BSF4o00Rexx/Java:

Apache POI

Cookbook and Nutshell Examples for Creating Microsoft

Office Documents for Word, PowerPoint, and Excel

Florian Frcena

12008842

Vienna University of Business and Economics
Business Information Systems Seminar (0068)
Supervisor: Univ. Prof. Mag. Dr. Rony Flatscher

Winter Semester 2023/2024

Declaration of Authorship

I, Florian Frcena, declare that I have written this seminar thesis by my own and without the
help of a second person or unauthorized resources.

Whenever content was used directly or indirectly from other sources, the source has been
referenced.

This seminar thesis has neither previously been presented for assessment, nor has it been
published in Austria or abroad.

This seminar thesis is identical with the assessed paper and the paper which has been
submitted in electronic form.

Date:

Signature:

Seite 1 von 52

Table of Contents

LSt OF FIGUIS. ...ttt b et e et e b e e e e r e e nr e e nne e e 4
LINEOAUCTION ..t 5
1.1 Apache POI-OPEnXMLATccoiiiiiiiiiiii e 6
1.2 BSF400REXX850 ...ttt 6

2. INSLALLALION ... 7
2.1 ooRexx 5.0.0 and BSFA00REXX850.......c.cccuiiiiiiiiiiiieiiiicicee e 7
2.2 Java Zulu JDK 1.8 .o 8
2.3 Intellil] IDEA 00REXX PIUGINcooviiiiiiiiiiee e 9
2.4 APAChe POl s 9

3. MICTOSOft WOTd....oiiiiiiiiiiiiii 11
3.1 First Nutshell EXamPIeoooiiiiiiiiiiiiiii i 11
3.1.1 Creating Paragraphis.......c.cooiviiiiiiiiiiiiiiie e 11
3.1.2 SetaPage Break........cccoiiiiiiiiiiic 12
3.1.3 Saving the Output File........ccooiiiiiiiiiii 12

3.2 Second Nutshell EXample.........ccooiiiiiiiiiiiiiiice s 13
3.2.1 Creating Header or Footer and Setting TeXt..........ccccvvvvriiiiiiiininiiieiiec 13
322 Creating @ Table.....ccviiieiiciiicee e 14

3.3 Third Nutshell EXample.........cccouiiiiiiiiiiiicicc s 15
3.3.1 Accessing an Existing Word Documentccccceevvireiiiiiiiniinieice e 15
3.3.2 Adding New Text and an Imagecccooviriiiniiiiie e 16

4. Microsoft POWETPOINT........c.coiiiiiiiiicee s 17
4.1 First Nutshell EXampleccoooviiiiiiiee e 17
4.1.1 Creating Layout SHAEScocuviiiiiiieiiiiee e 17
4.1.2 Accessing Placeholderscocoiiiiiiiiiiii e 18
4.1.3 Creating Custom TeXtDOXES.......cccviiiiiiiiiiiiiiii e 18

4.2 Second Nutshell EXampleccoooiviiiiiiiiiiiiiiciccee 19
4.2.1 Creating Hyperlinks.........ccooiiiiiiiiiiiiie e 19

Seite 2 von 52

4.2.2 Creating a Table TeXtDOXcccoiiriiiiiiiiiiie e 20

4.3 Third Nutshell EXample........cccoiiiiiiiiiiiiiee e 21
4.3.1 Opening the Existing PowerPoint Presentationsc.cccoevvvverienininniesiennens 21
4.3.2 Merge tWo Presentationsccoovveriiiiienie i 22
4.3.3 Changing the SIide OTdercoiiiiiiiiiierec e 23

5. MiCrosoft EXCEl......ccoiiiiiiiiiiiii i 24

5.1 First Nutshell EXamPIeoooiiiiiiiiiiiiii e 24
5.1.1 Creating Workbooks and Spreadsheetsccccvvvieiiiiiiiiiiiii e 24
5.1.2 Setting Text and FONt........coooiiiiiiiiiiii e 25
5.1.3 Setting Different Cell FOrmatsccccoooviiiiiiiiiiiiiiiee e 26
5.1.4 Setting Column SiZe€cooiiiiiiiiiiiiii 27

5.2 Second Nutshell EXample.........cccociiiiiiiiiiiiiic s 27
5.2.1 Rotating Content Of Cellsccoueiiiiiiiiiiiiic e 27
5.2.2 Setting Various Hyperlinksccccoviviiiiiiiiiiiiee e 28
5.2.3 Merging Cells and Setting Print Area...........ccooveviiiiriiiiiiinieseesee e 29

5.3 Third Nutshell EXample.........cccooiiiiiiiiiic e 29
5.3.1 Setting Random NUMDETS........c.ccoiiiiiiiiiiiii e 30
5.3.2 Basic Evaluation of Numbers using Formulars...........c.ccccoviiiiiniicniiicnen 30
5.3.3 Complex Evaluation of Numbers using Formularsc.c.cccooveiiiininiicnnnnn 31

0. CONCIUSION ...ttt 32
RETETEINCES ...t 34
F N o) 153116 1 . PP PRTPRRTPIN 36

Seite 3 von 52

List of Figures

Figure 1 Visualising messaging in 00REXX.ccviiiiiiiiieiiieisesee e 5
Figure 2 Execution and output 0f 00REXX PrOZIaIN.cceeviriiiriiririeiiieee e 7
Figure 3 Checking if Java is inStalled.ccooeiiiiiiiiiiiere e 8
Figure 4 Editing class path environment variable.c.ccooiiiiiiiiiii e 10
Figure 5 Creating new Word dOCUMENL............cociiiiiiiiiiiiieeee e 11
Figure 6 Creating paragraph and TUIN...........coveeiieiiiiieii e 12
Figure 7 Setting Page DIEak.........ooviiiiiiiiiiie e 12
Figure 8 Saving output dOCUMENL.oiviiiiiiiieiieitie ittt st neesreenbee 13
Figure 9 Creating header 01 TOOLET.c.oiiiiiieiie e 14
Figure 10 Creating @ table.cooiiiiiiiiii et nre e 15
Figure 11 Accessing existing Word dOCUMENL.coiuiiiieiiieiiiiii et 15
Figure 12 Additionally adding text and iMage.ccevuiiiiieiieiieiie e 16
Figure 13 Creating new PowerPoint sSlideShOW.cooviiiiiiiiii s 17
Figure 14 Creating different slide layOouts.cooivieeiiiiiiiic s 18
Figure 15 Accessing placeholders on SHAES.oviveiiiiiiiiiic s 18
Figure 16 Creation of CUSTOM tEXtDOXES.vviverirriiieiriiriee s 19
Figure 17 Creation of hyperlinks.ccccoiiiiiiiiiiieiiice e 20
Figure 18 Creation of a table Within a teXtbOX.cceiviiiiiiriiie s 21
Figure 19 Opening PowerPoint slideshows of first and second Nutshell example.ccccovvvrvrrnnnne. 21
Figure 20 Storing slides of both slideshows in a java arraylist.c.cccovvrieiinieieneeeeee e 22
Figure 21 Importing slides and CONENL.cueiviriieeiiiiee e 23
Figure 22 Changing SIide OTAEr.ccuiiiiiiiiiie e 24
Figure 23 Creating new Excel workbook and spreadsheet.cccocvviiiiiinii i 25
Figure 24 Creating New FONT.........ciiiiiiiiiicie et nree 25
Figure 25 Creation of a cell style and applying it to a cell........ccccooiiiiiiiiiiie 26
Figure 26 Creating and setting cell fOrmats.cooviiiiiiiiiieii e 27
Figure 27 Changing $iZe Of COIUMMNS.oiuiiiiiiiiiiii et 27
Figure 28 Rotating Cell CONLENL.eiiiiiiiiiieiieieite ettt r e e e 28
Figure 29 Various hyperlink poSSIDIIITIES.ccueiiiiiiiiiiiiiiiie e 28
Figure 30 Creating a hyperlink to @ URL.cccoiiiiiiiiiii e 29
Figure 31 Cell merging and SEtting Print QTCa.ccervreererireerineeieesesee e nns 29
Figure 32 Creating and setting random NUMDETS.c.cveveiiiieninieeisesee e s 30
Figure 33 Basic Excel formulars, Sum, Count and Countif.cccocvriiiiiiniii e 31
Figure 34 Statistical evaluation using Min, Max, Average, Median and Stdev...........ccc.ocvvverinvicnnne. 31

Seite 4 von 52

1.Introduction

This seminar paper is created for the fifth course of the business information systems focus, at
the university for business and economics in Vienna. The goal is to give an overview how to
create Microsoft Office documents, using the programming languages open object Rexx and
Java, in combination with the Apache POI Java API. In chapter installation describes which
software components were used to create the featured Nutshell examples. Furthermore, where
to download and how to install and set them up properly. Overall, nine Nutshell examples are
created for the three most common Microsoft Office applications, Word, PowerPoint, and
Excel. For each application 3 different examples, each example deals with at least one new
concept featured in the Apache POI API. There is a detailed explanation of how the Nutshell
examples are coded in the chapters named like the application. The entire code of all Nutshell
examples can be found in the appendix section. At the last chapter of the paper the conclusion
a summary is written and there also mentioned some difficulties that occurred during the

programming process.

All featured Nutshell examples are coded in the programming language open object Rexx
(ooRexx). Open object Rexx is an open-source project by Rexx Language Association and is
an interpreted programming language containing many features and uses a simple syntax. It is
chosen as the programming language for the featured Nutshell examples, because ooRexx is
easy to understand and to use also for people with no programming experience. Another benefit
of ooRexx is that there are fewer rules required in your code like in other programming
languages, e.g. Java. Furthermore, ooRexx is a message-based programming language, this
means that it is possible that a created variable is able to send a message, using the tilde as the
message operator, to perform a method related to the variable. In the figure below there is an
example code snippet of the first Word Nutshell example. The variable “titlePara” is created
and defined by the variable “document” and document sends the message to perform the
“createParagraph()” method. Explained in words, this snippet shows how to create a new
paragraph within a Word document, using a message in the correct ooRexx syntax. This is used

in all Nutshell examples and will only be mentioned here. (Open Object Rexx, 2015)

titlePara=document~createParagraph()

Figure 1 Visualising messaging in ooRexx.

Seite 5 von 52

1.1 Apache POI-OpenXML4J
Apache POI-OpenXMLA4]J is the Java API for Microsoft documents it is required to create and
manipulate Microsoft documents using Java programs. Apache POI is developed and updated
by the Apache Software Foundation as an open-source project. The API contains different
components, one component for the following Microsoft Office applications, Excel,
PowerPoint. Word, Outlook, and Publisher. For this paper these are the used components of the
API, XWPF for dealing with Word documents, XSLF for dealing with PowerPoint documents
and XSSF for dealing with Excel documents. To use the API a connection to Java is required,
how to get the connection is explained in detail in chapter 2.4. On the Apache POI homepage
is a detailed documentation, for all the different versions and components of the API, in the
section “Javadocs” available. Alternatively, the java docs of the newest version of the API can

be accessed directly via this link, https://poi.apache.org/apidocs/5.0/. There can be found a

detailed listing of all available classes and methods for each component of the API. The
documentation and the quick guides on the homepage of the API were a very helpful source for

all coded Nutshell examples featured in this paper. (Apache Software Foundation 1, 2023)

1.2 BSF400Rexx850

To use any Java libraries or classes including the Apache POI Java API in your ooRexx
programs the bean script framework for ooRexx, called BSF400Rexx850, is necessary.
BSF400Rexx is a package that creates a bridge between ooRexx and Java, both have to be
installed correctly on your pc. If installed correctly it is necessary to use the “::Requires
BSF.CLS” directive at the end of your code to get access to Java and all the classes and libraries
featured in the Java class path environment variable. In the featured Nutshell examples there is

also the “.bsf” function required in the code to get access to java classes. How to get to the class

path and edit it is explained in the installation chapter 2.4 Apache POI. (Sourceforge 1, 2021)

Seite 6 von 52

https://poi.apache.org/apidocs/5.0/

2. Installation

This Chapter of the paper explains which software components are necessary to code or execute
the featured Nutshell examples, where to download from and how to install them. Some of them
are mandatory, ooRexx 5.0.0, as the ooRexx interpreter to code and execute ooRexx programs,
BSF400Rexx850, as the bridge from ooRexx to java, to get access to java classes within
ooRexx. Java 1.8 or newer and Apache POI, the java API which supplies all the necessary
classes and methods used in the featured Nutshell examples. An optional software component
which allows easier coding than in the standard ooRexx GUI, is the integrated development
environment IntelliJ IDEA by JetBrains, if IntelliJ IDEA is used an ooRexx plugin is required
to get syntax highlights for the code and to create and execute ooRexx programs within IntelliJ

IDEA.

2.1 ooRexx 5.0.0 and BSF400Rexx850
Main software component of this paper is ooRexx 5.0.0, as it is the used programming language
for the featured Nutshell examples. Any information about ooRexx can be found on the

homepage of the Rexx language association, https://www.rexxla.org/. On the main page the

download link for the ooRexx 5.0.0 interpreter can be found, or alternatively via this link,

https://sourceforge.net/projects/oorexx/ which leads directly to the sourceforge ooRexx page

and to the download button for the latest version of the ooRexx interpreter, it can be choosen
between a 32-Bit or 64-Bit version, should match the bit rate of your operating system. After
downloading and before installing the user has to agree in the properties of the ooRexx installer
that this is a program of a trustworthy source. The ooRexx interpreter is required to execute
ooRexx programs via the terminal. To execute a program, open the terminal in the folder the
program is stored in, first you need the command “rexx” then a blank space and the exact name

of the Rexx program, like in the figure below.

B Eingabeaufforderung X T |V

Microsoft Windows [Version 18.0.22631.2715]
(c) Microsoft Corporation. Alle Rechte vorbehalten.

A /\

Figure 2 Execution and output of ooRexx program.

Seite 7 von 52

https://www.rexxla.org/
https://sourceforge.net/projects/oorexx/

The link to the latest version of BSF4ooRexx can be found at the main page of the Rexx
language association, or alternatively via this link which leads to the BSF4ooRexx sourceforge

page, https://sourceforge.net/projects/bst4oorexx/files/beta/20221004/. For all the Nutshell

examples featured in this paper, BSF4ooRexx v859-20230619-beta, was used. After
downloading the latest BSF4ooRexx version as a .zip file, the file should be extracted in a folder
in the program’s directory. When extraction is finished the installation process begins, double
click on the created folder, then double click on bsf4oorexx folder and there the folder install
can be found. Within the install folder are featured the install packages for all major operating
systems like Windows, Linux or MacOS. Each of the install packages contains an install, a
reinstall and an uninstall file, for the first instalment the install file should be executed.

(Sourceforge 1, 2021)

2.2 Java Zulu JDK 1.8
To get access to Java classes or libraries via BSF4o0Rexx a Java version has to be installed on
your pc. The first step is to check if Java is already installed on your pc, this can be easily done
via the terminal on your desktop. Open the terminal and type the command “java” a blank space
and then the command “-version”, this gives the feedback if java is already installed and which

exact java version. The output of my pc can be found in figure 3 below.

B Eingabeaufforderung X +

Microsoft Windows [Version 10.6.22631.2715]
(c) Microsoft Corporation. Alle Rechte vorbehalten.

C:\—\Desktop'f)ava -version

openjdk version "1.8.8_372"

OpenJDK Runtime Environment (Zulu 8.70.6.23-CA-winéd) (build 1.8.6_372-b87)
OpenJOK 6u-Bit Server VM (Zulu 8.76.8.23-CA-win6d) (build 25.372-b87, mixed mode)

Figure 3 Checking if Java is installed.

The installed java version on my pc is the Java Zulu OpenJDK 64-Bit version “1.8.0 372"
which can be downloaded at the Azul homepage accessible via this link,

https://www.azul.com/downloads/?package=jdk#zulu. On the Azul homepage are all kinds of

Java versions for all major operating systems available, from Java version 1.8, the minimum
required java version for Apache POI, to the newest Java version 1.21.0. The chosen version
should contain the JDK and the FX package and has to match the bit rate of the installed ooRexx

version. At downloading can be chosen from two different files a .zip file or .msi file, I would

Seite 8 von 52

https://sourceforge.net/projects/bsf4oorexx/files/beta/20221004/
https://www.azul.com/downloads/?package=jdk#zulu

recommend downloading the .msi file, because after downloading a MSI installer is opened

which leads through the installation process step by step.

2.3 IntellilJ IDEA ooRexx Plugin
All the Nutshell examples featured in the paper where coded in the integrated development
environment IntelliJ IDEA by JetBrains, the use of IntelliJ IDEA is not required, but it is more
convenient to code in IntelliJ IDEA than in the standard ooRexx GUI. IntelliJ IDEA can be
downloaded on the official JetBrains homepage accessible here,

https://www.jetbrains.com/idea/, you can choose between the ultimate or the community

edition, the community edition is free to use and is completely sufficient. If you decide to use
IntelliJ IDEA, then you need to install the ooRexx plugin for IntelliJ IDEA, because ooRexx is
not featured in the standard version of IntelliJ IDEA. The newest version of the required plugin
can be downloaded using this link here,

https://sourceforge.net/projects/bsfdoorexx/files/Sandbox/aseik/ooRexxIDEA/GA/. This link

leads you to the sourceforge page of the ooRexx plugin. After downloading do not unzip the
.zip file of the plugin, because the .zip file will be imported in IntelliJ IDEA. First start IntelliJ
IDEA and press the register card Plugins on the left, then press the gear icon in the middle on
the top of the page and there is the possibility to click, “Install Plugin from disk...”. After
choosing this option you get the possibility to import the downloaded plugin zip file and to
finish the process IntelliJ IDEA has to be restarted. (Sourceforge 1, 2021)

2.4 Apache POI
The Apache POI Java API can be downloaded on the official Apache POI website accessible

via this link, https://poi.apache.org/download.html. This link leads to the download section of

the website, if you want to download the necessary .jar files to use the API, you have to scroll
down to the release archives section. In this section the source and binary artifacts are
distributed, to use the Apache POI API in your code the latest distributed binary version is
needed. The version used to code the featured Nutshell examples is Apache POI 5.2.3 and the
poi-bin-5.2.3-20220909.zip was downloaded, this zip archive features all necessary .jar files
which are required to work with the API, a list of all used .jar files can be found in the appendix.
After downloading the zip archive extract it to a folder of your choice. To use the API in your
Java code, you need to attach the downloaded Apache POI jar files to the java class path

environment variable. On windows it works the following way, open the settings of your pc,

Seite 9 von 52

https://www.jetbrains.com/idea/
https://sourceforge.net/projects/bsf4oorexx/files/Sandbox/aseik/ooRexxIDEA/GA/
https://poi.apache.org/download.html

and click on system, then choose advanced system settings. This leads to a popout window with
the button environment variables on the bottom left. Click the button to get to all available
environment variables including the class path, after choosing the class path, it is possible to
write the full path of the required .jar files in the class path environment variable. A possible

way to write the .jar files in the class path can be found in figure 4 below.

C:\Program Files\BSF4ooRexx850\lib\poi-5.2.3.jar Neu
C:\Program Files\BSF4ooRexx830\lib\poi-examples-5.2.3 jar

C:\Program Files\BSF4ooRexx8530\(ib\poi-excelant-3.2.3 jar Bearbeiten
C:\Pragram Files\BSF4ooRexx830\lib\poi-javadoc-5.2.3 jar

C:A\Program Files\BSFAooRexx830\lib\poi-ooxml-3.2.3 jar Durchsuchen,..
C:\Program Files\BSFdooRexx830\lib\pei-coxml-full-3.2,3,jar

C\Program Filec\BSFAooRexx850\lib\poi-ooxml-lite-5.2.3.jar Loschen

C:\Pragram Files\B5F4ooRexx830\lib\commons-codec-1.15ar
C:A\Program Files\BSF4ooRexx850\lib\commons-collections4-4.4,jar

C\Program File'BSF4ooRexx 830\ ib\commons-compress-1.21.jar Nach oben
C:\Program Files\BSF4coRexx230\(ib\commons-io-2.11.0,jar
C:\Pragram Files\BSF4ooRexx830\lib\commens-math3-3.6.1 jar Nach unten

C:A\Program Files\BSFAooRexx830\lib\curvesapi-1.07 jar
C:\Pragram Files\BSF4ooRexx830\lib\jakarta.activation-2.0.1.jar
C:\Program Fites\BSFdooRexx850\lib\iakartaxml.bind-api-3.0.1 jar Text bearbeiten..,

Figure 4 Editing class path environment variable.

Seite 10 von 52

3. Microsoft Word

Microsoft Word is a word processor designed and developed by Microsoft. Using the Java API
Apache POI and the XWPF format it is possible to create and manipulate word documents and
is used in all Microsoft Word Nutshell examples featured in this paper. The sources for the
featured Word Nutshell examples are freely available coded Java examples on tutorials point,
there can also be found a detailed explanation of Apache POI Word accessible via this link,

https://www.tutorialspoint.com/apache_poi_word/apache_poi_word_quick guide.htm. And

further examples on mkyonk.com https://mkyong.com/java/java-read-and-write-microsoft-

word-with-apache-poi/#document-header-and-footer. The provided Java examples are the

foundation for the coded Nutshell examples using BSF4ooRexx.

3.1 First Nutshell Example
The first Nutshell example shows how to create a Word document and creating and editing text
in paragraphs. At the end you can see how to create and store the output Word document. The
second Nutshell example additionally shows how to create a header, a footer, and a table in a
Word document. In the third Nutshell example accessing an existing Word document 1is

explained and how to insert a new paragraph and an image.

First, we need to create a new unedited Microsoft Word document. To do this, we need to create
a new instance of “org.apache.poi.xwpf.usermodel. XWPFDocument”,like in figure 5 below.

This will give us access to all the available methods of the “XWPFDocument” class.

document=. bsf~new("org.apache.poi.xwpf.usermodel.XWPFDocument")

Figure 5 Creating new Word document.

3.1.1 Creating Paragraphs
In the figure below you will see how a paragraph is created and how to edit the text within a
paragraph. To align a paragraph, we have to import the Class “ParagraphAlignment” as you can
see in line 17. This Class allows you to align a paragraph on the left, the right or in the centre,
of a page. To write a text into the created paragraph, you have to create a run for the paragraph.
With in this run you are able to set an individual text with the “setText()” method and the text
in brackets and quotes. It is possible to change the font type using the “setFontFamily() method,
with the chosen font name in brackets, here “Bahnschrift” is used. To create a bold text the

“setBold(1)” method is used, the 1 as the parameter of the method means true.
Seite 11 von 52

https://www.tutorialspoint.com/apache_poi_word/apache_poi_word_quick_guide.htm
https://mkyong.com/java/java-read-and-write-microsoft-word-with-apache-poi/#document-header-and-footer
https://mkyong.com/java/java-read-and-write-microsoft-word-with-apache-poi/#document-header-and-footer

bsf~bsf_inportClass("org.apache. poi, xwpf . usermodel.ParagraphAlignment”,

~

titlePara=document~createParagraph()
titleRun=titlePara~createrun()
titleRun~setBald{1)
titleRun~setFontSize(30)
titleRun~setFontFamily(“Bahnschrift”)
titleRun~setText("Enter Your Title Here")

titlePara~setAligneent(.ALLgningParagraph~CENTER)

Figure 6 Creating paragraph and run.

3.1.2 Set a Page Break
To create a paragraph on the second page of a word document you have to set a page break
within the created paragraph using the “setPageBreak()” method and the attribute 1 in brackets
to activate the page break. Now the created paragraph is displayed on top of the next page. The
text of the paragraph can be set, aligned, and edited the same way as mentioned in the section

above.

p2=document~createParagraph()
p2~setWordWrapped(1)
p2~setPageBreak(1)

Figure 7 Setting page break.

3.1.3 Saving the Output File

To save the created document we need the “FileOutputStream” java class. The
“FileOutputStream” java class allows one to set a filename and to store a file in any directory
required. The created output document should be stored in the same directory, as the code is
stored in. Therefore, the full path of the directory we are currently working in is needed. With
the “parse source” built in method of ooRexx it is possible to parse the source of our coded
programme and store it in a variable, here in this example “a”. We also need the local directory
of the source stored in the used variable. Therefore, “call directory filespec(‘L’, a)” is needed
to get the local directory of the source stored in variable a. Now it is possible to concatenate the
chosen name of the document with the directory we are working in and store it in the variable
filename. To correctly run our programme on different operating systems like Windows, Unix
or MacOS you have to use a qualified file path.

Seite 12 von 52

When creating a new instance of “java.io.FileOutputStream” as the output for a document, one
has to hand over the qualified filename in order to save the document correctly. At the end of
the programme, it is necessary to send the created document the message “~write(output)” to
get the write the output of the created program in a Word document with the previously

determined name. The code is provided in figure 8 below.

parse source . . a
call directory filespec('L’', a)
filename=directory()"/First_Nutshell_Example.docx"
filename=qualify(filename)
output=.bsf~new("java.io.FileOutputStream”, filename)
document~write(output)

Figure 8 Saving output document.

The explained way to save a document is used for all coded examples featured in this seminar
thesis, no matter if it is a Word, PowerPoint, or Excel output file. One change is necessary,
particularly the correct name of the output file and the file specification, .pptx for PowerPoint

presentations and .xml for Excel workbooks.

3.2 Second Nutshell Example

This Nutshell example additionally explains how to create a header and a footer at a Word

document and to insert a table of any chosen size in a Word document.

3.2.1 Creating Header or Footer and Setting Text

To create a header or footer for the created document, one have to load the
“org.apache.poi.wp.usermodel.HeaderFooterType” class to get access to all header and footer
related methods. It is possible to create three different header or footer types, namely default,
even or odd. The default type means that the header or footer is placed on each page, the even
type places headers or footers only on even pages and the odd type only on odd pages. For this
nutshell example the default type for the header and footer was used. To create a header the
“createHeader()” method is used and in brackets it is specified which header type should be
used. After the header is created one has to create a paragraph within the header and in order to
set a text one has to create a run like in a normal paragraph.

Seite 13 von 52

In this example a different variant was used to set the text of a paragraph. First the text of the
header was stored in the variable “headerText”. During the run with the “setText” method the
variable “headerText” was handed over and the text stored in the variable was set in the header.
To create a footer it works the same way as to create a header, one has only to use the
“createFooter()” method, instead of the “createHeader()” method, and the names of the used
variables for easier visualisation. In figure 9 below is a section of how it is done in the featured

example.

.bsf~bsf.loadClass("org.apache.poli.wp.usermodel.HeaderFooterType", "HeaderFooterType")

header=document~createHeader(.HeaderFooterType~DEFAULT)
headerParagraph=header~createParagraph()

headerText="This 1s the header of thls document.™
run=headerParagraph~createRun()
run~setText(headerText)

footer=document~createFooter(.HeaderFooterType~DEFAULT)
footerParagraph=footer~createParagraph()

footerText="This is the footer of this document."
runi=footerParagraph~createRun()
runi~setText(footerText)

Figure 9 Creating header or footer.

3.2.2 Creating a Table
To create a Table within a word document one has to use the “createTable()” method of the
“XWPFDocument” class. This method generates a Table with no specific size. In order to get
the first cell of the table one has to define the first row with the “getRow()” method. In this
example 0 means the first row, because the index of BSF400Rexx850 starts at 0. The first cell
of the row is created automatically, further two more cells in the first row are created. If
additional table rows are created, there are automatically generated three cells in each row. To
set a text in a specific table cell one has to address the desired cell. If you want to set a text in
the second cell of the second row, you have to define row 2 using the create row method and
the method “getCell(1)” for cell two and the method "setText()”” with your text in brackets and

quotes.

Seite 14 von 52

: o
regting 100lLe

table=document~createTable()

\rirdr

Addressing first row cells

rowl=table~getRow(0)

rowl~getCell(0)~setText("First Row, First Column")
rowl~addNewTableCell()~setText("First Row, Second Column")
rowl~addNewTableCell()~setText("First Row, Third Column")
row2=table~createRow()

row2~getCell(0)~setText("Second Row, First Column")
row2~getCell(1)~setText("Second Row, Second Column")
row2~getCell(2)~setText("Second Row, Third Column")
row3=table~createRow()

row3~getCell(0)~setText("Third Row, First Column")
row3~getCell(1)~setText("Third Row, Second Column")
row3~getCell(2)~setText("Third Row, Third Column")

Figure 10 Creating a table.

3.3 Third Nutshell Example
This Nutshell example is an extended version of the first Nutshell example. Additionally, to the
first example this contains an extra paragraph and an image at the second page of the created

Word document.

3.3.1 Accessing an Existing Word Document
Unlike with the two previous examples the Word document is not created directly at the
beginning of the code. First, we need to get the full qualified path of the Word document which
we want to access and store the path in a variable. Secondly a variable which contains a new
“java.io.FileInputStream”, with the previous created filename, is created. Now it is possible to
create a new Word document with the file input variable as the parameter to get access to the

desired document. Figure 11 gives an overview how it is done.

parse source . . C

call directory filespec('L', c)
filenamel=directory()"/First_Nutshell_Example.docx"
filenamel=qualify(filenamel)

olddocument=.bsf~pew("java.io.FileInputStrean", filenamel)

n T n n " NOET
€ e eWw AWr

Document for the output

document=. bsf~new("org.apache.poi.xwpf.usermodel.XWPFDocument”, olddocument)

Figure 11 Accessing existing Word document.

Seite 15 von 52

3.3.2 Adding New Text and an Image
The additional paragraph is created the same way as paragraphs in the first Nutshell example,
but the code has to be placed after the file input section. To insert an image into a Word
document the two classes in line 17 and 18 of the figure below are needed, the document class
is required to address the document when inserting an image. Same as a text a paragraph and a
run must be created. The image has to be stored in the same directory as your coded example
and the path must be qualified to get access to the image. Now a new file input stream with the
image path is created. To add the picture to a run the “addPicture()” method is required. This
method contains of 5 different necessary parameters. The input stream, stored in a variable, for
the image, the definition of the image file format, in this example “.png” and the name of the
png image. The last to parameters require the “org.apache.poi.util.Units” util class to set the
width and the height of the inserted image, using the “toEMU” method and the size in points,
here 250 points for height and width. Figure 12 contains all necessary lines of code to create a

paragraph and inserting an image.

newParagraph=docunent~createfaragraph()
newrRun=newParagraph~createrRun{)

newRun-setText("It was added after accessing the previously created Word document.")
.bsf~bsf.loadClass("org.apache.poi.xwpf. usernodel . Docurent”, "Document™)
.0sf~bsf.inportClass("org.apache.pol.util. Units™, “"Units")

imageParagraph- document~createParagrapn()
imageRun=LnageParagraph~createRun()

imagePath=directory()"/java.png

imagePath=guolify(imagePath)

image=.0sf~nen("Java.lo.FileInputStrean”, 1inagePath)

imageRun~addPicture(image, .Oocument~PICTURE_TYPE_PNG, “java.png”, .Units~toEMU(258), .Units~toEMU(25G))

Figure 12 Additionally adding text and image.

Seite 16 von 52

4. Microsoft PowerPoint

PowerPoint is a presentation application developed and designed by Microsoft. Via the Java
Api Apache POI and the XSLF format it is possible to create and manipulate PowerPoint
documents and is used in all Microsoft PowerPoint nutshell examples featured in this paper.
The sources for the coded PowerPoint Nutshell examples are coded Java examples freely
available on tutorials point and for further detailed explanation of the possibilities of Apache

POI XSLF API component, accessible direclty via this link,

https://www.tutorialspoint.com/apache_poi_ppt/apache poi_ppt_quick guide.htm. The
second source used is baeldung.com, where also is explained how to create a PowerPoint

presentation using Apache POI available here, https://www.baeldung.com/apache-poi-

slideshow.

The first Nutshell example shows how to create a new presentation and slides with a specific
layout and custom text boxes. Additionally shows the second Nutshell example how to insert a
hyperlink to a slide and a table to a custom created text box. The last Nutshell example explains
how to merge the presentations of the first and second example together in a single presentation

and how to change the order of slides.

4.1 First Nutshell Example
First, we have to create a new unedited Microsoft PowerPoint document. In Apache POI a
PowerPoint presentation is called slideshow. Therefore, we have to create a new instance of the

“org.apache.poi.xslf.usermodel. XMLSlideShow” class. This instance allows us to get access to

all available methods and classes of the “XMLSlideShow” class.

presentation=.bsf~new("org.apache.poi.xslf.vusermodel.XMLS1ideShow")

Figure 13 Creating new PowerPoint slideshow.

4.1.1 Creating Layout Slides
In PowerPoint exists a so-called slide master. With in the slide master the layouts of all standard
slides, like title slide, title only slide or title and content slide, are stored. To get access to all
slides of the slide master the method “getSlideMasters()” is used and the method “get()” with
the attribute 0 in brackets to retrieve all available master slides. To create a slide with a specific
layout the class “org.apache.poi.xslf.usermodel.SlideLayout” is required. Now it is possible to

store a slide layout in a variable. The first slide created in this example is a title slide. As you
Seite 17 von 52

https://www.tutorialspoint.com/apache_poi_ppt/apache_poi_ppt_quick_guide.htm
https://www.baeldung.com/apache-poi-slideshow
https://www.baeldung.com/apache-poi-slideshow

can see in line 7 in figure 14 below. Furthermore, in this example a slide with only a title and a

slide with title and content are created.

template=presentation~getSlideMasters()~get(0) etrieve LT master slid
layout=template~getlLayout("title slide") -- t Layout
layoutl=template~getLayout("title only")

layout2=template~getLayout("title and content")

titleslide=presentation~createSlide(layout)

Figure 14 Creating different slide layouts.

4.1.2 Accessing Placeholders
Whenever a slide with a specific layout is created, there are also created different textboxes
automatically referring to the created layout, so called placeholder. To get access to a
placeholder the method “getPlaceholder()” is used. To get access to the first placeholder on a
slide the first index of the placeholder has to be addressed. As the programming language
ooRexx is used in all examples the first index starts always with zero. After Accessing the
placeholder, it is possible to set an individual text. If the slide layout provides more than one
placeholder it is possible to access them with their correct index. Placeholder two is accessed
by index 1 and placeholder three by index 2. Figure 15 explains how to set texts in placeholders

of a title and content slide.

secondslide=presentation~createSlide(layout2)
secondTitleTextbox=secondslide~getPlaceholder(8)
secondTitleTextbox~setText("Here is a Slide With Bullet Points")

ContentTextbox=secondslide~getPlaceholder(1)
ContentTextbox~setText("First Text")

Figure 15 Accessing placeholders on slides.

4.1.3 Creating Custom Textboxes
To create a custom textbox the class “java.awt.Rectangle” and the “createTextBox()” method
are required. Each textbox needs a so-called anchor, with a new created rectangle, to determine
the location and size of the textbox at a slide. Therefore the method “setAnchor()” is used and

all necessary input parameters can be found in line 47 of figure 16 below. After the creation of

Seite 18 von 52

the textbox, it is possible to create paragraphs and text runs with individual text the same way

as in automatically created placeholders.
.bsf~bsf.importClass("java.awt.Rectangle”, "Rectangle")

textbox=firstslide~createTextBox()
textbox~setAnchor(.Rectangle~new(50, 150, 400, 200))
paragraph=textbox~addNewTextParagraph()
run=paragraph~addNewTextRun()

run~setText("Text in a custom created textbox.")
paragraphl=textbox~addNewTextParagraph
runl=paragraphl~addNewTextRun()

runl~setText("Second paragraph of the textbox.")

Figure 16 Creation of custom textboxes.

4.2 Second Nutshell Example

In addition to the first Nutshell example, this example shows how to insert hyperlinks and a

table within a created textbox.

4.2.1 Creating Hyperlinks
In PowerPoint it is possible to embed a hyperlink to any website to a previous set text. For this
part of the example a “title and content” slide with two placeholders is used. The first
placeholder contains the title of the slide. The second placeholder needs to be cleared from the
automatically created standard text of the content placeholder. After clearing the text contained
in the placeholder and creating a new paragraph and text run, the text to be converted into a
hyperlink is set. Now the variable link is used to create a hyperlink within the previous created
text run, using the "createHyperlink()” method. Now the variable link needs to be linked to the
URL of the requested website, using the “setAddress()” method with the full path to the website

in brackets featured in figure 17 below.

Seite 19 von 52

nt

firstslide=presentation~createSlide(layoutl)
Textbox=firstslide~getPlaceholder(0)
Textbox~setText("Hyper Link to the Apache POI Javadocs")

Textbox1=firstslide~getPlaceholder(1)
Textboxl~clearText()
textRun=Textbox1~addNewTextParagraph()~addNewTextRun()
textRun~setText("Apache POI Javadocs")
link=textRun~createHyperlink()
link~setAddress("https://poi.apache.org/apidocs/5.0/")

Figure 17 Creation of hyperlinks.

4.2.2 Creating a Table Textbox
To create a table textbox the “java.awt.Rectangle” class is needed, like in the creation of a
normal textbox. The table is created at the second slide using the “createTable()” method and
needs an rectangle as an anchor to determine the place and the size of the table textbox. Two
variables are defined to set the amounts of the rows and columns of the table, in this example
the table contains three rows with two columns each. To create the table in an efficient way an
outer and an inner do-loop is used in the code featured in figure 18 below. The outer do-loop is
required to iterate over the variable “rowCount” to add a new row to the table and reduce the
value at each pass by one and stops when the row counter “rowCount” hits zero. Within the
outer do-loop the inner do-loop is required to create cells for the created rows. The inner do-
loop iterates over the variable “colCount” to add all required cells, set text to them with
automatic numbering and set the size of each column to 150 points at the previous created row.
The inner do-loop stops when the column counter “colCount” hits zero. In this example a table

with three rows and two cells in each row are created.

Seite 20 von 52

e J cant g tal

o A el a1
ifNSt L ONn suided

table=secondslide~createTable()
table~setAnchor(.Rectangle~new(50, 150, 500, 200))

-- Add rows and cells to the table
rowCount=3
colCount=2
do row=8 to rowCount -1
tableRow=table~addRow()
do col=0 to colCount -1
tableCell=tableRow~addCell()
tableCell~setText("Row" row+l ", Column" col+1)
table~setColumnWidth(col, 150)
end
end

Figure 18 Creation of a table within a textbox.

4.3 Third Nutshell Example

This Nutshell example combines the two slide shows created in the two examples explained

above and shows how to get access to previous created slides and change their order.

4.3.1 Opening the Existing PowerPoint Presentations
Accessing an existing PowerPoint presentation works the same way as explained in chapter
3.3.1. Otherwise, then in that example it is necessary to create two independent “java file input
streams” one for each presentation and store the two input streams in individual variables, here

“firstoldpresentation” and “secondoldpresentation”.

parse source . . g
call directory filespec('L', g)

firstfilename=directory()"/First_Nutshell_Example.pptx"
firstfilename=qualify(firstfilename)
firstoldpresentation=.bsf~new("java.io.FileInputStream", firstfilename)

secondfilename=directory()"/Second_Nutshell_Example.pptx"
secondfilename=qualify(secondfilename)
secondoldpresentation=.bsf~new("java.io.FileInputStream"”, secondfilename)

Figure 19 Opening PowerPoint slideshows of first and second Nutshell example.

Seite 21 von 52

4.3.2 Merge two Presentations
The “java.io.FileInputStream” class allows one to import an existing file, here a “.pptx” file,
one to one, however it is only possible to import one file per file input stream, so there is a little
work around needed to achieve the goal of merging two PowerPoint presentations together.
First one has to create a new java array list, using the “java.util. ArrayList” class, to store all
slides from both presentations in this array list. Secondly, two new slide shows were created
using the variables in which the two separate java file input streams were stored previously. The
next step is to get access to all slides of both presentations using the “getSlides()”” method. Now
it is possible to put them all in the previous created java array list, defined in the variable
“slidesList”, using the “addAll()” method, with the name of the used slide show and the
“getSlides()” method in brackets. This has to be done twice, one time for each presentation and
1s featured in line 30 and line 31 in figure 20 below. Only now is the PowerPoint presentation

created that serves as the output for this example.

slidesList=.bsf~new("java.util.ArraylList")
xmiStideShowl=.bsf~new("org.apache.poi.xslf,usermodel.XMLS1ideShow", firstoldpresentation)
xmlSlideShow2=.bsf~new("org.apache.poi.xs1f,usermodel.XMLS1ideShow", secondoldpresentation)

slidesList~addAll(xmiSiideShowl~getSiides())

slidesList~addAlLl(xmlSlideShow2~getSlides())

presentation=.bsf~new("org.apache.pol.xsif.vsermodel.XMLS1ideShou")

Figure 20 Storing slides of both slideshows in a java arraylist.

If you would import the content of all slides using the “importContent” method and open the
created PowerPoint presentation now, you would mention that the alignment of the textboxes
of the created slides is way different than in the presentations created in the first or second
Nutshell example. I assume that’s because the layouts of the slides were set individually, to
solve that problem the same layouts for the slides were created, as used in the other nutshell
examples. Now it is possible to set the correct layout for each individual slide using a do-loop
and a select-loop. The do-loop is required to iterate over the “slidesList” variable to create the

same number of slides stored in that list. After getting a slide the select-loop figures out which
Seite 22 von 52

slide gets which layout. The way the select-loop is implemented in this example only works
here, because it is known in which layout the original slide was created. The first slide is the
title slide, so therefore when it is chosen the layout of the slide will be set to “layout™. If the
second and fourth slide is chosen, there will be created a slide with the layout “layout]” and for
all other slides a slide with the layout “layout2” is created. The last step of the do-loop is to
import the content of the original slide on the correct layout using the “importContent()” method
with the parameter “slide” in the brackets, which refers to the previously created slide in the
select-loop. The do-loop is stopped automatically after all slides that are stored in the java array

list were created. The hole loop is featured from line 48 to line 58 in figure 21 below.

template=presentation~getSlideMasters()~get(0)
layout=template~getLayout("title slide")
layoutl=template~getLayout("title only")
layout2=template~getlLayout("title and content")

do slide over slideslist
select
when slide==slidesList~get(0) then newSlide=presentation~createSlide(layout)
when slide==slideslList~get(1) then newSlide=presentation~createSlide(layoutl)
when slide==slideslList~get(3) then newSlide=presentation~createSlide(layoutl)
otherwise newSlide=presentation~createSlide(layout2)
end

newSlide~importContent(slide)
end

Figure 21 Importing slides and content.

4.3.3 Changing the Slide order
After all slides were created correctly it is possible to change the order of the slides. PowerPoint
memorizes the order of all slides with in a slide show Therefore the “getSlides()” method is
used to get access to all available slides of the slide show. Now it is possible to select any slide
needed with the “get()” method and the index of the slide as the parameter in brackets, here
index three to get the fourth slide of the presentation, as featured in figure 22. The chosen slide
is stored in the variable “selectedslide”. The slide order can now be changed with the
“setSlideOrder()” method with the selected slide stored in the variable “selectedslide” and the
index where the selected slide should be placed, as the parameters in brackets. In this example

the fourth slide is placed in the front of the presentation addressing the index zero.

Seite 23 von 52

slides=presentation~getSlides()
selectedslide=slides~get(3)
presentation~setSlideOrder(selectedslide, 0)

Figure 22 Changing slide order.

5. Microsoft Excel

Excel is a spread sheet application developed and designed by Microsoft. Via the Java Api
Apache POI and the XSSF format it is possible to create Excel documents and is used in all
Microsoft Excel Nutshell examples featured in this paper. The sources for the coded Excel
Nutshell examples are coded Java examples freely available on tutorials point and for further
detailed explanation of the possibilities of Apache POI XSSF, accessible here,

https://www.tutorialspoint.com/javaexamples/java_apache poi_excel.htm. And for the third

Nutshell example the HowToDolnJava website which explains how to create Excel formulars

using Apache POI, https://howtodoinjava.com/java/library/readingwriting-excel-files-in-java-

poi-tutorial/.

The first Nutshell example shows how to create an Excel workbook and a spreadsheet within
this workbook and how to set and edit text. In addition to that, the second Nutshell example
shows how to rotate the content of cells and to set various hyperlinks. Also merging cells and
setting the print area of the document is featured. The third nutshell example deals with creating

numbers and how to create various formulars.

5.1 First Nutshell Example
This example shows how to create an Excel workbook and a spreadsheet and deals with text

editing and setting.

5.1.1 Creating Workbooks and Spreadsheets
If you want to create an Excel document, you have to instantiate two new instances, unlike the
Word or PowerPoint examples where only one instance is necessary. You need one instance of
the “org.apache.poi.xssf.usermodel. XSSFWorkbook™ class to create a new workbook and to get
access to all available methods and classes of the “XSSFWorkbook™ class. Secondly, a new

instance of the “org.apache.poi.xssf.usermodel. XSSFSheet” class is required to create a new

Seite 24 von 52

https://www.tutorialspoint.com/javaexamples/java_apache_poi_excel.htm
https://howtodoinjava.com/java/library/readingwriting-excel-files-in-java-poi-tutorial/
https://howtodoinjava.com/java/library/readingwriting-excel-files-in-java-poi-tutorial/

spreadsheet. Now it is necessary to create a new spreadsheet with in the previous created
workbook using the “createSheet()” method, with the name of the created spreadsheet in

brackets, here featured in figure 23 below the spreadsheet named “Cell Types” is created.
workbook=.bsf~new("orqg.apache.poi.xssf.usermodel.XSSFWorkbook")

spreadsheet=.bsf~new("org.apache.poi.xssf.usermodel.XSSFSheet")

spreadsheet=workbook~createSheet("Cell Types"

Figure 23 Creating new Excel workbook and spreadsheet.

5.1.2 Setting Text and Font
To edit the text of a cell you first have to create a new font, using the “createFont()” method.
Now it is possible to set the size of the font in points, using the “setFontHeightInPoints” method,
here the size of 20 points is chosen. The font “GOUDY STOUT” is used with the
“setFontName() method and a text effect is set using the “setltalic()” method and the input
parameter “.true” in brackets, to set the created font to italic. To change the colour of the font
you need to get access to the so called “CreationHelper” this helper allows you to use the
“createExtendedColor” method and to set the text using the “setARGBHex()” method to any
hex colour needed, here the hex value “000080” is used as the parameter to set the font colour

to dark blue.

font=workbook~createFont()

font~setFontHeightInPoints(20)

font~setFontName("GOUDY STOUT")

font~setItalic(.true)
colour=workbook~getCreationHelper()~createExtendedColor()
colour~setARGBHex("000080")

font~setColor(colour)

Figure 24 Creating new font.

Seite 25 von 52

Now, after the font is created, a custom style has to be created and stored in a variable using the
“createCellStyle()” method and set your created font to the style. If you want to put some
content in a cell, first a row has to be created with the “createRow()” method and the index of
the created row as the parameter in brackets, here index zero is used to create the first row. It is
possible to get access to any cell of the row, using the “createCell()” method, with the index of
the created cell in brackets, here the index zero is used to create the first cell of the row. After
creating a cell it is possible to insert content in it using the “setCell Value()” method, this method
can be used to set a text or numbers into a cell. The last step is to edit the content of the cell
using the “setCellStyle()” method with the variable, which contains the style of your font, here

in figure 25 below the variable “style” is used.

style=workbook~createCellStyle()
style~setFont(font)

row=spreadsheet~createRow(0)
cell=row~createCell(0)
cell~setCellValue("Type of Cell")
cell~setCellStyle(style)

Figure 25 Creation of a cell style and applying it to a cell.

5.1.3 Setting Different Cell Formats
If a cell is created in Excel using Apache POI, the standard cell format is used for each created
cell. It is possible to change the cell format manually, in this example the cell formats date,
numeric and currency are featured. The creation of the cell format date is explained in detail in
figure 26 below and the other formats work quite similarly and are featured in the entire code
in the appendix. First a row and a cell are required, and a style has to be created the same way
as explained in the section above. A helper has to be created using the “getCreationHelper()”
method. Now the desired cell format can be created with the “setDataFormat()” method and
three different parameters in brackets. The previous created helper and a new data format has
to be created using “createDataFormat()” method. The last required parameter is the chosen
format accessible through the “getFormat()” method, with the desired data format in brackets,

here “m/d/yy” as the date format. The prepared style can now be applied to the created cell.

Seite 26 von 52

row = spreadsheet~createRow(3)

cell=row~createCell(0)

cell~setCellValue("Set cell value DATE")

cell~setCellStyle(stylel)

cell = row~createCell(1)

cell~setCellValue(Date())

style2=workbook~createCellStyle

helper=workbook~getCreationHelper()
style2~setDataFormat(helper~createDataFormat()~getFormat("m/d/yy"))
cell~setCellStyle(style2)

Figure 26 Creating and setting cell formats.

5.1.4 Setting Column Size
To change the size of a column there are two possibilities, setting an auto size, using
“autoSizeColumn()” method with the column index in brackets, or setting an individual column
width using “setColumnWidth()” method, this method requires two parameters, the index of

the column and the width of the column in points.

spreadsheet~autoSizeColumn(8)
spreadsheet~avtoSizeColumn(1)
spreadsheet~setColumnWidth(2, 2000)

Figure 27 Changing size of columns.

5.2 Second Nutshell Example
In addition to the first Nutshell example this example explains how to create rotated texts,
setting three different types of hyperlinks, merging cells, and setting the print area of an Excel

spreadsheet.

5.2.1 Rotating Content of Cells
With in a created style, it is possible to rotate the content of a cell in an angle between 0 and
360 degrees. To apply a rotation to a text the “setRotation()”” method is required with the chosen
angle in degrees in brackets, here 90 is used to rotate the text in an 90 degrees angle, featured

in figure 28 below. The last required step is to set the created style to any previous created cell.

Seite 27 von 52

myStyle=workbook~createCellStyle()
myStyle~setRotation(90)
row=spreadsheet~createRow(0)
cell=row~createCell(3)
cell~setCellValue("98 degrees Angle")
cell~setCellStyle(myStyle)

Figure 28 Rotating cell content.

5.2.2 Setting Various Hyperlinks
In an Excel spreadsheet it is possible to set a hyperlink to an URL, to an existing file in the
current directory or to another spreadsheet within the current workbook. The first step is to
create a variable with the chosen hyperlink URL featured in line 30 of figure 29 below. To set
a hyperlink to a file the entire name of the file is required. A hyperlink to a spreadsheet has to
be defined the following way, first set a hashtag than the name of the spreadsheet an exclamation
mark after and the cell which should be accessed at the other spreadsheet, in this example the
spreadsheet test is linked and after clicking the link the cursor jumps to cell “A1” of the

spreadsheet test. The exact description of the used hyperlinks can be found in figure 29 below.

hyperlinkFormula="'HYPERLINK("https://poi.apache.org/apidocs/5.6/")"'

filelinkFormula="'HYPERLINK("First_Nutshell_Example.xlsx")"'

spreadsheetlinkFormula="HYPERLINK("#test!A1")"

Figure 29 Various hyperlink possibilities.

In the second step a row and two cells of the row are created, one cell for the description to
which URL the hyperlink is linked to, and the second cell contains the hyperlink stored in the
variable “hyperlinkFormula”. To connect the hyperlink to a cell, the “setCellFormula()” method
is used, this method contains the variable with the hyperlink as an attribute in brackets and

quotes.

Seite 28 von 52

hyperlinkFormula="HYPERLINK("https://poi.apache.org/apidocs/5.0/")"
rowHyperlink=spreadsheet~createRow(2)
cell=rowHyperlink~createCell(0)~setCellValue("Hyperlink to Apache POI Javadocs")
cellHyperlink=rowHyperlink~createCell(1)
cellHyperlink~setCellFormula(hyperlinkFormula)

Figure 30 Creating a hyperlink to a URL.

5.2.3 Merging Cells and Setting Print Area
Using Apache POI allows you to merge any cells of a spreadsheet, for this the
“addMergedRegion()” method is used to merge cells. This method requires a new instance of
the “org.apache.poi.ss.util.CellRangeAddress” util class. The class allows you to select the cells
which should be merged, furthermore the start and end row and the start and end column are
needed. In this example the attributes “0, 0, 7, 8 are used to merge cell H and I of the first row.
To set up the print area of a workbook the “setPrintArea()” is used with the index parameters,
for which spreadsheet of the workbook the print area has to be set and which columns and rows
the print area contains, in brackets. Here in figure 31 the index parameters “0, 0, 10, 0, 5 are
used to set the print area of the first spreadsheet, from the first to the eleventh column and the
first to the sixth row. After the print area is set up we need to get access to it using the
“getPrintSetup()” method and the paper for the printer printout must be defined using the
“setPaperSize()” method, with the index of the desired paper in brackets. In this example the
index 9 is used to set the printer paper to A4. If you want to have the Excel gridlines on your

printout, you need to set the attribute of the “setPrintGridlines()”’methods in brackets to “.true”.

spreadsheet~addMergedRegion(.bsf~new("org.apache.poi.ss.util.CellRangeAddress", 8, 8, 7, 8))

workbook~setPrintArea(0, 0, 10, 0, 5)
spreadsheet~getPrintSetup()~setPaperSize(9)

spreadsheet~setPrintGridlines(. true)

Figure 31 Cell merging and setting print area.

5.3 Third Nutshell Example
The last Excel Nutshell example deals with the creation of random numbers using a built in

excel function and how to create formulars to evaluate the created numbers.

Seite 29 von 52

5.3.1 Setting Random Numbers
To set 100 random numbers in column A, a do-loop is required to iterate over 100 cells of the
column. First the indexes of the rows for the iteration needs to be defined in variable “i” “3 to
103>, here it creates row 3 to row 102. In each created row the first cell of the row will be
created and a random number from 0 to 1000 will be randomly created using the
“setCellFormula()” method and the built in Excel formula “Randbetween(0, 1000) as the

attribute in brackets. The entire loop is featured from line 30 to line 35 in figure 32 below.

do i=3 to 102
row=spreadsheet~createRow(i - 1)
cell=row~createCell(0)
cellvsetCellFormula("Randbetween(®, 1668)")
end

Figure 32 Creating and setting random numbers.

5.3.2 Basic Evaluation of Numbers using Formulars
In Excel it is possible to set various formulars to deal with numbers, for example sum up values
of a desired area, count nonblank cells or count cells with a specific value. Just like as creating
hyperlinks, you need the “setCellFormula() method to use all the mentioned Excel built in
formulars featured in this example in figure 33 below. You have to use the English names of the
formulas in the code, no matter in which language you use Excel, because Excel will translate
the formulars in the standard language Excel is used on your pc. If you want to sum all random
created values up, the sum formular is the way to go. The “setCellFormula()” method requires
two attributes “SUM(A3:A102)”, “SUM” is the name of the Excel formula and (A3:A102) is
the range of cells which should be summed up. Two different ways to count cells are featured
in this example, the “COUNT” formula which counts all cells with a numeric value and the
“COUNTIF” formula which counts cells that fulfil a certain criterion. The criterion here is to

count all cells with a minimum value of 500, described as “>=500" in line 34 of figure 33.

Seite 30 von 52

CaoimmIinng n the nltitee in ~roliimn A
- uinming uf LNE vQLues il QLU 2|

rowl=spreadsheet~createRow(1)
formulaCellSum=rowl~createCell(1)
formulaCellSum~setCellFormula("Sum(A3:A102)")

-- Creating formule for counting non-empty cells in column A
formulaCellCount=rowl~createCell(2)
formulaCellCount~setCellFormula("Count(A3:4102)")

ing formulo for .y ntinrn unliiae T } Te A + 1 Tk =

== Lrregti unNting vaLues in cCoLumn A at Ledst L

formulaCellCountAtLeast500=rowl~createCell(3)
formulaCellCountAtlLeast500~setCellFormula("Countif(A3:A102, "">=500"")")

Figure 33 Basic Excel formulars, Sum, Count and Countif.

5.3.3 Complex Evaluation of Numbers using Formulars

This part of the example deals with statistical evaluation of the random created numbers. The
Excel formulars used are “Min(A3:A102)” to get the lowest number, or “Max(A3:A102)” to
get the highest number of the given cell range. To get the arithmetic average of the given cell
range, the formula “Average(A3:A102)” is used. Furthermore, the median of the values in
column A is determined by the use of the “Median(A3:A102) formula. Last formula featured in
this example is “Stdev(A3:A102)”, this formula calculates the standard deviation of the cells
A3 to A102.

Creating formula for the minimum value in column A

formulaCellMin=rowl~createCell(4)
formulaCellMin~setCellFormula("Min(A3:A102)")

Creating formula for the maximum value in column A

formulaCellMax=rowl~createCell(5)
formulaCellMax~setCellFormula("Max(A3:A102)")

Creating formula for the average value in column A
formulaCellAvg=rowl~createCell(s)
formulaCellAvg~setCellFormula("Average (A3:4102)")

-

- Creating formulta for the mean (median) value 1
formulaCellMedian=rowl~createCell(7)
formulaCellMedian~setCellFormula("Median(A3:A102)")

-- Creating formula for calculating the standard deviation of colum
formulaCellStdDev=rowl~createCell(8)
formulaCellStdDev~setCellFormula("Stdev(A3:A102)")

Figure 34 Statistical evaluation using Min, Max, Average, Median and Stdev.

Seite 31 von 52

6. Conclusion

This chapter summarizes the paper and explains some of the difficulties occurred during the

programming process of the Nutshell examples relating to the Apache POI Java APIL.

The goal of this seminar paper is to act as a cookbook for readers, how to use a Java APl in a
program coded in ooRexx, using BSF4ooRexx. In the first chapter a general introduction is
given what the paper is about and why the used Java API and the programming language
ooRexx were chosen. A very vital part for a programming cookbook is, what software
components are required, how to download and install them, that all the required software
components work correctly together, this is explained in detail in chapter two installation. Main
part of the paper are the coded Nutshell examples, which create Microsoft Office documents,
the featured Microsoft Office applications are Word, PowerPoint, and Excel. Each application
contains an individual chapter and within each chapter there is given a detailed explanation of
how to create documents using selectively chosen code snippets. The entire code of all featured

Nutshell examples can be found in the appendix section at the end of the paper.

The provided classes and methods from the Apache POI are easy to understand for what reason
they are used for and if anything was unclear, I studied the official documentation of the APIL
In combination with coded Java examples, it was not very difficult to code useful ooRexx

Nutshell examples, which explains how to reproduce them for anyone.

For the created Word Nutshell examples the XWPF component of the Apache POI was used,
this component provides all the necessary classes and methods. This component provides the
least possibilities for creating and manipulating documents compared to the other two
components, in the featured examples, only the “org.apache.poi.xwpf.usermodel” package was
used. Originally planned was to use the “org.apache.poi.xwpf.extractor” package, which
features classes and methods to extract text from an existing word document, but there occurred
some errors which I could not resolve and the decision was made to access an existing word

document and modify it.

In the PowerPoint Nutshell examples the XSLF component and the
“org.apache.poi.xslf.usermodel” package was used. This package features all the necessary
classes and methods for creating the slideshows in the featured examples. The third Nutshell
example was quite challenging, because I had to figure out how to merge two individual

presentations in to one presentation using the “java.io.FileInputStream” class.

Seite 32 von 52

The XSSF component of the API for Excel provides in the “org.apache.poi.xssf.usermodel” by
far the most possibilities for creating Excel documents. It is possible to deal and edit text, to
insert various types of hyperlinks and to use and create Excel formulars with in your code.
Another possible package is “org.apache.poi.xssf.usermodel.helpers” this package provides
classes and methods for protecting created Excel workbooks, but I was not able to implement

that in a correct working way and refused to use it.

For this paper the latest available binary distributed version of Apache POI, 5.2.3 was used. On
the official homepage there is mentioned that the source package Apache POI 5.2.5 is available
for download, but this package is only required for creating the API and not for using it in your

code.

Seite 33 von 52

References

Apache Software Foundation. (2023, November 2) The Java API for accessing Microsoft
Open XML documents. Retrieved Oktober 12, 2023 from

https://poi.apache.org/components/oxml4j/index.html.

Apache Software Foundation 1. (2023, November 2) Apache POI component overview.
Retrieved Oktober 12, 2023 from https://poi.apache.org/components/.

Apache Software Foundation 2. (2023, November 2) Api documentation for version 5.*.
Retrieved Oktober16, 2023 from https://poi.apache.org/apidocs/5.0/.

Tutorials Point. (2023, Oktober 1) Apache POI Java tutorial for Word. Retrieved Oktober 21,
2023 from

https://www.tutorialspoint.com/apache poi_word/apache_poi_word_quick guide.htm.

Mkyong. (2023, Oktober 5) Reading and writing Microsoft Word documents with Apache
POI. Retrieved Oktober 23, 2023 from https://mkyong.com/java/java-read-and-write-

microsoft-word-with-apache-poi/#document-header-and-footer.

Tutorials Point 1. (2023, Oktober 1) Apache POI Java tutorial for Word. Retrieved November
6, 2023 from

https://www.tutorialspoint.com/apache_poi_ppt/apache poi_ppt _quick guide.htm.

Baeldung. (2022, May 26) Apache POI Slideshow example. Retrieved November 6, 2023

from https://www.baeldung.com/apache-poi-slideshow.

HowToDolnJava. (2023, August 27) Reading writing Excel files in Java POI tutorial.

Retrieved November 22, 2023 from https://howtodoinjava.com/java/library/readingwriting-

excel-files-in-java-poi-tutorial/.

Tutorials Point 2. (2023, Oktober 1) Apache POI Java tutorial for Excel. Retrieved November

22,2023 from https://www.tutorialspoint.com/javaexamples/java_apache_poi_excel.htm.

Sourceforge. (2023, May 17) Downloading ooRexx 5.0.0. Retrieved Oktober 20, 2023 from

https://sourceforge.net/projects/oorexx/files/oorexx/.

Open Object Rexx. (2015) Explanation of ooRexx. Retrieved November 30, 2023 from

https://www.oorexx.org/about.html.

Rexx Language Association. (2023) Homepage of the Rexx Language Association. Retrieved
Oktober 20, 2023 from https://www.rexxla.org/.

Seite 34 von 52

https://poi.apache.org/components/oxml4j/index.html
https://poi.apache.org/components/
https://poi.apache.org/apidocs/5.0/
https://www.tutorialspoint.com/apache_poi_word/apache_poi_word_quick_guide.htm
https://mkyong.com/java/java-read-and-write-microsoft-word-with-apache-poi/#document-header-and-footer
https://mkyong.com/java/java-read-and-write-microsoft-word-with-apache-poi/#document-header-and-footer
https://www.tutorialspoint.com/apache_poi_ppt/apache_poi_ppt_quick_guide.htm
https://www.baeldung.com/apache-poi-slideshow
https://howtodoinjava.com/java/library/readingwriting-excel-files-in-java-poi-tutorial/
https://howtodoinjava.com/java/library/readingwriting-excel-files-in-java-poi-tutorial/
https://www.tutorialspoint.com/javaexamples/java_apache_poi_excel.htm
https://sourceforge.net/projects/oorexx/files/oorexx/
https://www.oorexx.org/about.html
https://www.rexxla.org/

Azul.com (2023) Downloading page for Zulu Java packages. Retrieved Oktober 20, 2023

from https://www.azul.com/downloads/?package=idk#zulu.

JetBrains. (2023) Downloading page for IntelliJ IDEA IDE. Retrieved Oktober 20, 2023 from

https://www.jetbrains.com/idea/.

Sourceforge 1. (2021, July 20) Downloading ooRexx plugin for IntelliJ IDEA. Retrieved
Oktober 20, 2023 from
https://sourceforge.net/projects/bsf4oorexx/files/Sandbox/aseik/ooRexxIDEA/GA/.

Sourceforge 2. (2023, June 6) Downloading BSF400Rexx850 beta. Retrieved Oktober 20,
2023 from https://sourceforge.net/projects/bsfdoorexx/files/beta/20221004/.

Apache Software Foundation 3. (2023, November 2) Downloading distributed binary version
5.2.3. Retrieved Oktober 20, 2023 from https://archive.apache.org/dist/poi/release/bin/.

Apache Software Foundation 4. (2004, January) Apache POI license page. Retrieved
December 2, 2023 from https://www.apache.org/licenses/LICENSE-2.0.

Seite 35 von 52

https://www.azul.com/downloads/?package=jdk#zulu
https://www.jetbrains.com/idea/
https://sourceforge.net/projects/bsf4oorexx/files/Sandbox/aseik/ooRexxIDEA/GA/
https://sourceforge.net/projects/bsf4oorexx/files/beta/20221004/
https://archive.apache.org/dist/poi/release/bin/
https://www.apache.org/licenses/LICENSE-2.0

Appendix

First Word Nutshell example output + code:

Enter-Your:Title-Here,

This is'a standard Text!q

-New-Page.

document=.bsf~new("org. apache. pol.xepf.usernodel. XWPFOocunent")

.bsf~bsf.importClass{ "org.apache.poi.xnpf.usernodel.ParagraphAlignment™, "AligningParagraph")

fitel # agroph
titlePara=docunent~createParagraph()
titleRun=titlePara~createrun()
titleRun-setBola(l)
titlerun~setFontSize(30)
titleRun~setFontFamily("Bahnschrift”)
titleRunvsetText("Enter Your Title Here")

Aligning Titelparagrapt
titlePara~setSpacingAfter(500)
titlePara~setAlignnent (. AligningPoraogroph~CENTER)

<+ FIrst: POrogiosn
p=document~createParagraph()
prsetAlignment(.AligningPoragroph~RIGHT)
r=p~createRun()

r~setFontSize(12)

resetFontFanily("Times New Roman")
r~setText("This is a standard Text!")

p2=document~createParagraph()
p2~setWordWrapped(1)
p2~setPageBreak(1)
r2=p2~createRun()
r2~setFontSize(48)
r2~setItalic(l)
r2~setFontFamily("Arial Black")
r2~setText("New Page")

Soving the oatot
parse sgurce . . a
call directory filespec('L’', a)
filenane=directory()"/First_Nutshell_Exanple.docx"
filenane=qualify(filenane)
output=.bsf~new("java.1o0.FiledutputStrean”, filename)
document~write(output)

::REQUIRES BSF.CLS

Seite 36 von 52

Second Word Nutshell example output + code:

This-is-the-header-of-this-document.j]

First-Row, First-Columni |First-Row,-Second-Columnu ‘F\rst-Row,-‘lhird-Columnn

Second-Row, -First-CclumrISecond-Row,-Second-Cqum#Second-Row “Third-Column|

Third-Row,-First-Columnn [Third-Row,-Second-Columnn ‘Thl‘rd-Row.-Third-Calumnn

This-is-1he-footer-al-his-documenlq]

/+Copyright [2023] [Florian Frcenal

Licensed under the Apoche License, 2.8 (the *"lLicense”);
youv moy not use this file except in cospliance with the Lic
You moy obtoin o copy of the License at

7 nttp://waw. ag .org/licenses/LICENSE-2.8

Unless required by aopplicable law or agreed to in writing, softw

ributed under the Lic ¢ 15 distributed on an "AS IS" B8A

WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND
See the License for the spe

Linitotions under the Licen

document=.bsf~new("org.apache.poi.xnpf.usermodel. XWPFDocunent")

.bsf~bsf.loadClass("org.apache.poi.np,usermodel.HeaderFooterType"”, "HeaderFooterType")

-- Creating Header

header=d t~createHeader (. HeaderFooterType~DEFAULT)
headerParagraph=header~createParagraph()

-— Add text to the header

headerText="This is the header of this document."
run=headerParagraph~createRun()

run~setText(headerText)

‘ > f":’—\'.[l,".’_,‘ Footer

27 footer=document~createFooter(.HeaderFooter Type~DEFAULT)
footerParagraph=footer~createParagraph()
-- Add text to the footer

5 footerText="This is the footer of this document."
runl-footerParagraph~createRun()
runi~setText(footerText)

-- Creating Table
table=document~createTable()
-- Addressing first row cells
37 ronl=table~getRow(0)
roml~getCell(0)~setText("First Row, First Column")
rowl~addNewTableCell()~setText("First Row, Second Column")
1 roml~addNewTableCell()~setText("First Row, Third Column")
rom2=table~createRon()
. ron2~getCell(0)~setText("Second Row, First Column")
3 rom2~getCell(1)~setText("Second Row, Second Column")
73 ron2~getCell(2)~setText("Second Row, Third Column")
5 romn3=table~createRon()
ron3d~getCell(0)~setText("Third Row, First Column")
W7 ron3~getCell(1)~setText("Third Row, Second Coluamn")
) ron3~getCell(2)~setText(“Third Row, Third Column")

-- Sgving the output document

3 parse source . . b

52 call directory filespec('L', b)

53 filename=directory()"/Second_Nutshell_Example.docx"
filename-qualify(filenane)
output=.bsf~new("java.io.FileOutputStrean”, filename)
document~write(ovtput)

57 1 :REQUIRES BSF.CLS

Seite 37 von 52

Third Word Nutshell example output of additionally content + code:

dded 300 hesp: y-created-Word-document.§

S0 ce . c
call directory filespec('L', c)

filenamel=girectory()"/F
filenamel-qualify(filenanel)

irst_Nutst

stStrean”, filenamel)

olddocument=.bsf~new("javs.10.F1i
document=.bsf~new 'g.apache.pol, xnpf.usermodel. XWPFDocunent”, olddocument)

nenParagraph=document~createParagraph()
nemRun-newParagraph-createRun()

nenRun~setText("It was added after accessing the previously created Word document.™)

.bsf~bsf.loadClass("org.apache.pol, xupf

.bsf~bsf.importClass("org.apache.poi.vtil.Units", "Units")

=]

imageParagraph=document~createParagraph()
imageRun=1imageParagraph~createRun()

imagePath=girectory()"/Java.png"
imagePath-qualify(imagePath)
image=.bsf~new("java.io.FileInputStrean”, imagePath)

imageRun~addPicture(irage, .Document~PICTURE_TYPE_PNG, "java.png", .Units~toEMU(25€), .Units~toENU(258))

parse ¢ g o4
call directory filespec('L', 0)
filename=directory()"/Third_Nutshell_Example.docx"

filenane=quolify(filenane)
output = .bsf~new("Java.io.Filedut
document~write (output)

filename)

Seite 38 von 52

First PowerPoint Nutshell example output + code:

2 , 3
This is & Slicke Wikh Just & Titke and Here is a Slide With Bullet Points
@ Custam Tastbos
= First Text
m Bl et » This is a new paragraph in the
oo placeholder.

smd Pumcr Bl Ml b g

/*Copyrdignt (2823] [Florion Frcenol

Licensed under the Apoche Licensé, Versfon 2.0 (the "License*);
you may not yse this file excepr in conplionce with the License.
You moy cbtain a cogy of the License ot

http://wwe. opoche. arg/licenses/LICENSE-2.8

Unless required by applicoble law or ogreed to iIp writing, -softwore
distributed under the License 1s distribvted on on “AS IS™ BASIS,
WITHOUT WARRANTIES OR CONBITIONS OF ANY KING, either exp
See the Licepse for the speécific longuog
iimitarions under the License.=/

s or inplied,

s andg

governing permissic

presentation=.bsf~new("org.apsche.poi.xs1¥.usernodel. XNLST1deShon")
Dsf~bsf.inportClass("ory.apache.pol. xs1f. vsernodel. Sligetayout”, "SildeLayout")

Creoting stide loyouts
tenplate=presentation~getSiidgeNasters()~get(0) -- rerrigves oll moster siices
layout=template~getlayout("title slide") Set Loyout
layoutl=template~getiayout("titie only")
layout2-template~getlayout(“title and content")

.bsf~bsf.importClass("org.apache.poi.xslf.usernodel . XSLFTextParagraph”, "XSLFTextParagraph")

-- Lreating tiTle slige
titleslide=presentation~createSlide(layout)
titleTextbox=titleslide~getPlacenolder(D)
titleTextbox~setVext("BSFiooRexx/Java: Apache PO1")

-= EQditing text
titleParagraph=titleTextbox~getTextParagraphs()~get(9)
titlerun=titleraragraph~getTextRuns()~get(0)
titleRun~setFontFamily("Algerian")
titleRun~setFontSize(50.0)

titleRun~setBald(1)

subtitleTextbox=titleslide~getPlacenoider{i)~setText("First PowerPoint Nutshell Exampie”)
firstslidge=presentation~createsiide(layoutl)
.bsf~bs¥.importClass("java.awt.Rectangle”, "Rectangle”)

- Creating custon textlox
textbox=firstslide-createTextBox()
textbox~setAnchor(.Rectangle~new(56, 150, 408, 200))
paragraph=textbox~addNemTextParagrapnh()
run=paragraph~addienTextRun()
run~setText("Text in & custom created Textbox.")
paragraphl-textbox~addNewTextParagraph
runl=paragraphl-addNewTextRun()
runl~setText("Second paragraph of the textbox.")

firstTextbox=Firstslige~getPFlacenolder(d)
firstTextbox~setText("This is a Slide With Just a Title and a Custom Textbox")

Seite 39 von 52

secondslide=presentation~createSlide(layout2)
secondTitleTextbox=secondslide~getPlaceholder(0)
secondTitleTextbox~setText("Here is a Slide With Bullet Points")

ContentTextbox=secondslide~getPlaceholder(1)
ContentTextbox~setText("First Text")

newParagraph=ContentTextbox~addNewTextParagraph()
leftMargin=100

newParagraph~setLeftMargin(leftMargin)
newRun=newParagraph~addNewTextRun()

newRun~setText("This is a new paragraph in the placeholder.")

-- Save the File

parse source . . e

call directory filespec('L', e)
filename=directory()"/First_Nutshell_Example.pptx"
filename=qualify(filename)
output=.bsf~new("java.io.FileOutputStream", filename)
presentation~write(output)

1 :REQUIRES BSF.CLlS

Seite 40 von 52

Second PowerPoint Nutshell example output + code:

1 Hyper Link to the Apache POI 2
Javadocs
= Apache POI Javadocs

Creating a Table Within a Created
Textbox.

1 Fewl,csum?
B, G 1 P, Coiurn?

1 /+*Copyright [2023] [Florion Frcena)
Licensed under the Apaoche License, Version 2.0 (the "License*);
you may not use this file except iIn complionce with the License

3 You may obtain o copy of the License or

http://www. opache.org/licenses/LICENSE-2.8

Unless required by applicable low or ogreed to in writing, software
10 gistributed under the License is distributed on an “AS IS" BASIS
1 WITHOUT WARRANTIES OR CONDITIONS OF ARY KIND, eitner express or implied.
12 See the License for the specific langupge governing permissions and
Limitations under the License.*/

15 presentation=.bsf~new("org.apache.poi.xs1f.vusermodel. XMLS1ideShow")

.bsf~bsf.importClass("org.apache.poi.xslf.usernodel.Slidelayout"”, "Slidelayout")
18 .bsf~bsf.importClass("org.apache.poi.xslf . usernodel. XSLFSlide", "XSLFSlide")

26 template=presentation~getSlideMasters()~get(0) -- retrieves oll mosten siides
layoutl=template~getlLayout("title and content™)
layout2=template~getlayout("title only")

24 -~ Hyperlink at Slide 1
firstslide=presentation~createSlide(layoutl)

2 Textbox=firstslide~getPlaceholder(0)

2 Textbox~setText(“Hyper Link to the Apache PGI Javadocs")

2 Textboxl=firstslide~getPlacehclder(1)
50 Textboxl-clearText()

5| textRun=Textbox1~addNewTextParagraph()~addNewTextRun()
32 textRun~setText("Apache POI Javadocs")

33 link=textRun~createHyperlink()
3 link~setAddress("https://poi.apache.org/apidocs/S.0/")

34 secondslide=presentation~createsiide(layout2)
: Textbox=secondslide~getPlaceholder(0)
38 Textbox~setText("Creating a Table Within a Created Textbox.")

A .bsf~bsf.importClass("java.awt.Rectangle", "Rectangle™)

2 -- Insert o totle on slidel
& table=secondslide~createfable()
table~setAnchor(.Rectangle~new(58, 150, 500, 208))

. -~ Add rows and cells to the table

rowCount=3

48 colCount=2

? do row=0 to rowCount -1
i tableRow=table~addRon()

&1 do col=0 to colCount -1
tableCell=tableRon~addCell()
tableCell~setText("Row" row+l *, Column" cols+l)
table~setColumnWidth(col, 150)

55 end

end

Seite 41 von 52

-- Sove the File
parse source . . f
call directory filespec('L', f)

filename=directory()"\Second_Nutshell_Example.pptx"
filename=qualify(filename)

output=.bsf~new("java.lo.FileOutputStream", filename)
presentation~write(output)

::REQUIRES BSF.C1S

Seite 42 von 52

Third PowerPoint Nutshell example code + output:

1 /aCopyright [2023] [Florion Freens]

| Licenses under the Apache License, Version 2.0 (the “License®);
4 gou moy not use this file except in complionce with the License.
5 You mey obtain 9 copy ef the License ot
14

? nttp://waw. opoche. org/licenses/LICENSE-2.0
|

Bl Unless required by applicabie low or ogreed to in writing, softwore
10 distributed under the License 15 distributed on an "AS IS" BASIS,

11 WITHOUT WARRANTIES OR CONBITIONS OF ANY KINO, elther express or implied.
3 See tne License fon the specific longuoge governing permissians and
13 Limitotions undar the Licenss. s/

1% parse source . . g
24 call directory filespec('L’, g)

1| firstfilename=directory()"/First_Nutshell_Example.pptx"
19 firstfilename=qualify(firstfilenamne)
20 firstoldpresentation=.bsf~nen("java.io.FilelnputStrean", firstfilenane)

22 secondfilenane=directary()*/Second_Nutshell_Exanple.pptx"
23 secondfilenane=quotify(secondfilename)
2% secondoldpresentation=.Dsf~new("java.10.FilelnputStream”, secondfilename)

2h Create an Arraylist to hold the slides
7 slidesList=.bsf~nen("java.util, ArrayList™)

9 -~ Cregte XMLS1ideShow instances for each input file

30 xmlSlideShowl=.bsf~new{“org.apache.poi.xs1f.userpodel. XMLSLideShow*, firstoldpresentation)
51 xmlSlideShow2=. bsf~new(”org.apache.pol, xs1f, usernodel. XHLS11deShow™, secandoldpresentation)
£ -- Add siides from the first pressntotion to the list

34 slidesList~addAll(xmlSlideShonl~getSlides())

35

14 -- Add slides from the secont presentotion to the LIST

37 slideslist~addAll(xmlSlideShow2~getSlides())

w Create o new XMLSLideShow Instonce
) presentation=.bsf~new("org.apache, poi.xsif, usernodel. XMLS1ideShow")

42 -- Retrieve slide waster ond loyouts

A3 tenplate=presentation~getSiideMasters()~get(d)
Aty 1sycut=template~getLayout(“title slige")

a5 layoutl=template~getLayout("title only")

46 layout2-tenplate~getlayout("title and content")

Seite 43 von 52

-- Ad0 the slides from the LIST To the new presentoticn with specific lﬂ;,‘be:T
do slide over slideslist
select
when slide==slideslist~get(0) then newSlidespresentation~createSlide(layout)
when slide==slideslist~get(1) then newSlide=presentation~createSlide(layoutl)
when slidessslideslist~get(3) then newSlidespresentation~createSlide(layoutl)
otherwise newSlidespresentation~createSlide(layout?)
end
-~ Import content from the originol slide
newSlide~inportContent(slide)
end

Chonging stide ardepr of the presentation
slides=presentation~getSlides()
selectedslide=slides~get(3)
presentation~setSlideOrder(selectedslide, @)

Sove the reordered file
parse source ., . h

call directory filespec('L', h)

filename=directory()"/Third_Nutshell_Example.pptx"
filenare=qualify(filenane)

output=.0sf-new("java.io.FilegutputsStrean", filename)
presentation-write (output)

: tREQUIRES BSF.CLS

Hyper Lin kj;:;:zc.:pache Fol z 3 This is a Slide With Just a Title and
@ Custom Textbox
- Apache POl lavadacs
BEFADOREXX/JAVA: s e et
APACHE POL

First PowerPoint Nutshell Example

Creating @ Table Within a Created
Here is a Slide With Bullet Points Textbox.

= First Teat
= This ix 2 new paragraph in the
placehalder,

11
FEE

SR —

TSP —

Seite 44 von 52

First Excel Nutshell example code + output:

/*Copuright [2023] [Fiorian Frocenp]
Licepsed under the Apoche License, Version 2.0 (the "License");
you moy not use this file except in complionce with the Licenss.

You may obtain o copy of the License of

hitp://waw.apoche.org/licenses/LICENSE-2.8

Untess required by applicoble Tow or agreed to in writing, softwore
distributed under the License 1s distributed on on "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KINO, -either express or Implisd.
See the License for the specific longuoge governing permissions and
linmitetions under the License.*/

workbook=.bsf~new("org.apache, poi.xssf.usermodel. XSSFWorkbook")
spreadsheet=.psf~new("org.apache.pol.xssf.usermodel . XSSFSheet")

- Crepte 0 new sheer
spreadsheet=workbook~createSheet("Cell Types")

-- Cregting o na2w font
font=workbook~createFont()
font~setFontHeightInPoints(20)
font~setFontName("GOUDY STOUT")
font~setItalic(.true}

- Serting font color to bDlue
colour=workbook~getCreationHelper()~createExtendedColor()
colour~setARGBHex("0000BO")
font~setColor(colour)

-- Setting font into style
style=workbook~createCellStyle()
style~setFont(font)

- Creote heoaers
row=spreadsheet~createRow(0)
cell=row~createCell(0)
cell~setCellvalve("Type of Cell)
cell~setCellStyle(style)
fontl=workbook~createFont()
fontl~setFontHeightInPoints(20)
fontl~setFontName("BAHNSCHRIFT")
fontl~setItaiic(.true)
stylel=workbook~createcellstyle()
stylel~setFont(fontl)
cell=row~createCell(l)
cell~setCellValue("Cell value")
cell~setCellStyle(style)

- Creote rows with different cell types
row=spreadsheet~createRow(1)
cell=row~createcell(0)
cell~setCellvalue("Set cell value BLANK")
cell~setCellStyle(stylel)
row~createCell(1)
row = spreadsheet~createRow(2)
cell=row~createCell(a)
cell~setCellValve("Set cell value BOOLEAN")
cell~setCellStyle(stylel)
row~createcell(1)~setCellvalue(.false)

Seite 45 von 52

fu

[N

w

=

[

=]

~

row~createCelil(2)~setCeliValve(.true)

row = spreadsheet~createRow(3)
cell=ron~createCell(0)
cell~setCellValve("Set cell value DATE")
celi~setCellstyle(stylel)

cell = row~createCell(l)
cell~setCellValve(Date())
style2=workbook~createCeliStyle
helper=workbook~getCreationiielper()
style2-setDatarormat(helper~createDataFornat()~getFornat("n/d/yy "))
celi~setCellStyle(style2)

row = spreadsheet~createRow(4)
cell=ron~creataell(n)
cell~setCellValua(Set cell value NUMERIC™)
celi~setCellStyle(stylel)

-- Lregte 0 cell style for numeric
STy1e3 - workbook-createCel15tyle()
style3-setDataFormat(helper~createfatarornat()~getFornat("0"}))
Set cell type nuperd
cell = rom-createCell(1)
cell-setlellValue(i23.45)
cell~setCellStyle{style3)
row - spreadsheet~createRow(s)
cell-row~createCell(a)
cell~setCellValue("Set cell value STRINE")
cell~setCellsStyle(stylel)
cell « rom~createlell(l)
cell~setCellVatue("This is a string.")
row spreadsheet~createRow(s)
cell-row~createCell(n)
cell~setCellValue("Set cell value CURRENLCY")
cell-setCellstyle(stylel)
cell « rom~createCell(l)
Y24 numerl volue ar “renca
cell~setCellValue(B95.48)
regte o cell style for cuprency formot
currancyStyle = workbook~createCellStyle()
currencyStyle~setDataFornat(helper~createDataFormat()~getFormat("~ [$3-469]7 #%0.068"))

oly the currancy formgt
cell~setCellStyle(currencyStyle)

Avtonatically size columns
spreadsheet~autoSizeColunn()
spreadsheet~avtoSizeColunn(l)
spreadsheet~setColunniidth(2, 2060)

Save the file
parse source . . i
call directory filespec('L', i)
filename=directory()"/First_Nutshell_Exanple.xisx"
filenane=qualify(filenane)
output=,bsf~new("java.io.FileDutputStrean” , filename)
workbook~mrite(output)

::REQUIRES BSF.C1S

TYPF OF CELL CELL VALUFER

Set cell value BLANK

Set cell value BOOLEAN o A
Set cell value DATE 16 Dec 2023

Set cell value NUMERIC 123.45

Set cell value STRING This is a string.

Set cell value CURRENCY 895.68

< > Cell Types +

Seite 46 von 52

Second Excel Nutshell example code + output:

/*Copyright [2023] (Florian Freenal
L1censad under the Agacne License, Vepsion 2.8 (the “License*);
% you pay not vie this file except in complionce with the Licenze,

5 You pay obtain o copy of the [lcenss of

ittp://uwn. gpoche. org/Liconses/LICENSE-2.8

Untess pequised by applicanls 1ow or agreed to 1p wrlrting, Softwars
gistriboteg under the License [< distributed on on "AS IS" BASIS,
11 W1THOUT WARRANTIES GR CONDITIUNS OF ANY XIND, either cxpress or Iopliecd
12 Sge the License for the specific longuege govarning pentissions ond
iimitations unger the License.«/f

workbook=, Dsf~nen(“org, apaches.poi.xssf usernodel, X55FMorkbook™)

17 spreadsheet-workbook~createsheet("Text direction”)
spreadsneetl-workiook~createsheet(Test")

20 == 20 gegrees ongle

2% nyStyle=workbook-createCellStyle()

22 nyStyle~setRotation(90)

23 roa-spreadshest-createRon(0)

4 cell=row-createceli(3)

75 cell~setCellValve("90 degrees Angle™)
pJ] coll=setCellStyle(nyStyle)

2 -~ 120 degress gngle

77 nyStyle=workbook-createCel1Style()
) nyStyle~setRotation(188)

4 33 celil=row~createCell(®)
8 cell~setCellvalue("180 degrees Angle")
53 cell~setCellstyle(nyStyle)

35 270 degrees

34 nyStyle=morkuook-createCelistyle()

39 nyStyle~setRotation(273)

38 cell=row~createCell(7)

4] cell~setCellValve(“270 degress Angle“)
(3] cell~setCellStyle(nyStyle)

42 -- Set o hypertink formulo to on URL
43 hyperlinkFornula= 'HYPERLINK("https://pol._apache.org/apidocs/5.0/")"
\ rowHyperlink=spreadsheet~createRaw(?)
45 cell=rowHyperlink-createCell(0) ~setCellValue(“Hyperlink tu Apache POI Jovadocs")
) cellHyperlink-roasHyperiink-createCell(1)
& cellHyperlink~setCellFarnula(hyperlinkFormuia)

4 - Set a dyperlink Formule ta File Second Nutshell_Fxanple.xlsx
50 filelinkFormula='HYPERLINK("First_Nutshell Example.xlsx")’

53 roaFilelink=spreadsheet~createRow(3)

2 celi~rouFilelink~createCell(0)~setCellvalue(“Hyperlink Excel File First_Nutshell_Example.xlsx")
] cellFilelink=ronFilelink~createlell (1)

54 cellFilelink~setCellFornvlalfilelinkFornula)

Seite 47 von 52

Set o hyperlink formylo In cell B to the *lest™ sheetl In the Sone workbook
spreadsheetlinkFormula- 'HYPERLINK("wtest!Al")"’
rowSpreadsheetlink=spreadsheet~cresteRow(4)
cell«rowSgreadsheetlink~createCell(D)~setCellValue(Hyperiink to the Test Spreadsheet")
cellSpreadsheetlink=rouSpreadsheetlink~createlell(1)
cellspreadsheetlink~setCellFarnula(spreadsheetlinkFornula)

spreadsheet~avtoSizeColunn(o)
spreadsheet~setColunniWidth(l, 8600)

-- Nerging Ceils
spreadsheet~addiergedRegion(. bsf-new("org.apache poi, 55, util.CellRangeAddress”, 0, &, 7, 8))
- et print orao with indexes
workbook~setPrintAres(o, 0, 10, 0, 5)
- Set paper size
spreadsheet~getPrintSetup()~setPapersize(9)
- Set print grig lines
spreadsheet~setPrinteridiines(.true)

--Save the fiie

parse source . . j

call directory filespec('L', 1)
filenane=directory()"/Second Nutshell Example, xlsx*

- filenane-qualify(filenane)

output= bsfnen(" jova.io. FiledutputStrean® |, filenane)
workbook-write(output)

(IREQUIRES BSF.C15

Iom s W=

A B = D E F G H 1 J K

j =
I @ @
I = =]
- 2
: p) &
1 g 8
i o » \e
I
I © =1 ANG!
- £ 0 0=
i
i
I

Hyperlink to Apache POl Javadocs https://poi.apache.org/apidocs/5.0/ i

Hyperlink Excel File First_Nutshell_Example.xlsx First_Nutshell_Example.xlsx |

Hyperlink to the Test Spreadsheet #estlal i
:

< > Text direction Test +

Seite 48 von 52

Third Excel Nutshell example + output of first 15 generated numbers:

1 /#Copyright [2623] [Florian Frcena]
Licensed under the Apoche License, Version 2.0 (the “"License");
i You may not use this file except in complionce with the License,

5 You moy obtain a copy of the License ot

7 heep://www.opache. org/licenses/LICENSE-2.0

Unless required by applicable low or ogreed to in writing, softwore
16 distributed under the License is distriduted on on “AS IS" BASIS,
11 WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express ar implied,
12 See tne License for the spécific language governing permissions and
1imitations under the License.=/

15 workbook=.bsf~new("org.apache.poi.xssf.usernodel. XSSFWorkbook")

17 spreadsheet=workbook~createSheet("Random Numbers and Excel Functions")

19 row=spreadsheet~createRow(0)

2 cell=row~createCell(0)~setCellvalue("Randon Numbers™)

3 cell=row~createCeli(1)~setCellvalue("Sun")

22 cell=ron~createCell(2)~setCellvaluve("Count™)

23 cell=ron~createCell(3)~setCellvValve("Count if value >=500")
24 cell=ron~createCell(4)~setCellValve("Minimun")

25 cell=rom~createCell(5)~setCellValue(“Maxinun")

24 cell=ron~createCell(o)~setCellValue(“Average")
27 cell=ron~createCell(7)~setCellValue("Median")
26 cell=row~createCell(8)~setCellvalue("Standard Deviation")

- Creoting o formulo to generoTe raondom numbers In column A
do i=3 to 102
52 row=spreadsheet~createRon(i - 1)
33 cell=row~createCell(0)
34 cell~setCellFormula("Randbetween(0, 1000)")
L -end

3 - Sumning vp the values In column A

38 rowl=spreadsheet~createRow(1)

L formulaCellSum=rowl~createCell(1)
formulaCellSum~setCellFormula("Sun(A3:A102)")

a2 -- Creating formula for counting non-eémpty cells in column A
a3 formulaCellCount=rowl~createCell(2)
: formulaCellCount~setCellFormula("Count(A3:4102)")

46 -= Creoting formula for counting values In column A ot leost 5680
a7 formulaCellCountAtLeast500=ronl~createCell(3)
Gk formulaCellCountAtleast500~setCellFormula("Countif(A3:A1B2, "">=588"")")

5 -- Creating formula for the minimum volue 1n column A
51 formulaCellMin=rowl~createCell(4)
52 formulaCellMin~setCellFormula("Min(A3:4102)")

5% -- Creating formula for the soximum voloe 1n column A
L formulaCellMax=rowl~createCell(5)
55 formulaCellMax~setCellFormula("Max(A3:A102)")

Seite 49 von 52

(Y- - VI = I B N TR S I

= [
EhREEREE

-- Creating formula fon the averoge value in column A
formulaCellAvg=rowl~createCell(6)
formulaCellAvg~setCellFormula("Average(A3:4102)")

-- Creating formula forn the mean (median) valuve in column A
formulaCellMedian=rowl~createCell(7)
formulaCellMedian~setCellFormula("Median(A3:4102)")

-- Creating formula forn calculating the standard deviation of column A
formulaCellStdDev=rowl~createCell(8)
formulaCellStdDev~setCellFormula("Stdev(A3:A102)")

spreadsheet~autoSizeColumn(0)
spreadsheet~setColumnWidth(1, 1700)
spreadsheet~autoSizeColumn(2)
spreadsheet~autoSizeColumn(3)
spreadsheet~autoSizeColumn(4)
spreadsheet~avtoSizeColumn(5)
spreadsheet~autoSizeColumn(é)
spreadsheet~autoSizeColumn(7)
spreadsheet~autoSizeColumn(8)

/

/% Save the file %/
parse source . . K
call directory filespec('L', k)

filename=directory()"/Third_Nutshell_Example.xLlsx"
filename=qualify(filename)

output=.bsf~new("java.io.FileOutputStream" , filename)
workbook~write(output)
output~close()

::REQUIRES BSF.CLS

A B C D E F G H 1

Random Mumbers Sum Count Countifwvalue »>=500 Minimum Maximum Average Median Standard Deviation

52649 100 54 2 980 526,43 57L5 296,4646059
606
298
530
786
422
539
733
921
798
a2
18
568
292
40

< > Random Mumbers and Excel Functi +

Seite 50 von 52

Apache POI 5.2.3 jar files

poi-5.2.3 jar
poi-examples-5.2.3.jar
poi-excelant-5.2.3.jar
poi-javadoc-5.2.3.jar
poi-ooxml-5.2.3.jar
poi-ooxml-full-5.2.3 jar
poi-ooxml-lite-5.2.3.jar
poi-scratchpad-5.2.3.jar
commons-codec-1.15.jar
commons-collections4-4.4.jar
commons-io-2.1.1.0.jar
commons-math3-3.6.1.jar
commons-compress-1.21.jar
commons-logging-1.2.jar
curvesapi-1.07.jar
log4j-api-2.18.0.jar
SparseBitSet-1.2.jar
jakarta.activation-2.0.1.jar
jakarta.xml.bind-api-3.0.1 jar
slf4j-api-1.7.36.jar
xmlbeans-5.1.1.jar

Seite 51 von 52

