WIRTSCHAFTS
UNIVERSITAT

WIEN VIENNA
UMIVERSITY OF
ECONOMICS
AND BUSINESS

Twitter

HISTORY, CONCEPTS, NUTSHELL EXAMPLES WITH
(BSF4)OOREXX

Benjamin Berggold

1151964 | 0182 IS PROJECT SEMINAR OF INFORMATION SYSTEMS
SUPERVISOR: AO. UNIV. PROF. DR. RONY G. FLATSCHER
DECEMBER 18, 2015

Declaration

I do solemnly declare that I have written the presented research thesis
Twitter: History, Concepts, Nutshell Examples with (BSF4)OOREXX

by myself without undue help from a second person others and without using
such tools other than that specified. Where I have used thoughts from external
sources, directly or indirectly, published or unpublished, this is always clearly
attributed. Furthermore, I certify that this research thesis or any part of it has
not been previously submitted for a degree or any other qualification at the
Vienna University of Economics and Business or any other institution in Austria

or abroad.

Vienna, the December 7, 2016

Benjamin Berggold

Content

3 I e T [T oo 6
R 1] 10] Y 7
0 R 1 =T 1[0 7
2.2, GEOWE N e e 7
G TR U L= o 8
O T 9
4, TWitter fOr DeVeIOPEIS. .ttt e st r e ar e e aane e e annnneeanas 9
N O o T o 9
4.2, OAUEN . e 10
G T It o =T 2 o o 11
5. USed SOftWaAE. .. e 11
T S = L 11
52 BOREXX .ttt 12
5.3, BSFAOOREXX .ttt s 12
T T = 13
6. NUEShell EXamples. o e e e e e aneeeas 13
6.1. Configuration & SetUP....ciiiiiii i e 14
6.2, UpdateStatus. ..ot e 15
6.3, TIMEINE. e 16
B.4. FaVOIIT. it e 18
IR T e [o o= 1Yo 1 (== P 19
6.6. destroyStatUS. . et s 22
I A=Y= Lo | T S1= T P 23
6.8, SENEMESS A . .. ittt 25
6.9. destroyFriendShip....coviii i e 27
6.10. createFriendship....c.cviiii i e 28
0 R o 1< o I =T T [30

727 O Lo 11511 oY o S 33

Figures

Figure 1: Hello World! s e et e e e aaes 12
Figure 2: ConfigurationBuilder......c.cviiiiiiiii i i e 14
Figure 3: updateStatus. ..o e 15
Figure 4: updateStatus Terminal........c.ooiiiiiiiii e 16
Figure 5: updateStatus TwWitter......ooiiii i e e 16
o T8 = T T 0 1= L = 17
Figure 7: Timeline Terminal.......oooeriiiii i i i nee e aas 18
Figure 8 FaVorite. .o e 19
Figure 9: Favorite Terminal.....ccoiiiiiii i i s i e aaes 19
Figure 10: Favorite TWitter. ..o e 19
Figure 11: getFavorites. oo s e e e s s e a e 20
Figure 12: getFavorites Terminal.......cccviiiiiii i e 21
Figure 13: getFavorites TWitter. . .oooii e e 21
Figure 14: destroyStatUs. . .viiiiii i s s aaes 22
Figure 15: destroyStatus Terminal........ccoiriiiiiiiiiiiii i nireee e eaes 22
Figure 16: SENAMESSAgE. .. ciiiiii ittt it rr s e s e saae e raneeanns 23
Figure 17: sendMessage Terminal L......cooiiiiiiiiiiiii i i riee e raaee s 24
Figure 18: sendMessage Terminal 2.......ccvviiiiiiiiiiiii s aie s are s raneens 24
Figure 19: sendMessage Terminal 3......ccciiiiiiiiiiii i nie e rnnee e ranneeaas 24
Figure 20: sendMessage TWitter.....oouiiiiiiiii i e aee s 25
Figure 21: SeNtMESSageS. ... ittt e 25
Figure 22: sentMessages Terminal.......coivviviiiiiiiiis i snninrreeeseaanns 26
Figure 23: sentMessages TWitler.....oooiiii e e 26
Figure 24: destroyFriendship.....cccoviiiiii i i e 27
Figure 25: destroyFriendship Terminal.......ccooiiiiiii i e 27
Figure 26: destroyFriendship Twitter.....ccooviiiiiiiiii i s 28
Figure 27: createFriendsShip. ... oo s e s 28

Figure 28: createFriendship Terminal.........coooiiiiiii 29

Figure 29:
Figure 30:
Figure 31:
Figure 32:

Twitter | Benjamin Berggold

createFriendship TWitter......oviii i e 29
(o 1= ol = T = 30
getTrends Terminal. ... e e 31
getTrends TWiItEer. .o e 32

1. Introduction

This paper first introduces the history of the successful company Twitter, its

growth and usage.

Then it dives into the possibilities for developers to communicate with the
Twitter Client using the Twitter API. The API itself is explained and also the

security mechanism (OAuth) and the limitations are part of the paper.

The programming language used is Rexx, furthermore ooRexx with the
extension BSF400Rexx. This makes it possible to create Java objects from

Rexx which get camouflaged as ooRexx objects by BSF4o0Rexx.

The last chapter demonstrates the concepts with ten nutshell examples. The
code of every example is explained in detail and the results are displayed on

screenshots.

2. History

The seminar paper starts with a brief introduction to Twitter’s history, growth

and usage since the beginning in 2004.

2.1. Creation

Twitter’s creation began with the start of Odeo in 2004, it's parent company.
Odeo was a podcast publishing and aggregation website which enabled users
to create, record and share podcasts with a simple Adobe Flash-based

interface. The company was founded by Noah Glass and Evan Williams, both

creators of Twitter but the podcasting service had very little public response.

In February 2006 Jack Dorsey, Noah Glass, Evan Williams and Biz Stone did a
daylong brainstorming session and discussed the idea of using text messaging
to share statuses. The team decided to work on the project and named it
“twttr”. The name was inspired by Flickr and the American SMS short codes.
Also the domain twitter.com was already in use, but the company bought it six
months after the launch and renamed the service to Twitter. On March 21 Jack

Dorsey sent the first tweet:
“just setting up my twttr” - Jack Dorsey, March 21, 2006, 9:50 PM

Twitter was now officially set up but only used internally by Odeo employees.

Not before July 15 when Om Malik wrote an article about Twitter on GigaOm,

Twitter was introduced publicly as the full version. [1]

2.2. Growth

At first Twitter’s popularity was little until the South by Southwest Interactive
(SXSWi) conference in 2007 took place. The usage increased from 20,000

tweets per day to 60,000 and the reactions from the participants where highly
positive. Moreover, Twitter won the festival’s Web Award prize with the

following message:
“we’d like to thank you in 140 characters or less. And we just did!”

Since then the company experienced rapid growth. From 100 million tweets
posted per quarter in 2008 to 50 million tweets per day in February 2010.
Twitter became the third-highest-ranking social networking website in January

2009, ranked by monthly visits on “compete.com”. [1]

2.3. Usage

Twitter’s usage is rising especially during prominent events. Examples are the
2010 FIFA World Cup with 2,940 tweets per second on June 14 and the 2010
NBA Finals with 3,085 tweets per second on June 17. During specific
happenings at these events, like Japan scoring against Cameroon in the first
example and after the Los Angeles Lakers victory in the second, the tweets per

second were setting a record.

But not only sport events are making users send a tweet. The current record
was set after a television screening of the movie “Castle In The Sky” in Japan
on August 3, 2013. Twitter users were sending 143,199 tweets per second.

The normal tweets per second were about 5,700 tweets on average, meaning

the particular spike was 25 times greater.

As of May 2015, Twitter has more than 500 million users, out of which more

than 302 million are active users. [1]

3. Tweet

A tweet is an online posting created by a Twitter user. It is also often referred
to a "micro-blog” as the posting is limited to 140 characters or less. Originally
the purpose of tweets was to answer the question, "What are you doing?”.
However, tweets can contain any information the user wants to share. Users
may subscribe to other users, known as “following”. Subscribers are known as
“followers”, also often called “tweeps”, which is a mix of Twitter and peeps
(short for “people”). After posting the message, all followers of the user can
view it on their Twitter home page. Correspondingly, the users Twitter home
page will display the most recent tweets of the users he or she is following.
Because of the 140 characters limit it is possible to show several tweets on one
page. [2]
Tweets can be posted through various channels:

The official Twitter website, twitter.com,

Compatible external applications, e.g. on smartphones or tablets,

In certain countries via SMS short code.

By default, tweets are publicly visible but users can restrict the visibility to just

their followers. [1]

4. Twitter for Developers

This Chapter will introduce the possibilities Twitter offers to developers.

4.1. Twitter API

An application programming interface (API) consists of routines, protocols and

tools for building software applications for various programs and platforms like
twitter. It provides building blocks which makes it easier for the programmer
to develop a program based of the original program. Using a given
programming language, the API makes it possible to develop applications for
the existing system. As an example, an app developer for iOS may use the iOS

API to interact with the hardware and software of an iPhone.

APIs often are libraries with specifications for routines, data structures, object
classes and variables. But they can also only consist simply of remote calls
exposed to the API consumers, like twitter’s API which is called a RESTful
API. [3]

The Twitter API uses representational state transfer (REST) which gives a
coordinated set of constraints for a higher-performing and more maintainable
architecture. RESTful systems, like twitter’s API, communicate over Hypertext
Transfer Protocol (HTTP) with its verbs: GET, POST, PUT, DELETE, etc. [4]

When programming with the Twitter API it is important to keep in mind that
there are certain limits which restrict the use of the API. For example, the
search is limited to 180 queries per 15 minute window. An up-to-date chart
with all the limitations the API developer has to consider can be found at

“https://dev.twitter.com/rest/public/rate-limits”. [5]

4.2. OAuth

Twitter uses OAuth to provide authorized access to its API. Through OAuth
account security is increased as users are not required to share their
passwords with 3rd party applications. Additionally, many client libraries and
example code are compatible with the OAuth implementation, setting a

standard. There are two forms of authentication.

First the “application-user authentication” which is the most common form of
resource authentication. The signed request identifies the application’s identity

and also the identity accompanying granted permission of the end-user the API

is making calls on behalf of.

Second the “application-only authentication” where the application makes API
requests without a user context. Therefore, any request to the API that require
user context, such as posting tweets, will not work. However, the application
will be able to, for example pull user timelines, access friends and followers of
any account, access lists resources, search tweets or retrieve any user

information. [6]

4.3. Twitter Apps

At “apps.twitter.com” it is possible to register for a twitter developer account
and create an application for using the twitter API. After creating an app, it is
possible to manage the access level from only “read” to “read and write” to
“read, write and direct messages”. For the nutshell examples we need the third
option as we are sending direct messages. Also the Oath keys are generated
on this site. Consumer key, consumer secret, access token and access token

secret are displayed on the “apps.twitter.com” website.

5. Used Software

The following chapter gives on overview of the programming languages and

libraries used to create the nutshell examples.

5.1. Java

For programming the nutshell examples it is essential to understand how Java
works as Java methods are used to communicate with the Twitter API.

Therefore, this chapter gives a brief introduction to the programming

language.

The concept behind Java is “write once, run everywhere” which means that
compiled Java code is able to run on any platform that supports Java without
the need of recompilation. It is a class-based, object-oriented programming
language with few implementation dependencies. As of 2015, it is the most
popular programming language in use, with a reported 9 million developers. Its

syntax derives from C and C++. [7]

The famous “Hello World!” program code looks like the following:

class HelloWorldApp {
public static void main(String[] args) {
System.out.println("Hello World!"); .

Figure 1: Hello World!

5.2. ooRexx

Open Object Rexx is an open source, object oriented version of Rexx
(REstructured eXtended eXecutor) which was developed by Mike Cowlishaw at

IBM. It has an English-like syntax which makes it easy to use, read and learn.
The “Hello World!” program code looks like the following:
SAY “Hello World!”

Open Object Rexx is nowadays further developed by the Rexx Language
Association (RexxLA) which is an independent, non-profit organisation

dedicated to promoting the use and understanding of Rexx. [8]

5.3. BSF40o0ReXxXx

The Bean Scripting Framework (BSF) allows interaction with the Java runtime

environment for other programming languages. This enables the use of Java

classes and Java objects by them.

The Bean Scripting Framework for Open Object Rexx (BSF400Rexx) makes it
possible to create Java objects from Rexx which get camouflaged as ooRexx
objects by BSF4o00Rexx. All the needed data type and case conversions

between Java and ooRexx are handled by the BSF4o00Rexx infrastructure.

For the nutshell examples it is important to note that the line of code
“::requires BSF.CLS” is necessary to enable Java support. "The ooRexx
package BSF.CLS defines public routines and the ooRexx class BSF which
allows creating Java objects from a Rexx program. The returned ooRexx
objects are instances of the class BSF and will forward received messages for
execution to Java and return any value the Java method returns. If a Java
object gets returned, it will get wrapped up as an instance of the ooRexx class
BSF.”

The Framework is developed by Mag. Dr. Rony G. Flatscher at the Vienna

University of Economics and Business. [9]

5.4. Twitter4j

Twitter4] is an unofficial Java library for the Twitter API. The library consists of
many Java classes which communicate with the Twitter API, making
programming the API with Java very easy. All the following nutshell examples

take advantage of the library and demonstrate how it works. [10]

6. Nutshell Examples

Finally the following chapter describes the creation of the ten nutshell

examples and explains them in detail.

Twitter | Benjamin Berggold
6.1. Configuration & Setup

The first part of every “.rxj” file created for the nutshell examples consists of

the same lines of code. These lines are shown in Figure 2.

cb=.bsf~new("twitter4j.conf.ConfigurationBuilder",)
cb~set0AuthConsumerKey ("djhgZM2z0wGtMh91glSGDATmML")
cb~set0AuthConsumerSecret("eXMldFpprQJQEZDBauYriv0lclPokmInkgC0j33ceq2bniny8g"”)
cb~setDAuthAccessToken (" 1008446732-FyS6bC53dBBfEL7D9ga8fDEggNTEQBR19z5Bmhy ")
ch~set0AuthAccessTokenSecret ("dTRVogHkyddhz jUVTgEHXH]j OUBIdf9IDSHZ fVFgj@mgws")
tw=.bsf~new("twitterd4j.TwitterFactory",cb~build)~getInstance
Figure 2: ConfigurationBuilder
The first line calls the method “twitter4j.conf.ConfigurationBuilder” from the
twitterdj library, discussed at the previous chapter. It is stored in the variable
“cb” which can now be used to alter the twitter4j configuration with desired
settings. There are many settings which can be customized through the

builder, important for the nutshell examples are the following four:
1. setOAuthConsumerKey
2. setOAuthConsumerSecret
3. setOAuthAccessToken
4. setOAuthAccessTokenSecret

The four OAuth keys are created by the Twitter API and can be regenerated at
any time through the “apps.twitter.com” homepage. Simple “copy and paste”
of the codes enables the program to communicate with the twitter client. As
described in the Chapter “"OAuth” the keys increase security and enable

authentication.

After successful authentication one more step is necessary before it is possible
to use twitter4j’s library. The library has a built in factory method. A factory is
an object for creating other objects. It returns an object with a method call

“new” and can be seen as an abstraction of a constructor of a class.

With “cb~build” inside the factory method a usable configuration is created

14

Twitter | Benjamin Berggold

and with “~getlnstance” the factory returns an instance associated with the
configuration bound to it. The factory instance is then stored in the “tw”
variable at the beginning of the line which can now be used to write programs

with the twitter4j library.

The following chapters consist of ten nutshell examples which demonstrate the
possibilities of the Twitter API.

6.2. updateStatus

The first example describes the simple task of posting a new status on the
user’s twitter timeline. The method needed is “updateStatus()” which is part of
the twitter4j library. We call the method with the factory instance “tw” followed
by a “"~"” and the method name “updateStatus”. Inside the parenthesis, after
the method name, the text for the timeline is written. In this case the array
“arg(1)” is inside as shown in Figure 3 which means it takes the input written
after the execution of the program and puts it into the parenthesis after the

method name.

updateStatus.rxj (~/Schreibtisch) - GVIM

- E A E & E Q> < B 3 %

#!/usr/bin/rexx

cb=.bsf~new("twitter4j.conf.ConfigurationBuilder",)

cb~set0AuthConsumerKey ("djhgZM2z0wGtMh91glSGDOTML")

cb~set0AuthConsumerSecret ("eXMldFpprQJQEZDBauYrlv0lclPokmInkgC0j33ceq2bnwny8g"”)
cb~set0AuthAccessToken (" 1088446732 -FyS6bC53dBBTf6L7D9ga8fDEgQNTEQBR1925Bmhy ")
cb~set0AuthAccessTokenSecret ("dTRVogHkyddhz jUVfgEHXH]OUSIdT9IDSHz fVFgjBmgws")

tw=.bsf~new("twitterdj.TwitterFactory", cb~build)~getInstance

tw~updateStatus(arg(1))
SAY "Status updated."

:irequires BSF.CLS -- get the Java support|

.

| [P R O |

-- EINFUGEN -- 14,46 Alles
Figure 3: updateStatus

15

Twitter | Benjamin Berggold

The execution of the program is displayed in Figure 4.

@ ™ @ bennib@bennib-VirtualBox: ~/Schreibtisch

bennib@bennib-VirtualBox:~% cd ./Schreibtisch
bennib@bennib-VirtualBox:~fSchreibtisch$ rexx updateStatus.rxj "hello world!"

Status updated.
bennib@bennib-VirtualBox:~/S5chreibtisch$ I

Figure 4: updateStatus Terminal
In this case “hello world!” is stored in the first position of the array “arg” and
put into the parenthesis after the method “updateStatus”. The entire line of

code would look like the following:
tw~updateStatus(“hello world!”)

The next line is a simple “"SAY” command which reports only to the terminal

that the status has been updated.

Finally, the result in twitter itself can be seen in Figure 5.

benni.b @be_benni &
hello world!

Figure 5: updateStatus Twitter

6.3. Timeline

The second example displays the twitter home timeline in the terminal as a
list. The method used is “"getHomeTimeLine” from the twitter4j library. Like in
the previous example we call the method with the factory instance “tw”
followed by a “~” and the method name “getHomeTimeLine”. The timeline is
then stored into the variable “statuses”. We need to put the timeline
information into an array to filter the results and create a list. Therefore we
store the timeline information into an array with the command
“statuses~toArray” stored in the “dir” variable. The next line simply prints the

text "Hometimeline:” to the terminal screen. All the code is shown in Figure 6.

16

Twitter | Benjamin Berggold

timeline.rxj + (~fSchreibtisch) - GVIM

a BB E &« E &)¢ BR 2 % @

#! fusr/bin/rexx

cb=.bsf~new("twitterd4j.conf.ConfigurationBuilder",)

cb~setOAuthConsumerkey ("djhqZM2z0OwGtMh91glSGDOTME")
cb~set0AuthConsumerSecret ("eXMldFpprQJQEZDBauYrivolclPokmInkgCOj33ceq2bnviny8g"”)
cb~setO0AuthAccessToken (" 1088446732 -FyS6bC53dBBT6L7D9ga8fDEgQNTEQBR19Z5Bmhy ")
cb~set0AuthAccessTokenSecret ("dTRVogqHkyddhz jUVTqEHXH] OUBIdT9IDSHz fVFg j@mgw5")

tw=.bsf~new("twitterdj.TwitterFactory",cb~build)~getInstance

statuses=tw~getHomeTimeline
dir=statuses~toArray

SAY "Hometimeline:"

do i over dir

SAY i-getId "|" i~-getUser~getName":" i-getText
END
iirequires BSF.CLS -- get the Java support

-

8,0-1 Alles
Figure 6: Timeline

Finally, we can loop through the array and display the statuses on the home
timeline. This is possible with the “do i over dir” loop which stores every value
of the dir array one by one separately into the variable “i” and prints it out in
the next line. With the “i~getld” we call the ID of the status, which is a unique
number, “i~getUser~getName” returns the username who posted the status
and “i~getText” displays the status text. The "END"” statement ends the loop
and the program is finished.

17

Twitter | Benjamin Berggold

After executing the program through entering the line “rexx timeline.rxj” into
the terminal, the home timeline is displayed in the terminal. The result is

shown in Figure 7.

® @ @ bennib@bennib-VirtualBox: ~/Schreibtisch
bennib@bennib-virtualBox:~/Schreibtisch$ rexx timeline.rxj
Hometimeline:
676048577781739521 | benni.b: hello world!
675999293212336128 | benni.b: testtest
675874292383547393 | Treehouse: Treehouse Workshop: @craigsdennis walks through dependency management with #Gradle: https://t.co/oalUCmé
VU3 https://t.co/A5gGzbgpEM
675843384783847424 | Treehouse: The 26 Best Websites to Learn Incredibly Useful New Skills: https://t.co/KobeW32nNN via @AboutMoney
675825710196465665 | Treehouse: Treehouse Workshop with @davemcfarland: Share Your Projects With #GitHub Desktop: https://t.co/755Md54m
hJ
675796889476943876 | Treehouse: Melanie Went From Owning a Bakery to Traveling With Her Family as a Freelance Web Designer: https://t.c
://t.co/5qHCAP7QbK

| Treehouse: We've refreshed our Python Basics course @kennethlove! If you're new to #Python, this is the place to s
tart: https://t.co/71716pM4z4
675720528179675137 | Treehouse: Learn all about Normal Maps & how to generate them: https://t.co/sOgtQpHnzi by @nickrp via @treehouse_
blog #gamedev https://t.co/FQ2mxhiwls
675676511366725633 | Treehouse: 2016 Web Design & UX Trends to Boost Conversions: https://t.co/ApjbkBtCKr via @lstwebdesigner
675511898130014209 | Treehouse: What’s new for designers, December 2015: https://t.co/v6Ez7fIBTx via @DesignerDepot
675463345403772932 | Treehouse: Animation and Motion Design at Treehouse: Process and Workflow: https://t.co/ICYJRqGnpd by @randomjake
via @treehouse_blog #animation
675434421848309760 | Treehouse: Melanie Went From Owning a Bakery to Traveling The World With Her Family as a Freelance Designer: https
:f/t.co/mixnymDFwL
675390190677049344 | Treehouse: Best gifts for Designers: https://t.co/611kTE76B0 via @Medium
675358266550059008 | Treehouse: Woohoo! It's Friday! So which @treehouse course are you going to tackle this weekend? #teamtreehouse #f
ridayfeeling https://t.co/1cddYz77vD
675329748218814464 Treehouse: We're looking for experienced JavaScript devs to build a #TDD & #BDD course. Interested? Tell us! https
://t.co/Y4e9q0evhz
675318338503974912 Benjamin Berggold: test
675314519283998721 Treehouse: Thanks for the kind words and for learning with us @th3oryas3! https://t.co/hnlNKubHpV
675095415532986373 Tortuga Backpacks: How I Travel: Patrick Healy https://t.co/Nt8us36PGy https://t.co/NdRiiTFBCv
675073986355707905 | Tortuga Backpacks: RT @idkmenhq: @TortugaBackpack, you scored #1 on our list for digital nomad backpacks (I actual
ly personally have one) :-) https://t.co/QXs..
675073761222246400 | Tortuga Backpacks: RT @patrickhealyid: My new team @tortugabackpack interviewed me about how I travel. My words, b
ut not my drawings https://t.co/DfPKDRAQHZ
bennib@bennib-virtualBox:~/Schreibtisch$

Figure 7: Timeline Terminal

6.4. Favorite

The third example makes it possible to favourite any status. The method
needed is “createFavorite” from the twitter4j library. The lines of code are
similar to the lines from the “updateStatus” example as we are also using the

“arg” array command line input.

As shown in Figure 8, first we are calling the factory instance with “tw”
followed by a “"~"” and the method name “createFavorite()”. After the method
name, inside the parenthesis, the ID of the status that gets favorited is
written. In the program the ID is written with the execution, after the file
name in the terminal, similar to the “updateStatus” example program. The ID
is then stored into the first position of the array “arg” and handed inside the

parenthesis after the “createFavorite” method.

18

Twitter | Benjamin Berggold

favorite.rxj (~/Schreibtisch) - GVIM

- BB E & a4 BE Q& > B A % % =

B! /usr/bin/rexx

cb=.bsf~new("twitter4j.conf.ConfigurationBuilder",)

cb~set0AuthConsumerkey ("djhgZM2z0wGtMh91glsGDeTmt")

cb~set0AuthConsumersecret ("eXMldFpprQJQEZDBauYrlvolclPokmInkqC0j33ceq2bniny8g"”)
cb~setOAuthAccessToken (" 1088446732-FyS6bC53dBETEL7D9ga8 T DEggN7EQER1925Bmhy ")
cb~setO0AuthAccessTokenSecret ("dTRVogHkyddhz jUVfgEHXH]OUBIdT9IDSHZ TVFgj@mgw5")
tw=.bsf~new("twitter4j.TwitterFactory", cb~build)~getInstance

tw~createFavorite(arg(1})
SAY "Status favorited."

:irequires BSF.CLS -- get the Java support

-

1,1 Alles
Figure 8: Favorite

The method takes the ID and favourites the twitter status. The entire line of

code would look like the following:
tw~createFavorite(676048577781739521)

After that the program runs a simple “SAY” command printing “Status

favorited.”. The execution in the terminal is displayed in Figure 9.

o

bennib@bennib-VirtualBox: ~fSchreibtisch

bennib@bennib-VirtualBox:~/Schreibtisch$ rexx favorite.rxj 676048577781739521
Status favorited.
bennib@bennib-VirtualBox:~/5S hs I

vorite Terminal

igre 9: '

Finally, the result in twitter itself can be seen in Figure 10. The favourited
status is marked with a red heart.

benni.b @be_benni & - 7 Min.
hello world!

V1
Figure 10: Favorite Twitter
The fourth example program lists all the favourited statuses of the user in the

terminal. The method needed is “getFavorites” from the twitter4j library. As

always we call the method with the factory instance “tw” followed by a “~" and

19

Twitter | Benjamin Berggold

the method name “getFavorites”. The favourites are then stored into the
variable “favorites”. Then an array is needed to filter the results and create a
list. We do this with storing the favourites into an array with the command
“favorites~toArray” and save it in the “dir” variable. All lines of code are shown

in Figure 11.

getFavorites.rxj (~/Schreibtisch) - GVIM

#! fusr/bin/rexx

cb=.bsf~new("twitterd4j.conf.ConfigurationBuilder",)

cb~set0AuthConsumerKey ("djhgZM2z0wGtMh31g15GDATML")
cb~set0AuthConsumerSecret("eXMldFpprQJQEZDBauYrlv0lclPokmInkgC0j33ceq2bnny8g"”)
cb~set0AuthAccessToken(" 10088446732 -FyS6bC53dBBT6L7D9ga8TDEgQQNTEQBR19Z5Bmhy ")
cb~set0AuthAccessTokenSecret ("dTRVogqHkyddhz jUvTqEHXH] 0UBIdT9IDSHZ fVFg] Omgws")

tw=.bsf-new("twitter4j.TwitterFactory",cb-build}~getInstance

favorites=tw~getFavorites
dir=favorites~toArray

SAY "Favorites:"

do i over dir

SAY i~-getlUser~getScreenName "-" i~getText
END
::requires BSF.CLS -- get the Java support

-

-

168,0-1 Alles
Figure 11: getFavorites

The next line prints a simple text to the terminal screen saying “Favorites:”.

In the following three lines of code we create a “do over” loop, similar to the
one in the timeline example. Every value of the array “dir” is stored into the
variable “i” separately and is printed out on the terminal.
“i~getUser~getScreenName” returns the username of the favourited status
and “i~getText” displays the status text. The “"END” statement ends the loop

and the program is finished.

After executing the program with typing the line “rexx getFavorites.rxj” into
the terminal, the favourites are displayed as a list in the terminal. The result is

shown in Figure 12.

20

Twitter | Benjamin Berggold

Fs

bennib@bennib-VirtualBox: ~/Schreibtisch

bennib@bennib-VirtualBox:~/5 S rexx getFavorites.rxj
Favorites:

be_benni - hello world!
be_testl - test
bennib@bennib-VirtualBox:~/%

Figure 12: getFavorites Terminal

In twitter itself the favourites can be seen in Figure 13.

Gefallt mir

benni.b @be_benni & - 32 Min.
hello world!

LB

Benjamin Berggold @be _test1 - 11. Dez.
test

LB

Y

Figure 13: getFavorites Twitter

21

Twitter | Benjamin Berggold

6.6. destroyStatus

In the fifth example the status posted in the first example gets deleted. The
method needed is “destroyStatus()” from the twitter4j library. We call the
method with the factory instance “tw” followed by a “~” and the method name
“destroyStatus”. After the method name, inside the parethesis, the ID of the
status which should get deleted is entered. Again we do this with the “arg”
array and take the input directly from the terminal execution. As shown in

Figure 14 we put the variable “arg(1)” inside the parenthesis.

destroyStatus.rxj (~/Schreibtisch) - GVIM1

- E R &E & &4 B X< B8 % 8

B! /usr/bin/rexx

ch=.bsf~new("twitter4j.conf.ConfigurationBuilder",)

cb~set0AuthConsumerkKey ("djhgZM2z0wGtMh91glsGDETML")

cb~set0AuthConsumersecret ("eXMldFpprQJQEZDBauYrlvolclPokmInkqC0j33ceq2bniny8g"”)
cb~set0AuthAccessToken (" 1088446732-FyS6bC53dBBTEL7D9ga8TDEgQNTEQBR19Z5Bmhy ")
cb~setO0AuthAccessTokenSecret ("dTRVogHkyddhz jUVfgEHXH]OUBIdT9IDSHZ TVFgjBmgw5")

tw=.bsf~new("twitter4j.TwitterFactory", cb~build)~getInstance

tw~destroyStatus(arg(1))
SAY "Status deleted."

::requires BSF.CLS -- get the Java support

- -

1,1 Alles
Figure 14: destroyStatus

The execution of the program with the ID of the status at the end of the line is
shown in Figure 15. In this case the status ID “675999293212336128" is
stored in the first position of the array “arg” and put into the parenthesis after

the method name “destroyStatus”.

s

bennib@bennib-VirtualBox: ~f/Schreibtisch
bennib@bennib-VirtualBox:~/ chS rexx destroyStatus.rxj 675999293212336128

Status deleted.
bennib@bennib-virtualBox:~/ S |

Figure 15: destroyStatus Terminal

The entire line of code would look like the following:

tw~destroyStatus(675999293212336128)

22

Twitter | Benjamin Berggold

The next line prints the text to the terminal that the status has been deleted.

6.7. sendMessage

The sixth example demonstrates the sending of direct messages in twitter
using the “sendDirectMessage()” method from the twitter4j library. Because
there are now two inputs necessary, which are the receiver name and the text
of the message itself, the program is build with the "PARSE PULL” command to
make it simpler for the user to type the message. "PARSE PULL"” waits for the
input the user is making on the terminal and stores it into the variable that
follows the command. In the example that is "Name” and “Nachricht”. After
receiving these two values we call the factory instance “tw” followed by a “~”
and the method name “sendDirectMessage”. Then inside the parenthesis after
the method name the two variables “Name” and “Nachricht” are written,
separated by a comma. The first variable has to be the receiver, the second

the message body.

e sendMessage.rxj (~fSchreibtisch) - GVIM1

- E R E & B Q&) < B3 % M=

B! /usr/bin/rexx

cb=.bsf~new("twitterd4j.conf.ConfigurationBuilder",)

cb~set0AuthConsumerKey ("djhgZM2z0wGtMh91gl5GDATML")

cb~set0AuthConsumerSecret ("eXMldFpprQJQEZDBauYrlv0lclPokmInkgC0j33ceq2bnWny8g")
cb~set0AuthAccessToken (" 1088446732-FyS6bC53dBBf6L7D9ga8fDEggN7EQBR1925Bmhy ")
cb~set0AuthAccessTokenSecret ("dTRVogHkyddhz jUVTgEHXH]0UBIdTSIDSHz fVFgjOmgws")

tw=.bsf~new("twitter4j.TwitterFactory",cb~build)~getInstance
SAY "Bitte geben Sie einen Namen ein: "

PARSE PULL Name

SAY "Bitte geben Sie eine Nachricht ein: "

PARSE PULL Nachricht

tw~sendDirectMessage(Name, Nachricht)

SAY "Message sent."

iirequires BSF.CLS -- get the Java support

1,1 Alles
Figure 16: sendMessage

The last line is again a simple “"SAY"” statement printing "Message sent.” to the

23

Twitter | Benjamin Berggold
screen. The lines of code are displayed in Figure 16.

When executing the program first the user will be asked for a hame he wants

to send the message to. This is shown in Figure 17.

bennib@bennib-VirtualBox: ~/Schreibtisch

bennib@bennib-vVirtualBox:~/Schreibtisch$ rexx sendMessage.rxj
Bitte geben Sie einen Namen ein:

Figure 17: sendMessage Terminal 1
Then after entering a name the user will be asked to enter the message he

wants to send to the receiver, shown in Figure 18.

Fo

bennib@bennib-VirtualBox: ~f/Schreibtisch
bennib@bennib-VirtualBox:~/Schreibtisch$ rexx sendMessage.rxj
Bitte geben Sie einen Namen ein:

be_testi

Bitte geben Sie eine Nachricht ein:

Figure 18: sendMessage Terminal 2
After entering a message, the message will be sent and the terminal shows the

text "Message sent.”, displayed in Figure 19.

P

bennib@bennib-VirtualBox: ~f/Schreibtisch
bennib@bennib-VirtualBox:~/Schreibtisch$ rexx sendMessage.rxj
Bitte geben Sie einen Namen ein:

be_testi

Bitte geben Sie eine Nachricht ein:
hello there!

Message sent.
bennib@bennib-VirtualBox:~/Schreibtisch$ I
Figure 19: sendMessage Terminal 3

The entire line of code would look like the following:

tw~sendDirectMessage("be_test1l”, “hello there!”)

In twitter itself the message is then displayed under “Messages” at the users

account, shown in Figure 20.

24

Twitter | Benjamin Berggold

hello therel! o

58 Sek.

Figure 20: sendMessage
Twitter

6.8. sentMessages

After sending a message in the sixth example, the seventh program displays a
list of the sent Messages from the twitter account. The method used is
“getSentDirectMessages” from the twitterd4j library. As always we call the
method with the factory instance “tw” followed by a “~” and the method name
“getSentDirectMessages”. The direct messages are then stored into the
variable “messages”. We need to put the messages into an array to create a
list. Therefore we have to store the messages into an array with the command
“messages~toArray” and save it into the “dir” variable. All the code is

displayed in Figure 21.

sentMessages.rxj (~/Schreibtisch) - GVIM1

- E R E & E Q)< BHE 2 % =

g /usr/bin/rexx

cb=.bsf~new("twitterdj.conf.ConfigurationBuilder")

cb~set0AuthConsumerkKey ("djhgZM2z0wGtMh91g1SGDETML")

cb~set0AuthConsumerSecret ("eXMldFpprQJQEZDBauYriv0lclPokmInkgC0j33ceq2bnvny8g"”)
cb~setOAuthAccessToken (" 1088446732 -FyS6bC53dBBTEL7D9ga8TDEgNTEGBR19zZ5Bmhy ")
cb~set0AuthAccessTokenSecret ("dTRVogHkyddhz jUVTQEHXH] OUBIdT8IDSHz fVFg jOmgw5")

tw=.bsf~new("twitterdj.TwitterFactory",cb~build)~getInstance

messages=tw~getSentDirectMessages
dir=.directory~new
dir=messages~toArray

SAY "Sent Messages:"

do i over dir

SAY i-getRecipientScreenName":" i~getText
END
:irequires BSF.CLS -- get the Java support

-

1,1 Alles
Figure 21: sentMessages

25

Twitter | Benjamin Berggold
The next line prints the text "Sent Messages:” to the terminal screen.

Finally, the “"DO OVER” loop stores every value of the “dir” array one by one
separately into the variable “i” and prints it out in the next line. With the
“i~getRecipientScreenName” we call the name of the receiver of the message
and “i~getText” returns the text body from the message. The "END” statement

ends the loop and the program is finished.

After executing the program through entering the line “rexx sentMessages.rxj”
into the terminal, the sent Messages are displayed in the terminal as a list. The

result is shown in Figure 22.

bennib@bennib-VirtualBox: ~fSchreibtisch

bennib@bennib-VirtualBox:~/Schreibtisch$ rexx sentMessages.rxj
Sent Messages:
: hello there!
: test test test test!
: test test test!
: TEST TEST TEST!
A ! test
bennib@bennib-VirtualBox:~/Schreibtisch$ I
Figure 22: sentMessages Terminal

In twitter itself the sent Messages are displayed under Messages in the user

account, shown in Figure 23.

(v (:} Benjamin Berggold

O]

Figure 23: sentMessages Twitter

26

Twitter | Benjamin Berggold
6.9. destroyFriendship

The eighth example demonstrates how to unfriend or unfollow a person on
twitter. The method needed is “destroyFriendship()” from the twitter4j library.
As always we call the method with the factory instance “tw” followed by a “~"
and the method name “destroyFriendship”. Inside the parenthesis, after the
method name, the name of the user that we want to unfriend is entered. In
this case we use the “arg” array again, as seen in Figure 24, which means it
takes the input written after the program file at the execution in the terminal.
The value is stored into the first position of the array (“arg(1)”) and then

handed inside the parenthesis of the method “destroyFriendship()”.

destroyFriendship.rxj (~/Schreibkisch) - GVIM1

B & & & BE Q& > K &8 % =H

E!/usr/bin/rexx

cb=.bsf~new("twitter4j.conf.ConfigurationBuilder",)

cb~set0AuthConsumerKey ("djhgZM2z0wGtMh91glSGDOTML")

cb~set0AuthConsumerSecret ("eXMldFpprQJQEZDBauYrlv0lclPokmInkgC0j33ceq2bnwny8g"”)
cb~set0AuthAccessToken (" 1088446732 -FyS6bC53dBBTf6L7D9ga8fDEgQNTEQBR1925Bmhy ")
cb~set0AuthAccessTokenSecret ("dTRVogHkyddhz jUVfgEHXH]OUSIdT9IDSHz fVFgjBmgws")

tw=.bsf~new("twitterdj.TwitterFactory", cb~build)~getInstance

tw~destroyFriendship(arg(1))
SAY "You are no longer friends with "arg(l)

:irequires BSF.CLS -- get the Java support

. -

1.4 Alles
Figure 24: destroyFriendship

The execution of the program is displayed in Figure 25.

s

bennib@bennib-VirtualBox: ~/Schreibtisch
bennib@bennib-vVirtualBox: h$ rexx destroyFriendship.rxj be_testi

You are no longer frlcnds wlth be_testl
bennib@bennib-VirtualBox:~, hS I

Figure 25: destroyFriendship Terminal
In this case “be_testl” is stored in the first position of the array “arg”. The

entire line of code would look like the following:

tw~destroyFriendship("be_test1”)

27

Twitter | Benjamin Berggold

The next line prints the text “You are no longer friends with ™ plus the name

stored in “arg(1)” to the terminal. In this case “be_test1”.

Finally, the result in twitter itself can be seen in Figure 26. We are no longer
following “be_test1”.

Rl B il
F = 5 = { Profil b e

—l

e

- gl

aiii o e -
ot =T

Tortuga Backpacks Triahdusa

Figure 26: destroyFriendship Twitter

6.10. createFriendship

In the last example "“be_testl” got unfollowed. The ninth example
demonstrates how to follow him again. The method used is
“createFriendship()” which is part of the twitter4j library. We call the method

with the factory instance “tw” followed by a “~"” and the method name

createFriendship.rxj (~/Schreibtisch) - GVIM1
- B R E & BE Q& >< B0 % % =

B! /usr/bin/rexx

cb=.bsf~new("twitter4j.conf.ConfigurationBuilder",)

cb~set0AuthConsumerkey ("djhgZM2z0wGtMh91glsGDeTmt")

cb~set0AuthConsumersecret ("eXMldFpprQJQEZDBauYrlvolclPokmInkqC0j33ceq2bniny8g"”)
cb~setOAuthAccessToken (" 1088446732-FyS6bC53dBETEL7D9ga8 T DEggN7EQER1925Bmhy ")
cb~setO0AuthAccessTokenSecret ("dTRVogHkyddhz jUVfgEHXH]OUBIdT9IDSHZ TVFgj@mgw5")

tw=.bsf~new("twitterdj.TwitterFactory",cb~build)~getInstance

tw~createFriendship(arg(1))
SAY "You are now friends with "arg(1l)

:irequires BSF.CLS -- get the Java support

-

1,1 Alles
Figure 27: createFriendship

28

Twitter | Benjamin Berggold

“createFriendship”. Inside the parenthesis, after the method name, the name
of the user we want to follow is entered. In this case we use the “arg” array
again, as seen in Figure 27, which means it takes the input written after the
program file at the execution in the terminal. The value is stored into the first
position of the array (“arg(1)”) and then handed inside the parenthesis of the

method “createFriendship()”.

The execution of the program is shown in Figure 28.

-~

bennib@bennib-VirtualBox: ~fSchreibtisch
bennib@bennib-VirtualBox:~/Schreibtisch$ rexx createFriendship.rxj be_test1

You are now friends with bc t t1
bennib@bennib-VirtualBox:~/Schreibtisch$

Figure 28: createFriendship Terminal
In this case “be_testl” is stored in the first position of the array “arg”. The

entire line of code would look like the following:
tw~createFriendship("be_test1”)

The next line prints the text “You are now friends with * plus the name stored

in “arg(1)” to the terminal. In this case “be_test1”.

O

Tortugs Backpacks Besjamin Barggold

L -- .l.-. -
il |
| S

Tedildisia

Figure 29: createFriendship Twitter

29

Twitter | Benjamin Berggold

Finally, the result in twitter itself can be seen in Figure 29.

6.11. getTrends

The tenth and last example displays the different trends locations in a list
together with their WOEID (Where On Earth IDentifier). The method used is
“getAvailableTrends” from the twitter4j library. As always we call the method
with the factory instance "“tw” followed by "“~” and the method name
“getAvailableTrends”. The trends are then stored into the variable “trends”. We
need to put the trends into an array to create a list. We can store the trends
into an array with the command “trends~toArray” and save it into the “dir”

variable. All the code is displayed in Figure 30.

] gekTrend.rxj (~/Schreibtisch) - GVIM

_i@\!’f n & f_QP*& &H % A
#1/usr/bin/rexx

cb=.bsf~new("twitterdj.conf.ConfigurationBuilder",)

cb~set0AuthConsumerkKey ("djhgZM2z0wGtMh91glSGDOTmML")
cb~set0AuthConsumerSecret ("eXMldFpprQJQEZDBauYrlv0lclPokmInkgC0j33ceq2bnny8g"”)

cb~set0AuthAccessToken (" 1088446732 -FyS6bC53dBET6L7D9ga8fDEgQNTEQER19Z5Bmhy ")
cb~set0AuthAccessTokenSecret("dTRVogqHkyddhz jUVTQEHXH]OUBIdT9IDSHZ fVFg jOmgws")

tw=.bsf~new("twitterdj.TwitterFactory",cb~build)~getInstance

trends=tw~getAvailableTrends
dir=trends~toArray

SAY "Avallable Trends:"

do i over dir

SAY i-getName "----- WOEID:" i~getWoeid

END

:irequires BSF.CLS -- get the Java support]

-- EINFUGEN -- 18,46 Alles

Figure 30: getTrends
The next line prints the text “Available Trends:” to the terminal screen.
Finally, the “"DO OVER” loop stores every value of the “dir” array one by one
separately into the variable “i” and prints it out in the next line. With the
“i~getName” we call the name of the country and “i~getWoeid” returns the

corresponding WOEID. The "END” statement ends the loop and the program is

30

Twitter | Benjamin Berggold

finished.

After executing the program through entering the line “rexx getTrends.rxj” into
the terminal, the trends locations are displayed in the terminal as a list. Part of

the result is shown in Figure 31.

@ & @ bennib@bennib-VirtualBox: ~/Schreibtisch

bennib@bennib-VirtualBox:~fSchreibtisch$ rexx getTrends.rxj
Available Trends:
Worldwide WOEID: 1
Winnipeg WOEID: 2972
WOEID: 3369
WOEID: 3444
Montreal WOEID: 3534
WOEID: 4118
Edmonton WOEID: B676
WOEID: B775
WOEID: 9807
Birmingham WOEID: 12723
Blackpool WOEID: 12903
Bournemouth WOEID: 13383
WOEID: 13911

WOEID: 13963

WOEID: 15127
Coventry WOEID: 17044
Derby WOEID: 18114
Edinburgh WOEID: 19344

WOEID: 21125
WOEID: 25211
WOEID: 26042
WOEID: 26062
Liverpool WOEID: 26734
Manchester WOEID: 28218
Middlesbrough WOEID: 2BB69
Newcastle WOEID: 30079
Nottingham WOEID: 38720
Plymouth WOEID: 32185
WOEID: 32452
WOEID: 32566
WOEID: 34503
WOEID: 36240
WOEID: 36758
WOEID: 44418
WOEID: 44544
Santo Domingo WOEID: 76456
Guatemala City WOEID: 83123
Acapulco 116978
Aguascalientes WOEID: 111579

Figure 31: getTrends Terminal

31

Twitter | Benjamin Berggold

In twitter itself the trends are displayed on the left of the home screen, shown

in Figure 32.

Trends - Andern

#rbsscr

#FCASO04

EXTREME VERWANDLUNG
#FragShirin

#pressestunde

Ozil

#UFC194

McGregor

Ramsey

Gruppe

Figure 32: getTrends Twitter

32

7. Conclusion

In conclusion, the effort to communicate with the Twitter API through
BSF4o00Rexx is fairly small. Using the Twitter4] library with its preconstructed
methods makes it easy to access the different functions the API has to offer.
With BSF4o00Rexx it is possible to use the Java methods with the Rexx
programming language and write working programs with only few lines of
code. Twitter4] has extensive documentation on its homepage which makes it
easy to read and learn the methods and their functionality. OoRexx is a quickly
learnable and simple programming language and with the BSF4o00Rexx
extension all Java methods can be used in Rexx. Therefore there is no

downside in using ooRexx making it perfect for programming the Twitter API.

Bibliography

10:

Wikipedia: Twitter, visited 12/2015
https://en.wikipedia.org/w/index.php?title=Twitter&oldid=694934957
Techterms: Tweet Definition, visited 12/2015

http://techterms.com/definition/tweet
Wikipedia: Application Programming Interface, visited 12/2015

https://en.wikipedia.org/w/index.php?

title=Application_programming_interface&oldid=694622708
Wikipedia: Representational State Transfer, visited 12/2015
https://en.wikipedia.org/w/index.php?
title=Representational_state_transfer&oldid=694487867
Twitter for Developers: Rate Limiting, visited 12/2015
https://dev.twitter.com/rest/public/rate-limitin

Twitter for Developers: OAuth, visited 12/2015
https://dev.twitter.com/oauth

Wikipedia: Java, visited 12/2015

https://en.wikipedia.org/w/index.php?

title=Java_(programming_language)&oldid=695946012
The Rexx Language Association, visited 12/2015

http://www.rexxla.org/rexxlang/

Rony G. Flatscher, Introduction to Rexx and ooRexx, 2013
Twitter4] Library Homepage, visited 12/2015
http://twitterdj.org/en/index.html

https://en.wikipedia.org/w/index.php?title=Twitter&oldid=694934957
http://twitter4j.org/en/index.html
http://www.rexxla.org/rexxlang/
https://en.wikipedia.org/w/index.php
https://dev.twitter.com/oauth
https://dev.twitter.com/rest/public/rate-limiting
https://en.wikipedia.org/w/index.php
https://en.wikipedia.org/w/index.php
http://techterms.com/definition/tweet

	Declaration
	1. Introduction
	2. History
	2.1. Creation
	2.2. Growth
	2.3. Usage

	3. Tweet
	4. Twitter for Developers
	4.1. Twitter API
	4.2. OAuth
	4.3. Twitter Apps

	5. Used Software
	5.1. Java
	5.2. ooRexx
	5.3. BSF4ooRexx
	5.4. Twitter4j

	6. Nutshell Examples
	6.1. Configuration & Setup
	6.2. updateStatus
	6.3. Timeline
	6.4. Favorite
	6.5. getFavorites
	6.6. destroyStatus
	6.7. sendMessage
	6.8. sentMessages
	6.9. destroyFriendship
	6.10. createFriendship
	6.11. getTrends

	7. Conclusion

