


Twitter | Benjamin Berggold

Declaration
I do solemnly declare that I have written the presented research thesis

Twitter: History, Concepts, Nutshell Examples with (BSF4)OOREXX

by myself without undue help from a second person others and without using

such tools other than that specified. Where I have used thoughts from external

sources, directly or indirectly, published or unpublished, this is always clearly

attributed. Furthermore, I certify that this research thesis or any part of it has

not been previously submitted for a degree or any other qualification at the

Vienna University of Economics and Business or any other institution in Austria

or abroad.

Vienna, the December 7, 2016

______________________________

Benjamin Berggold

2



Twitter | Benjamin Berggold

Content

1. Introduction.......................................................................................6

2. History..............................................................................................7

2.1. Creation......................................................................................7

2.2. Growth........................................................................................7

2.3. Usage.........................................................................................8

3. Tweet...............................................................................................9

4. Twitter for Developers.........................................................................9

4.1. Twitter API..................................................................................9

4.2. OAuth.......................................................................................10

4.3. Twitter Apps...............................................................................11

5. Used Software..................................................................................11

5.1. Java..........................................................................................11

5.2. ooRexx......................................................................................12

5.3. BSF4ooRexx...............................................................................12

5.4. Twitter4j....................................................................................13

6. Nutshell Examples.............................................................................13

6.1. Configuration & Setup..................................................................14

6.2. updateStatus..............................................................................15

6.3. Timeline....................................................................................16

6.4. Favorite.....................................................................................18

6.5. getFavorites...............................................................................19

6.6. destroyStatus.............................................................................22

6.7. sendMessage..............................................................................23

6.8. sentMessages.............................................................................25

6.9. destroyFriendship........................................................................27

6.10. createFriendship........................................................................28

6.11. getTrends................................................................................30

7. Conclusion.......................................................................................33

3



Twitter | Benjamin Berggold

Figures

Figure 1: Hello World!...........................................................................12

Figure 2: ConfigurationBuilder................................................................14

Figure 3: updateStatus..........................................................................15

Figure 4: updateStatus Terminal.............................................................16

Figure 5: updateStatus Twitter...............................................................16

Figure 6: Timeline.................................................................................17

Figure 7: Timeline Terminal....................................................................18

Figure 8: Favorite.................................................................................19

Figure 9: Favorite Terminal....................................................................19

Figure 10: Favorite Twitter.....................................................................19

Figure 11: getFavorites..........................................................................20

Figure 12: getFavorites Terminal.............................................................21

Figure 13: getFavorites Twitter...............................................................21

Figure 14: destroyStatus.......................................................................22

Figure 15: destroyStatus Terminal..........................................................22

Figure 16: sendMessage........................................................................23

Figure 17: sendMessage Terminal 1.........................................................24

Figure 18: sendMessage Terminal 2.........................................................24

Figure 19: sendMessage Terminal 3.........................................................24

Figure 20: sendMessage Twitter..............................................................25

Figure 21: sentMessages.......................................................................25

Figure 22: sentMessages Terminal..........................................................26

Figure 23: sentMessages Twitter.............................................................26

Figure 24: destroyFriendship..................................................................27

Figure 25: destroyFriendship Terminal.....................................................27

Figure 26: destroyFriendship Twitter.......................................................28

Figure 27: createFriendship....................................................................28

Figure 28: createFriendship Terminal.......................................................29

4



Twitter | Benjamin Berggold

Figure 29: createFriendship Twitter.........................................................29

Figure 30: getTrends.............................................................................30

Figure 31: getTrends Terminal................................................................31

Figure 32: getTrends Twitter..................................................................32

5



Twitter | Benjamin Berggold

1. Introduction

This paper first introduces the history of the successful company Twitter, its

growth and usage.

Then it dives into the possibilities for developers to communicate with the

Twitter Client using the Twitter API. The API itself is explained and also the

security mechanism (OAuth) and the limitations are part of the paper.

The programming language used is Rexx, furthermore ooRexx with the

extension BSF4ooRexx. This makes it possible to create Java objects from

Rexx which get camouflaged as ooRexx objects by BSF4ooRexx.

The last chapter demonstrates the concepts with ten nutshell examples. The

code of every example is explained in detail and the results are displayed on

screenshots.

6



Twitter | Benjamin Berggold

2. History

The seminar paper starts with a brief introduction to Twitter’s history, growth 

and usage since the beginning in 2004.

2.1. Creation

Twitter’s creation began with the start of Odeo in 2004, it’s parent company. 

Odeo was a podcast publishing and aggregation website which enabled users 

to create, record and share podcasts with a simple Adobe Flash-based 

interface. The company was founded by Noah Glass and Evan Williams, both 

creators of Twitter but the podcasting service had very little public response.

In February 2006 Jack Dorsey, Noah Glass, Evan Williams and Biz Stone did a 

daylong brainstorming session and discussed the idea of using text messaging 

to share statuses. The team decided to work on the project and named it 

“twttr”. The name was inspired by Flickr and the American SMS short codes. 

Also the domain twitter.com was already in use, but the company bought it six

months after the launch and renamed the service to Twitter. On March 21 Jack

Dorsey sent the first tweet:

            “just setting up my twttr” – Jack Dorsey, March 21, 2006, 9:50 PM

Twitter was now officially set up but only used internally by Odeo employees. 

Not before July 15 when Om Malik wrote an article about Twitter on GigaOm, 

Twitter was introduced publicly as the full version. [1]

2.2. Growth

At first Twitter’s popularity was little until the South by Southwest Interactive 

(SXSWi) conference in 2007 took place. The usage increased from 20,000 

7



Twitter | Benjamin Berggold

tweets per day to 60,000 and the reactions from the participants where highly 

positive. Moreover, Twitter won the festival’s Web Award prize with the 

following message:

            “we’d like to thank you in 140 characters or less. And we just did!”

Since then the company experienced rapid growth. From 100 million tweets 

posted per quarter in 2008 to 50 million tweets per day in February 2010. 

Twitter became the third-highest-ranking social networking website in January 

2009, ranked by monthly visits on “compete.com”. [1]

2.3. Usage

Twitter’s usage is rising especially during prominent events. Examples are the 

2010 FIFA World Cup with 2,940 tweets per second on June 14 and the 2010 

NBA Finals with 3,085 tweets per second on June 17. During specific 

happenings at these events, like Japan scoring against Cameroon in the first 

example and after the Los Angeles Lakers victory in the second, the tweets per

second were setting a record.

But not only sport events are making users send a tweet. The current record 

was set after a television screening of the movie “Castle In The Sky” in Japan 

on August 3, 2013. Twitter users were sending 143,199 tweets per second. 

The normal tweets per second were about 5,700 tweets on average, meaning 

the particular spike was 25 times greater.

As of May 2015, Twitter has more than 500 million users, out of which more 

than 302 million are active users. [1]

8



Twitter | Benjamin Berggold

3. Tweet

A tweet is an online posting created by a Twitter user. It is also often referred 

to a “micro-blog” as the posting is limited to 140 characters or less. Originally 

the purpose of tweets was to answer the question, “What are you doing?”. 

However, tweets can contain any information the user wants to share. Users 

may subscribe to other users, known as “following”. Subscribers are known as 

“followers”, also often called “tweeps”, which is a mix of Twitter and peeps 

(short for “people”). After posting the message, all followers of the user can 

view it on their Twitter home page. Correspondingly, the users Twitter home 

page will display the most recent tweets of the users he or she is following. 

Because of the 140 characters limit it is possible to show several tweets on one

page. [2]

Tweets can be posted through various channels:

·      The official Twitter website, twitter.com,

·      Compatible external applications, e.g. on smartphones or tablets,

·      In certain countries via SMS short code.

By default, tweets are publicly visible but users can restrict the visibility to just

their followers. [1]

4. Twitter for Developers

This Chapter will introduce the possibilities Twitter offers to developers.

4.1. Twitter API

An application programming interface (API) consists of routines, protocols and 

9



Twitter | Benjamin Berggold

tools for building software applications for various programs and platforms like 

twitter. It provides building blocks which makes it easier for the programmer 

to develop a program based of the original program. Using a given 

programming language, the API makes it possible to develop applications for 

the existing system. As an example, an app developer for iOS may use the iOS

API to interact with the hardware and software of an iPhone.

APIs often are libraries with specifications for routines, data structures, object 

classes and variables. But they can also only consist simply of remote calls 

exposed to the API consumers, like twitter’s API which is called a RESTful 

API. [3]

The Twitter API uses representational state transfer (REST) which gives a 

coordinated set of constraints for a higher-performing and more maintainable 

architecture. RESTful systems, like twitter’s API, communicate over Hypertext 

Transfer Protocol (HTTP) with its verbs: GET, POST, PUT, DELETE, etc. [4]

When programming with the Twitter API it is important to keep in mind that 

there are certain limits which restrict the use of the API. For example, the 

search is limited to 180 queries per 15 minute window. An up-to-date chart 

with all the limitations the API developer has to consider can be found at 

“https://dev.twitter.com/rest/public/rate-limits”. [5]

4.2. OAuth

Twitter uses OAuth to provide authorized access to its API. Through OAuth 

account security is increased as users are not required to share their 

passwords with 3rd party applications. Additionally, many client libraries and 

example code are compatible with the OAuth implementation, setting a 

standard. There are two forms of authentication.

First the “application-user authentication” which is the most common form of 

resource authentication. The signed request identifies the application’s identity 

and also the identity accompanying granted permission of the end-user the API

10



Twitter | Benjamin Berggold

is making calls on behalf of.

Second the “application-only authentication” where the application makes API 

requests without a user context. Therefore, any request to the API that require

user context, such as posting tweets, will not work. However, the application 

will be able to, for example pull user timelines, access friends and followers of 

any account, access lists resources, search tweets or retrieve any user 

information. [6]

4.3. Twitter Apps

At “apps.twitter.com” it is possible to register for a twitter developer account 

and create an application for using the twitter API. After creating an app, it is 

possible to manage the access level from only “read” to “read and write” to 

“read, write and direct messages”. For the nutshell examples we need the third

option as we are sending direct messages. Also the Oath keys are generated 

on this site. Consumer key, consumer secret, access token and access token 

secret are displayed on the “apps.twitter.com” website.

5. Used Software

The following chapter gives on overview of the programming languages and 

libraries used to create the nutshell examples. 

5.1. Java

For programming the nutshell examples it is essential to understand how Java 

works as Java methods are used to communicate with the Twitter API. 

Therefore, this chapter gives a brief introduction to the programming 

11



Twitter | Benjamin Berggold

language.

The concept behind Java is “write once, run everywhere” which means that 

compiled Java code is able to run on any platform that supports Java without 

the need of recompilation. It is a class-based, object-oriented programming 

language with few implementation dependencies. As of 2015, it is the most 

popular programming language in use, with a reported 9 million developers. Its

syntax derives from C and C++. [7]

The famous “Hello World!” program code looks like the following:

5.2. ooRexx

Open Object Rexx is an open source, object oriented version of Rexx 

(REstructured eXtended eXecutor) which was developed by Mike Cowlishaw at 

IBM. It has an English-like syntax which makes it easy to use, read and learn.

The “Hello World!” program code looks like the following:

            SAY “Hello World!”

Open Object Rexx is nowadays further developed by the Rexx Language 

Association (RexxLA) which is an independent, non-profit organisation 

dedicated to promoting the use and understanding of Rexx. [8]

5.3. BSF4ooRexx

The Bean Scripting Framework (BSF) allows interaction with the Java runtime 

environment for other programming languages. This enables the use of Java 

12

Figure 1: Hello World!



Twitter | Benjamin Berggold

classes and Java objects by them.

The Bean Scripting Framework for Open Object Rexx (BSF4ooRexx) makes it 

possible to create Java objects from Rexx which get camouflaged as ooRexx 

objects by BSF4ooRexx. All the needed data type and case conversions 

between Java and ooRexx are handled by the BSF4ooRexx infrastructure.

For the nutshell examples it is important to note that the line of code 

“::requires BSF.CLS” is necessary to enable Java support. “The ooRexx 

package BSF.CLS defines public routines and the ooRexx class BSF which 

allows creating Java objects from a Rexx program. The returned ooRexx 

objects are instances of the class BSF and will forward received messages for 

execution to Java and return any value the Java method returns. If a Java 

object gets returned, it will get wrapped up as an instance of the ooRexx class 

BSF.”

The Framework is developed by Mag. Dr. Rony G. Flatscher at the Vienna 

University of Economics and Business. [9]

5.4. Twitter4j

Twitter4J is an unofficial Java library for the Twitter API. The library consists of

many Java classes which communicate with the Twitter API, making

programming the API with Java very easy. All the following nutshell examples

take advantage of the library and demonstrate how it works. [10]

6. Nutshell Examples

Finally the following chapter describes the creation of the ten nutshell

examples and explains them in detail.

13



Twitter | Benjamin Berggold

6.1. Configuration & Setup

The first part of every “.rxj” file created for the nutshell examples consists of

the same lines of code. These lines are shown in Figure 2.

The first line calls the method “twitter4j.conf.ConfigurationBuilder” from the

twitter4j library, discussed at the previous chapter. It is stored in the variable

“cb” which can now be used to alter the twitter4j configuration with desired

settings. There are many settings which can be customized through the

builder, important for the nutshell examples are the following four:

1. setOAuthConsumerKey

2. setOAuthConsumerSecret

3. setOAuthAccessToken

4. setOAuthAccessTokenSecret

The four OAuth keys are created by the Twitter API and can be regenerated at

any time through the “apps.twitter.com” homepage. Simple “copy and paste”

of the codes enables the program to communicate with the twitter client. As

described in the Chapter “OAuth” the keys increase security and enable

authentication.

After successful authentication one more step is necessary before it is possible

to use twitter4j’s library. The library has a built in factory method. A factory is

an object for creating other objects. It returns an object with a method call

“new” and can be seen as an abstraction of a constructor of a class.

With “cb~build” inside the factory method a usable configuration is created

14

Figure 2: ConfigurationBuilder



Twitter | Benjamin Berggold

and with “~getInstance” the factory returns an instance associated with the

configuration bound to it. The factory instance is then stored in the “tw”

variable at the beginning of the line which can now be used to write programs

with the twitter4j library.

The following chapters consist of ten nutshell examples which demonstrate the

possibilities of the Twitter API.

6.2. updateStatus

The first example describes the simple task of posting a new status on the

user’s twitter timeline. The method needed is “updateStatus()” which is part of

the twitter4j library. We call the method with the factory instance “tw” followed

by a “~” and the method name “updateStatus”. Inside the parenthesis, after

the method name, the text for the timeline is written. In this case the array

“arg(1)” is inside as shown in Figure 3 which means it takes the input written

after the execution of the program and puts it into the parenthesis after the

method name.

15

Figure 3: updateStatus



Twitter | Benjamin Berggold

The execution of the program is displayed in Figure 4.

In this case “hello world!” is stored in the first position of the array “arg” and

put into the parenthesis after the method “updateStatus”. The entire line of

code would look like the following:

            tw~updateStatus(“hello world!”)

The next line is a simple “SAY” command which reports only to the terminal

that the status has been updated.

Finally, the result in twitter itself can be seen in Figure 5.

6.3. Timeline

The second example displays the twitter home timeline in the terminal as a

list. The method used is “getHomeTimeLine” from the twitter4j library. Like in

the previous example we call the method with the factory instance “tw”

followed by a “~” and the method name “getHomeTimeLine”. The timeline is

then stored into the variable “statuses”. We need to put the timeline

information into an array to filter the results and create a list. Therefore we

store the timeline information into an array with the command

“statuses~toArray” stored in the “dir” variable. The next line simply prints the

text “Hometimeline:” to the terminal screen. All the code is shown in Figure 6.

16

Figure 4: updateStatus Terminal

Figure 5: updateStatus Twitter



Twitter | Benjamin Berggold

Finally, we can loop through the array and display the statuses on the home

timeline. This is possible with the “do i over dir” loop which stores every value

of the dir array one by one separately into the variable “i” and prints it out in

the next line. With the “i~getId” we call the ID of the status, which is a unique

number, “i~getUser~getName” returns the username who posted the status

and “i~getText” displays the status text. The “END” statement ends the loop

and the program is finished.

17

Figure 6: Timeline



Twitter | Benjamin Berggold

After executing the program through entering the line “rexx timeline.rxj” into

the terminal, the home timeline is displayed in the terminal. The result is

shown in Figure 7.

6.4. Favorite

The third example makes it possible to favourite any status. The method

needed is “createFavorite” from the twitter4j library. The lines of code are

similar to the lines from the “updateStatus” example as we are also using the

“arg” array command line input.

As shown in Figure 8, first we are calling the factory instance with “tw”

followed by a “~” and the method name “createFavorite()”. After the method

name, inside the parenthesis, the ID of the status that gets favorited is

written. In the program the ID is written with the execution, after the file

name in the terminal, similar to the “updateStatus” example program. The ID

is then stored into the first position of the array “arg” and handed inside the

parenthesis after the “createFavorite” method.

18

Figure 7: Timeline Terminal



Twitter | Benjamin Berggold

The method takes the ID and favourites the twitter status. The entire line of

code would look like the following:

            tw~createFavorite(676048577781739521)

After that the program runs a simple “SAY” command printing “Status

favorited.”. The execution in the terminal is displayed in Figure 9.

Finally, the result in twitter itself can be seen in Figure 10. The favourited

status is marked with a red heart.

The fourth example program lists all the favourited statuses of the user in the

terminal. The method needed is “getFavorites” from the twitter4j library. As

always we call the method with the factory instance “tw” followed by a “~” and

19

Figure 8: Favorite

Figure 9: Favorite Terminal

Figure 10: Favorite Twitter



Twitter | Benjamin Berggold

the method name “getFavorites”. The favourites are then stored into the

variable “favorites”. Then an array is needed to filter the results and create a

list. We do this with storing the favourites into an array with the command

“favorites~toArray” and save it in the “dir” variable. All lines of code are shown

in Figure 11.

The next line prints a simple text to the terminal screen saying “Favorites:”.

In the following three lines of code we create a “do over” loop, similar to the

one in the timeline example. Every value of the array “dir” is stored into the

var i ab le “ i ” sepa ra te l y and i s p r in ted ou t on the t e rm ina l .

“i~getUser~getScreenName” returns the username of the favourited status

and “i~getText” displays the status text. The “END” statement ends the loop

and the program is finished.

After executing the program with typing the line “rexx getFavorites.rxj” into

the terminal, the favourites are displayed as a list in the terminal. The result is

shown in Figure 12.

20

Figure 11: getFavorites



Twitter | Benjamin Berggold

In twitter itself the favourites can be seen in Figure 13.

21

Figure 12: getFavorites Terminal

Figure 13: getFavorites Twitter



Twitter | Benjamin Berggold

6.6. destroyStatus

In the fifth example the status posted in the first example gets deleted. The

method needed is “destroyStatus()” from the twitter4j library. We call the

method with the factory instance “tw” followed by a “~” and the method name

“destroyStatus”. After the method name, inside the parethesis, the ID of the

status which should get deleted is entered. Again we do this with the “arg”

array and take the input directly from the terminal execution. As shown in

Figure 14 we put the variable “arg(1)” inside the parenthesis.

The execution of the program with the ID of the status at the end of the line is

shown in Figure 15. In this case the status ID “675999293212336128” is

stored in the first position of the array “arg” and put into the parenthesis after

the method name “destroyStatus”.

The entire line of code would look like the following:

            tw~destroyStatus(675999293212336128)

22

Figure 14: destroyStatus

Figure 15: destroyStatus Terminal



Twitter | Benjamin Berggold

The next line prints the text to the terminal that the status has been deleted.

6.7. sendMessage

The sixth example demonstrates the sending of direct messages in twitter

using the “sendDirectMessage()” method from the twitter4j library. Because

there are now two inputs necessary, which are the receiver name and the text

of the message itself, the program is build with the “PARSE PULL” command to

make it simpler for the user to type the message. “PARSE PULL” waits for the

input the user is making on the terminal and stores it into the variable that

follows the command. In the example that is “Name” and “Nachricht”. After

receiving these two values we call the factory instance “tw” followed by a “~”

and the method name “sendDirectMessage”. Then inside the parenthesis after

the method name the two variables “Name” and “Nachricht” are written,

separated by a comma. The first variable has to be the receiver, the second

the message body.

The last line is again a simple “SAY” statement printing “Message sent.” to the

23

Figure 16: sendMessage



Twitter | Benjamin Berggold

screen. The lines of code are displayed in Figure 16.

When executing the program first the user will be asked for a name he wants

to send the message to. This is shown in Figure 17.

Then after entering a name the user will be asked to enter the message he

wants to send to the receiver, shown in Figure 18.

After entering a message, the message will be sent and the terminal shows the

text “Message sent.”, displayed in Figure 19.

The entire line of code would look like the following:

            tw~sendDirectMessage(“be_test1”, “hello there!”)

In twitter itself the message is then displayed under “Messages” at the users

account, shown in Figure 20.

24

Figure 17: sendMessage Terminal 1

Figure 18: sendMessage Terminal 2

Figure 19: sendMessage Terminal 3



Twitter | Benjamin Berggold

6.8. sentMessages

After sending a message in the sixth example, the seventh program displays a

list of the sent Messages from the twitter account. The method used is

“getSentDirectMessages” from the twitter4j library. As always we call the

method with the factory instance “tw” followed by a “~” and the method name

“getSentDirectMessages”. The direct messages are then stored into the

variable “messages”. We need to put the messages into an array to create a

list. Therefore we have to store the messages into an array with the command

“messages~toArray” and save it into the “dir” variable. All the code is

displayed in Figure 21.

25

Figure 20: sendMessage
Twitter

Figure 21: sentMessages



Twitter | Benjamin Berggold

The next line prints the text “Sent Messages:” to the terminal screen.

Finally, the “DO OVER” loop stores every value of the “dir” array one by one

separately into the variable “i” and prints it out in the next line. With the

“i~getRecipientScreenName” we call the name of the receiver of the message

and “i~getText” returns the text body from the message. The “END” statement

ends the loop and the program is finished.

After executing the program through entering the line “rexx sentMessages.rxj”

into the terminal, the sent Messages are displayed in the terminal as a list. The

result is shown in Figure 22.

In twitter itself the sent Messages are displayed under Messages in the user

account, shown in Figure 23.

26

Figure 22: sentMessages Terminal

Figure 23: sentMessages Twitter



Twitter | Benjamin Berggold

6.9. destroyFriendship

The eighth example demonstrates how to unfriend or unfollow a person on

twitter. The method needed is “destroyFriendship()” from the twitter4j library.

As always we call the method with the factory instance “tw” followed by a “~”

and the method name “destroyFriendship”. Inside the parenthesis, after the

method name, the name of the user that we want to unfriend is entered. In

this case we use the “arg” array again, as seen in Figure 24, which means it

takes the input written after the program file at the execution in the terminal.

The value is stored into the first position of the array (“arg(1)”) and then

handed inside the parenthesis of the method “destroyFriendship()”.

The execution of the program is displayed in Figure 25.

In this case “be_test1” is stored in the first position of the array “arg”. The

entire line of code would look like the following:

            tw~destroyFriendship(“be_test1”)

27

Figure 24: destroyFriendship

Figure 25: destroyFriendship Terminal



Twitter | Benjamin Berggold

The next line prints the text “You are no longer friends with “ plus the name

stored in “arg(1)” to the terminal. In this case “be_test1”.

Finally, the result in twitter itself can be seen in Figure 26. We are no longer

following “be_test1”.

6.10. createFriendship

In the last example “be_test1” got unfollowed. The ninth example

demonst ra tes how to fo l l ow h im aga in . The method used i s

“createFriendship()” which is part of the twitter4j library. We call the method

with the factory instance “tw” followed by a “~” and the method name

28

Figure 26: destroyFriendship Twitter

Figure 27: createFriendship



Twitter | Benjamin Berggold

“createFriendship”. Inside the parenthesis, after the method name, the name

of the user we want to follow is entered. In this case we use the “arg” array

again, as seen in Figure 27, which means it takes the input written after the

program file at the execution in the terminal. The value is stored into the first

position of the array (“arg(1)”) and then handed inside the parenthesis of the

method “createFriendship()”.

The execution of the program is shown in Figure 28.

In this case “be_test1” is stored in the first position of the array “arg”. The

entire line of code would look like the following:

            tw~createFriendship(“be_test1”)

The next line prints the text “You are now friends with “ plus the name stored

in “arg(1)” to the terminal. In this case “be_test1”.

29

Figure 28: createFriendship Terminal

Figure 29: createFriendship Twitter



Twitter | Benjamin Berggold

Finally, the result in twitter itself can be seen in Figure 29.

6.11. getTrends

The tenth and last example displays the different trends locations in a list

together with their WOEID (Where On Earth IDentifier). The method used is

“getAvailableTrends” from the twitter4j library. As always we call the method

with the factory instance “tw” followed by “~” and the method name

“getAvailableTrends”. The trends are then stored into the variable “trends”. We

need to put the trends into an array to create a list. We can store the trends

into an array with the command “trends~toArray” and save it into the “dir”

variable. All the code is displayed in Figure 30.

The next line prints the text “Available Trends:” to the terminal screen.

Finally, the “DO OVER” loop stores every value of the “dir” array one by one

separately into the variable “i” and prints it out in the next line. With the

“i~getName” we call the name of the country and “i~getWoeid” returns the

corresponding WOEID. The “END” statement ends the loop and the program is

30

Figure 30: getTrends



Twitter | Benjamin Berggold

finished.

After executing the program through entering the line “rexx getTrends.rxj” into

the terminal, the trends locations are displayed in the terminal as a list. Part of

the result is shown in Figure 31.

31

Figure 31: getTrends Terminal



Twitter | Benjamin Berggold

In twitter itself the trends are displayed on the left of the home screen, shown

in Figure 32.

32

Figure 32: getTrends Twitter



Twitter | Benjamin Berggold

7. Conclusion

In conclusion, the effort to communicate with the Twitter API through

BSF4ooRexx is fairly small. Using the Twitter4J library with its preconstructed

methods makes it easy to access the different functions the API has to offer.

With BSF4ooRexx it is possible to use the Java methods with the Rexx

programming language and write working programs with only few lines of

code. Twitter4J has extensive documentation on its homepage which makes it

easy to read and learn the methods and their functionality. OoRexx is a quickly

learnable and simple programming language and with the BSF4ooRexx

extension all Java methods can be used in Rexx. Therefore there is no

downside in using ooRexx making it perfect for programming the Twitter API.

33



Twitter | Benjamin Berggold

Bibliography

1:  Wikipedia: Twitter, visited 12/2015

https://en.wikipedia.org/w/index.php?title=Twitter&oldid=694934957

2:  Techterms: Tweet Definition, visited 12/2015

http://techterms.com/definition/tweet

3:  Wikipedia: Application Programming Interface, visited 12/2015 

https://en.wikipedia.org/w/index.php?

title=Application_programming_interface&oldid=694622708

4:  Wikipedia: Representational State Transfer, visited 12/2015 

https://en.wikipedia.org/w/index.php?

title=Representational_state_transfer&oldid=694487867

5:  Twitter for Developers: Rate Limiting, visited 12/2015 

https://dev.twitter.com/rest/public/rate-limiting

6: Twitter for Developers: OAuth, visited 12/2015 

https://dev.twitter.com/oauth

7: Wikipedia: Java, visited 12/2015

https://en.wikipedia.org/w/index.php?

title=Java_(programming_language)&oldid=695946012

8: The Rexx Language Association, visited 12/2015 

http://www.rexxla.org/rexxlang/

9: Rony G. Flatscher, Introduction to Rexx and ooRexx, 2013

10: Twitter4J Library Homepage, visited 12/2015 

http://twitter4j.org/en/index.html

34

https://en.wikipedia.org/w/index.php?title=Twitter&oldid=694934957
http://twitter4j.org/en/index.html
http://www.rexxla.org/rexxlang/
https://en.wikipedia.org/w/index.php
https://dev.twitter.com/oauth
https://dev.twitter.com/rest/public/rate-limiting
https://en.wikipedia.org/w/index.php
https://en.wikipedia.org/w/index.php
http://techterms.com/definition/tweet

	Declaration
	1. Introduction
	2. History
	2.1. Creation
	2.2. Growth
	2.3. Usage

	3. Tweet
	4. Twitter for Developers
	4.1. Twitter API
	4.2. OAuth
	4.3. Twitter Apps

	5. Used Software
	5.1. Java
	5.2. ooRexx
	5.3. BSF4ooRexx
	5.4. Twitter4j

	6. Nutshell Examples
	6.1. Configuration & Setup
	6.2. updateStatus
	6.3. Timeline
	6.4. Favorite
	6.5. getFavorites
	6.6. destroyStatus
	6.7. sendMessage
	6.8. sentMessages
	6.9. destroyFriendship
	6.10. createFriendship
	6.11. getTrends

	7. Conclusion

