
Developing a Samsung

Integrated Gear Application

Development of an application requesting public transport
data from Wiener Linien

Seminar Thesis
Course of study: Information Systems

Vienna University of Economics and Business

by

Klemens Engelbrechtsmüller

Submission date: June 18, 2015

Matriculation number, course: h0925814, 4251 Project Seminar of Information Systems

Supervisor: ao.Univ.Prof. Dr. Rony G. Flatscher

Declaration
I do solemnly declare that I have written the presented research thesis

Developing a Samsung Integrated Gear Application - Development of an

application requesting public transport data from Wiener Linien

By myself without undue help from a second person others and without using

such tools other than that specified. Where I have used thoughts from external

sources, directly or indirectly, published or unpublished, this is always clearly

attributed. Furthermore, I certify that this research thesis or any part of it has not

been previously submitted for a degree or any other qualification at the Vienna

University of Economics and Business or any other institution in Austria or

abroad.

Vienna, the May 31, 2015

Klemens Engelbrechtsmüller

I

Abstract
This paper describes the creation of a Samsung Integrated Gear application

requesting public transport data from Wiener Linien. In more detail, this paper

illustrates how to develop an Android Host application with a corresponding

Samsung Gear Wearable application step by step, including how to set up a

suitable development equipment for the development process and a description

how to deploy such an application on a Samsung Galaxy Note 3 smartphone

and a Samsung Gear wristwatch. Additionally, it shows how to connect and call

two Web services from Wiener Linien to get real-time data of their transports.

II

Contents
1 Introduction...1

1.1 Samsung Accessory SDK...2

1.2 Tizen...3

1.3 Open Government Data...3

1.3.1 Wiener Linien Routingservice...4

1.3.2 Wiener Linien Realtime Data..5

2 Setting Up the Development Environment..6

2.1 Android SDK, Samsung Accessories and Eclipse...6

2.2 Tizen Wearable SDK with IDE...8

3 Creating a Samsung Gear Application..10

3.1 Integrated Gear Application – PT Search..10

3.2 Developing an Android Host...12

3.3 PT Search..18

3.4 Developing a Tizen Client...21

3.4.1 index.html...22

3.4.2 main.js..23

3.4.3 config.xml...25

3.4.4 sapservices.xml...25

3.5 Deploy the Application...25

3.5.1 Create a WGT File...26

3.5.2 Install the Application...27

4 Conclusion...30

5 References...31

III

List of Abbreviations
ADT Android Developer Tools

API Application Programming Interface

APK Android Package

BLE Bluetooth Low Energy

CSS Cascading Style Sheets

EFA Elektronische Fahrplanauskunft

GPS Global Positioning System

HTML Hypertext Markup Language

HTTP Hypertext Transfer Protocol

IDE Integrated Development Environment

JDK Java Development Kit

JRE Java Runtime Environment

JSON JavaScript Object Notation

LiMo Linux Mobile Foundation

SAP Samsung Accessory Protocol

SDK Software Development Kit

URL Uniform Ressource Locator

USB Universal Serial Bus

WU Vienna University of Economics and Business

WWW World Wide Web

XML Extensible Markup Language

IV

List of Figures
Figure 1 – Samsung Smart Device and Accessories [Samsung, A.]..2

Figure 2 – Objectives of data.gv.at...4

Figure 3 - Install Eclispe ADT Plugin..7

Figure 4 - Install Tizen IDE..9

Figure 5 - Application Types [Developer, S2.]...10

Figure 6 - Samsung Gear SM-V700...11

Figure 7 - Samsung Galaxy Note 3...11

Figure 8 – PT Search Process..12

Figure 9 - Eclipse IDE, New Android Application...13

Figure 10 - User Interface PT Search..21

Figure 11 - Create a Web Application Project...22

Figure 12 - Tizen IDE, Register Certificate...26

Figure 13 – Eclipse IDE - Running the application...29

V

Introduction Page 1

1 Introduction
Android is an operating system for many different mobile devices like

smartphones, tablets, wearables, televisions or cars. It was first developed by a

company called Android Inc. in 2003. After two years of development Google

bought Android Inc. in 2005. From now on Andy Rubin and his team worked on

what would later be known as the Android mobile operating system. In 2008,

Google partnered with T-Mobile to launch its first mobile phone with Android,

the G1 [BusinessInsider 2013]. Now, seven years and many versions later,

Android runs on more than one billion devices. [Android]

Android is written in C, C++ and Java and is based on a Linux Kernel. Its source

model is Open Source and in many devices with proprietary components.

Google publishes most of the code under the non-copyleft Apache License 2.0

which allows developers the modification and redistribution of the Android

source code [Wikipedia, Android].

Because of the big number of devices and users running Android, many

developers are creating and developing applications, so called apps, for the

Android operating system. Android applications are programmed in Java

language. There are a lot of Java libraries, distributed from Google and other

developers, which makes it easy to integrate functionality to the applications.

The Samsung Gear is a product line of smartwatches, which was launched in

2013. Although the Samsung Gear 2, which is used in this article, runs Tizen as

operating system, a connection to an Android device can be developed. To

build an app with an Android Host-side and a Tizen wearable side, Samsung

provides the Samsung Accessory SDK and the Tizen Wearable SDK

[Developer, S.]. It is also possible to program a standalone app for the

Samsung Gear, only using the Tizen Wearable SDK, but in this work a Gear

Companion App was developed.

Klemens Engelbrechtsmüller

Introduction Page 2

1.1 Samsung Accessory SDK
The Samsung Accessory is a framework for Samsung devices which allows the

devices to interact with each other. The Samsung Accessory Eco-system

consists of Samsung smart devices and those devices which have the

Accessory SDK installed. With the SDK it is possible to define a service

between the smart device and the accessory device and then use the

functionality from the smart device on the accessory side [Samsung, A.]. For

Example, the Samsung Gear smartwatch does not have a build-in Wi-Fi

adapter, but with the Samsung Accessory the software developer can create a

service which allows the Samsung Gear to interact with the smart device, for

example Samsung Galaxy Note, and is so able to use the Wi-Fi connection of

the smart device.

Figure 1 – Samsung Smart Device and Accessories [Samsung, A.]

The Accessory SDK supports various connectivity technologies like Wi-Fi,

Bluetooth and BLE. All of this technologies are using the same protocol which is

Klemens Engelbrechtsmüller

Introduction Page 3

provided from the SDK. Furthermore, it makes no difference in the development

process which of the connectivity technology is used, because all of them are

using the same protocol, independent from the technology [Samsung, A.].

1.2 Tizen
Tizen is the operating system of the Samsung Gear smartwatch. It is an open-

source operating system which is based on Linux and was founded and first

developed from the Linux Foundation and the LiMo Foundation. In 2011, Intel

and the Linux Foundation decided to focus on Tizen instead of MeeGo.

Therefore, in 2012, the LiMo Foundation was renamed to Tizen Association and

is run by companies including Samsung, Intel, Huawei and many others. The

Tizen Association was formed to define the industry role of Tizen and works

closely with the Linux Foundation, which supports the Tizen open-source

project [Wikipedia, Tizen].

The advantages are the cross-platform architecture and the portability of the

operating system, so it can be installed on many different devices including

smartphones, tablets, wearable devices and others. Tizen provides two types of

applications running on the operation system. First, the developer is able to

create web applications, using HTML, JavaScript, CSS and HTML5. Second, it

is also possible to create native applications for Tizen. The native framework,

based on Bada, consists of system services and native modules which can be

used to develop native applications. Tizen also allows to develop hybrid

applications combining web and native application [Developer, T.].

1.3 Open Government Data
Open Government Data Österreich is a cooperation which was initiated from the

Federal Chancellery and the cities Vienna, Linz, Salzburg and Graz in 2011. Its

aim is to provide various data from different, decentralized data dictionaries and

to offer them in a centralized way to people who are interested in them [OGD].

Klemens Engelbrechtsmüller

Introduction Page 4

Figure 2 – Objectives of data.gv.at

1.3.1 Wiener Linien Routingservice

Wiener Linien Routingservice is an EFA XML Interface provided from Wiener

Linien. It includes the schedule from the public transport system in Vienna. It

was made public in 2013 within the Open Government Data Initiate from the city

Vienna under the ‘Creative Commons Namensnennung 3.0 Österreich’ [CC3.0].

It includes an API, a csv file describing stations, a csv file for transport lines and

a third csv file for platforms [WL, Routing].

The API can be reached with a simple HTTP request using this URL:

http://www.wienerlinien.at/ogd_routing/XML_TRIP_REQUEST2?

language=de. There are many possible request parameters to manipulate the

request. More details can be found in the API documentation [WL, Routing API

2013]. In this work the service is used to request stations from Wiener Linien

close to the sending device. Additionally, the csv files were used to get more

precise data. To get such stations from Wiener Linien the basic URL has to be

extended with two parameters including the coordinates in WGS84 format.

Klemens Engelbrechtsmüller

Introduction Page 5

http://www.wienerlinien.at/ogd_routing/XML_TRIP_REQUEST2?
type_origin=coord&name_origin=16.338705:48.197833:WGS84

1.3.2 Wiener Linien Realtime Data

Wiener Linien Realtime Data is a Web service interface which provides real

time data, departure times, disturbances and news from Wiener Linien and their

public transport vehicles. The API, created in 2013, is also licensed under the

‘Creative Commons Namensnennung 3.0 Österreich’ [CC3.0]. It can be reached

via HTTP GET request using this URL:

http://www.wienerlinien.at/ogd_realtime/. The request allows different

URL parameters and the response data is in JSON format. Details can be found

in the API documentation [WL, Realtime API 2013].

Klemens Engelbrechtsmüller

Setting Up the Development Environment Page 6

2 Setting Up the Development Environment
In this chapter it is explained what requirements must be fullfilled to develop a

Samsung Gear application on the wearable side with a host-side being an

Android mobile phone. The instructions are for Microsoft Windows 8.1

Professional, 64 Bit Intel i7 Processor. At first you need to install a Java

Runtime Environment (JRE) or a Java Development Kit (JDK) including a JRE.

In this article JDK1.7 x64 is used, which can be obtained under

http://www.oracle.com/technetwork/java/javase/overview/index.htm

l.

2.1 Android SDK, Samsung Accessories and Eclipse
There are various ways to install a running development environment for

Android development. One way is to only install the Android SDK and program

with an IDE of your choice. A second possibility is to install Eclipse IDE with the

Android Developer Tools Plugin (ADT) and the Android SDK. Since May 2015

Android recommends to use their new official IDE ‘Android Studio” which also

includes the Android SKD. This bundle can be obtained from

https://developer.android.com/sdk/index.html.

In this article the second possibility is used. The first step is to install the

Android SDK which can be obtained from

https://developer.android.com/sdk/index.html - ‘SDK Tools Only”. After

downloading the EXE, follow the installation instructions.

The Eclipse IDE Version 3.7.2 Indigo or newer versions can be downloaded

from http://eclipse.org/downloads. After installing Eclipse the Eclipse

ADT Plugin must be installed. To add the ADT plugin to Eclipse following steps

must be executed [Developer, A.]

- Start Eclipse and select ‘Help’ - ‘Install New Software’

Klemens Engelbrechtsmüller

Setting Up the Development Environment Page 7

- Click ‘Add’-Button, in the top-right corner

- In the add Repository dialog enter ‘ADT Plugin’ for the Name and

‘https://dl-ssl.google.com/android/eclipse’ for the URL.

- Click ‘OK’

- In the Install dialog select the checkbox ‘Developer Tools” and click

‘Next’

- After checking the install details click ‘Next’

- Read and accept the license agreements and click ‘Finish’

- After installing the plugin, Eclipse asks to restart the IDE

Figure 3 - Install Eclispe ADT Plugin

Klemens Engelbrechtsmüller

Setting Up the Development Environment Page 8

After these steps a standard Android application can be created. To program a

Samsung Android Host including a wearable side the Eclipse plugin ‘Samsung

Accessories plugin’ must be installed. For the installation of the ADT Plugin

open Eclipse and install new software. In the add repository dialog type

‘Samsung Accessories’ for the name and

http://developer.samsung.com/smsdk/repository/samsung-sdk for the

URL and install the plugin as described above. Finally, the Accessory SDK has

to be downloaded from

http://developer.samsung.com/galaxy#accessory. This ZIP file contains

two JAR files which will be needed if you want to create an Android project in

Eclipse [Developer, S1.].

2.2 Tizen Wearable SDK with IDE
In order to code the wearable side of the application, the Tizen SDK has to be

installed. Firstly, the SDK image (tizen-wearable-sdk-image-

TizenSDKW_1.0.0-windows64.zip) has to be downloaded from

https://developer.tizen.org/downloads/tizen-sdk. Secondly, download

the install manager (tizen-wearable-sdk-2.2.159_windows64.exe) from the

same page. After downloading these two files run the install manager and follow

the instructions [Developer, T1.].

- Select ‘Install or update the Tizen SDK for Wearable’

- Click ‘Advanced’

- Select the SDK Image from your file system which was downloaded

- Finish the installation

Klemens Engelbrechtsmüller

Setting Up the Development Environment Page 9

Figure 4 - Install Tizen IDE

Klemens Engelbrechtsmüller

Creating a Samsung Gear Application Page 10

3 Creating a Samsung Gear Application
This chapter explains the creation of an Integrated Samsung Gear application.

As mentioned before, there are three types of Samsung Gear applications,

which are called Linked (Master – Follower), Integrated and Standalone

application.

Figure 5 - Application Types [Developer, S2.]

The Master – Follower application is used if the installation of the host is not

necessary for a running wearable side. The Integrated solution is used if the

wearable side depends on the host side. Integrated applications are installed on

the host device, and install themselves automatically on the wearable side. A

Standalone application does not need a host-side, it only consists of a widget

for the wearable side, for example a clock widget.

3.1 Integrated Gear Application – PT Search
More detailed, this chapter describes an integrated gear application which

allows the user to request public traffic data from Vienna next to his location.

The wearable side is a Samsung Gear smartwatch (Figure 6) and as host a

Klemens Engelbrechtsmüller

Creating a Samsung Gear Application Page 11

Samsung Galaxy Note 3 is used (Figure 7). The user requests data using his

smartwatch, the smartwatch sends a request to the Android host and then the

host calls two Web services from Wiener Linien to request traffic data. After the

host receives the response from the web service, it formats the JSON-response

to a HMTL output format, which can be read from the smartwatch.

Figure 6 - Samsung Gear SM-V700

Figure 7 - Samsung Galaxy Note 3

The devices send data via Bluetooth to each other using the Samsung

Accessory Protocol. During the development process the Samsung Galaxy

Klemens Engelbrechtsmüller

Map to HTML format and
send data to Gear

Map Web service
response to a Java
object

Creating a Samsung Gear Application Page 12

Note 3 runs Android 4.x as operating system. The Samsung Gear runs Tizen,

which contains a web engine with an integrated rendering engine to display

HTML and CSS. Additionally JavaScript can be executed in Tizen.

Figure 8 – PT Search Process

3.2 Developing an Android Host
This chapter explains how to develop an Android host for an Integrated

Samsung Gear Application. The steps shown below are referring to the app ‘PT

Search’, the needed full source code is available on GitHub under

https://github.com/KlemensEngel/PTSearch.

Klemens Engelbrechtsmüller

HTTP request to
Web service

Connection to Android
Host via SAP

Creating a Samsung Gear Application Page 13

The first step is to start the Eclipse IDE and create a new workspace where the

source should be placed in your file system. Once the workspace is created, a

new project must be created. To create a new Project in Eclipse, click File ->

New -> Project. In the ‘New Project’ Dialog select ‘Android Application Project’

and click ‘Next’. In this form an application name, project name and a package

name must be entered. Also the SDK settings must be filled in.

Figure 9 - Eclipse IDE, New Android Application

In the following steps no inputs have to be made. In the form ‘Create Activity’

uncheck the Box ‘Create Activity’. The Android Host does not need an Activity

because he acts only as a service. ‘A Service is an application component that

can perform long-running operations in the background and does not provide an

Klemens Engelbrechtsmüller

Creating a Samsung Gear Application Page 14

user interface.’ [Developer, A1.]. In this application no user interface is needed,

because all of the interactions are made on the smartwatch and the Android

Host is only necessary for doing background operations. To end the creation of

the new project click ‘Finish’.

Once the project is created the first step is to create a service provider class

which extends the abstract class SAAgent from the Samsung Accessory SDK.

The SAAgent provides the interface between the Service Provider and the

Samsung Accessory Service Framework. It also implements the class ‘Service’

to create an Android Service as described above.

When the SAP receives an incoming connection request, it calls the method

onServiceConnectionRequested() and sends a SAAgent object to the

provider service. After this, the method acceptServiceConnectionRequest()

is called. If the connection request is accepted, the SAP calls

onServiceConnectionResponse() to send a SASocket object to the service

provider. Using this Socket object, the provider is able to exchange data with

the consumer service [Developer, S3.].

1. @Override

2. protected void onServiceConnectionResponse(SAPeerAgent peerAgent

3. ,SASocket thisConnection, int result) {

4. if (result == CONNECTION_SUCCESS) {

5. if (thisConnection != null) {

6. SAPServiceProviderConnection myConnection =

7. (SAPServiceProviderConnection) thisConnection;

8.

9. if (mConnectionsMap == null) {

10. mConnectionsMap =

11. new HashMap<Integer, SAPServiceProviderConnection>();

12. }

13. myConnection.mConnectionId =

14. (int) (System.currentTimeMillis() & 255);

15. mConnectionsMap.put(myConnection.mConnectionId, myConnection);

16. }

17. }

18. else if (result == CONNECTION_ALREADY_EXIST) {

Klemens Engelbrechtsmüller

Creating a Samsung Gear Application Page 15

19. Log.e(TAG, ’onServiceConnectionResponse

20. ,CONNECTION_ALREADY_EXIST’);

21. }

22.}

The class SAPServiceProviderConnection is a class that extends the class

SASocket and implements some of their methods. Examples of the methods

which are able to implement are onError(), onServiceConnectionLost()

and onReceive(). The last one is the most important, because in this method

the data from the consumer service can be processed. Additionally, a response

to the consumer can be sent.

1. @Override

2. public void onReceive(int channelId, byte[] data) {

3. final String response = “Hello Consumer!“;

4. String strToUpdateUI = new String(data); //data from consumer

5. final SAPServiceProviderConnection uHandler

6. = mConnectionsMap.get(Integer.parseInt(String.valueOf(mConnetionId)));

7. if (uHandler == null) {

8. return;

9. }

10. new Thread(new Runnable() {

11. public void run() {

12. try {

13. //send data to consumer

14. uHandler.send(PROVIDER_CHANNEL_ID

15. , response.getBytes());

16. } catch (IOException e) {

17. e.printStackTrace();

18. }

19. }

20. }).start();

21.}

Another important file in the Android Host Application is the

AndroidManifest.xml. In this file some permissions must be obtained to allow

the host to execute the actions which are necessary. The permissions

BLUETOOTH and BLUETOOTH_ADMIN allow the application to use the Bluetooth

Klemens Engelbrechtsmüller

Creating a Samsung Gear Application Page 16

connection and to send data. ACCESSORY_FRAMEWORK is needed for the

permission of the Samsung Accessory Protocol. wmanager.APP is used for the

permission of the Wearable application, ENABLE_NOTIFICATION allows the host

to send notifications to the consumer side and WATCH_APP_TYPE.Integrated is

necessary to tell the application that it is an integrated Gear App [Developer,

S3.].

1. <uses-permission android:name=“android.permission.BLUETOOTH“ />

2. <uses-permission android:name=“android.permission.BLUETOOTH_ADMIN“ />

3. <uses-permission

4. android:name=“com.samsung.accessory.permission.ACCESSORY_FRAMEWORK“ />

5. <uses-permission android:name=“com.samsung.WATCH_APP_TYPE.Integrated“ />

6. <uses-permission android:name=“com.samsung.wmanager.APP“ />

7. <uses-permission android:name=“com.samsung.wmanager.ENABLE_NOTIFICATION“ />

Additionally in the AndroidManifest.xml the service and two receiver classes

must be declared. As service the service provider class, which was created

before, has to be declared to implement your provider. The receivers are useful

to be sure the provider works properly [Developer, S3.].

1. <service android:name=“com.wise.oeffilokprovider.service.SAPServiceProvider“>

2. </service>

3. <receiver

4. android:name=“com.samsung.android.sdk.accessory.ServiceConnectionIndicationBro

adcastReceiver“ >

5. <intent-filter>

6. <action

7. android:name=“android.accessory.service.action.ACCESSORY_SERVICE_CONNECTIO

N_IND“ />

8. </intent-filter>

9. </receiver>

10.<receiver

11. android:name=“com.samsung.android.sdk.accessory.RegisterUponInstallReceiver“ >

12. <intent-filter>

13. <action

14. android:name=“android.accessory.device.action.REGISTER_AFTER_INSTALL“ />

Klemens Engelbrechtsmüller

Creating a Samsung Gear Application Page 17

15. </intent-filter>

16.</receiver>

To complete the AndroidManifest.xml configuration the meta data has to be

defined. To use the SAP connection between the two applications the provider

profile has to be declared, in addition this has to be done with the GearAppType,

which gives the information, what type of application the consumer side is.

1. <meta-data

2. android:name=“AccessoryServicesLocation“

3. android:value=“/res/xml/sapservices.xml“ />

4. <meta-data

5. android:name=“GearAppType“

6. android:value=“wgt“ />

As mentioned before, a service profile has to be defined. It controls the

connection between the host side and the wearable side. The file which

contains the service profile usually is located in the folder /res/xml/ of the

application. The most important settings for a service profile are:

- id: Service ID. Must match the corresponding value of the consumer

side

- name: Service name. Must also match the name of the consumer side

- role: Role of service. On the provider side it has to be set to ‘provider”

- serviceImpl: Implementation of the service provider class

- supportedTransports: The data transfer type which should be set to

TRANSPORT_BT for Bluetooth

- serviceChannel: The id of the service channel must be unique within a

service profile and is used for an identified data transfer between the

devices. [Developer, S3.]

1. <resources>

2. <application name=“OeffiLokProvider“>

Klemens Engelbrechtsmüller

Creating a Samsung Gear Application Page 18

3. <serviceProfile

4. id=“/system/oeffilok“

5. name=“oeffilok“

6. role=“provider“

7. serviceImpl=“com.wise.oeffilokprovider.service.SAPServiceProvider“

8. version=“1.0“

9. serviceLimit=“ANY“

10. serviceTimeout=“10“>

11. <supportedTransports>

12. <transport type=‘TRANSPORT_BT’/>

13. </supportedTransports>

14. <serviceChannel

15. id=“104“

16. dataRate=“low“

17. priority=“low“

18. reliability=“enable“/>

19. </serviceProfile>

20. </application>

21.</resources>

3.3 PT Search
In the application ‘PT Search” the Android host is called from the wearable

consumer to locate himself and sends its coordinates to the Web service

interface from Wiener Linien. After the host creates a connection and receives

an input stream in the onReceive() method of the SAP Provider class, a

LocationManager must be used to get the current position of the device. For

this, Android provides the class android.location.LocationManager. To use

the functionality of the LocationManager a LocationListener must be registered.

The LocationListener is also a member of the package android.location

and receives notifications from the LocationManager when the location is

changing. To register the LocationListener the method

requestLocationUpdates() has to be called. Here is an example with a

service class, which extends an Android service and implements a

LocationListener to get the current location data.

Klemens Engelbrechtsmüller

Creating a Samsung Gear Application Page 19

1. //register listener ’this’

2. locationManager.requestLocationUpdates(LocationManager.NETWORK_PROVIDER,

3. MIN_TIME_BW_UPDATES,

4. MIN_DISTANCE_CHANGE_FOR_UPDATES, this);

5.

6. //get current location data

7. location = locationManager.getLastKnownLocation(LocationManager.NETWORK_PROVIDER);

In this example the LocationManager is used to get the location data from the

network provider. Another option is to use GPS to locate the device.

Once the host has its location data, the next step is to call the routing service

from Wiener Linien. Here the class java.net.HttpURLConnection is used,

which is part of the JDK. First, a new instance of a java.net.URL object must be

created. This class has a constructor with a string parameter which can be used

for the HTTP URL. After opening the connection the InputStream can be read.

1. final URL url = new URL(“http://www.wienerlinien.at/ogd_routing/XML_TRIP_REQUEST2?

type_origin=coord&name_origin=16.32937:48.220548:WGS84”);

2.

3. //send http request

4. final HttpURLConnection conn = (HttpURLConnection) url.openConnection();

5. conn.setRequestMethod(“GET“);

6.

7. //responsecode = 200 -> service error

8. if(conn.getResponseCode() != 200){

9. throw new RuntimeException();

10.}

11.

12.//read input stream

13.final BufferedReader br = new BufferedReader(new InputStreamReader(

14. (conn.getInputStream())));

15.

16.StringBuilder strBuilder = new StringBuilder();

17.String output;

18.while ((output = br.readLine()) != null) {

19. strBuilder.append(output);

20.}

21.//close connection

Klemens Engelbrechtsmüller

Creating a Samsung Gear Application Page 20

22.conn.disconnect();

The response from the routing service delivers a lot of information. The most

important part for the application is the list of stops next to the given

coordinates.

1. <itdOdvAssignedStops select=“0“>

2. <itdOdvAssignedStop stopID=”60201115” x=”749636” y=”657709” mapName=”GIP1” value=”

60201115:Rosensteingasse” place=”Wien” nameWithPlace=”Wien Rosensteingasse” dista

nce=”295” distanceTime=”4” isTransferStop=”1”>Rosensteingasse</itdOdvAssignedStop

>

3. </itdOdvAssignedStops>

It can be mapped to a Java object with the classes of the javax.xml.parsers

package, which is also included in the JDK. The second service which is called

from the Android host is the Realtime service from Wiener Linien. Using this

service real-time data from the stations, delivered from the routing service, can

be requested. The Realtime service sends a JSON response which can be

mapped with the external library org.json [Developer, J.]. After the two service

calls the requested data can be mapped to HTML output format and then will be

sent to the wearable consumer, which displays the data in an user friendly

format.

Klemens Engelbrechtsmüller

Creating a Samsung Gear Application Page 21

Figure 10 - User Interface PT Search

3.4 Developing a Tizen Client
The second part of the Integrated Gear Application is the consumer on the

wearable side. In the application PT Search it establishes the connection to the

Android host and displays data from the Web services. With this aim, a web

application, which uses HTML and Javascript, is created. To create such a

project, open the Tizen IDE for Wearable and create a new Tizen Wearable

Web Project.

Klemens Engelbrechtsmüller

Creating a Samsung Gear Application Page 22

Figure 11 - Create a Web Application Project

After a project name has been entered click Finish and the project will be

created. The project consists of a few important files.

3.4.1 index.html

The file index.html is responsible for the User Interface and is written in

standard HTML, like a website would be programmed. It consists of a head and

a body section, additionally CSS can be used to manipulate the output.

1. <!DOCTYPE html>

2. <html>

3. <head>

4. <meta charset=“utf-8“ />

Klemens Engelbrechtsmüller

Creating a Samsung Gear Application Page 23

5. <meta name=“viewport“ content=“width=device-width, initial-scale=1.0, maximum-

scale=1.0“>

6. <meta name=“description“ content=“Tizen Wearable basic template generated by T

izen Wearable Web IDE“/>

7.

8. <title>Title</title>

9.

10. <link rel=“stylesheet“ type=“text/css“ href=“css/style.css“/>

11.</head>

12.<body>

13. <div>Hello World!</div>

14.</body>

15.<script src=“js/main.js“></script>

16.</html>

3.4.2 main.js

On the other hand in the main.js all the functionality from the wearable side is

programmed. Here the consumer can establish the connection to the Android

Host, send and also receive data. The wearables also use the Samsung

Accessory Protocol and its implementations to connect to the host. First of all,

the SAAgent, which is specified in a service profile, must be requested with the

method requestSAAgent().

1. function onsuccess(agents) {

2. try {

3. if (agents.length > 0) {

4. SAAgent = agents[0];

5.

6. SAAgent.setPeerAgentFindListener(peerAgentFindCallback);

7. SAAgent.findPeerAgents();

8. } else {

9. console.log(‘SAAgent not found!’);

10. }

11. } catch(err) {

12. console.log(‘err [‘ + err.name + ’] msg[‘ + err.message + ’]’);

13. }

14.}

Klemens Engelbrechtsmüller

Creating a Samsung Gear Application Page 24

15.

16.webapis.sa.requestSAAgent(onsuccess, function (err) {

17. console.log(‘err [‘ + err.name + ’] msg[‘ + err.message + ’]’);

18.});

If the SAAgent is found, the method onsuccess() will be called. To search for

peer agents the method findPeerAgent() has to be called. To handle the

found agents, a handler, which uses the ServiceConnectionCallback

listener, has to be defined.

1. var peerAgentFindCallback = {

2. onpeeragentfound : function(peerAgent) {

3. try {

4. if (peerAgent.appName == ProviderAppName) {

5. SAAgent.setServiceConnectionListener(agentCallback);

6. SAAgent.requestServiceConnection(peerAgent);

7. } else {

8. console.log(‘Not expected app!! : ’ + peerAgent.appName);

9. }

10. } catch(err) {

11. console.log(‘err [‘ + err.name + ’] msg[‘ + err.message + ’]’);

12. }

13. },

14. onerror : onerror

15.}

Once a peer agent with the expected appName is found, the method

requestServiceConnection() has to be used to establish the connection.

1. var agentCallback = {

2. onconnect : function(socket) {

3. SASocket = socket;

4. alert(‘Connection established!’);

5. SASocket.setSocketStatusListener(function(reason){

6. console.log(‘Service connection lost, Reason : [‘ + reason + ’]’);

7. disconnect();

8. });

9. },

10. onerror : onerror

11.};

Klemens Engelbrechtsmüller

Creating a Samsung Gear Application Page 25

If the connection is successfully established, the consumer side and the

provider side can exchange data this way:

1. function onreceive(channelId, data) {

2. //handle received data

3. }

4.

5. function sendData(){

6. SASocket.setDataReceiveListener(onreceive);

7. SASocket.sendData(CHANNELID, ’Hello Android host!’);

8. }

3.4.3 config.xml

The config.xml file includes the widget of the wearable application and

describes among other things the application name and the startup site.

Additionally, it contains the path to the file which includes the service profile.

1. <tizen:metadata key=“AccessoryServicesLocation“ value=“res/accessoryservices.xml“/

>

3.4.4 sapservices.xml

The service profile, defined in the sapservice.xml file, is basically equal to the

service profile of the Android host. Except of the attribute ‘role’ which has to be

changed to ‘consumer’.

3.5 Deploy the Application
There are several ways to deploy the programmed app on a Samsung Gear.

This chapter describes how to install the Android Package (APK) from the

Eclipse IDE on a smartphone and later the Samsung Widget file (WGT) on the

smartwatch. As mentioned before, a Samsung Galaxy Note 3 Android phone

and a Samsung Gear smartwatch is used to install the application. A

corresponding USB cable between the PC, where the application was

developed, and the Samsung Galaxy Note is also needed.

Klemens Engelbrechtsmüller

Creating a Samsung Gear Application Page 26

3.5.1 Create a WGT File

First of all, an executable WGT file from the Tizen Wearable Application has to

be created. To create a running Gear Application it is necessary to register a

Certificate for the application. This certificate signs the code and protects the

application from modification and ensures the ownership during a version

upgrade process. The code signing also names a specific device to ensure the

application is only running on devices which it is specified for [Developer, S4.]

The certificate is not only necessary for testing the application, but also needed

for uploading the application to the Samsung GALAXY Apps Seller site.

To create such a certificate the Tizen IDE for Wearable is necessary. Once the

workspace with the project is opened the ‘Register Certificate” in the top-toolbar

of the IDE must be clicked.

Figure 12 - Tizen IDE, Register Certificate

Klemens Engelbrechtsmüller

Creating a Samsung Gear Application Page 27

After then the Request and Register Certificate dialog appears. This dialog

includes these steps:

1. Generate a certificate singing request (CSR file)

 Generate a new certificate signing request must be select and

after clicking Next, personal data must be filled in.

 If the request is successful, a file named author.csr can be

found under keystore folder in the data folder of the Tizen

SDK.

2. Request the certificate

 With the author.csr file a certificate can be requested. Click

the button Request the certificate and follow the instructions.

3. Request the device profile

 Click the button and follow the instructions

4. Register the certificates

 After receiving the two files called author.crt and device-

profile.xml, these two files must be entered and also the

corresponding passwords. Now the certificates should be

automatically added to the security profile.

To finish the creation of a WGT file select the project in the IDE and build it.

After building is done, the WGT file can be found in the package explorer of the

IDE.

3.5.2 Install the Application

To install the Android host application on the Samsung Galaxy Note 3

smartphone, an APK file is needed. But there is no need to manually install the

APK file on the device, the Eclipse IDE with the Android SDK is able to create

Klemens Engelbrechtsmüller

Creating a Samsung Gear Application Page 28

an APK file from the application and pushes the file directly to the smartphone

where the application will be automatically installed. The generated APK file

also includes the created WGT file which will be automatically installed on the

Samsung Gear.

To start make sure USB Debugging is activated on both devices. The primary

function of USB Debugging is to facilitate a connection between an Android

device and a computer with Android SDK. This mode turns the device into

debug mode and grants a level of access to the device which is important in

programming a new application [Droid, 2015]. To activate USB Debugging on

the Samsung Galaxy Note 3 open the Settings menu and select ‘General’ in the

upper right corner of the phone. Now the menu option ‘About Device” appears

on the screen. After selecting this option the select option ‘Build number” is

shown. This option must be tapped seven times and then the message

‘Developer mode has been enabled” appears. After returning to ‘Phone

Settings’ the menu option ‘Developer Options” can be seen. In this menu you

can check the box ‘USB Debugging’. To active USB Debugging on an Samsung

Gear device open settings menu, select ‘Gear Info’, then select ‘About Gear’

and tap the option ‘Software Version’ about 10 times. After this steps the option

‘USB Debug’ will appear in the ‘Gear Info’ menu. This box must be checked to

activate the debugging mode.

When these modes are activated on both devices the Samsung Galaxy Note 3

device has to be plugged into the computer. Both devices have to be turned on

and Bluetooth must be activated. When Bluetooth is activated, the Samsung

Gear automatically builds a connection to the smartphone.

In the Eclipse IDE with the Android host project, the WGT file, which was

created before, has to be copied to the ‘assets” folder of the Android host

application. To finally run the application on the device it must be ensured that

Eclipse IDE has accepted the device.

Klemens Engelbrechtsmüller

Creating a Samsung Gear Application Page 29

Figure 13 – Eclipse IDE - Running the application

If all the steps are fulfilled as stated above, the application can finally be

installed with selecting the Eclipse project, right click and ‘Run As’ -> ‘Android

Application’. Now the APK file will be transferred via the USB cable to the

device and the two applications, Android host and wearable consumer, will be

installed.

Klemens Engelbrechtsmüller

Conclusion Page 30

4 Conclusion
In conclusion, the effort needed to create a Samsung Integrated Gear

Application is smaller than the author thought. The Tizen SDK, Samsung

Accessories SDK and the Android SDK, which were used during the

development process, have a good and a sufficient documentation in the WWW

and the connection between the used devices works very well. It is also

possible to create such an application with moderate resource equipment.

Nevertheless, the author recommends basic Android development knowhow

before starting to program a Samsung Gear application. The most challenging

task was the deployment of the application, because of the code signing with

the certificate for the Samsung Gear application. In contrast, the integration of

the Web service from Wiener Linien was very easy to accomplish, because of

the documentation of the interface, which is very understandable. The target of

the work was to develop a Samsung Integrated Gear Application that can show

public transport data from stations next to the device. Although the final results

of the development are very good, there are a lot of possibilities to extend the

functionality of the application, for example a navigation to a selected station.

Klemens Engelbrechtsmüller

References Page 31

5 References
[Android] – ‘The Android Story’. http://www.android.com/history, as of
April 2015

[BusinessInsider 2013] – ‘How Android Grew To Be More Popular Than The
iPhone’. http://www.businessinsider.com/history-of-android-2013-8?
op=1&IR=T, as of April, 2015

[CC3.0] – ‘creative commons Namensnennung 3.0 Unported’.
https://creativecommons.org/licenses/by/3.0/deed.de, as of April,
2015

[Developer, A.] – ‘Installing the Eclipse Plugin’.
https://developer.android.com/sdk/installing/installing-
adt.html, as of April, 2015

[Developer, A1.] – ‘Android DEV – Android Development / Services’.
http://developer.android.com/guide/components/services.html, as
of May, 2015

[Developer, J.] – ‘JSON in Java’. http://www.json.org/java/, as May, 2015

[Developer, S.] – ‘Samsung Gear‘. http://developer.samsung.com/gear, as
of April, 2015

[Developer, S1.] – ‘Accessory Programming Guide Version 2.2.2’. Part of the
SDK, which can be downloaded from
http://developer.samsung.com/galaxy#accessory

[Developer, S2.] – ‘Samsung Gear Application Programming Guide Version 1.0’
http://developer.samsung.com/technical-doc/view.do?v=T000000163,
as of April, 2015

[Developer, S3.] – ‘Samsung Gear Application, Hello Accessory Developer’s
Guide V1.1’. http://developer.samsung.com/technical-doc as of April,
2015

[Developer, S4.] – ‘Getting the Gear Certificate’. http://img-
developer.samsung.com/gear/certificationguide.html, as of May, 2015

[Developer, T.] – ‘Tizen Developers’. https://developer.tizen.org, as of
May, 2015

[Developer, T1.] – ‘Tizen SDK Installation’.
https://developer.tizen.org/downloads/sdk/installing-tizen-sdk,
as of May, 2015

Klemens Engelbrechtsmüller

References Page 32

[Droid, 2015] – ‘USB-Debugging’. http://www.droidwiki.de/USB-
Debugging, as of May, 2015

[OGD] – ‘offene Daten Österreichs – lesbar für Mensch und Maschine’.
https://www.data.gv.at, as of April, 2015

[Samsung, A.] – ‘What Is Accessory SDK’.
http://developer.samsung.com/galaxy#accessory, as of April, 2015

[Wikipedia, Android] – ‘Android (operating system)’.
http://en.wikipedia.org/wiki/Android_(operating_system), as of
April, 2015

[Wikipedia, Tizen] – ‘Tizen’. http://en.wikipedia.org/wiki/Tizen, as of
May, 2015

[WL, Realtime API 2013] – ‘Wiener Linien Realtime |
Schnittstellendokumentation’. http://data.wien.gv.at/pdf/wienerlinien-
echtzeitdaten-dokumentation.pdf, as of April, 2015

[WL, Routing] - ‘Katalog Wiener Linien – Routingservice’.
https://www.data.gv.at/katalog/dataset/wiener-linien-
routingservice, as of April, 2015

[WL, Routing API 2013] – ‘Beschreibung der EFA XML-Schnittstelle für die
Open Government Data Initiative der WIENER LINIEN’.
http://data.wien.gv.at/pdf/wiener-linien-routing.pdf, as of April,
2015

Klemens Engelbrechtsmüller

	1 Introduction
	1.1 Samsung Accessory SDK
	1.2 Tizen
	1.3 Open Government Data
	1.3.1 Wiener Linien Routingservice
	1.3.2 Wiener Linien Realtime Data

	2 Setting Up the Development Environment
	2.1 Android SDK, Samsung Accessories and Eclipse
	2.2 Tizen Wearable SDK with IDE

	3 Creating a Samsung Gear Application
	3.1 Integrated Gear Application – PT Search
	3.2 Developing an Android Host
	3.3 PT Search
	3.4 Developing a Tizen Client
	3.4.1 index.html
	3.4.2 main.js
	3.4.3 config.xml
	3.4.4 sapservices.xml

	3.5 Deploy the Application
	3.5.1 Create a WGT File
	3.5.2 Install the Application

	4 Conclusion
	5 References

