
Scripting Mozilla with JavaXPCOM

and BSF4ooRexx

Seminar Paper

Gerald Rauter

matriculation number: 0852429

Vienna University of Economics and Business

31th July 2011

Gerald Rauter Scripting Mozilla 2/39

Abstract English

This seminar paper tries to show how to script Mozilla components via XPCOM,

JavaXPCOM, BSF4ooRexx and ooRexx. The used technologies are explained

through summarizing text and Nutshell examples. The goal of this paper is to

show the features and possibilities of this approach.

Abstract Deutsch

Diese Seminararbeit versucht zu zeigen, wie man Mozilla-Komponenten

mithilfe von XPCOM, JavaXPCOM, BSF4ooRexx und ooRexx skriptet. Die

benutzten Technologien werden mithilfe von zusammenfassenden Texten und

Nutshell-Beispielen erklärt. Das Ziel dieser Arbeit ist es die Funktionen und

Möglichkeiten dieser Vorgehensweise aufzuzeigen.

Gerald Rauter Scripting Mozilla 3/39

Table of content

1) Introduction...6

1.1) About this paper...6

1.2) About the topic..7

2) Used Software...9

2.1) ooRexx...9

2.2) BSF4ooRexx...10

2.3) XPCOM..11

2.4) JavaXPCOM..12

3) Installation..13

3.1) Installation of ooRexx..13

3.2) Installation of BSF4ooRexx...13

3.3) Installation of JavaXPCOM..14

4) Examples..16

4.1) Opening an URL in a window..17

4.2) Reading and deleting Cookies...20

4.3) Creating and reading History entries..22

Location Provider...23

4.4) Inserting Bookmarks...25

4.5) Saving a Website in a local file..27

4.6) Playing sounds...30

5) Conclusion...32

6) Bibliography...33

7) Appendix...35

Source Code of the Java-Location Provider:...35

Source code of the ooRexx location provider..36

Example 4.5) with ooRexx location provider:...38

Gerald Rauter Scripting Mozilla 4/39

List of figures

Figure 1.1: Original Plan of Action..7

Figure 1.2: New Plan of Action..7

Figure 2.1: Architecture of the Wiener Version of BSF4ooRexx
[Source: hoisl1]..10

Figure 3.1: Set CLASSPATH...15

List of examples

An easy Rexx example...9

Opening an URL in a window...17

Reading and deleting cookies..20

Creating and reading history entries...22

Inserting Bookmarks..25

Saving a Website in a local file...27

Playing sounds..30

Gerald Rauter Scripting Mozilla 5/39

1) Introduction

1.1) About this paper

This seminar paper has been written for the fifth course of the specialization

'Management Information Systems' at the Vienna University of Economics and

Business. Course lecturer is Prof. Rony G. Flatscher.

Chapter one gives a short introduction to the topic.

Chapter two is about the used software. This chapter will give a brief

introduction of ooRexx, BSF4ooRexx, XPCOM and JavaXPCOM.

Chapter three contains a step to step installation guide of how to set up the

right environment.

Chapter four contains some examples, which show what's possible with this

topic and chapter five gives a short conclusion.

Gerald Rauter Scripting Mozilla 6/39

1.2) About the topic

The original plan of this paper was to use XPCOM the same way like Microsoft

COM would be used for Microsoft products, which means to remotely open the

programs Mozilla Firefox, Thunderbird and SeaMonkey, work with them and

close them again via a ooRexx Script.

Figure 1.1: Original Plan of Action

Unfortunately XPCOM works differently than Microsoft COM. These differences

will be addressed in a later chapter. Because of these circumstances the author

wasn't able to script the whole programs, but 'only' managed to embed

independent parts of the programs, so called components, into short examples.

Figure 1.2: New Plan of Action

XPCOM makes it possible to work with these components of Mozilla Projects.

These components are small, independent parts of programs, which have their

own responsibilities. One component can be for example the bookmarkservice,

which is responsible for creating, reading and deleting bookmarks.

“JavaXPCOM allows for communication between Java and XPCOM, such that a

Gerald Rauter Scripting Mozilla 7/39

Java application can access XPCOM objects, and XPCOM can access any Java

class that implements an XPCOM interface.” [Source: xpc1]

If it's possible to work with XPCOM via Java, it's of course also possible to use

BSF4ooRexx to work with XPCOM via ooRexx, which will be done in this paper.

More about ooRexx, BSF4ooRexx, JavaXPCOM and XPCOM will be explained in

the next chapter.

Gerald Rauter Scripting Mozilla 8/39

2) Used Software

2.1) ooRexx

Open Object Rexx (REstructured eXtended eXecutor) is the open source,

object orientated version of Rexx.

Rexx was developed by Mike Cowlishaw at IBM. It's an interpreted

programming language (in contrast to compiled programming languages)

which has an English-like syntax to make it easy to use, read and learn. Today

there are many interpreters available for a wide range of computing platforms.

[Source: wiki1]

IBM has release their Rexx and Object Rexx implementation's sources under

the Common Public License. Nowadays it is further developed by the the Rexx

Language Association (RexxLA) under the name Open Object Rexx. The Rexx

Language Association (RexxLA) is an independent, non-profit organization

dedicated to promoting the use and understanding of the Rexx programming

language. [Source: rexla1]

The biggest advantages of Rexx is it's simple English-like syntax, it's dynamic

data typing and it's small and thus easy to learn instruction set.

An easy Rexx example:

say “Hello World!”

An easy example. This program prints “Hello World!” on the screen.

Gerald Rauter Scripting Mozilla 9/39

2.2) BSF4ooRexx

The Bean Scripting Framework (BSF) allows other programming languages to

interact with the Java runtime environment (JRE) and through this allows the

use of Java classes and Java objects by them. [Source: flatscher1]

BSF4ooRexx is the Bean Scripting Framework for ooRexx. It makes it possible

to use Java classes and objects with ooRexx programs and allows Java

programs to use scripts which are written with ooRexx. With BSF4ooRexx

nearly everything that can be done with Java can also be done with ooRexx,

which has an easier syntax than Java.

BSF4ooRexx is developed by Mag. Dr. Rony G. Flatscher at the Vienna

University of Economics and Business. That's why the most actual version is

called the “Wiener Version”. Older available versions are the “Essner Version”

and the “Augsburger Version”. These Versions are named after the cities of

Universities Prof. Mag. Dr. Flatscher was working at while developing them.

[Source: hoisl1]

Figure 2.1: Architecture of the “Wiener Version” of BSF4ooRexx

Gerald Rauter Scripting Mozilla 10/39

2.3) XPCOM

“The Cross Platform Component Object Module (XPCOM) is a framework which

allows developers to break up monolithic software projects into smaller

modularized pieces. These pieces, known as components, are then assembled

back together at runtime.” [Source: Dev5]

Because of its component based approach XPCOM makes software developing

and software maintenance easier. Existing components can be put together

with new components to create new programs. A developer doesn't have to

program all features of a program by himself if existing components already

provide needed features.

The main advantage of components are, that they can be reused by several

programs and they can be easily replaced by other components, for example

for upgrades.

Mozilla Projects like Firefox, Thunderbird, SeaMonkey and others are made out

of several components. Some components are used by all of them, like window

management, and some components are only used by one project.

Different components are linked together through interfaces. All components

support the base interface nsISupports, which carries out administrative task

like component lifetime management and interface querying. A list of all public

XPCOM interfaces can be found at [Dev4]

XPCOM itself is written in C++, but there are APIs available to use it with many

other programming languages. It is possible to use it with JavaScript, Java,

Python, Perl and Ruby, if fitting language bindings are installed.

XPCOM is similar to Microsoft COM, but it's designed to be used mainly at the

application level. XPCOM is Open Source, in contrary to MSCOM.

Gerald Rauter Scripting Mozilla 11/39

2.4) JavaXPCOM

“JavaXPCOM provides a bridge for Java applications to embed Gecko and use

XPCOM components.”[Source: Dev3]

JavaXPCOM allows Java to communicate with XPCOM. With its help Java

programs can talk to XPCOM respectively it's possible to embed XPCOM

components into Java programs or, like in the case of this paper, into ooRexx

programs with the help of BSF4ooRexx.

JavaXPCOM was part of the XULrunner installation until version 1.9.2, but it

has been removed in version 2. [Source: Dev4]. Also, Mark Finkle, who works

for the Mozilla Corporation, wrote in his blog on July 28th 2010 that

“JavaXPCOM has been disabled and will likely to removed from the Mozilla

source tree in the future.” [Source: Finkle1]

This means that JavaXPCOM won't be further developed and won't be

supported anymore.

Gerald Rauter Scripting Mozilla 12/39

3) Installation

3.1) Installation of ooRexx

The newest versions of ooRexx can be found under

http://www.oorexx.org/download.html or

http://sourceforge.net/projects/oorexx/files/.

To run all the examples in this paper at least version 4.1 is needed. A graphical

GUI guides through the installation of the program. The user just has to accept

the license agreement, specify a directory where ooRexx should be installed to

and what parts of ooRexx should be installed.

During the installation on a windows computer the windows service rxapi has

to be installed and started. The installation of version 4.1 of ooRexx sometimes

wants to stop a running rxapi, which doesn't exist and aborts the installation,

because it can't be stopped. To avoid this problem an older version of ooRexx,

like 3.2 can be installed first, which installs and starts the rxapi service. After

that, the installation of 4.1 can be started. It de-installs the older ooRexx

version, stops the now existing rxapi and installs itself without further

problems.

3.2) Installation of BSF4ooRexx

The newest graphical installer for Windows, Linux and Mac of BSF4ooRexx can
be found under http://sourceforge.net/projects/bsf4oorexx/files/experimental/

The user has to accept the terms of the license agreement and specify an

install-directory. After the installation is finished the user is able to use Java

with ooRexx.

Gerald Rauter Scripting Mozilla 13/39

http://www.oorexx.org/download.html
http://sourceforge.net/projects/bsf4oorexx/files/experimental/
http://sourceforge.net/projects/oorexx/files/

3.3) Installation of JavaXPCOM

JavaXPCOM is part of the XULRunner version 1.9.2, which can be found under

http://releases.mozilla.org/pub/mozilla.org/xulrunner/releases/1.9.2.19/sdk/

Later releases of the XULRunner, like version 2 don't include JavaXPCOM

anymore.

The user just has to unzip the .zip-file with an archive tool into a directory. It's

not important, where its unpacked to, but Mozilla recommends the directory

'C:\Program Files\Mozilla XULRunner\1.9.2' for Microsoft Windows or

'/opt/xulrunner/1.9.2' for Linux.

To register XULRunner with the system, a command prompt has to be opened

and 'xulrunner.exe --register-global' (to register for all users) or

'xulrunner.exe --register-user' (to register for one user only) has to be

run.

With Linux the command is 'xulrunner –register-global' respectively

'xulrunner –register-user'

[Source: Dev6]

As a last step the path to the four .jar-archives 'javaxpcom.jar',

'MozillaInterfaces.jar', 'MozillaInterfaces-svc.jar' and 'MozillaGlue.jar' has to be

added to the environment variable CLASSPATH. This four archives can be found

in the installation directory of the XULRunner in the \bin directory respectively

in the \lib directory.

With Windows the CLASSPATH can be set in the command window with the

command: 'set CLASSPATH=%classpath%[Path of the .jar];'. The %classpath

% is needed to add the new path to the existing ones. Without it the variable

classpath would be overwritten. With Windows it's also possible to set the

Gerald Rauter Scripting Mozilla 14/39

http://releases.mozilla.org/pub/mozilla.org/xulrunner/releases/1.9.2.19/sdk/

environment variables through right click to Computer on the

desktop\Configure\Advanced System Configuration\Environment Variables.

With Linux the environment variable CLASSPATH can be set with the

commands 'CLASSPATH=$CLASSPATH: /[Path of the driver.jar]'

'export PATH'.

After the CLASSPATH is set JavaXPCOM is ready for use.

Figure 3.1: Set CLASSPATH

Gerald Rauter Scripting Mozilla 15/39

4) Examples

This chapter contains examples, which show what's possible to achieve with

JavaXPCOM. Examples 4.1 and 4.2 are, with some small changes, taken out of

the seminar paper of Martin Palkovic from 2010. Examples 4.4 and 4.5 are

available in the same paper as java classes. They were, with some small

changes, rewritten as .jrexx files for this paper. Also, the class

LocationProvider.class, which is used in three examples was taken from Martin

Palkovic's work [Source: Palk1]

All examples follow the same pattern. First, all needed classes are imported

with the command:
.bsf~bsf.import('qualified.class.name','new name in this example')
In the next step, XPCOM is initialized. The installation path of the xulrunner is

needed for initialization. There are two ways of getting the installation path.

The first way, which is used in this paper, is to simply define it manually. In the

following examples this is done by:
grePathName = "C:\libs\xul\xulrunner-sdk\bin"
grePath = .File~new(grePathName)
The other way, which is for example used by Martin Plakovic, is with the

following command:
grePathName = .System~getProperty('GRE_PATH')
grePath = .File~new(grePathName)
This command gets the installation path of the xulrunner out of the system

properties. However, if the registration of the installation is flawed, this

command only retrieves a .nil object.

After the path is identified XPCOM can be initialized with the commands:
 mozilla~initialize(grePath)
 mozilla~initXPCOM(grePath, .nil)
Next, the service manager and every other needed services can be loaded and

used.

Gerald Rauter Scripting Mozilla 16/39

4.1) Opening an URL in a window

This example loads an URL and opens it in a new window

Gerald Rauter Scripting Mozilla 17/39

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34

35
36

37
38
39
40

41
42
43
44
45
46
47

/* importing needed classes */
.bsf~bsf.import('java.io.File','File')
.bsf~bsf.import('org.mozilla.xpcom.Mozilla','Mozilla')
.bsf~bsf.import('org.mozilla.interfaces.nsIAppStartup','nsIAppStartup')
.bsf~bsf.import('org.mozilla.interfaces.nsIServiceManager','nsIServiceManager')
.bsf~bsf.import('org.mozilla.interfaces.nsIWindowCreator','nsIWindowCreator')
.bsf~bsf.import('org.mozilla.interfaces.nsIWindowWatcher','nsIWindowWatcher')
/* URL, that will be visited */
targetUrl = 'http://www.wu.ac.at'
/* setting the installation path of the xulrunner */
grePathName = "C:\libs\xul\xulrunner-sdk\bin"
grePath = .File~new(grePathName)
/* initialize XPCOM */
mozilla = .Mozilla~getInstance
mozilla~initialize(grePath)
mozilla~initXPCOM(grePath, .nil)
say 'Mozilla XPCOM initialized!'
/* getting the serviceManager */
serviceManager = mozilla~getServiceManager
/* getting IIDs, which are needed to get the services */
appStartupID = .nsIAppStartup~NS_IAPPSTARTUP_IID
windowCreatorID = .nsIWindowCreator~NS_IWINDOWCREATOR_IID
windowWatcherID = .nsIWindowWatcher~NS_IWINDOWWATCHER_IID
/* setting properties of the window */
winProps = "width=1000, height=600, resizable, centerscreen, scrollbars='yes'"
/* getting the needed services */
appStartup = serviceManager~getServiceByContractID('@mozilla.org/toolkit/app-'-

||'startup;1', appStartupID)
windowCreator = appStartup~queryInterface(windowCreatorID)
WindowWatcher = -

serviceManager~getServiceByContractID('@mozilla.org/embedcomp/window-'-
||'watcher;1', windowWatcherID)

windowWatcher~setWindowCreator(windowCreator)
/* opening the window */
window = windowWatcher~openWindow(.nil, targetUrl, 'BrowserWindow', winProps, -

.nil)
windowWatcher~setActiveWindow(window)
appStartup~run
mozilla~shutdownXPCOM(.nil)
say 'Mozilla XPCOM embedding finished!'
::requires BSF.cls

http://www.wu.ac.at/

In lines 2 to 7 all needed classes for this example are loaded. The classes

'org.mozilla.xpcom.Mozilla' and java.io.File have to be loaded in every

following example. They're needed to initialize XPCOM.

The classes loaded in lines 4 to 7 are the interfaces of the components, which

are used in this example.

In line 10 the URL which should be loaded is saved in a variable. In this case it

is www.wu.ac.at. In lines 13 and 14 the path to the xulrunner installation is

saved in a variable. Like mentioned earlier it is needed for the initialization of

XPCOM, which is done in lines 17 to 19. To be able to use XPCOM, this

initialization has to be done in every example.

Line 23 loads a service manager, which is used to load and manage all other

services.

To load other services their contractID and their interfaceID is needed. In lines

26 to 28 the interfaceIDs of the services are saved into variables for later use.

In line 31 the properties of the window which will be created are saved in a

string. There are only a few possible properties used. A full list of possible

properties can be found at [Dev1]. In lines 34 to 36 the interfaces of all other

needed services are loaded. These services are AppStartup, WindowCreator

and WindowWatcher. AppStartup is an service which helps to startup

Applications, WindowCreator allowes to open new windows and

WindowWatcher 'watches' over open windows and allows some operations on

them. AppStartup and WindowWatcher are loaded with the servicemanager,

while WindowCreator is loaded with the command ~queryInterface. When

loaded with the servicemanager, an instance of the requested service is

created, while when loaded with ~queryInterface only a pointer to the desired

interface is returned. [Source: Palk1]

In line 37 the WindowCreator is assigned to the WindowWatcher.

Finally in lines 40 to 42 the new window is opened and displayed. The

arguments for the ~openWindow message are: a parent window (.nil if there is

no parent window), the URL which should be loaded, the name of the new

window, the features of the window (which were saved in winprops earlier) and

additional arguments. After the window is closed XPCOM is shut down and the

Gerald Rauter Scripting Mozilla 18/39

http://www.wu.ac.ataaaa/

example is finished.

Gerald Rauter Scripting Mozilla 19/39

4.2) Reading and deleting Cookies

This example will load an URL in a new window, load all cookies, show their

name, host and value and delete them again.

Gerald Rauter Scripting Mozilla 20/39

/* importing needed classes */
.bsf~bsf.import('java.io.File','File')
.bsf~bsf.import('org.mozilla.xpcom.Mozilla','Mozilla')
.bsf~bsf.import('org.mozilla.interfaces.nsIAppStartup','nsIAppStartup')
.bsf~bsf.import('org.mozilla.interfaces.nsIServiceManager','nsIServiceManager')
.bsf~bsf.import('org.mozilla.interfaces.nsIWindowCreator','nsIWindowCreator')
.bsf~bsf.import('org.mozilla.interfaces.nsIWindowWatcher','nsIWindowWatcher')
.bsf~bsf.import('org.mozilla.interfaces.nsICookieManager','nsICookieManager')
.bsf~bsf.import('org.mozilla.interfaces.nsICookie','nsICookie')
/* URL, that will be visited */
targetUrl = 'http://derstandard.at'

/* Initiate XPCOM embedding */
grePathName = "C:\libs\xul\xulrunner-sdk\bin"
grePath = .File~new(grePathName)
mozilla = .Mozilla~getInstance
mozilla~initialize(grePath)
mozilla~initXPCOM(grePath, .nil)
say 'Mozilla XPCOM initialized!'
/* getting the Service Manager */
serviceManager = mozilla~getServiceManager
/* getting IIDs, which are needed to get the services */
appStartupID = .nsIAppStartup~NS_IAPPSTARTUP_IID
windowCreatorID = .nsIWindowCreator~NS_IWINDOWCREATOR_IID
windowWatcherID = .nsIWindowWatcher~NS_IWINDOWWATCHER_IID
cookieManagerID = .nsICookieManager~NS_ICOOKIEMANAGER_IID
cookieID = .nsICookie~NS_ICOOKIE_IID
/* window propterites */
winProps = "width=1000, height=600, resizable, centerscreen, scrollbars='yes'"
/* getting the needed services */
appStartup = serviceManager~getServiceByContractID('@mozilla.org/toolkit/app-'-

||'startup;1', appStartupID)
windowCreator = appStartup~queryInterface(windowCreatorID)
WindowWatcher = -

serviceManager~getServiceByContractID('@mozilla.org/embedcomp/window-'-
||'watcher;1', windowWatcherID)

windowWatcher~setWindowCreator(windowCreator)
CookieManager = -

serviceManager~getServiceByContractID('@mozilla.org/cookiemanager;1', -
cookieManagerID)

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38

39
40

41
42

http://derstandard.at/

Lines 2 to 10 load the needed classes. Two more classes than in the previous

example are loaded, which are the interface for the cookiemanager and the

interface for cookies.

Again, a target URL is saved in a variable in line 13. This time it's the URL

http://derstandard.at.

The initialization of XPCOM in lines 17 to 22 is the completely the same as in

the previous example.

Also all the lines till line 48 are quite similar to the previous example. A service

manager is loaded, the interfaceIDs of all used interfaces are saved in

variables, the properties of the new window are saved into a string variable,

the services are loaded and the new window is opened.

In line 49 the attribute 'Enumerator' of the cookie manager is read and saved

in the variable enumerator. This attribute enumerates all cookies in the cookie

list.

Lines 50 to 56 are a loop, which prints the names, hosts and values of all

cookies on the screen.

After that all cookies are deleted in line 59 and XPCOM shuts down.

Gerald Rauter Scripting Mozilla 21/39

/* opening the window */
window = windowWatcher~openWindow(.nil,targetUrl,'BrowserWindow',winProps,.nil)
windowWatcher~setActiveWindow(window)
appStartup~run
/* count cookies and print their name, host and value on the screen */
enumerator = cookieManager~getEnumerator
do while enumerator~hasMoreElements
cookies=enumerator~getNext
cookie=cookies~queryInterface(cookieID)
say pp("Cookie Name:") cookie~getName
say "L" "09"x pp("Host:") cookie~getHost
say "L" "09"x pp("Value:") cookie~getValue
end
/* remove all cookies */
cookieManager~removeAll
say 'All cookies deleted'
/* Terminate XPCOM embedding */
mozilla~shutdownXPCOM(.nil)
say 'Mozilla XPCOM embedding finished!'
::requires BSF.cls

43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65

http://derstandard.at/

4.3) Creating and reading History entries

In this example some URIs will be added to the browser history. After that, the

browser history will be checked and the last page visited will be printed on the

screen.

Gerald Rauter Scripting Mozilla 22/39

/* importing needed classes */
.bsf~bsf.import('java.io.File','File')
.bsf~bsf.import('org.mozilla.xpcom.Mozilla','Mozilla')
.bsf~bsf.import('org.mozilla.interfaces.nsIServiceManager','nsIServiceManager')
.bsf~bsf.import('org.mozilla.interfaces.nsIIOService', 'IOService')
.bsf~bsf.import('org.mozilla.interfaces.nsIBrowserHistory', 'nsIBrowserHistory')
/* setting targetUrls */
targetUrl = 'http://www.wu.ac.at'
targetUrl2 = 'http://derstandard.at'
targetUrl3 = 'http://www.teamliquid.net'

/** Initiate XPCOM embedding with location provider */
grePathName = "C:\libs\xul\xulrunner-sdk\bin"
grePath = .File~new(grePathName)
mozilla = .Mozilla~getInstance
mozilla~initialize(grePath)
locprovider=.bsf~new("LocationProvider", grePath)
mozilla~initXPCOM(grePath, locprovider)
say 'Mozilla XPCOM initialized!'
/* Get the Service Manager */
serviceManager = mozilla~getServiceManager
/* get needed IDs */
ioserviceID = .IOService~NS_IIOSERVICE_IID
browserhistoryID = .nsIBrowserHistory~NS_IBROWSERHISTORY_IID
/* getting the needed services */
ioservice = serviceManager~getServiceByContractID('@mozilla.org/network/io-'-

||'service;1', ioserviceID)
browserhistory = -

serviceManager~getServiceByContractID('@mozilla.org/browser/nav-history-'-
||'service;1', browserhistoryID)

/* creating URIs */
uri = ioservice~newURI(targetUrl, .nil, .nil)
uri2 = ioservice~newURI(targetUrl2, .nil, .nil)
uri3 = ioservice~newURI(targetUrl3, .nil, .nil)
/* adding 2 URIs to the browsing history */
browserhistory~addURI(uri,0,1,.nil)
browserhistory~addURI(uri2,0,1,.nil)

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32

33

34
35
36
37
38
39
40
41
42

http://www.wu.ac.at/
http://derstandard.at/
http://www.teamliquid.net/

Lines 2 to 6 again load the needed classes. Some classes, which were used

earlier aren't necessary in this example and two new classes will be used,

which are the interfaces for IOService and BrowserHistory. IOService is needed

to create URIs out of the targetURLs, because some messages to the interface

BrowserHistory only accept URIs.

Lines 9 to 11 save some URLs in variables for later use.

Lines 15 to 21 initialize XPCOM. This time it's a little bit different than in the

previous examples, because a Location Provider is needed.

Location Provider
The browser history and the bookmarks are saved in an SQLite database with

the name 'places'. This database is saved in the user's profile directory. To

access files and directories, both local and remote, XPCOM needs a location

provider. A location provider provides services of XPCOM with relevant paths, if

they are needed. A location provider in form of an java class can be found in

the appendix of this paper. This java class has to be in the same directory as

the examples the path to it has to be written in the CLASSPATH variable to

work. A ooRexx implementation of the location provider, named

locationProvider.cls, can also be found in the appendix. This version of the

Gerald Rauter Scripting Mozilla 23/39

/* checking, which URIs are in the browser history */
say 'Is 'targetUrl 'in the browserhistory?'; if(browserhistory~isVisited(uri))-
then say pp(yes); else; say pp(no)
say 'Is 'targetUrl2 'in the browserhistory?'; if(browserhistory~isVisited(uri2))-
then say pp(yes); else; say pp(no)
say 'Is' targetUrl3 'in the browserhistory?'; if(browserhistory~isVisited(uri3))-
then say pp(yes); else; say pp(no)
say '------'
say 'Last page visited was:' browserhistory~lastPageVisited
/* terminate XPCOM embedding */
mozilla~shutdownXPCOM(.nil)
say 'Mozilla XPCOM embedding finished!'
::requires BSF.cls

43
44

45

46

47
48
49
50
51
52
53
54

location provider was written by Mag. Dr. Rony G. Flatscher. A version of

example 4.5, which uses the ooRexx location provider can also be found there.

In all other examples the Java version of the location provider will be used.

If the location provider is in the same directory or in the CLASSPATH variable a

instance of it can be created with the command:

locprovider=.bsf~new("LocationProvider", grePath).

This locprovider has to be the second argument of the command

mozilla~initXPCOM(grePath, locprovider) which was .nil in earlier examples.

Now XPCOM is initialized with an working location provider.

In the lines till line 33 the services will be loaded like always.

Lines 36 to 38 create URIs out of the targetURLs like earlier mentioned.

Lines 41 and 42 write the first two URIs in the browser history. This could also

be done by visiting this sites.

Lines 44 to 46 check, if these URIs were visited once. The output for the first

two will be 'yes', because they were just added 2 lines above and the output

for the third URI will be 'no' if it wasn't visited though a window earlier.

In line 48 the URI of the last visited page will be printed on the screen. In this

case it will be http://derstandard.at, because this was the last added URI.

After that XPCOM will be shut down and the example is finished.

Gerald Rauter Scripting Mozilla 24/39

http://derstandard.at/

4.4) Inserting Bookmarks

This example will add an URI to the bookmarks and check the bookmarks for

URIs.

Gerald Rauter Scripting Mozilla 25/39

/* importing needed classes */
.bsf~bsf.import('java.io.File','File')
.bsf~bsf.import('org.mozilla.xpcom.Mozilla','Mozilla')
.bsf~bsf.import('org.mozilla.interfaces.nsIServiceManager','nsIServiceManager')
.bsf~bsf.import('org.mozilla.interfaces.nsINavBookmarksService', -

'BookmarksService')
.bsf~bsf.import('org.mozilla.interfaces.nsIIOService', 'IOService')
/* setting pages, that will be bookmarked */
targetUrl = 'http://www.wu.ac.at'
targetUrl2 = 'http://derstandard.at'
/* setting the installation path of the xulrunner */
grePathName = "C:\libs\xul\xulrunner-sdk\bin"
grePath = .File~new(grePathName)
mozilla = .Mozilla~getInstance
mozilla~initialize(grePath)
/* loading location provider */
locprovider=.bsf~new("LocationProvider", grePath)
/* Initiate XPCOM embedding */
mozilla~initXPCOM(grePath, locprovider)
say 'Mozilla XPCOM initialized!'
/* Get the Service Manager */
serviceManager = mozilla~getServiceManager
/* getting IIDs, which are needed to get the services */
bookmarkserviceID = .BookmarksService~NS_INAVBOOKMARKSSERVICE_IID
ioserviceID = .IOService~NS_IIOSERVICE_IID
/* getting the needed services */
bookmarkservice = -
 serviceManager~getServiceByContractID('@mozilla.org/browser/nav-bookmarks-'-
 ||'service;1', bookmarkserviceID)
ioservice = serviceManager~getServiceByContractID('@mozilla.org/network/io-'-
 ||'service;1', ioserviceID)
/* creating new folder in bookmarks */
menuFolder = bookmarkservice~getBookmarksMenuFolder
say 'creating new bookmarkfolder'
newFolderID = bookmarkservice~createFolder(menuFolder,'Uni', -

bookmarkservice~DEFAULT_INDEX)
/* creating URIs */
uri = ioservice~newURI(targetUrl, .nil, .nil)
uri2 = ioservice~newURI(targetUrl2, .nil, .nil)

1
2
3
4
5
6

7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34

35

36
37
38
39
40

41
42
43
44

http://www.wu.ac.at/
http://derstandard.at/

Lines 2 to 7 load all needed classes. The only new class in this example is

nsINavBookmarksService, which is the service to work with bookmarks.

After that, two targetURLs are saved and XPCOM is initialized. Again a location

provider is needed to be able to work with the SQLite database places, where

the bookmarks are stored.

Then the interfaces for the services are loaded.

In line 38 the menu folder of the bookmarks is loaded and in line 40 a new

folder with the name 'Uni' is created in this menu folder.

In lines 43 and 44 URIs are made out of the targetURLs, because the

bookmarks service can only work with URIs.

In line 47 the first URI is added to the new folder in the bookmarks with the

name 'WU Home'.

Lines 50 and 51 check if the two URIs are bookmarked. The first line will print

out '[YES]', because it was bookmarked some lines above. The second line will

print out '[NO]' if it wasn't bookmarked earlier.

After this XPCOM shuts down and the example is finished.

Gerald Rauter Scripting Mozilla 26/39

/* bookmarking targetUrl */
say 'bookmarking 'targetUrl
bookmarkservice~insertBookmark(newFolderID, uri, bookmarkservice~DEFAULT_INDEX,-

'WU Home')

/* checking, if targetUrl and targetUrl2 are bookmarked */
say 'Is 'targetUrl 'bookmarked?'; if(bookmarkservice~isBookmarked(uri)) then -

say pp(yes); else; say pp(no);
say 'Is 'targetUrl2 'bookmarked?'; if(bookmarkservice~isBookmarked(uri2)) then -

say pp(yes); else; say pp(no);
/* terminate XPCOM embedding */
mozilla~shutdownXPCOM(.nil)
say 'Mozilla XPCOM embedding finished!'
::requires BSF.cls

45
46
47

48
49
50

51

52
53
54
55
56
57

4.5) Saving a Website in a local file

This example will load an URL, open it in a new window and save it in a local

.html-file.

Gerald Rauter Scripting Mozilla 27/39

* importing needed classes */
.bsf~bsf.import('java.io.File','File')
.bsf~bsf.import('org.mozilla.xpcom.Mozilla','Mozilla')
.bsf~bsf.import('org.mozilla.interfaces.nsIAppStartup','nsIAppStartup')
.bsf~bsf.import('org.mozilla.interfaces.nsIServiceManager','nsIServiceManager')
.bsf~bsf.import('org.mozilla.interfaces.nsIWindowCreator','nsIWindowCreator')
.bsf~bsf.import('org.mozilla.interfaces.nsIWindowWatcher','nsIWindowWatcher')
.bsf~bsf.import('org.mozilla.interfaces.nsIIOService', 'IOService')
.bsf~bsf.import('org.mozilla.interfaces.nsIWebBrowserPersist', -

'nsIWebBrowserPersist')
.bsf~bsf.import('org.mozilla.interfaces.nsILocalFile', 'nsILocalFile')
/* getting path to the script */
dirpath= .File~new("")~getAbsolutePath
dirpath = dirpath"\savedsite.html"
say dirpath
/* setting targetUrl */
targetUrl = 'http://www.wu.ac.at'

/** Initiate XPCOM embedding with location provider */
grePathName = "C:\libs\xul\xulrunner-sdk\bin"
grePath = .File~new(grePathName)
mozilla = .Mozilla~getInstance
mozilla~initialize(grePath)
locprovider=.bsf~new("LocationProvider", grePath)
mozilla~initXPCOM(grePath, locprovider)
say 'Mozilla XPCOM initialized!'
/* Get the Service Manager */
serviceManager = mozilla~getServiceManager
/* getting IIDs, which are needed to get the services */
appStartupID = .nsIAppStartup~NS_IAPPSTARTUP_IID
windowCreatorID = .nsIWindowCreator~NS_IWINDOWCREATOR_IID
windowWatcherID = .nsIWindowWatcher~NS_IWINDOWWATCHER_IID
ioserviceID = .IOService~NS_IIOSERVICE_IID
webbrowserpersistID = .nsIWebBrowserPersist~NS_IWEBBROWSERPERSIST_IID
localfileID = .nsILocalFile~NS_ILOCALFILE_IID

1
2
3
4
5
6
7
8
9
10

11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41

http://www.wu.ac.at/

Lines 1 to 11 load all needed classes. All classes from the first example are

loaded (because a window will be opened) as well as IOService and two new

classes, WebBrowserPersist and LocalFile. WebBrowserPersist makes it possible

to save documents to local files or to remote files and LocalFile makes it

possible to access local files.

Lines 14 and 15 get the current path to the example file and add '\saved.html'

to it. This will be the path to the new saved file. This way, the new html-file will

be saved in the same location as the example file.

Lines 23 to 30 initialize XPCOM with a location provider.

In the lines until line 53 all needed services are loaded. This lines are quite

Gerald Rauter Scripting Mozilla 28/39

/* setting window properties */
winProps = "width=1000, height=600, resizable, centerscreen, scrollbars='yes'"
/* getting the needed services */
appStartup = serviceManager~getServiceByContractID('@mozilla.org/toolkit/app-'-

||'startup;1', appStartupID)
windowCreator = appStartup~queryInterface(windowCreatorID)
WindowWatcher = -

serviceManager~getServiceByContractID('@mozilla.org/embedcomp/window-'-
||'watcher;1', windowWatcherID)

windowWatcher~setWindowCreator(windowCreator)
ioservice = serviceManager~getServiceByContractID('@mozilla.org/network/io-'-

||'service;1', ioserviceID)
Webbrowserpersist = -
serviceManager~getServiceByContractID('@mozilla.org/embedding/browser/'-

||'nsWebBrowserPersist;1', webbrowserpersistID)
localfile = serviceManager~getServiceByContractID('@mozilla.org/file/local;1',-

localfileID)

/* creating URI */
uri = ioservice~newURI(targetURL, .nil, .nil)
/* create new local file */
localfile~initWithPath(dirpath)
/* save target of URI into local file */
webbrowserpersist~saveURI(uri, .nil, .nil, .nil, '', localfile)
/* open the window */
window = windowWatcher~openWindow(.nil,targetUrl,'BrowserWindow',winProps,.nil)
windowWatcher~setActiveWindow(window)
appStartup~run
/* terminate XPCOM embedding */
mozilla~shutdownXPCOM(.nil)
say 'Mozilla XPCOM embedding finished!'
::requires BSF.cls

42
43
44
45
46

47
48

49
50

51

52

53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72

similar to all previous examples and won't be farther explained.

Line 55 again creates an URI out of the targetURL.

Line 58 initializes the local file and line 61 saves the webpage into that file.

After that the webpage is opened in a new window and the example is finished.

Gerald Rauter Scripting Mozilla 29/39

4.6) Playing sounds

This example plays some sounds, namely the standard beep sound, the e-mail

notification sound and a wav-file which is loaded from the internet.

Gerald Rauter Scripting Mozilla 30/39

/* importing needed classes */
.bsf~bsf.import('java.io.File','File')
.bsf~bsf.import('org.mozilla.xpcom.Mozilla','Mozilla')
.bsf~bsf.import('org.mozilla.interfaces.nsIServiceManager','nsIServiceManager')
.bsf~bsf.import('org.mozilla.interfaces.nsISound', 'nsISound')
.bsf~bsf.import('org.mozilla.interfaces.nsIURI', 'nsIURI')
.bsf~bsf.import('org.mozilla.interfaces.nsIURL', 'nsIURL')
.bsf~bsf.import('org.mozilla.interfaces.nsIIOService', 'IOService')
/* setting URL of the target sound */
SoundUrl = -

'http://www.tote-taste.de/Einsatzleitung/Service/Wavs/material/WAV197.WAV'
--mp3 and midi don't work

/* Initiate XPCOM embedding */
grePathName = "C:\libs\xul\xulrunner-sdk\bin"
grePath = .File~new(grePathName)
mozilla = .Mozilla~getInstance
mozilla~initialize(grePath)
mozilla~initXPCOM(grePath, .nil)
say 'Mozilla XPCOM initialized!'
/*getting the service manager */
serviceManager = mozilla~getServiceManager
/* getting IIDs, which are needed to get the services */
soundID = .nsISound~NS_ISOUND_IID
ioserviceID = .IOService~NS_IIOSERVICE_IID
urlID = .nsIURL~NS_IURL_IID
/* getting the needed services */
sound = serviceManager~getServiceByContractID('@mozilla.org/sound;1', soundID)
ioservice = serviceManager~getServiceByContractID('@mozilla.org/network/io-'-

||'service;1', ioserviceID)
/* creating URI and converting it into an URL */
musikuri = ioservice~newURI(soundURL, .nil, .nil)
musikurl = musikuri~queryInterface(urlID)

1
2
3
4
5
6
7
8
9
10
11
12

13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33

34
35
36
37

http://www.tote-taste.de/Einsatzleitung/Service/Wavs/material/WAV197.WAV

Lines 2 to 9 load all needed classes. Three classes, which weren't used until

now are loaded, which are the interfaces for sound, URIs and URLs.

Line 12 saves the URL to the later played wav-file in the variable soundurl.

Lines 16 to 20 initialize XPCOM. This time no location provider is needed, that's

why the second argument of the command in line 20 is .nil.

Lines 24 to 34 load all services like always.

Lines 36 and 37 convert the soundurl in an URI and back in an readable URL.

This has to be done, because the value saved in the variable soundurl is only a

string, but it has to be of the type nsIURL.

Line 39 plays the standard system beep.

Line 42 plays the e-mail-notification sound. The command ~playEventSound()

accepts the name of the event as an argument, but also constant values. Zero

(0) for example stands for the e-mail-notification sound. A full list of Events

and constants can be found at [Dev2]..

Line 45 plays the sound of the musikurl. The argument has to be of the type

nsIURL.

After the last sound XPCOM shuts down and the example is finished.

Gerald Rauter Scripting Mozilla 31/39

/* play a windows beep, a e-mail-notification and the target sound */
sound~beep
SAY "a beep"
CALL SysSleep 1
sound~playEventSound(0)
SAY "e-mail sound"
CALL SysSleep 1
sound~play(musikurl)
SAY "birdsounds"
CALL SysSleep 8
/* terminate XPCOM embedding */
mozilla~shutdownXPCOM(.nil)
say 'Mozilla XPCOM embedding finished!'
::requires BSF.cls

38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53

5) Conclusion

The goal of this paper was to show the possibilities of scripting Mozilla

components via JavaXPCOM, BSF4ooRexx and ooRexx as well as explain how

it's done with small nutshell examples.

OoRexx and BSF4ooRexx are fitting tools to work with JavaXPCOM to script

Mozilla components. The easy syntax of ooRexx and it's dynamic data typing

are great add-ons to the nearly infinite possibilities of the Java programming

language.

Unfortunately Java and JavaXPCOM arn't the best tools to work with XPCOM.

The lack of Java examples for this topic on the internet as well as the dropped

support and the fact that JavaXPCOM isn't developed further by the Mozilla

Corporation make it hard to work with this approach.

In the opinion of the author it's much easier and more rewarding to use C or

C++ to work with XPCOM. XPCOM itself and most examples and add-ons on

the internet are written in C++, which makes researching for this topic much

easier.

However, if someone only knows ooRexx and Java the approach described in

this paper is a great solution to work with XPCOM, but it's harder than working

with C++.

Gerald Rauter Scripting Mozilla 32/39

6) Bibliography

[Palk1]: Martin Palkovic: JavaXPCOM: Mozilla Firefox Scripting. http://wi.wu-

wien.ac.at/rgf/diplomarbeiten/Seminararbeiten/2010/201007_Palkovic/201007

_Palkovic_JavaXPCOM_Mozilla_Firefox_Scripting.pdf last retrieved on 2011-07-

28

[Dev1]: window.open, MDN Docs. https://developer.mozilla.org/en/DOM/window.open

last retrieved on 2011-07-28

[Dev2]: Interface Reference for nsISound.

https://developer.mozilla.org/en/XPCOM_Interface_Reference/nsISound last

retrieved on 2011-07-20

[Dev3]: Building JavaXPCOM.

https://developer.mozilla.org/en/Building_JavaXPCOM last retrieved on 2011-

07-31

[Dev4]: XPCOM Interface Reference.

https://developer.mozilla.org/en/XPCOM_Interface_Reference last retrieved on

2011-07-31

[Dev5]: An Overview of XPCOM.

https://developer.mozilla.org/En/Creating_XPCOM_Components/An_Overview_

of_XPCOM last retrieved on 2011-07-31

[Dev6]: XULRunner 1.9.2 Release Notes.

Gerald Rauter Scripting Mozilla 33/39

https://developer.mozilla.org/En/Creating_XPCOM_Components/An_Overview_of_XPCOM
https://developer.mozilla.org/En/Creating_XPCOM_Components/An_Overview_of_XPCOM
https://developer.mozilla.org/en/XPCOM_Interface_Reference
https://developer.mozilla.org/en/Building_JavaXPCOM
https://developer.mozilla.org/en/XPCOM_Interface_Reference/nsISound
https://developer.mozilla.org/en/DOM/window.open
http://wi.wu-wien.ac.at/rgf/diplomarbeiten/Seminararbeiten/2010/201007_Palkovic/201007_Palkovic_JavaXPCOM_Mozilla_Firefox_Scripting.pdf
http://wi.wu-wien.ac.at/rgf/diplomarbeiten/Seminararbeiten/2010/201007_Palkovic/201007_Palkovic_JavaXPCOM_Mozilla_Firefox_Scripting.pdf
http://wi.wu-wien.ac.at/rgf/diplomarbeiten/Seminararbeiten/2010/201007_Palkovic/201007_Palkovic_JavaXPCOM_Mozilla_Firefox_Scripting.pdf

https://developer.mozilla.org/en/XULRunner_1.9.2_Release_Notes last

retrieved on 2011-07-30

[xpc1]: JavaXPCOM. https://developer.mozilla.org/en/javaxpcom last retrieved on 2011-

07-31

[wiki1]: Wikipedia: REXX http://en.wikipedia.org/wiki/REXX last retrieved on

2011-07-28

[rexla1]: The Rexx Language Association http://www.rexxla.org/rexxlang/ last

retrieved on 2011-07-28

[flatscher1]: Flatscher, Rony G.: BSF4ooRexx http://wi.wu-

wien.ac.at:8002/rgf/wu/lehre/autojava/material/foils/AutoJava-BSF4ooRexx-

01.pdf last retrieved on 2011-07-30

[finkle1]:Mark Finkle: Mark Finkle’s Weblog.

http://starkravingfinkle.org/blog/2010/07/the-future-of-javaxpcom/ last retrieved

on 2011-07-31

[hoisl1] Hoisl, Bernhard: Automating Subversion. Wien, 2005.

http://wi.wu.ac.at/rgf/diplomarbeiten/BakkStuff/2005/200507_Subversion_Hoi

sl/200507_AutomatingSubversion.pdf last retrieved on 2011-07-30

Gerald Rauter Scripting Mozilla 34/39

http://wi.wu.ac.at/rgf/diplomarbeiten/BakkStuff/2005/200507_Subversion_Hoisl/200507_AutomatingSubversion.pdf
http://wi.wu.ac.at/rgf/diplomarbeiten/BakkStuff/2005/200507_Subversion_Hoisl/200507_AutomatingSubversion.pdf
http://starkravingfinkle.org/blog/2010/07/the-future-of-javaxpcom/
http://wi.wu-wien.ac.at:8002/rgf/wu/lehre/autojava/material/foils/AutoJava-BSF4ooRexx-01.pdf
http://wi.wu-wien.ac.at:8002/rgf/wu/lehre/autojava/material/foils/AutoJava-BSF4ooRexx-01.pdf
http://wi.wu-wien.ac.at:8002/rgf/wu/lehre/autojava/material/foils/AutoJava-BSF4ooRexx-01.pdf
http://www.rexxla.org/rexxlang/
http://en.wikipedia.org/wiki/REXX
https://developer.mozilla.org/en/javaxpcom
https://developer.mozilla.org/en/XULRunner_1.9.2_Release_Notes

7) Appendix

Source Code of the Java-Location Provider:

This Location Provider was taken out of the seminar paper from Martin Palkovic

[Source: Palk1]

LocationProvider.class has to be in the same directory as the examples or its

path has to be added to the CLASSPATH variable.

Gerald Rauter Scripting Mozilla 35/39

import java.io.*;
import org.mozilla.xpcom.*;

public class LocationProvider implements IAppFileLocProvider {
private final File libXULPath;
int counter = 0;
public LocationProvider(File grePath) {
 this.libXULPath = grePath;
}

public File getFile(String aProp, boolean[] aPersistent) {
 File file = null;

 if (aProp.equals("GreD") || aProp.equals("GreComsD")) {
 file = libXULPath;
 if (aProp.equals("GreComsD")) {
 file = new File(file, "components");
 }
 }
 else if (aProp.equals("MozBinD") || aProp.equals("CurProcD") ||
aProp.equals("ComsD") || aProp.equals("ProfD"))
 {
 file = libXULPath;
 if (aProp.equals("ComsD")) {
 file = new File(file, "components");
 }
 }
 return file;
}

public File[] getFiles(String aProp) {
 File[] files = null;
 if (aProp.equals("APluginsDL")) {
 files = new File[1];
 files[0] = new File(libXULPath, "plugins");
 }
 return files;
 }
}

Source code of the ooRexx location provider

This version of the location provider was witten by Professor Rony G. Flatscher

and sent to the author of this paper on the 2nd August 2011. The intended

purpose of this location provider is to make it possible to address and work

with JavaXPCOM only with ooRexx.

Gerald Rauter Scripting Mozilla 36/39

/*
 author: Rony G. Flatscher (c) 2011
 purpose: implement a LocationProvider in Rexx instead of Java by

 implementing
 the interface methods "org.mozilla.xpcom.IAppFileLocProvider"
 needs: BSF4ooRexx
 date: 2011-08-02
 license: AL 2.0 or CPL 1.0

-- usage-example (snippet):

-- ... cut
grePathName="C:\libs\xul\xulrunner-sdk\bin" -- give path to xulrunner's bin

-- directory
grePath=.bsf~new("java.io.File", grePathName) -- create a File object

mozilla=.Mozilla~getInstance~~initialize(grePath) -- create Mozilla instance
 -- and initialize it

 -- create instance of Rexx class, supply 'grePath' File object
lp=.LocationProvider~new(grePath) -- create a Rexx object

 -- create a Java Rexx proxy: allow it to be used in Java wherever a
 --"org.mozilla.xpcom.IAppFileLocProvider" is needed as an argument;
 -- all Java method invocations will be forwarded to the Rexx object:
rp=BSFCreateRexxProxy(lp,,"org.mozilla.xpcom.IAppFileLocProvider")

mozilla~initXPCOM(grePath,rp) -- "rp" is the Java Rexx proxy forwarding
 --messages to its proxy, the "lp" Rexx object

-- ... cut ...
*/

Gerald Rauter Scripting Mozilla 37/39

/* Rexx implementation of the interface "org.mozilla.xpcom.IAppFileLocProvider".
*/
::class LocationProvider public
::attribute libXULPath -- allow Rexx direct access to this attribute (just a

–- convenience)

::method '<init>' -- Java constructor (just for completeness here)
 expose libXULPath
 use arg libXULPath
 say "in '<init>' (Java constructor), received and memorized:" -

libXULPath~toString
::method init -- Rexx constructor
 expose libXULPath
 use arg libXULPath
 say "in 'init' (Rexx constructor), received and memorized:" -

libXULPath~toString
::method getFile -- interface method implementation
 expose libXULPath
 use arg aProp, aPersistent
 file=.nil
 if wordpos(aProp,"ComsD CurProcD GreComsD GreD MozBinD ProfD")>0 then
 do
 file=libXULPath -- point to directory
 if wordpos(aProp,"ComsD GreComsD")>0 then
 file=.bsf~new("java.io.File", file, "components")
 end
 return file
::method getFiles -- interface method implementation
 expose libXULPath
 use arg aProp
 files=.nil
 if aProp="APluginsDL" then
 files=bsf.javaArrayOf(.bsf~new("java.io.File", libXULPath, "plugins"))
 return files

Example 4.5) with ooRexx location provider:

Gerald Rauter Scripting Mozilla 38/39

/* importing needed classes */
.bsf~bsf.import('java.io.File','File')
.bsf~bsf.import('org.mozilla.xpcom.Mozilla','Mozilla')
.bsf~bsf.import('org.mozilla.interfaces.nsIAppStartup','nsIAppStartup')
.bsf~bsf.import('org.mozilla.interfaces.nsIServiceManager','nsIServiceManager')
.bsf~bsf.import('org.mozilla.interfaces.nsIWindowCreator','nsIWindowCreator')
.bsf~bsf.import('org.mozilla.interfaces.nsIWindowWatcher','nsIWindowWatcher')
.bsf~bsf.import('org.mozilla.interfaces.nsIIOService', 'IOService')
.bsf~bsf.import('org.mozilla.interfaces.nsIWebBrowserPersist', -

'nsIWebBrowserPersist')
.bsf~bsf.import('org.mozilla.interfaces.nsILocalFile', 'nsILocalFile')
/* getting path to the script */
dirpath= .File~new("")~getAbsolutePath
dirpath = dirpath"\savedsite.html"
say dirpath
/* setting targetUrl */
targetUrl = 'http://www.wu.ac.at'

/** Initiate XPCOM embedding with location provider */

grePathName="C:\libs\xul\xulrunner-sdk\bin" -- give path to xulrunner's bin
–- directory

grePath=.bsf~new("java.io.File", grePathName) -- create a File object
mozilla=.Mozilla~getInstance~~initialize(grePath) -- create Mozilla instance

 --and initialize it

 -- create instance of Rexx class, supply 'grePath' File object
lp=.LocationProvider~new(grePath) -- create a Rexx object
 -- create a Java Rexx proxy: allow it to be used in Java wherever a
 –- "org.mozilla.xpcom.IAppFileLocProvider" is needed as an argument;
 --all Java method invocations will be forwarded to the Rexx object:
rp=BSFCreateRexxProxy(lp,,"org.mozilla.xpcom.IAppFileLocProvider")
mozilla~initXPCOM(grePath,rp) -- "rp" is the Java Rexx proxy forwarding

--messages to its proxy, the "lp" Rexx object
say 'Mozilla XPCOM initialized!'

http://www.wu.ac.at/

Gerald Rauter Scripting Mozilla 39/39

/* Get the Service Manager */
serviceManager = mozilla~getServiceManager
/* getting IIDs, which are needed to get the services */
appStartupID = .nsIAppStartup~NS_IAPPSTARTUP_IID
windowCreatorID = .nsIWindowCreator~NS_IWINDOWCREATOR_IID
windowWatcherID = .nsIWindowWatcher~NS_IWINDOWWATCHER_IID
ioserviceID = .IOService~NS_IIOSERVICE_IID
webbrowserpersistID = .nsIWebBrowserPersist~NS_IWEBBROWSERPERSIST_IID
localfileID = .nsILocalFile~NS_ILOCALFILE_IID
/* setting window properties */
winProps = "width=1000, height=600, resizable, centerscreen, scrollbars='yes'"
/* getting the needed services */
appStartup = serviceManager~getServiceByContractID('@mozilla.org/toolkit/app-'-

||'startup;1', appStartupID)
windowCreator = appStartup~queryInterface(windowCreatorID)
windowWatcher = -

serviceManager~getServiceByContractID('@mozilla.org/embedcomp/window-'-
||'watcher;1', windowWatcherID)

windowWatcher~setWindowCreator(windowCreator)
ioservice = serviceManager~getServiceByContractID('@mozilla.org/network/io-
service;1', ioserviceID)
webbrowserpersist = -

serviceManager~getServiceByContractID('@mozilla.org/embedding/browser/'-
||'nsWebBrowserPersist;1', webbrowserpersistID)

localfile = serviceManager~getServiceByContractID('@mozilla.org/file/local;1',-
localfileID)

/* creating URI */
uri = ioservice~newURI(targetURL, .nil, .nil)
/* create new local file */
localfile~initWithPath(dirpath)
/* save target of URI into local file */
webbrowserpersist~saveURI(uri, .nil, .nil, .nil, '', localfile)
/* open the window */
window = windowWatcher~openWindow(.nil,targetUrl,'BrowserWindow',winProps,.nil)
windowWatcher~setActiveWindow(window)
appStartup~run
/* terminate XPCOM embedding */
mozilla~shutdownXPCOM(.nil)
say 'Mozilla XPCOM embedding finished!'
::requires locationProvider.cls
::requires BSF.cls

	1) Introduction
	1.1) About this paper
	1.2) About the topic

	2) Used Software
	2.1) ooRexx
	2.2) BSF4ooRexx
	2.3) XPCOM
	2.4) JavaXPCOM

	3) Installation
	3.1) Installation of ooRexx
	3.2) Installation of BSF4ooRexx
	3.3) Installation of JavaXPCOM

	4) Examples
	4.1) Opening an URL in a window
	4.2) Reading and deleting Cookies
	4.3) Creating and reading History entries
	Location Provider

	4.4) Inserting Bookmarks
	4.5) Saving a Website in a local file
	4.6) Playing sounds

	5) Conclusion
	6) Bibliography
	7) Appendix
	Source Code of the Java-Location Provider:
	Source code of the ooRexx location provider
	Example 4.5) with ooRexx location provider:

