basics of Android

played [Murphy, 2010]. In this case, the activity is started when the application is se-

lected from the application launcher.

As pointed out in 3.1 the <uses-sdk> element defines the minimum API Level

the application uses.

4.5 Resources

The res/ directory contains resources of different types associated with the applica-

tion. By default there are three types of directories:

• The drawable/ directories hold graphics of low, medium and high resolu-

tion.

• The layout/ directory holds layout information of user interfaces.

• The values/ directory holds strings, color codes and other values.

4.5.1 Drawable

There are three sub-directories for graphics resources, drawable-hdpi/ (high-resolu-

tion: 72x72 px and 240 dpi), drawable-ldpi/ (low-resolution: 36x36 px and 120 dpi)

and drawable-mdpi/ (medium-resolution: 48x48 px and 160 dpi) [AndroidPIT].

By default, each one of these directories contains a standard Android logo of the re-

spective dimension.

4.5.2 Layout

In layout/ a file called main.xml resides. It specifies the layout of the application.

Figure 15 shows the one of the HelloAndroid project.

20

<?xml version="1.0" encoding="utf-8"?>

<LinearLayout xmlns:android="http://schemas.android.com/apk/res/android"

 android:orientation="vertical"

 android:layout_width="fill_parent"

 android:layout_height="fill_parent"

 >

<TextView

 android:layout_width="fill_parent"

 android:layout_height="wrap_content"

 android:text="@string/hello"

 />

</LinearLayout>

Figure 15: main.xml of the HelloAndroid project

4. Basics of Android

By default, a LinearLayout with a TextView is created. The TextView ele-

ment represents a simple text label and its text is a reference to the string called “hello”

that can be found in strings.xml (see chapter 4.5.3 for details on values).

A layout is a container for one or more child objects. It defines how these children

are represented within its screen area. Other common layouts are FrameLayout,

RelativeLayout or TableLayout [Burnette, 2010].

The layout_width and layout_height attributes of LinearLayout and

TextView specify the size of the respective element. fill_parent means for ex-

ample to take the full width or height of the parent element within which the element

resides. wrap_content conversely means to take up only as much space as really

needed by the element.

The orientation attribute with the value vertical has the effect that new

components inside the element LinearView are added in vertical direction.

4.5.3 Values

Instead of hard-coding values, the Android framework calls for putting them into an

XML file which resides in the values/ directory. This eases portability to different lan-

guages, screen resolutions or the like because only value files have to be translated or

adapted.

In case of providing string values for an application, it is the file strings.xml, which

is also created by default. Figure 16 shows the file for the HelloAndroid project.

This is the place where the TextView element from chapter 4.5.2 gets its string value

“Hello World, Hello!” from (see the output in Figure 7 on page 10) by referring to

“@string/hello”.

21

<?xml version="1.0" encoding="utf-8"?>

<resources>

 <string name="hello">Hello World, Hello!</string>

 <string name="app_name">Hello, Android</string>

</resources>

Figure 16: strings.xml of the HelloAndroid project

4. Basics of Android

4.6 Different screen sizes, input interfaces and languages

Android devices come in many different shapes and sizes. Even though Android

tries to scale an applications user interface to fit the screen, it is not guaranteed that

this works perfectly in every case.

To make sure that an application is displayed as intended by the developer, Android

looks for certain directories that can host configuration files for specific device lay-

outs.

Valid directory name qualifiers regarding display information are for example

[DevScr]:

• small, normal, large, xlarge for screen dimensions

• port, land, square for screen orientation

• long, notlong for wider/taller screens

• ldpi, mdpi, hdpi, xhdpi, nodpi for screen pixel density

• 320x240, 640x480 for screen dimensions

According to these qualifiers, the name of the directory holding graphics for low-

density displays should then be: /res/drawable-ldpi/

Besides screen property qualifiers, there are qualifiers which relate to input inter-

faces [Burnette, 2010]:

• keysexposed, keyshidden, keyssoft for keyboard availability

• nokeys, qwerty, 12key for keyboard type

• navexposed, navhidden for navigation availability

• nonav, dpad, trackball, wheel for navigation type

• notouch, stylus, finger for touch screen type

Other qualifiers exist for languages and regions [DevLoc]:

• fr, en-rUS, fr-rFR, es-rES for the language and region (two-letter

language code followed by optional two-letter region code which is pre-

ceded by a lowercase “r”)

According to this, strings in French for example should be put into the following

file: /res/values-fr/strings.xml

22

4. Basics of Android

4.7 R.java

R.java is an automatically generated class file that holds references to the resources

of an application. It should not be modified manually. Figure 17 shows the R.java file

of HelloAndroid.

As can be seen, the class R has inner classes. Inside each of this classes are none,

one or more static integer constants that hold hexadecimal numbers as references to the

various data items.

The Android resource manager uses these references to load the real data, strings,

graphics and other resources that are compiled into the application package.

4.8 Activity Lifecycle

An Android activity runs through different states during its lifetime. Certain call-

back methods are predefined which enable the activity to get prepared for a state trans-

ition, for example to preserve its objects, save data or states, refreshing elements and

so forth. Figure 18 shows possible states and transition methods of an Android activity.

23

/* AUTO-GENERATED FILE. DO NOT MODIFY.

 *

 * This class was automatically generated by the

 * aapt tool from the resource data it found. It

 * should not be modified by hand.

 */

package at.ac.wu.wise2010w.android.HelloAndroid;

public final class R {

 public static final class attr {

 }

 public static final class drawable {

 public static final int icon=0x7f020000;

 }

 public static final class layout {

 public static final int main=0x7f030000;

 }

 public static final class string {

 public static final int app_name=0x7f040001;

 public static final int hello=0x7f040000;

 }

}

Figure 17: R.java of the HelloAndroid project

4. Basics of Android

Transitions between states happen for different reasons, one would be efficient

memory management: The operating system sends an application to the background (=

pausing the application) when another is getting focus (either by the system or the user

who switches between different applications) in order to free up memory. For this

transition, the activity's methods onPause() resp. onResume() (when returning

to the application) are called when available.

Another example would be that the user selects an application in the menu of the

Android device the first time since the device booted. The activity's onCreate()

and onStart() methods are then called and the application enters the state “Run-

ning”, that means it is the one and only application which is presenting it's user inter-

face and can be interacted with at the given time.

24

Figure 18: States and methods in the Activity Lifecycle [Gargenta, 2011]

4. Basics of Android

Running applications get the highest memory preference. Paused applications are

also guaranteed a certain amount of memory unless there is no memory available for

the running ones. Stopped applications could be destroyed at any point in time and get

the least preference on memory, the main reason for this being caching for faster re-

starts.

Good knowledge of the Activity Lifecycle and keeping a focus on states and trans-

itions when programming helps to improve performance and responsiveness, because

launching an empty activity requires enormous resources, namely 3 million times

longer than it takes the Dalvik VM to add a local variable [Mednieks, 2010].

5 Programming Example

The following example “BrowserIntent” is an application consisting of a single

activity that displays a text field, a “Go” button and a status label. When the user enters

an internet address (URI) into the text field and then touches the “Enter” key or the

“Go” button, a browser will start and navigate to the specified resource. In addition,

each time the activity runs through one of its life cycle methods, an entry is added to

the status label.

From a technical perspective, the example shows how an intent is used to start an

activity within another activity and illustrates the activity life cycle. It was partly taken

from [Vogel, 2011] and extended by the author.

Figure 19 shows the projects manifest file (AndroidManifest.xml). The application

has one activity, needs no permissions (these would be specified by the <uses-per-

missions> child-element of <manifest> as listed in chapter 4.4) and does not re-

quire permissions when used by other applications (specified by the <permis-

sions> child-element).

25

5. Programming Example

Figure 20 demonstrates a feature of the ADT plugin. It shows the activity's UI lay-

out as specified in the res/layout/main.xml layout file. Figure 21 shows the respective

XML-code.

26

<?xml version="1.0" encoding="utf-8"?>
<manifest xmlns:android="http://schemas.android.com/apk/res/android"
 android:versionCode="1"
 android:versionName="1.0"
 package="at.ac.wu.wise2010w.android.BrowserIntent">
 <application android:icon="@drawable/icon"
 android:label="@string/app_name">
 <activity android:name=".BrowserIntent"
 android:label="@string/app_name">
 <intent-filter>
 <action android:name="android.intent.action.MAIN" />
 <category android:name="android.intent.category.LAUNCHER" />
 </intent-filter>
 </activity>
 </application>
</manifest>

Figure 19: AndroidManifest.xml of the BrowserIntent example

Figure 20: UI layout of the BrowserIntent example as shown by the ADT plugin

5. Programming Example

A top LinearLayout includes another LinearLayout that hosts the Edit-

Text field and “Go” Button. A TextView is the second component of the top

LinearLayout that acts as a status label to which the information strings about

called life cycle methods will be appended.

The EditText, Button and TextView elements have IDs associated with them

so that they can be referenced inside the source code of the activity (BrowserIntent.-

java). These IDs are listed in the automatically generated R.java file.

Figure 22 shows the coding of the activity (BrowserIntent.java).

27

<?xml version="1.0" encoding="utf-8"?>

<LinearLayout xmlns:android="http://schemas.android.com/apk/res/android"
 android:orientation="vertical"
 android:layout_width="fill_parent"
 android:layout_height="fill_parent">

<LinearLayout xmlns:android="http://schemas.android.com/apk/res/android"
 android:orientation="horizontal"
 android:layout_width="fill_parent" android:layout_height="wrap_content">
 <EditText
 android:id="@+id/url_field"
 android:layout_width="wrap_content"
 android:layout_height="wrap_content"
 android:layout_weight="1.0"
 android:lines="1"
 android:inputType="textUri"
 android:imeOptions="actionGo"
 />
 <Button
 android:id="@+id/go_button"
 android:layout_width="wrap_content"
 android:layout_height="wrap_content"
 android:text="@string/go_button"
 />
</LinearLayout>

<TextView android:id="@+id/Status"
 android:layout_width="wrap_content"
 android:layout_height="wrap_content"
 android:text="App Lifecycle-Status">
</TextView>

</LinearLayout>
Figure 21: res/layout/main.xml of the BrowserIntent example

5. Programming Example

28

package at.ac.wu.wise2010w.android.BrowserIntent;

import android.app.Activity;
import android.content.Intent;
import android.net.Uri;
import android.os.Bundle;
import android.view.KeyEvent;
import android.view.View;
import android.view.View.OnClickListener;
import android.view.View.OnKeyListener;
import android.widget.Button;
import android.widget.EditText;
import android.widget.TextView;

public class BrowserIntent extends Activity {

 private EditText urlText;
 private Button goButton;
 private TextView status;

 public void onCreate(Bundle savedInstanceState) {
 super.onCreate(savedInstanceState);
 setContentView(R.layout.main);

 // Get a handle to all user interface elements
 urlText = (EditText) findViewById(R.id.url_field);
 goButton = (Button) findViewById(R.id.go_button);
 status = (TextView) findViewById(R.id.Status);

 // Activity life cycle info output
 status.setText("");
 status.append("\nonCreate() was called");

 // Setup event handlers
 goButton.setOnClickListener(new OnClickListener() {
 public void onClick(View view) {
 openBrowser();
 }
 });
 urlText.setOnKeyListener(new OnKeyListener() {
 public boolean onKey(View view, int keyCode, KeyEvent event) {
 if (keyCode == KeyEvent.KEYCODE_ENTER) {
 openBrowser();
 return true;
 }
 return false;
 }
 });
 }

 private void openBrowser() {
 Uri uri = Uri.parse(urlText.getText().toString());
 Intent intent = new Intent(Intent.ACTION_VIEW, uri);
 startActivity(intent);
 }

 // Demonstration of activity life cycle
 public void onPause() {

 super.onPause();
 status.append("\nonPause() was called");

 }

 public void onResume() {

 super.onResume();
 status.append("\nonResume() was called");

 }

 public void onSaveInstanceState() {

 super.onSaveInstanceState(null);
 status.append("\nonSaveInstanceState() was called");

 }

}

Figure 22: BrowserIntent.java

5. Programming Example

Because it is an activity, the BrowserIntent class extends the Activity class. Three

class-wide fields are declared: urlText, goButton and status.

When the activity is started, the onCreate() method at first sets up the user in-

terface via the method setContentView(). The parameter R.layout.main is a

reference to the layout file res/layout/main.xml (see R.java for the hexadecimal refer-

ence). This means all elements with their stated attributes are set up as specified in the

main.xml layout file. This method call is inserted by default.

Then the class-wide fields are initialized by creating handles to the instantiated UI

elements from res/layout/main.xml.

After that, the class-wide fields are initialized via a method findViewById()

with the respective references to the UI elements as parameters. Casting is necessary

for the variable assignments.

Next, the text content of the status label is reset and a message is appended, saying

that the onCreate() method was called. This way, the user gets informed about

activity life cycle method calls. This is also done inside the overwritten methods on-

Pause(), onResume() and onSaveInstanceState().

Then action listeners are added to the text input field and to the “Go” button via the

methods setOnKeyListener() resp. setOnClickListener(). The

onKey() resp. onClick() methods define the following: If the Enter key is

pressed within the text field or the button is clicked, the openBrowser() method

will be called.

In the openBrowser() method the value of the text field is parsed to the URI

format via the parse() method of the Uri class.

Next, a new intent is instantiated with the following two parameters: the action to

be performed (in this case “ACTION_VIEW” which means “to display”) and the data

to operate on as an URI (in this case “uri” for the variable of type Uri to which the

parsed input was saved).

Finally, the method startActivity() launches a new activity with the instanti-

ated intent as the information carrier. This means it carries the description of the activ-

ity to be started.

Figure 23 shows the graphical state of BrowserIntent after the following procedure:

• An internet address was entered.

29

5. Programming Example

• The “Go” button was clicked.

• A browser was launched which displayed the specified resource.

• Returning to the application via the AVDs “Back” button.

30

Figure 23: BrowserIntent executed in an AVD

6. References

6 References

[GartPress] N/A: Gartner Says Worldwide Mobile Phone Sales Grew 35 Percent in
Third Quarter 2010; Smartphone Sales Increased 96 Percent. Gartner website, 2011.
http://www.gartner.com/it/page.jsp?id=1466313, as of January 16th, 2011.
[CanaPress] N/A: Canalys predicts Android will grow more than twice the rate of
major competitors in 2011. Canalys website, 2011.
http://www.canalys.com/pr/2011/r2011011.html, as of January 16th, 2011.
[Meier, 2010] R. Meier: Professional Android 2 Application Development. Wiley
Publishing, Inc., 2010. ISBN: 9780470565520
[Dev] N/A: Android developers. Android developers website, 2011.
http://developer.android.com/, as of January 16th, 2011.
[DevInst] N/A: Installing the SDK. Android developers, 2011.
http://developer.android.com/sdk/installing.html, as of January 6th, 2011.
[DevADT] N/A: Developing In Eclipse, with ADT. Android developers, 2011.
http://developer.android.com/sdk/eclipse-adt.html, as of January 6th, 2011.
[DevADB] N/A: Android Debug Bridge. Android developers, 2011.
http://developer.android.com/guide/developing/tools/adb.html, as of January 7th, 2011.
[DevDDMS] N/A: Using the Dalvik Debug Monitor. Android developers, 2011.
http://developer.android.com/guide/developing/tools/ddms.html, as of January 7th,
2011.
[DevAct] N/A: Reference (public class Activity). Android developers, 2011.
http://developer.android.com/reference/android/app/Activity.html, as of January 9th,
2011.
[DevInt] N/A: Reference (public class Intent). Android developers, 2011.
http://developer.android.com/reference/android/content/Intent.html, as of January 9th,
2011.
[IntTut] L. Vogel: Android Intents - Tutorial . vogella, 2011.
http://www.vogella.de/articles/AndroidIntent/article.html, as of January 9th, 2011.
[Burnette, 2010] E. Burnette: Hello, Android. Pragmatic Programmers, LLC, 2010.
ISBN: 9781934356562
[DevCont] N/A: Content Providers. Android developers, 2011.
http://developer.android.com/guide/topics/providers/content-providers.html, as of
January 9th, 2011.
[DevBro] N/A: The AndroidManifest.xml File (<receiver>). Android developers,
2011. http://developer.android.com/guide/topics/manifest/receiver-element.html, as of
January 9th, 2011.
[DevWhat] N/A: What is Android?. Android developers, 2011.
http://developer.android.com/guide/basics/what-is-android.html, as of January 7th,
2011.
[Samy, 2010] M. Samy: Introduction to Android App Development. Mobile Orchard,
2010. http://mobileorchard.com/introduction-to-android-development/, as of January
3rd, 2011.
[Murphy, 2010] M. Murphy: Beginning Android 2. Apress, 2010. ISBN:
9781430226291

31

6. References

[AndroidPIT] N/A: Android Anfänger Workshop. AndroitPIT, 2011.
http://www.androidpit.de/de/android/wiki/view/Android_Anf
%C3%A4nger_Workshop, as of January 7th, 2011.
[DevScr] N/A: Supporting Multiple Screens. Android developers, 2011.
http://developer.android.com/guide/practices/screens_support.html, as of January 8th,
2011.
[DevLoc] N/A: Localization. Android developers, 2011.
http://developer.android.com/guide/topics/resources/localization.html, as of January
16th, 2011.
[Gargenta, 2011] M. Gargenta: Learning Android. O'Reilly Media, Inc., 2011.
http://ofps3.vz.oreilly.com/static/titles/9781449390501/images/04-
ActivityLifecycle.png, as of December 29th, 2010.
[Mednieks, 2010] Z. Mednieks: Dissecting Google's Advice on Designing for
Performance. O'Reilly Media, Inc., 2010. http://answers.oreilly.com/topic/1122-
dissecting-googles-advice-on-designing-for-performance/, as of January 2nd, 2011.
[Vogel, 2011] L. Vogel: Android Tutorials. vogella, 2011.
http://www.vogella.de/android.html, as of January 8th, 2011.

32

Erklärung

Hiermit erkläre ich, dass ich die vorliegende Arbeit selbstständig und ohne Benutzung anderer als

der angegebenen Hilfsmittel angefertigt habe. Alle Stellen, die wörtlich oder sinngemäß aus veröf-

fentlichten und nicht veröffentlichten Schriften entnommen wurden, sind als solche kenntlich

gemacht. Die Arbeit ist in gleicher oder ähnlicher Form oder auszugsweise im Rahmen einer ander-

en Prüfung noch nicht vorgelegt worden.

Wien, den 20.01.2011

Dennis Robert Stöhr

