
Wirtschaftsuniversit

¨

at Wien

Developing For Android

From 0 to 100 on Mobile and Wearable Devices

Author:

Gerald Urschitz

Supervisor:

Ronny G. Flatscher

January 7, 2016

Gerald Urschitz Developing for Android

I, Gerald Urschitz, declare that this paper titled, ’Developing for Android’ and the work

presented in it are my own. I confirm that:

• This work was done wholly or mainly while in candidature for a research degree at this

University.

• Where any part of this paper has previously been submitted for a degree or any other

qualification at this University or any other institution, this has been clearly stated.

• Where I have consulted the published work of others, this is always clearly attributed.

• Where I have quoted from the work of others, the source is always given. With the

exception of such quotations, this thesis is entirely my own work.

• I have acknowledged all main sources of help.

• Where the paper is based on work done by myself jointly with others, I have made

clear exactly what was done by others and what I have contributed myself.

Signed:

Date:

Page 2 of 64

January 7, 2016

Contents

1. Introduction 5

1.1. Android . 5

1.2. Example Application ”RecentTweets” . 6

2. Development Environment 7

2.1. Android Studio . 7

2.2. Creating an empty Project . 7

2.2.1. java . 12

2.2.2. res . 13

2.2.3. AndroidManifest.xml . 13

2.2.4. build.gradle . 14

2.3. Gradle Build System . 14

2.3.1. Defining Dependencies with Gradle 15

3. Hello Android! 16

3.1. Activities . 16

3.1.1. Activity Lifecycle . 16

3.2. Running the Application . 18

3.3. From ”Hello World!” to ”Hello Android!” . 20

3.3.1. Setting the content view . 20

3.3.2. Layout Editor . 21

3.3.3. Views, ViewGroups and Layouts . 22

3.3.4. Placing and labeling the Button . 23

3.3.5. Listening to the Button Click Event 24

4. Twitter Fabric 27

4.1. What is Twitter Fabric? . 27

4.2. Implementing Twitter Login . 27

4.2.1. Create LoginActivity . 27

4.2.2. Including Twitter Fabric . 28

4.3. Displaying Recent Tweets with Twitter Kit 33

4.3.1. Starting an Activity . 33

4.3.2. Including a ListView . 35

3

Gerald Urschitz Developing for Android

4.3.3. Loading the Tweets . 36

4.3.4. Displaying the Tweets . 37

5. Developing for Samsung Gear 40

5.1. Tizen . 40

5.2. Hello Accessory . 41

5.2.1. Provider - Android . 41

5.3. Consumer - Tizen . 43

5.4. Debugging . 47

5.4.1. Testing Gear application with the emulator 47

5.4.2. Certification . 47

5.4.3. Running the Application . 47

6. Conclusion 49

A. Installation Guides 50

A.0.4. Installing Android Studio . 50

A.1. Android SDK . 50

A.1.1. Configuring the SDK . 51

A.2. Install Tizen SDK . 53

B. Code Listings 55

B.1. HelloAccessory - Provider . 55

B.1.1. AndroidManifest.xml . 55

B.1.2. ProviderService.java . 56

B.2. HelloAccessory - Consumer . 57

B.2.1. index.html . 57

Page 4 of 64

1. Introduction

In this paper, I will present everything that an entry-level developer needs to know to get

started with Android as well as Samsung Gear. A basic understanding of Java and XML as

well as a JavaScript and HTML is assumed, this will not be part of the paper. For getting

started with Java, you can use the interactive tutorial from Codecademy at https://
www.codecademy.com/learn/learn-java, for XML you may have a look at http:
//www.w3schools.com/xml/. For JavaScript and HTML have a look at this tutorial:

https://www.codecademy.com/skills/make-an-interactive-website
With the help of a very simple but practical example application - RecentTweets - , I will

explain the important concepts of Android. This application makes use of the Twitter

API to show the last 20 Tweets of a logged in Twitter User. Furthermore, I will make a

little excursion into the world of Wearables and outline what is needed to get started with

developing for the Gear 2 Smartwatch by Samsung, that runs Tizen as an Operating System.

1.1. Android

A lot has changed since a company named Android was founded in 2003. Only 2 years

later Google, Inc. bought this very company, from which the public only knew that it

made Software for mobile phones. Since then, there was not a single Android Phone out

there. Since the first Phone was released in October 2008, Android has become more and

more popular throughout the years. [1] In the 2nd Quarter of 2015, Android alone had a

worldwide market share of around 82.8% according to IDC[2], as displayed in table 1.1.

Table 1.1.: Q2 Market Share from 2012 - 2015

For this reason, Android simply cannot be ignored as a platform when it comes to developing

5

https://www.codecademy.com/learn/learn-java
https://www.codecademy.com/learn/learn-java
http://www.w3schools.com/xml/
http://www.w3schools.com/xml/
https://www.codecademy.com/skills/make-an-interactive-website

Gerald Urschitz Developing for Android

apps for Mobile Phones.

Android itself is based upon Linux and since Android L 5.0, it uses the Android Runtime

(ART) as a Runtime-Environment for its Apps. Up until Android 4.4 KitKat, Android

used the virtual machine Dalvik. [3] The applications are mostly written Java, but can also

make use of C and C++ Libraries for performance-critical tasks. Furthermore, it should be

mentioned that Android is Open Source and follows the Apache License. [1]

1.2. Example Application ”RecentTweets”

The example application in this paper will be called ”RecentTweets”. It will make use of

Twitters relatively new SDK Fabric and will display the last 20 Tweets of a signed in Twitter

User. First, there will be a LoginActivity that simply shows a Twitter Login Button. This is

necessary, as we need to obtain the authentication token for the user. In the RecentTweets-

Activity, we will display the last 20 Tweets of the user. For this small Application, I created

three Mockups, as you can see in 1.1.

(a) LoginActivity (b) RecentTweetsActivity

Figure 1.1.: Mockups for RecentTweets

Page 6 of 64

2. Development Environment

In this chapter, I will describe how to set up the development environment to build applica-

tions for Android. First, I will briefly describe Android Studio, the Integrated Development

Environment - short IDE - that comes directly from Google. Then, I will show you how to

create an empty project and I will explain the most important files in that new project. In

the end, I will explain the Gradle Build System briefly.

2.1. Android Studio

Android Studio is the Integrated Development Environment o�cially developed by Google

and it is powered by the IntelliJ Platform of Jetbrains. Both Android Studio as well as

the Android SDK can be downloaded on https://developer.android.com/sdk/
index.html. It is available for Windows, MacOS X and Linux. For information on how

to install Android Studio, please refer to appendix Installation Guides.

2.2. Creating an empty Project

Let’s dive straight into it and create a new project for our application in Android Studio.

Simply choose File ->New ->New Project in the menu to open the Wizard that guides you

through the project creation process.

7

https://developer.android.com/sdk/index.html
https://developer.android.com/sdk/index.html

Gerald Urschitz Developing for Android

Figure 2.1.: In the first window of the Wizard, you can define the application name, the

company domain and the project location.

In the first window, which is shown in figure 2.1, we can define the application name, the

company domain and the project location. For the application name, we choose ”Recent-

Tweets” following the camel case naming convention of Java. The company domain will be

”example.com”. Out of this company domain, android studio generates the package name

for our project. This package name can be edited as well, but we will keep it like that to

follow the conventions on package naming. As ”Project Location”, we enter or choose the

path that we want the project to be located at. Preferably, the folder name is the same as

the projects name. After that, we click ’Next’ and see a window like the one in figure 2.2.

Page 8 of 64

Gerald Urschitz Developing for Android

Figure 2.2.: In the second window of the Wizard, you can set the platform that you want to

develop for as well as the Minimum SDK for each platform.

As we only want to develop our app for phones and tablets, we keep the default selection of

the platform. Furthermore, we want to target API Level 19: Android 4.4 (KitKat), which

we chose earlier in the SDK Manager as well. After that, we click ’Next’.

Page 9 of 64

Gerald Urschitz Developing for Android

Figure 2.3.: In this window, you can choose which type of Activity you want to add to the

project.

In the window that is shown in figure 2.3, we can choose which type of Activity we want to

add to our project. What activities are and how we are going to use them is subject of the

next chapter, right now we just want to create an ”Empty Activity”.

Page 10 of 64

Gerald Urschitz Developing for Android

Figure 2.4.: In this window, we can give the activity, that we are about to create, a name.

Finally, as you can see in 2.4, we give our activity a name. To follow conventions, we call our

activity ”HelloAndroidActivity”. This means, every activity has the word ”Activity” in the

end, and it is again written in CamelCase. Android Studio generates automatically a layout

file for you, if the respective checkbox is checked. It also automatically gives the layout file

the right name, following the android naming convention. For layout files, the name always

starts with the type of layout, such as ”activity” and then the name, all written lowercase

and with underscores. Lowercase is important for internal referencing, so if you stick to these

conventions, you will not counter any problems.

After clicking finish, the newly created project will load. In the project inspector on the

left side of the window, we can have a view at the project in di↵erent views, which you can

choose from on the top left. For our purposes, the view ”Project” is su�cient. It shows us

the directory structure and the including files of the whole project. In figure 2.5, I’ve marked

all files that are important for us right now.

Page 11 of 64

Gerald Urschitz Developing for Android

Figure 2.5.: The directory structure of our project.

2.2.1. java

In this directory, we will place all java files that contain code of our app. They will be

structured in java packages.

• HelloAndroidActivity: This is the java file which declares our HelloAndroidActivity

class. What activities are and specifically, how our HelloAndroidActivity.java looks

like, is subject to the next chapter Hello Android!.

Page 12 of 64

Gerald Urschitz Developing for Android

2.2.2. res

As the name might suggest, this directory contains all the resources we need for our app.

In the o�cial android docs, Google describes it this way: ”Resources are the additional files

and static content that your code uses, such as bitmaps, layout definitions, user interface

strings, animation instructions, and more.” [4]

• activity hello android.xml: This file declares the layout for our activity and defines,

how our activity looks like. All layout files for all activities or fragments (or anything

else, like for example a simple view) should be placed in the folder ’layout’ in res.

Again, this will be subject of the next chapter Hello Android!.

• colors.xml, dimens.xml, strings.xml, styles.xml (and possibly more): In an-

droid, as soon as we want to define some value that we might want to reuse later

again, we should think about defining a value for it. For example, let’s say we have

a button that has the color #2980b9. We can define that color as ’blue’ by putting

<color name=”blue”>#2980b9</color> in colors.xml and then just use the identifier

@colors/blue in our layout file.

2.2.3. AndroidManifest.xml

AndroidManifest.xml is a required xml-file for each android application and defines impor-

tant information of your app. Among other things, it defines the java package, declares

permissions for the application, sets miscellaneous properties of the app, declares a main

activity and it sets the minimum API Level. After creating the project, it looks like this:

1 <?xml version="1.0" encoding="utf-8"?>
<manifest package="com.example.recenttweets"

3 xmlns:android="http://schemas.android.com/apk/res/android">

5 <application
android:allowBackup="true"

7 android:icon="@mipmap/ic_launcher"
android:label="@string/app_name"

9 android:supportsRtl="true"
android:theme="@style/AppTheme">

11 <activity android:name=".HelloAndroidActivity">
<intent-filter>

13 <action android:name="android.intent.action.MAIN"/>

15 <category android:name="android.intent.category.LAUNCHER"/>
</intent-filter>

17 </activity>
</application>

19

</manifest>

Page 13 of 64

Gerald Urschitz Developing for Android

2.2.4. build.gradle

This file configures values for the gradle build system, which will be explained in detail in

the next section.

2.3. Gradle Build System

In Android, we use Gradle as our build system. The build system helps us to build, test,

run and package our app and makes development and deployment very easy. It furthermore

let’s us declare dependencies on local and remote libraries and modules. I don’t want to dive

too deep into gradle and it’s applications, and it is not necessary for the beginner user to

know gradle by heart. In fact, you don’t even have to create the gradle build files yourself,

Android Studio does this for you when you create a new project. In this section, I want to

show what’s important for us using gradle.

After creating the new project, we have two gradle files named build.gradle One is the

project-level build file and manages all modules in our project. We can define dependencies

and configuration that apply to all our subprojects and modules. If you want to include

di↵erent modules and subprojects, you need to define them in the settings.gradle file. The

other build.gradle file can be found in the directory app. This is the one that is interesting

to us, if we want to include external libraries. It looks like this right now:

apply plugin: ’com.android.application’
2

android {
4 compileSdkVersion 22

buildToolsVersion "22.0.1"
6

defaultConfig {
8 applicationId "com.example.recenttweets"

minSdkVersion 19
10 targetSdkVersion 22

versionCode 1
12 versionName "1.0"

}
14 buildTypes {

release {
16 minifyEnabled false

proguardFiles getDefaultProguardFile(’proguard-android.txt’), ’proguard-rules.pro’
18 }

}
20 }

22 dependencies {
compile fileTree(dir: ’libs’, include: [’*.jar’])

24 testCompile ’junit:junit:4.12’
compile ’com.android.support:appcompat-v7:22.2.1’

26 }

For Gradle, we want to apply the Android plugin, which provides several tasks for android

builds and enables the android element. This is done by the first line in the gradle file.[5]. In

the element android, we can see that we can configure values such as the compileSdkVersion

Page 14 of 64

Gerald Urschitz Developing for Android

as well as the buildToolVersion. Furthermore, we see the element defaultConfig. This element

configures settings for the manifest file and overrides values. The buildTypes element can

define properties for the debug and the release version the app. [5]. As already mentioned,

these settings are not too much of interest for us now and are not subject of this paper. We

care about the next top-level-element called dependencies.

2.3.1. Defining Dependencies with Gradle

There are three di↵erent types of dependencies we can have in the gradle file, which are Local

binary dependencies, Remote binary dependencies and Module dependencies. For including

local binary dependencies, let’s look at the first line in our dependencies element in the

gradle file.

1 compile fileTree(dir: ’libs’, include: [’*.jar’])

This line tells the build system to compile everything that it finds that ends with .jar

directory named ’libs’ in the filetree. Including a whole local module looks like this:

1 compile project(":lib")

Last but not least, if we want to include and compile a remote dependency, it could look like

this:

1 testCompile ’junit:junit:4.12’

This declares the testing framework junit as a dependency for the test module, specifically

version 4.12 of junit. Notice here that it says testCompile instead of compile. If we want to

include the dependency in the app itself, we just write compile. [5]

Page 15 of 64

3. Hello Android!

In this chapter, I will show you how to build your first Android Application. We already

created an empty project in the last chapter. In fact, this project we created was not totally

empty. It generated a file named HelloAndroidActivity.java for us, that contains our Activity,

as well as a file called activity hello android.xml that belongs to our activity and defines its

layout. In this layout, there is already a TextView defined, that says ”Hello World!”. In

this chapter we will extend that project. We want a button right underneath the TextView

and when we click this button, we want the text to change from ”Hello World!” to ”Hello

Android!”. Our button will be labeled with ”Change TextView”. Figure 3.1 shows, how we

want the final result to look like, when our app is running and we clicked the button.

Figure 3.1.

But before we actually get to work, I will explain in the following section what activities are

and dive into the activity lifecycle - the pulse of Android so to speak.

3.1. Activities

”An activity is a single, focused thing that the user can do.” writes Google on the o�cial

developers references for the Activity Class. [6] Every application for Android needs a

default activity, that is launched when the app is launched. This default activity is defined

in AndroidManifest.xml, that we already discovered in chapter 2.

3.1.1. Activity Lifecycle

Even though there is also an application lifecycle, that is one level above the activity lifecycle,

for us the latter is more important. Every Activity, that launches, will go through the activity

lifecycle, that is displayed in figure 3.2.

All in all, there are four states that an activity can have: running, paused, stopped and

finshed. These states are also shown in the figure 3.2 in the colored and rounded boxes.

16

Gerald Urschitz Developing for Android

Figure 3.2.: Image from [6].

Furthermore, there are three interesting key loops:

• The entire lifetime: The entire lifetime starts with a call on onCreate() and ends at

onDestroy(). For example, if we first start an application, it will launch the main activ-

ity and call onCreate() on this activity. In our case, onCreate() in HelloAndroidActivity

would be called, when we start the application. Finally, when the activity is finished

(for example, calling finish() in the activity) or when the system is finishing the activity

in the background for memory-reasons.

• The visible lifetime: The visible lifetime starts with a call on onStart() and ends

with a call on onStop(). The onStart()-hook is called, when the activity is visible to

the user. Then, when the activity is hidden, for example because we started another

activity, onStop() is called.

• The foreground lifetime: Last but not least, the foreground lifetime stats with

onResume() and ends with onPause(). For example, onResume() is being called, when

Page 17 of 64

Gerald Urschitz Developing for Android

the activity finally starts interacting with the user. onPause() is being called when

you go into sleep mode. The activity still runs, but it is paused.

Please refer to [6] for more information.

3.2. Running the Application

Even though we didn’t write a single line of code, we already can run our application.

Android Studio generated a working app for us, one that displays ’Hello World!’. Let’s

verify that and check, if everything actually works as we expect it. On small thing, before

we run the application: We should make sure, that we have the Intel Emulator Accelerator

HAXM installed. You an check this under Tools ->Android ->SDK Manager ->SDK Tools.

There should be a checked line similar to the one displayed in the red box in figure 3.3.

Figure 3.3.

If that’s the case, just click on play next to the predefined run configuration named ’app’ in

the top bar. Alternatively, you can hit ’Ctrl+R’ on your keyboard to run the application.

See figure 3.4

Page 18 of 64

Gerald Urschitz Developing for Android

Figure 3.4.

It might happen that it still doesn’t work, even if HAXM seems to be installed. To resolve

this issue, go to Tools ->AVD Manager and click on the device, where the problems occur.

Double clicking it should open a popup that says ’Install HAXM’. Do so and after that, the

emulator should start. (Note, that you do not have to start another emulator again later, if

this is the case.)

If we can successfully run the app, a popup window will ask us, if we want to use a running

device (which can be an emulator or a real device), or if we want to launch a new emulator.

In case you do not have a device plugged in or an emulator running, the popup window

should look like the one in figure 3.5.

Figure 3.5.

Using the emulator, you do not require anything more than your computer, which is con-

venient in a lot of scenarios. However, even though emulation android applications has

advanced a lot in the recent years in terms of speed and usability, you cannot fully test every

aspect of your app using just the emulator. Running it on a real device is necessary at some

point, if you want to develop a serious application.

For the HelloAndroidActivity, we will just go with the emulator. If you don’t have an em-

ulator running, click on ’Launch emulator’. We can also choose the emulated device, that

we want to run it on, which can be helpful if we want to test di↵erent screen sizes. If you

already have an emulator running, simply choose the running emulator. Launching the em-

ulator might take a while, but when it is finished, it should automatically start our app and

Page 19 of 64

Gerald Urschitz Developing for Android

look like the screen in figure 3.6.

Figure 3.6.

3.3. From ”Hello World!” to ”Hello Android!”

As already mentioned, we want to fulfill one single goal, that is changing the TextView, that

displays ”Hello World!” to display ”Hello Android!” in our activity, when we click a button.

This sounds like a very simple task, and in fact, this is very easy, but it is important to learn

how to get there. If you manage to do that you will learn some of the basic principles for

programming the User Interface in Android.

3.3.1. Setting the content view

We want to add a button in the User Interface of our app. Remember, when we created

our project, we created the activity HelloAndroidActivity. This activity can be found in the

java-file called HelloAndroidActivity.java. This file will define the behavior of our activity,

and almost anything, that we want our activity to do will be defined in that class in the

form of java code. We also automatically generated a file called activity hello android.xml.

As already mentioned, this file defines how our activity looks like. All UI-Elements will be

Page 20 of 64

Gerald Urschitz Developing for Android

declared in there, so we use it to build our interface. Before we go into that, let’s have a

quick look at HelloAndroidActivity.java:

1 package com.example.recenttweets;

3 import android.support.v7.app.AppCompatActivity;
import android.os.Bundle;

5

public class HelloAndroidActivity extends AppCompatActivity {
7

@Override
9 protected void onCreate(Bundle savedInstanceState) {

super.onCreate(savedInstanceState);
11 setContentView(R.layout.activity_hello_android);

}
13 }

When we look at the code listing, we can see that the onCreate()-method is overridden and

in this method, there are two lines of code in this method. The first is just calling the super

method onCreate() with the same arguments. That is necessary, and we even get an error

from the IDE, if we do not do this. The second line sets the content view for the activity. In

our case, the content view is set to the variable R.layout.activity hello android which resolves

to an integer and links to activity hello android.xml, the file that we generated. It is set to

our Activity and therefore is used to describe how our Activity looks like.

3.3.2. Layout Editor

Let’s now have a look at our layout file. Click on activity hello android.xml in the directory

res ->layout. The first thing you see will look something like figure 3.7

Figure 3.7.: The layout editor in Android Studio allows to design the UI via drag and drop.

This is the layout editor for Android Studio, a very powerful tool to design the User Inter-

Page 21 of 64

Gerald Urschitz Developing for Android

face. It allows us to build the interface via dragging and dropping elements from the left

list into our device screen. We also can inspect elements - views in this case - and set its

attributes. We can furthermore simulate di↵erent devices, screen sizes, themes, translations

and API Levels. Last but not least, in the bottom, we can change to the text representation

of the XML-file and write our views directly using XML markups. We will come across this

text representation later.

3.3.3. Views, ViewGroups and Layouts

In Android, to define how our activities look like, we use layout files. This is however just a

simple explanation of what is actually going on. To show content, such a layout file needs

to contain view as a root element. This can be any class, that extends the View -class,

but android has views in place just for defining layouts. These views are actually called

layouts and there are a number of di↵erent variations, such as FrameLayout, LinearLayout,

RelativeLayout and GridLayout to name the most important ones. They are, in fact, all

subclass of ViewGroup, which itself is a subclass of View. ViewGroups can have one or

more views as children. Such children can be also be other ViewGroups. For example, a

RelativeLayout could contain another RelativeLayout. Because of this, we can actually build

hierarchies of Views, ViewGroups and Layouts that define our UI.

Our generated layout file activity hello android.xml already contains such a layout. When

Android Studio generated this file, it automatically included a RelativeLayout. As already

mentioned, you can inspect the xml by clicking on ”Text” in the bottom of the layout editor,

when you opened the xml file. Let’s have a look at it:

1 <?xml version="1.0" encoding="utf-8"?>
<RelativeLayout

3 xmlns:android="http://schemas.android.com/apk/res/android"
xmlns:tools="http://schemas.android.com/tools"

5 android:layout_width="match_parent"
android:layout_height="match_parent"

7 android:paddingBottom="@dimen/activity_vertical_margin"
android:paddingLeft="@dimen/activity_horizontal_margin"

9 android:paddingRight="@dimen/activity_horizontal_margin"
android:paddingTop="@dimen/activity_vertical_margin"

11 tools:context="com.example.recenttweets.HelloAndroidActivity">

13 <TextView
android:layout_width="wrap_content"

15 android:layout_height="wrap_content"
android:text="Hello World!"

17 android:id="@+id/textView"/>

19 </RelativeLayout>

You can see see in the listing above, that the root element is a RelativeLayout. It has lots of

attributes defined, that Android Studio also generated for us. The most important ones are

android:layout width and android:layout height, as they are mandatory for each View. In this

case, they are set to ”match parent”, which means that the View should stretch to fit entirely

Page 22 of 64

Gerald Urschitz Developing for Android

within the parent view. Instead of ”match parent”, we could also choose ”wrap content”,

which simply put means ”Be as large as you need to be”. Furthermore, we could plug in

concrete values, such as ”100px” or ”100dp”, whereas dp stands for density pixels. For a

root view, most of the time you want to keep it to ”match parent”.

You can also see in the listing, that the RelativeLayout contains a TextView that says ”Hello

World”. This was also generated by Android Studio and it is this very TextView of which we

want to change the text to ”Hello Android!”. We could just write it into the xml definition

of the TextView for the attribute android:text and we would be done, but we want to do it

using a button, which means we have to programmatically change it.

3.3.4. Placing and labeling the Button

Now that we know more about Views, ViewGroups and Layouts, we can finally start using

the layout editor and place our button into the layout file. For this, we just select the view

”Button”, that is in ”Widgets” in the left list, and drag it onto our device screen. While

dragging it to the device screen, Android Studio gives us hints about the placement and

shows us several measurement values, that might be interesting for us. We want the button

to be exactly under the TextView, just like in figure 3.1 in the beginning of this chapter. We

just drag the button, so it is placed accordingly. It should look like in screenshot 3.8

Figure 3.8.

To change the text on the button itself in the layout editor, we need select the button and

change the attribute ”text”. We can do so on the right side of the layout editor. The

attribute is the one shown in figure 3.9

Figure 3.9.

However, it is not best practice to just enter the string, that we want to display. It is better

to define the string in the strings.xml file, and then just put a reference into the attribute

field. This way, if we ever want to translate our app into another language (the terminus

for this is internationalization, or i18n), we have easy game. Android allows us to create

string-files for each language, that we want to support.

To do this, we open the file string.xml. We already have this file generated from Android

Page 23 of 64

Gerald Urschitz Developing for Android

Studio and have one string tag in there, that describes our application name. Our strings.xml

file looks like this:

1 <resources>
<string name="app_name">RecentTweets</string>

3 </resources>

We put our new string in xml form into the resources tag, just under the tag for the app name.

As a name, we can choose for example ”change button label”. The name will be then used

as a reference. Our string.xml file should now look like this:

1 <resources>
<string name="app_name">RecentTweets</string>

3 <string name="change_button_label">Change TextView</string>
</resources>

Back in the layout editor for activity hello android.xml, we select the button again, and we

enter @string/change button label for the attribute ”text”. This is how we reference strings.

See figure 3.10.

Figure 3.10.

Your layout should now look like in figure 3.11.

Figure 3.11.

3.3.5. Listening to the Button Click Event

Of course, we want our newly created button to do something, when it is clicked. After all,

it’s the purpose of a button. We could just use the attribute onClick of the button, and set

it to a method in our Activity that we want to call. But we will do it manually. We want to

set what is called a listener on the button. This listener is an interface, and we add it as an

instance of an anonymous class.

To teach our button the desired behavior, we need to get a reference to the button in

HelloAndroidActivity.java. To get this reference, the button needs to have an id. So the first

thing we want to do is to set the id of our button to the id we want it to have. Let’s set the

id to ”change textview button”. It should look just like in figure 3.12.

Page 24 of 64

Gerald Urschitz Developing for Android

Figure 3.12.

Now that our button has an id, we can use this id to get a reference to the button object

in HelloAndroidActivity.java. Android provides the method findViewById(int id) for this

purpose. It is a method of the class activity and we can just call it anywhere in our Hel-

loAndroidActivity because it is a subclass of Activity. For us, the ideal place to do this is in

the onCreate()-hook, directly after we set the content view. We need to do this after setting

the content view, because otherwise, Android would not find the button as it does not know

where to look. We want it to look for the button in activity hello android.xml.

We extend the onCreate method as followed:

@Override
2 protected void onCreate(Bundle savedInstanceState) {

super.onCreate(savedInstanceState);
4 setContentView(R.layout.test);

6 // The button that we created in the layout editor
Button changeTextViewButton = (Button) findViewById(R.id.change_textview_button);

8

// setting the listener for click events
10 changeTextViewButton.setOnClickListener(new View.OnClickListener(){

@Override
12 public void onClick(View view) {

// do something
14 }

});
16 }

The method findViewById(int id) returns a view, therefore we have to cast the returning

object into a Button. Then we set a click listener on the Button, using the method se-

tOnClickListener() that implements the method onClick(View view). In this method, we

can then define the behavior of our button, when it is clicked. Right now, as you can see in

the listing, there is just a comment in there.

Let’s now create a method, that we put in HelloAndroidActivity.java, that changes the text

of our TextView to a arbitrary String. Before we do that, we need to go to the layout editor

and give our textview an id. Let’s simply call it my textview. Then, in our method - we can

could for example call it changeTextViewToString(String newString) - we get a reference to

the TextView object and change our text. When implemented, it would look something like

this:

private void changeTextViewToString(String newString){
2 TextView myTextView = (TextView) findViewById(R.id.my_textview);

myTextView.setText(newString);
4 }

You can see, that the textView object simply o↵ers a method setText that takes a CharSe-

quence as a parameter. We can pass our variable newString, since String implements this

Page 25 of 64

Gerald Urschitz Developing for Android

interface.

Now, we only need to call this method in the onClick method of our click listener.

changeTextViewButton.setOnClickListener(new View.OnClickListener(){
2 @Override

public void onClick(View view) {
4 changeTextViewToString("Hello Android!");

}
6 });

Now it is time to run the application and verify that it works. If everything is done correctly,

it should change the textview to ”Hello Android!”. If so, you have made your first working

application for android! It doesn’t do much, but you now know some of the fundamental

mechanics of Android.

Page 26 of 64

4. Twitter Fabric

4.1. What is Twitter Fabric?

Twitter Fabric is Twitters own mobile platform that bundles several SDKs for di↵erent

purposes, such as twitter integration, advertisement integration as well as crash tracking

and analytics libraries. It was introduced in 2014 and is available for Android, iOS, OS X

and Web Applications. [7] [8]

4.2. Implementing Twitter Login

4.2.1. Create LoginActivity

The first thing we need to do is to create the LoginActivity, which will include the Login

Button for Twitter. It will be the first screen the user will see. To create the activity,

simply right-click on the package, where you want to create your activity - in our case it’s

com.example.recenttweets - and choose New ->Java File. Enter the name of the activity in

the dialog field and click on ”OK”. A new java file is created named LoginActivity.java.

Furthermore, we should create an xml file in res/layout that is called activity login.xml. You

can do this by right clicking on the layout directory and click on New ->Layout resource

file. In the dialog, that asks you for the name, enter the name and change the Root element

from LinearLayout to RelativeLayout.

In order to actually make it an activity, we need to inherit from the Activity class. Further-

more, we want to set the content view to the layout, so we need to override onCreate to do

this. The class should look like this:

public class LoginActivity extends Activity {
2 @Override

protected void onCreate(Bundle savedInstanceState) {
4 super.onCreate(savedInstanceState);

setContentView(R.layout.activity_login);
6 }

}

We want the LoginActivity to be the launcher activity, therefore we need to change the Ac-

tivity in the AndroidManifest.xml. Simply change the android:name attribute of the activity

tag from .HelloAndroidActivity to .LoginActivity. Notice that the dot in the beginning is

important. It should then look like this:

1 <?xml version="1.0" encoding="utf-8"?>

27

Gerald Urschitz Developing for Android

<manifest package="com.example.recenttweets"
3 xmlns:android="http://schemas.android.com/apk/res/android">

5 <application
android:allowBackup="true"

7 android:icon="@mipmap/ic_launcher"
android:label="@string/app_name"

9 android:supportsRtl="true"
android:theme="@style/AppTheme">

11 <activity android:name=".LoginActivity">
<intent-filter>

13 <action android:name="android.intent.action.MAIN"/>

15 <category android:name="android.intent.category.LAUNCHER"/>
</intent-filter>

17 </activity>
</application>

19 </manifest>

We can launch the App to verify, that everything works. The screen should be just white,

as activity login.xml is empty.

4.2.2. Including Twitter Fabric

As you might remember, in section 2 we discovered how to define dependencies for Android.

Twitter Fabric would be such a dependency and if we want to do it manually, we would

extend our gradle files and include the dependency on Fabric there. But Twitter made it

even more simple and foolproof to include their SDK: They developed a simple plugin for

Android Studio, that you just download and install, and that does pretty much the whole

setup for you. The downside of this is, that you have to have a developers account for fabric,

but this is needed anyways to be able to integrate Twitter.

In order to create an account for Fabric, visit https://fabric.io/sign_up. Fabric

does a very good job in explaining every step for you, but I will explain it here as well. After

Signup, you will receive an e-mail with a confirmation link in it. When you activation was

successful, they will ask you for a team name. Choose a team name that you wish. After

that, we want to install the plugin in Android Studio. For this, go to Preferences ->Plugins

and click on Browse Repositories. Enter ’Fabric’ in the search bar to find the plugin for

Android Studio, then select it and click on ’Install Plugin’. See figures 4.1 and 4.2 for how

this looks in Android Studio.

After installation, you will need to restart Android Studio to actually load the plugin.

Page 28 of 64

https://fabric.io/sign_up

Gerald Urschitz Developing for Android

Figure 4.1.

Figure 4.2.

After restarting Android Studio, you can see the Fabric logo at the right sidebar. Clicking

on it will reveal a UI for the Fabric Plugin, where you need to click on the power sign. Log in

with your fabric account and after success, you should see the team name that you entered

in the very beginning., as shown in 4.3

Page 29 of 64

Gerald Urschitz Developing for Android

Figure 4.3.

Click on ’Next’ and you will come to the list of available integrations, that fabric provides.

Click on ’Twitter’ and install the Twitter-Kit by clicking on ’Install’. Follow the wizard and

either create a new Twitter account or choose an existing one. If you need to create a new

account, Twitter Fabric makes it very easy for you and automatically creates an account

with your email-address for you. If you have an existing Twitter Account, you will have to

fill in a Twitter Key and a Twitter Secret, that you can obtain from your account. You can

do this by visiting https://apps.twitter.com and creating a new application.

Figure 4.4.

Next, we need to add Twitter to our project. As you can see in 4.5, Twitter Fabric tells us

to change the very build.gradle file, that we discovered in Chapter 2. Remember, it is the

one in the module and not the top-level one.

Page 30 of 64

https://apps.twitter.com

Gerald Urschitz Developing for Android

Figure 4.5.

Furthermore, it wants us to change AndroidManifest.xml and our Activity, that we created

- LoginActivity - as well. Fabric shows us, how we should alter build.gradle, AndroidMan-

ifest.xml and LoginActivity.java. The good thing is, if we have done everything correctly

when we created the LoginActivity, Twitter Fabric is actually able to apply these modifica-

tions for us. So just click Apply and everything should be done for you. If not, you need

to make the modifications yourself. You can also try to create a fresh project with ??and

include Twitter again. Either way, be sure that the changes are in fact applied to your code.

After including Twitter Kit into our project, you might want to launch our app and verify

that Twitter is correctly configured and we don’t have any problems.

Now it is time to finally add Twitter Login to our app. Twitter Fabric makes this a breeze

Page 31 of 64

Gerald Urschitz Developing for Android

as well. Open Fabric again and navigate to Twitter Kit. Under ”Code Examples”, you can

find ”Log in with Twitter”. You can simply follow the guide by Fabric, but I will explain

every step here as well.

First, you should modify activity login.xml, making it look like this:

1 <?xml version="1.0" encoding="utf-8"?>
<RelativeLayout xmlns:android="http://schemas.android.com/apk/res/android"

3 android:layout_width="match_parent"
android:layout_height="match_parent">

5

<com.twitter.sdk.android.core.identity.TwitterLoginButton
7 android:id="@+id/twitter_login_button"

android:layout_width="wrap_content"
9 android:layout_height="wrap_content"

android:layout_centerInParent="true"/>
11

</RelativeLayout>

Second, we need to add a reference to the button that we just inserted in the layout, as

well as adding a callback (which is similar to our listener from Chapter 3.3) We modify

LoginActivity.java to look like this:

// Note: Your consumer key and secret should be obfuscated in your source code before shipping.
2 private static final String TWITTER_KEY = "xxxxx";

private static final String TWITTER_SECRET = "xxxxx";
4

private TwitterLoginButton loginButton;
6

@Override
8 protected void onCreate(Bundle savedInstanceState) {

super.onCreate(savedInstanceState);
10 TwitterAuthConfig authConfig = new TwitterAuthConfig(TWITTER_KEY, TWITTER_SECRET);

Fabric.with(this, new Twitter(authConfig));
12 setContentView(R.layout.activity_login);

14 loginButton = (TwitterLoginButton) findViewById(R.id.twitter_login_button);
loginButton.setCallback(new Callback<TwitterSession>() {

16 @Override
public void success(Result<TwitterSession> result) {

18 // The TwitterSession is also available through:
// Twitter.getInstance().core.getSessionManager().getActiveSession()

20 TwitterSession session = result.data;
// TODO: Remove toast and use the TwitterSession’s userID

22 // with your app’s user model
String msg = "@" + session.getUserName() + " logged in! (#" + session.getUserId()

+ ")";
24 Toast.makeText(getApplicationContext(), msg, Toast.LENGTH_LONG).show();

}
26

@Override
28 public void failure(TwitterException exception) {

Log.d("TwitterKit", "Login with Twitter failure", exception);
30 }

});
32

}
34

@Override
36 protected void onActivityResult(int requestCode, int resultCode, Intent data) {

super.onActivityResult(requestCode, resultCode, data);

Page 32 of 64

Gerald Urschitz Developing for Android

38 // Make sure that the loginButton hears the result from any
// Activity that it triggered.

40 loginButton.onActivityResult(requestCode, resultCode, data);
}

Note that the values for the variables TWITTER KEY and TWITTER SECRET are just

placeholders. Fabric automatically included your key and your secret, so do not change

these.

Don’t worry too much about what’s going on there under the hood. Twitter basically does

everything for you and you do not need to code the communication with Twitter yourself.

It is time to launch the app again. You should see the Twitter Login button in the center

of the app.

4.3. Displaying Recent Tweets with Twitter Kit

We now come to the point, where we want to display actual data from Twitter. Thankfully,

Twitter Fabric makes this a breeze as well, even though it requires a bit more than just copy

and pasting code from examples.

4.3.1. Starting an Activity

The first thing we want to do is we want to create an Activity for displaying our tweets. We

could just create a new Activity, but remember that we still have the HelloAndroidActivity,

that is currently unused. We can just reuse this activity and change its name. Android

Studio (which is built upon the IntelliJ platform from JetBrains) has a very nice feature

called ”Refactor”. Just right-click on HelloAndroidActivity.java, select Refactor ->Rename

and enter RecentTweetsActivity. Android Studio will rename the file and all its references

correctly. You need to do the same for activity hello android.xml. Rename it to activ-

ity recent tweets.xml. Android Studio will automatically update the reference to the xml file

in your java file.

After that, we need to go back to LoginActivity. After all, we want start the RecentTweets-

Activity when our login was successful, so we need to change LoginActivity.

First, let’s create a private method called startRecentTweetsActivity() of type void. We will

later call this method at the right place to start the RecentTweetsActivity, but it is always

good to write single-purpose methods. To start an Activity, we need to create a new Intent

object. What is an Intent? ”An intent is an abstract description of an operation to be

performed” says Google in their documentation. [9] We use it to start our activity, but it

could also be used to start services for example.

The constructor of Intent takes a Context instance and a Class instanceas parameters.

Since Activity is a subclass of Context, we can just pass this as a reference to the current

instance. The Class instance defines the Activity, that we want to start. To get this, we

Page 33 of 64

Gerald Urschitz Developing for Android

can call class on the Activity that we want to start, which is RecentTweetsActivity. So

we pass RecentTweetsActivity.class as a second parameter. Then we need to just start

the Activity by using the method startActivity(Intent intent) from Activity. The method

startRecentTweetsActivity() should look like this:

1 private void startRecentTweetsActivity(){
Intent intent = new Intent(this, RecentTweetsActivity.class);

3 startActivity(intent);
}

Now we need to call this method. Remember the Callback, that we set on the loginButton ob-

ject in the onCreate hook? This is exactly, where we need to call startRecentTweetsActivity()

from. Change the Callback to the following:

loginButton.setCallback(new Callback<TwitterSession>() {
2 @Override

public void success(Result<TwitterSession> result) {
4 startRecentTweetsActivity();

}
6

@Override
8 public void failure(TwitterException exception) {

Log.d("TwitterKit", "Login with Twitter failure", exception);
10 }

12 });

Start your app, login and verify that it works... Except that it doesn’t! You will see

something like in figure 4.6.

Figure 4.6.

Don’t worry! This can and will happen at some point, and thanks to the logger, that is built

in in Android Studio, we will soon find out why, so we can fix it.

Click on ”Android Monitor” in the bottom bar of Android Studio and change the Log level

to ”verbose” to see the log output. You should see something like this somewhere in your

output:

12-09 14:42:50.994 1952-1952/com.example.recenttweets E/AndroidRuntime: FATAL EXCEPTION: main
2 Process: com.example.recenttweets, PID: 1952

java.lang.RuntimeException: Failure delivering result ResultInfo{who=null, request=140, result
=-1, data=Intent { (has extras) }} to activity {com.example.recenttweets/com.example.
recenttweets.LoginActivity}: android.content.ActivityNotFoundException: Unable to find
explicit activity class {com.example.recenttweets/com.example.recenttweets.
RecentTweetsActivity}; have you declared this activity in your AndroidManifest.xml?

4 at android.app.ActivityThread.deliverResults(ActivityThread.java:3539)

Page 34 of 64

Gerald Urschitz Developing for Android

at android.app.ActivityThread.handleSendResult(ActivityThread.java:3582)
6 at android.app.ActivityThread.access1300(ActivityThread.java:144)

at android.app.ActivityThreadH.handleMessage(ActivityThread.java:1327)
8 at android.os.Handler.dispatchMessage(Handler.java:102)

at android.os.Looper.loop(Looper.java:135)
10 at android.app.ActivityThread.main(ActivityThread.java:5221)

at java.lang.reflect.Method.invoke(Native Method)
12 at java.lang.reflect.Method.invoke(Method.java:372)

at com.android.internal.os.ZygoteInitMethodAndArgsCaller.run(ZygoteInit.java:899)
14 at com.android.internal.os.ZygoteInit.main(ZygoteInit.java:694)

...

Event though it looks very confusing, the exception output usually tells us, what’s going on.

This one does too: android.content.ActivityNotFoundException: Unable to find explicit ac-

tivity class com.example.recenttweets/com.example.recenttweets.RecentTweetsActivity; have

you declared this activity in your AndroidManifest.xml?

The exception was thrown because we didn’t declare our Activity in AndroidManifest.xml !

Go to your AndroidManifest.xml and add the following within the application tag.

1 </activity>
<activity android:name=".RecentTweetsActivity">

3 </activity>

After you added this to AndroidManifest.xml, try running the application again. Login with

your Twitter, and if successful, you should see the very screen that we saw in chapter 3.3,

when we implemented our first button.

4.3.2. Including a ListView

We want to load the last 20 Tweets of the signed in user, according to our specifications.

For this, we want to add two methods in RecentTweetsActivity : loadTweets(int count),

which takes an integer for how many tweets should be loaded and showTweets(List <Tweet

>tweets), which takes a list of tweets that should be displayed. In both methods, we will

make heavy use of the Twitter Kit from Fabric, which does a lot of the needed work for us.

Before we implement those methods, we need to change our layout file to contain a ListView.

A ListView is a view provided by android, that is - as the name suggests - made for display-

ing lists. Open activity recent tweets.xml and remove the TextView and the Button. Then

drag and drop a ListView into the RelativeLayout. You should find it under ”Containers”

in the left list of views in the layout editor. Drag it so it is placed centered horizontally and

vertically. Change the attributes layout:width and layout:height both to ”match parent”.

Your device screen should look like figure 4.7. You can further remove all the padding of

RelativeLayout, if it has some.

Page 35 of 64

Gerald Urschitz Developing for Android

Figure 4.7.

Just like with the Button from chapter 3.3, we need a reference to this ListView object in

RecentTweetsActivity.java. To do this, we need to set an id for the ListView. Set the id of

the ListView to recent tweets listview.

Now back to RecentTweetsActivity.java, change your class to look like this:

1 public class RecentTweetsActivity extends Activity {

3 private ListView tweetsListView;

5 @Override
protected void onCreate(Bundle savedInstanceState) {

7 super.onCreate(savedInstanceState);
setContentView(R.layout.activity_recent_tweets);

9

tweetsListView = (ListView) findViewById(R.id.recent_tweets_listview);
11 }

}

Similarly to how we did it in chapter 3.3, we use findViewById to find the ListView in our

layout. The only di↵erence is that we save the reference to the ListView object in an instance

variable in our object to use it later in our method showTweets(List <Tweet >tweets).

4.3.3. Loading the Tweets

As already mentioned, we want to load the tweets that a logged in user would normally see

at his home timeline on Twitter. We want to get the last 20 of them. Let’s now implement a

method, that takes an integer as parameter that defines how many tweets we want to load,

and that loads the tweets. This is how the method looks like:

private void loadTweets(int count){
2 TwitterApiClient twitterApiClient = TwitterCore.getInstance().getApiClient();

4 StatusesService statusesService = twitterApiClient.getStatusesService();

Page 36 of 64

Gerald Urschitz Developing for Android

6 statusesService.homeTimeline(count, null, null, false, true, true, true, new Callback<List<
Tweet>>() {
@Override

8 public void success(Result<List<Tweet>> result) {
showTweets(result.data);

10 }

12 @Override
public void failure(TwitterException e) {

14

}
16 });

}

This is what we do in this method: First, we get an instance of the TwitterApiClient. This can

be done by calling the following: TwitterCore.getInstance().getApiClient(). We save it into

our own variable of class TwitterApiClient. Next, on this very TwitterApiClient instance, we

can call getStatusesService() to get an instance of StatusesService. This is a specific service

class from Twitter Kit, that takes care of several tasks, such as retweeting a tweet, showing

a tweet, loading the user timeline, loading the home timeline and much more. The di↵erence

between the user timeline and the home timeline is, that in the user timeline, we get all

tweets, retweets and mentions from a certain user, just like when you would visit the page

of a Twitter user. The home timeline is - as already mentioned - what would normally show

up on the homepage of Twitter when you are logged in. And the latter is exactly what we

need. Therefore, we call the specific method homeTimeline on statusesService with several

parameter. The first parameter is Integer count and this defines, how many tweets of the

home timeline should be loaded. Here, we just pass on the count variable that our own

method has as a parameter. The second and the third parameter are two variables of type

Long, that are rather unimportant for us: sinceId and maxId. The next parameter is Boolean

trimUser, we set it to false because we want to get the full user object. The next parameter

is Boolean excludeReplies, which we also set to true, because we do not want to display too

many tweets. Boolean contributeDetails is the next parameter and we set it also to true.

For more information on StatusesService, please to the docs. [10]. The last parameter is a

Callback, that returns a Result <List <Tweet >> object as a result, when the request was

successful. Only when the request was successful, we take the result and extract the data

(which is of type List <Tweet >) and pass it on to our method showTweets, that we yet

have to write. We can also specify what to do, when there was a failure, but this is out of

the scope of this work.

4.3.4. Displaying the Tweets

In the last subsection, we wrote the method for loading tweets. On a successful request,

we called with showTweets(result.data) the method, that we now want to write, passing the

loaded tweets that we want to display. For displaying the tweets in our ListView, we can

write the following method in RecentTweetsActivity.java

Page 37 of 64

Gerald Urschitz Developing for Android

1 private void showTweets(List<Tweet> tweets){
FixedTweetTimeline timeline = new FixedTweetTimeline.Builder().setTweets(tweets).build();

3

TweetTimelineListAdapter adapter = new TweetTimelineListAdapter.Builder(this)
5 .setTimeline(timeline)

.build();
7

tweetsListView.setAdapter(adapter);
9 }

First, we build an object of class FixedTweetTimeline with its builder, and we set the tweets,

that got passed as a parameter. FixedTweetTimeline is a class of Fabric’s Twitter Kit, that

can hold a fixed set of tweets, as the name suggests. Next, what we need to have to populate

our ListView, that we included earlier, is an instance of the interface ListAdapter. An

adapter is basically the object, that decides what data is displayed how and at what position

in our ListView. It is basically the ”glue” between the data and the ListView. Normally,

we would write the adapter our selves and implement ListAdapter or extend on an existing

adapter from Android, but the Twitter Kit from Fabric provides even that for us. The big

advantage: We do not need to design the tweets ourselves, this is done for us. This comes in

very handy, as twitter has several requirements on how to display their tweets, and they are

quite strict about it. For more information, see reference[11]. With the Twitter Kit, we do

not have to worry about this, as it is done for us by Twitter itself. It is implemented in the

TweetTimelineListAdapter, and we just have to create an instance of it using the builder.

We set the timeline to the instance of FixedTweetTimeline, that we created earlier and we

build the object. Then, we just set the adapter for our tweetsListView to this adapter we

just created, and the list should be populated with our Tweets! Now we only ned to do one

thing: call loadTweets(20) from the onCreate hook. RecentTweetsActivity.java should now

look like this:

1 public class RecentTweetsActivity extends Activity {

3 private ListView tweetsListView = (ListView) findViewById(R.id.tweets_listview);

5 @Override
protected void onCreate(Bundle savedInstanceState) {

7 super.onCreate(savedInstanceState);
setContentView(R.layout.activity_recent_tweets);

9 tweetsListView = (ListView) findViewById(R.id.tweets_listview);
loadTweets(20);

11 }

13

private void loadTweets(int limit){
15 TwitterApiClient twitterApiClient = TwitterCore.getInstance().getApiClient();

StatusesService statusesService = twitterApiClient.getStatusesService();
17 statusesService.homeTimeline(limit, null, null, false, true, true, true, new Callback<

List<Tweet>>() {
@Override

19 public void success(Result<List<Tweet>> result) {
showTweets(result.data);

21 }

23 @Override

Page 38 of 64

Gerald Urschitz Developing for Android

public void failure(TwitterException e) {
25

}
27 });

}
29

private void showTweets(List<Tweet> tweets){
31 FixedTweetTimeline timeline = new FixedTweetTimeline.Builder().setTweets(tweets).build();

33 final TweetTimelineListAdapter adapter = new TweetTimelineListAdapter.Builder(this)
.setTimeline(timeline)

35 .build();

37 tweetsListView.setAdapter(adapter);
}

39 }

Compile your app and verifiy, that indeed our code does the right thing. After logging into

Twitter, it should look something like in figure 4.8.

Figure 4.8.

You might wonder, how Twitter Kit knows, for which user it should load the tweets. After

all, we did never explicitly set a user object. This is the beauty of Fabrics Twitter Kit: It

handles even that for us. When you log in, Twitter Kit stores a session for our user. This

session is then used anytime, when we call the API. So we do not need to worry about

authentication or passing tokens, that we would normally have to do.

Page 39 of 64

5. Developing for Samsung Gear

In this chapter, I want to briefly outline the possibility of developing an application for

the Samsung Gear 2 Smartwatch in connection with an Android Application. I will give

a brief overview with a quick start guide, but also provide the interested reader with the

resources on how to dig deeper. Furthermore, I’ll demonstrate how to quickly get started

with the Samsung Accessory SDK and how to create a simple Hello-World-Application with

a connection to an android host. For installing the Tizen SDK, please refer to Installation

Guides. We will use the Sample that comes with the Accessory SDK. You can find the

original code from Samsung in the unzipped SDK folders under Samples ->Accessory -

>Samples(Web) ->HelloAccessory. In this app, our goal is to request the current time of

the android device and transmit to and show it on the Samsung Gear 2. Figure 5.1 shows

the Samsung Gear 2 with Tizen running on it.

Figure 5.1.: Image found at [12]

5.1. Tizen

The Samsung Gear 2 Smartwatch uses Tizen as its Operating System. Tizen is an open-

source linux-based OS developed by Samsung, Intel and the Linux-Foundation and has a

long history of predecessors, with relation to the operating systems MeeGo and SLP . It was

introduced on the Samsung Gear in 2014, taking over from Android.

For developing applications on the Tizen-Platform, you can either use HTML5 and JavaScript

40

Gerald Urschitz Developing for Android

or - since version 2.0 - write native applications in C++. [13].

To connect the Samsung Gear 2 to Android, we can use Accessory SDK, a special SDK for

android from Samsung. Using this SDK, we can setup our Android App either as a consumer

or a provider, where the Samsung Gear 2 can be the respective counterpart, that is provider

or consumer.

5.2. Hello Accessory

As already mentioned, this application is heavily inspired by the Samsung Sample Applica-

tion ”HelloAccessory” that comes with the Accessory SDK. [14] For the android application,

I also put the respective code in Code Listings

5.2.1. Provider - Android

To setup communication between the Android application and the Samsung Gear device, you

need the Samsung Accessory SDK. It enables communication between smart devices - like

your android smartphone - and several accessory devices, such as a smartwatches, printing

devices, car head units etc. You can find it under http://developer.samsung.com/
galaxy#accessory.
To get started with Android, download the SDK, unzip the file and place the two .jar -files

from the folder libs folder into your modules libs folder. Right click on the jar files and click

on ”Add as Library...”.

Next, we need to create ProviderService. Create a new java class, name it ProviderService

that inherits from SAAgent, which is a class from the Accessory SDK. In ProviderService,

you can include a local private class ServiceConnection, that extends SASocket. It has the

hook onReceive:

1 public class ServiceConnection extends SASocket {
...

3 @Override
public void onReceive(int i, byte[] bytes) {

5 if (connection == null) {
return;

7 }
Calendar calendar = new GregorianCalendar();

9 SimpleDateFormat dateFormat = new SimpleDateFormat("yyyy.MM.dd aa hh:mm:ss.SSS");
String timeStr = " " + dateFormat.format(calendar.getTime());

11 String strToUpdateUI = new String(bytes);
final String message = strToUpdateUI.concat(timeStr);

13

new Thread(new Runnable() {
15 public void run() {

try {
17 connection.send(HELLOACCESSORY_CHANNEL_ID, message.getBytes());

} catch (IOException e) {
19 e.printStackTrace();

}
21 }

}).start();

Page 41 of 64

http://developer.samsung.com/galaxy#accessory
http://developer.samsung.com/galaxy#accessory

Gerald Urschitz Developing for Android

23 }

25 ...
}

As you can see in the listing, in onReceive we format and create our time string and send

it via the connection to our device. The onReceive method is called, when the android host

receives a message from the Gear.

Next, you will need to create a xml -file in the directory /res/xml and add the following in

the file:

<?xml version="1.0" encoding="UTF-8"?>
2 <resources>

<application name="RecentTweets">
4 <serviceProfile

role="provider"
6 name="recenttweets"

id="/app/recenttweets"
8 version="1.0"

serviceImpl="com.example.recenttweets.ProviderService"
10 serviceLimit="any"

serviceTimeout="10">
12 <supportedTransports>

<transport type="TRANSPORT_BT"/>
14 <transport type="TRANSPORT_WIFI"/>

</supportedTransports>
16 <serviceChannel

id="104"
18 dataRate="low"

priority="high"
20 reliability="enable"/>

</serviceProfile>
22 </application>

</resources>

This is our service profile for our provider app, as the value in field role might suggest.

Furthermore, in serviceImpl you need to declare the provider service class ProviderService.

Besides these two fields, the service profile on the Tizen Web Application look pretty much

the same. It is important that name, id, and the fields of serviceChannel match with

the service profile on the Tizen Web Application. The field role should however be set to

consumer.

At last, we need to add many lines to our AndroidManifest.xml. First, add the service

reference to the application tag

1 <service android:name="com.example.recenttweets.ProviderService" />

Next, add meta-data with a reference to your accessoryservices.xml and the type of Gear

app you are writing, also within the application tag:

1 <meta-data
android:name="AccessoryServicesLocation"

3 android:value="/res/xml/accessoryservices.xml" />
<meta-data

5 android:name="GearAppType"
android:value="wgt" />

Page 42 of 64

Gerald Urschitz Developing for Android

Furthermore, we add two receivers two our manifest file, that filter after two actions, that

come with the Samsung Accessory SDK. These are very important. If you happen to have

a typo in those, it won’t work but it also won’t tell you why it won’t work. These receivers

should be also added within the application tag:

<receiver android:name="com.samsung.android.sdk.accessory.RegisterUponInstallReceiver" >
2 <intent-filter>

<action android:name="com.samsung.accessory.action.REGISTER_AGENT" />
4 </intent-filter>

</receiver>
6 <receiver android:name="com.samsung.android.sdk.accessory.

ServiceConnectionIndicationBroadcastReceiver" >
<intent-filter>

8 <action android:name="com.samsung.accessory.action.SERVICE_CONNECTION_REQUESTED"
/>

</intent-filter>
10 </receiver>

At last, add these permissions to the manifest tag:

<uses-permission
2 android:name="com.samsung.android.providers.context.permission.

WRITE_USE_APP_FEATURE_SURVEY"/>
<uses-permission android:name="android.permission.BLUETOOTH" />

4 <uses-permission android:name="android.permission.BLUETOOTH_ADMIN" />
<uses-permission android:name="com.samsung.accessory.permission.ACCESSORY_FRAMEWORK" />

6 <uses-permission android:name="com.samsung.WATCH_APP_TYPE.Companion" />
<uses-permission android:name="com.samsung.wmanager.ENABLE_NOTIFICATION" />

That’s it from the provider side on android. Next, we will setup the consumer application.

5.3. Consumer - Tizen

Open the Tizen IDE, it should look like in figure A.5.

Page 43 of 64

Gerald Urschitz Developing for Android

Figure 5.2.: A screenshot of the Tizen IDE for developing Tizen Applications.

As already mentioned, in Tizen, you can either write native applications in C++ or you can

write your application using HTML5 and JavaScript. In this paper, we will focus on the

latter. To create a new Tizen Web Project, you can simply go to File ->New ->Tizen Web

Project, then choose the template ”Basic” under the Template ->WEARABLE-2.3.1 and

give your project a suitable name. See 5.3

Page 44 of 64

Gerald Urschitz Developing for Android

Figure 5.3.: Choose the basic template and give your project a suitable name.

Just like Android Studio, the Tizen IDE generates the whole project structure so that our

application actually already works. In our case, we will however just import the sample

application from Samsung and get started with this, as it already has everything set up for

us. Simply click on File ->Import, then select General ->Existing Projects into Workspace.

Then simply choose the sample application Tizen Web Application ”HelloAccessory”, that

comes with the accessory SDK package. Be sure to import it from the folder, where android

is the provider, and be sure to just import the consumer.

I will briefly explain the most important files:

• index.html: This is our main index file. It defines the html tag and includes the tags

head and body, just like on a normal HTML5 web page.

Page 45 of 64

Gerald Urschitz Developing for Android

In this file, we also place the UI structure. In the case of this sample application, it

has a ul -tag with the class ui-listview and the three di↵erent onclick-events connect(),

fetch() and disconnect(). These are then displayed as list buttons. Each calls the

respective function in main.js, that we will discuss later.

1 <div class="ui-content">
<ul class="ui-listview">

3 Connect
Fetch

5 Disconnect

7 </div>

• js/main.js: In this JavaScript file, we do all the login on the gear sided application.

Building up the connection, sending and receiving is all done in this file. Again, you can

find the whole file either in the sample application or in the appendix Code Listings. I

will briefly explain the createHTML() function, the onreceive() function and the fetch()

function.

1 function createHTML(log_string)
{

3 var content = document.getElementById("toast-content");
content.textContent = log_string;

5 tau.openPopup("#toast");
}

7 ...
function onreceive(channelId, data) {

9 createHTML(data);
}

11 ...
function fetch() {

13 try {
SASocket.sendData(CHANNELID, "Hello Accessory!");

15 } catch(err) {
console.log("exception [" + err.name + "] msg[" + err.message + "]");

17 }
}

createHTML() simply sets the context of an element with the id ”toast-container” and

opens it as a popup. onreceive() is called when new data arrives at our gear. The

callback is set via the agentCallback with the following line:

SASocket.setDataReceiveListener(onreceive). In our case, onreceive simple takes the

data and passes it to createHTML. This way, our String with the formatted time from

android will finally lead to a popup on the Gear. The fetch() function is called when

the user presses on ”Fetch” in the UI. It simply sends the String ”Hello Accessory!”

via the channel ID variable. In our case, the channel ID variable is set to 104 in the

top of main.js file.

• jres/xml/accessoryservices.xml: Here, we have the service profile again that iden-

tifies our connection. It is practically the same as in the android project, we just need

to change the role to ”consumer”.

Page 46 of 64

Gerald Urschitz Developing for Android

5.4. Debugging

5.4.1. Testing Gear application with the emulator

In order to run the app, you can use the emulator from Tizen. It simulates a Samsung Gear

2 that you can connect to using a real android device, that’s plugged into your computer.

For this to work, you need to prepare your device. Please follow this guide from Samsung to

do this: http://img-developer.samsung.com/contents/cmm/Guideline_on_
Testing_Gear_applications_using_the_Emulator.pdf

5.4.2. Certification

Furthermore, to actually run your app you need a certificate file from Samsung. To do this,

you first need to get hold of your device id (either from the real device or the emulator).

Any plugged device or any emulator instance shows up in the Connection Explorer. Simply

do a right click and select Properties. You can then see the DUID or the device unique id.

Next, click on the certificate button, that looks like in figure 5.4.

Figure 5.4.

The certification window opens up. Simply follow the guide from top to bottom and insert

the respective files. You will get these files emailed to you.

5.4.3. Running the Application

If everything was right, you can now start the app.

Emulator

If you want to use the emulator, you need to start your virtual machine. You can do this

using the Emulator Manager. Then, simply right click on your project, select Run As ->1

Tizen Web Application. After a while, your application should appear. See 5.5.

Page 47 of 64

http://img-developer.samsung.com/contents/cmm/Guideline_on_Testing_Gear_applications_using_the_Emulator.pdf
http://img-developer.samsung.com/contents/cmm/Guideline_on_Testing_Gear_applications_using_the_Emulator.pdf

Gerald Urschitz Developing for Android

Figure 5.5.

Real Device

If you want to use a real device to run the application on, you simply need to plug in

the device. Beware that you may need to install Samsung Kies to get your watch to show

up in your device list. You can find Samsung Kies under http://www.samsung.com/
at/support/usefulsoftware/KIES/. Your watch should show up in the Connection

Explorer, if everything worked out. Then you simply need to click on the play button in the

top bar to run your application.

Page 48 of 64

http://www.samsung.com/at/support/usefulsoftware/KIES/
http://www.samsung.com/at/support/usefulsoftware/KIES/

6. Conclusion

Android provides an exiting platform for developing mobile applications for a huge number

of devices. Due to its open nature and its good documentation, new developers feel at home

very fast and can flourish in the community of android developers. Because of its huge

market share, Android nowadays is a must for any type of company that want to provide a

mobile application of their service.

As you hopefully saw in earlier chapters, even without deep knowledge, it is possible to create

apps within a matter of hours with Android. You now know the basics to create a (very

simple) User Interface and how to define its behavior. You know how to include external

libraries such as Twitter Fabric and furthermore, you know how to include Twitter Login

and display tweets using Twitter Fabric. As a bonus, you have an idea of how to get started

with the Samsung Gear 2 Smartwatch, the Accessory SDK and Tizen. It probably does not

feel like much, but you can now build up on that and start making great Apps for Android.

Apps that might be one day the Google Play Store.

49

A. Installation Guides

A.0.4. Installing Android Studio

Figure A.1.: The o�cial page where you can download Android Studio and the Android

SDK.

In this paper, I will use the MacOS X Version, but there shouldn’t be too much di↵er-

ence between the di↵erent platforms. To install it on your platform, just follow the o�cial

instructions that are provided with Android Studio.

A.1. Android SDK

The Android SDK - short for Software Development Kit - includes the following components:

[15]

• Several tools such as the Android Debug Bridge (ADB) and the virtual device for

emulation.

• All Libraries and APIs, that are being used for Android Development

• Documentation, Sample Codes and Tutorials

50

Gerald Urschitz Developing for Android

• Several extras for implementing other Google-Services

For the Android SDK, next to the name for each major version (like KitKat), there are

two versioning values that are important. First, there is the version number itself, which

is a number in semantic versioning. (To read more about semantic versioning, please refer

to http://semver.org/) Second, the API is described by the API Level as an integer. For

developers, this is the more important number, as the application code depends on the

API. In practice, this means that ”visible” changes (for example features for the user) are

described by the version number, and changes ”inside” are described by the API Level. It

needs to be said, that one API Level can withstand through several versions. See A.2 to

have an overview of the di↵erent Android SDKs. [16]

Figure A.2.: The versions and api levels of all the di↵erent SDKs as of November 2015. [16]

A.1.1. Configuring the SDK

After the installation completed, you will see a window like the one on the left side in figure

A.3. To configure the Android SDK, simply click on Configure and then on SDK Manager.

Page 51 of 64

Gerald Urschitz Developing for Android

Figure A.3.: To configure the SDK click on Configure ->SDK Manager.

This will open the built-in SDK Manager of Android Studio. There is also a standalone

version of this SDK Manager, but for our purposes, the built-in one is su�cient. For our

Application we will use Android 4.4 KitKat, as we currently reach the most devices with

this version with 37.8%. In the SDK Manager, choose Android 4.4.2 and click on Apply.

This will download and install the Android SDK in the version 4.4.2 with API Level 19. See

figure A.4.

Page 52 of 64

Gerald Urschitz Developing for Android

Figure A.4.: Choose 4.4.2 with API Level 19.

A.2. Install Tizen SDK

In order to develop applications for Tizen, you need to install the Tizen SDK, which includes

a special IDE for Tizen apps, an emulator, sample code, several tools as well as documenta-

tion.

The Tizen IDE is built upon Eclipse and - just like Android Studio - makes it easy for you

to create Tizen projects. See figure A.5 for a screenshot of the Tizen IDE.

To get started, download the Tizen SDK. You can find it under https://developer.
tizen.org/development/tools/download?langswitch=en for the platformsWin-

dows, Ubuntu and Mac OS X. After installation, the Tizen Update Manager asks you what

tools you want to install. Be sure to install everything for the Wearable platform, the Ti-

zen SDK tools as well as the Certificate Extension and Tizen Wearable Extension for 2.3.1.

Please especially make sure to install the Emulator and the Emulator Manager.

Page 53 of 64

https://developer.tizen.org/development/tools/download?langswitch=en
https://developer.tizen.org/development/tools/download?langswitch=en

Gerald Urschitz Developing for Android

Figure A.5.: Installing the necessary tools for Samsung Gear development happens in the

Tizen Update Manager.

Page 54 of 64

B. Code Listings

B.1. HelloAccessory - Provider

B.1.1. AndroidManifest.xml

<?xml version="1.0" encoding="utf-8"?>
2 <manifest package="com.example.recenttweets"

xmlns:android="http://schemas.android.com/apk/res/android">
4

<application
6 android:allowBackup="true"

android:icon="@mipmap/ic_launcher"
8 android:label="@string/app_name"

android:supportsRtl="true"
10 android:theme="@style/AppTheme">

12 <service android:name="com.example.recenttweets.ProviderService" />

14 <receiver android:name="com.samsung.android.sdk.accessory.RegisterUponInstallReceiver" >
<intent-filter>

16 <action android:name="com.samsung.accessory.action.REGISTER_AGENT" />
</intent-filter>

18 </receiver>
<receiver android:name="com.samsung.android.sdk.accessory.

ServiceConnectionIndicationBroadcastReceiver" >
20 <intent-filter>

<action android:name="android.accessory.service.action.
ACCESSORY_SERVICE_CONNECTION_IND" />

22 </intent-filter>
</receiver>

24

<meta-data
26 android:name="AccessoryServicesLocation"

android:value="/res/xml/accessoryservices.xml" />
28 <meta-data

android:name="GearAppType"
30 android:value="wgt" />

32 <activity android:name=".LoginActivity">
<intent-filter>

34 <action android:name="android.intent.action.MAIN"/>

36 <category android:name="android.intent.category.LAUNCHER"/>
</intent-filter>

38 </activity>
<activity android:name=".RecentTweetsActivity">

40 </activity>
<meta-data

42 android:name="io.fabric.ApiKey"
android:value="7be76ea568c99d51cb168933fe9de596341406d2" />

55

Gerald Urschitz Developing for Android

44 </application>

46

48 <uses-permission android:name="android.permission.INTERNET" />

50 <uses-permission
android:name="com.samsung.android.providers.context.permission.

WRITE_USE_APP_FEATURE_SURVEY"/>
52 <uses-permission android:name="android.permission.BLUETOOTH" />

<uses-permission android:name="android.permission.BLUETOOTH_ADMIN" />
54 <uses-permission android:name="com.samsung.accessory.permission.ACCESSORY_FRAMEWORK" />

<uses-permission android:name="com.samsung.WATCH_APP_TYPE.Companion" />
56 <uses-permission android:name="com.samsung.wmanager.ENABLE_NOTIFICATION" />

</manifest>

B.1.2. ProviderService.java

1 public class ProviderService extends SAAgent {
private static final String TAG = "HelloAccessory(P)";

3 private static final Class<ProviderConnection> SASOCKET_CLASS = ProviderConnection.class;
private static final int HELLOACCESSORY_CHANNEL_ID = 104;

5 private ProviderConnection connection;
private final IBinder binder = new LocalBinder();

7

public ProviderService(){
9 super(TAG, SASOCKET_CLASS);

}
11

@Override
13 public IBinder onBind(Intent intent) {

return binder;
15 }

17 public class LocalBinder extends Binder {
public ProviderService getService() {

19 return ProviderService.this;
}

21 }

23 @Override
public void onCreate() {

25 super.onCreate();
SA accessory = new SA();

27 try {
accessory.initialize(this);

29 } catch (SsdkUnsupportedException e) {
// you can handle SsdkUnsupportedException here

31 } catch (Exception e1) {
e1.printStackTrace();

33 /*
* Your application can not use Samsung Accessory SDK. Your application should work

smoothly
35 * without using this SDK, or you may want to notify user and close your application

gracefully

* (release resources, stop Service threads, close UI thread, etc.)
37 */

stopSelf();
39 }

}
41

Page 56 of 64

Gerald Urschitz Developing for Android

43 @Override
protected void onServiceConnectionResponse(SAPeerAgent peerAgent, SASocket thisConnection,

int result) {
45 if (result == CONNECTION_SUCCESS) {

if (thisConnection != null) {
47 connection = (ProviderConnection) thisConnection;

}
49 }else if (result == CONNECTION_ALREADY_EXIST) {

Log.e(TAG, "CONNECTION_ALREADY_EXIST");
51 }

}
53

55 class ProviderConnection extends SASocket {

57 protected ProviderConnection(String s) {
super(s);

59 }

61 @Override
public void onError(int i, String s, int i1) {

63

}
65

@Override
67 public void onReceive(int i, byte[] bytes) {

if (connection == null) {
69 return;

}
71 Calendar calendar = new GregorianCalendar();

SimpleDateFormat dateFormat = new SimpleDateFormat("yyyy.MM.dd aa hh:mm:ss.SSS");
73 String timeStr = " " + dateFormat.format(calendar.getTime());

String strToUpdateUI = new String(bytes);
75 final String message = strToUpdateUI.concat(timeStr);

77 new Thread(new Runnable() {
public void run() {

79 try {
connection.send(HELLOACCESSORY_CHANNEL_ID, message.getBytes());

81 } catch (IOException e) {
e.printStackTrace();

83 }
}

85 }).start();
}

87

@Override
89 protected void onServiceConnectionLost(int i) {

connection = null;
91 Log.w(TAG,"Connection lost");

}
93 }

}

B.2. HelloAccessory - Consumer

B.2.1. index.html

/*

Page 57 of 64

Gerald Urschitz Developing for Android

2 * Copyright (c) 2014 Samsung Electronics Co., Ltd.

* All rights reserved.
4 *

* Redistribution and use in source and binary forms, with or without
6 * modification, are permitted provided that the following conditions are

* met:
8 *

* * Redistributions of source code must retain the above copyright
10 * notice, this list of conditions and the following disclaimer.

* * Redistributions in binary form must reproduce the above
12 * copyright notice, this list of conditions and the following disclaimer

* in the documentation and/or other materials provided with the
14 * distribution.

* * Neither the name of Samsung Electronics Co., Ltd. nor the names of its
16 * contributors may be used to endorse or promote products derived from

* this software without specific prior written permission.
18 *

* THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
20 * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT

* LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
22 * A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT

* OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
24 * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT

* LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
26 * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY

* THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
28 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE

* OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
30 */

32 var SAAgent = null;
var SASocket = null;

34 var CHANNELID = 104;
var ProviderAppName = "HelloAccessoryProvider";

36

function createHTML(log_string)
38 {

var content = document.getElementById("toast-content");
40 content.textContent = log_string;

tau.openPopup("#toast");
42 }

44 function onerror(err) {
console.log("err [" + err + "]");

46 }

48 var agentCallback = {
onconnect : function(socket) {

50 SASocket = socket;
createHTML("HelloAccessory Connection established with RemotePeer");

52 SASocket.setSocketStatusListener(function(reason){
console.log("Service connection lost, Reason : [" + reason + "]");

54 disconnect();
});

56 SASocket.setDataReceiveListener(onreceive);
},

58 onerror : onerror
};

60

var peerAgentFindCallback = {
62 onpeeragentfound : function(peerAgent) {

try {

Page 58 of 64

Gerald Urschitz Developing for Android

64 if (peerAgent.appName == ProviderAppName) {
SAAgent.setServiceConnectionListener(agentCallback);

66 SAAgent.requestServiceConnection(peerAgent);
} else {

68 createHTML("Not expected app!! : " + peerAgent.appName);
}

70 } catch(err) {
console.log("exception [" + err.name + "] msg[" + err.message + "]");

72 }
},

74 onerror : onerror
}

76

function onsuccess(agents) {
78 try {

if (agents.length > 0) {
80 SAAgent = agents[0];

82 SAAgent.setPeerAgentFindListener(peerAgentFindCallback);
SAAgent.findPeerAgents();

84 } else {
createHTML("Not found SAAgent!!");

86 }
} catch(err) {

88 console.log("exception [" + err.name + "] msg[" + err.message + "]");
}

90 }

92 function connect() {
if (SASocket) {

94 createHTML(’Already connected!’);
return false;

96 }
try {

98 webapis.sa.requestSAAgent(onsuccess, function (err) {
console.log("err [" + err.name + "] msg[" + err.message + "]");

100 });
} catch(err) {

102 console.log("exception [" + err.name + "] msg[" + err.message + "]");
}

104 }

106 function disconnect() {
try {

108 if (SASocket != null) {
SASocket.close();

110 SASocket = null;
createHTML("closeConnection");

112 }
} catch(err) {

114 console.log("exception [" + err.name + "] msg[" + err.message + "]");
}

116 }

118 function onreceive(channelId, data) {
createHTML(data);

120 }

122 function fetch() {
try {

124 SASocket.sendData(CHANNELID, "Hello Accessory!");
} catch(err) {

Page 59 of 64

Gerald Urschitz Developing for Android

126 console.log("exception [" + err.name + "] msg[" + err.message + "]");
}

128 }

130 window.onload = function () {
// add eventListener for tizenhwkey

132 document.addEventListener(’tizenhwkey’, function(e) {
if(e.keyName == "back")

134 tizen.application.getCurrentApplication().exit();
});

136 };

138 (function(tau) {
var toastPopup = document.getElementById(’toast’);

140 toastPopup.addEventListener(’popupshow’, function(ev){
setTimeout(function(){tau.closePopup();}, 3000);

142 }, false);
})(window.tau);

144 \end{stlisting}

146 \subsection{js/main.js}
\begin{lstlisting}

148 /*
* Copyright (c) 2014 Samsung Electronics Co., Ltd.

150 * All rights reserved.

*
152 * Redistribution and use in source and binary forms, with or without

* modification, are permitted provided that the following conditions are
154 * met:

*
156 * * Redistributions of source code must retain the above copyright

* notice, this list of conditions and the following disclaimer.
158 * * Redistributions in binary form must reproduce the above

* copyright notice, this list of conditions and the following disclaimer
160 * in the documentation and/or other materials provided with the

* distribution.
162 * * Neither the name of Samsung Electronics Co., Ltd. nor the names of its

* contributors may be used to endorse or promote products derived from
164 * this software without specific prior written permission.

*
166 * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS

* "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
168 * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR

* A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
170 * OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,

* SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
172 * LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,

* DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
174 * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT

* (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
176 * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.

*/
178

var SAAgent = null;
180 var SASocket = null;

var CHANNELID = 104;
182 var ProviderAppName = "HelloAccessoryProvider";

184 function createHTML(log_string)
{

186 var content = document.getElementById("toast-content");
content.textContent = log_string;

Page 60 of 64

Gerald Urschitz Developing for Android

188 tau.openPopup("#toast");
}

190

function onerror(err) {
192 console.log("err [" + err + "]");

}
194

var agentCallback = {
196 onconnect : function(socket) {

SASocket = socket;
198 createHTML("HelloAccessory Connection established with RemotePeer");

SASocket.setSocketStatusListener(function(reason){
200 console.log("Service connection lost, Reason : [" + reason + "]");

disconnect();
202 });

SASocket.setDataReceiveListener(onreceive);
204 },

onerror : onerror
206 };

208 var peerAgentFindCallback = {
onpeeragentfound : function(peerAgent) {

210 try {
if (peerAgent.appName == ProviderAppName) {

212 SAAgent.setServiceConnectionListener(agentCallback);
SAAgent.requestServiceConnection(peerAgent);

214 } else {
createHTML("Not expected app!! : " + peerAgent.appName);

216 }
} catch(err) {

218 console.log("exception [" + err.name + "] msg[" + err.message + "]");
}

220 },
onerror : onerror

222 }

224 function onsuccess(agents) {
try {

226 if (agents.length > 0) {
SAAgent = agents[0];

228

SAAgent.setPeerAgentFindListener(peerAgentFindCallback);
230 SAAgent.findPeerAgents();

} else {
232 createHTML("Not found SAAgent!!");

}
234 } catch(err) {

console.log("exception [" + err.name + "] msg[" + err.message + "]");
236 }

}
238

function connect() {
240 if (SASocket) {

createHTML(’Already connected!’);
242 return false;

}
244 try {

webapis.sa.requestSAAgent(onsuccess, function (err) {
246 console.log("err [" + err.name + "] msg[" + err.message + "]");

});
248 } catch(err) {

console.log("exception [" + err.name + "] msg[" + err.message + "]");

Page 61 of 64

Bibliography Developing for Android

250 }
}

252

function disconnect() {
254 try {

if (SASocket != null) {
256 SASocket.close();

SASocket = null;
258 createHTML("closeConnection");

}
260 } catch(err) {

console.log("exception [" + err.name + "] msg[" + err.message + "]");
262 }

}
264

function onreceive(channelId, data) {
266 createHTML(data);

}
268

function fetch() {
270 try {

SASocket.sendData(CHANNELID, "Hello Accessory!");
272 } catch(err) {

console.log("exception [" + err.name + "] msg[" + err.message + "]");
274 }

}
276

window.onload = function () {
278 // add eventListener for tizenhwkey

document.addEventListener(’tizenhwkey’, function(e) {
280 if(e.keyName == "back")

tizen.application.getCurrentApplication().exit();
282 });

};
284

(function(tau) {
286 var toastPopup = document.getElementById(’toast’);

toastPopup.addEventListener(’popupshow’, function(ev){
288 setTimeout(function(){tau.closePopup();}, 3000);

}, false);
290 })(window.tau);

Page 62 of 64

Bibliography

[1] Wikipedia, “Android (betriebssystem).” https://de.wikipedia.org/w/index.
php?title=Android_(Betriebssystem)&oldid=147243252. Retrieved:

2015-10.

[2] IDC, “Idc: Smartphone os market share 2015, 2014, 2013, and 2012.” http://www.
idc.com/prodserv/smartphone-os-market-share.jsp. Retrieved: 2015-

10.

[3] Wikipedia, “Android runtime.” https://de.wikipedia.org/w/index.php?
title=Android_Runtime&oldid=145850639. Retrieved: 2015-10.

[4] G. Inc., “App resources.” http://developer.android.com/guide/topics/
resources/index.html. Retrieved: 2015-12.

[5] Google, “Configuring gradle builds.” http://developer.android.com/tools/
building/configuring-gradle.html. Retrieved: 2015-12.

[6] Google, “Activity.” http://developer.android.com/reference/android/
app/Activity.html. Retrieved: 2015-11.

[7] D. o. P. Je↵ Seibert, “Introducing fabric.” https://blog.twitter.com/2014/
introducing-fabric. Retrieved: 2015-12.

[8] T. Inc., “Fabric docs.” https://docs.fabric.io/. Retrieved: 2015-12.

[9] Google, “Intent.” http://developer.android.com/reference/android/
content/Intent.html. Retrieved: 2015-10.

[10] T. Inc., “Fabric docs: Statusesservice.” https://docs.fabric.io/javadocs/
twitter-core/1.4.1/com/twitter/sdk/android/core/services/
StatusesService.html. Retrieved: 2015-12.

[11] T. Inc., “Display requirements.” https://about.twitter.com/company/
display-requirements/. Retrieved: 2015-12.

[12] S. Wong, “Samsung unveils tizen-powered gear 2 and gear 2 neo smart watches.” http:
//www.hardwarezone.com.sg. Retrieved: 2015-12.

63

https://de.wikipedia.org/w/index.php?title=Android_(Betriebssystem)&oldid=147243252
https://de.wikipedia.org/w/index.php?title=Android_(Betriebssystem)&oldid=147243252
http://www.idc.com/prodserv/smartphone-os-market-share.jsp
http://www.idc.com/prodserv/smartphone-os-market-share.jsp
https://de.wikipedia.org/w/index.php?title=Android_Runtime&oldid=145850639
https://de.wikipedia.org/w/index.php?title=Android_Runtime&oldid=145850639
http://developer.android.com/guide/topics/resources/index.html
http://developer.android.com/guide/topics/resources/index.html
http://developer.android.com/tools/building/configuring-gradle.html
http://developer.android.com/tools/building/configuring-gradle.html
http://developer.android.com/reference/android/app/Activity.html
http://developer.android.com/reference/android/app/Activity.html
https://blog.twitter.com/2014/introducing-fabric
https://blog.twitter.com/2014/introducing-fabric
https://docs.fabric.io/
http://developer.android.com/reference/android/content/Intent.html
http://developer.android.com/reference/android/content/Intent.html
https://docs.fabric.io/javadocs/twitter-core/1.4.1/com/twitter/sdk/android/core/services/StatusesService.html
https://docs.fabric.io/javadocs/twitter-core/1.4.1/com/twitter/sdk/android/core/services/StatusesService.html
https://docs.fabric.io/javadocs/twitter-core/1.4.1/com/twitter/sdk/android/core/services/StatusesService.html
https://about.twitter.com/company/display-requirements/
https://about.twitter.com/company/display-requirements/
http://www.hardwarezone.com.sg
http://www.hardwarezone.com.sg

Bibliography Developing for Android

[13] Wikipedia, “Tizen.” https://en.wikipedia.org/w/index.php?title=
Tizen&oldid=692447785. Retrieved: 2015-12.

[14] Samsung, “Samsung accessory sdk.” http://developer.samsung.com/galaxy#
accessory. Retrieved: 2015-12.

[15] Wikipedia, “Android software development.” https://en.wikipedia.org/w/
index.php?title=Android_software_development&oldid=689857190.
Retrieved: 2015-11.

[16] Google, “Dashboards.” http://developer.android.com/about/
dashboards/index.html. Retrieved: 2015-11.

Page 64 of 64

	Introduction
	Android
	Example Application "RecentTweets"

	Development Environment
	Android Studio
	Creating an empty Project
	java
	res
	AndroidManifest.xml
	build.gradle

	Gradle Build System
	Defining Dependencies with Gradle

	Hello Android!
	Activities
	Activity Lifecycle

	Running the Application
	From "Hello World!" to "Hello Android!"
	Setting the content view
	Layout Editor
	Views, ViewGroups and Layouts
	Placing and labeling the Button
	Listening to the Button Click Event

	Twitter Fabric
	What is Twitter Fabric?
	Implementing Twitter Login
	Create LoginActivity
	Including Twitter Fabric

	Displaying Recent Tweets with Twitter Kit
	Starting an Activity
	Including a ListView
	Loading the Tweets
	Displaying the Tweets

	Developing for Samsung Gear
	Tizen
	Hello Accessory
	Provider - Android

	Consumer - Tizen
	Debugging
	Testing Gear application with the emulator
	Certification
	Running the Application

	Conclusion
	Installation Guides
	Installing Android Studio
	Android SDK
	Configuring the SDK

	Install Tizen SDK

	Code Listings
	HelloAccessory - Provider
	AndroidManifest.xml
	ProviderService.java

	HelloAccessory - Consumer
	index.html

