

Seminar paper

Tomcat Web Server:

CGI vs. Servlet

Author: Lukas Hubmaier

Matriculation No.: 0965587

Class Title: Projektseminar aus Wirtschaftsinformatik (Schiseminar)
 Instructor: ao.Univ.Prof. Mag. Dr. Rony G. Flatscher

Term: Winter Term 2017/18
Vienna University of Economics and Business

1. Introduction .. 1

2. Static Content .. 2

2.1. The Route of an URL ... 2

2.2. Hypertext Transfer Protocol (HTTP) .. 3

2.2.1. Request .. 3

2.2.2. Response .. 7

3. Dynamic Content ... 8

3.1. Introduction to Tomcat ... 9

3.1.1. History .. 9

3.1.2. Components ... 9

3.1.3. File Structure .. 11

3.2. CGI ... 13

3.2.1. What is a Common Gateway Interface? ... 13

3.2.2. Execution of Rexx Scripts in Tomcat .. 15

3.2.3. Rexx CGI Nutshell Examples ... 18

3.2.3.1. HelloWorld.rex .. 19

3.2.3.2. getMethod.rex ... 20

3.2.3.3. postMethod.rex ... 23

3.3. Servlet .. 24

3.3.1. Introduction to Servlets .. 24

3.3.2. Lifecycle and Methods of Servlets.. 25

3.3.3. Configuration of Servlets .. 26

3.3.4. Java Servlet Nutshell Examples ... 28

3.3.4.1. HelloWorldExample.java ... 28

3.3.4.2. RequestHeaderServlet.java .. 30

3.3.5. Rexx Servlet Nutshell Examples .. 31

3.3.5.1. RexxServlet.java ... 32

3.3.5.2. doGet.rex (HelloWorld) ... 34

3.3.5.3. doGet.rex (RequestHeader) .. 35

4. Conclusion .. 36

5. References ... 37

Appendix... 41

a. Tomcat Installation/Configuration Guide for Windows 41

List of Figures

Figure 1 - Server/Client relation with static content [2] ... 2

Figure 2 - HTTP GET request ... 3

Figure 3 - HTML Code of Web Form .. 4

Figure 4 - Display of Web Form .. 5

Figure 5 - HTTP GET Request with 2 parameters .. 5

Figure 6 - HTTP POST Request with 2 parameters ... 6

Figure 7 - Example Reponse for HelloWorld.html ... 7

Figure 8 - Architecture of Tomcat Server [16] ... 10

Figure 9 - Dataflow for CGIs [18] .. 13

Figure 10 - Performance of CGIs [21] ... 14

Figure 11 - Web Application Structure for CGI [21] - adapted 16

Figure 12 - web.xml of CGIRexx webapplication .. 17

Figure 13 - CGI command .. 17

Figure 14 - CGI context.xml .. 18

Figure 15 - Display of helloWorld.rex .. 19

Figure 16 - helloWorld.rex .. 19

Figure 17 - Display of form ... 20

Figure 18 - index.html with form ... 20

Figure 19 - Display of getMethod.rex .. 21

Figure 20 - getMethod.rex .. 22

Figure 21 - postMethod.rex ... 23

Figure 22 - Performance of Servlets [21] .. 24

Figure 23 - Life Cycle of Servlets [28] ... 26

Figure 24 - Servlet mapping and class reference ... 26

Figure 25 - directory structure for Servlets [21] ... 27

Figure 26 - HelloWorldServlet.java ... 29

Figure 27 - Display of requestHeaderServlet.java .. 30

Figure 28 - requestHeaderServlet.java ... 30

Figure 29 - RexxServlet.java .. 32

Figure 30 - Display of doGet.rex (Hello World) ... 34

Figure 31 - doGet.rex (Hello World) .. 34

Figure 32 - doGet.rex (Request Header) .. 35

1

1. Introduction
While everyone of us interacts with web servers on a daily basis as we browse

through the internet, most people don’t know the term “web server” not to mention

understand it. The idea of web servers is quite simple. A web server is a computer

system or just a software on that system that oversees handling HTTP requests from

users visiting a certain website [1]. In the easiest case the content of a website is

static and every user gets the same results, when visiting the page. We call this type

of websites: static websites or websites with static content. Even though this type of

websites may be suitable for some purposes, it is too limited for many other cases.

This, consequently, leads to dynamic websites that are able to react on user input

and respond with different websites for every user. The applications of this attempt

can reach from simple form processing on webpages to sophisticated session

management and individual page creation. As this paper serves as introduction to

web servers, the focus lies on the basic concepts. While static websites are always

written in plain HTML files with additional CSS files for design and images, dynamic

content on websites can be achieved by various manners. In the following, terms like

“Client-Side-Scripting”, “Server-Side-Scripting”, “CGIs” and “Servlets” are introduced,

explained and illustrated, including instructions on how to use the scripting language

Rexx or rather BSF4ooRexx for this purpose. While there is a multitude of different

web servers available nowadays, this paper uses Tomcat (or Apache Tomcat) and

gives some insights about the structure and mechanisms of this specific web server.

2

2. Static Content
Before diving into the specifics of CGIs and Servlets it is important to understand the

fundamental process of visiting a website. Figure 1 illustrates the simplified process

of sending a request to a web server. When entering an URL into the address bar of

the client’s web browser, the browser sends a HTTP request to the web server of the

specified URL and expects a response in form of a html file. In addition to the HTML

file representing the elements of the website, images, stylesheets other documents

can be attached to the response. This chapter deals with the name resolution of

URLs, URL mapping on websites and HTTP methods.

Figure 1 - Server/Client relation with static content [2]

2.1. The Route of an URL
A Uniform Resource Locator (URL) is used when resources are requested over the

internet and are therefore used when communicating with a web server. A URL

consists is structured based on this structure [3]:

scheme://host:port/path?query

• scheme: defines the protocol (HTTP, HTTPS, FTP, etc.)

• host: identifies the system, that wants to be reached

• port: (optional) defines the entry point of the system (most web servers

assume standard ports, based on the protocol

• path: (optional) specifies the location of the resource at the host, which can

directly point to a file or be redirected by URL-mapping of the web server

3

• query: (optional) contains additional information that can be used by the

requested resource

Since the internet, and network communication in general, is based on the Internet

Protocol Suite or TCP/IP, it is important to translate human readable names of hosts

into IP addresses for the computer to understand it. This is realized with Domain

Name Servers (DNS), which contain entries mapping names to IP addresses and

answer requests to resolve names. This way a TCP connection can be established

from the client to the host and a request can be sent.

2.2. Hypertext Transfer Protocol (HTTP)
The Hypertext Transfer Protocol is the foundation of the World Wide Web and

provides tools for data communication over the internet [4]. It basically serves as a

stateless request-response protocol between client and server, which means that the

server does not save information about consecutive requests. To overcome this

problem, many web servers use server-side sessions, cookies or hidden variables in

web forms. Even though Tomcat is capable of all these actions, they won’t be

discussed in detail here.

2.2.1. Request
According to the definition of the HTTP Protocol, a request contains the following

elements:

• request line

• request header

• an empty line

• optional message body

GET http://localhost:8080/BasicExamples/index.html?username=user1 HTTP/1.1
Host: localhost:8080
Connection: keep-alive
User-Agent: Mozilla/5.0 (Windows NT 10.0; Win64; x64) AppleWebKit/537.36 (KHTML,
like Gecko) Chrome/62.0.3202.94 Safari/537.36
Upgrade-Insecure-Requests: 1
Accept:
text/html,application/xhtml+xml,application/xml;q=0.9,image/webp,image/apng,*/*;q=0.
8
DNT: 1
Accept-Encoding: gzip, deflate, br
Accept-Language: en-US,en;q=0.9,de;q=0.8

Figure 2 - HTTP GET request

4

The request line, which is highlighted in red, contains the applied method (=GET), the

resource requested from the server (requested URI) and HTTP-Version. The

following lines are request header fields, which give more information about the

specification of the request, such as the Host, the used browser or even cookies.

Every request is entitled to have an optional body containing more data, which has to

be separated by an empty line. In case of a GET request a body is not necessary.

In order to comprehend web servers, it is essential to understand the provided

request methods of the HTTP protocol. As defined by the [5], the following request

methods are available: GET, POST, HEAD, PUT, DELETE, CONNECT, OPTIONS

and TRACE. For transmitting user data on websites, the methods GET and POST

are most relevant, as they can be used to transmit user data of forms. Nevertheless,

they are differently implemented and understood by web servers, which makes it

crucial to investigate them in more detail.

The request in Figure 2 is an example for a GET request, as the leading word

indicates. The URL http://localhost:8080/BasicExamples/index.html is requested, which

which is interpreted as described in section 2.1.

If we look at a simple example of a web form and make use of different methods for

transmitting data, we can see the difference in the request that is sent out. Figure 3

and 4 illustrate the code and the displayed result of the web form. To understand

HTML Tags, it is advisable to study the fundamentals at [6]. At this point we are

focusing on the used method, which can be either GET or POST.

Figure 3 - HTML Code of Web Form

5

Figure 4 - Display of Web Form

When entering “Lukas” as username, selecting the radio button “Create” and

pressing submit, a request is generated targeted for the resource “evaluation.html”.

Depending on the specified method the information of the variables username and

whatToDo are differently transmitted. While Figure 5 illustrates the request

generated when using the GET method, Figure 6 shows the sent request with the

use of the POST method. The parts highlighted in red in both requests define the

passed parameters. As you can see, GET requests simply expand the URL by a list

of parameters separated by a “&” symbol and adding a leading “?” symbol to indicate

the beginning of the parameter list. The approach in POST requests is different, as

the parameters are added to the request’s body (without a leading “?” symbol) and

additionally the Header Field: Content-Length is set. This Field is necessary for the

browser and the web server that is interpreting the body of the content, since most

web servers don’t send an End of File (EoF) and would continue looking for more

content in the body, which results in a stuck reading process [7].

Figure 5 - HTTP GET Request with 2 parameters

GET
http://localhost:8080/BasicExamples/evaluation.html?username=Lukas&whatToDo=create
HTTP/1.1
Host: localhost:8080
Connection: keep-alive
Upgrade-Insecure-Requests: 1
User-Agent: Mozilla/5.0 (Windows NT 10.0; Win64; x64) AppleWebKit/537.36 (KHTML,
like Gecko) Chrome/62.0.3202.94 Safari/537.36
Accept:
text/html,application/xhtml+xml,application/xml;q=0.9,image/webp,image/apng,*/*;q=0.
8
DNT: 1
Referer: http://localhost:8080/BasicExamples/form.html
Accept-Encoding: gzip, deflate, br
Accept-Language: en-US,en;q=0.9,de;q=0.8

http://localhost:8080/BasicExamples/evaluation.html?username=lukas&whatToDo=create
http://localhost:8080/BasicExamples/form.html

6

Figure 6 - HTTP POST Request with 2 parameters

These different methods have advantages and disadvantages, which are discussed

as follows:

• Allowed Characters: While GET requests only allow ASCII characters without

some reserved characters “:/?#[]@!$&'()*+,;=” [8], POST requests are not

subject to this restriction and also allow binary data for transmission.

• Visibility: GET requests add the parameters to the URL, which is visible and

changeable by every user, while POST requests only send the data in the

body. Manipulation of data is still possible, but not as obvious.

• Sensitive Data: For the same reason, as mentioned above, sensitive data

must always be sent via POST, since the user does not want to see the

password in the URL.

• Security: Appended information in the URL are therefore a security risk, as

they are saved in the browser history and may be revealed if the user’s system

gets compromised.

More information about the differences of the HTTP Methods are available at [9].

POST http://localhost:8080/BasicExamples/evaluation.html HTTP/1.1
Host: localhost:8080
Connection: keep-alive
Content-Length: 30
Cache-Control: max-age=0
Origin: http://localhost:8080
Upgrade-Insecure-Requests: 1
Content-Type: application/x-www-form-urlencoded
User-Agent: Mozilla/5.0 (Windows NT 10.0; Win64; x64) AppleWebKit/537.36 (KHTML,
like Gecko) Chrome/62.0.3202.94 Safari/537.36
Accept:
text/html,application/xhtml+xml,application/xml;q=0.9,image/webp,image/apng,*/*;q=0.
8
DNT: 1
Referer: http://localhost:8080/BasicExamples/form.html
Accept-Encoding: gzip, deflate, br
Accept-Language: en-US,en;q=0.9,de;q=0.8

username=Lukas&whatToDo=create

http://localhost:8080/BasicExamples/evaluation.html
http://localhost:8080/
http://localhost:8080/BasicExamples/form.html

7

2.2.2. Response

A HTTP response is the answer of the web server on a request and contains a

header and a body, just like the response. While the body may contain the website,

which is displayed at the user’s screen, it can also be empty, depending on the status

of the response. Message Status- Line, which contains the message code is written

in line 1 together with the HTTP Version. These message codes can be used indicate

the type of response to help browsers react properly. A list of all message codes is

available at [10], but the most relevant groups of codes are the successful responses

with code 2xx and the failed responses with code 4xx. Another important component

for responses containing a DOM structure in form of HTML tags is the header field

Content-type: text/html, as it tells the recipient how to interpret the response and if

this type of content is accepted, which is defined in the Accept header field of the

request.

HTTP/1.1 200
Accept-Ranges: bytes
ETag: W/"80-1512689676768"
Last-Modified: Thu, 01 Dec 2017 23:34:36 GMT
Content-Type: text/html
Content-Length: 80
Date: Thu, 01 Dec 2017 23:35:28 GMT

<html>
<head></head>
<body>
<h1> Hello World! </h1>
</body>
</html>

Figure 7 - Example Reponse for HelloWorld.html

8

3. Dynamic Content
To expand the features of webpages and meet today’s standards of user experience

for web browsing, the concept of the HTTP protocol remains, but is enriched by a

dynamic aspect. This dynamic adaptation of webpages can be achieved either by

scripts running on the client’s side or on the server’s side. Client-side scripts are

executed by the web browser of the user and are executed after the client receives

the response from the server. The most used scripting language on web pages is

JavaScript but there are many other scripts that can be used instead. In general,

client-side scripting is used to change interfaces or show and hide information to

make the site more interactive. Even though performance may be better for client-

side scripts, as you don’t have a delay from the server for waiting for the response, it

is not suitable for loading user specific content. Scripts like JavaScript can be

adjusted by the user, since they are executed on the client’s browser, which makes it

not applicable for sensitive data. Also, user specific content is normally stored in

databases, which are only accessible from the server.

Server-side scripts, on the other hand, contain all techniques that are used to adapt

the response on the server, depending on the request and the users. They are

mainly used to generate content or handle user sessions to keep track of their path

between the pages. Suitable languages for this are all scripts and programs that are

available on the server. Most common languages in this area are C#, Go, Java,

Node.js (JavaScript), Python, PHP or Ruby [11], but also other languages like Rexx

can be used to perform the core functions that are expected from a web server. One

of the main advantages of server-side program execution is the independence from

the client’s system. The web programmer must not be concerned what script

languages are available for the client, but rather delivers only the resulting response

of the processed request. This behavior also allows the source code of the web

application to be invisible for the user, which prevents others to copy your code.

Furthermore, many use cases require the execution of server-side scripts or

programs, since only the server is connected with the underlying database, that is

storing all user information. This information could be user data, recent purchases in

case of a web shop or even sensitive payment information of users, which should be

protected especially well and far away from the clients.

9

3.1. Introduction to Tomcat
While there are various web server applications available and in use on the world

wide web, they differ in operating system support, openness, security issues, support

for dynamic content, user friendliness and other specifications. A list of available

Webservers and their support can be found at [12]. Apache Tomcat is an open-

source Webserver and container for Java Servlets and Java Server Pages (JSP) and

is completely written in Java. Since the software is written in JAVA and runs on a

Java Virtual Machine (JVM), it is compatible with every operating system that is

supported by Java. Additionally, since BSF4ooRexx, the Bean Scripting Framework

for Open Object Rexx [13], is also written in Java, it can be used to set up a web

server using the script language Open Object Rexx [14]. In general, Tomcat can be

used for two purposes. Primarily, it is in charge of creating dynamic content for the

user, which may be achieved with Java Servlets, Java Server Pages or Common

Gateway Interfaces (CGIs). Secondarily, it also provides the functionality to act as a

general-purpose HTTP server, to handle requests and responses, which are

discussed in Section 2. Another benefit of Apache Tomcat is the free use and the

available source code of the software.

3.1.1. History
Tomcat was created by the Sun Microsoft software architect, James Duncan

Davidson, as a Servlet reference implementation in 1998. With his help, the project

was introduced to the open source community in 1999 with version 3.0 [15] Since

then, the project was developed further, by adding new features and fixing issues

and is at the time of creation of this paper at the stable version of 8.5 (This version

will also be used in nutshell examples of this paper).

3.1.2. Components
Due to the object-oriented architecture of the Tomcat, the software can be split into

various components. The relationship of the components is illustrated in Figure 8.

While the single components are explained as follows, it is important to highlight the

relevance of the Catalina Engine, since it is the core of Tomcat and provides the

actual implementation of the most recent Servlet specification of the Java Servlet

API.

10

Figure 8 - Architecture of Tomcat Server [16]

• The Server – can exist only once and encapsulates the whole application in a

separate JVM to prevent a crash of the whole system, if Tomcat crashes.

• The Service – holds one or more Connectors to establish a connection with

one or more web ports.

• The Connector – is responsible for the HTTP request and response handling

as discussed in section 2.

• The Engine – is the core of the Servlet container and manages the Servlets.

This is where the computation of dynamic content happens.

• The Host – may introduce virtual hosts for different web applications, if it is

needed.

• The Context – is the smallest component in the Tomcat architecture and

contains a single web application. This is the place to configure specific web

applications in regards of security. Each host can have multiple contexts and

therefore also multiple web applications.

11

In addition to this architecture overview, there are many other libraries involved in the

Tomcat software. Worth mentioning, is the Jasper 2 JSP Engine, which implements

the specification of Java Server Pages. This engine allows to write code directly

between HTML Tags, which results in less needed code, but will not be discussed in

this paper.

3.1.3. File Structure
The system variable $CATALINA_HOME refers to the installation directory of Tomcat

(has to be set) and contains by default the following directories:

Directory Contents

/bin Contains the startup and shutdown scripts for both Windows and

Linux including essential Jar files for startup.

/conf Contains the main configuration files for Tomcat, such as server.xml,

defining the components discussed in section 3.1.2 and the global

web.xml, which can be overwritten for each web application.

/lib Contains the Tomcat Java Archive (jar) files, shared across all

Tomcat components. All web applications deployed to Tomcat can

access the libraries stored here. This includes the Servlet API and

JSP API libraries.

/logs Log files for debugging.

/temp Temporary system files.

/webapps The directory where all web applications are deployed, and where

you place your WAR file when it is ready for deployment.

/work Tomcat’s working directory where Tomcat places all Servlets that are

generated from JSPs. If you want to see exactly how a particular JSP

is interpreted, look in this directory.

Table 1 - Directory Structure of Tomcat

The most relevant directory is “/webapps”, since it is home of every web application.

To give an example, the directory $CATALINA_HOME/webapps/examples describes

12

the web application that is reached with the URL localhost:8080/examples from the

host system. The structure of a single web application is also predefined and should

contain the following files and directories [17]:

File/Directory Contents

index.html This file is shown by default if no specific file name is given in

the URL

/WEB-INF/web.xml This file is the Web Application Deployment Descriptor of the

web application, which defines URL Mappings, Servlets and

other components that define your web application.

/WEB-INF/lib/ Additional .jar files that are required for your web application

and are not part of the global $CATATLINA_HOME/lib folder

can be added here.

/WEB-INF/classes Since Servlets are Java classes, this is the directory where

Tomcat will look for the classes to execute them at runtime.

/META-

INF/MANIFEST.MF

A short description of your web Application, in a way that is

common for every .JAR file.

/META-

INF/context.xml

Tomcat Context Descriptor can be used to alter detailed

configuration of the specified web application. If this file does

not exist, the global Context Descriptor at

$CATALINA_HOME/conf/context.xml will be used.

Table 2- File structure of a web application

Even though not these directories are necessary for all web applications, this

structure is specified be the Web ARchive (WAR) format.

13

3.2. CGI
3.2.1. What is a Common Gateway Interface?
Common Gateway is a standard for web servers that defines the exchange of data

between a web server and additional, external scripts and programs. These so-called

CGI scripts are executed by the web server for every request from a client and

generate and return a HTML response depending on received data. CGI scripts

typically interact with databases to retrieve more information about the user that sent

the request, but since this is just one of many ways to use CGI scripts, we focus on

the interface between server and script/program. As it is illustrated in Figure 9, a CGI

script is called when the user submits a form in his web browser to the server. The

server then passes the information to the CGI script and executes it. The created

response is passed back to the server and then forwarded to the user.

Figure 9 - Dataflow for CGIs [18]

The passing of data from the web server to the CGI happens with the help of

environment variables. They are a series of hidden values that are sent to every

executed CGI program by the web server and contain information about the

requests. [19] gives an overview and explanation of most CGI variables, but a closer

look at the RFC for CGI [20] is advisable, since the list is not exhaustive. To get

acquainted with CGI programming and get information from forms, the most

important variables are QUERY_STRING and CONTENT_LENGTH. These variables

can be used by the CGI script read form data and create dynamic content. In addition

to the environment variables, the CGI script is also able to read the STDIN stream,

which can be used to pass data.

The dataflow from the CGI script back to the web server is established by redirecting

the STDOUT stream of the program to the response writer of the web server. This

14

basically means, that it is possible to use familiar output methods to write the HTML

response. A PHP Script would use “ECHO(x)”, perl would use “print(x)” and Rexx

would use “SAY x” to write directly to the response.

As you can see in the last example of output functions and the definition of a CGI as

a standard, one of the most relevant benefits of this technique is the possibility to use

every scripting or programming language you are familiar with, as long as it has

access to the STDIN and STDOUT stream to read request information and write to

the response. This may be one reason for the wide use of CGI, as there is no need to

learn new script or programming languages to start with dynamic web development,

resulting in faster and easier realization of projects.

Opposed to client-side scripting, CGIs are only dependent on the operating system

and available interpreters and compilers of the web server, and do not rely on the

client’s system. Additionally, it is possible to exchange the web server software from

Tomcat to Apache HTTP Server or Oracle HTTP Server, since they all use the same

interface to communicate with the executed script. See [12] for available Webserver

software that supports CGIs.

Figure 10 - Performance of CGIs [21]

As you can see in the list of web servers above, there are different types of CGIs, like

Simple Common Gateway Interface (SCGI) or Fast Common Gateway Interface

(FCGI) etc. These are variations that aim to improve the performance of regular CGIs

by reducing the overhead of single requests. This points out one of the

disadvantages of CGI programming, as every request leads to the creation of a new

process on the server, which can often consume more memory and time as the

15

execution of the script itself (see Figure 10). High user traffic can easily overwhelm

the web server leading to a crash of the system or simply higher response rates.

Even though the improved variations of CGIs perform better under high stress,

alternative methods, such as Servlets can be favorable.

Another issue that should be concerned with the use of CGIs is the security aspect. It

is important to understand, that the web server executes all scripts he is told to even

if they include malicious code to delete data or give away sensitive information.

Therefore, usually a specified folder – by default “/cgi-bin” – is defined and granted

explicit rights to execute programs on the web server, so that the web server

software is not even able to execute other resources on the system. Nevertheless, it

is important, to sanitize user inputs of forms to prevent unexpected code that is

transmitted by a user (Hacker) to be executed.

3.2.2. Execution of Rexx Scripts in Tomcat
An instruction on how to configure Tomcat to enable CGI support can be found in the

documentation of the recent Tomcat server [22].

Basically, the installation requires 4 steps:

1. Create a new web application

2. Set up Servlet and Servlet mapping (web.xml)

3. Allow Tomcat to execute external scripts (context.xml)

4. Write script (+ html file with form)

1. To create a web application, called CGIRexx we simply create a new folder in the

directory $CATALINA_HOME/webapps and add the folder META-INF and WEB-INF.

Additionally, we add the folder CGI in the WEB-INF directory, which is the home

directory of all executable scripts. The expanded webapps directory should look like

Figure 11. Any request sent to yourIP:8080/CGIRexx will now look for HTML files in

this folder. If your browser and your web server are on the same device, yourIP can

be replaced with localhost.

16

Figure 11 - Web Application Structure for CGI [21] - adapted

2. In the next step we configure the web application and create the file web.xml in the

directory WEB-INF. To get the basic structure of an web.xml file you can look at

$CATALINA_HOME/conf/web.xml, which is the default configuration file, if no

application specific file can be found. The relevant information of this file can be

found in the tags <Servlet> and <Servlet-mapping>. To understand the file structure,

it is important to understand in which order Tomcat processes this information. When

a resource X is requested on the web server for the web application CGIRexx by

sending a request to localhost:8080/CGIRexx/X, the web server is looking for a

defined Servlet mapping and if none was found, looks for a X directly. In our case, we

define the <url-pattern> /cgi-bin/* to load the <Servlet> called cgi. This url-pattern is

very common in CGI programming, but can be changed, if necessary. To tell Tomcat

what the Servlet called cgi is, we must define the tag <Servlet> and set the name to

cgi. The <Servlet-class> is important because it directs the request to the built-in

CGIServlet, which is part of the Catalina.jar file in $CATALINA_HOME/lib. Now

Tomcat can match the URL to the right class to handle the Common Gateway

Interface. We can further specify the Servlet by adding <init-param> parameters.

• cgiPathPrefix defines the prefix for the executed script. The recommended

value is WEB-INF/cgi, since WEB-INF is not accessible for clients.

17

• Executable defines which executable is used to execute the script file. This

can be perl, rexx or every other program that is known to the PATH of the

system. Even .exe files can be executed if executable is set to no value.

Figure 12 - web.xml of CGIRexx web application

After setting up this file, the URL localhost:8080/CGIRexx/cgi-bin/helloWorld.rex

results in the execution of the bash command illustrated in Figure 13.

Figure 13 - CGI command

3. Since Tomcat’s security configurations prohibit the execution of external programs

by default, we have to allow it for this specific web application/context. To do so, a

context.xml file has to be placed in the directory CGIRexx/META-INF with the

<Context privileged=”true”> attribute set. See Figure 14:

18

Figure 14 - CGI context.xml

An example of the context.xml file can be found at $CATALINA_HOME/conf. It is not

advisable to change the context.xml file directly in the conf directory, since this would

apply additional rights to all web applications on this web server, leading to security

issues.

4. For adding Rexx scripts and html files see Section 3.2.3.

3.2.3. Rexx CGI Nutshell Examples
This section gives some examples on how to use Rexx to process CGI Requests and

how to create responses that are readable for a browser.

19

3.2.3.1. HelloWorld.rex
If everything is set up correctly, the obligatory HelloWorld script illustrated in Figure

15 and 16 should be created and placed in the folder CGIRexx/WEB-INF/CGI with

the name helloWorld.rex.

Figure 15 - Display of helloWorld.rex

Figure 16 - helloWorld.rex

Even though the code is not very long, some parts are essential for every CGI script.

As mentioned in section 3.2.1. every output from STDOUT is redirected to the

response, which enables to simply use Say. The first line defines the MIME Type of

the document and is required by the browser to understand and interpret the HTML

in order to create the appropriate DOM tree. Additionally, the HTTP charset

parameter can be set in the same line, as described in [23]. The empty second line is

also necessary. Interestingly, it is not necessary to define <html>, <head> and

<body> tags in the script, since they are generated automatically if not provided, but

if adaptions to the header are needed, they can simply be added to the script.

20

3.2.3.2. getMethod.rex
This example illustrates how to read parameters from requests using the GET

method. To attach parameters to a request, clients usually use forms, but in the case

of GET parameters the URL could also just be adapted. For that reason, a HTML file

is needed, as it is shown in Figure 17.

Figure 17 - Display of form

The index.html file, which is illustrated at Figure 18, is placed in the root directory of

the web application to be reachable for the client. The URL localhost:8080/CGIRexx

automatically looks for the index.html file, as it is usual with web servers. This

behavior is specified in the web.xml file in Tomcat’s configuration directory defines a

<welcome-file-list> and can be altered.

Figure 18 - index.html with form

The code includes basic HTML tags, but we focus here on the attributes in the

<form> tag. The attribute action defines the recipient of the form-data. In this case a

relative path was used, but absolute paths are also possible. Since the method is set

to “get” a GET request will be sent to the action URL and parameters will be attached

to the URL as described in section 2.2.1. The displayed result with the parameters

21

• username=”User 1234”

• whatToDo=”create”

is shown in Figure 19.

Figure 19 - Display of getMethod.rex

The script only reads and displays parameters but a closer look into the code (Figure

20) is required to understand what is being processed by Rexx. Line 5 and 6 assign

the value of the environment variable QUERY_STRING, which was set by the CGI, to

the local variable QUERY_STRING. Beside QUERY_STRING and

REQUES_METHOD all other environment variables set by the CGI can be accessed

in this way. When looking at the URL in more detail, it is noticeable that the CGI

translates spaces in variables to ‘+’ symbols, which have to be reverse before

parsing the string. This is done in line 8. Additionally, special characters are

transcoded to hexadecimal encoding, but this problem is not handled in this example.

More details to this parsing process can be found at [24]. The following DO block

parses the QUERY_STRING into pairs of names and values and assigns values to

the variables. The remaining script just displays the created variables by writing it to

the response in form of html code.

22

Figure 20 - getMethod.rex

23

3.2.3.3. postMethod.rex
This example is similar to getMethod.rex, but the data is transmitted and received

differently. To send the POST request, we copy the index.html file and name it

postForm.html. Additionally, we change the <form> tag as follows:

<form action="cgi-bin/postMethod.rex" method="post">

We can expand the example postMethod.rex (shown in Figure 21) by adding an if-

else clause, which differentiates the REQUEST_METHOD and creates variables

accordingly.

Figure 21 - postMethod.rex

In case of POST Requests, parameters are attached to the body of the

request, which is automatically directed to the InputStream of the Rexx file. The

important line here is Parse Pull CONTENT_BODY, which saves the complete

input (=body of request) in the variable CONTENT_BODY.

24

3.3. Servlet
3.3.1. Introduction to Servlets
A Servlet, or also called Java Servlet, is a Java class and is embedded into a Servlet

Container. In this case Tomcat or, to be more precise, Catalina is the Servlet

Container that calls the Servlet. As opposed to CGIs, Servlets are part of the Web

Container and are executed inside the Java VM, that is created by Tomcat,

guaranteeing more security. Depending on the version of Tomcat, it supports

different Versions of Servlets [25]. Tomcat 8.5, which is used in this context, accepts

Servlet Version 3.1. In general, Servlets are waiting for requests, execute some code

and finally return a response to the user. Even though this appears to be similar to

CGIs, it is the more advanced approach to create dynamic content on web servers.

Since Servlets are programmed in Java, the benefit from the Java infrastructure. This

results in operating system independence, in improved error handling, which offers

more features than other scripting languages used by CGIs, more security and more

robustness, due to the existence of Java’s garbage collector which reduces memory

leaks etc.

Figure 22 - Performance of Servlets [21]

Unfortunately, the benefits coming from Servlets result in knowledge of Java

programming. This paper presents one way to create a Servlet, that uses Rexx Script

with the support of BSF4ooRexx, but will be discussed in section 3.3.5. with some

nutshell examples.

Another important advantage of Servlets over CGIs is performance. While CGIs

create a new process for every request, with Servlets there is only one process for

25

the whole web container handling all requests and creating new threads. This

reduces overhead immensely and is noticeable with high stress on web servers. See

Figure 22 in contrast to Figure 10 to notice the difference.

3.3.2. Lifecycle and Methods of Servlets
In general, there is only one requirement for a Java class to be considered a Servlet

by Tomcat - the class has to implement the interface javax.Servlet.Servlet. This

means, it must support the methods that are defined by the interface. By looking at

the documentation of this interface [26] , this only requires the implementation of

basic methods but none that are related to HTTP requests. To have access to more

methods, it is advisable to create a class that extends the class

javax.Servlet.HTTPServlet [27], which itself implements the required interface, but

also spits requests into different methods, depending on their used request method.

A typical Servlet makes use of the following methods to handle requests:

• service(HttpServletRequest req, HttpServletResponse resp)

• doGet(HttpServletRequest req, HttpServletResponse resp)

• doPost(HttpServletRequest req, HttpServletResponse resp)

• doPut (HttpServletRequest req, HttpServletResponse resp)

• etc.

The method service() is called for every request and redirects the call to the

corresponding doXXX method. This method should only be overwritten if no

differentiation of methods is needed, otherwise the doXXX methods should be

implemented directly.

The lifecycle of a Servlet can be summarized to three methods (see Figure 23):

• init() – is started after the constructor of the class was called and can be used

to initialize and prepare data, that may be needed for requests.

• service() – is called for every incoming request

• destroy() – is called, once at the end of the life cycle and should be used to

terminate pending processes, close connections and general cleanup

activities.

https://docs.oracle.com/javaee/7/api/javax/servlet/http/HttpServlet.html#service-javax.servlet.http.HttpServletRequest-javax.servlet.http.HttpServletResponse-
https://docs.oracle.com/javaee/7/api/javax/servlet/http/HttpServletRequest.html
https://docs.oracle.com/javaee/7/api/javax/servlet/http/HttpServletResponse.html
https://docs.oracle.com/javaee/7/api/javax/servlet/http/HttpServlet.html#doGet-javax.servlet.http.HttpServletRequest-javax.servlet.http.HttpServletResponse-
https://docs.oracle.com/javaee/7/api/javax/servlet/http/HttpServletRequest.html
https://docs.oracle.com/javaee/7/api/javax/servlet/http/HttpServletResponse.html
https://docs.oracle.com/javaee/7/api/javax/servlet/http/HttpServlet.html#doPost-javax.servlet.http.HttpServletRequest-javax.servlet.http.HttpServletResponse-
https://docs.oracle.com/javaee/7/api/javax/servlet/http/HttpServletRequest.html
https://docs.oracle.com/javaee/7/api/javax/servlet/http/HttpServletResponse.html
https://docs.oracle.com/javaee/7/api/javax/servlet/http/HttpServletRequest.html
https://docs.oracle.com/javaee/7/api/javax/servlet/http/HttpServletResponse.html

26

Figure 23 - Life Cycle of Servlets [28]

3.3.3. Configuration of Servlets
As already mentioned in Section 3.2.2., the main configuration of Servlets happens in

the web.xml file, located in the WEB-INF directory of the web application. This file

can define various Servlets, that are executed with the start of the Tomcat service.

The Servlet mapping must be set accordingly to tell the web server which Servlet is

responsible for a request and where the class file of the Servlet is located.

Figure 24 shows parts of an web.xml example. Tomcat expects a fully qualified class

name of the Servlet.class file and scans the directory /yourWebApp/WEB-

INF/classes. The directory structure of a web application with Servlets should be

composed as illustrated in Figure 25.

Figure 24 - Servlet mapping and class reference

27

As you can see, the file structure is similar to the example of CGIs, since CGI also

make use of Servlets, but we have an additional directory for classes. If additional

libraries are required for Tomcat to run a specific Servlet, they can either be added to

the lib folder in WEB-INF of your web application or in the $CATALINA_HOME/lib

folder, to make the library accessible to all web applications of the server.

Figure 25 - directory structure for Servlets [21]

28

3.3.4. Java Servlet Nutshell Examples
This section demonstrates basic examples for Servlets and uses some code from the

examples provided by Tomcat. Before creating the first Servlet, it is essential to have

set up the environment of your system correctly to compile the Servlets.

1. Install Java SDK 7+ (use the same processor architecture as on other related

installations, such as ooRexx and BSF4ooRexx)

2. Set up or edit the following system variables, if they are not already set correctly:

Variable Value Reason

JAVA_HOME C:\Program Files\Java\jdk1.7.x_xxx To reference java
directory

PATH %JAVA_HOME%\bin To find javac.exe

CATALINA_HOME C:\Program Files\Apache Software
Foundation\Tomcat 8.5

(optional) if not already
done with TomCat
installation

CLASSPATH %CATALINA_HOME%\lib\Servlet-
api.jar

To find imports when
compiling Servlet

CLASSPATH %JAVA_HOME%\lib

3. Compile the HelloWorldServlet.java file with the command:

3.3.4.1. HelloWorldExample.java
Since the file HelloWorldServlet.java does not exist yet, we have to create and save it

in the WEB-INF/classes directory. Figure 26 illustrates the minimal required code for

a Servlet, that responds with “Hello World!” to every incoming request. What we can

see in line 9, is that the class extends the HttpServlet class and therefore qualifies for

a Servlet. In line 12 the method doGet is overwritten with the arguments request and

response. To create the dynamic content, the request variable can be used to

receive information and the response variable can be used to write a response. In

this example, the request is neglected, but the response is modified. Line 15 and 16

set the content type of the response, analogous to the CGI example. To write directly

29

to the body of the response, which represents the content of the displayed website, it

is necessary to save the PrintWriter object of the response, which is done in line 17.

This object can be used to write a String to the response (see line 19).

Figure 26 - HelloWorldServlet.java

Now the file has to be compiled with the java compiler to create a class-file. To do so,

execute the command as described in section 3.3.4. Additionally, the web.xml file of

the web application has to be configured, as described in Figure 24. If you use the

<url-pattern> /helloWorld and the <Servlet-class> HelloWorldServlet, assuming that

your application is called ServletExamples, you can send a request to the Servlet

using the URL localhost:8080/ServletExamples/helloWorld.

30

3.3.4.2. RequestHeaderServlet.java
The next example is reading information from the request object. To be more

specific, all Header Fields of the request are queried and returned to the response in

HTML format.

Figure 27 - Display of requestHeaderServlet.java

To display all available Header Fields, we have to call request.getHeaderNames().

Consequently, all values can be read by iterating over this generic list/enumeration

and printing the formatted name and value to the response stream.

Figure 28 - requestHeaderServlet.java

31

3.3.5. Rexx Servlet Nutshell Examples
Since Java programming can be quite challenging, the following examples propose a

method to use a predefined Java Servlet that executes a rexx script, which handles

the request and creates the response.

The connection of Java Servlets with rexx scripts requires the following additional

installed software (same architecture as JAVA JDK):

• Open Object Rexx (ooRexx) [14]

• Bean Scripting Framework for Open Object Rexx (BSF4ooRexx) [13]

The idea of this bridge to Rexx is to create a Java Servlet that reads a Rexx file and

executes it with the Scripting Engine of the BSF Manager. Both these classes are

part of the BSF4ooRexx .jar file that comes with the installation of the framework. The

scripting engine allows to pass the request object (which is a Java object) to the

Rexx file and allows to handle the request with Rexx syntax. This syntax then creates

a response String in form of HTML tags and returns it to the Servlet. The Servlet

again uses this returned object to write the HTTP response.

Even though this initial process might appear to be complex, this bridge has many

advantages. First, requests can be handled with the easy readable Rexx syntax and

Java programming can be prevented in a large part. Second, once the Servlet is up

and running, the script takes effect immediately after alterations occurred. This is not

the case for Servlets, as they have to be recompiled. Additionally, Tomcat has to

reload the application for every alteration.

32

3.3.5.1. RexxServlet.java

Figure 29 - RexxServlet.java

As described above, the key to this approach is the RexxServlet class. To use this

class, it is necessary to fulfill two requirements:

1. Make sure your compiler can find the package org.apache.bsf. This package

is part of the bsf4ooRexx-xxxxxx.jar file in the installation directory of the bean

scripting framework (probably C:\Program Files\BSF4ooRexx). To inform the

compiler about the location of this file, it is necessary to be added to the

33

classPath. This should be automatically done with the installation of

bsf4ooRexx, but checking it is important, since it is critical for the Compiler.

2. Since Tomcat needs to have access to the library, it is also necessary to copy

the bsf4ooRexx-xxxxxx.jar file into the directory /WEB-INF/lib of your web

application. The directory $CATALINA_HOME/lib would also be okay, but it

would provide the library to all web applications which is probably not wanted.

When these requirements are fulfilled, the file illustrated in Figure 29 can be compiled

in the familiar manner.

The RexxServlet class is built similar to the JavaServlets from section 3.3.4. but is

extended with some additional code. In addition to the implementation of the doGet

method, the methods init() and destroy() are overwritten, which are part of the Servlet

life cycle and are called after starting the web application and before shutting it down.

The init() method creates a BSFManager object, which has access to methods of the

Bean Scripting Framework for Open Object Rexx. Line 18 loads a Scripting Engine

by the name rexx, which later will be used to execute the Rexx code. Line 21 and 22

are only executed if an error occurs in the lines above and terminate the Scripting

Engine to prevent dead processes or open data streams, which is the same

procedure as in destroy(). The doGet() method is extended by line 33-50 to support

Rexx files. First, a vector is created and the request it added. Next, the absolute path

of the file doGet.rex in the /WEB-INF directory of the web application is generated

(line 38) and the file is parsed into a String (line 39). The filename can be changed,

but must fit to the name of the Rexx script. For security reasons it is important to

locate the Rexx script inside the WEB-INF folder, since it prevents clients to access it

directly. Line 42 calls the apply() method of the Script Engine and passes the Rexx

Code with the argument vector containing the request object to interpret it.

Consequently, the return value of this method is saved to the object variable

rexResponse. Since a String is being returned in the Rexx script, the Servlet can

simply print this value to the response body, which is displayed in the browser. If any

exceptions occur in the Java program or while interpreting the Rexx code, an

exception is thrown and printed to the response instead (line 47). This behavior is

good for debugging, but should be changed for running systems. The bsf4ooRex

provides more examples and applications of interaction with Rexx from Java in the

directory /samples/java of the bsf4ooRexx installation.

34

3.3.5.2. doGet.rex (HelloWorld)
As usual, the first program to test a new framework and syntax displays “Hello

World!”. The expected output of our Rexx script is shown in Figure 30.

Figure 30 - Display of doGet.rex (Hello World)

Figure 31 - doGet.rex (Hello World)

The script in Figure 31, which has to be located in the WEB-INF directory, is only

concerned with writing a String for the response, but shows the working connection

between the RexxServlet class and the script.

35

3.3.5.3. doGet.rex (RequestHeader)
In this example, the request that is passed to the Rexx Scripting Engine is used to

read information about the request header. Any other information of the request can

be extracted in a similar way. This example delivers comparable results to the Java

example in section 3.3.4.2.

To get access to the request, the passed argument vector can be used to assign the

Java object to a variable. In fact, the transmitted object is of type

org.apache.catalina.connector.RequestFacade since is it handled by

Tomcat. Additionally, the request headers are scanned and appended to the variable

allHeaderFields, which later is added to outputString and displayed.

Figure 32 - doGet.rex (Request Header)

Even though these examples only provide a brief insight into the capabilities of web

servers, the connection to Rexx is established and java examples and tutorials can

be adapted to Rexx. This can include sending form data, reading cookies from clients

or handling sessions.

36

4. Conclusion
After presenting two available techniques to create dynamic web content on the

Servlet container and web server Tomcat, both have advantages and disadvantages.

While CGIs excel at the ease of use and the acceptance of already known scripting

languages, it has issues in various areas compared to Servlets. The most severe

problems appear to be security concerned, because of the execution of external

programs and bypassing of Java’s security mechanism, and performance concerned,

due to the creation of unnecessary overhead on every request by starting separate

processes. An additional downside of CGIs is the dependency on the operating

system, since the according interpreters and compilers have to be compatible with

the web server it is running on. The implementation of Servlets, on the other hand,

can be problematic for users without any experience in Java or Compilers, which

might scare off some web developers. This issue can be reduced by using the

presented method of invoking Rex Scripts from Java Servlets.

37

5. References

[1] Wikipedia, "Web server," [Online]. Available:

https://en.wikipedia.org/w/index.php?title=Web_server&oldid=810425625.

[Accessed 14 12 2017].

[2] K. László, "Application Development in Web Mapping," 2010. [Online].

Available:

http://www.tankonyvtar.hu/en/tartalom/tamop425/0027_ADW1/ch01s02.html.

[Accessed 13 12 2017].

[3] IBM, "The components of a URL," [Online]. Available:

https://www.ibm.com/support/knowledgecenter/en/SSGMCP_5.2.0/com.ibm.cic

s.ts.internet.doc/topics/dfhtl_uricomp.html. [Accessed 14 12 2017].

[4] Wikipedia, "Hypertext Transfer Protocol," [Online]. Available:

https://en.wikipedia.org/w/index.php?title=Hypertext_Transfer_Protocol&oldid=

813782185. [Accessed 14 12 2017].

[5] IETF, "RFC 7231 - Hypertext Transfer Protocol (HTTP/1.1): Semantics and

Content," [Online]. Available: https://tools.ietf.org/html/rfc7231. [Accessed 13

12 2017].

[6] W3Schools, "HTML Tutorial," [Online]. Available:

https://www.w3schools.com/html. [Accessed 13 12 2017].

[7] J. December and M. Ginsburg, "Writing CGI Scripts," [Online]. Available:

http://lnr.irb.hr/ebooks/1575211777/ch30.htm#ASimpleREXXCGIScript.

[Accessed 13 12 2012].

[8] IETF, "RFC 3986 - Uniform Resource Identifier (URI): Generic Syntax,"

[Online]. Available: https://tools.ietf.org/html/rfc3986 . [Accessed 13 12 2017].

[9] w3school, "HTTP Methods: Get vs. Post," [Online]. Available:

38

https://www.w3schools.com/tags/ref_httpmethods.asp. [Accessed 13 12 2017].

[10] w3school, "HTTP Status Messages," [Online]. Available:

https://www.w3schools.com/tags/ref_httpmessages.asp. [Accessed 13 12

2017].

[11] CodeSchool, "Server-side Languages," [Online]. Available:

https://www.codeschool.com/beginners-guide-to-web-development/server-side-

languages. [Accessed 13 12 2017].

[12] Wikipedia, "Comparison of Web server Software - Wikipedia," [Online].

Available:

https://en.wikipedia.org/w/index.php?title=Comparison_of_web_server_softwar

e&oldid=813411213. [Accessed 14 12 2017].

[13] R. G. Flatscher et Al., "Bean Scripting Framework for Open Object Rexx,"

[Online]. Available: https://sourceforge.net/projects/bsf4oorexx/. [Accessed 13

12 2017].

[14] R. G. Flatscher et. Al., "Open Object Rexx," [Online]. Available:

http://www.oorexx.org/. [Accessed 13 12 2017].

[15] T. Khare, Apache Tomcat 7 Essentials, Packt Publishing Ltd, 2012.

[16] A. Vukotic and J. Goodwill, Apache Tomcat 7, Berkeley, Calif.: Apress, 2011.

[17] Apache, "Application Develope'r Guide - Deployment," [Online]. Available:

http://tomcat.apache.org/tomcat-8.5-doc/appdev/deployment.html. [Accessed

13 12 2017].

[18] S. Guelich, S. Gundavaram and G. Birznieks, CGI programming with Perl, vol.

29, Beijing; Cambridge, Massachusetts: O'Reilly, 2012.

[19] J. Hamilton, "CGI Programming 101," [Online]. Available:

http://www.cgi101.com/book/ch3/text.html. [Accessed 13 12 2017].

39

[20] IETF, "RFC 3875 - The Common Gateway Interface (CGI) Version 1.1," 10

2004. [Online]. Available: http://www.ietf.org/rfc/rfc3875. [Accessed 13 12

2017].

[21] javatpoint, "Learn Servlet Tutorial," [Online]. Available:

https://www.javatpoint.com/servlet-tutorial. [Accessed 13 12 2017].

[22] Apache, "Apache Tomcat 8 - CGI How To," [Online]. Available:

http://tomcat.apache.org/tomcat-8.5-doc/cgi-howto.html. [Accessed 13 12

2017].

[23] W3C, "Einstellung des HTTP-charset-Parameters," [Online]. Available:

https://www.w3.org/International/articles/http-charset/index.de. [Accessed 13

12 2017].

[24] R. L. A. Cottrell, Web Techniques Magazine, vol. 1, no. 2, 1996.

[25] Wikipedia, "Java Servlets," [Online]. Available:

https://en.wikipedia.org/w/index.php?title=Java_servlet&oldid=811382076.

[Accessed 13 12 2017].

[26] Oracle, "Servlet Documentation," [Online]. Available:

https://docs.oracle.com/javaee/7/api/javax/servlet/Servlet.html. [Accessed 13

12 2017].

[27] Oracle, "Java Documentation," [Online]. Available:

https://docs.oracle.com/javaee/7/api/javax/servlet/http/HttpServlet.html.

[Accessed 13 12 2017].

[28] Tutorialspoint, "Servlets Life Cycle," [Online]. Available:

https://www.tutorialspoint.com/servlets/servlets-life-cycle.htm. [Accessed 13 12

2017].

[29] IETF, "RFC2616," [Online]. Available:

https://www.w3.org/Protocols/rfc2616/rfc2616-sec5.html. [Accessed 13 12

2017].

40

[30] Tuturialspoint, "Servlet Life Cycle," [Online]. Available:

https://www.tutorialspoint.com/Servlets/Servlets-life-cycle.htm. [Accessed 13

12 2017].

41

Appendix

a. Tomcat Installation/Configuration Guide for
Windows

This guide gives a step-by-step instruction on how to install Apache Tomcat on a

Windows operating system. A prerequisite for this installation is an installed JRE in a

Version suitable to the Tomcat Version.

Go to the website of Tomcat and download the latest version.

URL: https://tomcat.apache.org/download-80.cgi

Choose 32-bit/64-bit Windows Service Installer and execute the downloaded .exe file

on your system.

42

Press Next to start the installation.

43

Read terms and Agree, if you want to use the software.

44

Select the components you want to install. You can leave the default option or check

“Examples” to create web application with various examples for Servlets and JSP.

45

In this window you can define on which ports you want to listen for connections. The

most important port number is the HTTP/1.1 Connector Port which is 8080 by default.

This is the port that is used to send HTTP Requests to the websever, hence

localhost:8080.

If you want to use the mangager application of Tomcat which allows you to restart

web applications and configure settings in the webbrowser, add your credentials in

the textfields “User Name” and “Password”. These can be set later aswell, but more

complicated.

46

Choose the location of your Java Runtime Environment to inform Tomcat about the

location of the JVM library which is needed to start. This may be as illustrated in the

figure above, or inside your JDK directory, such as: JDK 1.x.x_xxx/JRE.

47

Choose the destination folder of your installation. This folder path is set to the

System Variable $CATALINA_HOME. If want to follow the instructions of this paper’s

examples, set the variable accordingly.

48

Select “Run Apache Tomcat” and click finish, to start the Tomcat Manager process.

49

The Tomcat Manager should now be running and as indicated by a symbol in the

task bar. A green play button indicates a running Tomcat Service, listening for

requests, wheras a red square indicates a stopped status. To change the status or

other settings, this can be done in the property windows when double clicking it.

50

The successful installation can be tested by typing the URL: localhost:8080. This will

reveal the ROOT web application of the server, which provides links to informative

pages about Examples, Documentation, but also lets you manage servlets. The

Manager App can be visited from here using the credentials defined during the

installation process.

	1. Introduction
	2. Static Content
	2.1. The Route of an URL
	2.2. Hypertext Transfer Protocol (HTTP)
	2.2.1. Request
	2.2.2. Response

	3. Dynamic Content
	3.1. Introduction to Tomcat
	3.1.1. History
	3.1.2. Components
	3.1.3. File Structure

	3.2. CGI
	3.2.1. What is a Common Gateway Interface?
	3.2.2. Execution of Rexx Scripts in Tomcat
	3.2.3. Rexx CGI Nutshell Examples
	3.2.3.1. HelloWorld.rex
	3.2.3.2. getMethod.rex
	3.2.3.3. postMethod.rex

	3.3. Servlet
	3.3.1. Introduction to Servlets
	3.3.2. Lifecycle and Methods of Servlets
	3.3.3. Configuration of Servlets
	3.3.4. Java Servlet Nutshell Examples
	3.3.4.1. HelloWorldExample.java
	3.3.4.2. RequestHeaderServlet.java

	3.3.5. Rexx Servlet Nutshell Examples
	3.3.5.1. RexxServlet.java
	3.3.5.2. doGet.rex (HelloWorld)
	3.3.5.3. doGet.rex (RequestHeader)

	4. Conclusion
	5. References
	Appendix
	a. Tomcat Installation/Configuration Guide for Windows

