

Thomas Dabernig, h01451744

ao. Univ. Prof. Mag. Dr. Rony G. Flatscher

4167 – Seminar aus BIS

 SS 2020

ooRexx 5.0 Beta

WIRTSCHAFTSUNIVERSITÄT WIEN

Vienna University of Economics and Business

New Features and Nutshell Examples

Institute for Information Systems & Society, Building D2, Entrance C

Welthandelsplatz 1, 1020 Vienna, Austria

i

Abstract

The scripting language ooRexx is an easy to learn human-oriented programming language.

Finally, in 2018 the most recent ooRexx 5.0 Beta version released. The new version offers

several new features that provide the user with a number of benefits. The new features regard

notations, directives, keywords, classes and built-in-functions. The benefits include improved

functionality and performance.

ii

Table of contents

1 Introduction ... 1

2 Overview ... 2

2.1 The Language “ooRexx” ... 2

2.2 History ... 3

2.3 Changes “ooRexx 5.0beta” .. 3

2.4 Source Control ... 4

3 Notations ... 5

3.1 Array Notation Term ... 5

3.2 Namespaces ... 6

3.3 Variable Reference Notation Term .. 7

4 Directives .. 8

4.1 ::ANNOTATION ... 8

4.2 ::ATTRIBUTE ... 9

4.3 ::CLASS ... 9

4.4 ::CONSTANT .. 10

4.5 ::OPTIONS .. 10

4.6 ::RESOURCE .. 10

5 Keyword Instructions .. 12

5.1 ADDRESS ... 12

5.2 “DO” Keyword Instruction .. 12

5.3 SELECT CASE ... 14

5.4 USE LOCAL ... 15

6 Classes ... 17

6.1 AlarmNotification .. 17

6.2 EventSemaphore .. 18

6.3 Json .. 19

6.4 MessageNotification .. 19

6.5 MutexSemaphore ... 20

6.6 RexxInfo .. 21

6.7 StringTable .. 22

6.8 Ticker ... 23

6.9 Variable Reference .. 24

6.10 Validate .. 25

7 Other Changes ... 26

iii

7.1 Built-in-functions ... 26

7.1.1 CONDITION() ... 26

7.1.2 DATATYPE() .. 27

7.1.3 DATE() ... 27

7.1.4 XRANGE() ... 28

7.2 Rexxutil ... 28

7.2.1 SysFormatMessage ... 29

7.2.2 SysGetLongPathName ... 29

8 Conclusion .. 30

References .. 31

1

1 Introduction

The scripting language ooRexx is an easy to learn human-oriented programming language.

Although its first version goes back to the early days of programming and the language is past

its most popular days, it is still constantly reworked and improved.

The objectives of this paper are to present the most important features of the most recent ooRexx

5.0 beta version. The central focus lies on illustrating the changes and additions, which are.

briefly described. The features will be highlighted to give the reader a basic understanding.

Additionally, a nutshell example is given to ease the understanding.

The paper consists of eight main chapters

Following the introduction, the second chapter provides general background information,

including a brief overview and history of the language. Furthermore, the research method will

be described, and it will be explained how changes and new features are documented. Each of

the following chapters outlines one of the major concepts in the language and illustrates the

changes implemented in the new version. The third chapter aims to highlight changes

concerning the notation, the general writing rules and syntax of the language. In the fourth

chapter directive instructions will be outlined. The following chapter is about keywords that are

reserved words instructing the interpreter to execute certain commands. The language ooRexx

is object-based, one of the key principles to implement the object-based system is classes and

methods. These topics will be reviewed in the fifth chapter. The last chapter investigates several

other changes. This includes built-in-functions and Rexx utility.

My research is mainly based on internet research, research publications and the ooRexx

Documentation. Internet research includes Source Forge to get a first impression and general

ideas and it also informs about the reason why the feature was implemented. Further internet

research compromises various other articles and source code files. Research publications and

the ooRexx Documentation are a good anchor point for general explanation of new features and

they present nutshell examples, which makes it easy to get familiar with the topic.

2

2 Overview

2.1 The Language “ooRexx”

Open Object Rexx is a high-level message-based programming language. High level refers to

the language being human-oriented with a very simple syntax. In consequence, the language is

very easy to learn. It is one of the main design points of the Rexx language. Most instructions

are in common English, in contrast to other languages like Java. There are several more issues

that built upon the concept of human orientation.1

Firstly, it is case-insensitive, which makes it less prone to human error. Furthermore, variables

need not to be declared and the language is kept intentionally small. As a result, the

documentation is shorter, and the language is faster to learn. It is an interpreted language. In

other words, it does not need to be compiled to be executed. The smaller overhead results in a

faster run speed, reducing development time significantly. 2

The message-based concept was taken over from Smalltalk. To send a message, the tilde

character (~) is used and once received by the object, a method which has the same name as the

message will be executed. In addition, arguments for the message can be given in parenthesis.3

As already indicated, ooRexx is object-oriented. General concepts of object-oriented

programming include objects, classes, methods, modularity, abstraction and inheritance. There

are several advantages associated with object-oriented programming scalability, adaptability

and reuse of code blocks, which results in faster development times.4

ooRexx 5 offers a wide variety of in-built-functions and methods. One of the languages’ strong

points is its very good handling with strings. It is free and open source with a public source

code. The Rexx Language Association manages its development and spread. ooRexx nearly

runs on every system including Linux, Solaris and Windows. All these characteristics make it

the perfect scripting language and macro language.5

The interface to system utilities and make the language very versatile. As a result, ooRexx is

the perfect command programming language. In addition,

1 (Cowlishaw, 1987, p. 331)
2 (Cowlishaw, 1987, pp. 331-333) (Flatscher & Müller, 2019)
3 (Flatscher & Müller, 2019, p. 2)
4 (About RexxLA, 2020) (Object-oriented Programming Wikipedia, 2020)
5 (About RexxLA, 2020) (Rexx Blog, 2020)

3

the quality of its character-manipulation designs it to be a good macro language.6 (mike)

Furthermore, new functions and features can be added over modules. One example for this is

BSF4ooRexx.7

“BSF4ooRexx, the "Bean Scripting Framework for ooRexx", is a Java bridge for ooRexx,

allowing ooRexx to interact with Java classes and Java objects, as if they were ooRexx classes

and ooRexx objects by requiring the supplied ooRexx package BSF.CLS.”8

2.2 History

Mike Cowlishaw developed the Rexx Restructured Extended Executor language to replace exec

and exec-2 for IBM Mainframes. Rexx was later adopted for the desktop operating system by

IBM. Due to object-oriented influence foremost by Smalltalk, an object-oriented Rexx was

created and released at the end of the 1990s. After the Rexx Language Association had received

the source code, ooRexx 3.0 was released in 2004. It became open source. In 2009 ooRexx 4.0

was made public. The kernel was rewritten, and a new native interface was implemented. In

2010 BSF4ooRexx was released. It bridges the gap between Javan and ooRexx, offering all the

utility Java classes offer. Finally, in 2018 the most recent ooRexx 5.0 Beta version released.9

2.3 Changes “ooRexx 5.0beta”

The 5.0 Beta version presents a lot of new improvements. It is a stable beta release, which offers

better performance and stability. The new version is backwardly compatible with older ones.

This means that older programs are still able to run on the new version. There are new functions,

classes, methods and keywords. These offer new features and utilities that make life easier for

the programmer. You do not need administrative rights anymore to install ooRexx. It is now

possible to run ooRexx from a USB-stick or to run multiple interpreters on the same system at

the same time. It is now possible to access the runtime environment with the local environment

symbol.10

6 (Cowlishaw, 1987)
7 (About RexxLA, 2020)
8 (Flatscher R. G., The New BSF4ooRexx 6.00, 2018, p. 1)
9 (Flatscher & Müller, 2019, p. 1) (Rexx Wikipedia, 2020) (Flatscher R. G., Open Object Rexx Tutorial, 2017)
10 (Flatscher & Müller, 2019)

4

2.4 Source Control

The source files are distributed on Source Forge. It is a service to manage free open source

software projects on the web. Its features include a source code repository, bug tracking and a

wiki. For ooRexx the version control works over a ticket system. Bugs and requests for features

can be submitted there and if approved, they will be implemented into ooRexx. There is a

tracker to trace request history for new features in the forum. This makes it easy to look up the

request content and the person who requested the feature.11

List of full changes:

https://sourceforge.net/p/oorexx/code-0/HEAD/tree/main/trunk/CHANGES

Furthermore, the language ooRexx possesses a very detailed programming reference in which

changes and additions are marked as new, *NEW*, or changed, *CHG*.

ooRexx 5.0.0 Reference:

https://sourceforge.net/projects/oorexx/files/oorexx-docs/5.0.0beta/

The examples were created with IntelliJ with the ooRexx plugin and executed in cmd with the

rexxpaws command or with the pause command. Although, it is recommended to execute them

directly in IntelliJ.

JetBrains IntelliJ IDEA Community Edition for windows:

https://www.jetbrains.com/de-de/idea/download/#section=windows

ooRexx plugin 2.0.0 for IntelliJ IDEA download:

https://sourceforge.net/projects/bsf4oorexx/files/Sandbox/aseik/ooRexxIDEA/GA/2.0.0/

11 (Source Forge Wikipedia, 2020)

https://sourceforge.net/p/oorexx/code-0/HEAD/tree/main/trunk/CHANGES%20(Retrivede%20on%2031.03.2020
https://sourceforge.net/projects/oorexx/files/oorexx-docs/5.0.0beta/
https://www.jetbrains.com/de-de/idea/download/#section=windows
https://sourceforge.net/projects/bsf4oorexx/files/Sandbox/aseik/ooRexxIDEA/GA/2.0.0/

5

3 Notations

Notations decide the syntax and the basic meaning of the symbols of a language. The following

main changes have been made concerning notations.12

3.1 Array Notation Term

The new update introduces a new way to note down arrays. It is now possible to create arrays

by using the delimiter comma on a list of items. If the values are already used by ooRexx or

have a different meaning, the values should be put between brackets. It is now easier to create

arrays with less writing needed. The items are indexed from the left to the right, as shown in

the example. The generated array cannot be smaller than the size of 2, but it can have 0 items.13

Example:

-- new array notation
animals = "cat", "dog", "cow"

SAY "There are " animals~items "animals"

animals[2] = "new dog"
animals[5] = "old cat"

Supp = animals~SUPPLIER -- create Supplier Object

SAY
SAY "list of animals: "

DO with index x item y over Supp
SAY "index:" x " item:" y
END
14

Output:

12 (Notation Wikipedia, 2020)
13 (Flatscher & Müller, 2019, p. 2) (Ashley, et al., 2020, pp. 24-25)
14 (Flatscher & Müller, 2019, p. 2) (Ashley, et al., 2020, p. 25) (Flatscher R. G., ooRexx 5.00 New Features,

2017, p. 9)

6

3.2 Namespaces

Namespaces were introduced to differentiate between classes and routines of the same name.

To do so, the ::REQUIRES directive needs to be tagged with a namespace name. The ooRexx

namespace can be used to call ooRexx classes if another class is already using the same name.

The addressed class needs a public statement, or it will not be visible outside of its containing

ooRexx program.15

Example:

filename: namespace.rex

say .dog~bark

-- new namespace notation
say animal:dog~bark

::class dog
::method bark class
return "woof"

::requires 'namespace2.rex' namespace animal

filename: namespace2.rex

::class dog public
::method bark class
return "WOOF from the animal namespace"
16

Output:

15 (Flatscher & Müller, 2019, p. 3) (Ashley, et al., 2020, pp. 35-36, 94)
16 (Ashley, et al., 2020, pp. 35-36)

7

3.3 Variable Reference Notation Term

The Variable Reference term is a reference to a variable, for example in a routine, allowing the

original variable to be modified. This makes it possible to change the value of arguments to

new objects, new strings, new arrays or to nil. The operators, > or <, are used to indicate a

reference.17

Example:

a = "hello"
call work >a
say a

PAUSE

::routine work
 use arg >tmp

 tmp="from the work routine"
18

Output:

17 (Ashley, et al., 2020, p. 25) (Flatscher & Müller, 2019, p. 2)
18 (Flatscher & Müller, 2019, p. 2) (Ashley, et al., 2020, p. 26)

8

4 Directives

Directives are executable code units that stand at the end of a program. They are indicated

with two consecutive colons (::) and the first directive separates the main code block from the

other directive instructions. When a program is executed, it will first run a syntax check and

then start invoking the first directive. This ensures that classes, routines and the environment

are set up and available before the program is executed.19

4.1 ::ANNOTATION

The ANNOTATION directive is used to create annotations for packages, classes, methods,

attributes, routines and constants. This means that metadata will be saved in a pair which is

comprised of a name and a string value. The data is saved in a string table. A new method,

“annotations”, is added to query the name and value pair.20

Example:

tmpSupp = .test~annotations~SUPPLIER
DO WHILE tmpSupp~AVAILABLE
SAY "index ["tmpSupp~INDEX"] item ["tmpSupp~ITEM"]"
tmpSupp~NEXT
END

::annotate package author "M. Mustermann"

::class test
::annotate class test version "1.0.0"
21

Output:

19 (Flatscher & Müller, 2019, pp. 2-3) (Ashley, et al., 2020, p. 90)
20 (Ashley, et al., 2020, pp. 90-91. 159) (Flatscher & Müller, 2019, p. 3)
21 (Flatscher R. G., ooRexx 5.00 New Features, 2017, pp. 10-11)

9

4.2 ::ATTRIBUTE

The DELEGATE sub-keyword is added to the ATTRIBUTE directive. The directive defines

attributes and properties of methods. Following common design patterns, it delegates the

execution of the method to an object.22

4.3 ::CLASS

The CLASS directive defines and creates classes in ooRexx. The newly addition to this class is

the added ABSTRACT sub-keyword. Marked with the abstract keyword, it will not be possible

to create instances of this abstract class, otherwise it will generate an error. In this way, it is

possible to provide a base for the subclasses, which is one of the fundamentals of object-based

programming.23

Example:

d1 = .smalldog~New
d1~bark

::CLASS dog ABSTRACT
::METHOD bark
SAY "woof woof"
return

::CLASS smalldog SUBCLASS dog
24

Output:

22 (Ashley, et al., 2020, pp. 92-93, 97-98) (::ATTRIBUTE Delegate sub-keyword, 2020)
23 (Ashley, et al., 2020, pp. 94-95) (Abstract Wikipedia, 2020) (::CLASS Abstract keyword, 2020)
24 (Ashley, et al., 2020, p. 127)

10

4.4 ::CONSTANT

A constant directive is a method that returns constant values for a class. In the new version the

value is optional, so you will not get an error if you leave the value empty.25

Example:

SAY .test~pi
SAY .test~empty

::Class test
::Constant pi 3.14
::Constant empty
26

Output:

4.5 ::OPTIONS

The ::OPTIONS directive is used to set option settings and default values during runtime. Two

additional options are added to this directive NOVALUE and PROLOG/NOPROLOG. The

option NOVALUE decides if an uninitialized variable will raise a NOVALUE condition or a

SYNTAX condition. The NOVALUE CONDITION is the default setting, but using

NOVALUE ERROR raises a syntax error, which is useful for debugging. The setting PROLOG

or NOPROLOG defines if the prolog code should be run or not. This is set by default to

PROLOG.27

4.6 ::RESOURCE

The RESOURCE directive defines multiline string data, which can be useful for multiline

SQL statements. It is possible to signal the ending of the string with “::END” or define a

25 (Ashley, et al., 2020, pp. 96-97)
26 (Ashley, et al., 2020, p. 96)
27 (Ashley, et al., 2020, pp. 100-101)

11

delimiter with “end”. Both are shown in the following example. The string ends automatically

in the string “Zeile4”. The values are saved in a .RESOURCES string table and indexed with

the directive name.28

Example:

SAY "pw: " .resources~pw~makeString~decodeBase64
SAY "text:"
SAY .resources~text

PAUSE

::RESOURCE pw
dG9wc2VjcmV0cGFzc3dvcmQ=
::END

::RESOURCE text end "Zeile4"

Zeile1

 Zeile2
Zeile3
Zeile4

29

Output:

28 (Flatscher & Müller, 2019, p. 3) (Ashley, et al., 2020, pp. 103-104, 439-440)
29 (Ashley, et al., 2020, pp. 103-104) (Flatscher & Müller, 2019, p. 3) (Flatscher R. G., ooRexx 5.00 New

Features, 2017, pp. 12-13)

12

5 Keyword Instructions

Keywords are short phrases or words that offer flow control or a service to the programmer.

They are not case-dependent. This means that the compiler will read “DO” and “do” in the

same way. The programming language ooRexx version 5 has around 30 different keyword

instructions. The following main changes and additions have been made.30

5.1 ADDRESS

The ADDRESS keyword is used to access the system environment of ooRexx. The new

addition to this feature allows the redirection of standard input, standard output and standard

error into stream and collection ooRexx objects. The following example uses “ADDRESS

system”, which addresses cmd on Windows and sh on Unix. It inputs the array “in” over stdin,

sorts it and prints the output from stdout.31

Example:

in = "2", "1", "3", "5", "4"
out = .array~new

ADDRESS system "sort" with input using (in) output using (out)

DO item OVER out
 SAY item
END
32

Output:

5.2 “DO” Keyword Instruction

The DO keyword is used to create code blocks and loops. The new DO instruction “do with

index x item y over supplierObject” can be used to iterate over supplier objects, which is used

to match index and item pairs. This makes it easier than using the Supplier class with a next

30 (Ashley, et al., 2020, p. 42) (Flatscher & Müller, 2019, pp. 3-5)
31 (Flatscher & Müller, 2019, pp. 3-4) (Ashley, et al., 2020, pp. 44-45)
32 (Flatscher & Müller, 2019, p. 4)

13

message. The loop has two control variables, x that refers to current index value and y, which

is associated to the item value. The FOR keyword limits the iterations of the loop.33

Example:

-- create a new array "animals"
animals = .array ~new
animals[1] = "cat"
animals[2] = "dog"
animals[3] = "cow"

Supp = animals~SUPPLIER -- create Supplier Object

DO with index x item y over Supp FOR 3
SAY "index:" x " item:" y
END

SAY

-- example of FOR added, out prints items of animals
DO item over animals FOR 2
SAY item
END
34

Output:

Furthermore, the COUNTER phrase was added to repetitive DO loops. It provides a count

value for the loop. The value starts with 1 and increases by 1 with each repetition of the loop.

The value for zero repetitions has a 0 value. Once the loop is finished, the variable has the

value of the last repetition, which is illustrated in the example.35

Example:

33 (Ashley, et al., 2020, pp. 50-52. 645) (Flatscher & Müller, 2019, p. 4) (DO supplier iteration Ticket, 2020)

(FOR modifier Ticket, 2020)
34 (Flatscher R. G., ooRexx 5.00 New Features, 2017, p. 8) (Ashley, et al., 2020, p. 645)
35 (Ashley, et al., 2020, pp. 646-647)

14

DO COUNTER ct x = 2 TO 8 BY 2
 SAY "counter: " ct " value: " x
END

SAY "finished loop counter:" ct

DO COUNTER ct2 y = 2 TO 1 BY 2
 SAY "counter: " ct2 " value: " y
END

SAY "no repetition loop counter:" ct2

36

Output:

5.3 SELECT CASE

The SELECT CASE expression is added to SELECT. It is used to make the language more

human like and easier to learn for novices. At first, the case is evaluated and then the result of

the case expression is compared to each of the options. As the example shows, the options get

handled from top to bottom. if the highest option is false, the next one is checked until the case

expression matches with the options. The option in which the case holds true is executed and

the other options are ignored. To prevent an error, there needs to be an “otherwise” statement

at the end in case none of the options hold true.37

Example:

SELECT CASE x
WHEN y THEN say "first y"
WHEN x THEN say "first x"
WHEN x THEN say "second x"
otherwise say "otherwise"
END
38

36 (Ashley, et al., 2020, pp. 646-647)
37 (Ashley, et al., 2020, pp. 77-79)
38 (Flatscher R. G., ooRexx 5.00 New Features, 2017, p. 9) (Ashley, et al., 2020, pp. 78-79)

15

Output:

5.4 USE LOCAL

USE LOCAL defines local variables in a method. The keyword instruction must be the first

instruction in the method. After defining the local variables, it changes all the other variables

into object variables, which makes them public and exposes them. In a sense, it does the

opposite of the keyword EXPOSE. This can be especially useful when there is a need to expose

multiple variables like in the init method. The follow example shows its general function and

how it is exchangeable with EXPOSE.39

Example:

p1 = .Player~New("Player1","1","1000")
p2 = .Player~New("Player2","2","1000")

SAY "Name: "p1~name
SAY "Authentification Number: "p1~authentication
SAY "Elo: "p1~elo
SAY
SAY "Player1 Elo: " p1~~increaseElo(5)~elo
SAY "Player2 Elo: " p2~~reduceElo(5)~elo

::CLASS Player
::METHOD INIT
USE LOCAL authentication
USE ARG name, authentication, elo

::METHOD name ATTRIBUTE
::METHOD authentication ATTRIBUTE
::METHOD elo ATTRIBUTE

::METHOD increaseElo
USE LOCAL
USE ARG increase
elo = elo + increase

::METHOD reduceElo
EXPOSE elo
USE ARG reduction
elo = elo – reduction

39 (Ashley, et al., 2020, pp. 88-89) (USE LOCAL Ticket, 2020)

16

40

Output:

40 (Ashley, et al., 2020, p. ()) (Flatscher R. G., ooRexx 5.00 New Features, 2017, p. 14) (Flatscher R. G., An

Introduction to Procedural and Object-oriented Programming (ooRexx) 4, 2016, p. 22)

17

6 Classes

Classes are code templates in order to create objects. It is possible to send messages to created

objects and execute methods with the given message name. The objects can have variables,

which are called attributes. There are four different types of classes object, mixin, abstract and

metaclass.41

6.1 AlarmNotification

The new class AlarmNotification is added to ooRexx; it is a notification interface for alarm and

ticker class. It allows messages to be sent later at a different time and date. The

abstract method “triggered” gets notified when the message has been sent. The method “cancel”

cancels the alarm or the ticker. This class is especially useful for multi-threading.42

Example:

a1 = .Alarm~new(1, .Target~new, "alarm 1 triggered")
a2 = .Alarm~new(3, .Target~new, "alarm 2 triggered")
call SysSleep 2
a2~cancel

::class Target inherit AlarmNotification
::method triggered
use arg alarm
say alarm~attachment

::method cancel
say "alarm cancelled"
43

Output:

41 (Classes Wikipedia, 2020) (Ashley, et al., 2020, pp. 107-110)
42 (Ashley, et al., 2020, p. 332) (Flatscher & Müller, 2019, p. 5)
43 (Ashley, et al., 2020, pp. 419-420)

18

6.2 EventSemaphore

The new class EventSemaphore allows multiple threads and objects to be synchronized. Other

activities get signalized once an event or a condition is triggered.44 This class is especially useful

for concurrency which is the process of running multiple objects and methods at the same

time.45 The execution of the program halts when the method “wait” is used and continues once

the event semaphore is posted with the method “post”. The method “isposted” checks if the

event is posted or not and returns 1 or 0, true or false.46

Example:

sem = .EventSemaphore~new
sem~reset
say "main starts tasks"

.task~new~run(sem, "task" 1)
.task~new~run(sem, "task" 2)

Call SysSleep 2
say "main posts"
sem~post
say "main ends"

SAY sem~isposted -- checks state
sem~reset
SAY sem~isposted -- checks state

::class Task
::method run
reply
use strict arg sem, name
say name "waits"
sem~wait
say name "runs"
47

Output:

44 (Ashley, et al., 2020, pp. 357-358) (Flatscher & Müller, 2019, p. 5)
45 (Ashley, et al., 2020, pp. 601-612)
46 (Ashley, et al., 2020, pp. 359-360)
47 (Ashley, et al., 2020, pp. 358-360)

19

6.3 Json

The newly added Json class makes it possible to convert ooRexx objects into Json objects and

vice versa. Json is mainly used for data exchange and is widely used in other languages with

implemented json parsers that can interpret this format.48 The REQUIRES directive is needed

to load the class if a class is not preloaded.49

Example:

rexxarray = "cat", "dog", "cow"

rexxjson = .json~new()~toJSON(rexxarray)
Say rexxjson

::REQUIRES 'json.cls'

Output:

6.4 MessageNotification

The new class MessageNotification is a notification interface for the message class. The

message class allows to send asynchronous messages, the notification will be sent with the

notify method from the message class. By executing the notify method, the method

48 (Json Wikipedia, 2020) (Json.cls, 2020) (Ashley, et al., 2020, p. 625)
49 (Ashley, et al., 2020, pp. 102, 392)

20

“messageCompleted” of the MessageNotifcation class will be called after the target has

processed the message.50

Example:

-- arguments = message target, message content
msg = .Message~new(.task~new ,"perform")

msg~notify(.information~new)
msg~start

::class task
::method perform
call SysSleep 2
SAY "task performed"

::class information inherit MessageNotification
::method messageComplete
use strict arg message
call SysSleep 1
SAY "message sent"
51

Output:

6.5 MutexSemaphore

The new class MutexSemaphore allows multiple ooRexx threads to use one resource. It locks

one resource while one thread uses the resource. In the meantime, the other thread is in queue.

After the first thread has been finished, the semaphore block releases, and the next waiting

thread can use the resource.52

Example:

mutex = .MutexSemaphore~new
.local~x = 1
.Task~new~start(mutex, "write")

50 (Flatscher & Müller, 2019, p. 5) (Ashley, et al., 2020, pp. 132-137. 370-371)
51 (Ashley, et al., 2020, pp. 136-137)
52 (Flatscher & Müller, 2019, p. 5) (Ashley, et al., 2020, pp. 387-388)

21

.Task~new~start(mutex, "read")
say "started . . ."

::class Task
::method start unguarded
use local
use arg mutex, name
reply
self~execute

::method execute unguarded
use local
IF .x = 5 THEN DO
 .local~x = 1
 return
END

mutex~acquire
say name .x
call syssleep 1

.local~x = .x + 1
self~execute
53

Output:

6.6 RexxInfo

The new class RexxInfo provides ooRexx settings, “Rexx language information and other

platform-specific information”.54 The class can be accessed over the environment symbol. The

use of the class is limited to one instance at a time.55 In the first part of the examples, it checks

on which system the program is running. In the second part, a few examples of RexxInfo

methods are given, a full list can be found in the Rexx Reference.

Example:

IF .rexxinfo~platform = "WindowsNT" THEN
 DO

53 (Ashley, et al., 2020, p. 388)
54 (Ashley, et al., 2020, p. 400)
55 (Ashley, et al., 2020, pp. 400-401)

22

 SAY "This program runs on a Windows system"
 END
ELSE IF .rexxinfo~platform = "Linux" THEN
 DO
 SAY "This program runs on a Linux system"
 END
ELSE SAY "System unknown"

-- other information
SAY
SAY "Other information"
SAY "Name: " .rexxinfo~name
SAY "Directory Seperator: " .rexxinfo~directorySeparator
SAY "Package: " .rexxinfo~package
SAY "Digits: " .rexxinfo~digits
56

Output:

6.7 StringTable

The new class StringTable, a MIXIN class, is a MapCollection, which is similar in functionality

to a Directory class and uses unique strings to index items.57 Since the ooRexx interpreter uses

this class internally, this results in better runtime performance in ooRexx 5, due to the reduced

overhead when looking up and executing method objects. 58

Example:

--creates table
coll = .StringTable~new

-- checks if the StringTable is empty returns true or false
SAY "is empty: " Coll~isEmpty

--insert values: "item", "name"
coll~put("0123334", "Mike")
coll~put("0123567", "Bob")

56 (Ashley, et al., 2020, pp. 400-409) (Flatscher R. G., ooRexx 5.00 New Features, 2017, pp. 15-16)
57 (Ashley, et al., 2020, p. 314)
58 (Flatscher & Müller, 2019, p. 5)

23

coll~put("1234010", "Alice")

-- to look up a specific entry
SAY "number of the person: " coll~at("Alice")
SAY "person with the number: " coll~index("1234010")

--number of items
SAY "number of items: " coll~items

--outprint the item name pair
SAY
SAY "full table:"
supp = coll~SUPPLIER -- create Supplier Object
DO with index idx item itm over supp
 SAY "index:" idx " item:" itm
END
59

Output:

6.8 Ticker

The new class Ticker sends a notification message to a target which must be a subclass of the

AlarmNotification class, in certain intervals, this can be a fixed time span or a string object. It

is possible to cancel the Ticker with the cancel method. This class can be useful for monitoring

task progress information.60 The following example showcases a simple countdown.

Example:

startCount = 5
.local~x = 1
SAY startCount

timer = .Ticker~new(1, .Target~new, startCount)
call SysSleep startCount
timer~cancel

::class Target inherit AlarmNotification
::method triggered

59 (Ashley, et al., 2020, pp. 314-318)
60 (Ashley, et al., 2020, pp. 419-421)

24

use arg ticker
say ticker~attachment - .x
.local~x = .x + 1

::method cancel
SAY "Timer finished"
61

Output:

6.9 Variable Reference

The new class Variable Reference is responsible to maintain the connection between the object

and the variable and link the name and value of the referenced variable. It enables to create new

instances of this class with the new keyword, just with the variable reference term.62

Example:

a = "123"
-- displays name of the variable reference
SAY >a~name
-- value method of variable reference class
SAY >a~class~id
SAY >a~value~class~id
63

Output:

61 (Ashley, et al., 2020, pp. 419-420)
62 (Flatscher & Müller, 2019, p. 5) (Ashley, et al., 2020, p. 432)
63 (Ashley, et al., 2020, p. 433)

25

6.10 Validate

The new class Validate checks if arguments are of a certain type, class type or length.

Concerning numbers, it is possible to check whether they are positive or negative, or if they are

in a certain range. If the argument value is invalid, a syntax error will be raised.64

Example:

Call test(1)
EXIT

test :
use arg time
.validate~number(time, time)
call syssleep time
say "validation completed"
65

Output:

64 (Ashley, et al., 2020, pp. 428-432)
65 (Ashley, et al., 2020, pp. 428-432)

26

7 Other Changes

7.1 Built-in-functions

A built-in function is a routine that returns a single object as a result, compared to a subroutine

it is called with a function call expression. It consists of a function name and function arguments

in round brackets.66

7.1.1 CONDITION()

The condition function gives information regarding the current trapped condition. There are

several kinds of information that can be queried, for example the name, status or condition-

specific information.67 “A condition is an event or state that CALL ON or SIGNAL ON can

trap.” 68 A condition trap, also called exception, changes the execution flow of the Rexx

program, whereby a trapname specifies the kind of the trap.69For the built-in-function condition

the option reset is added, current trapped conditions will be reset back to their default values

and the null string is returned.70

Example:

SIGNAL ON SYNTAX
RAISE SYNTAX 001
EXIT

SYNTAX:
SAY "SYNTAX IS RAISED."
SAY "before reset, error name: " CONDITION(C)
SAY "resetting . . . " CONDITION(RESET)
SAY "after reset, error name: " CONDITION(C)

EXIT
71

66 (Ashley, et al., 2020, pp. 441, 447-448)
67 (Ashley, et al., 2020, pp. 459-460, 591)
68 (Ashley, et al., 2020, p. 591)
69 (Condition Trap IBM, 2020) (Ashley, et al., 2020, pp. 459-460)
70 (Ashley, et al., 2020, p. 459)
71 (Ashley, et al., 2020, p. 460) (Flatscher R. G., An Introduction to Procedural and Object-oriented

Programming (ooRexx) 3, 2017, p. 11)

27

Output:

7.1.2 DATATYPE()

The datatype function checks a string and compares the string with an option. There are

different type options, for example alphanumeric, mixed case or binary. If the string is equal to

the option, it returns a 1, if they are not equal, the function will return a 0. A new option type is

added to this function Internal, which checks the string for whole numbers.72

Example:

x = "9123213"
y = "123A231"

-- DATATYPE(string, type)
SAY "x: " DATATYPE(x, Internal)
SAY "y: " DATATYPE(y, Internal)

Output:

7.1.3 DATE()

The date function returns current date as object result. The ISO format is added as a new

function and it returns the date in yyyy-mm-dd format, which is specified by ISO 8601.73 The

ISO standard is established to create a standard representing dates and times to ease interchange

and to minimize misinterpretation.74

72 (Ashley, et al., 2020, pp. 462-463)
73 (DATE() ISO Ticket, 2020) (Ashley, et al., 2020, pp. 463-467)
74 (ISO Wikipedia, 2020)

28

Example:

SAY DATE("ISO")

Output:

7.1.4 XRANGE()

The Xrange function returns a string, that is specified in the round brackets. Usually, a start and

an end should be specified, but it is possible to query the string with a keyword as well. It is

now possible to chain multiple queries in a single operation.75

Example:

-- XRANGE(start, end)
SAY XRANGE(xdigit, "0", "9", "A", "C")

Output:

7.2 Rexxutil

The Rexxutil is a package of functions to communicate with the embedded system, issue

commands or get information. It includes function for Windows and Unix platforms. The

rexxutil packages are preloaded by the interpreter on start up.76

75 (XRANGE Ticket, 2020) (Ashley, et al., 2020, pp. 508-509)
76 (Ashley, et al., 2020, p. 510)

29

7.2.1 SysFormatMessage

 SysFormatMessage is a new window function that formats and replaces “&n” in a text, n stands

for a number, for example &1. The maximum number of replacements is nine. 77

Example:

say SysFormatMessage("STRING111222 &1 &2", ("Replacement A", "Replacement B"))
78

Output:

7.2.2 SysGetLongPathName

The new function returns the long version or path to a file or directory for windows systems. If

the path does not exist or the search process fails, it returns the null string.79

Example:

say SysGetLongPathName("C:\PROGRA~1")
80

Output:

77 (Ashley, et al., 2020, pp. 529-530)
78 (Ashley, et al., 2020, pp. 529-530)
79 (Ashley, et al., 2020, p. 533)
80 (Ashley, et al., 2020, p. 533)

30

8 Conclusion

The new ooRexx 5.0.0 beta version introduced a significant number of new features. As a matter

of fact, it resulted in performance gains and improved functionality. Furthermore, the numerous

bugfixes led to an increase in stability. All these changes evolved the language, while retaining

its initial design and being backwardly compatible to older versions. The paper has set out to

describe and provide nutshell examples of the new features. Based on analyzing them,

following benefits are associated with the new ooRexx version.

Firstly, ooRexx is more tailored towards object-oriented programming. This includes the

DELEGATE sub-keyword for the CLASS directive and namespaces. In addition, there are

improvements regarding user friendliness, for example the USE LOCAL keyword.

Secondly, ooRexx is kept human-oriented, lightweight and easy to learn for novices. An

intuitive array notation was added, and the keyword SELECT CASE was added. In fact, the

total amount of keywords is kept low.

The new version is easy and simple, however, powerful in performance. In fact, the

multithreading has been significantly improved by adding message and alarm notification

interfaces and by adding the two semaphore classes.

Furthermore, the versatility as macro and command language is improved. The RESOURCE

directive enhances ooRexx string dealing and macro language capabilities. This, for example,

makes it easier to issue multiline sql commands. The expanded usage of the ADDRESS

keyword improves the capabilities as a command language and the way ooRexx interacts with

the system. In addition, new built-in-functions for the system were added.

Definitely, the version update has brought new features and functionality that prepare ooRexx

to be competitive in the future.

31

References

::ATTRIBUTE Delegate sub-keyword. (2020, May 16). Retrieved from Source Forge:

https://sourceforge.net/p/oorexx/feature-requests/649/

::CLASS Abstract keyword. (2020, June 1). Retrieved from Source Forge:

https://sourceforge.net/p/oorexx/feature-requests/631/

Abstract Wikipedia. (2020, May 16). Retrieved from Wikipedia:

https://en.wikipedia.org/wiki/Abstract_type

Ashley, W. D., Flatscher, R. G., Hessling, M., McGuire, R., Peedin, L., Sims, O., & Wolfers,

J. (2020). ooRexx Documentation 5.0.0.r12043 Open Object Rexx Reference (

0.2020.04.04 ed.). (R. L. Association, Ed.)

Classes Wikipedia. (2020, May 21). Retrieved from Wikipedia:

https://en.wikipedia.org/wiki/Class_(computer_programming)

Condition Trap IBM. (2020, May 22). Retrieved from IBM:

https://www.ibm.com/support/knowledgecenter/en/SSLTBW_2.2.0/com.ibm.zos.v2r2.

ikja300/ikja30073.htm

Cowlishaw, M. (1987, February). The design of the Rexx language. IBM Systems Journal, pp.

326-335. doi:10.1147/sj.234.0326

DATE() ISO Ticket. (2020, May 17). Retrieved from Source Forge:

https://sourceforge.net/p/oorexx/feature-requests/407/

DO supplier iteration Ticket. (2020, April 29). Retrieved from Source Forge:

https://sourceforge.net/p/oorexx/feature-requests/158/

Flatscher, R. G. (2016, October 13). An Introduction to Procedural and Object-oriented

Programming (ooRexx) 4. Augasse 2-6, Wien.

Flatscher, R. G. (2017, October 17). An Introduction to Procedural and Object-oriented

Programming (ooRexx) 3. Augasse 2-6, Wien.

Flatscher, R. G. (2017, April 9-12). ooRexx 5.00 New Features. Amsterdam, Netherlands:

28th Annual Rexx Symposium.

Flatscher, R. G. (2017, April 9-12). Open Object Rexx Tutorial. Amsterdam, Netherlands:

Open Object Rexx Tutorial. 28th Annual Rexx Symposium.

Flatscher, R. G. (2018). The New BSF4ooRexx 6.00. The 2018 International Rexx

Symposium. Aruba, Dutch West Indies: René Jansen, Chip Davis. Retrieved from

https://www.rexxla.org/events/2018/presentations/201803-BSF4ooRexx-6.0-

Article.pdf

Flatscher, R. G., & Müller, G. (2019). ooRexx 5 Yielding Swiss Army Knife Usability.

Hursley, Great Britain, United Kingdom: The 2019 International RexxLA

Symposium.

FOR modifier Ticket. (2020, April 29). Retrieved from Source Forge:

https://sourceforge.net/p/oorexx/feature-requests/605/

32

ISO Wikipedia. (2020, May 22). Retrieved from Wikipedia:

https://en.wikipedia.org/wiki/ISO_8601

Json Wikipedia. (2020, May 27). Retrieved from Wikipedia:

https://en.wikipedia.org/wiki/JSON

Json.cls. (2020, May 27). Retrieved from Idenburg:

http://www.idenburg.net/ooRexx/wip/showSource.php?sfn=../code/json.cls

Notation Wikipedia. (2020, June 1). Retrieved from Wikipedia:

https://en.wikipedia.org/wiki/Notation

Source Forge Wikipedia. (2020, April 1). Retrieved from Wikipedia:

https://en.wikipedia.org/wiki/SourceForge

USE LOCAL Ticket. (2020, April 29). Retrieved from Source Forge:

https://sourceforge.net/p/oorexx/feature-requests/654/

XRANGE Ticket. (2020, May 17). Retrieved from Source Forge:

https://sourceforge.net/p/oorexx/feature-requests/639/

