
Scripting the Linux D-Bus

with ooRexx

Is Projektseminar SS 2011

Vienna University of Economics and Business Administration

Advisor: Prof. Mag. Dr. Rony G. Flatscher

Author: BSc. Sebastian Margiol

Erklärung

Hiermit erkläre ich, dass ich die vorliegende Arbeit selbstständig und ohne Be-

nutzung anderer als der angegebenen Hilfsmittel angefertigt habe. Alle Stellen,

die wörtlich oder sinngemäß aus veröffentlichten und nicht veröffentlichten

Schriften entnommen wurden, sind als solche kenntlich gemacht. Die Arbeit ist

in gleicher oder ähnlicher Form oder auszugsweise im Rahmen einer anderen

Prüfung noch nicht vorgelegt worden.

Sebastian Margiol

Wien, am 21. Juni 2011

Page 1

Table of Contents

1 Introducing the D-Bus..5

1.1 History...5

1.2 Concept...6

1.2.1 Message Bus..8

1.2.2 Object Types...8

1.2.3 Message Types...9

1.2.4 Object Paths..9

1.2.5 Interfaces..9

1.2.6 Bus Names..10

1.2.7 Member Names...10

1.3 Spreading..10

1.4 Bindings..10

1.4.1 Java Binding...11

1.4.2 Python Binding..12

2 Investigating the Dbus...13

2.1 D-Feet...13

2.2 qdbusviewer..14

2.3 DbusViewer...15

2.4 Bustle..16

2.5 Common Interfaces...17

3 Implementation..19

3.1 Setting up the Environment..19

3.2 Connection to the D-Bus...20

3.3 Get Connection to a Remote Object...21

3.4 Controlling a Media Player...21

3.5 Controlling a Text Editor...26

3.6 Request a Bus Name..30

3.7 Controlling Skype..31

3.8 Troubleshooting..37

4 Roundup and Outlook..39

Page 2

5 Bibliography...40

6 Appendix..42

Table of Figures

Figure 1: D-Bus overview diagram...7

Figure 2: D-Feet DBus debugger...14

Figure 3: qdbusviewer DBus debugger (qt4-dev-tools).....................................15

Figure 4: DbusViewer (java-dbus package)...16

Figure 5: Bustle D-Bus profiler output..17

Figure 6: Setting the Classpath ...20

Figure 7: Getting connected to the D-Bus..20

Figure 8: D-Feet information about vlc program..22

Figure 9: Creation and compilation of necessary Java Files (vlc1.rxj)..............22

Figure 10: Invoke actions of a mediaplayer program (vlc2.rxj)..........................23

Figure 11: Convert return value from mediaplayer..24

Figure 12: Handle a Dbus-Map (vlc3.rxj)...24

Figure 13: Connection to a signal (vlc_signal.rxj)..25

Figure 14: Create and compile Java Files for a multi instance application.......26

Figure 15: Invoke methods on a texteditor (kate2.rxj)..27

Figure 16: Parameters for klipper program..28

Figure 17: Interaction between kate and klipper (kate3.rxj)...............................29

Figure 18: Change content of texteditor document (kate4.rxj)...........................30

Figure 19: Export objects via D-Bus (exportObject.rxj)......................................31

Page 3

Figure 20: Skype configuration file (/etc/dbus-1/system.d/skype.conf).............32

Figure 21: Skype access confirmation dialog..33

Figure 22: Accessing the Skype API (skype1.rxj)..34

Figure 23: Effect a test call with Skype (skype2.rxj)..34

Figure 24: Create a chat with Skype (skype3.rxj)..35

Figure 25: Skype commands..35

Figure 26: Send birthday wishes automatically (skype_birthday.rxj).................37

Figure 27: Rexxs excellent String capabilities...37

Figure 28: Appendix: Test.py...42

Figure 29: Appendix: Test.java...42

Figure 30: Appendix: Struct3.java..43

Figure 31: Appendix: Document.java...43

Figure 32: Sample script D-Bus control gui (app.rxj)...48

Page 4

Abstract

This paper gives a short introduction to the D-Bus on Linux operating systems.

D-Bus offers among other things an InterProcessCommunication (IPC) mecha-

nism. The programming language ooRexx uses the Bean Scripting Framework

BSF4ooRexx and the Java binding to access the D-Bus. A binding offers sup-

port for the given programming language, enabling communication with any

connected program on the D-Bus, no matter in what language it was imple-

mented. The sample scripts in the implementation chapter are demonstrating

the necessary steps to interact with applications like VLC MediaPlayer, Kate,

Klipper and Skype over the D-Bus. That means invoke methods, process return

values and listening for signals. D-Bus offers an interesting possibility for an

ooRexx programmer to orchestrate applications in order to realize automation

of work-flow.

Abstrakt

Diese Arbeit liefert eine kurze Einführung in das D-Bus Konzept unter Linux

Betriebssystemen. D-Bus bietet unter anderem die Funktionalität eines Inter-

ProcessCommunication (IPC) Mechanismus. In der Programmiersprache ooR-

exx wird über das Bean Scripting Framework BSF4ooRexx die Java Anbindung

des D-Bus verwendet. Eine Anbindung hat zum Ziel die D-Bus Funktionalität

für die jeweilige Programmiersprache zur Verfügung zu stellen, wodurch Pro-

gramme mit anderen verbundenen Programm interagieren können, egal in wel-

cher Programmiersprache sie implementiert wurden. Die Applikationen VLC

MediaPlayer, Kate, Klipper und Skype werden in den Beispielskripten einge-

setzt um die notwendige Schritte zu demonstrieren um über den D-Bus zu in-

teragieren. Das bedeutet bestimmte Funktionen eines Programms aufzurufen,

Rückgabewerte zu verarbeiten und auf Signale zu warten. Einem ooRexx Pro-

grammierer wird mit D-Bus eine interessante Möglichkeit geboten, um über

eine geschickte Orchestrierung von Anwendungen, Arbeitsabläufe zu automati-

sieren.

Page 5

1 Introducing the D-Bus

The goal of the D-Bus is to provide an unified mechanism to exchange mes-

sages across the bus among connected applications, no matter what program

language they are implemented in. Via a D-Bus connection, every application

can provide services which can get accessed from another application. Trans-

ported object types get marshalled from their native implementation to the bus

specification, routed through the bus to a specified receiver and get demar-

shalled again. This ensures interoperability. The marshalling is done by the

language binding to the D-Bus. The D-Bus got its name from the central server

application that operates as a daemon, called bus, which handles the commu-

nication. [Tro11]

1.1 History

The list of mentioned predecessor is by far not complete. Arexx was chosen be-

cause its affinity to ooRexx1, although it does not really represent an IPC sys-

tem and DCOP was chosen because KDE is largely utilized on desktop com-

puters and a competition of D-Bus and DCOP would destroy the idea of one

unified IPC mechanism for all Linux systems (or for all operating systems at

all).

Arexx

On the Amiga Platform, the programming language Arexx emerged as a linking

knot for different applications. Arexx was used for operations like multitasking

and inter process communication. The latter was realized through static named

message ports (so called RexxPorts), over which applications can send and re-

ceive messages. During the initialization of an application, a message port is

opened and the application waits for incoming messages. When a message ar-

rives the port, the operating systems notifies the receiver, which processes the

message and sends back a response to the Arexx program. The Arexx program

itself can forward the message to other programs in order to instruct them do

proceed with results. [Deb02] So Arexx represents an mechanism for sys-

1 And because of my sympathy for the Amiga platform.

Page 6

tem-wide interprocess communication, which connects applications and or-

chestrate their interplay, given they offer RexxPorts.

DCOP

The Desktop COmmunication Protocol (DCOP) was developed to link all KDE2

applications together. The DCOP server dispatches messages to connected

applications. This message could either be a 'send and forget' message (non-

blocking), or a 'call' which waits for answers. Signals are supported as well.

Transported messages get serialized and retranslated. [Kde07] Since Version

4, KDE dropped DCOP in favor of D-Bus. This is a very welcome development

as a competitor of D-Bus disappears.

On the GNOME3 desktop environment a CORBA-like component model han-

dled IPC mechanisms but was also replaced by D-Bus. [Fre11c]

1.2 Concept

D-Bus launches a central server which keeps track of all connected applica-

tions and handles the message routing among them. Connections can be es-

tablished to the session bus and to the system bus. The connection is effected

through a socket which allows bidirectional message exchange. Each Socket

has a unique address. Instances of applications can be addressed with an ob-

ject path, each object announce its services through interfaces. Applications

are communicating over the D-Bus through messages and signals.

D-Bus is a low-latency system for interprocess communication, as it avoids

round trips and allows asynchronous operations4. It has a low overhead as it

uses a binary protocol, and it is easy to deploy as messages are exchanged

rather than byte streams. [Fre11b] Many bindings for programming languages

are provided.

The main feature provided through the protocol is the D-Bus message bus,

which handles connections from applications and exchanges messages among

2 http://www.kde.org/
3 Http://www.gnome.org/
4 If a call is effected synchronous, any other incoming message will get queued. This could lead to time

inefficiency.

Page 7

them. The D-Bus is used for notifications of system changes5 and desktop ap-

plication interoperability6.

Figure 1 represents an interaction of two applications via the D-Bus.

The Bus Daemon7 Process is started in an early stage of the system's init

process. An application connects to the D-Bus through a socket, installing a

bidirectional message stream through which messages can be forwarded. Ev-

ery application demanding a connection to the D-Bus is registered within the

bus and can be identified with a unique number or name.

An important condition for a successful interaction of applications is the pro-

gramming language Independence. Therefore help of a translation mechanism

is needed. This can be achieved by using a binding which translates the ob-

jects of an application into a (neutral) D-Bus representation 8. This mechanism

5 When an usb device is attached, a signal is broadcasted through the bus. All applications that might
be interested in such an event are listening for that signal.

6 When a VOIP telephone call arrives, the mediaplayer could get paused and restartet after the call is
finished or refused.

7 For further information look at http://dbus.freedesktop.org/doc/dbus-daemon.1.html
8 Examples for D-Bus object type representations can be seen in chapter 1.2.2

Figure 1: D-Bus overview diagram. Source: http://dbus.freedesktop.org/doc/diagram.png

Page 8

is called marshalling. When an application written in Java wants to exchange

information with another application, the information is marshalled through its

binding and forwarded to the D-Bus daemon9. The daemon checks what kind of

message the application sends. If it is a signal, it is broadcasted over the D-

Bus and every application, registered for this very signal gets informed. If the

message is an information for a specific application, the daemon looks up its

registry whether the desired bus address is registered and forwards the mes-

sage to it. On this address the target object is identified by its path name and

the forwarded message gets marshalled again to the application's native repre-

sentation. The next sub-chapters are covering the mentioned terms.

1.2.1 Message Bus

The message bus provides features like single-owner bus names, on-demand

startup of services, and security policies. [Fre11b]

The message bus is divided into a system bus and a session bus. The system

bus routes messages from the system to user sessions and/or requests input

from them. A system event, like the network status is broadcasted via the sys-

tem bus. As there are restrictions about what services an application may offer

on this bus, the services on this bus are likely be offered by a system known

application. [Tro11]

On the session bus, desktop environments are implemented. [Fre11b] Installed

software that is not part of the operating system usually connects to the session

bus.

1.2.2 Object Types

Basic object types are supported by the D-Bus (Byte, Boolean, different types

of Integers, Doubles and Strings) as well as four container types, namely

Struct, Array, Variant and Dict_entry. D-Bus provides its own marshalling,

[Fre11a] the types are not identified by tags in their marshalled data, but with a

type code. This type code is an ASCII character representation of the value

type. For example a single 32-bit Integer is denoted as 'i', a string as 's' and a

9 Messages can also be exchanged on low-level, binding are not absolutely necessary for that purpose.

Page 9

boolean as 'b'. Structs are identified by '()', for example a Struct with a String

and an Integer is processed as (si). [Fre11b]

1.2.3 Message Types

D-Bus supports four message types, METHOD_CALL, METHOD_RETURN,

ERROR and SIGNAL. METHOD_CALL invokes operations on remote objects,

which replies with either METHOD_RETURN or ERROR. [Fre11b]

SIGNAL messages do not expect a reply, they are used for information distribu-

tion. Signals are single, unidirectional messages without any specified receiver.

Their information is broadcasted on the Bus. Client applications which register

for a particular signal, get informed as soon as it is emitted. It does not matter

how many clients receive a copy of the signal. [Fre11b] The Vlc media player

for example broadcasts signals about about status changes (such as pause) or

music track changes.

1.2.4 Object Paths

The object path is the name of an objects instance (communications endpoint).

It is called path because it looks exactly like a path in a file system hierarchy. If

an application wants to expose more objects, they are distinguished by their

path. The application vlc for example offers /Player and /TrackList, each having

their own interface.

A valid object path must follow these constraints: begin with '/' and contain [A-Z]

[a-z][0-9]_ characters. Empty values and multiple '/' are not allowed. [Fre11b]

1.2.5 Interfaces

All methods that are made available through the D-Bus have to be specified in

interfaces. Interfaces are sets of declarations, like a dictionary which informs

about what methods are provided and how their signature looks.

The name of an interface has to be separated by a '.', but must not begin with it

and each separated element must contain the characters [A-Z][a-z][0-9]_. For

example 'org.mpris.mediaplayer2'. [Fre11b]

Page 10

1.2.6 Bus Names

Bus names are the names of connections. Applications can either be called by

their unique name representation (for example :35-731) or with a name (for ex-

ample org.kde.KTextEditor). A program can request any well known name to be

identifiable easily, if the chosen name is not already registered with an other

program. If an application allows multiple instances and gets nonetheless be

called with a well known name, a process number is added to the name to dis-

tinguish (for example org.kde.kate-1421).

1.2.7 Member Names

Within an interface, all methods and signals are exposed with a name. This

names are also called members of the interface. D-Bus does not support

method overloading, thus cannot distinguish methods on the basis of their ob-

ject types. Therefore each method and signal must have a unique name.

[Fre11b]

1.3 Spreading

The D-Bus system is part of any actual Gnome and KDE Desktop, so it is al -

ready available for many Linux users, and it is easily portable to any Linux dis-

tribution. There are efforts to port it to the Windows Platform, as well. [Fre11c]

A free standard that is used within many systems is very attractive for software

developers as they can easily develop compliant applications. The more pro-

grams connected to the D-Bus, the more interesting it could be to connect an

own application. This network effect could D-Bus help to have a promising fu -

ture.

1.4 Bindings

Generally spoken, a binding offers access to an underlying architecture, in an

easier and more comprehensive way. The goal of a D-Bus binding is to map

the D-Bus API to the a personally preferred programming language as naturally

as possible. [Fre11a]

Page 11

The low-level implementation of the D-Bus system serves the basis for bindings

implementations. The only dependency for the low-level libdbus reference im-

plementation is an XML parser (libxml or expat). The libdbus implementation is

designed especially for binding authors and represent a reference for reimple-

mentation.10 For programmers of application using the D-Bus, it is recommend-

ed to use a higher level language binding instead of a low-level access.

[Fre11b]

There are also bindings available that were not built on top of the libdbus refer-

ence implementation, thus not representing a wrapper around the low-level

API, but a reimplementation, for example the C#, Java and Ruby binding.

[Fre11b]

There are plenty of bindings available for different programming languages, for

a complete list look at http://www.freedesktop.org/wiki/Software/DBusBindings.

These Bindings do not only differ in their program language vocabulary, but

also in their ease of use, especially in their dependencies on libraries and the

amount of necessary code needed to interact through the D-Bus.

In spite of the lack of a direct D-Bus-Binding for ooRexx11, the connection to the

Bus with ooRexx can be achieved through an indirect way via BSF4ooRexx and

the Java binding respectively.

1.4.1 Java Binding

Java users have the choice between different versions of D-Bus access. All

versions since 2.0 are complete native reimplementations which do not wrap

the libdbus reference implementation like 1.x versions do. [Fre11a] The Java

approach to the D-Bus is a little exhausting as a lot of Java classes have to be

created in order to achieve connection. If a method on a remote object is to be

called, a Java Interface has to be implemented as well as classes for each pa-

rameter or return value, if they are non standard Java objects. [Joh11a]

10 Information about the low-level D-Bus C API can be found at
http://dbus.freedesktop.org/doc/api/html/.

11 What is very sad, considering the role Arexx had once.

http://dbus.freedesktop.org/doc/api/html/
http://www.freedesktop.org/wiki/Software/DBusBindings

Page 12

This binding will be seen in action in the implementation chapter with ooRexx

examples.12

1.4.2 Python Binding

In this paper this binding will not be used. The reason why python-dbus is men-

tioned is that there are many bindings available and some of them might be

easier of use than others, even if a programmer is not that familiar with the lan-

guage.

The D-Bus is statically typed, that means that the argument types of method in-

vocations must exactly match the signature of the call. Arguments of incorrect

types will be ignored and thus the method call will not be effected. The intro -

spection mechanism of D-Bus offers the possibility to identify the correct argu-

ment type. The python binding uses this mechanism in order to convert native

Python types automatically13.

What this means in terms of the easiness to use and the necessary amount of

Lines of Code is demonstrated in the Appendix.

12 As the application 'CreateInterface' will be used instead of creating every class by class, it might be
useful to read this document for better understanding.
http://dbus.freedesktop.org/doc/dbus-java/dbus-java.pdf

13 For a full list of supported types refer to basic types:
http://dbus.freedesktop.org/doc/dbus-python/doc/tutorial.html

http://dbus.freedesktop.org/doc/dbus-python/doc/tutorial.html
http://dbus.freedesktop.org/doc/dbus-java/dbus-java.pdf

Page 13

2 Investigating the Dbus

As mentioned in the previous chapters, every application uses its own, unique

bus name and gets identified at this address with its object path. Communica-

tion through the bus can be monitored issuing the command dbusmonitor in a

shell. Every single message is listed with information about the sender and the

receiver. Signals are listed with their sender only, as they do not have specific

receivers. As every single message or signal from every application is listed,

this tool is not very helpful to inspect applications due to the amount of informa-

tion.14

There are excellent applications for investigation purpose, listening all connect-

ed programs within a functional and comprehensive graphical user interface,

for example the D-Bus debuggers d-feet or qdbusviewer.

If a program that is expected to provide D-Bus support is not listed, you might

check if its D-Bus connectivity is activated by default15 or it has to be activated

manually. If there is no such option, it is unlikely that the program offers D-Bus

support.

2.1 D-Feet

The program D-Feet16 is available in the standard repository of many Debian

based systems. Is written in python and therefore uses the dbus-python bind-

ing.

On the left side of the panel, all connected applications are listed, on selecting

one of them, additional information about provided objects (object paths), the

interface names as well as all methods and signals declared through it are dis-

played.

14 Filters can be used to monitor specified applications, but that premises that you already know some-
thing about this application.

15 For example VLC offers plenty of possibilities to control the mediaplayer, but none of them by default.
16 http://live.gnome.org/DFeet/

Page 14

On the left side of the panel, all connected applications are listed, on selecting

one of them, additional information about the provided objects (object paths),

the interface names as well as all methods and signals declared with it are dis-

played.

A very handy feature is to hide private Bus-addresses. As it is not possible to

effect a public connection to them, the list is much clearer arranged without

them being listed. All methods of the interfaces are listed with information about

necessary parameters and which object type the parameters are of. The

method endOfLine (see figure) needs an integer value for the line, and returns

a Struct (data container) with two integers. It is very easy and useful to check

the signature of methods with this program. Method calls can be tested right

within this program. But the parameters are coded in python, so a successful

method invocation in D-Feet, might need another syntax in a different program-

ming language.

2.2 qdbusviewer

Another very nice application in this area is called qdbusviewer 17 which is

packed in the qt4-dev-tools. The structure is quite similar to D-Feet's, on the

left side all connected applications are listed, also the private ones, it is not

possible to hide them. They are identifiable as they are listed with a bus num-

17 http://doc.qt.nokia.com/4.5/qdbusviewer.html

Figure 2: D-Feet DBus debugger

Page 15

ber and not with a name. A misleaded click could freeze the application for a

few seconds as it attempts to connect.

There is a very useful feature which is not available in D-feet. It is possible to

connect to signals of an interface. Figure 3 demonstrate a signal connection to

the signal ActiveChanged of the interface org.freedesktop.ScreenSaver. When-

ever the screensaver starts or stops, its activechanged signal is sent through

the dbus and applications that have claimed an interest on this signal get in-

formed.

If a method is called, a pop-up dialog supplies information about the needed

parameters and their object type, but there is no information about the object

type and the structure of return values from an application.

2.3 DbusViewer

Another D-Bus debugger, shipped with the java-dbus package is called

DbusViewer and can be activated via the command line. This tool inspects ev-

ery connection at startup, even the private ones, which then rejects the connec-

tion attempt. Therefore it takes a long time until DbusViewer is ready for usage.

Figure 3: qdbusviewer DBus debugger (qt4-dev-tools)

Page 16

Figure 4 shows the inspection information of an application called kate. All nec-

essary classes for the usage via dbus-java are created via the introspection

data of the interface. For patient users,18 this might be useful, because desired

Java classes can be extracted among all available classes. If only a specific

call to a single method has to be effected, and the parameters or the return val -

ue are standard object types, only the interface has to be implemented and

within that, only the desired method has to be declared. But as this topic goes

beyond the investigation of the D-Bus, it will be covered in the implementation

chapter.

2.4 Bustle

Bustle19 is a D-Bus profiler witch draws up sequence diagrams of the message

exchange through the bus.

18 Referring to the startup time.
19 http://willthompson.co.uk/bustle/

Figure 4: DbusViewer (java-dbus package)

Page 17

All exchanged messages and signals are listed with a time stamp of their invo-

cation moment. This allows inspection on how active an application is on the D-

Bus and how long it takes for messages to be sent and received. In this exam-

ple a media player called vlc emits signals about its statuschange and

trackchange. With the help of this profiler, information distribution bottlenecks

can be identified and applications can be audited whether they emit signals or

method calls which might be useless, thereby producing overhead.

2.5 Common Interfaces

It is not very handy to interact with similar applications doing common tasks, if

they all have different interfaces. A generic interface for such applications is

therefore very useful.

The Media Player Remote Interfacing Specification (MPRIS)20 offers a standard

for media players to execute standard playback functions (play, pause, stop,

next, previous), media player state control as well as tracklist functions. Com-

pliant players are Audacious, VLC, BMPx, QMMP, Dragon Player21, Rhytmbox,

Banshee and Amarok for example. This standard is available in the specifica-

20 http://www.mpris.org
21 http://incise.org/mpris-remote.html

Figure 5: Bustle D-Bus profiler output

Page 18

tion 2.1 at the moment, but this version is not supported by all listed mediaplay-

ers above.

If a media player wants to be compliant it has to request a unique bus name

beginning with org.mpris.MediaPlayer2, the object path should be named

/org/mpris/MediaPlayer2 and the interfaces org.mpris.MediaPlayer2 and org.m-

pris.MediaPlayer2.Player. Connected clients (to signals) get informed about

status changes of the media player via the org.freedesktop.DBus.Proper-

ties.PropertiesChanged signal.

A common interface for mediaplayers is useful as audio hardware keys could

be mapped to D-Bus calls, and therefore reach any compliant mediaplayer.

Some operating systems provide a widget which could control basic playback

options for any mpris compliant mediaplayer. Thereby mediaplayers can be

controlled from a central point. And it is useful for a programmer as well, as

there is nearly no inspection necessary, except the specification of the used

MPRIS interface.

For a summary and description of all available methods, properties and signals

of the MPRIS interface specification 2.1, lookup the API at (http://www.m-

pris.org/2.1/spec/) or use a D-Bus debugger and inspect your favorite medi-

aplayer application on the bus. In the chapter 'implementation' of this paper, a

connection to the vlc media player get established, which takes use of this

common interface.22 there are applications (Banshee for example) which are

implementing their own interface, providing additional functions in addition to

the MPRIS interface, but be nonetheless compliant to this standard.

22 Vlc media player in version 1.1.9. implements the mpris standard 1.0. Information about the version
1.0 can be retrieved at (http://www.mpris.org/1.0/spec).

Page 19

3 Implementation

In this chapter, the procedure for obtaining a connection to the D-Bus, invoca-

tion of methods, handling return values and exporting objects to the bus is ex-

plained with the help of a few examples. The goal of this chapter is to provide

the essential knowledge for interaction with applications.

3.1 Setting up the Environment

If you do not already use a Linux operating system, you might take a look at the

ooRexx homepage,23 in the download section you will find information about

releases, where supported operating systems are listed. If you do not know

what distribution to choose, you might look up additional information about the

Linux flavors on http://distrowatch.com/ and on the distributions homepage re-

spectively.

Java is probably already installed, this can be tested by issuing java -version

on the command line. If it is not installed, then make up for it through the distri -

butions package manager.

Next, Open Object Rexx24 has to be installed, as mentioned above you can ob-

tain the package on the homepage. Then you need BSF4ooRexx,25 this soft-

ware allows ooRexx to use Java classes. With the help of BSF4ooRexx the

java-dbus binding will be used to connect to the D-Bus. Due to the fact that the

installation procedure uses ooRexx and tests the invocation of Java, you will

get informed, should the installation of any dependency fail somehow. Next

dbus-java has to be installed, either by searching it in your package manager

(version 2.8 / Ubuntu 11.04) or download it from http://gitweb.freedesktop.org/?

p=dbus/dbus-java.git (newest version available there is 2.7). With this package,

three libraries are installed among others. In order to develop java-dbus appli -

cations, these libraries (dbus.jar, unix.jar and debug-enable.jar) must be made

available. This can be effected by issuing following command in a terminal:

23 http://www.oorexx.org/download.html
24 http://www.oorexx.org/
25 http://sourceforge.net/projects/bsf4oorexx/

http://gitweb.freedesktop.org/?p=dbus/dbus-java.git
http://gitweb.freedesktop.org/?p=dbus/dbus-java.git
http://distrowatch.com/

Page 20

The command $CLASSPATH ensures that the values are appended and regis-

tered libraries are not overwritten. It might be necessary to adjust the path to

the jar archives depending on the operating system. These *.jar files are links

to the newest installed versions. Actually dbus.jar links to dbus-2.8.jar on my

system. If you want to make the libraries permanent available, the .bashrc file

has to be edited.

Optionally a dbus debugger (as described in chapter 2) can be installed. In

these examples D-Feet is used to identify necessary parameters and test an

method invocation on our ooRexx program.

3.2 Connection to the D-Bus

Now it is time to establish a connection to the D-Bus, this is very easy to

achieve, there is only one dependency, a Java class called 'org.freedesktop.d-

bus.DBusConnection'. This is a static and a singleton class, so it cannot be in-

stanced and it is only possible to establish one connection to it. The same ref -

erence is returned when trying to get another connection.26 Connections can be

established to the system or session bus either. The static fields, representing

the connection addresses are SYSTEM (value = 0) and SESSION (value = 1),

but as only integer values are accepted in this case, the address has to be

boxed.

-- import the Java class DBusConnection

.bsf~bsf.import('org.freedesktop.dbus.DBusConnection','Connection')

-- establish a connection to the session bus

connection = .Connection~getConnection(box('int',.Connection~SESSION))

connection~disconnect

::requires BSF.CLS

In this example a connection to the session bus is established and get closed

again at the end of the script. To obtain connection to a remote object (applica-

26 http://dbus.freedesktop.org/doc/dbus-java/api/

export
CLASSPATH=$CLASSPATH::/usr/share/java/dbus.jar:/usr/share/java/unix.jar:/usr/share/java
/debug-enable.jar

Figure 6: Setting the Classpath

Figure 7: Getting connected to the D-Bus

Page 21

tion) Java classes have to be created. This will be demonstrated in the next

chapter.

3.3 Get Connection to a Remote Object

For obtaining connection to a remote object it is necessary to implement a Java

interface which denotes all available methods of this object. If the remote object

expects object types that are not default ones27, or distributes their return val-

ues in such types, a Java class representation has to be created for each of

them.

This means a lot of programming effort for effecting an interaction with a re-

mote object, therefore it is highly recommended to use the Java program Cre-

ateInterface, which was installed as part of the java-dbus package. This pro-

gram creates all necessary Java files automatically. These files then have to be

compiled in order to be ready to use for a ooRexx program. A language like

ooRexx is ideally suited for executing the described tasks in a script.

3.4 Controlling a Media Player

In this section, control of my favorite media player, the VideoLAN Media Player

(VLC)28 will be executed.

In order to create all necessary classes and compile them, the bus name, the

objectpath and the interface name29 are important.

In the default settings VLC is not connected to the D-Bus. To activate the con-

nection go to Settings and select show expert mode. The category interface

listed on the left side contains a subcategory called control-interface; activate it

and check the box named D-Bus control-interface. After a restart of the pro-

gram it should be connected to the bus and can be inspected with a dbus-de-

bugger.30

27 See subchaper object types
28 http://www.videolan.org/vlc/
29 As the vlc media player complies to the mpris standard, its interface name is org.freedesktop.Media-

Player
30 D-Bus debugger have been described in chapter 2.

Page 22

The program to inspect can be found through its name, the filtered list offers

the bus address 'org.mpris.vlc' what represents the desired application.

With information from D-Feet (Figure 8) about the program vlc on the session

bus, the name 'org.mpris.vlc' can be identified as well as three object paths.

The path '/Player' lists the interface 'org.freedesktop.MediaPlayer', which offers

interesting methods.

The bus name and the object path are parameters for the CreateInterface pro-

gram and the interface name is needed for the compilation of the Java classes.

Be aware of that the application to inspect has to be started before executing

the CreateInterface program.

busname = 'org.mpris.vlc'

objectpath = '/Player'

interfacename = 'org.freedesktop.MediaPlayer'

-- create the interfaces with the given parameters

createinterface = 'CreateInterface -s -f' busname objectpath

createinterface

-- format the interfacename string to a path

tmp = TRANSLATE(interfacename, '/' , '.')

path = SUBSTR(tmp, 1, tmp~LASTPOS('/'))

-- compile the created Java classes

compile = 'javac ./'path'*.java'

compile

Figure 8: D-Feet information about vlc program

Figure 9: Creation and compilation of necessary Java Files (vlc1.rxj)

Page 23

Java uses its package structure for the interfaces. If the interface looks like

org.freedesktop.MediaPlayer the Java class uses the package org.freedesktop.

That means that in a folder found under /org/freedesktop/ a Java class named

MediaPlayer.java has been created.

As every other needed Java class is created within the same folder, the script

changes the dots of the interfacename to path separators, crops the last part,

and compiles all Java Files found there (javac *.java).

Vlc player is ready to get controlled. The creation and the compilation of the

Java classes need only be done once. You can ensure at the interface's path

whether the files have been created and compiled.

Method invocation

Now it is possible to get the remote object and invoke actions on it. First the

connection is established as described in Script 1, then the remote object is

called via its bus name, its object path and the interface class that was just cre-

ated. This example demonstrates three different kind of methods.

-- import needed Java classes

.bsf~bsf.import('org.freedesktop.dbus.DBusConnection','Connection')

.bsf~bsf.import('org.freedesktop.MediaPlayer','Mp')

-- establish the connection to the session bus and get remote object

connection = .Connection~getConnection(box('int',.Connection~SESSION))

mediaplayer = connection~getRemoteObject('org.mpris.vlc', '/Player', .Mp)

mediaplayer~pause -- without return value

say position = mediaplayer~PositionGet -- returns value

mediaplayer~VolumeSet(50) -- needs parameters

connection~disconnect

::requires BSF.CLS

All available methods can be looked up either with a dbus-debugger or in the

created Java interface File.31

As you might have noticed, the program returns its track position in millisec-

onds. With Rexx it is very easy to convert this into a human readable string.

31 The folder structure always equals its name, therefore the File can be found at following path
/org/freedesktop/MediaPlayer.java.

Figure 10: Invoke actions of a mediaplayer program (vlc2.rxj)

Page 24

position = mediaplayer~PositionGet

PARSE VALUE position/60000 WITH minutes '.' hsec

SAY 'position:' minutes 'minutes' LEFT(hsec*60 ,2) 'seconds'

The method GetMetadata returns a DBusMap, the signature of the method in

the MediaPlayer interface file shows, that it is just a Map32 with Strings as keys

and a Variant for the data. The following example demonstrates how values of

such a Map can be extracted. Just add the following lines to the previous creat-

ed script.

-- forwards a DBusMap to an internal routine

CALL saymap mediaplayer~GetMetadata

::routine saymap

USE ARG map

iterator = map~keySet()~iterator

DO WHILE (iterator~hasNext)

key = iterator~next

SAY key '=' map~get(key)~getValue

END

The mediaplayer does not expect extraordinary object types as parameters for

method invocations and most methods do not even desire parameters. Thats

the reason why this application is easy to interact with, it serves as an excellent

starting point to collect experience with D-Bus.

Receiving signals

Not every application emits signals, for many applications it would be quite

useless. The mediaplayer is not part of these, it emits signals about changes it

its status (eg. paused, volume changed) and trackchanges.

To get informed about a signal it is necessary to create a Java class that imple-

ments the interface 'org.freedesktop.dbus.DBusSigHandler'. Therefor a

RexxProxy is very handsome. The class can be implemented right in the

ooRexx script and the method of the DbusSigHandler can be overwritten with

custom code.

32 public Map<String,Variant> GetMetadata();

Figure 11: Convert return value from mediaplayer

Figure 12: Handle a Dbus-Map (vlc3.rxj)

Page 25

The signals are inner classes of the Java interface, during the compilation, they

were complied as well. They can be identified by the '$' in their names, which

separates the inner class from the outer. In this example the signal is named

'org.freedesktop.MediaPlayer$TrackChange'. This script assumes that the nec-

essary Java classes have already been created. (see figure 9 (vlc1.rxj))

-- import needed Java classes

.bsf~bsf.import('org.freedesktop.dbus.DBusConnection','Connection')

.bsf~bsf.import('org.freedesktop.MediaPlayer','Mp')

-- establish the connection to the session bus

connection = .Connection~getConnection(box('int',.Connection~SESSION))

-- get the remote object

mediaplayer = connection~getRemoteObject('org.mpris.vlc', '/Player', .Mp)

.bsf~bsf.import('org.freedesktop.MediaPlayer$TrackChange', 'MPTC')

dir=.directory~new

signal=BsfCreateRexxProxy(.SignalHandler~new, dir, -

'org.freedesktop.dbus.DBusSigHandler')

connection~addSigHandler(.MPTC, signal);

SAY 'Press enter to terminate'

PARSE PULL warte

connection~disconnect

-- SignalHandler implements DbusSigHandler and defines method handle

::class SignalHandler

::method handle

USE ARG signal

.bsf.dialog~messageBox('Signal:' signal~getName,'Signal arrived', information)

::requires BSF.CLS

The directory was created for the RexxProxy. With the help of this directory, in-

formation and references can be exchanged easily. In this nutshell example

there is no need to provide any information through it. The script halts at the

end and waits for user input, else it would terminate instantly and information

about trackchanges would never arrive. The method handle draws up a simple

messageBox displaying the name of the signal until its arrival.

If you do not want to wait for a track change to test the signal activity, it can be

invoked by pressing the next or previous button on the player GUI.

Figure 13: Connection to a signal (vlc_signal.rxj)

Page 26

3.5 Controlling a Text Editor

In this example I will demonstrate how to control the KDE advanced Text Editor

(Kate)33 which is part of a default KDE installation. This application is a little

more tricky as we have to deal with process numbers and unusual object types.

If you try to control multiple instances of the vlc media player, you will only get

reference to the first started instance. Kate on the other hand allows multiple

instances running at the same time, each having a different process number.

The script has to be adapted to handle with process numbers, as they are not

fixed. When the program starts, it demands an available process number from

the operating system which very likely differs every time.

With a dbus-debugger, the bus name 'org.kde.kate-1634' can be identified. The

number behind the bus name is its process number. In the object path section

'/Kate/Document/1' can be found, the number denotes the documents currently

opened in the text editor. The interface of this object is named 'org.kde.KTextE-

ditor.Document'. To obtain the process number the rexx script starts a program

called 'pgrep' on the command line34 and processes its return value.

-- get the process number of a multiple instance application

cmd='pgrep -n -x -u "$USER" kate | rxqueue'

cmd

DO WHILE QUEUED()>0

 PARSE PULL pnumber

END

busname = 'org.kde.kate-'pnumber

objectpath = '/Kate/Document/1'

interfacename = 'org.kde.KTextEditor.Document'

-- create the interfaces with the given parameters

createinterface = 'CreateInterface -s -f' busname objectpath

createinterface

-- format the interfacename to a path

tmp = TRANSLATE(interfacename, '/' , '.')

path = SUBSTR(tmp, 1, tmp~LASTPOS('/'))

-- compile the created Java classes

compile = 'javac ./'path'*.java'

compile

33 http://kate-editor.org/
34 Information about pgrep can be obtained via the command 'man pgrep' on the command line.

Figure 14: Create and compile Java Files for a multi instance application (kate1.rxj)

Page 27

As described in the previous example Java classes for the interface and the

object types have been created and complied.

-- get the process number of a multiple instance application

cmd = 'pgrep -n -x -u "$USER" kate | rxqueue'

cmd

DO WHILE QUEUED()>0

 PARSE PULL pnumber

END

busname = 'org.kde.kate-'pnumber

objectpath = '/Kate/Document/1'

interfacename = 'org.kde.KTextEditor.Document'

-- import needed Java classes

.bsf~bsf.import('org.freedesktop.dbus.DBusConnection','Connection')

.bsf~bsf.import('org.kde.KTextEditor.Document','Te')

-- establish connection to the session bus and get remote object

connection = .Connection~getConnection(box('int',.Connection~SESSION))

document = connection~getRemoteObject(busname,'/Kate/Document/1',.Te)

IF document~isEmpty THEN SAY 'Ok, we can go on' ELSE

DO

SAY 'Wait, there is already some text, exactly' document~totalCharacters 'characters'

END

connection~disconnect

::requires BSF.CLS

This example checks if the document is empty. As we access the object path

/Document/1 we are controlling the document which was opened first in the text

editor. In my case this is my ooRexx script, so I do not want to mess it up. With

our knowledge we are ready to interact with multiple applications. A very handy

program which also is part of every standard KDE distribution is called klipper.

This application handles all strings in the clipboard, that means every string

witch was marked with the mouse or copied via control-c.

Again we need the applications bus address and objectpath for the creation

and the interfacename for the compilation. The script vlc1.rxj can be used as

template, just change the parameters to:

Figure 15: Invoke methods on a texteditor (kate2.rxj)

Page 28

busname = 'org.kde.klipper'

objectpath = '/klipper'

interfacename = 'org.kde.klipper.klipper'

After creation and compilation, the remote objects kate and klipper are ready to

be used.

-- get the process number of a multiple instance application

cmd = 'pgrep -n -x -u "$USER" kate | rxqueue'

cmd

DO WHILE QUEUED()>0

 PARSE PULL pnumber

END

busname = 'org.kde.kate-'pnumber

objectpath = '/Kate/Document/1'

interfacename = 'org.kde.KTextEditor.Document'

busname2 = 'org.kde.klipper'

objectpath2 = '/klipper'

interfacename2 = 'org.kde.klipper.klipper'

-- import needed Java classes

.bsf~bsf.import('org.freedesktop.dbus.DBusConnection','Connection')

.bsf~bsf.import(interfacename,'Te')

.bsf~bsf.import(interfacename2,'Kl')

-- establish connection to the session bus and get the remote objects

connection = .Connection~getConnection(box('int',.Connection~SESSION))

document = connection~getRemoteObject(busname,objectpath,.Te)

klipper = connection~getRemoteObject(busname2,objectpath2,.Kl)

IF document~isEmpty THEN SAY 'Ok, we can go on' ELSE

DO

CALL copytoclipboard document,klipper

END

connection~disconnect

::ROUTINE copytoclipboard

USE ARG document, klipper

SAY 'Wait, there is already some text, exactly' document~totalCharacters 'characters'

SAY 'Copying document text to the clipboard'

klipper~setClipboardContents(document~text)

document~clear

SAY 'Document cleared, Press Enter to retrieve content'

PARSE PULL wait

CALL retrievefromclipboard document,klipper

::ROUTINE retrievefromclipboard

USE ARG document, klipper

SAY 'retrieving the latest clipboard item and copy it back to the document'

document~clear

Figure 16: Parameters for klipper program

Page 29

IF document~setText(klipper~getClipboardContents) THEN SAY 'retrieving done'

::requires BSF.CLS

In this example, two remote objects are used, document and klipper. If the doc-

ument is not empty, the routine 'copytoclipboard' is called which copies the

content of the document to the clipboard and clears the content of the docu-

ment. Now other functions can be tested on this empty document and the origi -

nal content can be retrieved at the end.

'GetClipboardContents' always return the last item found in the clipboard, if it is

not the correct document, the method 'getClipboardHistoryMenu' returns an ar-

ray of string elements, where the correct one can be identified and retrieved by

its number (with 'getClipboardHistoryItem(number)').

The interface file of the editor 35shows that the application interacts with

'Structs', there are four Structs extending the Struct class definition, numbered

in order of their appearance. You might notice that all four of them implement

exact the same code, the only difference is their name.36 Nonetheless the cor-

rect Struct has to be identified.

-- get the process number of a multiple instance application

cmd = 'pgrep -n -x -u "$USER" kate | rxqueue'

cmd

DO WHILE QUEUED()>0

 PARSE PULL pnumber

END

busname = 'org.kde.kate-'pnumber

objectpath = '/Kate/Document/1'

interfacename = 'org.kde.KTextEditor.Document'

-- import needed Java classes

.bsf~bsf.import('org.freedesktop.dbus.DBusConnection','Connection')

.bsf~bsf.import(interfacename,'Doc')

-- establish connection to the session bus and get remote object

connection = .Connection~getConnection(box('int',.Connection~SESSION))

document = connection~getRemoteObject(busname, objectpath,.Doc)

.bsf~bsf.import('java.util.ArrayList','List')

.bsf~bsf.import('org.kde.KTextEditor.Struct3','Struct3')

list=.List~new

35 File can be found here: /org/kde/KTextEditor/Document.java
36 Normally the structs differ in their length or containing object types, therefore it is reasonable to call

them with different names.

Figure 17: Interaction between kate and klipper (kate3.rxj)

Page 30

list~add(" ____ ")

list~add(" ___ ___ | _ \ ___ __ ____ __")

list~add(" / _ \ / _ \ | |_) |/ _ \\ \/ /\ \/ /")

list~add("| (_) || (_) || _ <| __/ > < > < ")

list~add(" ___/ ___/ |_| ____//_/_\/_/_\")

struct = document~endOfLine(1)

SAY 'line' struct~b 'ends at position' struct~a

document~clear

document~insertTextLines(.Struct3~new(10,10), list, 1)

connection~disconnect

In this example, a Struct value is returned by the text editor and another Struct

sent. As the Java file Struct1.java tells, there are two fields containing the val -

ues,37 they can be accessed directly. The method 'insertTextLines' needs a

Struct for the position, a list for the lines to add, and a boolean value. The sig-

nature of Struct3 informs about the expected object type, in this case they are

integer values. An Arraylist was chosen among available list containers and

lines of an ASCII art38 were added. With this knowledge, every method from the

text editor can be called and return values can get processed.

The text editor does not emit signals, probably the programmer found no use

for it. You could listen for text changes for example, by polling the characters in

a document and compare them with an original value. A Signal would not make

much sense, as it is obvious that text is entered in a text editor, therefore it

would be useless to send signals, every time a character is typed or deleted.

3.6 Request a Bus Name

When a connection to the D-Bus is established, the bus daemon needs an ad-

dress in order to route information from and to the connected application. This

concept is quite similar to a host address in the Internet domain. These unique

names are denoted as :1.98 for example. A program which wants to be re-

trieved easily by the user requests a well known bus name, for example

'org.kde.kate-1234'. But an application can request any bus name, if the name

37 It does not make sense in this case to use a Struct, as the line number is already known, it would be
sufficient to return the end of line in form of an integer value.

38 ASCII Generator http://www.network-science.de/ascii/

Figure 18: Change content of texteditor document (kate4.rxj)

Page 31

is well formed39 and not used by another application. As described in the previ -

ous chapters, an object path is necessary to identify the application correctly

through their connection. If services should be provided from an application, it

needs to define a Java class that implements 'org.freedesktop.DBus'. Within

the created class, methods have to be defined.

.bsf~bsf.import('org.freedesktop.dbus.DBusConnection', 'Connection')

connection = .Connection~getConnection(box('int', .Connection~SESSION))

app = .directory~new

testclass = BsfCreateRexxProxy(.OptionClass~new, app, 'org.freedesktop.DBus')

-- demands a name and exports an object

connection~exportObject('/Rexx', testclass)

connection~requestBusName('org.freedesktop.Rexx')

SAY 'Please watch out for the busname "org.freedesktop.Rexx"'

SAY 'Press enter to terminate'

PARSE PULL wait

connection~disconnect

-- simple class that only defines one method of 'org.freedesktop.DBus'

::CLASS OptionClass

::METHOD Hello

RETURN 'Hello! I am a rexx script, connected to the D-Bus via the Java binding'

::requires BSF.CLS

In this example the name 'org.freedesktop.Rexx' was chosen and the exported

object was called '/Rexx'. A RexxProxy is used to implement the Java DBus

class. Within the created ooRexx class, the method 'Hello' of the Java class is

defined. If you use a D-Bus debugger, you will find the program listed on the

session bus and the implemented method can be called and watched for its re-

sult.

3.7 Controlling Skype

Skype40 is a program that enables users to effect telephone calls via Voice-

over-IP. The Skype version used in this example is 2.2 Beta (2.2.0.35). The

39 See chapter 1.2.6
40 http://www.skype.com

Figure 19: Export objects via D-Bus (exportObject.rxj)

Page 32

program features (amongst other things) free calling to other Skype users41, in-

stant messaging42 and file sending.43

The future of Skype on Linux is uncertain as Microsoft bought Skype and might

not be interested in further development and/or support for this operating sys-

tem. [Pro11]

Skype might not be connected to the D-Bus by default. The access can be acti -

vated in the preference menu under the sub-menu 'Public API'. There you will

find a check-box which is called activate D-Bus. If you do not want to use the

GUI you can start Skype on the command line with the switch: --enable-dbus

Skype does not offer service-access through an D-Bus interface like the pro-

grams mentioned above, but offers an 'Invoke' method on its interface through

which Skype's public API44 gets accessed. Therefore it is not necessary to im-

plement any object type (like a Struct described above), as only UTF-8 encod-

ed Strings are exchanged to invoke methods and return results. [Sky11b]

Dependent of the Linux operating system it might be necessary to edit the

skype configuration file.45

Look under /etc/dbus.1/system.d/ if there is a skype.conf. Create it or edit it to

contain following content:

<!DOCTYPE busconfig PUBLIC "-//freedesktop//DTD D-BUS Bus Configuration 1.0//EN"

 "http://www.freedesktop.org/standards/dbus/1.0/busconfig.dtd">

<busconfig>

 <policy context="default">

 <allow own="com.Skype.API"/>

 <allow send_destination="com.Skype.API"/>

 <allow receive_sender="com.Skype.API"/>

 <allow send_path="/com/Skype"/>

 </policy>

</busconfig>

Skype controls which applications are allowed to access its API, therefore the

script needs to identify itself and Skype asks the user whether to allow or reject

the connection.
41 http://www.skype.com/intl/en/features/#
42 http://www.skype.com/intl/en/features/allfeatures/instant-messaging/
43 http://www.skype.com/intl/en/features/allfeatures/send-files/
44 http://developer.skype.com/resources/public_api_ref.zip
45 Worked out of the box in Ubuntu 11.04

Figure 20: Skype configuration file (/etc/dbus-1/system.d/skype.conf)

http://www.freedesktop.org/standards/dbus/1.0/busconfig.dtd

Page 33

This is effected with a Dialog (Figure 21) asking for confirmation. If Skype does

not receive acknowledge in time, a timeout error arises and the connection is

refused.

You can choose to remember the program for having the confirmation done au-

tomatically.46

Next the protocol for the API access has to be specified. Skype uses different

protocols, they differ in their operating system and functionality -support. Proto-

col 7 is not fully supported in mentioned Linux Skype version. [Sky11b]

In this example protocol 5 will be used. It is therefore necessary to define it af -

ter the initial handshake was successful.

busname = 'com.Skype.API'

objectpath = '/com/Skype'

interfacename = 'com.Skype.API'

-- create the interfaces with the given parameters

createinterface = 'CreateInterface -s -f' busname objectpath

createinterface

-- format the interfacename to a path

tmp = TRANSLATE(interfacename, '/' , '.')

path = SUBSTR(tmp, 1, tmp~LASTPOS('/'))

-- compile the created Java classes

compile = 'javac ./'path'*.java'

compile

-- import needed Java classes

.bsf~bsf.import('org.freedesktop.dbus.DBusConnection','Connection')

.bsf~bsf.import('com.Skype.API','Sk')

-- establish connection to session bus and get remote object

connection = .Connection~getConnection(box('int',.Connection~SESSION))

skype = connection~getRemoteObject(busname, objectpath ,.Sk)

46 If you check remember this selection but receive errors during connection attempts, look up the sub-
menu Pulbic API and check whether ooRexx is listed under allowed programs.

Figure 21: Skype access confirmation dialog

Page 34

-- initiate a "handshake" and set up the skype api protocol to use

skype~Invoke('NAME ooRexx')

IF skype~Invoke('PROTOCOL 5') == 'PROTOCOL 5' THEN SAY 'Protocol 5 ready to be used'

connection~disconnect

::requires BSF.CLS

The necessary interface is created and compiled, then the name ooRexx sent

as identifier and protocol 5 defined for API access. Now a few functionalities of

Skype can get tested.

Automated telephone calls can be very handy, imagine a use case where your

scripts supervises system properties and in case of something bad happens,

your system administrator gets called automatically. In the following example

an automatic call to the test-user is effected. If the own userstatus is set to off -

line, it needs to be activated before the call can be effected. As Skype needs a

little time to get online, SysSleep is called.

busname = 'com.Skype.API'

objectpath = '/com/Skype'

interfacename = 'com.Skype.API'

-- import needed Java classes

.bsf~bsf.import('org.freedesktop.dbus.DBusConnection','Connection')

.bsf~bsf.import('com.Skype.API','Sk')

-- establish the connection to the session bus and get the remote object

connection = .Connection~getConnection(box('int',.Connection~SESSION))

skype = connection~getRemoteObject(busname, objectpath ,.Sk)

skype~Invoke('NAME ooRexx')

skype~Invoke('PROTOCOL 5')

userstatus = skype~Invoke('GET USERSTATUS')

PARSE VALUE userstatus WITH 'USERSTATUS' status

if status \= 'ONLINE' THEN DO

SAY skype~Invoke('SET USERSTATUS ONLINE')

CALL SysSleep 1

END

SAY skype~Invoke('CALL echo123')

connection~disconnect

::requires BSF.CLS

Figure 22: Accessing the Skype API (skype1.rxj)

Figure 23: Effect a test call with Skype (skype2.rxj)

Page 35

If you want to make calls, check that you use the correct Skype username, not

the name listed under fullname, or the name you might have chosen for a con-

tact by yourself. (for example peter14352 instead of Peter.)

If you want to send messages you have to create a chat. The message which is

returned by Skype,47 contains the chat identification number. With this refer-

ence, messages can be send to the contact. In this example the testuser gets

invited to a chat48. Change the contact to one of you own friends.

busname = 'com.Skype.API'

objectpath = '/com/Skype'

interfacename = 'com.Skype.API'

contact = 'echo123'

-- import needed Java classes

.bsf~bsf.import('org.freedesktop.dbus.DBusConnection','Connection')

.bsf~bsf.import('com.Skype.API','Sk')

-- establish connection to the session bus and get remote object

connection = .Connection~getConnection(box('int',.Connection~SESSION))

skype = connection~getRemoteObject(busname, objectpath ,.Sk)

skype~Invoke('NAME ooRexx')

skype~Invoke('PROTOCOL 5')

response = skype~Invoke('CHAT CREATE' contact)

PARSE VALUE response WITH . chatid 'STATUS'

-- open the created chat an send a message

SAY skype~Invoke('OPEN CHAT' chatid)

SAY skype~Invoke('CHATMESSAGE' chatid 'Hello Skype!')

connection~disconnect

::requires BSF.CLS

you can also create chats with multiple users, or add friends afterwards. It

might also be quite useful to open a filetransfer window automatically to send

log files to an administrator for example.

SAY skype~Invoke('CHAT CREATE' friend1 , friend2)

SAY skype~Invoke('ALTER CHAT' chatid 'ADDMEMBERS' friend)

SAY skype~Invoke('OPEN FILETRANSFER' friend)

47 CHAT #ownname/$echo123;fe22fcbd114d377c STATUS DIALOG
48 The testuser cannot receive messages, but you can see how to send messages.

Figure 24: Create a chat with Skype (skype3.rxj)

Figure 25: Skype commands

Page 36

The next example demonstrates how properties of a contact can be queried.

Skype gets asked to list all friends, they get collected in an array and their

birthday date gets compared with the actual date. If one (or more) of them has

birthday, the message 'Happy Birthday!' is sent.

busname = 'com.Skype.API'

objectpath = '/com/Skype'

interfacename = 'com.Skype.API'

-- import needed Java classes

.bsf~bsf.import('org.freedesktop.dbus.DBusConnection','Connection')

.bsf~bsf.import('com.Skype.API','Sk')

-- establish connection to session bus and get remote object

connection = .Connection~getConnection(box('int',.Connection~SESSION))

skype = connection~getRemoteObject(busname, objectpath ,.Sk)

-- initial "handshake" and Protocol definition

skype~Invoke('NAME ooRexx')

skype~Invoke('PROTOCOL 5')

-- get names of added friends and collect them in an array

allfriends = skype~Invoke('SEARCH FRIENDS')

PARSE VALUE allfriends WITH 'USERS ' friends

array = friends~makeArray(', ')

.local~bdaywishes = 0

DO name OVER array

CALL checkbirthday skype, name

END

IF .local~bdaywishes == 0 THEN DO

SAY 'none of your friends has birthday today!'

END

ELSE SAY 'Happy Birthday has been sent to' .local~bdaywishes 'friends'

connection~disconnect

-- compare the actual date with the birthday date of a friend

::ROUTINE checkbirthday

USE ARG skype, name

datum=skype~Invoke('GET USER' name 'BIRTHDAY')

PARSE VALUE datum WITH . user . bday

day = RIGHT(bday,4)

today = RIGHT(DATE("S"),4)

IF day == today THEN DO

username = skype~Invoke('GET USER' name 'FULLNAME')

PARSE VALUE username WITH . 'FULLNAME' fullname

SAY fullname 'has birthday!'

CALL sendwishes skype, name

Page 37

.local~bdaywishes += 1

END

-- send a message to a specified receiver

::ROUTINE sendwishes

USE ARG skype, name

response = skype~Invoke('CHAT CREATE' name)

PARSE VALUE response WITH . chatid 'STATUS'

SAY skype~Invoke('CHATMESSAGE' chatid 'Happy Birthday!')

::requires BSF.CLS

This example also demonstrates the excellent Rexx String treatment.

The list of friends is returned like: USERS friend1, friend2, friend3, friend4

It is easy for Rexx to make an array from such a String.

allfriends = skype~Invoke('SEARCH FRIENDS')

PARSE VALUE allfriends WITH 'USERS ' friends

array = friends~makeArray(', ')

3.8 Troubleshooting

If you get errors during executing of the sample scripts check following things.

Classpath

If you get an error which says: unable to load class 'org.freedesktop.dbus.D-

BusConnection', the java-dbus binding files could not be located.

– Look at the classpath via: echo $CLASSPATH if you cannot find the en-

try dbus.jar you have to export Java libraries to the classpath. Look at

Figure 6 how to do that.

– The Java binding might not been installed correctly, try to reinstall it.

Java class error

if you get an error like [org.apache.bsf.BSFException: [EngineUtils.loadClass()]

unable to load class ***]], the Java class is not available.

Figure 26: Send birthday wishes automatically (skype_birthday.rxj)

Figure 27: Rexxs excellent String capabilities

Page 38

– Look if the execution directory contain a folder structure similar to the in-

terface name. (interfacename=org.mpris.MediaPlayer, folder=/org/mpris)

– Look if this folder contains a Java file equal to the name of the interface

(MediaPlayer.java) and check if this file has been compiled (there has to

be a MediaPlayer.class file). If not, compile it via javac MediaPlayer.java.

– If there is no folder at all, ensure that you have executed the scripts for

the interface creation of the desired application (for example vlc1.rxj)

– If no files are created look at spelling mistakes of parameters (use a D-

Bus debugger for help).

– Check if you try to access a service that is not available anymore (for ex-

ample accessing /Kate/Document/1 if the first document has already

been closed).

Application error

The name *.*.* was not provided by any .service files

The desired application is not connected to the D-Bus.

– Check if the application is already started.

– If you know that an application has D-Bus support but is not available,

look if the connection has to be enabled in its settings menu.

– Check if this application is a multi instance program, that means a refer-

ence to it needs a process number. (script kate1.rxj explains that)

If you get no reasonable answer from an application, look if two instance are

running. You only get access to the first one, the second waits until the desired

name has been given free again from the bus.

– close multiple instances

Page 39

4 Roundup and Outlook

D-Bus provides many useful features for programmers. Applications can easily

interact and exchange information. As D-Bus is supported by all Linux systems,

it is the way to go to automate applications on this platform. There are bindings

for many programming languages available, intending to map the D-Bus to the

specific language. As there is no binding for ooRexx available up to now, the

Java binding has to be used through BSF4ooRexx.

With the instructions provided in this paper, an ooRexx programmer can take

use of the D-Bus capabilities. All features are accessed through the dbus-java

binding. Once all necessary Java classes have been created, it is easy to use

them via BSF4ooRexx, but the Java class creation and compilation itself is a

burden to the java-dbus binding. As demonstrated in the appendix, the python

binding do not need files to be generated. The object type handling suffers from

the Java approach as well, as Java uses strictly typed object types. Therefore

every object type exchanged through the D-Bus has to be defined, what might

not be necessary for scripting languages like ooRexx. The python binding

demonstrates its “object type guessing” capabilities in the appendix.

An ooRexx programmer should not abandon the advantages provided through

a D-Bus connection. At this moment, it pays off learning how to use the java-

binding through BSF4ooRexx. When there is a direct binding for ooRexx, the

Java approach can gladly be passed back to Java programmers and ooRexx

programmers can enjoy the easiness of use and the capabilities of their favored

programming language on the D-Bus.

Page 40

5 Bibliography

[Asc11] ASCII Generator

http://www.network-science.de/ascii/

[Bsf11] BSF4ooRexx

http://bsf4oorexx.sourceforge.net/

[Deb02] Debailleul: Guide Arexx AmigaOS 3.9

http:// mat.debailleul.free.fr/amiga/DOC/ arexx _times.pdf , 2002

[Dbb11] D-Bus Bindings

http://www.freedesktop.org/wiki/Software/DBusBindings

[Oor11] Open Object Rexx Reference
http://www.oorexx.org/docs/rexxref/book1.htm

[Fla10] Flatscher G. Rony: Reference Card Vienna Version of
BSF4ooRexx 4.0.

http://sourceforge.net/projects/bsf4oorexx/files/beta/2011-06-
18/BSF4ooRexx_install.zip/ refcardBSF4ooRexx.pdf

[Fre11a] Freedesktop Introduction

http://www.freedesktop.org/wiki/IntroductionToDBus

[Fre11b] Freedesktop Specification

http://dbus.freedesktop.org/doc/dbus-specification.html

[Fre11c] Freedesktop Dbus

http://www.freedesktop.org/wiki/Software/dbus

[Joh11a] Johnson Matthew: D-Bus programming in Java 1.5

http://dbus.freedesktop.org/doc/dbus-java/dbus-java.pdf

[Joh11b] Johnson Matthew: dbus-java API

http://dbus.freedesktop.org/doc/dbus-java/api/

[Kde07] KDE.org, DesktopCOmmunicationProtocol

http://api.kde.org/3.5-api/kdelibs-apidocs/dcop/html/index.html

[Mpr08] MPRIS D-Bus Interface Specification Version 1.0

http://www.network-science.de/ascii/
http://api.kde.org/3.5-api/kdelibs-apidocs/dcop/html/index.html
http://dbus.freedesktop.org/doc/dbus-java/api/
http://dbus.freedesktop.org/doc/dbus-java/dbus-java.pdf
http://www.freedesktop.org/wiki/Software/dbus
http://dbus.freedesktop.org/doc/dbus-specification.html
http://www.freedesktop.org/wiki/IntroductionToDBus
http://sourceforge.net/projects/bsf4oorexx/files/beta/2011-06-18/BSF4ooRexx_install.zip/
http://sourceforge.net/projects/bsf4oorexx/files/beta/2011-06-18/BSF4ooRexx_install.zip/
http://www.oorexx.org/docs/rexxref/book1.htm
http://www.freedesktop.org/wiki/Software/DBusBindings
http://mat.debailleul.free.fr/amiga/DOC/arexx_times.pdf
http://mat.debailleul.free.fr/amiga/DOC/arexx_times.pdf
http://mat.debailleul.free.fr/amiga/DOC/arexx_times.pdf
http://mat.debailleul.free.fr/amiga/DOC/arexx_times.pdf
http://bsf4oorexx.sourceforge.net/

Page 41

http://www.mpris.org/1.0/spec

[Nok09] Nokia D-Bus Viewer

http://doc.qt.nokia.com/4.5/qdbusviewer.html

[Pal10] Palmieri John: D-Feet D-Bus debugger

http://live.gnome.org/DFeet/

[Pro11] Proffitt Brian: Microsoft's Skype acquisition may impact Linux
users.

http://www.itworld.com/open-source/163509/microsofts-reported-
skype-acquisition-may-impact-linux-users

[Sky11a] Skype Features

http://www.skype.com/intl/en/features/#

[Sky11b] Skype Public API

http://developer.skype.com/resources/public_api_ref.zip

[Tho11] Thompson Will: Bustle D-Bus profiler

http://willthompson.co.uk/bustle/

[Tro11] Trolltech: D-Bus introduction

http://doc.trolltech.com/4.2/intro-to-dbus.html

All links accessed on the 16.07.2011 for the last time.

http://doc.trolltech.com/4.2/intro-to-dbus.html
http://willthompson.co.uk/bustle/
http://developer.skype.com/resources/public_api_ref.zip
http://www.skype.com/intl/en/features/
http://www.itworld.com/open-source/163509/microsofts-reported-skype-acquisition-may-impact-linux-users
http://www.itworld.com/open-source/163509/microsofts-reported-
http://live.gnome.org/DFeet/
http://doc.qt.nokia.com/4.5/qdbusviewer.html
http://www.mpris.org/1.0/spec

Page 42

6 Appendix

In this section a comparison of a method invocation, realized via the Python

and the Java D-Bus Binding is drawn up. Please note that the process number

of the remote object is hardcoded in this example. You have to identify the cor-

rect number if you want to test these scripts.

Python example:

import sys, dbus

kate = dbus.SessionBus().get_object('org.kde.kate-1979', '/Kate/Document/1')

kate.insertTextLines([10,10], ['line1','line2'],1,
dbus_interface='org.kde.KTextEditor.Document')

Java example:

import org.kde.KTextEditor.Struct3;

import org.freedesktop.dbus.*;

import java.util.ArrayList;

import org.freedesktop.dbus.exceptions.DBusException;

import org.kde.KTextEditor.Document;

public class Test {

 static DBusConnection conn = null;

 public static void main(String[] args) throws DBusException {

 conn = DBusConnection.getConnection(DBusConnection.SESSION);

 Document kate = conn.getRemoteObject("org.kde.kate-1979", "/Kate/Document/1",

org.kde.KTextEditor.Document.class);

 ArrayList list = new ArrayList();

 list.add("line1");

 list.add("line2");

 kate.insertTextLines(new Struct3(10, 10), list, true);

 }

}

Java needs three files to do the same task, the above to invoke an action, an

Interface for declaring the methods and an object type container called Struct.

Figure 28: Appendix: Test.py

Figure 29: Appendix: Test.java

Page 43

package org.kde.KTextEditor;

import org.freedesktop.dbus.Position;

import org.freedesktop.dbus.Struct;

public final class Struct3 extends Struct

{

 @Position(0)

 public final int a;

 @Position(1)

 public final int b;

 public Struct3(int a, int b)

 {

 this.a = a;

 this.b = b;

 }

}

package org.kde.KTextEditor;

import java.util.List;

import org.freedesktop.dbus.DBusInterface;

import org.freedesktop.dbus.DBusInterfaceName;

@DBusInterfaceName("org.kde.KTextEditor.Document")

public interface Document extends DBusInterface

{

 public boolean clear();

 public boolean reload();

 public boolean save();

 public boolean saveAs();

 public boolean setTextLines(List<String> text);

 public boolean isEmpty();

 public int lineLength(int line);

 public Struct1 endOfLine(int line);

 public boolean insertText(Struct2 cursor, String text, boolean block);

 public boolean insertTextLines(Struct3 cursor, List<String> text, boolean block);

 public boolean cursorInText(Struct4 cursor);

 public boolean insertLine(int line, String text);

 public boolean insertLines(int line, List<String> text);

 public boolean removeLine(int line);

 public boolean setEncoding(String encoding);

 public void encoding();

 public boolean setText(String text);

 public String text();

 public int lines();

 public int totalCharacters();

}

Figure 31: Appendix: Document.java

Figure 30: Appendix: Struct3.java

Page 44

It is needless to compare a script language like Python with Java in terms of

generated code, it lies in the nature of scripting language to need less code,

but this example illustrates how bindings to the D-Bus differ.

Signature: insertTextLines(Struct position, List text, Boolean block)

Python guesses the correct object types, therefore there is no need to define a

list object, nor a Struct. As you can see, the Struct definition within the Java ex-

ample even needs more lines of code than the whole python script.

Java needs an Interface to be declared49, python solves this issues with reflec-

tion of the available interface. Therefore the Interface needs not be implement-

ed, it is enough to reference it with its name as parameter.

Create a Java Swing GUI for method invocations of any application

The following example is an ooRexx script that creates all necessary interfaces

and classes and sets up a Java swing GUI with buttons for each method to in -

voke and toggle buttons for signal connections.

The needed parameters are busname, interfacename, bus address and the ob-

ject path of the desired application to connect. This script can be invoked by is-

suing following command on the command line (invoke without parameters in-

forms about needed parameters).

rexx application.rxj org.mpris.vlc org.freedesktop.MediaPlayer 1 /Player

First all necessary Java classes are created, then they are compiled. Available

methods form an interface are obtained via ~getDeclaredmethods50, all signals

via ~getDeclaredClasses. Actually the signals are not listed.51 A Signal is de-

fined as a inner class of an interface. But the signal connection was tested

working in Java.

Not all return values from an application are displayed correctly as this part of

the script is not finished yet. Method calls can only be effected within this pro-

49 It would be sufficient for this example to declare only the 'insertTextlines' method, Nevertheless Py-
thon can access all methods if desired, therefore the Java equivalent was implemented feature com -
plete.

50 The methods equal, toString and hashcode are added as well, as they are unecessary at this mo -
ment, they can get excluded from the button creation. In this example they are not exluded.

51 The execution of getDeclaredClasses() works in Java.

Page 45

gram if only one parameter is necessary and if this parameter belongs to a

standard object type. (String, Boolean, Integer)

Please take a look at the nutshell scripts in this paper in order to invoke

method calls with more than one, non standard parameter. This demo script

could possibly help, if you exploit some parts of it for your own application – at

least this was the intention of adding it to this paper.

If you want to use this application for controlling purpose, it would be useful to

change the beginning of the script and hardcode the necessary parameters, as

on its first invocation, all Java classes are created and compiled. Additionally

you would not need to pass parameters. If it is a multi instance application use

a template like kate3.rxj to see how its process number can be obtained and

exchange it with the commands in this script.

PARSE ARG object interfacename bus path

IF object~length<1 THEN

DO

SAY Please add parameters

SAY 'first the BUSNAME. (eg. org.mpris.vlc)'

SAY 'followed by the INTERFACENAME. (eg. org.freedesktop.MediaPlayer)'

SAY 'then the BUS ADDRESS. (0 for systembus, 1 for sessionbus)'

SAY 'and then the OBJECT PATH. (eg. /Player)'

EXIT

END

-- creats the interfaces with the given parameters

cmd = 'CreateInterface -s -f' object path

--cmd

-- compiles the created classes

tmp = TRANSLATE(interfacename, '/' , '.')

compilepath = SUBSTR(tmp, 1, tmp~LASTPOS('/'))

compile = 'javac ./'compilepath'*.java'

--compile

SAY 'Interfaces created and compiled...'

.bsf~bsf.import('org.freedesktop.dbus.DBusConnection', "Connection")

.bsf~bsf.import(interfacename, "Interface")

connection = .Connection~getConnection(box('int',bus))

remoteobject = connection~getRemoteObject(object, path, .Interface)

methods = remoteobject~getclass~getDeclaredMethods

-- BSF4ooRexx does not return classes

signals = remoteobject~getclass~getDeclaredClasses

applicationname = object~substr(object~lastpos('.')+1)

app=.directory~new

app~application=remoteobject

app~signals=signals

Page 46

app~connection=connection

system=bsf.loadClass('java.lang.System')

.local~newline=system~getProperty('line.separator')

--create all necessary handlers

rexxCloseEH=.RexxCloseAppEventHandler~new

rpCloseEH=BsfCreateRexxProxy(rexxCloseEH ,app , 'java.awt.event.WindowListener')

signalhandler=BsfCreateRexxProxy(.DBusSignalHandler~new, app, -

'java.awt.event.ActionListener')

methodhandler=BsfCreateRexxProxy(.DBusMethodHandler~new, app, -

'java.awt.event.ActionListener')

signal=BsfCreateRexxProxy(.SignalHandler~new, app, -
'org.freedesktop.dbus.DBusSigHandler')

testclass=BsfCreateRexxProxy(.NewClass~new, app, 'org.freedesktop.DBus')

app~sighandler=signal

.bsf~bsf.import('javax.swing.JButton' , "Btn")

.bsf~bsf.import('javax.swing.JFrame' , "Frame")

.bsf~bsf.import('javax.swing.JLabel' , "Label")

.bsf~bsf.import('javax.swing.JPanel' , "Panel")

.bsf~bsf.import('javax.swing.JTabbedPane' , "TabbedPane")

.bsf~bsf.import('javax.swing.JToggleButton' , "TgBt")

.bsf~bsf.import('java.awt.FlowLayout' , "FlowLayout")

.bsf~bsf.import('java.awt.BorderLayout' , "BorderLayout")

.bsf~bsf.import('java.awt.Color' , "Color")

.bsf~bsf.import('java.awt.Dimension' , "Dimension")

.bsf~bsf.import('javax.swing.JTextArea' , "JTextArea")

-- exports an object and requests a name for the bus address

connection~exportObject('/Rexx',testclass)

connection~requestBusName('org.freedesktop.Rexx');

frame = .Frame~new('Control an application via DBus')

frame~setPreferredSize(.Dimension~new(510, 205))

flowlayout= .FlowLayout~new(.FlowLayout~LEFT)

methpanel = .Panel~new()~~setLayout(flowlayout)

signalpanel = .Panel~new()~~setLayout(flowlayout)

-- get all methods and signals from the application and add buttons

DO m OVER methods

PARSE VALUE m~toString WITH 'public final' rv method

PARSE VALUE method WITH methname '(' rest

name= methname~substr(methname~lastpos('.')+1)

cmd = name'('rest

methpanel~add(.Btn~new(name)~~addActionListener(methodhandler)~~setActionCommand(cmd))

END

i=1

DO s OVER signals

PARSE VALUE s~toString WITH ' ' inter '$' name

signalpanel~add(.TgBt~new(name)~~addActionListener(signalhandler)~~setActionCommand(i))

i+=1

END

-- finish setting up the Java GUI

tabbedpane = .TabbedPane~new()~~addTab('methods', methpanel)~~addTab('signals', -

signalpanel)

appnamelabel = .Label~new(applicationname)

appnamepanel = .Panel~new()~~setBackground(.Color~WHITE)~~add(appnamelabel)

Page 47

frame~getContentPane()~add(appnamepanel, .BorderLayout~NORTH)

frame~getContentPane()~add(tabbedpane, .BorderLayout~CENTER)

frame~~pack()~~setVisible(.true)~~toFront

frame~addWindowListener(rpCloseEH)

rexxCloseEH~waitForExit -- wait until we are allowed to end the program

CALL SysSleep .2

-- checks the returnvalue from the application and displays it

::routine answer

 USE ARG info

-- check for objecttype of return value

-- this method is not finished, object types have to be identified by their class

-- String comparison is not the best solution.

IF info==.nil THEN RETURN

 PARSE VALUE info WITH name '@' number

IF pos('.DBusMap',name)>0 THEN CALL handlemap info

IF pos('.Variant',name)>0 THEN SAY "Received a Variant, sorry not finished yet."

IF pos('.Tuple', name)>0 THEN SAY "Received a Tupel, sorry not finished yet."

IF pos('.Struct',name)>0 THEN CALL handlestruct info

IF number<1 THEN .bsf.dialog~messageBox('Answer:' name,'Answer form application', -

information)

::routine handlemap

USE ARG info

iterator = info~keySet()~iterator

text = .JTextArea~new

DO WHILE (iterator~hasNext)

key = iterator~next

text~append(key '=' info~get(key)~getValue .newline)

END

.bsf.dialog~messageBox(text,'Answer from application', information)

::routine handlestruct

USE ARG info

temp = info~getParameters

i=1

text = .JTextArea~new

DO WHILE i<temp~size

text~append(temp[i] .newline)

i+=1

END

.bsf.dialog~messageBox(text,'Answer from application', information)

::class RexxCloseAppEventHandler

::method init /* constructor */

 EXPOSE closeApp

 closeApp = .false -- if set to .true, then it is safe to close the app

::attribute closeApp -- indicates whether app should be closed

::attribute application get

::method unknown -- intercept unhandled events, do nothing

::method windowClosing -- event method (from WindowListener)

 EXPOSE closeApp

 closeApp=.true -- indicate that the app should close

::method waitForExit -- method blocks until attribute is set to .true

 EXPOSE closeApp

Page 48

 guard on when closeApp=.true

::class DBusSignalHandler

::method actionPerformed

 USE ARG eventObject, args

 selected = eventObject~getSource~isSelected

 index = eventObject~getActionCommand

 connection = args~userdata~connection

 signals = args~userdata~signals

 sighandler = args~userdata~sighandler

 IF selected THEN DO

 connection~addSigHandler(signals[index], sighandler)

 SAY 'Signalhandler added'

 END

 ELSE DO

 connection~removeSigHandler(signals[index], sighandler)

 SAY 'Signalhandler removed'

 END

::class DBusMethodHandler

::method actionPerformed

 USE ARG eventObject, args

 application = args~userdata~application

 command = eventObject~getActionCommand

 PARSE VALUE command WITH cmd '(' params

 IF (params>0) THEN DO

 val = .bsf.dialog~inputBox('Signature: ('params,'','')

 IF val==.nil THEN RETURN

 IF val~length<1 THEN RETURN

 CALL answer application~send(cmd,val) -- calls the desired action and

 END -- forwards return values to answer

 ELSE CALL answer application~send(cmd)

::class SignalHandler

::method handle

 USE ARG signal

 .bsf.dialog~messageBox('Signal:' signal~getName,'Signal arrived', information)

::class NewClass

::method Hello

 RETURN 'Hello! I am accessing the D-Bus via the java-dbus binding and BSF4ooRexx'

::requires BSF.CLS

Figure 32: Sample script D-Bus control gui (app.rxj)

	1 Introducing the D-Bus
	1.1 History
	1.2 Concept
	1.2.1 Message Bus
	1.2.2 Object Types
	1.2.3 Message Types
	1.2.4 Object Paths
	1.2.5 Interfaces
	1.2.6 Bus Names
	1.2.7 Member Names

	1.3 Spreading
	1.4 Bindings
	1.4.1 Java Binding
	1.4.2 Python Binding

	2 Investigating the Dbus
	2.1 D-Feet
	2.2 qdbusviewer
	2.3 DbusViewer
	2.4 Bustle
	2.5 Common Interfaces

	3 Implementation
	3.1 Setting up the Environment
	3.2 Connection to the D-Bus
	3.3 Get Connection to a Remote Object
	3.4 Controlling a Media Player
	3.5 Controlling a Text Editor
	3.6 Request a Bus Name
	3.7 Controlling Skype
	3.8 Troubleshooting

	4 Roundup and Outlook
	5 Bibliography
	6 Appendix

