

Burgstaller Andreas

Matriculation No.: 11720941

Winter Term 2020/21

BSF4ooRexx
Apache Tomcat - Cookbook

Apache Tomcat – Cookbook | Andreas Burgstaller

 Page 1 of 48

Course: Seminar BIS

Course-No.: 0100

SBWL: Business Information Systems

Instructor: ao.Univ.Prof. Dr. Rony G. Flatscher

Declaration of Authorship

I, Andreas Burgstaller, hereby declare that

1. I have written this seminar paper independently and without the aid of unfair

or unauthorized resources. Whenever content was taken directly or indirectly

from other sources, this has been indicated and the source referenced.

2. this seminar paper has neither previously been presented for assessment, nor

has it been published.

3. this seminar paper is identical with the assessed paper and the paper which

has been submitted in electronic form.

Date: 17.12.2020

Signature:

Apache Tomcat – Cookbook | Andreas Burgstaller

 Page 2 of 48

Table of Contents

1 Introduction ... 6

1.1 Overview ... 6

1.2 Apache Tomcat ... 6

1.3 Open Object Rexx .. 6

1.4 BSF4ooRexx ... 6

2 Installation ... 7

2.1 Installation ooRexx .. 7

2.2 Installation BSF4ooRexx .. 7

2.3 Apache Tomcat ... 8

3 Appetizer ... 10

3.1 Nutshell Example 1 - Hello World (Basic JSP Example) 10

4 Main Course .. 11

4.1 Nutshell Example 2 - Soccer Table (Advanced JSP Example) 11

4.2 Nutshell Example 3 - Break-Even-Point (GET Method) 12

4.3 Nutshell Example 4 – Rock-Paper-Scissor (POST Method)...................... 15

5 Side Dish .. 18

5.1 Cascading Style Sheets .. 18

5.2 Tips for Error Handling .. 20

6 Dessert ... 21

6.1 JSTL - Tag Library .. 21

6.2 MySQL Database Support ... 21

6.3 Nutshell Example 5 – Insert Data .. 23

6.4 Nutshell Example 6 – Select Data .. 25

6.5 Nutshell Example 7 – Update Data ... 26

Apache Tomcat – Cookbook | Andreas Burgstaller

 Page 3 of 48

6.6 Nutshell Example 8 – Delete Data ... 28

6.7 Nutshell Example 9 – Group Work Organizer ... 28

7 Conclusion ... 31

7.1 Summary ... 31

7.2 Outlook .. 31

Appendix .. 32

Bibliography ... 48

Apache Tomcat – Cookbook | Andreas Burgstaller

 Page 4 of 48

Figure 1: Apache Tomcat - Start Page ... 8

Figure 2: Tomcat9.0/conf/tomcat-user.xml .. 8

Figure 3: localhost/Appetizer/index.html ... 10

Figure 4: webapps folder .. 10

Figure 5: Nutshell1-HelloWorld.jsp – tag library definition .. 10

Figure 6: Nutshell1-HelloWorld.jsp – oRexx script ... 10

Figure 7: localhost:8080/Main%20Course/index.html ... 11

Figure 8: localhost:8080/Main%20Course/Nutshell2-SoccerTable.jsp 11

Figure 9: Nutshell2-SoccerTable.jsp - generated HTML content .. 11

Figure 10: Nutshell2-SoccerTable - oRexx script ... 12

Figure 11: localhost:8080/Main%20Course/Nutshell3-BreakEvenPoint.html 12

Figure 12: Nutshell3-BreakEvenPoint.html - <form> element .. 13

Figure 13: Tomcat9.0/conf/context.xml – privileged = “true” .. 13

Figure 14: Tomcat9.0/conf/Catalina/localhost/root.xml .. 14

Figure 15: MainCourse/WEB-INF/web.xml – servlet definition .. 14

Figure 16: /WEB-INF/cgi/calcBreakEvenPoint.rex .. 15

Figure 17:: Nutshell3-BreakEvenPoint.html – GET request and servlet output 15

Figure 18: localhost:8080/Main%20Course/Nutshell4-Rock-Paper-Scissor.html 16

Figure 19:Nutshell4-Rock-Paper-Scissor.html - <form> element ... 16

Figure 20: /WEB-INF/cgi/rockpaperscissor.rexx ... 17

Figure 21: Nutshell4-Rock-Paper-Scissor.html - output of rockpaperscissor.rexx servlet 17

Figure 22: https://www.w3schools.com/css/css_syntax.asp ... 18

Figure 23: including external CSS stylesheets inside the header .. 18

Figure 24: Nutshell1-HelloWorld.jsp – header definition ... 18

Figure 25: including internal stylesheet in the body ... 19

Figure 26: definition of styles for specific elements ... 19

Figure 27: https://www.w3schools.com/w3css/w3css_templates.asp 19

Figure 28: /Tomcat9.0/logs/tomcat9-stderr.2020-12-12 ... 20

Figure 29: script tag - debug ="true" .. 20

Figure 30: debug mode = “true” – information table ... 20

Figure 31:localhost/Dessert/index.html ... 21

Figure 32: Standard Tag Library (JSTL) – definition of <core> and <sql> tag 21

https://d.docs.live.net/f87418ac9527b90d/Wirtschaftsinformatik%20-%20Studium/Studienfächer/Hauptstudium/SBWL%20BIS/Kurs%205/Apache%20Tomcat%20-%20Cookbook_BISKurs5.docx#_Toc59104607
https://d.docs.live.net/f87418ac9527b90d/Wirtschaftsinformatik%20-%20Studium/Studienfächer/Hauptstudium/SBWL%20BIS/Kurs%205/Apache%20Tomcat%20-%20Cookbook_BISKurs5.docx#_Toc59104608
https://d.docs.live.net/f87418ac9527b90d/Wirtschaftsinformatik%20-%20Studium/Studienfächer/Hauptstudium/SBWL%20BIS/Kurs%205/Apache%20Tomcat%20-%20Cookbook_BISKurs5.docx#_Toc59104609
https://d.docs.live.net/f87418ac9527b90d/Wirtschaftsinformatik%20-%20Studium/Studienfächer/Hauptstudium/SBWL%20BIS/Kurs%205/Apache%20Tomcat%20-%20Cookbook_BISKurs5.docx#_Toc59104610
https://d.docs.live.net/f87418ac9527b90d/Wirtschaftsinformatik%20-%20Studium/Studienfächer/Hauptstudium/SBWL%20BIS/Kurs%205/Apache%20Tomcat%20-%20Cookbook_BISKurs5.docx#_Toc59104611
https://d.docs.live.net/f87418ac9527b90d/Wirtschaftsinformatik%20-%20Studium/Studienfächer/Hauptstudium/SBWL%20BIS/Kurs%205/Apache%20Tomcat%20-%20Cookbook_BISKurs5.docx#_Toc59104612
https://d.docs.live.net/f87418ac9527b90d/Wirtschaftsinformatik%20-%20Studium/Studienfächer/Hauptstudium/SBWL%20BIS/Kurs%205/Apache%20Tomcat%20-%20Cookbook_BISKurs5.docx#_Toc59104613
https://d.docs.live.net/f87418ac9527b90d/Wirtschaftsinformatik%20-%20Studium/Studienfächer/Hauptstudium/SBWL%20BIS/Kurs%205/Apache%20Tomcat%20-%20Cookbook_BISKurs5.docx#_Toc59104614
https://d.docs.live.net/f87418ac9527b90d/Wirtschaftsinformatik%20-%20Studium/Studienfächer/Hauptstudium/SBWL%20BIS/Kurs%205/Apache%20Tomcat%20-%20Cookbook_BISKurs5.docx#_Toc59104615
https://d.docs.live.net/f87418ac9527b90d/Wirtschaftsinformatik%20-%20Studium/Studienfächer/Hauptstudium/SBWL%20BIS/Kurs%205/Apache%20Tomcat%20-%20Cookbook_BISKurs5.docx#_Toc59104616
https://d.docs.live.net/f87418ac9527b90d/Wirtschaftsinformatik%20-%20Studium/Studienfächer/Hauptstudium/SBWL%20BIS/Kurs%205/Apache%20Tomcat%20-%20Cookbook_BISKurs5.docx#_Toc59104618
https://d.docs.live.net/f87418ac9527b90d/Wirtschaftsinformatik%20-%20Studium/Studienfächer/Hauptstudium/SBWL%20BIS/Kurs%205/Apache%20Tomcat%20-%20Cookbook_BISKurs5.docx#_Toc59104619
https://d.docs.live.net/f87418ac9527b90d/Wirtschaftsinformatik%20-%20Studium/Studienfächer/Hauptstudium/SBWL%20BIS/Kurs%205/Apache%20Tomcat%20-%20Cookbook_BISKurs5.docx#_Toc59104620
https://d.docs.live.net/f87418ac9527b90d/Wirtschaftsinformatik%20-%20Studium/Studienfächer/Hauptstudium/SBWL%20BIS/Kurs%205/Apache%20Tomcat%20-%20Cookbook_BISKurs5.docx#_Toc59104622
https://d.docs.live.net/f87418ac9527b90d/Wirtschaftsinformatik%20-%20Studium/Studienfächer/Hauptstudium/SBWL%20BIS/Kurs%205/Apache%20Tomcat%20-%20Cookbook_BISKurs5.docx#_Toc59104624
https://d.docs.live.net/f87418ac9527b90d/Wirtschaftsinformatik%20-%20Studium/Studienfächer/Hauptstudium/SBWL%20BIS/Kurs%205/Apache%20Tomcat%20-%20Cookbook_BISKurs5.docx#_Toc59104628
https://d.docs.live.net/f87418ac9527b90d/Wirtschaftsinformatik%20-%20Studium/Studienfächer/Hauptstudium/SBWL%20BIS/Kurs%205/Apache%20Tomcat%20-%20Cookbook_BISKurs5.docx#_Toc59104629
https://d.docs.live.net/f87418ac9527b90d/Wirtschaftsinformatik%20-%20Studium/Studienfächer/Hauptstudium/SBWL%20BIS/Kurs%205/Apache%20Tomcat%20-%20Cookbook_BISKurs5.docx#_Toc59104630
https://d.docs.live.net/f87418ac9527b90d/Wirtschaftsinformatik%20-%20Studium/Studienfächer/Hauptstudium/SBWL%20BIS/Kurs%205/Apache%20Tomcat%20-%20Cookbook_BISKurs5.docx#_Toc59104631
https://d.docs.live.net/f87418ac9527b90d/Wirtschaftsinformatik%20-%20Studium/Studienfächer/Hauptstudium/SBWL%20BIS/Kurs%205/Apache%20Tomcat%20-%20Cookbook_BISKurs5.docx#_Toc59104632
https://d.docs.live.net/f87418ac9527b90d/Wirtschaftsinformatik%20-%20Studium/Studienfächer/Hauptstudium/SBWL%20BIS/Kurs%205/Apache%20Tomcat%20-%20Cookbook_BISKurs5.docx#_Toc59104633
https://d.docs.live.net/f87418ac9527b90d/Wirtschaftsinformatik%20-%20Studium/Studienfächer/Hauptstudium/SBWL%20BIS/Kurs%205/Apache%20Tomcat%20-%20Cookbook_BISKurs5.docx#_Toc59104634
https://d.docs.live.net/f87418ac9527b90d/Wirtschaftsinformatik%20-%20Studium/Studienfächer/Hauptstudium/SBWL%20BIS/Kurs%205/Apache%20Tomcat%20-%20Cookbook_BISKurs5.docx#_Toc59104635
https://d.docs.live.net/f87418ac9527b90d/Wirtschaftsinformatik%20-%20Studium/Studienfächer/Hauptstudium/SBWL%20BIS/Kurs%205/Apache%20Tomcat%20-%20Cookbook_BISKurs5.docx#_Toc59104636
https://d.docs.live.net/f87418ac9527b90d/Wirtschaftsinformatik%20-%20Studium/Studienfächer/Hauptstudium/SBWL%20BIS/Kurs%205/Apache%20Tomcat%20-%20Cookbook_BISKurs5.docx#_Toc59104638

Apache Tomcat – Cookbook | Andreas Burgstaller

 Page 5 of 48

Figure 33: MySQL Workbench .. 21

Figure 34: MySQLWorkbench-> Server-> User and Privileges – add user account................... 22

Figure 35: create database and table ... 22

Figure 36: add the database connection in /Tomcat9.0/conf/context.xml 23

Figure 37: /localhost/Dessert/Nutshell5-InsertData.jsp ... 23

Figure 38: Nutshell5-InsertData.jsp - <form> element ... 23

Figure 39: Nutshell5-InsertData.jsp – <core> and <sql> tag of the JSTL library 24

Figure 40: MySQL Workbench – select * from students .. 24

Figure 41: localhost/Dessert/Nutshell6-SelectData.jsp .. 25

Figure 42: Nutshell6-InsertData.jsp – select statement ... 25

Figure 43: Nutshell5-InsertData.jsp – creation of student list .. 26

Figure 44: localhost/Dessert/Nutshell7-UpdateData ... 26

Figure 45: Nutshell7-UpdateData.jsp.. 27

Figure 46: localhost/Dessert/Nutshell7-UpdateData.jsp - update successful 27

Figure 47: localhost/Dessert/Nutshell7-UpdateData.jsp – no rows updated 27

Figure 48: Nutshell7-UpdateData - exeption handling ... 27

Figure 49: localhost/Dessert/Nutshell8-DeleteData.jsp ... 28

Figure 50: Nutshell8-DeleteData.jsp ... 28

Figure 51: localhost/Dessert/Nutshell9-GroupWorkOrganizer.jsp ... 28

Figure 52: Nutshell9-GroupWorkDivider.jsp ... 29

Figure 53: Nutshell9-GroupWorkDivider.jsp - add students to request body 29

Figure 54: /WEB-INF/cgi/groupStudents.rexx ... 30

Figure 55: /localhost/Dessert/cgi-bin/groupStudents.rexx – output of servlet 30

https://d.docs.live.net/f87418ac9527b90d/Wirtschaftsinformatik%20-%20Studium/Studienfächer/Hauptstudium/SBWL%20BIS/Kurs%205/Apache%20Tomcat%20-%20Cookbook_BISKurs5.docx#_Toc59104639
https://d.docs.live.net/f87418ac9527b90d/Wirtschaftsinformatik%20-%20Studium/Studienfächer/Hauptstudium/SBWL%20BIS/Kurs%205/Apache%20Tomcat%20-%20Cookbook_BISKurs5.docx#_Toc59104640
https://d.docs.live.net/f87418ac9527b90d/Wirtschaftsinformatik%20-%20Studium/Studienfächer/Hauptstudium/SBWL%20BIS/Kurs%205/Apache%20Tomcat%20-%20Cookbook_BISKurs5.docx#_Toc59104641
https://d.docs.live.net/f87418ac9527b90d/Wirtschaftsinformatik%20-%20Studium/Studienfächer/Hauptstudium/SBWL%20BIS/Kurs%205/Apache%20Tomcat%20-%20Cookbook_BISKurs5.docx#_Toc59104642
https://d.docs.live.net/f87418ac9527b90d/Wirtschaftsinformatik%20-%20Studium/Studienfächer/Hauptstudium/SBWL%20BIS/Kurs%205/Apache%20Tomcat%20-%20Cookbook_BISKurs5.docx#_Toc59104643
https://d.docs.live.net/f87418ac9527b90d/Wirtschaftsinformatik%20-%20Studium/Studienfächer/Hauptstudium/SBWL%20BIS/Kurs%205/Apache%20Tomcat%20-%20Cookbook_BISKurs5.docx#_Toc59104644
https://d.docs.live.net/f87418ac9527b90d/Wirtschaftsinformatik%20-%20Studium/Studienfächer/Hauptstudium/SBWL%20BIS/Kurs%205/Apache%20Tomcat%20-%20Cookbook_BISKurs5.docx#_Toc59104645
https://d.docs.live.net/f87418ac9527b90d/Wirtschaftsinformatik%20-%20Studium/Studienfächer/Hauptstudium/SBWL%20BIS/Kurs%205/Apache%20Tomcat%20-%20Cookbook_BISKurs5.docx#_Toc59104646
https://d.docs.live.net/f87418ac9527b90d/Wirtschaftsinformatik%20-%20Studium/Studienfächer/Hauptstudium/SBWL%20BIS/Kurs%205/Apache%20Tomcat%20-%20Cookbook_BISKurs5.docx#_Toc59104648
https://d.docs.live.net/f87418ac9527b90d/Wirtschaftsinformatik%20-%20Studium/Studienfächer/Hauptstudium/SBWL%20BIS/Kurs%205/Apache%20Tomcat%20-%20Cookbook_BISKurs5.docx#_Toc59104649

Apache Tomcat – Cookbook | Andreas Burgstaller

 Page 6 of 48

1 Introduction

1.1 Overview

This seminar paper was written during the seminar of the SBWL Business Information Systems in winter

term 2020/21. The objective of this paper is to provide an introduction how to use Apache Tomcat

with the programming language Object Rexx. Additionally, the extension BSF4ooRexx is used.

To begin, there will be a technical background about the used technologies and instructions for their

installation. Thereafter different nutshell examples will be shown. We start with basic examples of JSP

and Servlets and continue with more advance and more practical examples. Last, we will go over the

JSTL Standard Tag Library and the most important functions you need to know to create and maintain

a database connection.

1.2 Apache Tomcat

Apache is one of the most popular open-source webserver software packages and enables websites to

share their data in the web since 1995. Therefore, it is one of the oldest and most reliable webservers,

which can be used free of charge. Apache Tomcat is an open-source webserver and web container,

that enables the deployment of Java based web applications. The implementation supports the use of

Java Servlets and Java Server Pages, thus granting the user the opportunity to create and provide

dynamic web content. This is the main difference compared to the classic apache webserver approach,

which is designed for static content like HTML, pictures, audio or text files. 1

1.3 Open Object Rexx

The presented nutshell examples in this paper are based on the script language Object Rexx. This is a

fully functional programming language, with the focus on simplicity and human readable code syntax.

Moreover, it supports the common concept of object orientated programming. Additionally, an open-

source project by the Rexx Language Association called Open Object Rexx is used. It provides a simple

implementation of the script language Object Rexx.

1.4 BSF4ooRexx

Additional to Open Object Rexx, the framework BSFooRexx (Bean Scripting Framework for ooRexx) is

used for the development of the nutshell examples. It enables the interaction with the Java Runtime

Environment, as well as the implementation of Java classes and methods. Moreover, it allows to

camouflage the oRexx code as Java code and therefore grants the access to all Java compatible

technologies.

„Everything that is available in Java becomes directly available to ooRexx“2 (Flatscher, 2016)

Apache Tomcat – Cookbook | Andreas Burgstaller

 Page 7 of 48

2 Installation

2.1 Installation ooRexx

Before beginning, it is important to clarify which system we are using. Luckily, Open Object Rexx is

available in 32-bit and 64-bit for Windows, MacOS and Linux. To download the latest ooRexx Version

go to sourceforge.net/projects/oorexx/files/oorexx/

For the nutshell examples we will be using Version 5.0 for Windows (64-bit). After executing the

installation file and following all steps, ooRexx is successfully installed. For all following installations

we will stick to the 64-bit Version. Using different versions can lead to unnecessary errors and should

always be avoided.

Next step is to check if the right Java version is installed. In Windows you can easily do this by using

the command “java -version” in your control panel. The same command can be used in the Linux or

MacOS terminal. If the required version is installed, continue with the next step. If the version differs

or no Version is installed, it is recommended to download the right version directly from official Java

website.

2.2 Installation BSF4ooRexx

Visit sourceforge.net/projects/bsf4oorexx/files/ and choose the newest version of BSF4ooRexx. For

the nutshell examples we will be using “v641-20201124-beta”, but do not be afraid to use a different

version. BSF4ooRexx is in constant development and therefore it does not take long until a new version

appears.

Follow the following steps for the installation:3

1. Download the Windows version of BSF4ooRexx

2. Unzip the download archive.

3. Next navigate to the subdirectory “bsf4oorexx\install\windows”

4. Execute the install.cmd file

5. Wait for the installation to finish

During the installation, information is printed in the terminal window. It is useful to track the status of

the installation and to recognize problems that occur during the installation process. After the script is

finished, you will be informed if the installation was successful. The complete log file is saved in the

home directory as “BSF4ooRexx_Date.log”. If facing any errors after the installation, it is recommended

to first check the log files. After this, the installation is complete and the BSF4ooRexx Framework is

ready to use. Additional environment variables can be added for the BSF4ooRexx installation folder.

https://sourceforge.net/projects/oorexx/files/oorexx/
https://www.java.com/en/download/
https://sourceforge.net/projects/bsf4oorexx/files/

Apache Tomcat – Cookbook | Andreas Burgstaller

 Page 8 of 48

This can resolve errors when the program does not find the folder where BSF4ooRexx is located. The

same applies to the Java installation folder.

2.3 Apache Tomcat

Installation

In this paper Tomcat 9 is used, which is available at tomcat.apache.org/download.

Download the “32-bit/64-bit Windows Service Installer” and execute the Installation Wizard. For the

following nutshell examples, it is not necessary to change any values during the installation. It is

sufficient to follow the steps without changing any input values. Now start the “Tomcat9.exe” and

enter localhost:8080 in the Browser. If the Installation was successful, a webpage with useful

information about Tomcat 9 and further possible configurations will open.

The next step is to create a Tomcat-Manager-Account, to access the Manager-Interface. Open

“conf/tomcat-users.xml” in the installation folder of Tomcat and add the following code. The fastest

way to do this is to open the file with a text editor. Then add the roles “manager-gui” and “admin-gui”.

These roles grant a user the necessary rights needed and by simply creating a new user and defining

his roles, everything is ready.4

Figure 1: Apache Tomcat - Start Page

Figure 2: Tomcat9.0/conf/tomcat-user.xml

https://tomcat.apache.org/download-90
localhost:8080

Apache Tomcat – Cookbook | Andreas Burgstaller

 Page 9 of 48

Now the Manager-Interface can be accessed with the newly created user. Start the Tomcat server and

open localhost:8080/manager in the Browser. Then enter username and password in the login

window. If the user was created correctly, it will load a directory with all available applications in the

“Tomcat9.0/webapp” folder.

Testing ooRexx and BSF4ooRexx

First it is important to provide Apache Tomcat with the necessary resources. To do that, add the

following libraries in the “Tomcat 9.0\lib” folder of the Tomcat installation.

javax.ScriptTagLibs.jar contains BSF and JSR-223 tag libraries

bsf4ooRexx-v641-20201124.jar contains the Bean Scripting Framework that acts as bridge

 between Java and ooRexx

The “bsf4ooRexx-v641-20201124.jar” can be found in the installation folder of the BSF4ooRexx

installation. The “javax.ScriptTagLibs.jar” and the “javax.demoRexx.war“ example can be downloaded

from sourceforge. The demo application is perfect to verify if everything is working correctly. After

adding the libraries, add the “javax.demoRexx.war” to the “Tomcat 9.0\webapps” folder and unzip the

file. The webapps directory is where all web applications are deployed.

Finally, it is time to start the Tomcat server and login to the Manager-Interface. If all step were

executed correctly, “java.demoRexx20201124” should be listed. By clicking on the entry, it switches to

an overview of all the JSP-Files the example contains. If everything works correctly they demonstrate

the most important functions of JSP and oRexx and give a good first impression of the following

nutshell examples.

http://localhost:8080/manager
https://sourceforge.net/projects/bsf4oorexx/files/Sandbox/rgf/taglibs/beta/

Apache Tomcat – Cookbook | Andreas Burgstaller

 Page 10 of 48

3 Appetizer

3.1 Nutshell Example 1 - Hello World (Basic JSP Example)

The first nutshell example is a simple JSP page, that prints the historic sentence “Hello World”. Its

purpose is to give an overview of the file structure of applications in Apache Tomcat and to show the

basics of JSP. The applications in Adobe Tomcat are stored in the webapps folder.

/WEB-INF invisible for the web user and contains all
resources needed to run the application
e.g., JAR files, libraries, tag libraries

script-bsf.tld describes the BSF tag library

web.xml deployment descriptor of the web application
e.g., URL Mappings, Servlet definition

index.html default/start page of the application

HelloWorld.jsp JSP file that prints Hello World with the
current date and time

JSP pages are server generated web pages, that contain Java code. The webserver parses the code and

generates a HTML that is sent to the user. The nutshell examples are using the BSF tag library to allow

the use of oRexx code. Therefore, it is not necessary to use any Java code in these examples. To design

webpages in JSP use HTML tags. It is common practice to create a base structure in HTML and then

add scripts that create the dynamic content. 5

To use the tag library in a JSP file, add the line from Figure 5 outside of the <html> tag.

With the support of the BSF library, add a script tag in the <body> tag.

In the script tag it is possible to use all functions of oRexx and by simply using the “say” method, code

is added to the HTML. Furthermore, is it feasible to add a reference for a CSS file, to improve the visual

appearance of the application. Last, add a reference that points to the Nutshell1-HelloWorld.jsp into

the index.html. This page acts as homepage of the application and is loaded when

localhost:8080/Appetizer/ is requested.

Figure 4: webapps folder

Figure 3: localhost/Appetizer/index.html

Figure 5: Nutshell1-HelloWorld.jsp – tag library definition

Figure 6: Nutshell1-HelloWorld.jsp – oRexx script

http://localhost:8080/Appetizer/

Apache Tomcat – Cookbook | Andreas Burgstaller

 Page 11 of 48

4 Main Course

4.1 Nutshell Example 2 - Soccer Table (Advanced JSP Example)

The second nutshell example is an advanced form of the previous one. The main difference is that it

uses more complex oRexx code e.g., arrays and loops. The oRexx code creates an array of soccer teams

and their individual points, which is filled with static test data. Then a loop iterates over this array and

for each entry a row is added to an HTML table. Additionally, the loop compares the points of the

teams. At the bottom of the table the best and worst team is listed.

The complete HTML can be created in the script tag. Therefore, it is very user-friendly to create

dynamic content. Figure 9 shows the HTML content that is created by the second nutshell example.

Figure 10 shows the complete code that is used in this nutshell example. It illustrates that nearly every

HTML content can be created in the script tag, by simply using the say method. In combination with

the other functionalities of the oRexx language this becomes a very powerful tool.

Figure 7: localhost:8080/Main%20Course/index.html

Figure 8: localhost:8080/Main%20Course/Nutshell2-SoccerTable.jsp

Figure 9: Nutshell2-SoccerTable.jsp - generated HTML content

Apache Tomcat – Cookbook | Andreas Burgstaller

 Page 12 of 48

4.2 Nutshell Example 3 - Break-Even-Point (GET Method)

Figure 11: localhost:8080/Main%20Course/Nutshell3-BreakEvenPoint.html

The third nutshell example demonstrates how to create a calculator for the calculation of the break-

even-point. To catch the input values, it is recommended to use the <form> element. This is the easiest

way to collect user data and send it to the web server, where the information is processed. In this

example the GET method will be used to transport the data. With this method the values get appended

to the page request.

For each input, a name-value pair is added and additionally the pairs are separated by a “&” sign. The

values and the page request are separated by an “?” sign.

Example Request: http://www.test.com/index.htm?name1=value1&name2=value26

Figure 10: Nutshell2-SoccerTable - oRexx script

Apache Tomcat – Cookbook | Andreas Burgstaller

 Page 13 of 48

Figure 12 shows the complete <form> element of the break-even-point nutshell example. The first step

for creating a <form> element is to define its action. This action is carried out when the page gets

submitted, usually this is done by a button. In this case an oRexx servlet is executed and prints the

calculated break-even-point to the screen. To collect the values, an <input> element with the type

“text” is used. This creates a blank single-line text input field. To improve the format of the webpage,

the elements are put in a <table> element.

To use the calcBreakEvenPoint.rex servlet, that is defined as action in the <form> element, it is

necessary to implement CGI (Common Gateway Interface) support. This interface enables the web

server to interact with external content-generating programs. By default, CGI support is disabled in

Tomcat and thereby some changes are needed. First go to Tomcat9.0/conf/context.xml and open the

file. There add the privileged attribute to the <Context> tag and set it true.7

Modifying the context.xml in this directory has the drawback, that the changes apply for all web

applications. This could lead to security issues and it is recommended to create a context.xml that

applies only for one web application. To do this, the file must be placed in the WEB-INF folder of the

web application and a root.xml file must be placed in the Tomcat9.0/conf/Catalina/localhost directory

that points to the specific web application.

Figure 12: Nutshell3-BreakEvenPoint.html - <form> element

Figure 13: Tomcat9.0/conf/context.xml – privileged = “true”

Apache Tomcat – Cookbook | Andreas Burgstaller

 Page 14 of 48

The second step to add CGI support is to adapt the web.xml in the WEB-INF folder. Add a servlet

definition, that implements the CGIServlet class and define the storage location of the servlets as

WEB-INF/cgi. Then create the associated folder, name it “cgi”, in the WEB-INF directory. Last, add an

appropriate servlet-mapping, which is traditionally the URL /cgi-bin/*.

Figure 15: MainCourse/WEB-INF/web.xml – servlet definition

Finally, it is possible to execute the oRexx Servlets by the GET method of the HTML <form>.

Figure 16 shows the calcBreakEvenPoint.rex servlet. Just like in previous nutshell examples, the HTML

code is being created by using the “say” method. Since the GET method directs to a different webpage,

it is necessary to create a new HTML file from scratch.

First the content type must be defined and set to text/html. Next, get the values that were appended

to the page request. Then use a loop to extract every key and value from the string. The name of each

value was defined in the <input> tag before. The last step is to insert the values into the formular to

calculate the break-even-point and print the solution to the screen. This simple formular was chosen

to demonstrate how to implement oRexx servlets and execute them with the GET method. Instead of

this simple calculation, any other oRexx code could be processed.

Figure 14: Tomcat9.0/conf/Catalina/localhost/root.xml

Apache Tomcat – Cookbook | Andreas Burgstaller

 Page 15 of 48

 To conclude on this example, developing complex web application is already possible with the content

shown so far in the nutshell examples. Nevertheless, the GET method has some major disadvantages

that limits its practicable uses. The core problem is that the GET method appends the values in plain

text. This is a major security risk and thereby makes it unusable for sensitive data. Moreover, there are

some data size and type restrictions. Luckily, there exists another method that can send information

to the web server. This is the POST method, which will be used in the next nutshell example.

Figure 17:: Nutshell3-BreakEvenPoint.html – GET request and servlet output

4.3 Nutshell Example 4 – Rock-Paper-Scissor (POST Method)

The fourth nutshell example will demonstrate how to use the POST method to execute a more complex

oRexx servlet code example. The basic function of this example is to play a rock-paper-scissor game

against a randomly choosing computer enemy. The example should also illustrate how to implement

image files or other resources in HTML pages.

Figure 16: /WEB-INF/cgi/calcBreakEvenPoint.rex

Apache Tomcat – Cookbook | Andreas Burgstaller

 Page 16 of 48

Figure 19 shows the complete <form> element of the rock-paper-scissor nutshell example.

We use a similar <form> element as in the previous nutshell examples. This time three <input>

elements are used which all act as submit buttons. Every element has an .png file linked, that shows

either an image of rock, paper or scissor. The files are stored in the web application in a folder named

images. When an element gets clicked the HTML becomes submitted and a POST method executes the

rockpaperscissor.rexx servlet.

Figure 19:Nutshell4-Rock-Paper-Scissor.html - <form> element

Figure 20 shows the oRexx servlet which reads the submitted values. Like before, the definition of the

content-type is the first step. This time the extraction of the values differs with the POST method. The

fastest way to get the right data is to look at the complete information that is stored in the

content_body. In this example, we know that our variable is at the front and is either “rock”, “paper”

or “scissor”. By using the PARSE VAR method, we can split the information and get the necessary value.

Figure 18: localhost:8080/Main%20Course/Nutshell4-Rock-Paper-Scissor.html

Apache Tomcat – Cookbook | Andreas Burgstaller

 Page 17 of 48

Then a computer input is randomly generated with the RANDOM method. Last the input of the

computer and the user get compared and a winner is decided. This is done by using IF-ELSE-IF

statements.

Figure 20: /WEB-INF/cgi/rockpaperscissor.rexx

Figure 21: Nutshell4-Rock-Paper-Scissor.html - output of rockpaperscissor.rexx servlet

The POST method, in contrast to the GET method, transfers the information via HTTP headers. The

security of this method depends on the used HTTP protocol. HTTPS ensured that the information is

encrypted and secure. Another advantage is that the POST method has no data size restrictions. It is

also possible to send in ASCII which is not possible with the GET method.

Apache Tomcat – Cookbook | Andreas Burgstaller

 Page 18 of 48

5 Side Dish

This chapter is about features which have been used in all the nutshell examples but were not further

explained. The following information is practically oriented and will facilitate the development of web

applications.

5.1 Cascading Style Sheets

CSS is a feature to define how HTML elements are displayed. This could be the background color,

layout, font-size, font-family, etc. The syntax rules are very simple. Basically, you use a selector that

points to the HTML element and add declarations of the properties with the desired values. 8

There are three different ways to use stylesheets in HTML.

External CSS

When using external CSS files, the stylesheet is stored in an individual file. This has the advantage, that

by changing only one file, the complete style of an HTML can be changed. To include the stylesheet

reference, add a <link> element in the header and define the path of the external CSS file. The

referenced files must be stored in the web application, usually in a folder named css.

This method was primary used in the nutshell examples and is recommended for usual development.

Internal CSS

Internal style sheets can be useful, if one single HTML page has a unique style. The stylesheet is defined

inside the HTML body by using the <style> element.

Figure 22: https://www.w3schools.com/css/css_syntax.asp

Figure 23: including external CSS stylesheets inside the header

Figure 24: Nutshell1-HelloWorld.jsp – header definition

Apache Tomcat – Cookbook | Andreas Burgstaller

 Page 19 of 48

Inline CSS

Inline style can be useful if the style should only apply to one single element. Use it by adding a style

attribute to the relevant element.

CSS Templates

Creating an advanced stylesheet with the right layout and fancy design can be a real challenge. An

alternative to creating own stylesheets from scratch is using resources from the internet. There are

many different templets that are completely free to save, modify and share. These stylesheets often

include responsive elements which enhance the usability and appearance of the webpages.

Before using a templet for commercial use, always inspect the copyright notices. There are many

templates available online without any ownership claims. Some templates require to visible credit the

owner somewhere on the webpage. Usually this is done in the footer of the HTML.

Figure 25: including internal stylesheet in the body

Figure 26: definition of styles for specific elements

Figure 27: https://www.w3schools.com/w3css/w3css_templates.asp

Apache Tomcat – Cookbook | Andreas Burgstaller

 Page 20 of 48

5.2 Tips for Error Handling

In the event of inexplicable errors, it is recommendable to check the Apache Tomcat logging files. By

default, they are stored in the “log” folder of the Tomcat installation. The most noteworthy for the

development is the tomcat9-stderr.”date”.log. It records the exceptions that occur while the server is

running and is a useful information source when running into problems.

Another advise for the development is to enable the debug mode, when executing oRexx sripts. It can

be done by adding the debug attribute and set it “true”.

The debug mode offers an additional table of information.

Figure 28: /Tomcat9.0/logs/tomcat9-stderr.2020-12-12

Figure 29: script tag - debug ="true"

Figure 30: debug mode = “true” – information table

Apache Tomcat – Cookbook | Andreas Burgstaller

 Page 21 of 48

6 Dessert

Figure 31:localhost/Dessert/index.html

6.1 JSTL - Tag Library 9

The nutshell examples in this chapter will demonstrate how to create a connection to a MySQL

database and the execution of fundamental SQL queries. Therefore, the JSTL standard tag library will

be used. It is a collection of useful JSP tags that offers support for structural tasks, XML manipulation,

SQL, etc. To implement this tag library, it is necessary to add two JAR files. Download the newest

version of taglibs-standard-impl-“version”.jar from tomcat.apache.org and the jstl-“version”.jar from

jar-download.com. Add these JAR files into the Apache Tomcat lib folder. To include the libraries to

the JSP, add the code lines of Figure 32. This enables the use of the <sql> and <core> tag, which will be

used in later examples.

6.2 MySQL Database Support10

Before we start with the nutshell examples, it is necessary to set up a database. This can be done with

the MySQL Workbench. Download the installation file from dev.mysql.com/downloads and follow the

installation instruction. During the server setup of the installation a password for the root user is

required. Next start MySQL Workbench and create a simple connection by clicking the “+” icon on the

start page. It is not required to change any input values expect the Connection Name. Press “Test

Connection” and if no errors occur the connection should work without problems. Close the window

by clicking “OK”, double click the new connection and enter the root password you have chosen in the

installation

Connection Name: TestDB

Hostname: 127.0.0.1

Port: 3306

Username: root

Figure 32: Standard Tag Library (JSTL) – definition of <core> and <sql> tag

Figure 33: MySQL Workbench

http://tomcat.apache.org/download-taglibs.cgi
https://jar-download.com/artifacts/org.apache.geronimo.bundles/jstl/1.2_1/source-code
https://dev.mysql.com/downloads/workbench/

Apache Tomcat – Cookbook | Andreas Burgstaller

 Page 22 of 48

Next, navigate to “Server” and “User and Privileges” in the menu bar. Click “Add Account” and enter

the values for the new user. The user for the nutshell examples has the login name “dbUser” and the

password “password”.

Now open a new query window in MySQL Workbench and create a database with a table that can be

accessed by the nutshell examples later. The SQL query from Figure 35 creates a database TestDB with

a table for student data. Additionally, the time zone is set to avoid a common error about undefined

time zones.

Download the mysql-connector-java-“version”.jar from dev.mysql.com/downloads and add it to the

/Tomcat9.0/lib folder. The last step is to define the connection details by creating a data source in the

/Tomcat9.0/conf/context.xml. Now the data base is set up and can be accessed by the web application.

Figure 35: create database and table

Figure 34: MySQLWorkbench-> Server-> User and Privileges – add user account

https://dev.mysql.com/downloads/connector/j/5.1.html

Apache Tomcat – Cookbook | Andreas Burgstaller

 Page 23 of 48

6.3 Nutshell Example 5 – Insert Data

The fifth nutshell example is the first that uses the JSTL resources to access the previously set up

database. The example illustrates, how to collect user data within a web application and save it into a

database. This is a very common use case which can be implemented with little effort. The values are

gathered with an <form> element, similar than in nutshell example 3. By submitting the form, a post

method is executed and the data is added to the students table with an INSERT statement.

Figure 36: add the database connection in /Tomcat9.0/conf/context.xml

Figure 37: /localhost/Dessert/Nutshell5-InsertData.jsp

Figure 38: Nutshell5-InsertData.jsp - <form> element

Apache Tomcat – Cookbook | Andreas Burgstaller

 Page 24 of 48

Figure 39 shows the script that is executed by the post method.

The <core> library offers a various set of functions. Here the <sql> tag is used for the IF statements and

the exception handling is done with the <core> tag. If an error occurs during the execution, it will be

caught by the catch block and the exception message would be printed on the web page.

The SQL statement is created and executed in the <sql> tag. By defining the dataSource the path to

the database is set. We use the “jdbc/TestDB” variable that we previously added to the context.xml.

The syntax of the query is pretty like the regular INSERT statement. The only difference is that we use

“?” as placeholders and then set the values by retrieving the input values from the <form>. If the input

value types are correct and no other error occurs, the student is successfully added to the database

table.

Figure 39: Nutshell5-InsertData.jsp – <core> and <sql> tag of the JSTL library

Figure 40: MySQL Workbench – select * from students

Apache Tomcat – Cookbook | Andreas Burgstaller

 Page 25 of 48

6.4 Nutshell Example 6 – Select Data

Figure 41: localhost/Dessert/Nutshell6-SelectData.jsp

This sixth nutshell example will illustrate, how to retrieve data from the database and present it on a

web page. In the previous example we used the INSERT statement to add one student to the database

table students. For demonstration purposes, further students were added with the same method. Now

we use the <sql> tag for the JSTL library to create a SELECT query. Like before we set the dataSource

and additional create the variable “rs” to catch the return values.

To display the values, we use the forEach method of the <core> tag and iterate through the return

values. Each row is a student with id, first name, last name, birthday and study branch. First the header

of the table columns is set and then a row is added for each student. The “row” variable is accessible

during the loop and always points on the current student. The result is a list of all students in the

student database table, which is presented in a <table> element.

Figure 42: Nutshell6-InsertData.jsp – select statement

Apache Tomcat – Cookbook | Andreas Burgstaller

 Page 26 of 48

6.5 Nutshell Example 7 – Update Data

Figure 44: localhost/Dessert/Nutshell7-UpdateData

The seventh nutshell example is about updating values in the database tables. This will be

demonstrated by changing the study branch of a single student. To update with SQL two things are

required. First, the new value of the attribute to update and second, criteria to clearly determine which

entries should be updated. Students normally have a unique student id. In contrast to the name or

other variables, there cannot be duplicate values for the id. Therefore, it is perfect to identify one

single student.

Figure 43: Nutshell5-InsertData.jsp – creation of student list

Apache Tomcat – Cookbook | Andreas Burgstaller

 Page 27 of 48

Figure 45: Nutshell7-UpdateData.jsp

By using the <sql> tag, an UPDATE statement can be created. The creation is similar to the fifth nutshell

example, where an INSERT was used. The values are collected with the <form> element and a submit

button executes the script.

Figure 46: localhost/Dessert/Nutshell7-UpdateData.jsp - update successful

If no error occurred and a row is updated, the message “Update successful” will be printed. A

transaction without any changes on the contrary, will result in a different message. The user will be

informed by the message “No rows were affected”, because no student with this id exists and thereby

no update happened.

Figure 47: localhost/Dessert/Nutshell7-UpdateData.jsp – no rows updated

To handle the different return results, it is recommended to use if statements. Each return possibility

will be treated different. In the worst case, there will be notification in form of an error text with the

exception message appended.

Figure 48: Nutshell7-UpdateData - exeption handling

Apache Tomcat – Cookbook | Andreas Burgstaller

 Page 28 of 48

6.6 Nutshell Example 8 – Delete Data

Figure 49: localhost/Dessert/Nutshell8-DeleteData.jsp

The eighth nutshell example demonstrates the deletion of a student from the database. Similar to the

update, the deletion requires criteria to determine the entries to delete. Again, the student id is used,

because of its uniqueness. If the transaction is successful, the student is deleted from the table and

only a ROLLBACK of the database could recover the data.

Figure 50: Nutshell8-DeleteData.jsp

The script from Figure 48 can also be implemented in this nutshell example to improve usability of

the web application, by informing the user about changes.

6.7 Nutshell Example 9 – Group Work Organizer

Figure 51: localhost/Dessert/Nutshell9-GroupWorkOrganizer.jsp

The ninth and last nutshell presents an overview of all students. Additionally, the example offers the

functionality to divide the students into separate groups. The group size is defined by an input field

and with a submit button the function can be executed.

Apache Tomcat – Cookbook | Andreas Burgstaller

 Page 29 of 48

The students table, which presents the students data, is loaded with the SELECT query like in nutshell

example 6. The function to divide the students in different groups happens in the oRexx servlet. By

clicking the submit button of the <form> element a POST method gets executed with the input value

for the group size added into the header of the request.

Figure 52: Nutshell9-GroupWorkDivider.jsp

To divide the students into teams, it is also necessary to have access to their names. Therefore, some

of the values returned by the SELECT statement must be added to the request before executing it. This

can be done by using the URL function of the <core> tag. The value of the URL is the oRexx servlet.

Next, iterate through the student data and add every name parameter to this URL. By doing that, the

values will be added to the body of the request, as with the GET method. Last, set the action of the

<form> with this URL, so if the <form> is submitted a POST request with the student names in the body

is sent.11

Figure 53: Nutshell9-GroupWorkDivider.jsp - add students to request body

Figure 54 shows the complete groupStudents.rexx servlet. To implement the oRexx servlet, it is

necessary to follow the same steps mentioned for nutshell example 3 and 4.

In the servlet the input values, both header and body, are retrieved first. To divide the students an

encapsulated loop is used, that iterates through all name values from the request body. The inner loop

adds students to a group till its counter reaches the value of the size variable. Then the counter is reset

to 1 and a new Group is created. In this example, the groups are only printed to the web page and not

further processed. The members are separated by a “/” and between each group a
 tag is added

to force a new text line.

Apache Tomcat – Cookbook | Andreas Burgstaller

 Page 30 of 48

Figure 54: /WEB-INF/cgi/groupStudents.rexx

Figure 55: /localhost/Dessert/cgi-bin/groupStudents.rexx – output of servlet

Apache Tomcat – Cookbook | Andreas Burgstaller

 Page 31 of 48

7 Conclusion

7.1 Summary

To summarize, the work with Apache Tomcat and the development of the nutshell examples was a

really challenging but also satisfying project. In contrast to regular research papers, creating a

cookbook with instructions and nutshell examples is much more practice oriented and animates to get

creative.

After learning the basics of oRexx and the associated tag libraries the development becomes very

intuitive. This is mainly due to the simple syntax of the oRexx language. In combination with JSP it is

no challenge to create fancy web pages that meet the requirements for small use cases. Therefore, it

is a conceivable option for small or medium businesses, which are interested in optimizing or

automating processes.

7.2 Outlook

The last nutshell example demonstrates a combination of nearly all features mentioned in this paper.

Of course, this is not the limit of this resources. There are many improvements, which were not

implemented due to time constraints. The BSF4ooRexx package enables the use of every JAVA class

and thereby offers nearly unlimited features. Another aspect is the database. The database used in the

nutshell example contained only a single table. A more complex database structure and SELECT queries

with JOINs over multiple tables would satisfy more complex use cases. Further, it is possible to use

different kinds of databases, like SQLite.

To wrap it all up, the covered topics offer a solid basis for the development of web applications with

oRexx. I can personally recommend inexperienced students with an interest in web development to

start with Apache Tomcat and oRexx.

Apache Tomcat – Cookbook | Andreas Burgstaller

 Page 32 of 48

Appendix

Appetizer – index.html

Nutshell1.1-HelloWorld.jsp

Apache Tomcat – Cookbook | Andreas Burgstaller

 Page 33 of 48

Nutshell1.2-HelloWorld_DebugMode.jsp

Main Course -index.html

Apache Tomcat – Cookbook | Andreas Burgstaller

 Page 34 of 48

Nutshell2 – SoccerTable.jsp

Apache Tomcat – Cookbook | Andreas Burgstaller

 Page 35 of 48

Tomcat9.0/conf/context.xml

MainCourse/WEB-INF/web.xml

Apache Tomcat – Cookbook | Andreas Burgstaller

 Page 36 of 48

MainCourse/WEB-INF/cgi/calcBreakEvenPoint.rex

Apache Tomcat – Cookbook | Andreas Burgstaller

 Page 37 of 48

Nutshell3 – BreakEvenPoint.html

Apache Tomcat – Cookbook | Andreas Burgstaller

 Page 38 of 48

MainCourse/WEB-INF/cgi/rockpaperscissor.rexx

Apache Tomcat – Cookbook | Andreas Burgstaller

 Page 39 of 48

Nutshell4-Rock-Paper-Scissor.html

Apache Tomcat – Cookbook | Andreas Burgstaller

 Page 40 of 48

Dessert – index.html

Apache Tomcat – Cookbook | Andreas Burgstaller

 Page 41 of 48

Dessert/WEB-INF/web.xml

Apache Tomcat – Cookbook | Andreas Burgstaller

 Page 42 of 48

Nutshell5 - InsertData

Apache Tomcat – Cookbook | Andreas Burgstaller

 Page 43 of 48

Nutshell6 – SelectData

Apache Tomcat – Cookbook | Andreas Burgstaller

 Page 44 of 48

Nutshell7 – UpdateData.jsp

Apache Tomcat – Cookbook | Andreas Burgstaller

 Page 45 of 48

Nutshell8 – DeleteData.jsp

Apache Tomcat – Cookbook | Andreas Burgstaller

 Page 46 of 48

Dessert/WEB-INF/cgi/groupStudents.rex

Apache Tomcat – Cookbook | Andreas Burgstaller

 Page 47 of 48

Nutshell 9 - GroupWorkDivider

Apache Tomcat – Cookbook | Andreas Burgstaller

 Page 48 of 48

Bibliography

1 Tomcat Software Foundation - Apache Tomcat Homepage; Retrieved 11.10.2020, from
https://tomcat.apache.org/index.html

2 Flatscher, R. G. (2016). WU-Wien/BIS-Kurs4; Retrieved 11.10.2020, from

http://wi.wu.ac.at:8002/rgf/wu/lehre/autojava/material/foils/AutoJava-BSF4ooRexx-01.pdf

3 BSF4ooRexx - Installation Guide, from BSF4ooRexx Installation
%PATH%\bsf4oorexx\information\installation

4 Tomcat Software Foundation - „Apache Tomcat Wiki”– Configure Manager Application;
Retrieved 20.10.2020 from https://tomcat.apache.org/tomcat-8.0-doc/manager-
howto.html#Configuring_Manager_Application_Access

5 Tutorials Point – JSP Tutorial; Retrieved 06.11.2020, from
https://www.tutorialspoint.com/jsp/index.htm

6 Tutorials Point – PHP GET&POST Methods; Retrieved 22.11.2020, from
https://www.tutorialspoint.com/php/php_get_post.htm

7 Apache Software Foundation – CGI How To; Retrieved 28.11.2020, from
https://tomcat.apache.org/tomcat-8.0-doc/cgi-howto.html

8 W3SCHOOLS – How To Add CSS – Retrieved 06.12.2020, from
https://www.w3schools.com/css/css_howto.asp

9 JavaTPoint – JSTL (Standard Tag Library); Retrieved 02.12.2020,
https:/www.javatpoint.com/jstl

10 MySQL Workbench Manual – Developer Guide Installation; Retrieved 02.12.2020, from
https://dev.mysql.com/doc/workbench/en/wb-installing-windows.html

11 Tutorials Point – JSTL Core <c:param> Tag; Retrieved 06.12.2020, from
https://www.tutorialspoint.com/jsp/jstl_core_param_tag.htm

https://tomcat.apache.org/index.html
http://wi.wu.ac.at:8002/rgf/wu/lehre/autojava/material/foils/AutoJava-BSF4ooRexx-01.pdf
https://tomcat.apache.org/tomcat-8.0-doc/manager-howto.html%23Configuring_Manager_Application_Access
https://tomcat.apache.org/tomcat-8.0-doc/manager-howto.html%23Configuring_Manager_Application_Access
https://www.tutorialspoint.com/jsp/index.htm
https://www.tutorialspoint.com/php/php_get_post.htm
https://tomcat.apache.org/tomcat-8.0-doc/cgi-howto.html
https://www.w3schools.com/css/css_howto.asp
https://www.javatpoint.com/jstl
https://dev.mysql.com/doc/workbench/en/wb-installing-windows.html
https://www.tutorialspoint.com/jsp/jstl_core_param_tag.htm

