
SEMINAR PAPER

openHAB – Empowering the Smart Home
History, Concepts, Examples

Author
Manuel Raffel

h0850648

Class Number 4289
Class Title IS Projektseminar
Instructor ao.Univ.Prof. Mag. Dr. Rony G. Flatscher

Abstract

This seminar paper handles the open source software openHAB,

its history, concepts and provides examples for its use.

An historical overview on smart homes in general and openHAB

in particular is given. The enabling technology is briefly explained

and the core architecture of the software is depicted in great

detail. Following this, an isolated example on how to use the sys-

tem for a specific situation is discussed step by step.

The paper is concluded with a summary of the main messages of

each section and recent developments and their impact on the

future of openHAB are brought forward.

Contents

1 Introduction ... 1

2 History .. 2

3 Enabling Technology ... 3

3.1 Protocols .. 3

3.1.1 EnOcean .. 3

3.1.2 KNX .. 4

3.1.3 X10 ... 4

3.2 Open Service Gateway initiative (OSGi) ... 5

3.3 Representational State Transfer (REST) .. 6

4 Architecture ... 7

4.1 Core .. 7

4.1.1 Items .. 7

4.1.2 Event Bus .. 8

4.2 Base Library ... 9

4.3 Repository .. 9

4.4 REST Service .. 9

4.5 User Interfaces .. 10

4.6 Automation Logic ... 10

4.7 Protocol Bindings ... 10

4.8 Item Provider .. 11

5 Practical Usage .. 11

5.1 Setup ... 12

5.2 Configuration .. 13

5.3 Adding Functionality .. 14

5.3.1 Creating Items .. 14

5.3.2 Ensuring Persistence .. 17

5.3.3 Defining Rules .. 21

5.3.4 Using Scripts ... 23

5.4 Bindings ... 23

5.4.1 KNX .. 23

5.4.2 Bluetooth ... 25

5.5 Visualization .. 26

6 Summary and Outlook ... 28

Appendix A – Tables .. i

Appendix B – Figures .. ii

Appendix C – Listings ... vii

Literature ... xi

openHAB – History, Concepts, Examples

1 Introduction

While many may have heard of a “smart home” before, few will have a concrete understanding as of

what exactly is meant with it. Neither space efficiency, building technique, usage of solar power nor

waste water recycling does make a house smart. Although they often include these kind of things,

what makes a smart home actually smart is the interactive technology it contains. [Harper 2003]

Albeit the level of interactivity varies between smart homes, they all have in common that they con-

tain intelligent objects. There are different levels of communication of information within and bey-

ond the smart home. Some homes can learn from the behaviour of their inhabitant and some even

maintain constant awareness of occupants and objects. Starting from a certain level of interaction and

abilities, all this needs to be controlled by a central and intelligent system. [Harper 2003]

OpenHAB (Open Home Automation Bus) is a project that acts as such a central system. Being open

source, it is actively worked on by a large amount of people. Additionally, this means that everyone

using it can adapt the code to his own needs, if necessary. The system wants to achieve a high level of

compatibility and usability by providing a modular structure and a high number of supported techno-

logies. [OpenHAB 2014]

The aim of this paper is to give an overview of the capabilities and concepts of openHAB as well as

provide a brief outlook of things to come and latest developments. To achieve this, the following

content is discussed:

• A brief overview on the history of smart homes in general and openHAB in particular (see

Section 2).

• The enabling technology for this kind of connectivity in order to provide a deeper under-

standing for the system (see Section 3).

• The architecture behind the modular system of openHAB and its core components (see Sec-

tion 4).

• An isolated example that leads through all steps necessary to set up the system introducing

some of the features of openHAB (see Section 5).

The paper is then concluded by summarizing its content and providing an outlook for future develop-

ment directions (see Section 6).

© Manuel Raffel - 1 / 28 -

openHAB – History, Concepts, Examples

2 History

Although some hobbyists started modifying their houses in a “smart” direction as early as 1960, the

term and practical application only just recently made its way to a greater number of people. Accord-

ing to Harper et. al., seedbed for the emergence of smart homes was the fast development of

domestic technology from the introduction of electricity in the first quarter of the 20 th century to the

introduction of information technology in the last quarter. [Harper 2003]

Starting 1915, the first domestic machines requiring electricity were introduced into the households.

Vacuum cleaners, food processors and sewing machines were advertised as time saving devices,

though electricity was not yet very widespread. Until 1940, the proportion of households with access

to electricity increased steadily, though most households only had it for lightning with none or just

one socket for other devices. In the 1960s, when the ideal of the stay-at-home-housewive was over-

turned, and labour-saving devices thus became common in the home. In the 1980s and 90s the trend

of increased technologisation continued. Colour television was a standard and the first multimedia

PCs started to penetrate the domestic market, blurring the distinction between home and work.

[Harper 2003]

Commercial interest in home automation lead to the foundation of a special interest group called

“Smart House” by the National Association of Home Builders in the USA. Its aim was to push for

the inclusion of necessary technology into the design of new homes. The concept finally became

greater awareness through its appearance in life-style magazines such as Vanity Fair. Nevertheless,

actual usage in private households remained low. [Harper 2003] Until now, the number has increased

and is supposed to continue its rise. [Wikipedia 2014d]

OpenHAB was initially developed by Kai Kreuzer, a software architect with numerous years of

experience. Initially, he was looking for an open source software to control the systems he was

installing in his own house. He found but one, an old piece of software which was hard to extend and

maintain. Therefore, in 2010 he decided to write his own. At the time of writing this paper, Open-

HAB had reached version 1.5 and was used in over 1.000 installations. [InnoQ 2014]

© Manuel Raffel - 2 / 28 -

openHAB – History, Concepts, Examples

3 Enabling Technology

OpenHAB is based on several different layers of technology that provide the needed abilities for the

system to be interactive. This section explains them in a general way to establish the necessary found-

ation needed to understand openHAB itself.

3.1 Protocols

Home automation devices rely on a possibility to communicate with each other and the central server.

Over the course of time, several technologies that can achieve this emerged. Some of them and their

characteristics in terms of transmission type can be found in Table 1. Furthermore, the following sec-

tions will give an exemplary description of some.

Protocol Wired1 Powerline2 Wireless3

C-Bus yes no yes

EnOcean no no yes

Insteon no yes yes

KNX yes yes yes

Universal Powerline Bus (UPB) no yes no

X10 no yes yes

Zigbee no no yes

Z-Wave no no yes

Table 1: Smart Home Protocols [HomeAutomation 2014]

3.1.1 EnOcean

EnOcean is a purely wireless technology that is used primarily in automation systems, but also in

industry, logistics and smart homes. It incorporates a proprietary wireless standard that is ratified as

an international ISO standard. [EnOcean 2014]

1 Wired: A special cable has to be installed that connects all smart devices in order to allow communication
between them [HomeAutomation 2014]. Typically, a special type of wiring to cancel out electromagnetic
interference from external sources is used, a so-called twisted pair cabling [TwistedPair 2014].

2 Powerline: Transmission of data over a conductor that is also used for normal AC power transmission. This
is achieved by adding a modulated carrier signal to the wiring system. Therefore, no additional wiring has to
be installed as the existing AC cables can be used. [PowerLine 2014]

3 Wireless: Transmission of data between two ore more points that are not connected by an electrical
conductor [Wireless 2014]. Smart home systems use a wide range of technologies and frequencies for their
wireless connectivity [HomeAutomation 2014].

© Manuel Raffel - 3 / 28 -

openHAB – History, Concepts, Examples

What makes this technology particularly interesting for use in home automation is its energy-harvest -

ing capability. EnOcean is using a combination of electromagnetic, solar and thermoelectric energy

converters to generate energy out of environmental energy fluctuations. Because of this, the use of

e.g. wire- and battery-free light switches becomes possible. Other usages include light sensors, tem-

perature sensors and even key card switches. [EnOcean 2014]

3.1.2 KNX

KNX is based on three previous home automation standards, the European Home Systems Protocol

(EHS), BatiBUS and the European Installation Bus (EIB) and., like EnOcean, ratified as an interna-

tional ISO standard. [KNX 2014a]

The protocol defines several physical communication media's including standard wiring, powerline

networking, radio and also infrared as well as ethernet. It appears to be the most used standard in

home automation. [KNX 2014a] As of 15th June 2014, the KNX Association had 352 members/man-

ufacturers from 37 distinct countries [KNX 2014b]. Furthermore, it has partnership agreements with

more than 30.000 installer companies in 100 countries and over 60 technical universities as well as

more than 150 training centres. Its main benefit is that every of the more than 7.000 KNX certified

products has been conformity tested by KNX accredited third party test labs. Therefore, components

of different manufacturers are guaranteed to be compatible with each other. [KNX 2014a]

3.1.3 X10

X10 is probably the oldest of the nowadays used protocols. It primarily uses powerline but also

defines a wireless radio based communication. Having been developed as early as 1975, it was the first

general purpose home automation network technology. [X10 2014]

Although it is still widely used, the age of X10 means there are some shortcomings that newer proto -

cols do not have. This includes commands getting lost if two signals are transmitted ad the same time

through which they may collide. Also, the protocol is slow, as it takes roughly three quarters of a

second to transmit a command. [X10 2014]

© Manuel Raffel - 4 / 28 -

openHAB – History, Concepts, Examples

3.2 Open Service Gateway initiative (OSGi)

The Open Service Gateway initiative (OSGi) is a set of specifications that describe a modular com-

ponent system for the Java programming language. It enables a development model where applica-

tions are dynamically composed of many different components. [OSGi 2011] Because of this, it is

possible to add or remove functionality during runtime without stopping the application. Several well-

known applications, including the Java IDE NetBeans and IBM's WebSphere Application Server, are

based on OSGi. [OSGi 2014]

Figure 1 shows the model of OSGi which includes the following layers: [OSGi 2011] [OSGi 2014]

• Bundles

A Bundle is a piece of code written in Java that provides a certain functionality. It can be

loaded into the OSGi framework where it interacts with all layers.

• Services

The Service Layer maintains a registry of all loaded bundles and their functionality. Upon

being loaded into OSGi, a bundle registers its interfaces in the service registry.

• Life Cycle

This layer provides a life cycle API to bundles, i.e. functionality to start, stop, install, update

and uninstall bundles.

© Manuel Raffel - 5 / 28 -

Figure 1: OSGi layers [OSGi 2011] [OSGi 2014]

openHAB – History, Concepts, Examples

• Modules

Provides the modularization capabilities for OSGi. Incorporates strict rules for sharing Java

packages between bundles or hiding packages from other bundles.

• Execution Environment

Defines the methods and classes available in a specific execution environment, e.g. Java ME or

the JRE.

• Security

Handles overall security by limiting the functionality of bundles to pre-defined capabilities

while also maintaining runtime interaction with the security layer integrated in Java.

• Java VM

The Java Virtual Machine (VM) provides the platform-independent interface for OSGi to run

on.

• Native Operation System / Hardware

The Operating System (OS) that runs on the machine where OSGi is installed. As OSGi is

based on Java, it can run on virtually any existing OS and hardware architecture.

3.3 Representational State Transfer (REST)

Representational State Transfer (REST) is a software architectural style to read, create, update or

delete information on a server by using standard HTTP calls. It provides a simple alternative to other

web service mechanisms like the Simple Object Access Protocol (SOAP) or Remote Procedure Call

(RPC). Furthermore, REST is stateless, i.e. there is no information of the clients current state being

stored on the server. This implies that each request has to contain all necessary information for the

server to determine what he has to send back to the client but allows for an unproblematic way of

exchanging server functionality as no state information can be lost. [REST 2014]

4 Architecture

While the openHAB runtime includes all the technologies explained in Section 3, its actual architec-

ture is more complex as can be seen in Figure 2.

© Manuel Raffel - 6 / 28 -

openHAB – History, Concepts, Examples

All units shown in Figure 2 are OSGi bundles or categories of bundles dedicated to specific purposes

within the openHAB runtime [OpenHAB 2014]. A detailed explanation of them can be found in the

following sections.

4.1 Core

The openHAB Core bundle constitutes the main foundation of the openHAB runtime. It contains

basic definitions for all other bundles to build on and introduces two important concepts.

4.1.1 Items

An item is an abstract object that can be read from or written to. It normally refers to a particular

device in the physical world or some value of it. E.g., it could be bound to a specific switch that is

connected to openHAB via KNX. As the items and their values are also stored in a central item

registry, the repository (see Section 4.3), the corresponding item will always refer to the current state

of the switch (e.g. on or off). [OpenHAB 2014]

© Manuel Raffel - 7 / 28 -

Figure 2: The openHAB Architecture. [OpenHAB 2014]

openHAB – History, Concepts, Examples

4.1.2 Event Bus

The most vital base service of the openHAB runtime, the event bus (see Figure 3), is also included in

the core bundle.

The bus is used by all other bundles that do not require stateful behaviour, i.e. the server keeping

track of the bundles status. Two kinds of events typically are transmitted over the bus:

• Commands, which set off an action or a state change for a particular item.

• Status updates, which inform about a state change of some item, e.g. as response to a com-

mand or when a movement sensor was triggered.

© Manuel Raffel - 8 / 28 -

Figure 3: The openHAB Event Bus. [OpenHAB 2014]

openHAB – History, Concepts, Examples

It is recommended that all protocol bindings, which provide the link to the physical devices, commu-

nicate via the event bus to make sure that the coupling between the bundles remains on a low level.

[OpenHAB 2014]

4.2 Base Library

Library for all kind of features that are supposed to be available in every openHAB installation. At

the time of writing of this paper, only a feature to integrate telephony into openHAB was in this

bundle. [OpenHAB 2014]

4.3 Repository

As not all functionality can be covered purely by stateless services like the event bus, openHAB also

offers a repository which keeps track of the current status of all items. It listens on the event bus and

updates stored items according to status updates, as can be seen in Figure 3. [OpenHAB 2014]

Whenever the need arises to know the current state of an item, the repository can be used. It avoids

that each bundle has to keep track of item states themselves for their internal use and therefore

makes sure that the state is in sync for all bundles. Furthermore, it provides the possibility to save the

states to the file system or the database, so that they are kept upon an eventual restart of the system.

[OpenHAB 2014]

Other bundles, like the automation logic, are highly dependent on the repository, as it needs to always

be informed about the current item states. User interfaces also depend on it, as the underlying REST

service has to transmit up-to-date data to the client. [OpenHAB 2014]

4.4 REST Service

The REST service provides an API for a variety of purposes. Firstly, it can be used to access all items

used in the system. A list of them can be retrieved including their current state or they can be

accessed individually. This includes the possibility to send commands to an item. [OpenHAB 2014]

Secondly, all declared sitemaps are retrievable. A sitemap is a definition for the structure and content

of different UI screens and is explained in more detail in Section 4.5. Of course, it is also possible to

access the details of a specific sitemap. [OpenHAB 2014]

© Manuel Raffel - 9 / 28 -

openHAB – History, Concepts, Examples

Lastly, the API makes it possible to subscribe a client to an item, a group of items, an item state and a

single page of a sitemap. The service will automatically send an update to the subscribed client if the

subscribed resource changes. [OpenHAB 2014]

4.5 User Interfaces

The user interface (UI) of openHAB is built with so-called sitemaps. A sitemap basically is a textual

configuration file that consists of a tree structure of widgets and defines different pages of the UI

and their content. A widget can be associated to an item to show the status and according control ele-

ments. [OpenHAB 2014]

4.6 Automation Logic

OpenHABs automation logic consists of two different components, scripts and rules. [OpenHAB

2014]

Scripts are blocks of code that can be defined by the user and stored at a particular location to be

reusable from different places. They use openHABs own expression language which is similar to Java

but includes several features that allow writing concise code. [OpenHAB 2014]

Rules are what makes the real home automation part in openHAB. A rule consists of one or more

triggers, i.e. conditions that start the execution of a rule. Triggers can be item-based, time-based or

system-based, thus either reacting on events on the event bus, on certain time constraints or on

changes in the system status, e.g. shutdown. [OpenHAB 2014]

4.7 Protocol Bindings

Bindings are a major feature of openHAB, as they provide the necessary communication abilities for

different kinds of underlying technology. With the help of a binding, openHAB can e.g. access serial

devices or the KNX bus. As of 30th May 2014, openHAB provided 74 distinct bindings. A compre-

hensive list can be found in Appendix A, Table 6. [OpenHAB 2014]

© Manuel Raffel - 10 / 28 -

openHAB – History, Concepts, Examples

4.8 Item Provider

This bundle extends the capabilities of the user interface and its sitemaps. An item provider can

define what widget is to be used for a particular item. It can furthermore change its icon and label

depending on the item's current state. This allows for a dynamically, i.e. at runtime, assembled user

interface. The sitemap only defines the display of a certain group, while the actual content of the

group is taken from the group's item provider. [OpenHAB 2014]

5 Practical Usage

This section provides a guide containing the necessary steps to set up openHAB and simulate a basic

home automation scenario. It is intended to show the uncomplicatedness of the whole process. All

following steps were conducted on a machine running a 64bit version of Windows 7 Ultimate SP1,

but were afterwards replicated on a Mac running OS X version 10.9.3 and in a virtual machine run-

ning the Linux distribution Fedora 20 without any problem whatsoever. The used version of open-

HAB was initially 1.4.0, but after release of its latest version 1.5.0 on 15 th June 2014 all steps were

redone to make sure the functionality described here is consistent between both versions.

The setting for this guide is a house with one floor and several rooms that incorporate numerous

devices linked together with a KNX bus. OpenHAB is the software of choice to run all aspects of

home automation in this environment. As a first step, the corridor and the office are to be made

accessible and controllable by an internet platform. The corridor comprises the main door of the

house, which has a sensor to capture if its opened or closed as well as a light at the ceiling. The office

too has a light at the ceiling as well as a light for the worktable. Additionally, the two windows in the

room have sensors that register if they are opened or closed. Furthermore, one temperature sensor is

installed on the outside of the windows and one in the room itself. The windows also have motorized

roller shutters that are connected to the KNX bus. The setting will be referred to as DemoHouse in

the remainder of this paper.

For later reference, a comprehensive collection of all files written in this section can be found in

Appendix C.

© Manuel Raffel - 11 / 28 -

openHAB – History, Concepts, Examples

5.1 Setup

The latest version of openHAB can be downloaded from its website, http://www.openhab.org/.

The components available for download can be found directly at

http://www.openhab.org/downloads.html. For a basic setup only the “openHAB Runtime

Core” is necessary. In addition, several features required for DemoHouse depend on additional

bundles. All bundles can be acquired at once by downloading the “Addons” package. As openHAB is

written in Java, a Java Runtime Environment (JRE) is also necessary. An appropriate version can be

downloaded at http://www.java.com/.

OpenHAB Core comes packaged in a ZIP archive without any installer whatsoever and therefore has

to be copied manually into the desired directory which is not allowed to have any blank in its path.

For reasons of simplicity C:\openHAB\ was used in the course of this paper. After unpacking the

archive, several files and directories can be found in the directory. For further reference, the most

important ones needed to configure and operate openHAB are listed in alphabetical order in Table 2.

File / Directory Description

openHAB Folder that contains the main installation of openHAB.

├ addons Folder for all bundles that extend functionality.

├ configurations Folder that contains all configuration files.

│ ├ items Folder that contains all item definitions.

│ ├ persistence Folder that contains all configurations for persistence bindings.

│ ├ rules Folder that contains all rule definitions.

│ ├ scripts Folder that contains all scripts.

│ ├ sitemaps Folder that contains all sitemaps.

│ ├ openhab_default.cfg File that contains the default configuration for openHAB.

│ └ users.cfg File that contains user information for authentication.

├ logs Folder that contains log files.

│ └ openhab.log File that contains the log outputted by openHAB.

├ start.bat File that starts openHAB on a Windows based machine.

└ start.sh File that starts openHAB on a Unix based machine.

Table 2: Important files and folders in the installation directory.

OpenHAB can now be started by executing the file start.bat. This starts a headless Java applica-

tion, i.e. a standard console window with only text output. As of yet, no bindings whatsoever have

© Manuel Raffel - 12 / 28 -

http://www.openhab.org/
http://java.com/
http://www.openhab.org/downloads.html

openHAB – History, Concepts, Examples

been included, neither has openHAB been configured. It is running nevertheless and shows the out -

put depicted in Listing 1.

1 Launching the openHAB runtime...
2 osgi> 10:00:01.509 WARN o.o.c.core.ConfigDispatcher[:172] - Main

openHAB configuration file 'configurations/openhab.cfg
3 ' does not exist.
4 10:00:02.513 INFO o.o.c.internal.CoreActivator[:61] - openHAB runtime

has been started (v1.5.0).
5 10:00:03.018 INFO o.o.i.s.i.DiscoveryServiceImpl[:72] - mDNS service

has been started
6 10:00:04.493 INFO o.o.io.rest.RESTApplication[:143] - Started REST API

at /rest
7 10:00:05.154 INFO o.o.u.w.i.s.WebAppServlet[:79] - Started Classic UI

at /openhab.app

Listing 1: Initial output of the openHAB runtime.

To allow easier editing of all the configuration files, the openHAB Designer is a useful tool. It

provides syntax highlighting for the language used and a navigation interface for all files. It too can be

downloaded at http://www.openhab.org/downloads.html in the section “openHAB Designer”.

It also comes packaged in a ZIP archive like the openHAB Core and has to be extracted to the

desired destination directory. For reasons of simplicity C:\openHAB Designer\ was used in the

course of this paper. After unpacking the archive, the designer can be started by executing the file

openHAB-Designer.exe. On first execution, the interface of the designer will show only empty tabs

as the program does not know where to look for the openHAB configuration files. Therefore, it is

necessary to click on the icon depicting a folder to the right of the tab labelled “Configurations”. This

will open a file browser where the path to the configurations folder within the openHAB direct-

ory has to be selected, in this case C:\openHAB\configurations. After confirming the selected loc-

ation, the designer will show the content of this folder and is ready for use.

5.2 Configuration

To allow openHAB to start correctly, it needs to be configured. The configuration file has to be

named openhab.cfg and be placed directly into the configurations subdirectory. As reference,

the file openhab_default.cfg was already included in the archive. After copying and renaming it to

openhab.cfg it is ready to be edited to particular needs.

© Manuel Raffel - 13 / 28 -

file:///C:/openHAB
http://www.openhab.org/downloads.html

openHAB – History, Concepts, Examples

A basic configuration is needed to run the system for DemoHouse, but it is short and requires only

few options. The folder: values define the interval that openHAB waits between two scans for

changes in its other configuration files. A default persistence provider has to be specified, this is more

detailly explained Section 5.3.2. Finally, the refresh interval for the main configuration file itself has to

be specified to allow changes being applied automatically when it changes. The content of the file can

be seen in Listing 2.

1 folder:items=10,items
2 folder:sitemaps=10,sitemap
3 folder:rules=10,rules
4 folder:scripts=10,script
5 folder:persistence=10,persist
6
7 persistence:default=rrd4j
8
9 mainconfig:refresh=10

Listing 2: Content of the main configuration file for openHAB.

After the file has been saved, openHAB can be started again (see Listing 3 for console output). From

this point on, there is no need to restart it when any configuration is changed or a bundle is added, as

it will automatically reload the relevant information.

1 Launching the openHAB runtime...
2 osgi> 10:05:00.409 INFO o.o.c.internal.CoreActivator[:61] - openHAB

runtime has been started (v1.5.0).
3 10:05:01.929 INFO o.o.i.s.i.DiscoveryServiceImpl[:72] - mDNS service

has been started
4 10:05:02.380 INFO o.o.io.rest.RESTApplication[:143] - Started REST API

at /rest
5 10:05:03.335 INFO o.o.u.w.i.s.WebAppServlet[:79] - Started Classic UI

at /openhab.app

Listing 3: Output of the openHAB runtime after adding the main configuration file.

5.3 Adding Functionality

Now that openHAB itself is configured, the environment it is used for needs to be defined in several.

5.3.1 Creating Items

DemoHouse has several lights, shutters, sensors and according values that need to be defined as items

in order to be able to use them in the system. This can be achieved by creating a file with the exten-

© Manuel Raffel - 14 / 28 -

openHAB – History, Concepts, Examples

sion .items in the openHAB/configurations/items folder. The file for demo house was called

DemoHouse.items. All items share the same syntax which is defined as shown in Listing 4.

1 itemtype itemname ["labeltext"] [<iconname>] [(group1,...)]
[{bindingconfig}]

Listing 4: General syntax for defining items.

Parts in square brackets are thereby optional. The itemtype refers to one of the currently available

types listed in Table 3.

Name Description Command Types

Color
Stores color information and allows commands
for manipulation.

ON, OFF,
INCREASE, DECREASE,
PERCENT, HSB

Contact
Stores status of e.g. door or window contacts
and allows commands for manipulation.

OPEN, CLOSE

DateTime Stores date and time.

Dimmer
Stores percentage values for dimmers and allows
commands for manipulation.

ON, OFF,
INCREASE, DECREASE,
PERCENT

Group Stores other items in it.

Number Stores arbitrary numbers.

Rollershutter
Stores percentage values for blinds and allows
commands for manipulation.

UP, DOWN,
STOP, MOVE,
PERCENT

String Stores arbitrary text.

Switch
Stores state of a switch and allows commands
for manipulation.

ON, OFF

Table 3: The available item types. [OpenHAB 2014]

Groups are usually used to combine all items of one room together, so they can be visualized and

even switched altogether. DemoHouse has some groups that are created as follows (see Listing 5):

1 Group g_all
2 Group g_shutters (g_all)
3 Group g_contacts (g_all)
4 Group g_temps (g_all)
5
6 Group g_office "Office" <office> (g_all)
7 Group g_corridor "Corridor" <corridor> (g_all)
8
9 Group:Switch:OR(ON, OFF) g_lights "All Lights [(%d)]" (g_all)

Listing 5: Defining the groups for DemoHouse.

© Manuel Raffel - 15 / 28 -

openHAB – History, Concepts, Examples

Line 1 of Listing 5 defines a group g_all for each and every item defined in DemoHouse. In line 2

to 4, a group for all shutters, contacts and temperatures is defined and included in g_all. Lines 6 and

7 define groups for all items in the office and in the corridor. Additionally, the icon to be used for this

group in the visualization is defined by the term between the two angle brackets. OpenHAB looks for

these icons in the folder openHAB/webapps/images/. Both groups are added to g_all as well.

Line 9 introduces an interesting concept of openHAB, the group summaries. Groups of a specific

type, in this case indicated by the :Switch after Group can be summarized by a function. Possible

functions are:

• AVG Displays the average of the items in the group, typically for items of type Number or

with a percentage.

• OR Checks how many items in the group have a particular state.

• AND Checks if every item in the group has a particular state.

• SUM Displays the sum of the items in the group, typically for items of type Number or

with a percentage.

• MIN Displays the minimum amount of the items in the group, typically for items of type

Number or with a percentage.

• MAX Displays the maximum amount of the items in the group, typically for items of type

Number or with a percentage.

The code in Listing 5 sets the group's label to “All Lights” followed by the amount of lights that are

ON in the respective group.

Lights, which typically are either ON or OFF, can be integrated by adding items of type Switch into

the configuration file. Dimmable lights can be integrated by using the type Dimmer which provides

the additional functionality needed for this type of device. The lights installed in DemoHouse can be

added as demonstrated in Listing 6.

Items for the windows roller shutters as well as window and door contacts need to be added likewise

(see Listing 7).

© Manuel Raffel - 16 / 28 -

openHAB – History, Concepts, Examples

1 Switch light_office_ceiling "Ceiling" (g_office,
g_lights)

2 Switch light_office_table "Table" (g_office,
g_lights)

3 Switch light_corridor_ceiling_front "Ceiling Front" (g_corridor,
g_lights)

4 Switch light_corridor_ceiling_back "Ceiling Back" (g_corridor,
g_lights)

Listing 6: Defining the lights for DemoHouse.

1 Rollershutter shutter_office_left "Office Left" (g_office,
g_shutters)

2 Rollershutter shutter_office_right "Office Right" (g_office,
g_shutters)

3
4 Contact window_office_left "Office Left" (g_office,

g_contacts)
5 Contact window_office_right "Office Right" (g_office,

g_contacts)
6 Contact door_corridor "Door" (g_corridor,

g_contacts)

Listing 7: Defining roller shutters as well as window and door contacts for DemoHouse.

Finally, items to store the values of DemoHouse's temperature sensors have to be defined (see Listing

8). These items labels show “Temperature” followed by the stored temperature value with one

decimal place.

1 Number temp_office_in "Indoor [%.1f °C]" <temperature> (g_office)
2 Number temp_office_out "Outdoor [%.1f °C]" <temperature> (g_office)

Listing 8: Defining items for sensor values in DemoHouse.

This concludes the definition of items for DemoHouse. All connect-able devices are now mapped in

the system. Upon saving of the file, openHAB will automatically consider its content as shown in

Listing 9.

1 10:10:00.587 INFO o.o.m.c.i.ModelRepositoryImpl[:79] - Loading model
'DemoHouse.items'

Listing 9: Output of the openHAB runtime after adding the items configuration.

5.3.2 Ensuring Persistence

To keep the current values of the items it is necessary to save them somewhere. Otherwise, in case of

a system failure or any restart, the state of an item would not be known as long as it has not sent its

© Manuel Raffel - 17 / 28 -

openHAB – History, Concepts, Examples

current status. As this usually happens only when e.g. a light switch is pressed, any visualization could

not show the correct status of its items until then. For this purpose, a bundle that provides persist -

ence has to be imported into the system. A number of possible solutions exist and are listed in Table

4.

Name Description

db4o
Default persistence service for openHAB. Uses a database file and keeps all
data that ever needed to be persistent, thus the file keeps growing as time
goes by.

rrd4j
A round-robin database. Has a fixed allocated size which is used. If no
space is left, the oldest item is overwritten with the newest one.

MySQL Uses a MySQL4 database that has to run on some database server.

MongoDB A document-oriented and therefore highly performant database.

Sen.se
Uses the Open.Sen.se5 website as storage location for persistence
information.

Cosm
Uses the Xively6 (former Cosm) website as storage location for persistence
information.

Logging
Makes use of the OSGi integrated log mechanism to persist state
information in ordinary log files.

Exec
Allows the execution of commands in the underlying operating system and
can therefore be used very flexible with various programs.

InfluxDB
A time series database7. Has to connect to the database running on some
database server.

Table 4: Available persistence bundles. [OpenHAB 2014]

For each persistence bundle that is used, a configuration file has to be created in the folder

openHAB/configurations/persistence, named after the service and with the extension

.persist. In it, the strategy for the persistence of specific items is defined. As there can be more

persistence bundles, different modules can use different strategies, e.g. rrd4j for short-term and

InfluxDB for long-term storage.

The file consists of two separate sections. The section Strategies defines when states are stored

and has the following structure (see Listing 10):

4 MySQL: A open-source relational database management system (RDBMS). [MySQL 2014] All data is
represented in terms of tuples, grouped into relations. [Relational 2014]

5 Open.Sen.se: Open platform for interconnecting devices, applications and humans. [OpenSenSe]
6 Xively: Cloud service similar to Open.Sen.se. [Xively 2014]
7 Time series database: A software system optimized for handling arrays of numbers indexed by time.

[TimeSeries 2014]

© Manuel Raffel - 18 / 28 -

openHAB – History, Concepts, Examples

1 Strategies
2 {
3 <strategyName1> : "<cronExpression1>"
4 <strategyNameX> : "<cronExpressionX>"
5 ...
6
7 default = <strategyNameX>, <strategyNameY>
8 }

Listing 10: General structure of the strategies section for persistence.

In this block, <strategyNameX> is an arbitrary name that refers to the according

<cronExpressionX>. The expression is a string of six to seven sub-expressions separated by a

white-space and defines when the strategy should be executed, e.g. "0 0 * * * ?" for every hour or

"0 0 0 * * ?" for every day. A detailed description of this syntax can be found at the website of

the underlying technology [CronTrigger 2014]. Furthermore, the following strategies are defined stat-

ically by the openHAB runtime:

• everyChange Stores the current value whenever it has changed.

• everyUpdate Stores the current value whenever it is updated, even if the value

itself did not change.

• restoreOnStartup Restores the last saved value if it is undefined on startup.

Line 7 defines the default strategy to be employed on any item that has no strategy defined. Strategies

for items are defined in the Items section that follows the Strategies section in the configuration

file (see Listing 11).

1 Items
2 {
3 <itemList1> [-> "<alias1>"] : [strategy = <strategyName1>,

<strategyName2>,...]
4 <itemListX> [-> "<aliasX>"] : [strategy = <strategyNameX>,

<strategyNameY>,...]
5 ...
6 }

Listing 11: General structure of the items section for persistence.

Possible values for <itemListX> are thereby:

• * Defined strategies apply to all items in the system.

© Manuel Raffel - 19 / 28 -

openHAB – History, Concepts, Examples

• <itemName> Defined strategies apply to the item identified by the given name.

If the item is a group, the group value will be stored but not the

values of its individual members.

• <groupName>* Defined strategies apply to all items in the group identified by the

given name, but not to the group itself.

For DemoHouse, a combination of db4o and rrd4j has been chosen. The first one is intended for

long-time storage of temperature sensor values so a chart can be shown on the data. Therefore, the

values of all items in g_temps is persisted every hour. The latter is for up-to-date storage of every

value in the two rooms. They are saved on every change and additionally every minute. Additionally,

the values will be restored upon system restart. The final configuration files can be seen in Listing 12

and 13.

1 Strategies
2 {
3 everyHour : "0 0 * * * ?"
4 }
5
6 Items
7 {
8 g_temps* : strategy = everyHour
9 }

Listing 12: Persistence configuration using db4o.

1 Strategies
2 {
3 everyMinute : "0 * * * * ?"
4 }
5
6 Items
7 {
8 g_office*, g_corridor* : strategy = everyChange, everyMinute,

restoreOnStartup
9 }

Listing 13: Persistence configuration using rrd4j.

OpenHAB will automatically consider the content of both files after they have been saved as shown

in Listing 14.

© Manuel Raffel - 20 / 28 -

openHAB – History, Concepts, Examples

1 10:15:00.374 INFO o.o.m.c.i.ModelRepositoryImpl[:79] - Loading model
'db4o.persist'

2 10:15:01.383 INFO o.o.m.c.i.ModelRepositoryImpl[:79] - Loading model
'rrd4j.persist'

Listing 14: Output of the openHAB runtime after adding the persistence configurations.

To finally enable both modules, the according bundles have to be copied from the “Addons” package

downloaded in Section 5.1 to the openHAB/addons/ folder. The files necessary are named

org.openhab.persistence.db4o-1.5.0.jar for the db4o bundle and

org.openhab.persistence.rrd4j-1.5.0.jar for the rd4j bundle.

5.3.3 Defining Rules

After having defined all the data that is needed to replicate the physical devices in openHAB, func -

tionality can be added. In a realistic setting, this involves for example defining which light switch trig -

gers what or at what measured wind strength the shutters will be brought down automatically. For

DemoHouse, rules are mainly used to simulate a realistic setting. The rules have to be placed in files

with the extension .rules and are expected to be located in the folder

openHAB/configurations/rules. Variables defined within a rule file are only visible inside that

one file and cannot be shared with rules from another file.

Listing 15 shows the code that initializes all items to random default values. The lights are thereby set

to be ON or OFF, contacts to OPENED or CLOSED, roller shutters to some random position and the tem-

peratures receive a random value somewhere around 25 degrees Celsius. All rules are defined to be

executed on system startup, with the rule that sets the temperature sensors being additionally executed

every minute to simulate environmental behaviour.

The configuration for the rules will automatically be considered by openHAB after saving the file (see

Listing 16).

© Manuel Raffel - 21 / 28 -

openHAB – History, Concepts, Examples

1 rule "Initialize simulated light states"
2 when
3 System started
4 then
5 g_lights?.members.forEach(
6 light | light.postUpdate(if(Math::random > 0.5)

ON else OFF)
7)
8 end
9
10 rule "Initialize simulated contact states"
11 when
12 System started
13 then
14 g_contacts?.members.forEach(
15 contact | contact.postUpdate(if(Math::random >

0.5) OPEN else CLOSED)
16)
17 end
18
19 rule "Initialize simulated roller shutter states"
20 when
21 System started
22 then
23 g_shutters?.members.forEach(
24 shutter | shutter.postUpdate((Math::random *

10).intValue * 10)
25)
26 end
27
28 rule "Initialize simulated temperature sensors"
29 when
30 System started or
31 Time cron "0 0/1 * * * ?"
32 then
33 g_temps?.members.forEach(
34 temperature | temperature.postUpdate(25.0 + (25.0

- (Math::random * 50.0).intValue) / 10.0)
35)
36 end

Listing 15: Rules defined for DemoHouse.

1 10:20:00.374 INFO o.o.m.c.i.ModelRepositoryImpl[:79] - Loading model
'db4o.persist'

2 10:20:01.383 INFO o.o.m.c.i.ModelRepositoryImpl[:79] - Loading model
'rrd4j.persist'

Listing 16: Output of the openHAB runtime after adding the rules configuration.

© Manuel Raffel - 22 / 28 -

openHAB – History, Concepts, Examples

5.3.4 Using Scripts

Scripts provide the possibility to have reusable pieces of code that can be used in rules and, with the

proper binding, could even be called from within an event in a Google calender, therefore being

executed at a predefined time. Each file with the ending .script is handled as distinct script identi-

fied by its file name. The file has to be placed within openHAB/configuration/scripts to be

found by openHAB.

For DemoHouse a relatively simple script for “coming home” was written that, if activated, turns on

all lights and opens the roller shutters. The file was named ComingHome.script and can therefore be

called from within any rule through callScript(“ComingHome”). The code of this script can be

seen in Listing 17.

1 g_lights?.members.forEach(
2 light | light.postUpdate(ON)
3)
4
5 g_shutters?.members.forEach(
6 shutter | shutter.postUpdate(UP)
7)

Listing 17: The ComingHome script for DemoHouse.

The available scripts will be updated by openHAB after saving the file (see Listing 18).

1 10:25:00.985 INFO o.o.m.c.i.ModelRepositoryImpl[:79] - Loading model
'ComingHome.script'

Listing 18: Output of the openHAB runtime after adding a script.

5.4 Bindings

After setting up the basic functionality of DemoHouse for the first two rooms, openHAB needs to

be connected to the physical world.

5.4.1 KNX

In this case, a KNX bus is installed and physically connects the devices to the system. To enable

openHAB to connect itself to the bus, the KNX binding is needed. The according bundle has to be

© Manuel Raffel - 23 / 28 -

openHAB – History, Concepts, Examples

copied from the “Addons” package downloaded in Section 5.1 to the openHAB/addons/ folder. The

file necessary is named org.openhab.binding.knx-1.5.0.jar.

Two steps are required to set up the bus connection. First, the settings needed to connect to the bus

have to be added to the main configuration file openhab.cfg. As DemoHouse does not have an

actual bus, no options have to be configured.

Second, the items created in Section 5.3.1 have to be adjusted to tell the system how it can access

them. This is done by adding binding information to the DemoHouse.items file. Syntax for this

information is shown in Listing 19.

1 knx="[<][<dptId>:]<mainGA>[[+[<]<listeningGA>]+[<]<listeningGA>...], [<]
[<dptId>:]<mainGA>[[+[<]<listeningGA>]+[<]<listeningGA>...]"

Listing 19: General syntax for defining KNX information.

Parts in square brackets are thereby optional. Each of the parts of the string separated by a comma

correspond to a KNX datapoint. This tells the system, which command has to be sent to which KNX

address. E.g., the switch item in DemoHouse for the light above the office table supports the com-

mands ON and OFF. It therefore needs to be configured to know where to send this commands to. It

furthermore needs to know, where it is supposed to listen for status changes of this item. This is par -

ticularly important for functions that can be controlled with physical devices, like an actual light

switch. If it is pressed, the KNX bus sends out a signal to a specific address. This signal has to be

caught by openHAB to pass it on to the actual light and persist its changed state. Listing 20 shows

how the item would look like with configured KNX binding.

1 Switch light_office_table "Table" (g_office, g_lights)
{ knx="1/2/2+0/2/2" }

Listing 20: Adding KNX information to DemoHouse's items.

The code above tells openHAB to send commands issued to this item to the KNX address 1/2/2,

where it is executed. Normally, some kind of relay, which is connected to the bus, will listen for com-

mands issued to this address and activate or deactivate current flow to the light. It further tells open-

HAB to listen for commands sent to the address 0/2/2, for example by a light switch connected to

the bus, and relay the information to 1/2/2.

© Manuel Raffel - 24 / 28 -

openHAB – History, Concepts, Examples

5.4.2 Bluetooth

The server on which openHAB is running on in DemoHouse is equipped with a Bluetooth module

that allows connection with mobile phones. This shall be used to automatically trigger the “coming

home” script implemented in Section 5.3.4 whenever the phone comes within reach of the server. To

enable openHAB to use the Bluetooth module, the Bluetooth binding is needed. The according

bundle has to be copied from the “Addons” package downloaded in Section 5.1 to the

openHAB/addons/ folder. The file necessary is named org.openhab.binding.bluetooth-

1.5.0.jar. A successful integration into the running openHAB environment can be confirmed

when the line shown in Listing 21 is displayed in the console.

1 BlueCove version 2.1.1-SNAPSHOT on winsock

Listing 21: Output of the openHAB runtime after successful loading of the Bluetooth bundle.

Apart from adjusting items and rules, no further configuration is needed for the bundle to work. To

access data about devices in range, an additional item has to be created as shown in Listing 22.

1 Switch bluetooth_device_in_range { bluetooth="54E43A6CA061" }

Listing 22: Adding an item to access Bluetooth information.

The switch created above will listen on the Bluetooth module and change its state to ON once the

device with the Bluetooth address "54E43A6CA061" comes in range. It will change to OFF again once

the device leaves the area. To trigger the “coming home” script a rule has to be added (see Listing 23).

1 rule "Call 'ComingHome' upon bluetooth connection"
2 when
3 Item bluetooth_device_in_range changed to ON
4 then
5 callScript("ComingHome")
6 end

Listing 23: Adding a rule to trigger the “coming home” script.

Upon saving of all edited files, the openHAB environment will reprocess the information within and

start listening for Bluetooth devices. Listing 24 shows what is happening once the specified device

comes within range.

© Manuel Raffel - 25 / 28 -

openHAB – History, Concepts, Examples

1 10:30:00.548 INFO runtime.busevents[:26] - bluetooth_device_in_range
state updated to ON

2 10:30:00.551 INFO runtime.busevents[:26] - light_office_ceiling state
updated to ON

3 10:30:00.551 INFO runtime.busevents[:26] - light_office_table state
updated to ON

4 10:30:00.551 INFO runtime.busevents[:26] - light_corridor_ceiling_front
state updated to ON

5 10:30:00.552 INFO runtime.busevents[:26] - light_corridor_ceiling_back
state updated to ON

6 10:30:00.564 INFO runtime.busevents[:26] - shutter_office_left state
updated to UP

7 10:30:00.570 INFO runtime.busevents[:26] - shutter_office_right state
updated to UP

Listing 24: Output of the openHAB runtime upon detecting a specific Bluetooth device.

5.5 Visualization

To add an intuitive overview of all the status changes in DemoHouse, openHAB provides a built-in

visualization system, the sitemaps. They are used to create elements of user interfaces to make the

system accessible to various frontends. The sitemaps have to be placed in files with the extension

.sitemap and are expected to be located in the folder openHAB/configurations/sitemaps. The

syntax of a sitemap requires all elements to be surrounded by the sitemap block as shown in Listing

25.

1 sitemap DemoHouse label="DemoHouse"
2 {
3 ...
4 }

Listing 25: General syntax of a sitemap.

Upon saving of this file, the openHAB runtime automatically loads its content and makes it access-

ible as can be seen in Listing 26.

1 10:35:00.956 INFO o.o.m.c.i.ModelRepositoryImpl[:79] - Loading model
'default.sitemap'

Listing 26: Output of the openHAB runtime after adding a script.

Naming the sitemap "default.sitemap" allows to access the sitemap by pointing any browser to

http://127.0.0.1:8080/openhab.app without any additional argument. Sitemaps with a different

name can be accessed by appending the parameter ?sitemap=NameOfSitemapFile to the address.

These few lines of code already provide a visualization with the configured label as title, as can be

© Manuel Raffel - 26 / 28 -

http://127.0.0.1:8080/openhab.app

openHAB – History, Concepts, Examples

seen in Appendix B, Figure 4. To add more content, other elements have to be added. Table 5 shows

the numerous predefined elements that are available to be used in a sitemap definition file and

provides a short description for each.

Name Description

Colorpicker Allows to pick a color, e.g. for a multicolour light bulb.

Chart Renders a chart based on specified information.

Frame Creates a visually separated area of items.

Group Provides a page with all items of the specified group.

Image Renders an image.

Switch Renders a switch item

Selection Renders a selection item

Slider Renders a slider

Text Renders a text element

Video Displays a video.

Table 5: The available sitemap elements. [OpenHAB 2014]

To visualize some actual information from DemoHouse, a group element can be used as shown in

Listing 27. A group automatically enables access to its contained items in a separate page. Figure 5

and 6, which can be found in Appendix B, show the current main page and the page when “Office” is

clicked.

1 Frame
2 {
3 Group item=g_corridor label="Corridor" icon="corridor"
4 Group item=g_office label="Office" icon="office"
5 }

Listing 27: A frame containing group items to show some information in a sitemap.

Individual information, like the outside temperature, can be added as well. Furthermore, it is possible

to add a chart which depicts the assigned items progression in a specified period, if persisted some-

where. The code to add this information can be seen in Listing 28 and the according visualizations are

depicted in Figures 7 and 8 in Appendix B.

This concludes the visualization for DemoHouse. Overall, the built-in visualization capabilities of

openHAB are legion. In addition, it is possible to implement a completely independent visualization

by using the REST API of openHAB. This allows for even greater flexibility and customization

needs.

© Manuel Raffel - 27 / 28 -

openHAB – History, Concepts, Examples

1 Frame label="Temperature" icon="temperature"
2 {
3 Text item=temp_office_out
4 {
5 Frame
6 {
7 Chart item=temp_office_out period=3D refresh=600

service="db4o"
8 }
9 }
10 }

Listing 28: A frame containing a text item and a chart to show individual information in a sitemap.

6 Summary and Outlook

As history has shown, pace of technological development has increased dramatically within the last

100 years. While initial propagation of electrical devices was fairly slow, nowadays new technologies

are quickly adapted to. Given the increase in sales for smart home technology, it will be employed in

numerous homes new and old in the not to distant future.

OpenHAB has found a solid base of contributors who build on its highly modular structure. With

over 1000 installations, it is not a small project but has yet to find its way into mainstream awareness.

Its architecture in combination with the publicly available source code make it the ideal platform for

enthusiasts to build on, but it is lacking the comfortableness for standard users in terms of setup and

configuration.

Nevertheless, it has countless practical applications. With a rather minimal effort to set it up, the focus

can be put on a comprehensive configuration. Due to the large integrated functionality and huge

amount of available extensions, it can be fitted to almost any situation. The incorporated visualization

capabilities that can be accessed by any device eases initial effort for testing the functionality of the

system. For a longer-term usage, a more professional look and feel would be desirable.

On 16th of June 2014, shortly before this paper was finished, Kai Kreuzer, the initiator of the project,

announced the start of development for version 2.0 of openHAB. The core concept was contributed

to the Eclipse Foundation and became the new Eclipse SmartHome project, a basic framework to

build smart home solutions on top. The SmartHome project will be the foundation for version 2.0,

which is going to put development focus on user comfort. This will pave the way for openHAB to

become a viable alternative not only for computer enthusiasts but also for the standard user.

© Manuel Raffel - 28 / 28 -

openHAB – History, Concepts, Examples

Appendix A – Tables

Name

Asterisk Ir-Trans Pioneer-AVR

Astro KNX Plugwise

Bluetooth Koubachi PLCBus

Comfo Air Leviton/HAI Omnilink Pulseaudio

CUL MAX!Cube RFXCOM

CUPS MiLight Samsung TV

digitalSTROM Modbus TCP Serial

DMX512 MPD Snmp

EnOcean MQTT Squeezebox

Epson Projector MQTTitude System Info

Exec Neohub Somfy URTSI II

Freebox Netatmo Sonos

Freeswitch Network Health Swegon

Fritz!Box Nibe Heatpump TCP/UDP

Fritz AHA Nikobus Tellstick

GPIO Novelan/Luxtronic TinkerForge

HAI/Leviton OmniLink NTP VDR

HDAnywhere One-Wire Velleman

Heatmiser Onkyo AV Receiver Wake-on-LAN

Homematic Open Energy Monitor Waterkotte EcoTouch

HTTP OpenPaths Withings

IEC 62056-21 OpenSprinkler XBMC

IHC / ELKO OSGi Configuration Admin xPL

Insteon Hub Philips Hue Z-Wave

Insteon PLM Piface

Table 6: Available bindings for openHAB as of 30th May 2014. [OpenHAB 2014]

© Manuel Raffel - i / xii -

openHAB – History, Concepts, Examples

Appendix B – Figures

© Manuel Raffel - ii / xii -

Figure 4: Visualization provided by the sitemap element.

openHAB – History, Concepts, Examples

© Manuel Raffel - iii / xii -

Figure 5: Visualization of item groups.

openHAB – History, Concepts, Examples

© Manuel Raffel - iv / xii -

Figure 6: Visualization of items in item groups.

openHAB – History, Concepts, Examples

© Manuel Raffel - v / xii -

Figure 7: Visualization of individual values as text item.

openHAB – History, Concepts, Examples

© Manuel Raffel - vi / xii -

Figure 8: Visualization of historical values of an item in a dynamically generated graph.

openHAB – History, Concepts, Examples

Appendix C – Listings

1 folder:items=10,items
2 folder:sitemaps=10,sitemap
3 folder:rules=10,rules
4 folder:scripts=10,script
5 folder:persistence=10,persist
6
7 persistence:default=rrd4j
8
9 mainconfig:refresh=10

Listing 29: Consolidated version of openhab.cfg.

1 Strategies
2 {
3 everyHour : "0 0 * * * ?"
4 }
5
6 Items
7 {
8 g_temps* : strategy = everyHour
9 }

Listing 30: Consolidated version of db4o.persist.

1 Strategies
2 {
3 everyMinute : "0 * * * * ?"
4 }
5
6 Items
7 {
8 g_office*, g_corridor* : strategy = everyChange, everyMinute,

restoreOnStartup
9 }

Listing 31: Consolidated version of rrd4j.persist.

1 g_lights?.members.forEach(
2 light | light.postUpdate(ON)
3)
4
5 g_shutters?.members.forEach(
6 shutter | shutter.postUpdate(UP)
7)

Listing 32: Consolidated version of ComingHome.script.

© Manuel Raffel - vii / xii -

openHAB – History, Concepts, Examples

1 Group g_all
2 Group g_shutters (g_all)
3 Group g_contacts (g_all)
4 Group g_temps (g_all)
5
6 Group g_office "Office" <office> (g_all)
7 Group g_corridor "Corridor" <corridor> (g_all)
8
9 Group:Switch:OR(ON, OFF) g_lights "All Lights [(%d)]" (g_all)
10
11 Switch light_office_ceiling "Ceiling" (g_office,

g_lights)
12 Switch light_office_table "Table" (g_office,

g_lights) { knx="1/2/2+0/2/2" }
13 Switch light_corridor_ceiling_front "Ceiling Front" (g_corridor,

g_lights)
14 Switch light_corridor_ceiling_back "Ceiling Back" (g_corridor,

g_lights)
15
16 Rollershutter shutter_office_left "Office Left" (g_office,

g_shutters)
17 Rollershutter shutter_office_right "Office Right" (g_office,

g_shutters)
18
19 Contact window_office_left "Office Left" (g_office,

g_contacts)
20 Contact window_office_right "Office Right" (g_office,

g_contacts)
21 Contact door_corridor "Door" (g_corridor,

g_contacts)
22
23 Number temp_office_in "Indoor [%.1f °C]"

<temperature> (g_office, g_temps)
24 Number temp_office_out "Outdoor [%.1f °C]"

<temperature> (g_office, g_temps)
25
26 Switch bluetooth_device_in_range { bluetooth="54E43A6CA061" }

Listing 33: Consolidated version of DemoHouse.items.

© Manuel Raffel - viii / xii -

openHAB – History, Concepts, Examples

1 rule "Initialize simulated light states"
2 when
3 System started
4 then
5 g_lights?.members.forEach(
6 light | light.postUpdate(if(Math::random > 0.5) ON

else OFF)
7)
8 end
9
10 rule "Initialize simulated contact states"
11 when
12 System started
13 then
14 g_contacts?.members.forEach(
15 contact | contact.postUpdate(if(Math::random > 0.5)

OPEN else CLOSED)
16)
17 end
18
19 rule "Initialize simulated roller shutter states"
20 when
21 System started
22 then
23 g_shutters?.members.forEach(
24 shutter | shutter.postUpdate((Math::random *

10).intValue * 10)
25)
26 end
27
28 rule "Initialize simulated temperature sensors"
29 when
30 System started or
31 Time cron "0 0/1 * * * ?"
32 then
33 g_temps?.members.forEach(
34 temperature | temperature.postUpdate(25.0 + (25.0 -

(Math::random * 50.0).intValue) / 10.0)
35)
36 end
37
38 rule "Call 'ComingHome' upon bluetooth connection"
39 when
40 Item bluetooth_device_in_range changed to ON
41 then
42 callScript("ComingHome")
43 end

Listing 34: Consolidated version of DemoHouse.rules.

© Manuel Raffel - ix / xii -

openHAB – History, Concepts, Examples

1 sitemap DemoHouse label="DemoHouse"
2 {
3 Frame
4 {
5 Group item=g_corridor label="Corridor" icon="corridor"
6 Group item=g_office label="Office" icon="office"
7 }
8 Frame label="Temperature" icon="temperature"
9 {
10 Text item=temp_office_out
11 {
12 Frame
13 {
14 Chart item=temp_office_out period=3D refresh=600

service="db4o"
15 }
16 }
17 }
18 }

Listing 35: Consolidated version of default.sitemap.

© Manuel Raffel - x / xii -

openHAB – History, Concepts, Examples

Literature

[CronTrigger 2014] Cron Expressions, http://www.quartz-
scheduler.org/documentation/quartz-2.1.x/tutorials/tutorial-lesson-06,
Version of 16th June 2014

[EnOcean 2014] EnOcean, http://en.wikipedia.org/w/index.php?
title=EnOcean&oldid=606446005, Accessed at 30th April 2014

[Harper 2003] Frances K. Aldrich and James Barlow and Keith Cheverst and Karen
Clarke, Inside the Smart Home, 2003, Springer

[HomeAutomation 2014] Home automation, http://en.wikipedia.org/w/index.php?
title=Home_automation&oldid=612409515, Accessed at 10th June
2014

[InnoQ 2014] openHAB: Home-Automation mit Java,
http://www.innoq.com/de/podcast/002-openhab/transcript/, Version
of 16th June 2014

[KNX 2014a] KNX (standard), http://en.wikipedia.org/w/index.php?title=KNX_
%28standard%29&oldid=611341270, Accessed at 3rd June 2014

[KNX 2014b] KNX Manufacturers list, http://www.knx.org/knx-
en/manufacturers/list/index.php, Accessed at 15th June 2014

[MySQL 2014] MySQL, http://en.wikipedia.org/w/index.php?
title=MySQL&oldid=613371912, Accessed at 18th June 2014

[OpenHAB 2014] openHAB Wiki, https://github.com/openhab/openhab/wiki,
Accessed at 28th May 2014

[OpenSenSe] Open.Sen.se, http://open.sen.se/, Version of 16th June 2014

[OSGi 2011] The OSGi Alliance, OSGi Service Platform - Core Specification, 2011,

[OSGi 2014] OSGi, http://en.wikipedia.org/w/index.php?
title=OSGi&oldid=612576910, Accessed at 12th June 2014

[PowerLine 2014] Power-line communication, http://en.wikipedia.org/w/index.php?
title=Power-line_communication&oldid=612767736, Accessed at 13th
June 2014

[Relational 2014] Relational model, http://en.wikipedia.org/w/index.php?
title=Relational_model&oldid=613089044, Accessed at 16th June 2014

[REST 2014] Representational state transfer, http://en.wikipedia.org/w/index.php?
title=Representational_state_transfer&oldid=613132337, Accessed at
16th June 2014

[TimeSeries 2014] Time series database, http://en.wikipedia.org/w/index.php?
title=Time_series_database&oldid=610819116, Accessed at 30th May
2014

[TwistedPair 2014] Twisted pair, http://en.wikipedia.org/w/index.php?
title=Twisted_pair&oldid=612727462, Accessed at 13th June 2014

© Manuel Raffel - xi / xii -

openHAB – History, Concepts, Examples

[Wikipedia 2014d] Home automation, http://en.wikipedia.org/w/index.php?
title=Home_automation&oldid=612409515, Version of 10th June 2014

[Wireless 2014] Wireless, http://en.wikipedia.org/w/index.php?
title=Wireless&oldid=613413055, Accessed at 18th June 2014

[X10 2014] X10 (industry standard), http://en.wikipedia.org/w/index.php?
title=X10_%28industry_standard%29&oldid=607926010, Accessed at
10th May 2014

[Xively 2014] Xively, https://xively.com/, Version of 16th June 2014

© Manuel Raffel - xii / xii -

	1 Introduction
	2 History
	3 Enabling Technology
	3.1 Protocols
	3.1.1 EnOcean
	3.1.2 KNX
	3.1.3 X10

	3.2 Open Service Gateway initiative (OSGi)
	3.3 Representational State Transfer (REST)

	4 Architecture
	4.1 Core
	4.1.1 Items
	4.1.2 Event Bus

	4.2 Base Library
	4.3 Repository
	4.4 REST Service
	4.5 User Interfaces
	4.6 Automation Logic
	4.7 Protocol Bindings
	4.8 Item Provider

	5 Practical Usage
	5.1 Setup
	5.2 Configuration
	5.3 Adding Functionality
	5.3.1 Creating Items
	5.3.2 Ensuring Persistence
	5.3.3 Defining Rules
	5.3.4 Using Scripts

	5.4 Bindings
	5.4.1 KNX
	5.4.2 Bluetooth

	5.5 Visualization

	6 Summary and Outlook
	Appendix A – Tables
	Appendix B – Figures
	Appendix C – Listings
	Literature

