
Testing and Exploiting the ooRexx DBus Binding

An ooTest and Use Case Assessment

Author: Mag. Sebastian Margiol, MSc
Advisor: Univ-Prof. Mag. Dr. Rony G. Flatscher

Vienna, May 2015



Table of Contents
Abstract                                                                                                                                           .......................................................................................................................................  1
Kurzfassung                                                                                                                                    ................................................................................................................................  1
1. Introduction                                                                                                                                 .............................................................................................................................  3

1.1 Mandatory Installation Packages                                                                                          ......................................................................................  4
1.2 Optional Installation Packages                                                                                             .........................................................................................  6

2. Implement Automated Testing with ooTest                                                                                ............................................................................  9
2.1 Creating a Testgroup with ooTest                                                                                       ...................................................................................  10
2.2 Designing Test Methods                                                                                                     .................................................................................................  12
2.3 Error Treatment                                                                                                                  ..............................................................................................................  15

3. Testing the ooRexx DBus Binding with ooTest                                                                        ....................................................................  17
3.1 Connect to DBus and Test the DBus Class                                                                        ....................................................................  17

3.1.2 Type Codes                                                                                                                 .............................................................................................................  18
3.1.3 Bus Names                                                                                                                  ..............................................................................................................  18

3.2 TestServer – TestClient Architecture                                                                                  ..............................................................................  19
3.2.1 Providing Introspection Data - DBusServiceObject                                                   ...............................................  20
3.2.2 Establish a Private DBus Connection - DBusServer                                                  ..............................................  23
3.2.3 Direct DBus Method Calls and the DBusProxyObject                                              ..........................................  24
3.2.4 Assess the TestServices with DBus Debuggers                                                          ......................................................  25

3.3 Final Test Services                                                                                                              ..........................................................................................................  27
3.4 Assessing Different Object Types                                                                                       ...................................................................................  28

3.4.1 Integer Objects                                                                                                            ........................................................................................................  30
3.4.2 Double IEEE 754                                                                                                        ....................................................................................................  31
3.4.3 Strings                                                                                                                         .....................................................................................................................  34
3.4.4 Byte                                                                                                                             .........................................................................................................................  36
3.4.5 Signature                                                                                                                     .................................................................................................................  36
3.4.6 ObjectPath                                                                                                                  ..............................................................................................................  37
3.4.7 Arrays                                                                                                                          ......................................................................................................................  37
3.4.8 ByteArrays                                                                                                                  ..............................................................................................................  39
3.4.9 Struct                                                                                                                           .......................................................................................................................  39
3.5.10 Dict                                                                                                                           .......................................................................................................................  39
3.4.11 Variant                                                                                                                       ...................................................................................................................  40

3.5 DBus and NULL Values                                                                                                     .................................................................................................  41
3.6 DBusooRexx's ReplySlotDir                                                                                              ..........................................................................................  42
3.7 DBus Properties                                                                                                                  ..............................................................................................................  43
3.8 DBus Signals                                                                                                                      ..................................................................................................................  46
3.9 DBus Errors                                                                                                                        ....................................................................................................................  47
3.10 Start Service by Name                                                                                                      ..................................................................................................  48
3.11 Penetration Tests                                                                                                               ...........................................................................................................  49
3.12 Limitations                                                                                                                        ....................................................................................................................  50

4. Exploiting DBusooRexx In a Practical Setting                                                                         .....................................................................  51
4.1 Script Example: Automated Media-Player Control with Bluetooth and DBus                  ..............  51

4.1.2 Listening to Signals and Invoke Methods over Network                                           .......................................  51
4.1.2 Prerequisites                                                                                                                ............................................................................................................  52
4.1.3 The Media-Player-Interface Standard MPRIS                                                            ........................................................  52
4.1.4 The Linux Bluetooth Standard BLUEZ                                                                      ..................................................................  53
4.1.5 Establish Connection to Two Media-Players Via DBusServer                                   ...............................  54

4.2 Script Example: Interaction with Hardware over the System Bus                                     .................................  61
4.3 Script Example: Networkmanager                                                                                     .................................................................................  70

5. Outlook and Roundup                                                                                                               ...........................................................................................................  72

II



References                                                                                                                                ............................................................................................................................  75
Appendix                                                                                                                                       ...................................................................................................................................  77

Troubleshooting                                                                                                                        ....................................................................................................................  77
Installation Scripts                                                                                                               ...........................................................................................................  77
DBus Debuggers and DBus Services                                                                                  ..............................................................................  77

DBus Profiler                                                                                                                            ........................................................................................................................  78

Illustration Index
Figure 1: dbusdoc.rex output of mpris interface (excerpt)..........................................................6
Figure 2: D-Feet's view on DBus services..................................................................................7
Figure 3: qdbusviewer's signal handling capabilities..................................................................7
Figure 4: Assertion methods of ooTest........................................................................................9
Figure 5: Example representation of double value -1.9............................................................33
Figure 6: Comparison of two different views on DBusooRexx's ReplySlotDir.......................43
Figure 7: Two computers and an user with a Bluetooth device moving between.....................52
Figure 8: Automated backup to an USB stick...........................................................................61
Figure 9: D-Feet UDISK2 method view...................................................................................62
Figure 10: qdbusviewer - connect to signal..............................................................................62
Figure 11: Example output of Bustle (excerpt).........................................................................79

Script Example Index
Script 1: Example introspection data........................................................................................20
Script 2: Defining introspection data - TestService..................................................................21
Script 3: Defining introspection data - TestService2................................................................21
Script 4: Defining introspection data - TestService3................................................................21
Script 5: Defining introspection data - TestService4................................................................21
Script 6: Refinement for Error Treatment - TestService4.........................................................22
Script 7: Valid addresses for a private DBus Server.................................................................23
Script 8: Direct message call.....................................................................................................24
Script 9: ProxyObject message call..........................................................................................24
Script 10: ProxyObject message call full name........................................................................25
Script 11: dbus-send – Testservice3 without boxing.................................................................27
Script 12: dbus-send – Testservice3 with boxing......................................................................27
Script 13: Assert a digit error....................................................................................................30
Script 14: Create int64 values randomly...................................................................................31
Script 15: Create random double values...................................................................................34
Script 16: Processing of non-UFT-8 characters........................................................................35
Script 17: Using stringToUTF8 for non-UFT-8 characters.......................................................35
Script 18: Workaround for assessing arrays of doubles............................................................39
Script 19: Unmarshall byte array as string................................................................................39
Script 20: Null value conversion for assertions........................................................................41
Script 21: Providing access to DBus Properties........................................................................44
Script 22: Attributes, the testgroup interacts with.....................................................................45
Script 23: Wrong interaction with properties............................................................................46
Script 24: Signal example captured by dbus-monitor...............................................................46
Script 25: Signal emission after startup of the serverscript......................................................47
Script 26: Example ooTest.service configuration.....................................................................48
Script 27: Excerpt of /etc/dbus-1/session.conf..........................................................................49
Script 28: MPRISremoteServer (part 1/2) setting up a private DBusServer............................55

III



Script 29: MPRISremoteServer (part 2/2) offering services via DBusServer..........................56
Script 30: First implementation of DeviceFound......................................................................57
Script 31: MPRISremoteClient (part 1/2) listen for Bluetooth devices and connect to 
MPRISremoteServer.................................................................................................................59
Script 32: MPRISremoteClient (part 2/2) listen for Bluetooth devices and connect to 
MPRISremoteServer.................................................................................................................60
Script 33: Filechooser from Java..............................................................................................64
Script 34: UDISKS2 Interfaces Added.....................................................................................65
Script 35: Mount a device over UDISK2..................................................................................66
Script 36: Automated backup of files on registered USB devices............................................70
Script 37: Networkmanager, handle decimal IP Address..........................................................71
Script 38: Result of final testgroup execution...........................................................................72

Table Index
Table 1: DBus type indicators...................................................................................................29
Table 2: Supported integer values.............................................................................................30
Table 3: Supported double values.............................................................................................33
Table 4: Some example double values......................................................................................33
Table 5: Different byte representations.....................................................................................36
Table 6: DBusooRexx null value representation.......................................................................42

IV



Abstract
DBus  is  a  powerful  message-broker  system  that  enables  easy-to-use  interprocess
communication between different programs that might be written in different programming
languages,  run  on  different  machines  or  even  run  on  different  operating  systems.  These
powerful features demand a solid specification that exactly defines how a successful message
transaction is carried out. 

DBus  is  now an  integrated  part  of  almost  every modern  Linux  distribution.  It  enables  a
programmer  to  programming-language  independently  orchestrate  different  programs,
therefore  offering  features  like  broadcasting  and  receiving  simple  messages  like  signals,
providing services and handle properties.  Access to  DBus is  realized through a so called
DBus-language-binding. A language-binding tries to bring DBus interaction in line with the
concepts of the programming language and also enables to circumvent the strict object type
definition, DBus demands. The application of DBus functionality with an appropriate binding
should  come  as  natural  as  possible.  This  certainly  imposes  a  challenge  for  the  language
binding.  This  paper  defines  three  aims.  Firstly create  comprehensive  test-cases  and make
assertions  by  using  the  ooRexx's  JUnit  equivalent,  ooTest.  The  goal  is  to  cover  each
functionality with an appropriate sample. Secondly, draw attention to some specifics in the
application of DBusooRexx by analyzing input and output of selected statements. And finally,
test the ease of use of the language binding in a practical setting. 

For the last part, nutshell examples are provided that are designed to be useful on their own,
serve as templates for other applications and cover as many different concepts of DBus whilst
demonstrating some powerful features. Due to the assessment with ooTest and the interplay
with other DBus services some bugs were revealed, reported and already corrected by the
author of DBusooRexx.

Kurzfassung
DBus  ist  ein  mächtiges  Nachrichten-Vermittlungs-System,  dass  es  ermöglicht,  eine  Inter-
prozess-Kommunikation zwischen unterschiedlichen Programmen herzustellen. Dabei ist es
unerheblich,  ob  die  Programme  in  unterschiedlichen  Programmiersprachen  implementiert
wurden, auf unterschiedlichen Maschinen oder sogar auf unterschiedlichen Betriebssystemen
ausgeführt  werden.  Diese  Funktionalität  benötigt  eine  solide  Spezifikation  die  eine
erfolgreiche Nachrichtenübermittlung exakt festlegt.
DBus ist mittlerweile ein fester Bestandteil beinaher jeder modernen Linux-Distribution. Es
ermöglicht, programmiersprachenunabhängig Anwendungen zu orchestrieren. Dafür werden
Funktionen wie das Senden und Empfangen von Signalen, die Bereitstellung von Funktionen
und die Verwaltung von Attributen (Properties) zur Verfügung gestellt.
Zugriff  auf  die  Funktionalität  von  DBus  wird  durch  sogenannte  Sprachanbindungen
bewerkstelligt.  Eine  Sprachanbindung  versucht,  DBus-Nachrichten  in  Einklang  mit
Konzepten  der  Programmiersprache  zu  bringen und ermöglicht  darüber  hinaus  die  strikte
Typisierung,  die  von  DBus  verlangt  wird,  zu  umgehen.  Die  Anwendung  von  DBus-
Funktionalität sollte mithilfe einer entsprechenden Sprachanbindung so natürlich wie möglich
erscheinen.  Dies  stellt  dementsprechend  eine  umfangreiche  Herausforderung  für  die
Sprachanbindung  dar.  Diese  Arbeit  verfolgt  im  wesentlichen  drei  Ziele:  Erstens  werden
umfangreiche Testfälle definiert und mithilfe von ooRexxUnit, einem Äquivalent zu JUnit,
untersucht.  Ziel  ist  es  dabei,  jede  Funktionalität  mit  einem  entsprechenden  Beispiel
abzudecken. Zweitens werden einige Besonderheiten, die während der Testfälle aufgetreten

1



sind,  näher  untersucht,  indem Eingabe und Ausgabewerte  dargestellt  werden.  Zuguterletzt
wird die Einfachkeit der Anwendung mit kurzen Beispiel-skripten demonstriert. Diese Skripte
sind mit der Absicht erstellt wurden möglichst viele unterschiedliche Funktionen von DBus
anzuwenden und für sich selbst sowie als Grundlage für andere Skripte nützlich sein. Durch
die Überprüfung mithilfe von ooTest und der Interaktion mit anderen DBus-services wurden
Fehler entdeckt, gemeldet und vom Autor von DBusooRexx, bereits behoben.

2



1. Introduction
In an earlier paper, ooRexx was already used to establish connections to the DBus. (Margiol,
2011) As there  was no language-binding available  for  ooRexx,  an  indirect  approach was
chosen using BSF4ooRexx in  order  to  make Java functionality available  for  ooRexx and
consequently utilizing Java's DBus binding. Although this approach is feasible, it has certain
drawbacks. Java and DBus are both strictly typed, that means every single object type has to
be defined. In the case of more complicated object types like structs, it is necessary to create a
Java class and compile it, just to provide the object-type which can then be filled with values.
Although writing Java classes and compile them over command line instructions works, it
contradicts the concept of scripting languages, especially for ooRexx, as taking care about an
object  type  comes  unnatural.  This  further  hinders  the  easiness  of  usage.  Another  major
drawback  is  that  very  much  code  is  generated  for  simple  tasks.  A  simple  example
demonstrated that using Java mapped DBus functionality for ooRexx needs three Java classes
defined, each containing more instructions than the same example implemented in three lines
of python code.1

It was already mentioned that ooRexx programmers should not abandon the advantages of
DBus interaction, but if a direct binding is available, the Java approach can gladly be passed
back.  (Margiol,  2011) Professor  Rony Flatscher  (Vienna  University  of  Economics),  who
already contributed much to the ooRexx community finally wrote a DBus language-binding
for ooRexx, called DBusooRexx. (Flatscher, 2011a)
The new member of the language-binding family offers many powerful features. One of the
most attracting features certainly is the object type “guessing” capability. A DBus object type
can therefore be created as easily as if it is a regular ooRexx object type.

The aim of this paper is not to provide an introduction into DBus concepts in general as there
is already some excellent documentation available. The DBus specification is probably the
most  comprehensive  documentation.  (Pennington  et  al.,  2014) The  wiki  page  of
freedesktop.org  provides  Links  to  many  documents  about  general  introduction  to  DBus,
documents about the reference implementation as well as articles and tutorials about some
language-bindings. The FAQ subpage provides explanation of how DBus differs from other
IPC  mechanisms  like  CORBA and  DCOP.  The  introduction  to  the  language-binding  for
ooRexx  (Flatscher,  2011a) and  the  presentation  slides  (Flatscher,  2011b) are  compulsory
readings,  if  heading  into  DBusooRexx  as  well.  A comprehensive  book  about  Rexx  and
ooRexx  can  be  recommended  as  well,  especially  if  some  aspects  of  the  programming
language are unclear and the programming reference of ooRexx does not provide sufficient
information. (Flatscher, 2013)

This document is structured as following: In the next section everything is described that is
necessary  to  setup  the  environment  for  using  DBusooRexx.  The  section  is  divided  into
mandatory and optional installation packages, the latter are useful for creating own scripts, but
need not necessarily be installed for using DBusooRexx. The next section copes ooTest, a
toolset for creating automated testcases. The creation of comprehensive testcases is intended
to be one of the main contributions of this work, therefore the testing framework is introduced
and the creation of the resulting testgroup is described step by step. Some of the testgroup's
testmethods are elaborated in more detail to point attention to specialties in the application of
DBusooRexx and DBus (for example handling .nil values).

The last section of this document is dedicated to the usage of DBus in a practical setting,

1 DBusooRexx code for the same example would also be about three lines.

3



therefore usecases are defined and DBusooRexx solutions are provided. The intention of these
scripts is not only to offer examples and templates, but also to demonstrate that small, yet
feature-rich programs can easily be developed with the help of a powerful system like DBus
and the appropriate “translator” DBusooRexx.

As this document contains some program code that might disrupt the readability, following
syntax is defined: Every program's input or output is displayed with a mono-space font. That
is also true for some longer program names. If the program code refers to an input or any
other related DBus command, it is displayed with a yellow background. If the code snippet
depicts  an  output  or  a  result  of  an  invocation,  it  is  colored  with  gray  background.  See
following examples:  input, plain and bold and output, plain and bold. Script examples
do additionally use colored keywords. (common programming language instructions for the
given language.)

For the rest of this document the term DBusooRexx relates to the DBus language binding for
ooRexx. The term testgroup refers to the ooTest file that contains all test cases.

The following section describes all components that have to be installed prior to access DBus
via ooRexx and also suggests software that might probably be helpful during the development
of DBus applications.

1.1 Mandatory Installation Packages

Being a long back and forth to settle for a unified inter-process-communication system on
different  Linux-distributions,  DBus  is  now  in  use  by  any  modern  Linux  distribution  by
default. Therefore it is very unlikely that DBus is not installed and already running if using a
Linux system.2 The most current version at the time of writing was dbus-1.8.6 which was
released on 2 July 2014.3 If not already installed, the Software repository will much likely
offer an installation candidate  for dbus per default.  On a current Ubuntu version (14.04),
DBus version 1.6.18-0ubuntu4.1 (trusty-update) is used. Although this version represents the
legacy branch of  DBus and is  only supported for  security fixes,  it  is  common for  stable
distributions  to  provide  this  version.4 DBus,  being  part  of  the  freedesktop.org software
project  is  dedicated  to  create  interoperability  between  different  (Linux/Unix)  operating
systems. MacOSX and Windows are supported as well what further enhances this claim. The
Windows port is hardly documented, on the project homepage it is mentioned that two former
projects (dbus4win and windbus) merged into the development branch of DBus.5 You can
obtain and compile the source code, use the binary from sourceforge6 (latest update in April
2013),  or  use  the  binary  provided  through  DBusooRexx.  The  DBusooRexx  installation
package ships support for all common operating systems in both, 32 and 64 Bitness. As the
low-level  implementation  of  DBUS  requires  a  XML parser  that  is  probably  not  readily
available on Windows operating systems (expat)7, Rony Flatscher also compiled and attached

2 Availability of a running DBus-session can be screened by issuing the command dbus-monitor in a shell.
3 Repository of all DBus releases so far: http://dbus.freedesktop.org/releases/dbus/, accessed on 2 September

2014.
4 Change-logs of any DBus version can be found at  http://upstream-tracker.org/versions/dbus.html  , accessed

on 2 September 2014.
5 Information  about  Windows DBUS port:  http://www.freedesktop.org/wiki/Software/dbus/,  accessed  on  2

September 2014.
6 Download location of DBUS binaries for Windows: http://sourceforge.net/projects/windbus/ , accessed on 2

September 2014.
7 Project  Homepage  of  libexpat:  http://www.libexpat.org (only  32-Bit  version  available),  accessed  on  2

September 2014.

4

http://www.libexpat.org/
http://sourceforge.net/projects/windbus/
http://www.freedesktop.org/wiki/Software/dbus/
http://upstream-tracker.org/versions/dbus.html
http://dbus.freedesktop.org/releases/dbus/


it for 32-Bit (libexpat.dll) and for 64-Bit (expat.dll) Windows versions.8 In contrast to Linux
systems  where  DBus  is  started  by  default,  Windows  systems  need  DBus  to  be  started
manually.  This  can  eighter  be  done  by  starting  the  daemon  with  the  command  dbus-
daemon.exe and the switches  --session and  --print-address or by starting any application
that requires DBus and therefore initializes it. (Slower operating systems might run into a
timeout  on  the  first  try)  If  starting  the  DBusDemon  manually  following  information  is
provided:
tcp:host=localhost, port=8640,family=ip4,guid=07522f56431e30fca59f041b53f62a7c.
This information indicates that DBus is running and is reachable. There are some switches
available that allow to specify the connection furthermore. The command  dbus-daemon.exe
--help lists all available options.

Of course ooRexx is a mandatory installation candidate. Installation packages for different
operating systems can be found on the ooRexx homepage.9 At the time of writing the most
current  release on this  page  was version  4.2.0.  The Open Object  Rexx download section
section10 of the open-source-archive sourceforge.net provides different ooRexx versions and
other ooRexx related projects as well. 
The  minimum  requirement  for  DBusooRexx  is  ooRexx  version  4.2.0.  The  release  note
indicates that version 4.2.0 is a new feature and bug fix release11, you should therefore install
this version or any higher (if available) for DBusooRexx. Pick the version that best matches
your Linux distribution12, respectively Windows version. Be careful that ooRexx is installed in
the same bitness, the operating system has.
The next step is to install the ooRexx DBus binding, DBusooRexx13. The installation script is
written  in  Rexx  and  is  called  install_ooRexx_dbus.rex.  If  any problem arise  during  the
installation process, it might be useful to consult the troubleshooting section at the end of this
document.
After  installed  correctly,  DBus  has  to  be  made  available  for  ooRexx  by  adding  the  
::requires DBUS.CLS directive to a script.
The next installation package, BSF4ooRexx, is not a mandatory installation for DBusooRexx
anymore. BSF4ooRexx enables to provide all Java functionality to ooRexx in an easy way, it
is the language-binding to Java if using this analogy to DBusooRexx. An earlier version of
DBusooRexx had dependencies  on Java's  UTF-8 conversion routine,  which was accessed
through BSF. The current version has a fall-back mode if the utf8-conversion routine is not
available through Java. It is nonetheless recommend to install BSF4ooRexx as it provides
useful features and one of the script examples presented later, will make use of it.
If all these installations have been conducted, the core setup that is sufficient to explore DBus
with ooRexx is ready to be used.

8 Note that DBusooRexx for Windows was not tested extensively at the time of writing. Download location:
http://wi.wu.ac.at/rgf/rexx/orx22/work/, accessed on 2 september 2014.

9 ooRexx Homepage: http://www.oorexx.org/download.html, accessed on 2 September 2014.
10 ooRexx Projects: http://sourceforge.net/projects/oorexx/, accessed on 2 September 2014.
11 Changes of ooRexx 4.2: http://sourceforge.net/projects/oorexx/files/oorexx/4.2.0/CHANGES.txt/download ,

Release Note ooRexx 4.2:  http://sourceforge.net/projects/oorexx/files/oorexx/4.2.0/ReleaseNotes/download,
accessed on 2 September 2014.

12 The most current version for 64-Bit Ubuntu systems at the time of writing is ooRexx-4.2.0-
1.ubuntu1310.x86_64.deb. The package description denotes the minimum system version, therefore it 
perfectly fits for an Ubuntu14.04 installation.

13 DBusooRexx and its source-code are available on sourceforge: 
https://sourceforge.net/projects/bsf4oorexx/files/GA/sandbox/DBusooRexx/, respectively 
https://sourceforge.net/p/bsf4oorexx/code/HEAD/tree/sandbox/rgf/misc/DBusooRexx/, accessed on 2 
September 2014.

5

https://sourceforge.net/p/bsf4oorexx/code/HEAD/tree/sandbox/rgf/misc/dbusoorexx/
https://sourceforge.net/projects/bsf4oorexx/files/GA/sandbox/dbusoorexx/
http://sourceforge.net/projects/oorexx/files/oorexx/4.2.0/ReleaseNotes/download
http://sourceforge.net/projects/oorexx/files/oorexx/4.2.0/CHANGES.txt/download
http://sourceforge.net/projects/oorexx/
http://www.oorexx.org/download.html
http://wi.wu.ac.at/rgf/rexx/orx22/work/


1.2 Optional Installation Packages

If testcases are executed or implemented, ooRexxUnit is necessary as well. ooRexxUnit is an
ooRexx equivalent to Java's popular JUnit testing framework. 
At the time of writing, the most current version of ooRexxUnit was 4.2.0.Snapshot.06, which
was updated last time February 2014.14 Snapshots are packages (zip archives) that contain the
testing framework for writing own testgroups and a set full of prepared testgroups, which can
be used to test the ooRexx interpreter as well as documentation. It is essential to use a testing
framework that is  equivalent  to  the ooRexx version.  (Miesfeld,  2009a).  If  the installation
script of ooRexxUnit does not work as expected, try consulting the troubleshooting section at
the end of this document.

The next installation candidates are, though optional, essential to be productive during the
implementation and testing process of services. They enable quick and easy interaction, in
order to test the accessibility and functionality of any DBus service, own created or already
available, namely DBus debuggers.
DBusooRexx ships a program that is able to create a beautiful and comprehensive summary
of any DBus service,  dbusdoc.rex. This program creates a HTML file that lists all methods,
properties and signals  of any DBus service passed as argument.  (See Figure 1) This tool
provides  enough information about  any DBus service,  if  however  a  graphical,  interactive

representation is preferred, two tools are recommended. 
The first one is called D-Feet15 and is probably already available in the standard repository of

14 ooRexxUnit`s homepage:  http://sourceforge.net/projects/oorexx/files/oorexxunit/, accessed on 2 September
2014.

15 D-Feet's  Homepage:  https://live.gnome.org/DFeet/ (alternatively  search  for  d-feet  within  your  package
manager.), accessed on 2 September 2014.

6

1 void method Next( )

2 void method OpenUri( string ) → [s]

3 void method Pause( )

4 void method Play( )

5 void method PlayPause( )

6 void method Previous( )

7 void method Seek(int64)→[x]

8 void method SetPosition( objpath, int64 ) → [ox]

9 void method Stop( )

1 property CanControl read Boolean → [b]

2 property CanPause read boolean→[b]

3 property CanPlay read boolean→[b]

4 property CanSeek read boolean→[b]

5 property LoopStatus readwrite string→[s]

6 property MaximumRate readwrite double→[d]

7 property Metadata read a{sv}→[a{sv}]

8 property PlaybackStatus read string→[s]

9 property Position read int32→[i]

10 property Rate readwrite double→[d]

11 property Shuffle readwrite double→[d]

12 property Volume readwrite double→[d]

Figure 1: dbusdoc.rex output of mpris interface (excerpt)

https://live.gnome.org/DFeet/
http://sourceforge.net/projects/oorexx/files/oorexxunit/


your Linux distribution, the second one is called qdbusviewer and is shipped with the qt4-
dev-tools package16. Both have their strengths. D-Feet is very clearly represented, indicates
expected object-types and return values for a service call and allows to invoke services and
pass arguments. (see Figure 2 on next page) D-Feet also allows to establish a connection to
other buses than session and system-bus.
qdbusviewer offers an additional feature. It is possible to connect to signals and watch for
their appearance on the on the built-in output panel. (see Figure 3) This is handy if you are
interested in signals from a specific application, but do not know how exactly the signal looks
like. This program allows to connect to any signal and look if and when it appears.

16 Search qt4-dev-tools within your package manager as there is no standalone installation for qdbusviewer.

7

Figure 3: qdbusviewer's signal handling capabilities

Figure 2: D-Feet's view on DBus services



These two debuggers as well  as dbusdoc.rex are used for the first  assessment  of a DBus
service. Another interesting tool in this context is called dbus-send.17 It is a command-line tool
that allows to interact with DBus services and is probably useful if a simple method call has to
be effected, as no setup is involved. In the case of other debuggers are failing to connect to
DBusooRexx services, this tool will be used to assess the availability of services as well in
order to exclude the debuggers as possible source of failures. A nice tool that can be used to
get a visual representation of DBus traffic is called Bustle.18 The last section of this document
presents  an excerpt  of  DBus traffic,  captured during the execution of  the final  testgroup.
Bustle allows to filter specific bus-names, enabling a very well structured view on all traffic
from and to the DBus service.
The two debuggers with the graphical user interface and Bustle are regrettably not available
for the Windows and Mac operating systems, but dbus-monitor and dbus-send can be used for
that purpose as substitutes.

Although it is possible to code ooRexx in any given text editor, it might be handy to use an
integrated development environment. Eclipse is well known for its extensibility and plug-in
handling.  RexxDev19 is  an  Eclipse  development  plug-in,  that  can  be  used  for  syntax
highlighting, code completion and debugging. RexxDev tries to be compatible with popular
Rexx language interpreters, therefore supporting ooRexx code as well. Another plugin for this
purpose can be found at20. If colorized syntax code need to be exported, using eclipse offers
the most easy to use support. Whilst other text editors with syntax highlighting export the
source  code  as  HTML,  eclipse  needs  no  special  export  instruction.  It  is  possible  to  use
colorized source code with common copy and paste instructions.21

I nonetheless prefer to use kate, the text-editor shipped with KDE. Although ooRexx is not
supported, regular Rexx syntax highlighting is sufficient enough to visually group the code
and the built-in console window allows to start scripts within the text-editor in an easy way.

17 dbus-send documentation: dbus.freedesktop.org/doc/dbus-send.1.html. accessed on 2 September 2014.
18 Bustle download location: http://www.willthompson.co.uk/bustle/, accessed on 2 September 2014.
19 Information about the RexxDev eclipse plugin is available at: http://rexxdev.sourceforge.net/. Although this

project was updated the last time in 2008, the plugin was tested to work. accessed on 2 September 2014.
20 Rexx plugin for Eclipse: http://sourceforge.net/projects/rexxeclipse/ accessed on 2 September 2014.
21 eclipse exports text in Rich-Text-Format as default.

8

http://sourceforge.net/projects/rexxeclipse/
http://rexxdev.sourceforge.net/
http://www.willthompson.co.uk/bustle/


2. Implement Automated Testing with ooTest
It seems reasonable on the first sight to write a short test to check if the newly programmed
functionality  works  as  expected  and  if  everything  works  well,  implement  the  next
functionality  and  write  a  new  test.  But  errors  can  occur  nonetheless,  what  if  a  newly
developed service somehow interferes with another code which was not part of the test.
Therefore it is very valuable to have an exhaustive set of different testcases available, that can
be carried out all together without additional effort every time a change on the code was
undertaken or a new developed service is to be tested thoroughly.
Although developing testcases is of utterly importance, creating comprehensive testcases is a
very difficult task as many different aspects have to be taken into account, comprising the
interplay of already proved-to-work modules as well. Therefore it is advisable to start from
the most basic assertions and fill up assertion per assertion within the testcase, ideally at the
time of writing the code that needs to be tested.
For a comprehensive test it is necessary to automate the testing procedure, thus enabling to
test thousands of assertions within seconds. This is the primary purpose of using ooTest. 
The ooTest  framework sits  on top of  the  ooRexxUnit  and was slightly adapted  by Mark
Miesfeld. ooTest extends the functionality of ooRexxUnit in order to cope some special need
in testing ooRexx. Therefore most  ooTest  classes  are  enhanced subclasses of  the original
framework.  (Miesfeld,  2009b) The  ooRexx  version  follows  the  same  concepts  as  the
archetype, the JUnit framework. There are eight different methods predefined that are used to
test results of function calls or states. (see Figure 4) 
The ooTest package also contains all tests written so far that are used by ooRexx developers,
thus ooTest do not only serve as testing framework, but also as collection of many various
tests.  (Miesfeld,  2009a) Therefore  using  ooTest  optimally  results  in  a  give  and  take.  If
testcases  are  comprehensive  and  useful  for  the  community,  they  might  possibly  be
incorporated into the collection of test cases within the framework.

The logic behind creating tests with ooTest is straight forward. A programmer knows prior to
a function call what the result must look like. This expected value then gets compared with
the  actual  result  of  an  invocation,  to  test  whether  they  are  consistent.  The  optional  msg
argument can be used to provide further information about the assertion. Using this argument
is especially necessary if tests are intended to be useful for other persons as well, or if there is
a more extensive explanation necessary why a certain result is expected. A simple example for
a necessity to give further explanation would be an addition where for some strange reasons
another result is expected as mathematics would impose. This optional message will only be
displayed  if  the  assertion  fails,  therefore  giving  an  explanation  why a  certain  value  was
expected is helpful to identify why the actual value differs. (Miesfeld, 2009b)
Assertions are grouped into test  methods,  which themselves are grouped into a testgroup.
Therefore  a  testgroup  contains  multiple  test  methods,  which  could  carry  out  multiple
assertions. Although using this framework seems easy and straight forward, there are some

9

assertEquals(expected, actual, [msg])
assertNotEquals(expected, actual,[msg])
assertNull(actual,[msg])
assertNotNull(actual, [msg])
assertSame(expected, actual,[msg])
assertNotSame(expected, actual,[msg])
assertTrue(actual,[msg])
assertFalse(actual,[msg])

Figure 4: Assertion methods of ooTest



things that have to be considered anyway. The chapter error treatment covers one of these
specialties. 
The functionality of most of the assertion methods is easily understandable. Some of them are
even  interchangeable.  If  for  example  the  test  is  about  a  value  to  be  true,  all  three
assertEquals,  assertSame and  assertTrue can  be  used.  Of  course  assertNotEquals and
assertNotSame would also produce correct assertions if the value to be expected is changed to
false, designing testcases that way would be confusing though. Even if the programmer is sure
about only having true and false as available values, these assertions would fail if .nil or an
empty string is asserted.
The  only  pair  of  assertions  that  might  need  further  explanation  is  assertEquals and
assertSame. Whilst  assertSame tests whether two values are exactly the same,  assertEquals
asserts whether the values are loosely equal. For example 1 and 1 are strictly equal, whilst
“dog “ and “dog” are, although looking the same, not exactly the same object. Therefore an
error is thrown if asserted with assertSame because of the additional space character. For these
kind of assertion,  assertEquals is used,  which asserts the two strings as loosely equal.  If
collections are compared, assertEquals needs to be used as well, as array “a” and array “b”
are probably not exactly the same object,  but might nonetheless contain same values and
therefore, for a general understanding, are equal arrays (Miesfeld, 2009b).
Apart from the simple logic behind the usage of assertion methods, creating a comprehensive
set of tests is a difficult task.

2.1 Creating a Testgroup with ooTest

The author of ooTest describes that the most easy approach for the first usage of ooTest is to
adapt an existing template file. This scripts defines a class that subclasses ooTestCase and
contains some example test methods. The simplest approach is to change assertions within the
test methods and rename everything according own needs.
The  created  file  has  to  be  started  via  an  additional  rexx  file  (rexx testOORexx.rex -R
[directory]  -f  [filename].)  The  required  file  testOORexx.rex is  to  be  found  in  the
installation directory of ooTest and drives the automated execution of testcases by starting the
test  suite.(Miesfeld,  2009b) This  script  is  responsible  for  making  all  involved  programs
available for the execution of the tests.22 The parameters allow to specify a directory where all
testgroups are executed (flag -R) or to run a single file, specified through the -f flag. 
Although  the  file  testOORexx.rex is  intended  to  provide  all  requirements  for  the  test
execution. The author personally do not find it handy to always search for that file. Running
the testgroup through this script complicates the usage much more than eases it. The author
therefore  decided  to  make  the  required  files  permanently  available  by manually  copying
OOREXXUNIT.CLS and ooTest.frm to the directory /usr/bin/.23 Another possibility is to include
its location in the path variable, or make an entry in the file  /etc/environment to make it
permanently  available.  As  all  required  programs  are  now  retrievable  on  this  path,  the
testgroup can be launched with  rexx DBUS.testGroup directly from any path it was edited,
instead of using the command rexx testOORexx.rex -R dbus -f DBUS and use the full path of
testOORexx.

As most of the tests need a counterpart that is specially designed for that task, a client-server
architecture was implemented. The testmethods and all assertions are incorporated into the
client part. The server is used to respond to service calls and additionally emits signals, the
client can connect to. Therefore the client is dependent on a running testserver. It is not very

22 The dependency for the test is the program ooRexxUnit.cls.
23 More details to be found in the troubleshooting section at the end of the document.

10



handy to manually start the testserver each time before the testgroup is executed and close it
after all tests have been completed, this is not the intention of automated tests. A much better
solution is to have the testgroup manage its dependencies (in this case the availability of the
testserver)  by  itself.  ooTest  provides  two  methods  that  are  directly  dedicated  to  these
requirements. A setUp and a tearDown method. These methods are incorporated into the class
ooTestSuite.
The  setUp method  is  always  called  first  and  is  therefore  ideally  suited  to  organize  all
requirements for the testclient. In this usecase the intention is to start the required counterpart,
the testserver. There are different solutions to this problem. ooRexx can easily interact with
the operating system. Issuing unknown instructions for the ooRexx interpreter let it pass the
command to its environment. The rexx instruction say address() returns the environment to
which commands are passed. (Ashley et al., 2009, p 376) As expected the answer of this call
is bash on a Linux system. Any command not processed otherwise from ooRexx is sent there.
Adding the line  "rexx ooTestDBusServer.rexx &" to the  setUp method starts the testserver.
The control operator & instructs the shell to execute the command in a sub-shell and not wait
until the process is finished.24 If the command is issued without this control operator, the
script would stick in the setup method and wait until the server quits, which wont ever happen
as the server is programmed to keep alive until its method quit is called.
There is  also another very interesting possibility to start  services.  It  is  possible  to start  a
program over DBus by defining a service file. (This method will be demonstrated in the sub-
chapter  “Start  Service  by  Name”).  Although  very  elegant,  this  method  was  intentionally
omitted for the testgroup as it requires administrative privileges to setup the service file, what
might impose an (unnecessary) additional burden.
The counterpart of the  setUp method is the tearDown method, called at the end of the script
and designed for cleaning up everything that was created during the execution of the test
methods, or within the setUp method. In this usecase the tearDown method is used to terminate
the testserver and close all connections established to DBus.
As the testserver was started over the command line with the described control operator, the
ooRexx scripts process number has to be queried if the process is intended to be terminated
with the kill command25. This approach unnecessarily involves command line operations and
is omitted as actually there is a direct connection available to the testserver over DBus. It is
much easier to politely ask the testserver to shut down as it knows best what connections to
DBus have  been established and need to  get  closed  and whether  there  are  other  cleanup
instructions outstanding. This behavior was realized by a local variable called .dbus.shutdown
The serverscript starts all services and keeps them alive until this variable is changed to .true.

As  every  testservice  implements  a  method  called  Shutdown which  changes  the  value  of
.dbus.shutdown:

24 More information can be acquired with man bash.
25 The shell command man kill gives more details.

11

do while \.dbus.shutdown 
call syssleep 4
end

halt:
   conn~close       --  stop message loop
   exit -1  

::method Shutdown
  dbus.shutdown = .true



If  this  method  is  called,  the  server  script  closes  all  other  service  objects  and  closes  its
connection to DBus. As the tearDown method of the testgroup is the last called method within
a Testsuite, this Shutdown method is called first to shut down all services, followed by closing
instructions for the testgroup's own DBus connection. 
In the first attempt only the  setUp and  tearDown methods were implemented and a testrun
showed that none of them got invoked. Looking deeper into the code of ooTest revealed that
the script has to contain at least one ::method test defined in order to execute.
Adding one test method to the adapted ooTest class, enabled the script to execute as expected.
The testserver is started in the setUp method, the test method is invoked, its assertions carried
out  and  finally  the  tearDown method  shuts  down  the  testserver  and  closes  all  DBus
connections.
But upon a second testmethod is added, the setUp and tearDown methods are called every time
before and after every testmethod execution. As the expected behavior is to start the server,
execute all testmethods and close it in the end, the script was discarded and another class of
ooTest was used.
The class ooTestSuite is perfectly fits the described usecase. A subclass of ooTestSuite was
created containing the setUp and tearDown methods and the testmethods with their assertions
are implemented as a subclass of ooTestCase.
This  setup  now  enables  to  execute  all  tests  by  only  issuing  one  command:  rexx
DBUS.testGroup.26 This is much handier than navigating trough the file system and taking care
that everything was started and closed correctly. The newly created subclass of ooTestCase is
now ready for being enhanced by adding testmethods one by one.

2.2 Designing Test Methods

The eradication of the test methods does not follow their placement within the testgroup file.
Tests are not carried out one after another as implemented, but executed alphabetically27. It is
therefore  important  how tests  are  named  if  a  sequence  is  desired.  Given  the  syntactical
restraints that every test method has to be defined with ::method test[name], the name firstly
has to be meaningful and of course unique within the script and secondly, the alphabetical
placement of the first character after the word test in relevance to other test methods has to be
considered. For easier readability it was decided to use an underscore after the method test,
(::method test_integer32) but any allowed character does the job as well. One may argue
that  defining  test  methods  and  keep  the  alphabet  in  mind  is  not  that  difficult,  but  if  a
meaningful test name has to be defined, such character restrains can become unnecessarily
complicated.  Especially if  the number of testmethods within a testgroup is  extended over
time.  One  possibility  is  to  use  a  sorting  character  after  the  word  test  (e.g.  ::method

test_a_integer32 and ::method test_b_array) but this is neither beautiful nor very useful, as
the  last  used  sorting  character  has  to  be  retrieved  every  time  a  new  test  method  is
implemented.  Another possibility would be using numbers,  but the last  number has to be
retrieved as well if a new test method is implemented. Therefore the best solution is to not to
demand any sequence within the script.

In order to structure the testgroup logically, the tests will start with basic assertions in order to
assess whether all DBus object types are processed correctly.
As distributing, receiving and processing messages is one of the main tasks of DBus, it comes
logically to start with assessing them first. Upon the basics were tested thoroughly, meaning

26 The file  DBUStestServer.rexx and the introspection file  Testservice.xml have to be placed in the same
path as the testgroup.

27 e.g the method test_arrays is executed prior to test_integer, although test_integer was defined a few
hundreds lines before test_arrays within the testgroup file.

12



that every combination was tested including tests that could or should produce errors, the
functionality of  DBusooRexx has  to  be assessed.  This  incorporates  all  features  that  were
introduced by the author of the DBus ooRexx binding, which need not necessarily be common
for other DBus language-bindings as well. As ooRexx intends to be an easy understandable
programming language, the author of the binding follows this concept by implementing some
features  that  further  ease  the  use  of  DBus  like  automatic  marshalling,  syntax  checks  for
introspection data and others that are going to be introduced and tested within the following
chapters. 

The following functionalities introduced with DBusooRexx are going to be incorporated into
the testgroup:

“map D-Bus messages directly to ooRexx messages, take advantage of the ooRexx
built-in unknown mechanism; this allows any ooRexx object to receive and 
process any D-Bus message” (Flatscher, 2011a, p 9)

Mapping DBus messages to ooRexx messages means that DBus messages can be processed as
easy as if they were ooRexx messages, that also implies using the same syntax for instance.
The testgroup contains many different DBus instructions that do not differ much from regular
ooRexx code. The testgroup also contains a service that provides a method called unknown,
which is used to return all DBus objects that were passed over to it. Although not designed for
that usage, using the unknown method allows to successfully omit defining introspection data
a priori.

“add by default a slot argument to any D-Bus message before forwarding it to an 
ooRexx object, which is an ooRexx dictionary (map) containing D-Bus message 
related information like message type, sender, signature and the like.” (Flatscher, 
2011a, p 9)

The testgroup contains some test methods that assess the availability of this slotDir, as well as
its nonexistence upon a flag is used to refrain DBusooRexx from creating it.28

The testgroup will also inspect information transported within this directory and assert both,
the sender and the receiver's slotDir.

“...implement marshalling and unmarshalling such that it is transparent to the 
ooRexx programmer; allow arguments to be optional (left-out) and supply safe 
default values in the marshalling code for them,...” (Flatscher, 2011a, p 9)

This is another very interesting function and also not common to all bindings. This approach
very  much  eases  the  interaction  with  DBus  as  for  an  ooRexx  programmer,  all  DBus
invocations are coming as easy as interacting with common ooRexx objects. There is no need
to  deeper  understand  what  exactly  is  done behind the  curtain.  Sometimes  even  a  simple
service invocation needs a complicated object type to be created and forwarded. This will be
tested by issuing messages to some service objects to be known to be available on every
system, the tests envisage to subsequently omit values in order to test automatic completion of
expected values.

“...create an ooRexx class that represents a D-Bus connection, named “DBus”, 
which allows to establish a connection to the system and session daemons, as well

28 Following instruction disables the SlotDir: .dbus~session~makeReplySlotDir=.false

13



as to D-Bus servers with a known address, to send and to receive messages,...”
“...create an ooRexx class that serves as an ooRexx proxy for remote objects, 
camouflaging them to be ooRexx objects, named “DBusProxyObject”,...” 
(Flatscher, 2011b, p 9)

The application of the DBusProxyObject allows to interact with DBus services as if they were
regular ooRexx objects. Within the testgroup every call is effected over a direct message call
as well  as over this proxy object. The latter considerably eases the usage of DBus as the
familiar syntax: object, tilde, instruction (dbusobject~doSomething()) can be used as if DBus
objects were regular ooRexx objects.

“...create an ooRexx class that allows local filtering of signals, named 
“DBusListener”,...” (Flatscher, 2011b, p 9)

Listening for signals and react appropriately upon their arrival is also a very important feature
of DBus. Both emitting as well as receiving signals is tested within the testgroup. As the
testgroup consists of a client-server architecture, signal emission is tested upon startup of the
script, as the server informs the client that it is available by emitting the signal “Ready”. The
client, on the other side, listens for this signal whilst detaining execution of its assertions until
the signal successfully arrives. Listening to signals and reacting upon their arrival will also be
used within the example scripts 31 and 34 on page 63f.

“...create an ooRexx class that makes it easy to implement services in ooRexx, 
named “DBusServiceObject”...”
“...create an ooRexx class that makes it easy to establish a private D-Bus server, 
named “DBusServer”,...” (Flatscher, 2011b, p 9f)

Of course all of these classes designed to further ease the use of DBus are deployed within the
testgroup or within the example scripts.  DBusServiceObject  is  used as counterpart  of  the
testgroup,  containing  all  methods,  the  testgroup  calls.  There  are  already  two  predefined
addresses available per default, a DBus service can connect to, named session bus and system
bus.
The DBusServer additionally allows to use different ways of transporting messages,  these
approaches are  assessed as well.  It  is  possible  to  choose amongst  Unix sockets,  launchd,
nonce-TCP/IP sockets and TCP/IP sockets. The latter ones even enable programs on different
machines to interact over DBus and a network.
The class DBusServer is very handy as it enables to create a client-server architecture with
ease. Although a client-server architecture can easily be realized with a DBus Service object
as well,  DBusServer allows to specify the accessibility to its  services more precisely and
additionally it  can be used without a message bus daemon that serves as broker of DBus
messages. DBusServer does not interact with the class  org.freedesktop.DBus, therefore no
unique bus name is assigned. 

“...create support for creating and analyzing introspection data on-the-fly.” 
(Flatscher, 2011b, p 10)

The testgroup contains four different methods to provide introspection data, creating it on the
fly is one of them. This is a very interesting feature to circumvent struggling around with xml
introspection  data,  which  will  be  further  described  in  the  section  “3.2.1  Providing

14



Introspection Data - DBusServiceObject“.

2.3 Error Treatment

Sometimes it is known that a certain message call will produce errors, but although it seems
reasonable not to invoke method calls that will produce errors, it is nonetheless necessary to
assert their occurrence. If errors are not thrown, the occurrence of unexpected behavior in the
further execution of the script is often only a question of time. For example if a value of an
integer is too high for its representation29 and no error is thrown, the user does not know
whether  the value was simply ignored or even worser,  manipulated (e.g.  cropped)  by the
script.
For the implementation of error assessments some things have to be considered. First of all, if
the error is fatal it might possibly tear down the testscript and other involved programs, such
as Java as well. Such errors should be documented but not incorporated into testcases as the
repetition of their execution would not make much sense. Minor errors can be caught with
their  associated  error  code  (Miesfeld,  2009b).  The  following  example  demonstrates  this
process, a service was instructed to return the value it receives. In order to invoke an error, the
service was called, without passing over any argument.

In this case, the error message is very meaningful, it informs about why and where the error
occurred  (program line)  and  most  important  for  the  task  of  defining  testcases,  the  error
number [SYNTAX 93.903].
Given that number, it  is possible to expect this error by using  self~expectSyntax(93.903)
prior to the service call that produces this error.
Sometimes  it  is  nonetheless  not  that  easy  to  find  the  error  and  get  a  meaningful  error
description.  In  the  demonstration  above,  only an  single  error  occurred.  If  a  severe  error
occurs,  it  might  tear  down the  testscript  and/or  other  involved  ooRexx  objects  (e.g.  the
answering service implemented for the testcase). In that case it is not easy to assess what the
error was. In most cases it is the very first error that is mentioned in the error message, but
sometimes an error is followed by hundreds of subsequent failures if other test methods rely
on an, in the meantime, corrupted service. 
Sometimes it is not possible to reach the first error occurrence within the shell as the default
limit of the scrollback buffer hinders this. If error messages should be studied in detail, it is
recommended to redirect them in a text file (rexx DBUS.testgroup > error.txt). Another good
approach is to use built-in commands like less. 
It is also very important to consider how many assertions are to be placed within a single
testmethod and in which order, because upon the first assertions fails, the following assertions
are not invoked at all, therefore other possible errors within the same test method are not
revealed. 

29 Integer object types are supporting a given number of digits. (see Table 2, p 29) A number with more digits
cannot be stored if not enough memory space was allocated.

15

Test:   TEST_DBUSOBJECTS_STRINGS_DIRECT
Class:  DBUS.testGroup
File:   /home/zerkop/MasterThesis/snipplets/DBUS.testGroup
Event:  [SYNTAX 93.903] raised unexpectedly.
  Missing argument in method; argument 1 is required
  Program: /usr/bin/OOREXXUNIT.CLS
  Line:    282

Error statement from ooTest



This is also true if an assertion is intentionally coded to invoke an error and therefore caught
in advance with self~expectSyntax(). Although no error is thrown, the script continues with
the assertions of the next test method, skipping all remaining assertions within its executing
method. Therefore assertions that are known to produce errors should always be implemented
in their own method or placed at the very end of another test method.
If DBusooRexx was configured to use another setting than its default within a testmethod and
the raise propagation of an error leaves the test method without reverting DBusooRexx to its
previous state, upcoming assertions within other methods might fail.30 

The absence of the remaining assertions after an error could lead to the frustrating situation
that even only one error  was reported and resolved,  on the next execution the next error
occurs because the erroneous assertion gets tested for its first time. Therefore it is useful to
keep in mind how many assertions are actually implemented within the testcases. The after-
error-skipping of assertions can be demonstrated with the following output of two test runs of
nearly the same testscript. The first example shows the output of successfully executed tests.
Note that there are 236 assertions incorporated into 69 tests.31 

In  the  second  example,  three  failures  were  detected  and  listed,  but  only  221  assertions
effected. This reveals that some assertions were skipped (actually there were three (faulty)
additional assertions added in the erroneous testgroup) due to the  Raise propagation32 what
returns or exits from the current executed method.

30 For  example  method_a  defines  a  bytearray to  be  marshalled  as  string  and  method  b  assert  whether  a
bytearray is returned exactly as it was sent. If method_a is left without reverting the marhalling to its default
setting, the assertino for equality will fail in method_b.

31 This represents a very early stage of the testgroup.
32 Raise Propagate see http://www.oorexx.org/docs/rexxref/x4080.html, accessed on 12, january 2014

16

Tests ran:           69  
Assertions:          236 
Failures:            0   
Errors:              0   
Skipped files:       0   

regular testgroup

Tests ran:           69  
Assertions:          221 
Failures:            3   
Errors:              0   
Skipped files:       0   

erroneous testgroup

http://www.oorexx.org/docs/rexxref/x4080.html


3. Testing the ooRexx DBus Binding with ooTest
The following chapter introduces DBusooRexx in its assessment by ooTest. The examples
include  handling  DBus  signals,  interaction  with  DBus  objects  on  the  system and  on the
session bus and interaction with properties. 
In  the  first  section  the  marshalling  capability  of  DBusooRexx  is  investigated.  A set  of
predefined, different objects type instances is sent to DBus services and asserted whether they
are returned correctly.  These testcases are not only valuable as functionality is tested,  but
might also provide templates how to implement an interplay with DBus for own applications.

The following chapter describes the tests  that have been carried out with the basic DBus
infrastructure.  This  incorporates  interaction  with  the  DBus  class  and  testing  general
availability of type-codes.

3.1 Connect to DBus and Test the DBus Class

DBus  provides  two  system-wide  predefined  buses,  the  session  and  the  system bus.  Any
application can connect to one of these and invoke or provide services. In order to establish
the connection, three different approaches are available. 
The first test comprises an assertion whether the three different notations are resulting in the
same connection, followed by a negative test where system and session bus are asserted to
differ. As the following tests will stick to one of these notations for establishing a connection,
a prior assertion is probably useful. The three connection approaches are:
 long   = .dbus~connect('system')
 medium = .dbus~new('system')    
 short  = .dbus~system           

The testgroup compares unique busnames of the three connections with following assertions:
 self~assertSame(short~busName('unique'),medium~busName('unique')) 
 self~assertSame(medium~busName('unique'), long~busName('unique')) 

As no differences were noticed, the shortest version  (.DBus~system) is chosen to be used as
default  within  the  testgroup.  There  are  many  different  abbreviations  available  through
DBusooRexx to further ease and speed up its application. A programmer can choose among
different syntax what best matches the individual programming style. 
The established connection to DBus can now be queried for openness,  authentication and
connection.  As  the  following  examples  demonstrate,  there  are  also  different  notations
available to choose from, some programmers might prefer the short query 'A', whereas others
might prefer the more meaningful query 'isAuthenticated'.
  conn = .dbus~session                          
  self~assertTrue(conn~query('Authenticated'))  
  self~assertTrue(conn~query('A'))              
  self~assertTrue(conn~query('isAuthenticated'))
  self~assertTrue(conn~query('isA'))            

Other valid queries are: (the four notations presented above are available for following queries
as well)
  self~assertTrue(conn~query('Open'))     
  self~assertTrue(conn~query('Connected'))

All of these preliminary tests were carried out without any problem.

17



3.1.2 Type Codes

The next step is to test the availability of type-codes. The query method of a DBus connection
was implemented to query all different type-codes on the session bus, followed by the same
procedure on the system bus. There are 18 different type-codes available and additional four
that are reserved but not (yet) actively used.  (Pennington et al.,  2014) Assertions of type-
codes are implemented like following:
self~assertTrue(.dbus~session~query('typeCode', 'a'))  -- array 

Two  type-codes  are  available  that  must  not  be  used  in  signatures,  but  only used  within
bindings  to  represent  the general  concept  of  the referenced object  containers,  namely the
containers entries for Struct and Dict with their type-codes 'r' and 'e'.
Looking up the specification of DBus identifies the type-code 'e' as DICT_ENTRY, denoting an
entry in a dict or a map.
  self~assertTrue(conn~query('typeCode', 'r')) -- Struct     
  self~assertTrue(conn~query('typeCode', 'e')) -- Dict entry  

These containers are represented with () and {} in their signature, (see Table 1 of page 28)
respectively by .Arrays and .Directories as equivalent ooRexx objects.
All type-codes are available as expected, therefore no error was found.

3.1.3 Bus Names

DBus  manages  ownership  of  services  by  allocation  of  names.  Names  can  either  be
represented as a unique connection name, (for example  :1.129)  or with a so called well-
known bus name. (like org.freedesktop.DBus) A bus name is reserved for the application that
demands it for its lifetime unless otherwise configured. Restrictions for valid bus-names are
following: a Bus name has to be composed of at least one element separated by a period, only
regular ASCII characters are allowed, a bus-name has to contain at least one period character
and must not exceed the maximum name length allowed. (Pennington et al., 2014)

The ooRexx DBus class provides methods for requesting and releasing bus-names and two
methods to acquire information about bus names. (Flatscher, 2011a, Methods 2)

The optional flag statement for the request method carries integer values that are specifying
the call. Three flags are allowed:

The  flag  DBUS_NAME_FLAG_ALLOW_REPLACEMENT enables  an  application  to  define,  whether
another application is allowed to replace its ownership. The second application calling for the
same name will only replace the owner if the owner got its name with this flag attached and
the calling application uses the flag,  DBUS_NAME_FLAG_REPLACE_EXISTING. If no flag is set the
second application requesting the same name will not replace the owner, but will be placed in
a queue. Upon the primary owner giving up its ownership, the queued application receives the
name. If this behavior is not intended, the third flag, DBUS_NAME_FLAG_DO_NOT_QUEUE, has to be
added. (Pennington et al., 2014)

These variables are available through the DBus class and can either be used with their full
name:  .dbus.dir~DBUS_NAME_FLAG_ALLOW_REPLACEMENT or  with  their  integer  representations
which  are  1,  2 and  4 for  the  three  flags.  An  additional  possibility  is  to  use  shorter
representations  of  the  names.  For  example  the  first  flag  can  also  be  referenced  with

18

busName('Hasowner', busName) 
busName('REQuest',  busName [,flags]) 
busName('RELease',  busName)
busName('Uniquename')



.dbus.dir~AllowReplacement and the others flags analogously.33

As DBus has to inform the application that request a name if the name is valid and available,
return  codes  are  used.  DBus  provides  four  different  return  codes.
DBUS_REQUEST_NAME_REPLY_PRIMARY_OWNER informs  that  the  name  request  was  successful,
because there was no primary owner or the request flags were set accordingly as described
earlier in both applications name request. DBUS_REQUEST_NAME_REPLY_IN_QUEUE means that the
name already has an owner, no flag was set to prohibit queuing and  AllowReplacement or
ReplaceExisting was  not  defined.  The third  flag  DBUS_REQUEST_NAME_REPLY_EXISTS simply
informs  that  the  name  already  has  an  owner  and  nothing  is  changed.  Finally
DBUS_REQUEST_NAME_REPLY_ALREADY_OWNER informs that there is no need to request this name,
as the demanding application already is the owner.

The  name  release  method  provides  three  different  return  messages,
DBUS_RELEASE_NAME_REPLY_RELEASED means  that  the  name  is  now  unused,
DBUS_RELEASE_NAME_REPLY_NON_EXISTENT informs  that  this  name does  not  exist  and finally
DBUS_RELEASE_NAME_REPLY_NOT_OWNER informs  that  the  calling  program  is  not  allowed  to
release this name as it had no ownership. (Pennington et al., 2014) The short forms of these
return  codes  for  DBusooRexx  are  .dbus.dir~Released,  .dbus.dir~NonExistent and
.dbus.dir~NotOwner (or even shorter 1,2,3).

In  order  to  assess  all  bus-name methods  with all  different  flags,  following testsetup  was
created: A method called  test_busname was defined where a subsequent set of requests and
releases of names is processed. All tests were assessed with both long and short form of flags
and return codes.

Bus-names  that  were  defined  contradictory  to  its  rules  were  identified  correctly  by
DBusooRexx.  For  example  following  assertion  that  uses  a  bus-name  with  non  ASCII
characters.
 busName = "ooRexx.sörviß"  -- illegal characters in busname
 self~assertFalse(conn~busName("request", busName))         

For the tests, the system unknown bus-name oorexx.dbus.Test was defined. The first step is
to  check  whether  the  bus-name already has  an  owner,  which  must  not  be  the  case.  The
busname gets requested again if it has an owner. Afterwards the name gets released again and
requested two times, the first time with success, the second time with a message informing
that we are already owner. To complete the bus-name tests, a name ownership is released,
which we are not owner. This setup enables to assess all return codes. 

It  was  described  earlier  that  tests  should  not  be  created  in  a  way  that  one  instruction
manipulates an object which is later used in another assertion, but in this case an exception
was made. For testing the flags it is necessary to have a second application request the name,
if a name is requested twice within the same script to simulate queuing, the result of the return
code is ALREADY_OWNER. 

These preliminary tests could be effected by using the DBus class, for the following tests
some additional setup is necessary. 

3.2 TestServer – TestClient Architecture

As marshalling capabilities are going to be tested, it is useful to create two scripts that are able
to communicate with each other and thus are able to exchange object types. Therefore it was
decided  to  establish  a  client  –  server  architecture.  On  the  client  side,  all  assertions  are

33 These codes can also be looked up in the File DBUS.CLS. Do not change anything in this file.

19



effected. The server offers services that are defined DBus compliant within an introspection
file. Script 1 shows an example of valid introspection data, defined in XML. This information
is  used  by  a  DBus  applications  to  get  knowledge  about  any  available  service,  signals,
properties  and  about  all  signatures  that  are  used  to  define  object-types.  Therefore,  the
interface  Introspectable is of utterly importance and has to be provided. Script example 1
additionally informs about the availability of a service called ReplyString. The introspection
data defines a string value as input parameter and return value,  realized through the type
definition type="s" for both directions.

The method ReplyString, referenced by the introspection file must be made available, that is
easily done by defining a method with the same name like following:

After example representations of all object types are being assessed, another iteration with all
four object containers is implemented in order to test, if an object type within a container was
tampered with during the unmarshalling and marshalling processes.

3.2.1 Providing Introspection Data - DBusServiceObject

Providing introspection data was already mentioned to be of utterly importance for making
services available over DBus. If the introspection data was defined incorrectly, the service
will not work as expected or not start at all. But there are also minor errors that can render
some services  unreachable,  but  other  still  work.  This  section introduces  all  four  different
methods how introspection data can be provided. 

The first  method is  implemented  in  a  service called  TestService,  which  is  a  subclass  of
DBusServiceObject. The introspection data is defined within its init method as a string, which
gets passed to the superclass. Introspection data is defined as XML statements. (see Script 2)

20

'<!DOCTYPE node PUBLIC "-//freedesktop//DTD D-BUS Object Introspection 1.0//EN"' -
 '"http://www.freedesktop.org/standards/dbus/1.0/introspect.dtd">'  -  
 '<node>'  -  
   '<interface name="org.freedesktop.DBus.Introspectable">'  -  
     '<method name="Introspect">'  -  
       '<arg name="data" direction="out" type="s"/>'  - 
     '</method>'  - 
   '</interface>'  - 
   '<interface name="oorexx.dbus.ooTestServer">'  -  
     '<method name="ReplyString">'  - 
       '<arg name="input" direction="in" type="s"/>'  - 
       '<arg name="output" direction="out" type="s"/>'  - 
     '</method>'  - 
   '</interface>'  -
 '</node>'
Script 1: Example introspection data

::method ReplyString
  use arg input
  return input



The second possibility  is  to  define  the  XML data  in  an  external  file  and pass  it  over  if
demanded. (TestService2) This service also subclasses  DBusServiceObject. The script looks
cleaner as no string has to be defined that passes multiple lines. (see Script 3) This approach
also offers some other advantages which will be discussed later.

The third method, later referred to  TestService3, provides its introspection data via its own
::method Introspect. (see Script 4) This method does not use the class DBusServiceObject.
That has some implications like the need for manual “translation” of object types with the
DBus.Box statement  introduced in  the next  chapter  and the  need for  a  default  object  path
defined in order to become visible for DBus debuggers. Generally these three versions do not
differ much in the way the introspection data is provided.

Finally, the last method provides the possibility to implement and register DBus services on
the fly. (TestService4) The ooRexx class is a subclass of DBusServiceObject and uses services
from IntrospectHelper. The introspection data gets created in the ::init method of the class
and IntrospectHelper publishes them to DBus. (see Script 5) This certainly is one of the more
elegant versions to provide introspection data, it is not necessary to define any XML code. 

Apart from its aesthetics, using this method provides a big advantage in comparison with the

21

::class TestService subclass DBusServiceObject
::method init
  idata='<!DOCTYPE node PUBLIC "-//freedesktop//DTD D-BUS Object' - 
'Introspection 1.0//EN"'  -    
'"http://www.freedesktop.org/standards/dbus/1.0/introspect.dtd">'  -
 '<node><interface name="org.freedesktop.DBus.Introspectable">'  - 
  '<method name="Introspect">'  - 
   '<arg name="data" direction="out" type="s"/>'  - 
  '</method></interface></node>' 
  self~init:super(idata) 
Script 2: Defining introspection data - TestService

::class TestService2 subclass DBusServiceObject
::method init
  idata='ooTestDBusServer.xml'
  self~init:super(idata)
Script 3: Defining introspection data - TestService2

::class TestService3 
::method Introspect
  return '<!DOCTYPE node PUBLIC "-//freedesktop//DTD D-BUS Object' - 
 'Introspection 1.0//EN"'  - 
'"http://www.freedesktop.org/standards/dbus/1.0/introspect.dtd">'  -
 '<node><interface name="org.freedesktop.DBus.Introspectable">'  -
  '<method name="Introspect">'  -
   '<arg name="data" direction="out" type="s"/>'  -
  '</method></interface></node>'
Script 4: Defining introspection data - TestService3

::class TestService4 subclass DBusServiceObject
::method init
  node=.IntrospectHelper~new
  if=node~addInterface('org.freedesktop.DBus.Introspectable')
  if~addMethod('Introspect',,'s')
  if=node~addInterface('oorexx.dbus.ooTestServer')
  --.some methods, signals and properties..
  introspectData=node~makeString
  self~init:super(introspectData)
Script 5: Defining introspection data - TestService4



other possibilities explained. The class  IntrospectHelper is able to check the syntax of the
introspection data and throws errors if syntax rules are violated. That means if anything within
the defined introspection data is defined incorrectly, RAISE PROPAGATE is called.
The following example demonstrates this behavior: Two methods were added to TestService4,
one  of  them is  defined  according  the  syntax  rules  for  introspection  data,  the  other  not.
(addMethod('correctsignature',,'as') and addMethod('invalidsignature',,'sa').)

  node=.IntrospectHelper~new                                 
  if=node~addInterface('org.freedesktop.DBus.Introspectable')
  if~addMethod('Introspect',,'s')                            
  if=node~addInterface('oorexx.dbus.ooTestServer')           
  if~addMethod('correctsignature',,'as')                     
  if~addMethod('invalidsignature',,'sa')                     
  introspectData=node~makeString                             
  self~init:super(introspectData)                            
 addInterface('oorexx.dbus.ooTestServer')                    

If the rexx scripts that instantiates the DBus class provides error treatment with signal on 
syntax name halt and the matching halt label, any syntax mistake that arises in the 
introspection data will be propagated there.

The execution of TestService4 yields in following error statement:
'out'-signature: signature [sa] Missing array element type

If a wrong typecode was defined, the error statement would look like:
'out'-signature: signature [w] contains unknown typecode 'w' at position 1 
It is not allowed to specify a signature in this order as after the array declaration (a), it is
mandatory to specify what kind of object type the array stores.

IntrospectHelper will not let the script execute until every introspection data syntax rule is
met. The other methods to provide introspection data do not effect any syntax check. In the
given example, all services that were defined before a faulty line of code will be available, the
faulty service and all services that were defined afterwards in the script are omitted.
This also demonstrates that defining introspection data can be very tricky. If typing errors
within the introspection data are made, the script might run nonetheless, but some services are
not callable. (Although qdbusviewer lists every service, also those who could not be called
due to an error in their definition).

It  depends on personal  programming preferences which of these methods is  preferred for
defining introspection data. People who are used to code XML, probably prefer this method.
As XML is  a  widely used  markup language,  most  text  editors  ship excellent  support  for

22

signal on syntax name halt  -- make sure message loop gets stopped
signal on halt                                  -- intercept ctl-c

halt:
 errormessage = (Condition('ADDITIONAL'))      -- error information
 if errormessage[1]==.nil then do              -- emit exit signal
  testservice4~service.sendSignal(objectPath, interface, 'Exit', - 
                         'Goodbye, thanks for starting me')
 end 
 else say errormessage[1]
 
  conn~close              -- close, terminating message loop thread
  say 'connection closed ...'
   exit -1
Script 6: Refinement for Error Treatment - TestService4



creating,  formatting  and  reviewing  the  code.  With  the  help  of  syntax  highlighting  errors
become much easier visible. Additionally, it  is possible to collapse the code tree to better
structure the data. If a bracket was omitted somewhere, the editor marks this mistake as well.
For large introspection data it is probably more efficient to copy the string to a separate XML
file for debugging than reviewing a 40 line long string within the script. The only drawback of
this method is that the XML file has to be carried along with the ooRexx code. If changes in
the services are to be made, both scripts have to be adapted as the introspection definition and
the  service  definiton  have  to  match.  Handling  very long strings  that  are  distributed  over
multiple lines within a script also has certain drawbacks. If there is an error in any of the lines
(an  unmatched  quote  or  an  unsupported  character),  the  error  message  only  indicates  the
program  line  where  the  string  starts,  not  the  line  where  the  mistake  actually  appears.
Additionally it  is  very difficult  to  review the long string as  providing a  structure is  only
possible through indenting. The last method demonstrated is the authors personal favorite,
addMethod('ReplyBoolean','b','b').
The instruction is defined with one line, indicating the method-name, the object type of the
input value(s) and the object type of the return value(s). Adding and removing instructions are
much easier than in other methods demonstrated. Additionally identifying faulty introspection
code is easier.
In the case of TestService3, which does not subclass DBusServiceObject, all object types are
of type string, no matter if the signature demands it to be of another type. Any object has to be
“translated”  into  another  object  type  by  using  DBus.Box,  for  example:  
DBus.Box('i', 15) in  order to  convert  the string “15” to  an integer  value.  That  involves
unnecessary coding which would else be carried out through the DBusServiceObject.

Although  TestService and  TestService2 do  not  differ  much,  all  four  testservices  were
implemented within the testgroup. The names of the services mentioned in this section will be
used in the next section as well and refer to the method how introspection data is provided.

3.2.2 Establish a Private DBus Connection - DBusServer

A DBusServer does not differ much from a DBus Service except that it is used without a
message bus daemon and controls its accessibility on its own. For this purpose the method
allowAnonymous can be used. A server has an own address, this can either be defined with
localhost or with a real IP address. The following examples are valid addresses for setting up
a private DBus server.

The latter enables to setup a server on a remote machine with only three lines of code. (See
also script 26). The variable testservice refers to an instance of DBusServiceObject. 

server =.DBUSServer~new(address3,testservice)
server~allowAnonymous=.true                  
server~startup                               

For  the  testgroup the  address1 and address3 variation  is  used  to  setup  two DBusooRexx
private DBusServers. For version 4 of addresses, it is necessary to obtain the IP address and it
might also be necessary to configure the operating system, respectively a firewall to allow the
connection. As the intention of this testgroup is that it can be executed on a vanilla operating

23

address1="unix:path=/tmp/dbus-test"
address2="tcp:host=localhost,port=23000,family=ipv4;"
address3="tcp:host=localhost,port=23000,family=ipv4;unix:path=/tmp/dbus-test;"
address4="tcp:host=192.168.0.15,port=23000,family=ipv4;"    -- ip address 
Script 7: Valid addresses for a private DBus Server



system with its default settings, this test was omitted, but script example 26 makes use of it
and demonstrates how to enable a DBus connection between two different machines.

Connection to a private server can be established as easy as the setup was, with only a few
lines of code:

address="tcp:host=localhost,port=23000,family=ipv4;unix:path=/tmp/dbus-test;"
privateconn=.dbus~new(address)                                               
privateserver = privateconn~getObject(busname,objectpath)                    

The  only  difference  for  a  user  is  that  the  connection  does  not  use  .dbus~session or
.dbus~system, but provides an address. If the proxy object is created, the interaction does not
differ from the DBus services described earlier.

For  the  testgroup  the  two  servers  are  offering  the  same  services  as  TestService2 does,
therefore the test is about effecting all assertions over the private connection as well.

3.2.3 Direct DBus Method Calls and the DBusProxyObject

The ooRexx DBus binding offers different methods to communicate with DBus services. If a
certain service object has to be invoked, it is not necessary to define a proxy object for it, but
call it directly. The following example demonstrates a direct call to a running instance of the
vlc media-player.34

In  this  example,  using  a  direct  call  is  easy  as  the  service  object  does  not  require  any
arguments,  nor  returns  any  (only  the  method  name  is  passed  over).  Therefore  it  is  not
necessary to indicate any signature for the object types at all. 

The same call can be effected with a proxy object that, once defined, is more handy to use
than a direct call.

It especially makes sense to use proxy objects if the DBus service is to be called more than
once and different methods are invoked on it. If the service needs parameters and returns a
result, the object types have to be defined. This is done via their signature. The following
sample  calls  the  method  ReplyInt32,  defines  Int32  as  input  and  as  output  parameter  as
indicated by the signature 'i' and forwards the message, in this case the value 0.
conn~message('call','oorexx.dbus.ooTestServer','/oorexx/dbus/ooTestServer', - 
'oorexx.dbus.ooTestServer','ReplyInt32','i','i',0)                            

Although DBus is strictly typed, DBusooRexx is capable to translate (nearly) everything on
the fly, making its usage as easy as possible. This can perfectly be demonstrated with the

34 Chapter 4.1.3 The Media-Player-Interface Standard MPRIS will describe the interface used in the following
examples in more detail.

24

busname = 'org.mpris.MediaPlayer2.vlc'
interface = 'org.mpris.MediaPlayer2.Player'
objectpath = '/org/mpris/MediaPlayer2'
.dbus~session~message('call',busname, objectpath,interface,'PlayPause')
Script 8: Direct message call

busname = 'org.mpris.MediaPlayer2.vlc'
objectpath = '/org/mpris/MediaPlayer2'
vlc =.dbus~session~getObject(busname,objectpath)
vlc~PlayPause
vlc~Stop
Script 9: ProxyObject message call



previous example “translated” to use a proxy object instead of the direct call.
proxy = conn~getObject('oorexx.dbus.ooTestServer','/oorexx/dbus/ooTestServer') 
proxy~ReplyInt32(0)                                                            

This is of course a very simple object type to handle, the testgroup will incorporate more
complicated signatures as well, which will test the automated object type conversion of the
DBusooRexx proxy object. But it is obvious that using a  DBusProxyObject makes the code
look much more familiar to ooRexx programmers. 

In some cases it  is  nonetheless necessary to specifically define the object  type manually.
Therefore  DBusooRexx  offers  a  service  to  “force”  objects  into  another  objects  with  a
signature: DBus.Box('signature', value). 

If a DBusooRexx Service does not subclass DBusServiceObject, all object types are of type
string, no matter if the signature demands it to be of another type. The objects have to be
marshalled with the DBUS.BOX instruction.

The other common usecase is the definition of a variant. If the instruction DBus.Box('d', 1.9)
is used, the value 1.9 is actually converted into an array with two elements, the first defines
the object type with the string  useThisSignature=d,  the second carries the value. The box
functionality also allows to override the signature of the introspection data. For example even
if the signature demands an object type to be of type string, it is possible to provide a byte
array instead by using DBus.Box(’ay’, 'examplestring'). 

Although in regular cases the DBusProxyObject targets the correct member automatically, if
service objects provide different interfaces, but have members with the same name within
these interfaces, the proxy object might target the wrong member (Flatscher, 2011a). In this
case  it  is  necessary  to  add  the  interface  name  to  the  method  to  be  called.  Script 10
demonstrates this method. (vlc~org.mpris.MediaPlayer2.vlc.PlayPause) It would be possible
to define every call this way if it is preferred.

In  order  to  assess  both  versions  of  method  calls,  the  testgroup  issues  direct  calls  to  the
services and uses their proxy object within the test methods. 

3.2.4 Assess the TestServices with DBus Debuggers

Before starting with ooTest, all testservices are inspected for proper functionality with the two
DBus debuggers described in the introduction. The first test was restricted to look up if all
services are available and to invoke each of them via the GUI of D-Feet and qdbusviewer. 
These are also the first tests to list and call  services from programs, that are not ooRexx
scripts. As the interaction with debuggers and other DBus services that were already available
work, the same is expected with services implemented in DBusooRexx. 
In order to become visible for debuggers, TestService , TestService2 and TestService4 need
to  call  the  command  .IDBusPathMaker~publishAllServiceObjects(conn).  (conn  being  the
DBus  connection  where  service  objects  are  added  to.)  TestService3 (no  subclass  of
DBusServiceObject) needs to define a default path first: 
conn~serviceObject('add', 'default', .IDBusPathMaker~new(objectPath)).

25

busname = 'org.mpris.MediaPlayer2.vlc'          
objectpath = '/org/mpris/MediaPlayer2'          
vlc =.dbus~session~getObject(busname,objectpath)
vlc~org.mpris.MediaPlayer2.vlc.PlayPause        
vlc~org.mpris.MediaPlayer2.vlc.Stop  
Script 10: ProxyObject message call full name



This leads the introspect finder to the available object paths. The first testrun revealed errors
that never appeared if accessed with another ooRexx DBus service class. Although the bus
name is listed, D-Feet was not able to connect to TestService correctly. Trying to invoke the
introspection tears down the script. 
Investigation  of  the  error  message35 showed that  the  debugger  calls  the  method  GetAll36

during  the  introspection.  (which  was  not  provided  at  that  time)  This  is  not  an  error  of
DBusooRexx, but a programming error. It is however strange that D-Feet struggled, whereas
qdbusviewer had no problems with displaying available services. 
Adding  ::method unknown to the script partly solved the introspection problem. It was not
necessary to define any action within the unknown method, it just has to be available in the
case of a (misleaded) method call, in this case, the GetAll call.
This setup allows both debuggers to list available services. But there are nonetheless some
remarkable differences.37 qdbusviewer lists everything which was defined according to the
introspection data, whereas D-Feet only lists a subset of the services, but none of signals and
properties  and  no  cascaded  containers.  The  listed  subset  of  methods  could  be  invoked
successfully through D-Feet. It showed later that four faulty lines of code were stopping the
discovery of the remaining services within the introspection data. It seems that D-Feet reads
introspection data until it discovers something that does not conform with the specification.
qbusviewer seems to follow another approach and lists everything it parses from the XML
data. 
qdbusviewer could not invoke all services of the test service objects successfully. Whereas D-
Feet could process all integer objects, qdbusviewer struggled with “less prominent” integers,
namely Integer16 and UInt16. Their invocation gets answered with an error message.38

These debuggers do additionally show different output in their  object type representation.
qdbusviewer  could  not  invoke the  service  replyByte,  whereas  D-Feet  demonstrated  other
behavior. If this service is called and a character is passed as argument, D-Feet returns the
Byte in its decimal representation. (e.g. the byte 'A' is returned as 65, 'B' as 66 and so forth.)39

If a German Umlaut is passed over, (like 'Ö' for example) the debugger answers with Must be
a single character. The service ReplyArrayofByte worked for both debuggers. If the same
character  from the previous  example ('Ö')  is  passed to this  service,  D-Feet answers with
[195,150], whereas qdbusviewer answers with {-42}. The byte representation differs between
these two debuggers.
TestService2 was designed the same way as the already investigated TestService, but reads
the introspection data from an attached xml File and therefore has a clearer arrangement as
XML data is separated from ooRexx code. 
Both of these approaches were realized by creating a subclass of the DBusServiceObject. The
third  approach  TestService3 does  not  use  the  class  DBusServiceObject,  but  defines  all
methods  by itself.  That  means  that  the  introspection  data  is  returned  in  a  method called
Introspect. Without making introspection available trough adding conn~serviceObject('add',
"default", .IDBusPathMaker~new(objectpath)), qdbusviewer quits the introspection attempt
with an error message40,  the same applies to  D-Feet.  It  was not even possible  to list  any

35 DBusooRexx Error message: REX0646E: Error 97.900: Object "a TESTSERVER" does not understand
message "GETALL" (DBus message type "method_call": objectPath="/oorexx/dbus/ooTestServer",
interface="org.freedesktop.DBus.Properties", member="GetAll".

36 The sub-chapter Properties explains GetAll more detailed.
37 The DBus-debuggers seem to pursue different approaches to establish an introspection tree.
38 Error:  Unable  to  find  method  ReplyInt16  on  path  /oorexx/dbus/ooTestServer  in  interface

oorexx.dbus.ooTestServer.

39 Byte codes can be looked up at http://www.ascii-code.com/, accessed on 2 September 2014.
40 Erroe message if path for introspection is not made available: Call to object / at 

oorexx.dbus.ooTestServer: org.freedesktop.DBus.Error.ServiceUnknown (Rexx service object 

26

http://www.ascii-code.com/


service  for  both  debuggers.  But  although  the  introspection  data  could  not  be  retrieved
correctly, invoking services work.
Also  note  that  TestService3 needs  all  its  objects  types  getting  boxed.  In  a  first  attempt
TestService3 was not instructed to marshall its object types with the DBUS.Box instruction.
The  command  line  tool  dbus-send was  used  to  invoke  a  simple  service  that  returns  the
argument, that was passed over in the invocation.
dbus-send --print-reply –dest=oorexx.dbus.ooTestService
 /oorexx/dbus/ooTestService3 oorexx.dbus.ooTestService.ReplyInt32 int32:5

The arguments passed within this command are busname, objectpath and the interface name
combined  with  the  service  name to  call.  The  syntax  of  an  argument  is  <object type :
value> . In this example a service named  ReplyInt32 is called and the argument  int32:5 is
passed over. The return message of this program reveals that the return value is a string:

Although  TestService3 defines the return value to be of object type Integer32,  dbus-send
answers with a String as demonstrated in script 11. Of course this is no problem for Rexx as
everything is a string, but it is not the expected object type and the signature should force the
value to be of the expected object-type, namely Integer32.
Repeating the same test with the tool  dbus-send and  TestService3 instructed to box object
types accordingly, the expected integer32 arrives. 

To complete these preliminary tests with the debuggers, the last described method, defining
the introspection data on the fly was tested (TestService4).
This service showed the same behavior as the other already successfully tested TestService
and TestService2.

3.3 Final Test Services

After these scripts have been invoked one by one, the author decided to incorporate them all
into one serverscipt that allows to test all TestServices simultaneously and that also allows to
test  different  methods  to  declare  properties,  (see  3.7  DBus  Properties)  within  the  same
testgroup. 
For this setup another class was created that subclasses  DBusServiceObject and provides all
test methods that all TestServices have in common, like:

::class DBusServiceObjectProxy subclass DBusServiceObject  
::method ReplyBoolean                                      
  use arg input                                            
  return input                                             

This class is further subclassed by the different  TestServices. As TestServices3 is intended
not  to  subclass  DBusServiceObject,  it  does  consequently  does  not  subclass
DBusServiceObjectProxy. 

[/] does not exist (you intended to invoke member=[Introspect] in the interfaceName = 
[org.freedesktop.DBus.Introspectable]) failed.

27

method return sender=:1.339 -> dest=:1.369 reply_serial=2
string "5"
Script 11: dbus-send – Testservice3 without boxing

method return sender=:1.434 -> dest=:1.436 reply_serial=2
int32 5  
Script 12: dbus-send – Testservice3 with boxing



The final serverscript is further enhanced by  TestService541 that offers only two methods,
unknown and shutdown. If a method call arrives at  TestService5 that is not mapped to a
method within the introspection, ::method unknown is invoked. By implementing this method
and return the object type of the message call, TestService5 is able to catch any call, unless
the name of the method call exists.42 As the signature is extracted out of the call, it is only
possible to use it with a direct message call that defines the return object type like integer in
the following example, else a string is returned. 
conn~message('call', busname, objectpath, interface, unknownname, 'i','i', 1). This
example sends an integer value to an unknown name and provides the signature 'i'. If using
the DBusProxyObject it would not be possible to make a call to a TestService5 service as the
proxy object relies on the signature provided by the introspection data. 

This approach to use the DBus infrastructure is obviously interesting as no introspection data
has to be provided in advance and is useful for testing purpose as signatures can be combined
randomly and tests are easily extensible without much effort.
ooTestServer and  ooTestServer2 were also added to the testserver script. Thus resulting in
seven  slightly  different  services  sharing  all  methods.  All  different  variations  to  provide
introspection  data  as  well  as  all  variations  to  define  properties  are  used.  Additionally
establishing  three  different  methods  for  connections  were  inspected,  the  common
dbus~session, a private server reachable over the localhost and a private server reachable over
an unix path.

3.4 Assessing Different Object Types

The following tests demonstrate how DBus object types are created in ooRexx and sent to
existing DBus services. As DBus is strictly typed, it is necessary for DBusooRexx to marshal
the  objects  during their  transport  over  DBus and demarshal  them again for  the  receiving
program, no matter what language it is written in. It would not be very handy to exactly define
every object type within an ooRexx script, therefore the binding does this complicated part by
itself.  The  programmer  only  needs  to  create  regular  ooRexx  objects  and  let  the  binding
translate and transmit these.

41 A testset provided by the author of DBusooRexx was adapted as it contains a possibility to test marshalling
and unmarshalling in an easy way.

42 Using  ::method unknown might  need  all  methods  of  the  interface  org.freedesktop.properties
implemented if properties are provided. Else they are not reachable anymore via Get and Set.

28



There are 17 different object types which are used by DBus (see Table 1). (Flatscher, 2011a)

Four of them are container types.  Probably the most common container type is the array,
which denotes an ordered list of objects. A Variant is a special container that also carries the
signature of its transported values. A Struct can contain any type according to its signature and
finally the Map or Dict is a container type, where the index always consists of a string and the
associated  value  can  be  of  any  type.  Most  abbreviations  are  easily  assignable.  The
abbreviations  “x” for int64 and  “t” for uInt64 were chosen because x and  t are  the first
characters in the word “sixty-four” that were still available (s was already used for strings and
i for int32) (Pennington et al., 2014)

Some DBus bindings might possibly not incorporate all object types properly as some of the
object types can easily be replaced with others. (eg small integers.) Of course DBusooRexx
supports all object-types.

The serverscript that is used by the testgroup incorporates methods, whose only functionality
is  to  return  the  object  type  which  was  sent  to  it.  Each  object  type  listed  in  Table  1  is
incorporated into dedicated reply methods. The sending and receiving of these objects and the
assertion of transported values are main tasks of the testgroup, which will act as clients in this
testing setup.

The following section will describe each object type in more detail, especially if there is any
remarkable specialty that delivers an unexpected result.

29

Data Type Type Indicator
(Signature)

ooRexx representation

array a .Array

boolean b Rexx String

byte y Rexx String

double d Rexx String

int16 n Rexx String

int32 i Rexx String

int64 x Rexx String

objpath o Rexx String

signature g Rexx String

string s Rexx String

unit16 q Rexx String

unit32 u Rexx String

uint64 t Rexx String

unix_fd h Rexx String

variant v Signature dependent

structure (...) .Array

map/dict a{.s} .Directory

Table 1: DBus type indicators



3.4.1 Integer Objects

As the various Integer objects support different value-ranges, each object has to be tested
individually.  For example an integer  with 16 Bits  supports  values from -32768 to 32767,
whereas an unsigned Integer with 16 Bits does not support negative values and therefore, (as
covering the same value-range) supports values from zero to 65535. 
This can easily be calculated as the range of a signed integer covers -(2n-1) to (2n-1-1) whereas
the unsigned representation covers the range from 0 to 2n-1 (see Table 2). 
These value ranges are being tested as well as some intentionally incorrect defined values,

including .nil, a string, an empty string, no value and values above and below the covered
value range. 

It comes naturally to a Rexx programmer that the String “1” is understood as 1, as everything
is a String. (see Table 1) Therefore no error occurred with the following assertion:
self~assertEquals(1, dbustest~ReplyuInt16("1"), "string 1") Tests with the String “one”
and an empty String failed as expected and all values below or above the value coverage
range also resulted in an expected failure. When no argument is sent on its round-trip, Syntax
93.903 is raised, denoting  “Missing argument in method”. This is common to all different
object types and also marks expected behavior.

The test  revealed that integers need to be handled with care.  For example processing .nil
values can be tricky. It has to be taken into consideration that DBusooRexx always return the
value 0 instead of .nil if the signature forces the return value to be of type integer and the
argument passed was the .nil value. (see chapter 3.5 DBus and NULL Values) The following
assertion  demonstrates  this:  self~assertEquals(0, dbustest~ReplyuInt32(.nil),  ".nil").
This feature was implemented to ease the use of DBus and allows DBus to process .nil values
without  errors.  (Flatscher,  2011a) Hence  0 can be regarded as  safe default  value for  any
integer. 
Another possible source of misbehavior is the amount of digits that are processed correctly,
especially  in  the  case  of  high  integer  values.  ooRexx  has  its  default  number  of  digits,
controlling  the  precision  to  what  arithmetic  operations  are  evaluated,  set  to  9  (Ashley,
Flatscher, Hessling, McGuire, et al., 2009). The current digit value can be retrieved by issuing
say digits() and can be changed to another value with  numeric digits, followed by the

30

Object min value max value

int16 −32.768 32.767

uInt16 0 65.535

int32 −2.147.483.648 2.147.483.647

uInt32 0 4.294.967.295

int64 −9.223.372.036.854.775.808 9.223.372.036.854.775.807

uInt64 0 18.446.744.073.709.551.615

Table 2: Supported integer values

::method test_dbusobjects_int32_invalid_93.900_digitserror         
  numeric digits 5         -- setting digits intentionally too low 
  self~expectSyntax(93.900)                 -- value is -2.1475E+9 
  self~assertEquals(-2147483648, dbustest~ReplyInt32(-2147483648))
Script 13: Assert a digit error



desired number of digits (eg: numeric digits 20).

For handling big integers like int64, it is necessary to define the number of digits properly in
advance. Processing the lowest allowed value for an int64 produces errors unless the number
of digits is set to 17 at minimum, using any digit value below make assertions fail. 
The tests therefore also include to intentionally restrain the amount of digits to test whether
the error can be detected correctly. (see Script 12) Restraining the amount of digits to five,
invokes a conversion as the value is rounded (for example the lowest allowed value for int32
is -2147483648, which is converted to -2.1475E+9). As expected, an error is thrown with the
code 93.900, stating: 

The next  step  was to  expect  the  stated  syntax,  but  it  was  not  thrown anymore  therefore
invoking the syntax with the code 91.999 by itself.43

In  order  to  test  many integer  values  in  an  efficient  way,  a  random number  statement  is
implemented. Defining a random number for an integer lower than 32 bit works, but given the
random  statement's  maximum  difference  of  99999999944 between  two  values,  it  is  not
possible to cover the whole range within a single statement. A simple solution is provided.
The random int64 value is defined as a sequence of three random values that must not exceed
a certain limit. 
As the lowest value for Int64 is -9223372036854775808 and has 19 figures, the first part was
bounded to be between -922337203 and 0, the next part between 0 and 685477 and the last
part between 0 and 5808. (see Script 13 )

A negative value value must never surpass the lowest boundary and not exceed 0. The second
statement  defines  positives  values  for  int64  in  the  same  way.  All  of  these  values  were
processed as expected.

3.4.2 Double IEEE 754

A double is a 64-Bit floating point number. Analogously to the tests before, regular as well as
irregular values are tested. The binding has no problems with passing over strings, they get
“translated“ automatically. As seen in the following assertion:. 
(self~assertEquals(1, dbustest~ReplyDouble("1.0")). It is also possible to make an exact
assertion  with   self~assertSame(1,  dbustest~ReplyDouble("1.0")) without  invoking  any
error. But in this example the expected value has to be defined without comma, as whole
number as seen in the following assertion and the corresponding error code: 
self~assertSame(1.0, dbustest~ReplyDouble(1.0), "value 1.0").

43 ooRexx  error-codes  often  provide  helpful  information:  See  Error  Numbers  and  Messages:
http://www.oorexx.org/docs/rexxref/a34980.htm, accessed on 2 September 2014.

44 Error  message  if  the  value  within  the  random  statement  is  exceeded::  [SYNTAX  40.32]  raised
unexpectedly.  RANDOM  difference  between  argument  1  ("-2147483648")  and  argument  2

("147483647") must not exceed 999,999,999.

31

conversion (value=[-2.1475E+9]) to an INT32 value failed / error position (1-
based)     [1] in full signature: [i] (maybe typeCode not supported on platform?

int64 = .list~new
do i= 0 to 100
  int64~append(random(-922337203,0)||random(0,685477 )||random(0,5808))
  int64~append(random(0,922337203)||random(0,685477 )||random(0,5807))
end
Script 14: Create int64 values randomly

http://www.oorexx.org/docs/rexxref/a34980.htm


ooRexx “converts” double values like 1.0, 2.0, 3.0 and so on to a shorter form, cropping away
the (unnecessary) zero. This actually makes an assertion with  assertSame fail.  In this case
assertEqual is very useful as it correctly assesses 1.0 and 1 to be equal..
Analogously to  integer  values,  the digit  limit  has  to  be kept  in  mind when handling  big
doubles. A first version of DBusooRexx always cropped the digits to 9 characters, no matter if
instructed otherwise with numeric digits. If this amount of digits was exceeded, the double
value got cropped and only the remaining digits were asserted. 
Following  example  demonstrates  the  cropping  behavior  which  makes  the  assertion  true,
although it must be false.
self~assertSame(123456789.0,dbustest~ReplyDouble(123456789.12345678901234567890))

Fortunately the author of DBusooRexx was able to correct this error upon he got knowledge
about it. In the current version, DBusooRexx 2, the error was already fixed, but nonetheless a
programer has to keep in mind the default amount of digits (9). This can be demonstrated with
the following example: 
Following assertion with assertSame will not fail upon the default numeric digit is raised: 
self~assertSame(-123456789.19,dbustest~ReplyDouble(-123456789.11),- 
                              "different values after 9th digit")   

Although there are different values after the 9th digit, this assertion does not fail. Using a say
statement reveals that both values were processed as  -123456789 , therefore equality is de-
facto given. If the digit limit is raised to 20, this assertion fails as expected, because  (0.19 is
not the same as 0.10999999940). See following ooTest output:

That  makes  doubles  excellent  demonstration  objects  for  distinguishing  between  the  two
different assertion mechanisms assertEquals and assertSame. and its usage forces to always
keep the digit limit in mind. But there is an additional specialty that is only valid for doubles.
Sending a double value to  the testserver  and expecting exact the same value reveals that
doubles are following “special rules”.
Double IEEE 754 is the standard for a binary floating-point arithmetic that stores its value in
8 Bytes  (64Bits).  One Bit  is  reserved for  the sign,  eleven Bits  for  the  exponent  and the
remaining 52 Bits for the mantissa. (IEEE, 1985) 

The agreement  to  use the IEEE 754 standard  for  floating-point  arithmetic  ended a chaos
which was introduced by different arithmetics for precision and rounding procedures in the
1970s.  Nowadays nearly every modern microprocessor complies to  this  standard.  (Kahan,
1996). MikeCowlishaw who can be regarded as the father of ooRexx, defined the general
decimal arithmetic.  (Cowlishaw, 2003). Using 53 Bit for representing a double results in a
precision of 53 log10(2) = 15.955 meaning that 16 digits can be processed with precision.
The (internal) value of a double is defined through x=s.m.be, whereas s stands for the sign (0
for positive numbers and 1 for negative values), m denotes the mantissa, b the basis which in
this case is always 2 (binary) and e has to be calculated upon following rules: e=E-B (B stands
for biasvalue and is calculated by 2r-1-1), m is calculated by 1+M/2p or more easier 1,M.

32

  Failed: assertSame
    Expected: [[1.0], identityHash="17466049620176"]
    Actual:   [[1], identityHash="17466050757742"]

  Failed: assertSame
    Expected: [[-123456789.19], identityHash="383569021"]
    Actual:   [[-123456789.10999999940], identityHash="383565577"]
    Message:  different values after 9th digit, limit 20



As the basis  for double is  binary,  it  is  unavoidable that the value has to be rounded (e.g
periodic values). This necessitate a programmer to understand rounding procedures as well as
keeping digit limits in mind for assertions. Table 3 lists the boundaries of double IEEE754 

It is not necessary to calculate every value with this formula if assertion with assertSame are
envisaged. There are many converters online for calculating double values.45 Some of them
are  able  to  separate  the  segments  of  the  double  visually.  Figure  5  demonstrates  the
hexadecimal and binary representation of the value -1.9.

Table 4 lists some example values for doubles that were calculated using an online tool:

Example 1 demonstrates, that the value -1.9 is represented by a value being very close to the
-1.9,  but  nonetheless  slightly different.  (the  default  setting  of  dbusoorexx's  underlying  C
library is 20 digits for double values, therefore -1.9 is the same as -1.8999999999999999112)
If values are asserted with  assertSame, expected values have to be adapted as indicated in
Table 4 and rounded accordingly to 20 digits. assertEquals works anyway.

45 For  example:  http://www.binaryconvert.com/,  http://babbage.cs.qc.cuny.edu/IEEE-754/,  and  many others,
accessed on 2 September 2014.

33

Double decimal hexadecimal

min value 2.2251 x 10-308 0010 0000 0000 000016

max value 1.7976931348623157 × 10308 7fef ffff ffff ffff16

smallest
number >1

1.0000000000000002 3ff0 0000 0000 000116

Table 3: Supported double values

Double decimal value binary representation

Example 1 -1.9 -1.8999999999999999112

Example 2 1.0 1.0

Example 3 1.1 1.1000000000000000888

Example 4 1.2 1.1999999999999999556

Example 5 1.3 1.3000000000000000444

Example 6 1.4 1.3999999999999999112

Example 7 1.5 1.5

Table 4: Some example double values

Figure 5: Example representation of double value -1.9 

Source: www.binaryconvert.com

http://babbage.cs.qc.cuny.edu/IEEE-754/
http://www.binaryconvert.com/


If digits are changed with numeric digits, this instruction is only valid for the expected value
within the assertion and does not influence the actual double value that get returned from the
testservice. Therefore, if tests with numeric digits restrictions are effected, it is necessary to
manipulate the returned double value as well in order to render them comparable is assertions
with assertSame are effected..

For  example  if  numeric  digits  are  limited  to  5,  the  assertion  self~assertSame(-
1.8999999999999999112,  dbustest~ReplyDouble(-1.9) fails,  although  the  expected  value
actually is the internal representation of the double -1.9. But in this test case, the maximum
available number of digits is five (resulting in -1.9000 as return value).

The  function  Format([value],[digits  before  decimal  marker],[digits  after  decimal
marker]), rounds a given value according to the rules defined. This enables the assertion to
become true, as both,  the actual value and the expected value are rounded with the same
format  instruction.  For  example  the  negative  value  -1.9  is  formatted  with
Format(dbustest~ReplyDouble(-1.9),2,4).  The first  parameters reserves place for the sign
and the whole number, the second parameter defines the digits after the decimal marker.
In  order  to  assert  many  different  values,  two  list  were  created  that  were  filled  with
concatenated positive and negative random doubles values. See the following script:

It revealed that assessing big double values with the introduced debuggers is poorly possibly.
The default settings of D-Feet restricts doubles to twelve digits and qdbusviewer, although
allowing more digits, only processes two comma values.
Another specialty of doubles is, that some languages demand a point to separate the whole
number,  whereas  others  use a  comma (e.g.  English 1.0 vs.  German 1,0).  ooRexx always
interprets a comma as separator between multiple objects and never as delimiter for doubles.
Therefore  following  assertion  results  in  the  stated  error  as  ooRexx  expects  additional
arguments which were not defined in the signature:
self~assertEquals(1,1, dbustest~ReplyDouble(1,1),"1,1 used in German for example").

3.4.3 Strings

Strings must be encoded in UTF-8 (Unicode Transformation Format 8-bit) for DBus. This
format can represent every Unicode character (U+0000 is not allowed.46). Since DBus version
0.21 also  some “noncharacters”  are  allowed,  namely “U+FDD0..U+FDEF,  U+nFFFE and
U+nFFFF”. (Pennington et al., 2014) Some of them originate from Arabic presentation form
blocks.47

As  ooRexx  does  not  support  UTF-8  encoding  per  default,  the  help  from  Java  through

46 The code U+0000 represents NULL.
47 Information  about  Unicode  characters  and  non-characters  can  be  retrieved  at  www.fileformat.info.  For

example  U+FDD0:  www.fileformat.info/info/unicode/char/fdd0/index.htm  .  accessed accessed  on  2
September 2014

34

[SYNTAX 93.900] raised unexpectedly.
    DBusooRexx/method/DbusBusCallMessage(), error 5: argSignature [d] 
mandates at most [1] Rexx arguments, however Rexx supplies too many 
arguments [2]

positives = .list~new 
negatives = .list~new 
positives~append(random(0,9999999)||'.'||random(0,9999999))
negatives~append('-'||random(0,9999999)||'.'||random(0,9999999))
Script 15: Create random double values

http://www.fileformat.info/info/unicode/char/fdd0/index.htm.accessed
http://www.fileformat.info/info/unicode/char/fdd0/index.htm.accessed
http://www.fileformat.info/info/unicode/char/fdd0/index.htm.accessed
http://www.fileformat.info/


BSF4ooRexx can be used. As already described in the introduction, DBusooRexx first tries to
use Javas translation function and if it is not available use a fallback mode. A conversion can
be effected with the command stringToUtf8('äöü') for example.

Tests  with different  String  values  were implemented  the same way like  the previous  test
before, including invalid values in order to assess whether they are identified correctly. The
assertion with .nil values showed a difference in contrast to the previous inspected integer and
double object types. As .nil is not supported by DBus, the safe default value for a string is an
empty string and not a 0. It is nonetheless strange that DBus transports some non-standard
characters flawlessly. The following example assesses two strings that use special signs from
their language. 

There was no error remarkable. The assertion worked as if the strings would only contain
regular characters. It was possible to use the function stringtoUTF8, or make an assertion
without it.
For the next test a string was defined that uses characters that are not allowed for DBus. (see
Script 16) 

Execution of the first assertion results in an error:

If the string is converted prior with stringToUtf8, (as indicated in the third line of script 16)
the  assertion works.  That  means that  DBusooRexx is  actually able  to  use the  conversion
function correctly,  but it is not necessary to make an conversion to UTF-8 for all special
characters. All printable characters listed on the UTF-8 table at the referenced link48 could be
processed correctly, even unpopular ones like:
self~assertEquals("®",dbustest~ReplyString("®"),)
self~assertEquals("½",dbustest~ReplyString("½"),)
self~assertEquals("Ø",dbustest~ReplyString("Ø"),)
self~assertEquals("ñ",dbustest~ReplyString("ñ"),)

48 A complete UTF-8 table can be found at: http://www.utf8-chartable.de/ accessed on 2 September 2014.

35

germanstring = "gemäß Übereinkommen, Behörde"                                 
frenchstring = "à l’école, être évidente, la façon"                           
self~assertSame(germanstring,dbustest~ReplyString(germanstring))              
self~assertSame(frenchstring,dbustest~ReplyString(frenchstring))              
self~assertSame(frenchstring,dbustest~ReplyString(stringToUtf8(frenchstring)))
Script 16: Processing of non-UFT-8 characters

string = xrange('F0'x,'FF'x)                            
self~assertEquals(string ,dbustest~ReplyString(string)) 
string2 = stringToUtf8(string)                          
self~assertEquals(string2,dbustest~ReplyString(string2)
Script 17: Using stringToUTF8 for non-UFT-8 characters

Event:  [SYNTAX 93.900] raised unexpectedly.
   DBusooRexx/method/DbusBusCallMessage(), error 7: Rexx message argument 
# [1], typeCode=[s]: DBus-API returned 'no memory' while appending message
argument / error position (1-based): [1] in full signature: [s] (maybe 
typeCode not supported on platform?)

http://www.utf8-chartable.de/


3.4.4 Byte

There are different ways to define a byte in ooRexx. Table 5 lists different representations and
three  sample  bytes,  a  letter,  a  special  sign  and  one  of  the  most  important  characters  for
ooRexx programs. Table 5 also list some useful methods for conversion between the different
representations of bytes, some of them will be needed later in an usecase example.

The  characters  below  decimal  code  32  are  so  called  non-printable  characters  or  control
characters.  For example 27 represents escape,  11 represents a vertical  tab.  Bytes with the
decimal  character  code  32 to  127 are  representing  all  characters  that  can  be found on a
standard English language keyboard. 

The testgroup comprises all different possibilities to define a byte within their assertions. That
means  all  four  different  representations  are  assessed  (For  example
self~assertEquals("$",dbustest~ReplyByte("24"x), "24x == $"). For the assertions it is not
necessary to “convert” the Byte representations. For example it is always possible to expect
the symbol  'A', although its binary representation was sent to be returned ('01000001'b). It
makes  no  difference  whether  the  assertion  is  done  via  assertSame or  assertEquals,  both
return true. In contrast to the strings presented earlier, a byte must not contain a non-UTF-8
character.  Following  assertion  self~assertEquals("ü",dbustest~ReplyByte("ü")) fails  and
DBusooRexx informs that the value  ü cannot be converted to a byte value.  If its decimal
representation is used instead of the character representation:
self~assertEquals("ü",dbustest~ReplyByte(d2c(220))),  ooTest  emits  another  error
message:
  Failed: assertEquals                            
    Expected: [[Ü], identityHash="17564778517334"]
    Actual:   [[ ], identityHash="17564778351770"]�

Null  values  (.nil)  for  bytes  can  be  asserted  with  self~assertEquals("00"x,
dbustest~ReplyByte(.nil)) for example. 

3.4.5 Signature

Signatures are restrained to a maximum length of 255. If the limit is surpassed, (the signature
in  the  following  example  was  defined  with  a  length  of  256  characters)  following  error
message is thrown:

36

Character Decimal Hexadecimal Binary

'A' 65 '41'x '01000001'b

'$' 36 '24'x '00100100'b

'~' 126 '7E'x '01111110'b

Useful Functions D2C (decimal to character)
D2X (decimal to hex)

X2B (hex to binary)
X2C (hex to character)
X2D (hex to decimal)

B2X – (binary to hex)

Table 5: Different byte representations



Signatures are following strict rules for being valid. It is allowed to use any of the type-codes
presented in Table 1 on page 28, but not in any given combination.

If an array signature is defined with a sole 'a', any method call to it will result in an error as
an  array  always  need  defined  what  object  types  it  carries49.  That  means  asserting
self~assertEquals("a",dbustest~ReplySignature("a"), "array signature") results  in the
same error code listed above (Syntax 93.900). It is possible to define a signature like  'as',
denoting an array of strings. But if cascaded signatures are used, it is not allowed to use an 'a'
at the end. For example self~assertEquals("anton",dbustest~ReplySignature("anton")), is
valid whereas self~assertEquals("tina",dbustest~ReplySignature("tina")), invokes given
error. 

An  additional  specialty  for  ooRexx  programmers  is  that  capitalization  matters  within  a
signature. An assertion with 'A' as signature results in an error.
It  was  already stated  that  defining  introspection  data  and  handling  signatures  is  a  rather
difficult  task.  Signatures do not  show any additional specialty,  except  that  using irregular
signatures always result in following debug message: 

Of  course  all  assertions  that  are  known  to  produce  errors  are  caught  with
self~expectSyntax(93.900). But this debug information gets displayed by DBus and does not
stop the script from execution. 

3.4.6 ObjectPath

The object Path is used for referencing a DBus object instance. According to its definition, an
object path may be of any length, therefore the first test defined an object path according its
syntax  requirements  with  longpath = '/oorexx/dbustest'~copies(1000).  As  expected  no
error  occurred.  The  syntax  rules  for  an  object  path  are  simple,  it  must  start  with  a  “/”,
followed by letters (A-Z or a-z) and/or digits (0-9) and there must not be a “/” at the end of
the path. If a .nil value is sent, DBusooRexx automatically translates it to a root object path
(/). All tests assessing intentionally wrong object paths were identified and caught correctly.
Therefore nothing special revealed during the assessment of objectPaths.

3.4.7 Arrays

Arrays  are  probably  the  most  common  type  of  container  among  different  programming
language as objects are simply arranged by their index, one after one. 
For the first test, the method ReplyArray was defined to return arrays with the signature 'a',
as it was just mentioned that it is necessary to define an additional type-code for an array, the
assertion:  self~assertEquals(.array~new,  dbustest~ReplyArray(.array~new)),  did  not

49 Although 'a' is a valid typecode, it is not a valid signature on its own.

37

Event:  [SYNTAX 93.900] raised unexpectedly.
    DBusooRexx/method/DbusBusCallMessage(), error 7: Rexx message argument # [1],
typeCode=[g]: DBus-API returned 'no memory' while appending message argument / 
error position (1-based): [1] in full signature: [g] (maybe typeCode not 
supported on platform?)

process 3259: arguments to dbus_message_iter_append_basic() were 
incorrect, assertion "_dbus_check_is_valid_signature (*string_p)" 
failed in file ../../dbus/dbus-message.c line 2608.
This is normally a bug in some application using the D-Bus library.



invoke any error, whereas calling the same method with  self~assertEquals(.array~of(1),
dbustest~ReplyArray(.array~of(1))) results in errors that are able to tear down the testserver
and therefore make all  following assertions resulting in failures because the server is  not
available anymore. (See following two errors, first from ooRexx and second from ooTest)

As these errors teared down the testserver, they were followed by hundreds of lines denoting: 
error 12: error.name=[org.freedesktop.DBus.Error.ServiceUnknown], error.message=[The 
name oorexx.dbus.ooTestServer was not provided by any .service files]               

This test was only useful to prove that using 'a' as signature return value is not allowed. This
method was then changed to return an array of strings with the signature 'as' instead of 'a'.
On examining arrays, the example from the introduction, demonstrating that  assertEquals
and  assertSame cannot be used interchangeably was tested as well. Therefore an array was
defined,  assessed  with  assertEquals which  was  found to  be  true  and then  assessed  with
assertSame. Although carrying the same values, the sent and returned array were not identical,
therefore  assertSame failed  as  expected,  which  was  then  changed  to  assertNotSame to
incorporate this kind of assertion in the test cases as well.

Whereas integer values could be marshalled and demarshalled without problems within an
array, processing arrays of doubles demonstrated unexpected behavior. 
During the assertion of doubles it was already demonstrated that the value 1.0 got translated
to 1. Nonetheless assertEquals worked to assess both, 1 and 1.0. Incorporating the value 1.0
into an array makes the assertion fail.

This assertion results in the following message:

Testing the values of the array with a loop and say instructions revealed that it is the different
representation of the same value, (1 instead of 1.0) that disables the array from assessing its
equality.50

Therefore the assertion for arrays of doubles was adapted to unwrap and assert each value of
the sent and received array individually. (see Script 18)

50 I  submitted  a  bug  report  and  was  told  that  this  is  expected  behavior  and  will  not  be  fixed.
(https://sourceforge.net/p/oorexx/bugs/1272/)

38

[SYNTAX 93.900] raised unexpectedly.
    DBusooRexx/method/DbusBusCallMessage(), error 12: 
error.name=[org.freedesktop.DBus.Error.MarshallingReturnValue], 
error.message=[Rexx service object [/oorexx/dbus/ooTestServer] supplied
a return value that could not be marshalled with signature [a]]

REX0645E: Error 93.900:  DBusooRexx/DbusMessageLoop, panic! Unexpected 
marshalling error for return value [an Array] with signature [a] by 
service object [/oorexx/dbus/ooTestServer] after returning from Rexx 
method [ReplyArray] (interfaceName=[oorexx.dbus.ooTestServer])

array = .array~of(0.1, 1.0)                      -- 1.0 is converted to 1
self~assertEquals(array, dbustest~ReplyArrayofDouble(array), "0.1 , 1.0")

Failed: assertEquals
    Expected: [[an Array], identityHash="17458577806574"]
    Actual:   [[an Array], identityHash="17458577768412"]

https://sourceforge.net/p/oorexx/bugs/1272/


Same is valid for large double values, if for example the double with the value 999999999.9 is
returned  through  DBus,  it  is  converted  to  1.00000000E+9 what  produces  errors  unless
unwrapped and individually asserted as demonstrated in the following example.
double1 = 999999999.9              
double2 = 1.00000000E+9            
self~assertEquals(double1, double2)

3.4.8 ByteArrays

Array  of  bytes  are  commonly  used  by  different  services  on  the  DBus.  Binary  data  is
transported that way and in an example presented later, an USB device returns its mountpath
as byte array.  A byte-array can be defined with  .array~of('T','E','S','T').  Some DBus
debuggers51 represent  byte-arrays  like  (84,69,83,84).  DBusooRexx provided two different
settings  for  handling  bytearrays  with  the  property  unmarshalByteArrayAsString.  If  set  to
.true, the following assertion works. 

The default setting is .false, which would return the byte array as it was received. Within the
testgroup both switches were tested and the result was converted successfully.

3.4.9 Struct

A struct is a universal container that allows to carry any valid object type. The testserver used
for the assessments, provides the method ReplyStruct with the signature (si).
A valid struct for the given signature can be defined with struct= .array~of('test',1)
A Test with a value, set intentionally too low for an integer32, (described earlier) resulted in
an expected failure. The next test with two .nil arguments showed expected conversion as
listed in Table 6.
struct = .array~of(.nil,.nil)         
struct2 = dbustest~ReplyStruct(struct)
self~assertEquals("", struct2[1])     
self~assertEquals(0, struct2[2])      

If a .nil value is sent instead of the expected array, the values within the struct (as gathered
through the signature) are converted to their safe defaults. Therefore the same test described
above works to assess a .nil struct.

3.5.10 Dict

A DBus dict is similar to a struct, but has a few more restrictions. A dict Entry is an array
consisting of two elements, therefore a dict entry is always a key-value pair.
The first element, being the key, must not be a container, but a string.  (Pennington et al.,
2014) The testservice provides a method called ReplyDict with the signature a{si}. Test with

51 Both tested DBus debuggers use decimal instead of character representation.

39

retarray = dbustest~ReplyArrayofDouble(array)         
do i=1 to array~length                                
  self~assertEquals(array[i], retarray[i])            
end
Script 18: Workaround for assessing arrays of doubles

.dbus~session~unmarshalByteArrayAsString = .true
self~assertEquals('TEST',dbustest~ReplyArrayofByte(.array~of('T','E','S','T')))
Script 19: Unmarshall byte array as string



regular string and integer values showed nothing special. A valid dict for a{si} is for example:
dict = .directory~new~~put(-2147483648, "lowest value -2147483648") 

As the  string  is  the  key for  the  DBus  dict  and the  put  method of  ooRexx is  defined as
put(item, index) this is valid. A counter-test with the order “string, integer”, as indicated in
the introspection signature failed as expected.

It was already demonstrated that .nil is converted to 0 for any integer value. (see Table 6)
Therefore a test was created that passes a .nil value and expects the dicts to be not equal:
dict = .directory~new~~put(.nil,".nil is converted to 0")         
self~assertNotEquals(dict, dbustest~ReplyDict(dict), "test array")

As there was no error remarkable, the author unwrapped the integer value and expected it to 
be 0 was is the case:
dict2 = dbustest~ReplyDict(dict)                    
self~assertEquals(0, dict2[".nil is converted to 0"])

Another test with an integer value that passes its value range demonstrates expected behavior,
namely throwing an error. 
self~expectSyntax(93.900)                                       
dict = .directory~new~~put(2147483648, "highest value passed")  
self~assertEquals(dict, dbustest~ReplyDict(dict), "test array") 

If  the  dict  itself  is  passed  over  as  .nil,  the  return  value  consists  of  an  empty  directory.
Therefore following assertion works:
dict=dbustest~ReplyDict(.nil)         
self~assertEquals(.directory~new,dict)

3.4.11 Variant

A variant is a special type of container that carries the signature of a value and the value itself
within  an  array.  The function  dbus.box() “converts”  a  value  into  a  variant.  For  example
dbus.box('i',2147483647) allows to define that the value carried is of type integer32. This
information is only used by DBus to get knowledge about the object type. The return value of
a variant defined that way is the integer value only.
For the testgroup a boxed and an unboxed variant were created. For example:
boxedvariant =.array~of(dbus.box('b', .true), dbus.box('n', 32767))
unboxedvariant=.array~of(.true, 32767)                             

The return value of the the service ReplyArrayofVariant(boxedvariant) was assessed with the
unboxedvariant and asserted as equal. If a value surpasses its limits, for example an integer
value  that  is  too  large,  DBus  returns  an  error  message  what  proves  that  the  value  was
unwrapped correctly.

In order to test how .nil values are converted, an array with boxed .nil values for all simple
object-types (dbus.box('b', .nil), dbus.box('n', .nil), …) was created and the return value of this
array was asserted with the expected save default values for .nil for the given object-type.
All object-types were converted as expected, except the byte. It was demonstrated earlier that
a .nil byte can be assessed with self~assertEquals("00"x, dbustest~ReplyByte(.nil)), but
if transported within the array and boxed with dbus.box('y',.nil), the expected value has to
be an empty string instead of "00"x.
The next chapter will cope the .nil translation for all object types.

40



3.5 DBus and NULL Values

DBus  does  not  support  Null  values  in  its  messages.  Many  programming  languages
nonetheless need this kind of value to represent that there is no value.
In order to process Null vales correctly, DBusooRexx automatically translates them to values
that can be processed via DBus. Table 6 illustrates the DBusooRexx equivalent of .nil for the
given  object  type.  For  the  testgroup,  it  was  assessed  how the  return  value  looks  for  no
argument and for a .nil argument. 

In  order  to  assert  them within  a  loop,  following select  statement  was  used  to  define  the
expected value first, otherwise the .nil values would not be assessed according to their object
type correctly.

For example the following assertion works for all TestServices: 
self~assertEquals('00'x,dbustest~ReplyByte('00000000'b), "'00000000'b == .nil")

Table 6 shows what has to be expected if a .nil value is sent and returned with the same
signature from any of the TestServices. 

41

select
when type='g' then null = ""
when type='y' then null = "00"x
when type='s' then null = ""
when type='o' then null= "/"
otherwise
  null=0
end
Script 20: Null value conversion for assertions



3.6 DBusooRexx's ReplySlotDir

DBusooRexx provides a so called slotDir argument that comprises some information about
the caller and the sender of a DBus message. It can be activated and deactivated with the
booleans  .true and  .false.  If  activated with  .dbus~session~makeReplySlotDir=.true,  any
message call will get added an additional directory which contains information like signature
of the call, sender and receiver id, a timestamp and some more information.52

In order to assess both sides of this “information package”, a testmethod  TestReplySlotDir
with a string as input value and a dict 'a{sv}' as return value was implemented. This enables
to capture the SlotDir from the message call to this method (named cSlotDir) and return it to
the caller along with the new SlotDir that got created for the message response. The following
output demonstrates this two different views on the SlotDir, rslotDir is the new slotDir created
due to the method call  from the server side and cslotDir represents the slotDir,  the caller
issued.

52 True is the default setting for slotDir.

42

DBus
Object Type

DBusooRexx
Null (.nil) value representation

array empty array

boolean 0

byte "00"x

double 0

int16 0

int32 0

int64 0

objpath /

signature empty string (“”)

string empty string (“”)

unit16 0

unit32 0

uint64 0

variant empty string (“”)

structure carried object types are converted to
their safe default values

map/dict empty .Directory

Table 6: DBusooRexx null value representation



As the values of both slotDirs indicate, there is enough information for implementing some
assertions. For example:
self~assertSame(  's'  , cslotDir['SIGNATURE'], 'assert the SIGNATURE')
self~assertSame('a{sv}', rslotDir['SIGNATURE'], 'assert the SIGNATURE')

The bus id looks like :1.480 and serves to uniquely identify a DBus connection, therefore is is
ideally suited for assertions like:
busid = conn~busName('unique')                                               
self~assertSame(busid, cslotDir['SENDER'], 'assert id of SENDER')            
self~assertSame(cslotDir['SENDER'], rslotDir['DESTINATION'], 'assert SENDER')

If the SlotDir is deactivated on the DBus connection, it must not appear in a method call:
.dbus~session~makeReplySlotDir =.false                        
 rv = dbustest~TestReplySlotDir('test')                       
   rslotDir = rv[2]                                           
   self~assertSame(.nil, rslotDir, 'ReplySlotDir deactivated')

The slotDir  proves  to  work as  expected and is  definitely a  nice  feature  to  obtain  further
information about a message caller. With this information it is possible to react differently to
method calls, depending on who the caller was.

3.7 DBus Properties

Implementing and handling properties is easy with DBusooRexx, there are two possibilities to
implement  properties.  Either  provide them via a common  ::attribute directive or return
them via a ::method directive.

If there is only one property defined, giving access to it is easy. The introspection data has to

43

SlotDir agruments ReturnSlotDir (rslotDir) CallerSlotDir (cslotDir)

MESSAGETYPENAME method_return method_call 

SIGNATURE a{sv} s

MESSAGETYPE 2 1

OBJECTPATH /oorexx/dbus/ooTestServer

INTERFACE oorexx.dbus.ooTestServer

NOREPLY 1 0

AUTOSTART 1 1

DATETIME 2015-05-14T18:11:59.228936 2015-05-14T18:11:59.228611

SENDER 1.154 1.153

SERIAL 11 10

CONNECTION a Dbus a Dbus

MEMBER TestReplySlotDir

DESTINATION 1.153 oorexx.dbus.ooTestServer

Figure 6: Comparison of two different views on DBusooRexx's ReplySlotDir



provide a line such as  <property name="ServiceName" access="read" type="s"/>. Then the
“bridge” between DBus and the ooRexx method can for example provided with:53

::method Get              
  return self~serviceName 

If the introspection data is provided by subclassing DBusServiceObject, the method Get is 
already provided. Properties can be defined as regular ooRexx ::attribute and are referenced
by:
::method info 
  expose info 
  return info 

The parameter access within the introspection line denotes how and if the property can be
manipulated. Valid parameters are 'read', 'write' and 'readwrite'. A possibility to implement a
readwrite property in ooRexx is provided by the author of DBusooRexx in his examples.54

::method info        /* the Rexx attribute is a 'readwrite' property!     */
  expose info                                                               
  if arg()=2 then    /* argument (+ slotDir), then behave as setter method*/
     use arg info    /* fetch argument and save with attribute            */
  else               /* no argument, then behave as a getter method       */
     return info     /* return current attribute                          */

It was mentioned earlier that the ::method unknown can be added to any script as backup if an 
unknown message call arrives. In this example, adding ::method unknown intercepts all calls 
to the properties. If the ::method unknown is used anyway, both Set and Get methods must be 
implemented in order to interact with properties.55 That is also true if the ooRexx class does 
not subclass DBusServiceObject, but returns the introspection data in its ::method 
Introspect. A possible implementation for Get with two properties could look like:
::method Get                                            
  expose MethodName info                                
  use arg caller, propertyname                          
  if (propertyname='Info') then return info             
  if (propertyname='MethodName') then return MethodName 

An implementation with direct access to properties as well over the DBus default method
org.freedesktop.DBus.Properties is demonstrated in Script 21 .

The most  convenient  method to provide properties  is  to  define them via the  ::attribute
directive in  a  subclass  of  DBusServiceObject.  If  using the  ::attribute directive,  ooRexx
automatically creates a get and set method for the object instance variable.

53 Is  is  only  necessary  to  implement  the  Get and  Set method  with  ooRexx  program  code  if
DBusServiceObject is not subclassed like TestService3.

54 See DBusooRexx, Script in folder /examples/demoHelloService3.rex, line 89ff.
55 More  details  about  properties  at:  http://dbus.freedesktop.org/doc/dbus-specification.html#standard-

interfaces-properties. accessed on 2 September 2014.

44

node=.IntrospectHelper~new
if=node~addInterface('org.freedesktop.DBus.Properties')
if~addMethod('Get','ss','v')
if~addMethod('Set','ssv','')
if=node~addInterface('org.rexx.demo')
if~addProperty('Info', 's', 'readwrite')
if~addProperty('Version', 'i', 'write')
introspectData=node~makeString
self~init:super(introspectData)
Script 21: Providing access to DBus Properties

http://dbus.freedesktop.org/doc/dbus-specification.html#standard-interfaces-properties
http://dbus.freedesktop.org/doc/dbus-specification.html#standard-interfaces-properties


There are  also different  ways to  get  access  to properties.  The easiest  way probably is  to
retrieve or set a value by using the object reference followed by the name of the property. For
example:  own~variablename for  querying and  own~variablename('newvalue') to  set  a  new
value. It is also possible to use the Get and Set methods of org.freedesktop.Introspectable. 

As mentioned earlier, properties can be defined with read, write or readwrite access. That
means that a write variable must not allow to be queried. If the property “Version” of Script
21  is  called  with  own~Version,  DBusooRexx  gently  informs:  argument  missing  for  a
"write" property. own~Version(2) is a valid command. Properties can also be changed with
own~variablename=variable.  This  is  the  default  set  method  automatically  created  from
ooRexx  for  handling  attributes.  The  testgroup  revealed  that  handling  properties  that  way
works flawlessly as well.

If the  Get method of  org.freedesktop.Introspectable is used, the name of the interface is
necessary as additional parameter (for example own~Get(interfacename,'Info')). According
the  signature,  the  Set method needs  a  string  and a  variant  as  object  types,  the  first  two
parameters  are  (analogously  to  the  Get method)  the  interfacename  and  the  name  of  the
property, the third parameter is a variant. Dependent on the complexity of the object type, it
might be necessary to use the dbus.box instruction like:  own~Set(interfacename,'SetInfo',
dbus.box('s','newvalue')) . In this example it would be enough to just use the string without
boxing it as DBusooRexx translates the object on the fly.. 

Within the testgroup three properties are used with different access and different definition
methods. (Script 22)

The property MethodName has read and write access. When a test is carried out in the testgroup,
this property of the server is changed to the name of the calling method. For example:
dbustest~MethodName('test_dbusname')

When all assertions in this testmethod are carried out, the prior changed property is asserted
with: self~assertSame("test_dbusname",dbustest~MethodName) to test read and write access.
When trying  to  set  a  property that  was defined as  being  read-only with  Info(newvalue),
DBusooRexx raises an error condition and informs about wrong interaction with this property
by issuing:
Incorrect interaction with property "oorexx.dbus.ooTestServer.Info": attempt to 
assign the value "oorexx.dbus.ooTestServer" to a "read"-only property           

All properties are tested if they behave according to their signature. A readonly property must
not allow its value to be set, whereas a writeonly property must not allow to read its value.
This was effected by using them incorrectly and expect an error.56 (see Script 23)

56 These assertions must not be tested in this sequence, as after the first syntax error, the testmethod quits and
the second assertion would not be executed anymore.

45

<property name='Info' access='read' type='s'/>  
<property name='SetInfo' access='write' type='s'/>
<property name='MethodName' access='readwrite' type='s'/>
Script 22: Attributes, the testgroup interacts with



During the assertions with ooTest the property set and assertions with get did sometimes not
work correctly. (meaning that every time another assertion failed that was already assessed to
work multiple times before.)

It showed that it is necessary to let DBus time to set the value before inquiring it again. A
short syssleep is enough to make all assertions succeed every time. This approach was used
for the test method that tests the setting and getting of properties directly. 

3.8 DBus Signals

Signals are very useful to broadcast any information around the DBus, if any other service is
interested in receiving this signal it can be configured to listen to it. This also means that a
signal never has a direct receiver, but is broadcasted around the DBus. Emitting a signal can
be effected with:

.dbus~session~message("signal",objectPath,interface,methname,objecttype,message) .

The object type is defined with its signature, if multiple object types are defined, each has to
be  provided after  the  signature definition,  separated  by commas.  It  does  not  matter  what
objectpath or what interface is defined as long as they are defined according to their syntax
requirements. It is even possible to emit signals to known members. 

On the first sight this might be perceived as a security flaw. Further investigation reveals that
signals are nonetheless distinguishable. See following output of dbus-monitor:

Although the signal was faked to look exactly like the one from DBus, the name of the sender
differs (marked red). If trying to acquire the name org.freedesktop.DBus, a message appears
that informs about owning the name org.freedesktop.DBus is not possible. 

If signals are not defined correctly within their introspection data, a DBus debugger like D-
Feet is not able to list it, but does not issue any failure notification. 

TestService4 was  instructed  to  provide  a  Signal  with  ~addSignal('Exit','s').  With  this
setup the signal was not visible for D-Feet. It showed that by changing the definition from
~addSignal('Exit','s') to ~addSignal('Exit',), D-Feet was able to list all services, signals
and properties correctly. 

In order to test signal emission as well as signal immission, the testserver provides a signal

46

self~expectSyntax(93.900)
say dbustest~SetInfo

self~expectSyntax(93.900)
dbustest~Info('set readonly value')
Script 23: Wrong interaction with properties

signal sender=org.freedesktop.DBus -> dest=(null destination)  
path=/org/freedesktop/DBus;interface=org.freedesktop.DBus;member=NameOwnerChanged
   string "oorexx.dbus.ooTestServer"
   string ""
   string ":1.279"

signal sender=:1.279 -> dest=(null destination) 
path=/org/freedesktop/DBus;interface=org.freedesktop.DBus;member=NameOwnerChanged
   string "oorexx.dbus.ooTestServer"
   string "" 
   string ":1.279" 
Script 24: Signal example captured by dbus-monitor



called Ready. Any signature that is defined according to its rules is valid for a signal.57 In this
example it was decided to use two arguments for demonstration purpose. The signature 'sb'
denotes  String  and Boolean.  See  following  example  output  of  how the  emitted  signal  is
monitored by dbus-monitor.

A  DBusSignalListener that  defines  the  methods  “Ready”  and  “Exit”  was  added  to  the
testclients ::method setUp that was described earlier. The intention of this approach is, as the
testserver (and all its services) is started within this method, to wait until the services are
accessible  and  the  setup  process  is  therefore  finished.  The  method  Ready  of  the  class
DBusSignalListener can be implemented as following:
::method Ready                  -- changes .local~ready 
  use arg text, boolean                                 
  say 'server:' text '=' boolean                        
  .local~server.ready = boolean  -- set ready to .true  

Within the  ::method setUp, the testsuite is instructed to wait until the attribute Ready was
changed through the DBusSignalListener in its Ready method. (see following script)
/* wait until program fully initializes */ 
 do while \.server.ready                   
  call syssleep 0.5                        
 end                                       

The server script on the other side effects its signal emission soon after all TestServices were
added to the DBus connection and all private servers were started: 

As the testgroup starts its assertions and all services are available, signal handling was tested
to work in this setup.

3.9 DBus Errors

If a service is called the wrong way, DBusooRexx raises an error and informs about what
went  wrong.  An  example  already  described  is  a  service  call  with  a  wrong  number  of
arguments passed. Errors can be raised intentionally with additional information, allowing the
calling program to react appropriately. 
For example a method is called that makes an illegal mathematic operation. If the error is not
passed over  to  the  caller,  it  would  not  know what  went  wrong as  the  service  would not

57 The first concept was to name the signal start, but as already mentioned by the author of DBusooRexx in the
example script “signalListener.rex”, using signal names that have the same name as methods of the .Object
Rexx class forces to implement this method within the SignalListener as well.

47

conn~serviceObject('add', objectPath, testserver)                       
conn~serviceObject('add', "/oorexx/dbus/TestService2", testserver2)   
conn~serviceObject('add', "/oorexx/dbus/TestService3", testserver3)   
conn~serviceObject('add', "/oorexx/dbus/TestService4", testserver4)   
conn~serviceObject('add', "/oorexx/dbus/TestService5", testserver5)   
privateserver~startup                                                   
privateserver2~startup                                                  
                                                                        
conn~message('signal',objectPath,interface,'Ready','sb','started',.true)
Script 25: Signal emission after startup of the serverscript

signal sender=:1.156 -> dest=(null destination) serial=3 
path=/oorexx/dbus/ooTestServer; interface=oorexx.dbus.ooTestServer; member=Ready
   string "started"
   boolean true



answer. 
::method test_errorpropagation          
  signal on syntax                      
  say 1/0    -- provoke a runtime error 
  return                                
syntax:raise propagate                  

This method allows to intercept the ooRexx error message and direct it to the caller. Error
messages  do  not  have  strict  rules  for  their  setup,  they can  use  any name and carry any
message. For example: 
call raiseDBusError "org.freedesktop.DBus.Error.ExtremeError", - 
'Sorry I give up, the error is too heavy!'                       

It is also possible to omit the error name or the error message at all. An example output (taken
from D-Feet) for an unnamed error without any additional information yields in:
'GDBus.Error:org.freedesktop.DBus.Error.RexxServiceRaised: Error return with empty 
body: '

The testgroup contains five different  tests  for error messages,58 the first  test  method does
actually provoke a real error that gets propagated within the DBus error message. The second
test method raises an error and passes over a name and a body, the third omits one of them,
the fourth omits the other and finally, the fifth omits all information.
The assertions showed that all errors were thrown correctly by all services.

3.10 Start Service by Name

As  services  are  exchanging  messages  over  DBus  they  need  to  be  available  in  time  to
guarantee that a method call  receives its destination. One possibility is to always start all
services that might be needed by default, but in order to reduce overhead, a minimal system
can be configured that only starts services that are really needed. Internally, a dbus-daemon-
launch-helper is called and an argument, the name of the service to start, is passed. This name
then  gets  searched  for  available  configuration  information  within  the  directories
/usr/share/dbus-1/system-services or  /usr/share/dbus-1/services for  system or  session
bus.59

A service  file  contains  the  name  of  the  service,  the  location  of  the  service  (path)  and
optionally  an  user  statement.  (for  example  User=ftp for  invoking  the  program  with  the
permissions for the given user)60 61

Saving the  file  in  the  script  25 with  the  name  ooTestserver.service with  administrative
privileges in the directory /usr/share/dbus-1/services, enables the program to be started on
demand by DBus.
Additionally to the service file configuration, it is necessary to make the script executable if it
is  not  already.  This  can  be  effected  by  adding  a  shebang  to  the  first  line  of  the  script

58 These tests were adapted from testErroneousServer.rex by Rony Flatscher.
59 The name of the configuration file is irrelevant as long as it has the ending .service. Only the name defined

within the configuration files is important for the DBus infrastructure in order to start it..
60 It  is  also  possible  to  elevate  user  rights  by requiring  administrative  privileges  with  user=root.  This  is

probably an interesting method to gain deeper access to the operating system through DBus.
61 http://dbus.freedesktop.org/doc/system-activation.txt, accessed on 2 September 2014.

48

[D-BUS Service] 
Name=oorexx.dbus.ooTestServer
Exec=/home/zerkop/MasterThesis/DBusooRexx/ooTestDBusServer.rexx
Script 26: Example ooTest.service configuration

http://dbus.freedesktop.org/doc/system-activation.txt


(#!/usr/bin/rexx) in order to let the operating system know how the script has to be invoked
and the script has to be defined as executable for the operating system as well.62 
Whether  the  configuration  file  was  created  successfully  can  be  queried  with  the  method
ListActivatableNames of  org.freedesktop.DBus.  If  the name  oorexx.dbus.ooTestServer is
listed as available service, the method of org.freedesktop.DBus, named StartServiceByName
can be used to start the program. The parameters to be passed are the name and the integer 0 if
the program should just be started and there is no interest in calling a specific method on it. 
By adding configuration files for services it is possible to call a method of a program that is
known not to be available at that time. The program will start and the service is available.

This is a very useful feature to start any program by demand in an elegant manner. It is not
even necessary that the program has anything to do with DBus at all. DBus can be used as
shortcut  to  start  all  services  that  are  necessary.  Although it  is  not  possible  to  talk to  the
program over DBus if the program does not support that, it is possible to preconfigure any
switch or enable a dynamic choice by creating multiple service files calling the same program
with different parameters and choose amongst them which to start at runtime.

3.11 Penetration Tests

Penetration  tests  are  envisaging  to  call  every  service  subsequently or  parallel  very  often
within a short time range. The goal behind that is to assess when a service reaches its service-
limit and is able to handle the demanded requests on time. For this purpose a few limits of
DBus have to be kept in mind, that is for example the response time and of course the overall
connection limit a service is able to handle.
The default  configuration file of DBus (for the session bus) can be found under the path
/etc/dbus-1/session.conf. Do not change anything in the file unless you know exactly what
you are doing. Any misconfiguration results in an unbootable state for the system, making it
necessary to log in to a virtual console and revert the file to its original state.
The file states some of the limits imposed for the connections. (See Script 25)
For this testgroup and this paper, there are no tests of this kind implemented so far.63

62 This can be effected with chmod +x filename.
63 Although that is no penetration test, the author can guarantee that some of the assertions have been executed

a few thousand times so far.

49

<!-- the memory limits are 1G instead of say 4G because they
can't exceed 32-bit signed int max →
  <limit name="max_incoming_bytes">1000000000</limit>
  <limit name="max_incoming_unix_fds">250000000</limit>
  <limit name="max_outgoing_bytes">1000000000</limit>
  <limit name="max_outgoing_unix_fds">250000000</limit>
  <limit name="max_message_size">1000000000</limit>
  <limit name="max_message_unix_fds">4096</limit>
  <limit name="service_start_timeout">120000</limit>  
  <limit name="auth_timeout">240000</limit>
  <limit name="max_completed_connections">100000</limit>  
  <limit name="max_incomplete_connections">10000</limit>
  <limit name="max_connections_per_user">100000</limit>
  <limit name="max_pending_service_starts">10000</limit>
  <limit name="max_names_per_connection">50000</limit>
  <limit name="max_match_rules_per_connection">50000</limit>
  <limit name="max_replies_per_connection">50000</limit>
Script 27: Excerpt of /etc/dbus-1/session.conf



3.12 Limitations

The testgroup was only tested on Debian-based Linux-systems, on Ubuntu and some of its
derivates with 32 and 64-bitness.  As DBus is  originated from and is  dedicated to  Linux-
systems, this application comes naturally. But there are ports for other operating systems as
well, that were not tested extensively. For example there are ports for Windows or MacOSX.
On Windows system, it was only tested successfully to start DBus scripts but no testgroup run
was carried out so far. 
As programing complete tests requires profound understanding of the DBus language binding
and DBus itself, it is probably possible that some features were unintentionally omitted from
the tests. 

The testgroup is of course a good candidate to be further enhanced by adding additional tests.
Especially  complicated  containers  have  not  been  tested  thoroughly  so  far.  The  testgroup
assesses only simple forms, not cascaded ones. It would theoretically be possible to assess any
combination of any signature in any container, but that is of course not feasible. Therefore
basic tests were effected that are of course to be enhanced over time.
During  the  tests  a  few  errors  have  been  revealed  and  got  corrected  by  the  author  of
DBusooRexx, but of course it can never be guaranteed that there are still errors that have not
been found so far. DBus itself is also not immune to bugs and might run through changes over
time. For the testing, Ubuntu's DBus version from the standard software repository was used.
The  ooRexx  DBus  binding,  DBusooRexx,  was  assessed  in  its  versions  099.20110912  to
100.20140807, which were compiled with DBus version 1.4.6.64 A closer look at the version
used within Ubuntu14.04 and the official releases of DBus reveals that the shipped version
best matches the dbus release of 1 November, 2013. The most current version at the time of
writing was dbus-1.8.6, released on 2 July 2014.65 

64 Querying of version is possible via say "DBusVersion:" DbusVersion().
65 DBus releases: http://dbus.freedesktop.org/releases/dbus/, accessed on 2 September 2014.

50

http://dbus.freedesktop.org/releases/dbus/


4. Exploiting DBusooRexx In a Practical Setting
The following section provides  script  examples  that  are  using  the  infrastructure  of  DBus
provided through DBusooRexx.  It  covers  connections  to  the  system and the  session bus,
listening for signals, process “complicated” signals and also gives insights how to code a
solution for a problem. These scripts should not be seen as fully featured programs, but are
intended to demonstrate the ease of use of DBusooRexx and a few very interesting features of
DBus.

These  script  examples  can  be  extended  easily.  Some  features  introduced  in  one  of  the
examples might be useful for the other as well. For example the possibility to only react on a
certain device, which will be demonstrated later.

As these examples interact with other DBus objects, it can be seen as a test in the wild. It has
already showed to be useful to test DBusooRexx “in the wild”, as a severe error concerning
signal handling was uncovered (which was corrected in the actual version).

4.1 Script Example: Automated Media-Player Control with Bluetooth
and DBus

A so called “Hello World” program in the context of interprocess communication probably is
controlling a Media-player. Displaying a text message on a screen does not offer the same
understanding of controlling a program, as the message windows, appearing on the screen
could have been built purposely for this very appearance, whereas the media player rather
feels like a standalone program. Therefore controlling a “foreign” program impresses much
more.

Concerning demonstration of DBus concepts, the following script will make use of a private
DBus server connection over Tcp/Ip, and control and coordinate a media-player over its DBus
services on the session bus. Additionally, two interesting interfaces are introduced. One for
controlling various media-players,  the other for Bluetooth communication,  namely MPRIS
and bluez. The latter also demonstrate how services on the system bus can be deployed.

4.1.2 Listening to Signals and Invoke Methods over Network

The use-case is the following: there a two machines which are distributed over rooms (e.g one
is in the living room, the other in the working room), both have their own sound playback
capabilities (connection to speakers). A music player playbacks sound on the main computer.

Now it would be useful if the computer tracks your position and decides to stop the playback
on the machine your are departing from and resumes the playback on the other machine you
are heading to, the music just follows you. Figure 7 illustrates this usecase.

51



4.1.2 Prerequisites

For  this  setup  two  computers,  both  disposing  of  own  speakers  and  an  active  Bluetooth
adapter66 on one machine is needed. A third device with Bluetooth capabilities, carried by the
user is necessary as well, serving as the device to be tracked. 

The Bluetooth device needs to be instructed to keep its discovery active; most devices will
accept this settings. The default setting is to keep it alive only for a given period of time,
usually a  few minutes.  As no connection to  the  device is  established,  but  only its  signal
strength is observed, the device would suddenly disappear when its discovery period is over.
Any mobile phone is perfectly useful for this purpose. Regretfully, there are devices which
will not keep discovery alive67.

For better understanding, the term main computer is used for the Computer the music plays
and  the  user  is  sitting  before,  the  term  target  computer  refers  to  the  remote  computer
(Notebook  in  this  setup).  The  script  running  on  the  remote  computer  is  called
MPRISremoteServer and the script running on the main computer is called MPRISremoteClient.

4.1.3 The Media-Player-Interface Standard MPRIS

The abbreviation MPRIS stands for Media Player Interface Standard which aims to act as a
common interface to all compliant audio-players. Most desktop environments already support
this standard and integrate MPRIS within their GUI. Therefore it does not matter what media
player is installed on the system, all of its basic functionalities are controllable over DBus, as
long as  MPRIS compliance is  provided.  The standard  has  evolved over  time,  now being
available  in  version  2.2,  which  offers  extended  control  functionality  and  has  a  growing
number of compliant players.68 In addition to its own interface, MPRIS emits status messages
over  the  default  org.freedesktop.Dbus.Properties.PropertiesChanged signal,  enabling
desktop environments to display basic information about playback status, title, volume and so
on in their notification area.
For  demonstration purpose,  the vlc  player  was chosen as  it  is  available  for any common
(desktop)  operating  system and  offers  great  compatibility  with  many different  audio  and
video-codecs. Since vlc player dropped its MPRIS standard in favor of MPRIS2 (Ennaime et
al., 2012), the bus name changed to org.mpris.MediaPlayer2, followed by the player name.

66 Most current Notebooks and some desktop PCs already have a Bluetooth adapter build-in.
67 A smart-watch from the smartdevice market  leader is  discoverable to  two minutes only,  what  makes it

useless for this setup, although this device would be perfectly useful for location tracking purpose.
68 A  list  of  all  MPRIS  interfaces:  http://specifications.freedesktop.org/mpris-spec/latest/fullindex.html,

accessed on 2 September 2014.

52

Sample setup: The user moves from Desktop Computer to Notebook, both connected through a router

Figure 7: Two computers and an user with a Bluetooth device moving between

NotebookUser with a Bluetooth device
Desktop Computer

Router

→ →

http://specifications.freedesktop.org/mpris-spec/latest/fullindex.html


MRPIS scripts will not be able to establish a connection to MPRIS2 anymore. During the
changes  from  MPRIS  to  MPRIS2,  DBus  support  was  temporarily  removed  from  the
configuration options within the graphical user interface of vlc and could only be invoked
over  command  line  parameters.  (vlc  --control  dbus)  Since  vlc  version  2.06  this
functionality can again be enabled within the GUI in the settings menu under the control
interfaces tab.

Since  MPRIS2 compliant  players  need not  necessarily implement  all  methods or  provide
additional services, the introspection file of vlc has to be queried first.
DBusooRexx  already  ships  an  excellent  tool  for  obtaining  this  kind  of  information,
graphically refined and colorized to be easily readable and clearly represented.  Executing
rexx dbusdoc.rex org.mpris.MediaPlayer2.vlc,  creates  a  HTML file,  listing  all  services
provided  through  the  given  address.  This  is  probably  necessary  from  time  to  time,  as
MPRIS2, although being a standard, very often changes and therefore renders (older) scripts
useless. 

The interesting part of the introspection starts with section two, where the bus name of vlc
gets  revealed.  A  few  versions  ago,  a  regular  vlc  bus  address  looked  like
org.mpris.MediaPlayer2.vlc-7592, 7592 being the process number of the instance. As this
process number is only valid for a session, it has to be obtained dynamically every time. In the
most  current  version  of  MPRIS2,  the  bus  name  is  added  the  word  “instance”.
(org.mpris.MediaPlayer2.vlc.instance7592)  Therefore  being  incompatible  with  the  prior
notation. But a positive development was remarkable as well, whilst vlc was only reachable if
there is knowledge about its process number, the most current version allows to connect to
org.mpris.MediaPlayer2.vlc, acting as proxy for the active instance. If the setup does not
intend to create multiple instances, handling process numbers is not necessary anymore.

An interesting observation acquired through dbusdoc.rexx is, that one signature of vlc does
not match the specifications of MPRIS2.69 The reference implementation demands x as object
type for the property position, referring to Int64, but dbusdoc.rex identifies the return value as
Int32. This is no failure, but nonetheless demonstrates that some services have their troubles
to be 100% compliant to the reference implementation.

4.1.4 The Linux Bluetooth Standard BLUEZ

The official Linux Bluetooth protocol stack is called bluez. It is part of the official Linux
kernel since version 2.4.6.70 and enables easy configuration of any Bluetooth device. Bluez is
available for nearly any operating system. It became an unified standard. The most current
version of bluez is 5.22, on Ubuntu 14.04 bluez is installed in version 4.101.
As bluez is integrated into the kernel, the DBus interface registers itself on the system bus.
(Holtmann, 2006) investigated the bluez DBus API and also provided an example how to
interact with bluez and the python DBus language binding. 
bluez serves  as an excellent  example for using signals over  DBusooRexx.  There are  two
signals that are especially interesting to be intercepted by the ooRexx class for the given
usecase which will be described later.

There are various ways to obtain the position of a person, respectively a device the person is
carrying.  GPS  is  the  most  popular  positioning  system.  Bluetooth  is  especially  useful  if

69 http://specifications.freedesktop.org/mpris-spec/latest/Player_Interface.html#types, accessed on 2 September
2014

70 More information at:  http://www.bluez.org/ the package  bluez is probably available through the standard
software repository. accessed on 2 September 2014.

53

http://www.bluez.org/
http://specifications.freedesktop.org/mpris-spec/latest/Player_Interface.html#types


connection to GPS satellites cannot be established, for example indoors.
Generally, a positioning system needs three anchor points in order to enable triangulation.
GPS uses time information to calculate the position, the longer the signal needs to travel, the
longer is the distance to the receiver. Given the distance to three known positions, the location
can be calculated. Indoor positioning can be done via Bluetooth as well, but in that case the
data for the position calculation is not the signal roundtrip time, but the signal strength. Since
Bluetooth version 1.1, the signal strength is indicated and obtainable through the variable
RSSI (Received Signal Strength Indication).71

Bluetooth offers four different signal related indicators, that can be used for localization, the
RSSI value is among them. As this is the only value obtainable over DBus, it was decided to
use it for this usecase, although using a RSSI value for localization purpose was investigated
thoroughly and already found to be a poor candidate. (Hossain & Soh, 2007)
Usage  of  RSSI  values  have  also  been  investigated  by  (Kikawa,  Yoshikawa,  Okubo,  &
Takeshita,  2010) who propose  following exactly  defined preconditions  in  order  to  obtain
valuable results.  They investigated the position of  the bluetooth sender and receiver  with
different  parameters  (eg one  time the  bluetooth  device  is  held  in  hand or  put  in  pocket,
position of the bluetooth sender changed, and many others) That implies that an exact setup
has to be defined for each device individually every time.
If the signal is triangulated, meaning that the signal strength is measured from three fixed
points,  it  would be possible to more precisely define the position,  this  comes close to an
indoor positioning system. (Feldmann, 2003) 
It would be possible to place three Bluetooth adapters at distant, known and fixed positions
within a flat, eventually with USB extension cables, but for the usecase demonstrated, the
exact position is of little interest. 

4.1.5 Establish Connection to Two Media-Players Via DBusServer

Of course there are many possibilities to solve the problem presented in the usecase, not only
concerning the positioning method. It would be possible to use the streaming capabilities of
vlc and instruct the main computer to stream to its target, but there would be no need for
implementing  an  ooRexx DBus  backend on the  target  computer.  As the  intention  of  this
section is to provide scripts and demonstrate capabilities of DBus, the following approach will
be envisaged: 
A server  program runs  on  the  target  computer  and  provides  two  services,  reachable  via
TCP/IP.72 The  first  service  called  Play needs  the  URL of  a  file  and its  desired  playback
position as input parameters, the other one, Stop, acts according to its name and returns the url
and  current  playback  position  of  a  song.  The  script  also  demonstrates  how easy  it  is  to
establish a remote private connection via a DBusServer object. A few lines of code are enough
to setup the server and make DBus services available for remote machines. (see Script 27)
Note that the IP address of the machine is hardcoded in this example, it has to be replaced
with the current IP of the machine. (ifconfig can be used on Linux systems to obtain network
information) Another possibility is to connect to org.freedekstop.NetworkManager over DBus
and acquire the current IP address dynamically, this procedure will be explained later (script
36).

71 The first external Bluetooth adapter used during the tests was a 12 years old version 1.0 device, that kept its
RSSI value constant at zero.

72 It might be possible that security settings permit connection to DBus. Within a local network everything was
tested to work without additional setup. Configuration for DBus can be looked up under /etc/dbus-1/

54



The second part of the serverscript serves the methods that are provided through the DBus
introspection information listed above. On the remote machine,  the mediaplayer  is  started
without GUI and the connection to it is established over a DBusProxyObject, where the stop
and play commands are forwarded to. (see MPRISremoteServer (part 2/2) offering services
via DBusServer)

55

/* this script runs on target computer and offers 
   music playback services for the main computer*/

ownaddress='tcp:host=192.168.0.15,port=23000,family=ipv4;'
vlcservice =.VlcService~new 
server =.DBUSServer~new(ownaddress,vlcservice) 
server~allowAnonymous=.true
server~startup
signal on halt       -- intercept ctl-c (jump to label "halt:")

say 'This script starts the vlc mediaplayer without graphical userinterface'
say 'Connection to this service is possible via:'  server~serverAddress
say 'Press return to quit'
parse pull enter

halt:                 -- a ctl-c causes a jump to this label 
say 'shutdown server and mediaplayer and ' -
    'closing all connections to clients ..' 
server~shutdown
vlcservice~Quitvlc
.dbus~session~close

::requires "dbus.cls"     -- get dbus support for ooRexx

::class VlcService subclass DBusServiceObject 
::attribute vlc
::method init
  expose vlc
  idata='<!DOCTYPE node PUBLIC "-//freedesktop//DTD D-BUS '  -
        'Object Introspection 1.0//EN"'  -
     '"http://www.freedesktop.org/standards/dbus/1.0/introspect.dtd">'  -
        '<node>'  -
           '<interface name="org.freedesktop.DBus.Introspectable">'  -
             '<method name="Introspect">'  -
              '<arg name="data" direction="out" type="s"/>'  -
             '</method>'  -
          '</interface>'  -
          '<interface name="oorexx.vlc">'  -
            '<method name="Play">'  -
              '<arg name=   "file"   direction= "in" type="s"/>'  -
              '<arg name= "position" direction= "in" type="x"/>'  -
              '<arg name=  "result"  direction="out" type="b"/>'  -
             '</method>'  -
            '<method name="Stop">' -
           '<arg name="data" direction="out" type="as"/>'  -
               '</method>'  -
          '</interface>' -
         '</node>'
 self~init:super(idata)       -- let DBusServiceObject initialize 
Script 28: MPRISremoteServer (part 1/2) setting up a private DBusServer



This script is started on the remote machine (Notebook) and acts as proxy for vlc. Commands
that are sent to this server are forwarded to its local running instance of vlc via its own DBus
session bus connection. 
On the other machine, vlc mediaplayer has to be started and a file for playback has to be
selected. As the goal of this usecase is to continue playing the same file at the same position
on the  remote  machine,  the  file  has  to  be  available  on,  respectively for  both computers.

56

  procId=getVlcId()  -- get procid of newest vlc or create an instance
  if procId="" then  -- no vlc instance found (and could not be created)
  do
    say 'no vlc instance available, could not create one either, aborting ...'
    exit -1
  end

-- MPRIS2 does not necessarily need a procID unless multiple instances are running
  busname="org.mpris.MediaPlayer2.vlc.instance"procId -- create MPRIS2 object
  objPath="/org/mpris/MediaPlayer2"              -- define object path
  vlc = .dbus~session~getObject(busname,objPath) -- get the vlc proxy object

::method Stop
  expose vlc
  url = vlc~Metadata['xesam:url']
  say 'Url to return =' url
  position = vlc~Position
  vlc~Stop
  return .array~of(url, position)
 
::method Play
  expose vlc
  use arg file, position
  say 'file to play:' file 'at position:' position
  vlc~OpenUri(file)
  call syssleep 1                -- let vlc time to load the file 
  url = vlc~Metadata['xesam:url']
  vlc~Seek(position)
  if file=url then return .true  -- if file loaded successfully 
  else return .false

::method Quitvlc
  expose vlc
  vlc~Quit

-- return process id of newest vlc instance of current user; or start an instance
::routine getVlcId       
  cmd='pgrep -n -x -u "$USER" vlc | rxqueue'   -- get procid via Rexx queue
  proc=getProc(cmd)          -- get vlc's proc id
  if proc="" then            -- found no vlc instance for this user
  do
     'cvlc --control dbus &' -- let the shell create a new instance of vlc
     call syssleep 1.5       -- wait to let the new instance request a busname
     proc=getProc(cmd)       -- get vlc's proc id
  end
  return proc                -- return the proc id

getProc: procedure           -- execute the command, parse its output
  parse arg cmd
  cmd                        -- let the shell execute the passed command
  proc=""
  do while queued()>0
     parse pull proc         -- pull procid from Rexx queue, make sure its emptied
  end
  return proc  
Script 29: MPRISremoteServer (part 2/2) offering services via DBusServer



Forwarding a local url will only work if a file with the same name exists under the same local
path on the target computer. For testing purpose it is probably the easiest way to copy a file to
the same path on both machines. During the tests, the author made use of a DLNR Server as
well,  in that case the remote path is  available for both computers anyway and no further
copying is necessary.
If a file was selected and is playing and the local machine has a Bluetooth adapter connected,
the clientscript can be started. 
The Bluetooth adapter queries available Bluetooth devices and listens on the system bus for
discovery as well as for property changes of a signal issued by org.bluez. 
The first approach listened for the RSSI value of a device. (Script 29) 

A given  threshold  for  the  signal  strength  was  defined  in  advance.  If  the  signal  strength
surpasses this value, the main computer does nothing if it is already playing a music file. If
the value drops below the threshold, music playback stops and title and playback position of
the music file are queried and passed to the other machine.
The remote computer  receives this  information and continues playback of the file.  If  the
device to track comes back in range of the main computer, the script stops playback on the
remote computer and resumes playing on the main computer. 
In this very simple setup there is no need to identify a certain Bluetooth device,73 (it would be

73 Identifying a certain device is possible via the address information within the signal, the script example
provided in the next section demonstrates how a certain id can be stored, retrieved and asserted for equality
with a current id.

57

::method DeviceFound
  expose treshvalue toward away active
  use arg name, signalinfos
  rssi = signalinfos~['RSSI']
  counter = calculateaction(rssi treshvalue toward away)
  toward = counter[1]
  away = counter[2]
  if (toward>4) then do 
    if (active) then do
      say "nothing to do at the moment" 
    end
    else do
     say "start local player" 
      active=.true
    end
   end
 if (away >4) then do
   say "stop local player"
   say "stop remote player"
   active=.false
   end

::routine calculateaction
   parse arg rssi treshvalue toward away
  if (rssi>treshvalue) then do
    toward = toward+1
    away = 0
  end
  else do 
    away = away+1
    toward = 0
  end  
  return .array~of(toward, away)  
Script 30: First implementation of DeviceFound



if  there are many devices in range) nor is it  necessary to implement the approaching and
departing detection on both computers.74 
Testruns demonstrated that the RSSI value is emitted very unevenly, therefore the script was
changed to only react upon a certain number of incidents occurred subsequently. Dependent
on the device, the signalstrength as well as its frequency fluctuate very heavily. Signals are
invoked multiple times a second, or once in a minute. As the signal strength also depends on
the quality of both Bluetooth devices,  an accurate  threshold value has to be guessed and
obtained via the trial and error method for each device individually. Script 28 demonstrates
the  first  implementation,  only if  an  event  occurs  four  times  subsequently and passes  the
threshvalue, an action will follow.

As the intention  of  these code snippets  is  to  provide  a  comprehensive,  working example
without much setup effort, a limited version is presented: 
Only the signals DeviceFound and DeviceDisappeared are listened to.
The  first  part  of  MPRISremoteclient (script  31)  sets  up  the  SignalListener class  and
establishes a connection to the media players (local and remote vlc DBus object) and to the
Bluetooth device (bluez DBus object). The latter is started to listen for available devices with
the instruction:  adapter~StartDiscovery.  With this  instruction,  the  SignalListener class is
ready to intercept the signals emitted by bluez. (See part 2 script 32)

The second part  of  the  script  contains  the  method  DeviceFound.  As described earlier  this
method is invoked by the signal very often and is of main interest in this example. In this
method, the current status of the local music player is defined with a boolean value to react
upon this call or do nothing. If this method is invoked and the music player is currently not
playing, information from the remote music player gets queried, it gets stopped and playback
resumes on the local machine. This work is done in a method called switchPlaybackStatus.
This  method  assesses,  if  the  playback  of  the  file  works  on  the  local  machine  with  the
statement: if (vlclocal~Metadata['xesam:url']\=url) The url of the music file is passed to
the media player and if it is not able to process this information (eg.: file is not available) then
['xesam:url'] will not contain the same url, passed to it.75 
If the method DeviceDisappeared is invoked by the signal, the playback on the local machine
stops and vlc starts to play on the remote machine.

74 Of course this would enhance the accuracy of the position detection.
75 It would be better to check the availability of the music file prior to passing it over to vlc.

58



This setup is very simple and works as expected. Only if a very strong Bluetooth receiver and
sender  are  involved  it  might  happen  that  DeviceDisappeared is  never  called,  even  when
heading away from the computer a few meters.76

For testing purpose it is also possible to turn off the Bluetooth device to let the music play on
the remote machine and to start the Bluetooth device again to resume playing on the local
machine.

76 The built-in Bluetooth adapter of my desktop PC-mainboard has a range of approximately 50 centimeters,
whereas an other Bluetooth adapter reaches a few meters.

59

signal on halt

  parse arg serveraddress
  if (serveraddress="") then do
  say "Please add server address as argument eg. 192.168.0.24"
  exit -1
  end
  conn = .dbus~system       -- get a system-bus connection
  bluez = conn~getObject('org.bluez','/') -- get the bluez dbus object
  adr = bluez~DefaultAdapter           -- query default bluetooth adapter
  adapter = conn~getObject('org.bluez',adr)  -- get bluetooth adapter object

  conn~listener("add",.rexxSignalListener~new(serveraddress)) -- add listener
  conn~match("add","type='signal',path="adr",interface='org.bluez.Adapter'")
  /* instruct bluetooth adapter to query for bluetooth devices*/
  adapter~StartDiscovery
  say "running till enter is pressed"
  parse pull quit

halt:
  adapter~StopDiscovery
  conn~close
  say "end"
  exit -1

::class RexxSignalListener
::attribute active
::attribute url
::attribute position
::attribute vlcremote
::attribute vlclocal

::method init
  expose active vlclocal vlcremote
  use arg serveraddress
  remoteconn=.dbus~new('tcp:host='serveraddress',port=23000,family=ipv4;unix' -
                       ':path=/tmp/dbus-test;')
  vlcremote=remoteconn~getObject('oorexx.vlc','/oorexx/vlc')
  vlclocal=.dbus~session~getObject('org.mpris.MediaPlayer2.vlc', -  
                                   '/org/mpris/MediaPlayer2')
  if (vlclocal~PlaybackStatus\='Playing') then active = .false
  else active = .true -- music plays therefore no action is required 

Script 31: MPRISremoteClient (part 1/2) listen for Bluetooth devices and 
connect to MPRISremoteServer.



Of course it would be possible to enhance the functionality by only reacting on given devices.
This might even be necessary for some setups as multiple Bluetooth devices are sending their
signals.

60

-- very simple implementation only listens if a device disappears and appears

::method DeviceDisappeared
  expose active
  use arg i, directory
  name = directory['Name']
  say 'device' name 'out of range or turned off'
  self~switchPlaybackStatus(.true)  -- true means switch to remote
 
::method DeviceFound
  expose active 
  use arg i, directory
  name = directory['Name']
  say 'device' name 'in range, signal strengh:' directory['RSSI']
  if \active then self~switchPlaybackStatus(.false)  -- switch to local
    
::method switchPlaybackStatus
  expose vlclocal vlcremote active
  use arg toremote 
  if toremote then do
   active=.false
   url = vlclocal~Metadata['xesam:url']
   position = vlclocal~Position
   say 'playing 'url 'at' position 'on remote computer'
   vlclocal~Stop
   vlcremote~Play(url, position) 
   end 
  else do
   say 'start local player'
      ar = vlcremote~Stop
      url = ar[1]
      position = ar[2]
      say 'file to play:' url
      vlclocal~OpenUri(url)
      call syssleep 0.5
      if (vlclocal~Metadata['xesam:url']\=url) then do
      say 'Error loading music file! ' -
          'maybe' url 'is not available on this machine?'
      end 
      else do
      vlclocal~Seek(position)
      vlclocal~Play
      end
      active=.true
  end
  
::method unknown
::requires DBUS.CLS           --get access to DBus
Script 32: MPRISremoteClient (part 2/2) listen for Bluetooth devices and 
connect to MPRISremoteServer.



4.2 Script Example: Interaction with Hardware over the System Bus

The next example is about testing services that are reachable over the system bus. In order to
provide a script that can somehow be useful and at the same time introduce interesting DBus
services. The usecase is defined as following:

You are working on documents that are worth to be backuped from time to time. It is always
nice to have some scripts that are doing this work automatically as making backups of files
involves some steps. First of all the backup needs a comprehensive name to be retrievable
among  different  versions  that  has  nonetheless  be  unique  to  avoid  overwriting  existing
backups. The next requirement is not to waste storage space senselessly. Therefore it is useful
to  take  advantage  of  compression.  Additionally  it  is  very  useful  to  not  have  backups
distributed to anybody, therefore some kind of authentication mechanism is necessary. 

With  ooRexx  and  DBus  these  requirements  are  easily  meetable.  An  easy,  hence
comprehensive approach to create unique filenames is to use a time-stamp and concatenate it
to the name. (for example backup_3006142200) The compression can easily be effected via
command line instructions. There are many different compression programs available that are
well documented.77 To overcome the third defined requirement, the authentication, an unique
id,  every USB stick has,  can be used to  compare it  with registered ids.  This  registration
“database” can easily be created with a text-file. If the script is set to registration mode, the id
of an inserted stick is queried and stored in this file. From then on, every time an USB stick is
inserted, its id is compared with these registered ids. If the ids do not match nothing happens,
else the stick is getting mounted and the file in question is copied over.

This setup will make use of org.freedesktop.UDisks, accessible on the system bus. Generally
for interaction with any kind of storage device, org.freedesktop.UDisks provides an interface
for interaction with DBus. The interface describes itself as “D-BUS service to access and
manipulate  storage  devices”.  Many  current  Linux  operating  systems  implement  UDisks
version 2, which much to the regret of various programmers is not fully compatible with
earlier versions. A version iteration of a somehow low-level program could render existing
scripts useless, same happened to the author's originally developed scripts. Much to his luck,
the setup process of the scripts to fit the new convention is easily done. In the original setting,
the signal  DeviceAdded of  the interface  org.freedesktop.UDisks was listened to.  The new
script  now  connects  to  the  path  org.freedesktop.UDisks2,  listens  on  the  interface

77 http://linuxwiki.de/tar, wiki.ubuntuusers.de/7z, accessed on 2 September 2014.

61

Sample setup: Folder on the PC gets compressed and copied
automatically upon an USB stick being plugged in.

Figure 8: Automated backup to an USB stick

Desktop Computer

Folder Archiv

USB stick

http://linuxwiki.de/tar


org.freedesktop.DBus.ObjectManager and  the  signal  name  is  called  InterfacesAdded.
(udisks.freedesktop.org, 2014)

Upon an USB device is being attached to a computer, a lot of actions happens on both buses.
This can be monitored with the tool dbus-monitor. There are multiple signals informing about
the presence of the newly attached device and thus offering instructions for the operating
system. On the session bus there are 13 signals from the interface com.ubuntu.Upstart0_6, a
few signals from org.kde.KDirNotify and more than 20 signals from org.kde.Solid.Device.
This  is  necessary  for  the  desktop  environment  to  react  accordingly.  For  example  the
notifications window of the operating system opens and informs that a new device was added
and asks the user what to do with media found on the device. As we are interested in only the
device, the monitoring tool has to be instructed to change the bus it listens to by invoking it
with the switch -system (default value is  -session). The signals spread over the system bus
within  the  interface  org.freedesktop.DBus.ObjectManager are  common  for  all  different
desktop environments and therefore are ideally suited to be used by a script that runs on every
Linux system with DBus enabled.  The emitter  of the signal can be tracked down via the
following information:

In order to obtain all necessary information about interface names and signal names, both
DBus debuggers were used as their special abilities are of interest. D-Feet allows to inspect
the signature of the Signal easily via its GUI. Following the path identified through the signal
shows how the information appears upon insertion of the usb device

Now as the name and the object type of the signal is known, qdbusviewer is used to connect
to the signal and lists everything that happens upon an interface is added.

The DBus signal displayed via qdbusviewer contains interesting information.

62

sender=:1.17 -> dest=(null destination) serial=4673 
path=/org/freedesktop/UDisks2; 
interface=org.freedesktop.DBus.ObjectManager; member=InterfacesAdded

Signal captured by dbus-monitor -system

Figure 9: D-Feet UDISK2 method view

Figure 10: qdbusviewer - connect to signal



This informs about where the added device is registered within UDisk2 and the label “Serial”
and “Id” are revealing that every USB device can be uniquely identified, in this case the id is
a  31-letter  long  string.  The  rest  of  the  signal  information  basically  informs  about  the
capabilities of the device (cropped away in this example).

A second signal arrives: 

UDisks2 registers the device as block device under /sdb. The “Drive” variable indicates, that
it is the attached device. It is also interesting to know that the device has a dos partition table. 

A third signal is emitted, which indicates that the device is formatted to FAT32, which is
common for a USB stick to be compliant with many different devices like TVs, MusicPlayer
and  so  on.  It  also  indicates  that  the  device  in  question  is  registered  on  the  path
org/freedesktop/UDisks2/block_devices/sdb1.

Now as we know how the USB device can be identified and where the device is registered by
the operating system, this information can be further processed within the script.

As in this usecase we are only interested to copy data on specific USB devices, its id has to be
stored and retrieved somewhere. An easy approach is to use a text file. Writing to and reading
from textfiles is a simple task for ooRexx, this can be effected by defining a stream object
with file=.stream~new('usb.devices') and write to that file by issuing file~lineout('text
to write ...').  It  is also possible to create a stream object on the fly by simply useing
lineout('usb.devices','text to write ...'). As Rexx uses different pointers for reading
and writing,  new lines  are  appended to the  end of  the  file,  whereas  reading starts  at  the
beginning of the file.  This enables  the program to store and retrieve multiple  devices  for
backup without needing any reference in which line of the text file the new entry is added and
in from which line the program should start looking for entries.

Another information is necessary as well, the file to be copied. In this usecase there is only
one file which is worth being backuped. ooRexx offers arguments for streams to define their
behavior, valid arguments are WRITE REPLACE or BOTH REPLACE, the latter indicates it
is available for read, write and replace.  (Ashley, Flatscher, Hessling, & Mcguire, 2009) The
command  file=.stream~new("backup.file")~~open("both  replace") makes  the  stream

63

  Arguments: [ObjectPath: 
/org/freedesktop/UDisks2/block_devices/sdb1], "Drive" = [ObjectPath:
/org/freedesktop/UDisks2/drives/PNY_ATTACHE_OPTIMA_07840AA00335],"Id
Usage" = "filesystem" "IdType" = ["vfat"], "IdVersion" = ["FAT32"], 
org.freedesktop.UDisks2.Partition" = ["Number" = 1, "Type" = "0x0c"]

Third signal from UDisks2 (excerpt)

  Arguments: [ObjectPath: 
/org/freedesktop/UDisks2/drives/PNY_ATTACHE_OPTIMA_07840AA00335], 

"Serial" = ["07840AA00335"], "Id" = ["PNY-ATTACHE-OPTIMA-07840AA00335"]

First signal from UDisks2 (excerpt)

  Arguments: [ObjectPath: 
/org/freedesktop/UDisks2/block_devices/sdb],

 "Drive" = [ObjectPath: 
/org/freedesktop/UDisks2/drives/PNY_ATTACHE_OPTIMA_07840AA00335],
"org.freedesktop.UDisks2.PartitionTable" = ["dos"]

Second signal from UDisk2 (excerpt)



available and allows to replace existing entries if a new one is written. 

So first of all, upon insertion of the USB device, its id is looked up in the textfile. If it is not
stored, the user is asked if this device is dedicated to serve as a backup store. 

Although a graphical user interface is not necessary for such a simple task, defining the path
to a file over the command line is  very uncomfortable.  There are different approaches to
realize a GUI for ooRexx, one possibility is to use ooDialog for example.78 Another approach
is to use BSF4ooRexx. With this package it is very easy to deploy Java classes within ooRexx
code, the instructions are mapped to ooRexx such that using Java Classes does not differ
much from using regular ooRexx objects. A Filechooser for defining the backupfile can easily
be created by importing its Java class and use it like the original Java class. (Flatscher, 2012)

A Filechooser  as  demonstrated  in  script  31  (Flatscher,  2009,  p9) is  especially  useful  as
defining the full  object  path of a  file  might  result  in  a  long string which would be very
unhandy to remember and to enter for a human. 

As there are three signals emitted subsequently on the same interface, the first idea was to use
a counter within this method that allows to take further action only if all required information
was collected from the signals. 

Especially the first signal is interesting as it informs about what device was added (this is
important for querying the id) and the last signal, offering the object path to the usb device
partition. This approach worked in the first place but for unknown reason, the signal triplet is
not guaranteed to be emitted every time. After approximately 30 attempts, the first signal is
not emitted anymore. The signature of the signal indicates (o, a{sa{sv}).The first approach
only  used  the  first  part  (object  path)  of  the  complicated  signal  signature,  establishes  a
DBusProxy  to  the  service  referenced  by  this  path  and  query  its  properties  for  further
information.

Due to the fact that the first signal might not be emitted, it is not possible anymore to listen
for the first argument of the signal, the object path.  The second and the third signal both
provide a Drive variable, being the object path of the device. This attribute enables to create a
connection and therefore the possibility to query the id of the device. Another attribute that
both  signals  have  common  is  IdUsage.  The  filesystem identifies  itself  over  the  attribute
'filesystem'. 

Therefore the following approach was chosen which also demonstrates how to cope with
complicated signatures. The first element is the path, this is simply the object path, the next
one is a dict. With a do over loop it is possible to “unwrap” the contents. A say command
allows  to  identify the  name of  the  keys  (in  this  example  'IdUsage' is  interesting).  With
knowledge  of  this  key,  the  dict  can  be  queried  with  dict[index]['IdUsage'].  Script  33
demonstrates this information collection process.

78 ooDialog http://www.oorexx.org/docs/oodialog/oodialog.pdf, accessed on 2 September 2014.

64

fc = .bsf~new('javax.swing.JFileChooser')         
fc~setDialogTitle('please select file to backup') 
 if fc~showOpenDialog(.nil)=0 then do             
  filepath = fc~getSelectedFile~getCanonicalPath  
 end                                              
Script 33: Filechooser from Java

http://www.oorexx.org/docs/oodialog/oodialog.pdf


If sufficient information is collected, (drive for querying the id of the device and spath for
being able to mount the filesystem) the parameter infoready is  set  to  .true and the script
continues with appropriate action.

Dependent on the settings of the operating system, an USB device is mounted automatically
or  has  to  be  mounted  by  the  user.  If  the  operating  system  does  not  mount  the  device
automatically, this can easily be done with DBus. 

With UDisks in its first version, it was necessary to provide information about the filesystem
for the mounting procedure. During the assessment of the signals, it was already stated that
the device under path /sdb has a dos partition-table. The device under /sdb1 states IdType =
vfat, IdVersion = FAT32 and under the interface org.freedesktop.UDisks2.Partition, type =
"0x0c".

Looking up the reference reveals that 0x0c references a FAT32 file system with a logical block
addressing mode79

0x07 NTFS
0x0B FAT32, used by DOS & Win95
0x0C FAT32 using LBA mode to access to FAT32 partition
0x01 FAT12
0x04 FAT16, less than 32 MB
0x06 FAT16, greater than 32 MB
0x0E FAT16 using LBA mode to access to FAT16 partition

With UDisks2,  it  is  not  necessary anymore  to  provide  any information  for  the  mounting
procedure, but of course it is necessary to call the service with the right object type defined
according  to  the  signature  as  DBus  mandates.  The  service  Mount on  the  interface
org.freedesktop.UDisks2.Filesystem defines a  Dict (String,Variant) as  input parameter
and an object path as return parameter. As there is no configuration necessary in this case, an
empty dict  can  be provided.  Following command mounts  the  device  and returns  its  path
within the filesystem of the operating system. 
mountpath=udisk~Mount(.directory~new~~put(.array~of(),"")).
This  path  is  defined  automatically  unless  otherwise  instructed  within  the  /etc/fstab
configuration file. If the device is referenced in this configuration file, the mount command is
executed with administrative privileges and all parameters passed via DBus are ignored.80

79 Logical Block Addressing:  http://www.dewassoc.com/kbase/hard_drives/lba.htm accessed on 2 September
2014.

80 http://udisks.freedesktop.org/docs/2.1.3/gdbus-org.freedesktop.Udisks2.Filesystem.html  ,  accessed  on  2
September 2014.

65

::method InterfacesAdded 
  expose systempath infoready
  use arg path, dict 
 
  do index over dict
     if (index='org.freedesktop.UDisks2.Block') then do 
       if (dict[index]['IdUsage'] = 'filesystem') then do
           drive = dict[index]['Drive'] 
           spath = path
           infoready = .true
       end
     end
  end
Script 34: UDISKS2 Interfaces Added

http://udisks.freedesktop.org/docs/2.1.3/gdbus-org.freedesktop.Udisks2.Filesystem.html
http://www.dewassoc.com/kbase/hard_drives/lba.htm


If the device was already mounted by the operating system, an additional Mount instruction
raises an error and (dependent on the operating system) invokes a messagebox denoting that
this device is already mounted. This is not only annoying but stops the script from execution.
If a device was mounted automatically by the operating system, the property MountPoints
stores its mountpath. Looking up the signature of this property reveals that the object path is
stored as byte array. It seems strange on the first sight that this information is not stored as an
objectpath. A full mount path consists of the path where the device is mounted within the file
system and its name. It is possible that at least the name of the device is not compliant to the
specification of an object path.81 
The byte array returned from UDisk2 is described in its decimal representation. For example
{47,109,101,100,105,97,47,122,101,114,107,111,112,47,73,67,79,65,0}.  It  is  obvious  on
the second view that this array references an object path as the first byte is '47' referencing a
'/' get repeated multiple times.
Translating this array to a string can easily be effected with a function introduced earlier, D2C
(decimal to character) 82

It is absolutely necessary to let the operating system time to automount the device, if queried
too early,  udisk~MountPoints is empty and at least one mount call  disturbs the other one,
therefore provoking an error. The instruction call Syssleep 3 solves this issue.

In order to be able to distinguish between different backups of the same file, a timestamp is
used. ooRexx provides a function called DATE(). There are different possibilities to format a
date representation. The default date representation is “day month year” (eg 10 Aug 2014).
Using this information as backupfile name is not sufficient, as it might be necessary to create
multiple backup files a day. Therefore not only the date, but also the time is necessary for the
filename. Passing the parameter  DATE('Full') returns the number of microseconds passed
since 00:00:00.000000 on the 1 January 0001. Although this time-stamp is useful for exactly
distinguishing backup versions, even those created within minutes, it is not easy for a human
to cope with 17 digits numbers, nor is is easy to understand what date the 17 digits number
actually  represents.  Therefore  a  granularity  between  these  two  date  representations  was
envisaged. The author decided to concatenate the date in the form yyyymmdd and return the
value of the function TIME('S'), denoting the number of seconds passed since midnight in the
form of sssss (both separated with an underscore for easier readability). This results in a file
name like 20140710_58098 for example, being distinguishable and yet comprehensive for a
human.

81 The author tested this by changing the name of an USB device to  “ÖtestÄ” on Windows OS. Linux now
ignores the name and uses an id like “0012-D687”.

82 A test showed, that the return values were already converted to characters, therefore the correct mountpath
line is mountpath || i. For demonstration purpose how to convert decimal values, the script was not changed
in this description.

66

mountpath = ""                                                 
call syssleep 3              -- wait for automount             
mountpoints = udisk~MountPoints                                
if (mountpoints~size>1) then do                                
  do i over mountpoints                                        
    mountpath = mountpath || d2c(i)                            
  end                                                          
end                                                            
else mountpath=udisk~Mount(.directory~new~~put(.array~of(),""))
Script 35: Mount a device over UDISK2



The decision  for  the  package program was  settled  to  zip.  Zip  is  an  inter-operational  file
storage and transfer format that is available for nearly every platform and is one of the most
widely  used  compressed  file  formats  since  1989.  The  ubiquity  of  zip  files  is  further
demonstrated  as  some  common  file  formats  are  using  zip  as  default  like  Javas  .JAR,
Microsofts  .DOCX,  PPTX,  and  Apaches  .ODT to  name  only  a  few.  (PKWARE,  2012).
Although zip  compression  might  not  be the  most  efficient,  most  up  to  date  compression
format, it  is ensured that .zip files are accessible for all common operating systems (Unix
(including  Linux),  VMS,  MSDOS,  OS/2,  Windows  9x/NT/XP/Vista/7/8,  Minix,  Atari,
Macintosh, Amiga, and Acorn RISC OS).83

The command zip [archive name] [file-to-compress] compresses the file in an archive. An
additional cp command line instruction copies the file to the USB device.84

Upon the first start of the program, you will get informed that there is no backup file defined
and that the program should be started again with the switch -f for file.
If started with this switch, the script will pop up its filechooser and asks to choose the backup
file. After this definition, the script will stop again and informs the user that there is no USB
device registered so far. The script has to be started again with the switch -r.85

If everything is configured correctly, upon insertion of a registered device, the output of the
script should look like:

The following script demonstrate how to code the given example.

parse arg switch1 switch2

say '#'~copies(51)
say '#### automatic backup program using DBusooRexx ####'
say '#'~copies(51)
say 
registermode = .false

if (switch1 = '-r' | switch2 = '-r') then registermode=.true
if (switch1 = '-f' | switch2 = '-f') then do
  fc = .bsf~new('javax.swing.JFileChooser')
  fc~setDialogTitle('please select file to backup')
  if fc~showOpenDialog(.nil)=0 then do
   call writebackupfile(fc~getSelectedFile~getCanonicalPath)
   end
  else say 'cancelled no (new) backupfile defined'
end

83 Documentation of man zip.
84 It is possible to instruct zip to copy the file directly, but if the device is auto-mounted, this attempt often

resulted in failures.
85 It  is also possible to start the script with both parameters  -r -f to define the backup file and start the

registration mode for the usb device simultaneously.

67

###################################################
#### automatic backup program using DBusooRexx ####
###################################################

Backup file: /Bilder/Aquatica.jpg
Ready, ... waiting for registered USB-devices
registered device plugged in, starting the backup
zip -j /media/0012-D687/20140812_64325 
/home/zerkop/Bilder/Aquatica.jpg
  adding: Aquatica.jpg (deflated 2%)

Example output of AutoBackupDBus.rexx



filename = getbackupfilename()
if (filename=.nil) then exit 0 
else say 'Backup file:' filename

signal on halt

if (stream('backup.device','c','query exists')\="") then do
  if (\registermode) then do
   say 'Ready, ... waiting for registered USB-devices'
   end
  else say 'Ready, ... waiting for USB-devices to register'
   end
else do
  if (registermode) then say 'Please attach device to register'
  else do
   say 'There is no USB device registered'
   say 'Please start the program again with the switch -r and plug in the device'
   exit -1
  end
end

conn=.dbus~system        -- DBus system connection established
listener=.rexxSignalListener~new(registermode) -- create the signal handler class
-- add the listener to the connection
conn~listener('add',listener) --,interface='org.freedesktop.DBus.ObjectManager')
conn~match('add',"type='signal',interface='org.freedesktop.DBus.ObjectManager'", -
           .true)
  
parse pull quit          -- wait until enter is pressed

halt:
conn~close
exit -1

::class RexxSignalListener
::attribute drive
::attribute registermode
::attribute infoready
::attribute spath

::method init
  expose infoready registermode
  use arg registermode 
  infoready=.false
  stickregistered=.false
  
::method InterfacesAdded
  expose drive infoready registermode spath
  use arg path, dict
  do index over dict
    if (index='org.freedesktop.UDisks2.Block') then do
      if (dict[index]['IdUsage'] = "filesystem") then do 
        drive = dict[index]['Drive']  -- necessary values, name of the drive
        spath = path                  -- path of the filesystem
        infoready = .true             -- ready if enough information collected
      end 
        else infoready = .false
     end
  end

  if (infoready) then do
   id=.dbus~system~getObject("org.freedesktop.UDisks2",drive)~Id
   infoready = .false
     if  usbRegistered(id) then do
      if (registermode) then say 'this device is already registered, ' - 
               'please start program without switch, or add another device'

68



      else call copytoUSB(path)
     end
  else do
    if (registermode) then call registerUSB(id)
    else say 'Device added, but not a backup device, ' -
             'start with switch -r to register'
   end
  end

::method unknown       -- necessary to intercept unknown signals
  use arg methName

::routine loadfile     -- loads the file where registered usb devices are stored
  devices =.list~new     -- returns a list of all device IDs 
  do  while lines('backup.device')\==0
   devices~append(linein('backup.device'))
  end
  return devices

::routine usbRegistered  -- returns true if parameter id is already registered
  use arg id
  devices=loadfile()
  if (devices~hasItem(id)) then return .true
  else return .false

::routine registerUSB  -- stores the ID of the device in a file
  use arg id
  if (lineout('backup.device',id)==0) then do
   say 'device:' id 'added sucessfully'
   say 'upon next start of the program, this device is used for backup'
  exit -1
  end  

::routine copytoUSB  -- the backup file is zipped and copied to the usb device
  use arg path             -- path of the usb device's filesystem
  mountpath=""
  udisk = .dbus~system~getObject('org.freedesktop.UDisks2',path)
  say 'wait a little bit if automounted'
  call syssleep 3
  mountpoints = udisk~MountPoints
  say 'registered device plugged in, starting the backup'
  if (mountpoints~size>1) then do
    do i over mountpoints
     mountpath = mountpath || i
    end
   end                      -- if not mounted automatically
  else mountpath=udisk~Mount(.directory~new~~put(.array~of(),""))
  name = date(s)'_'time(s) || '.zip'
  cmd  = 'zip -j' name getbackupfilename()
  cmd2 = 'cp' name mountpath ||'/'|| name
  say cmd
  say cmd2
  cmd                       -- executes zipping
  cmd2                      -- executes copying

::routine writebackupfile   -- stores the full path of the file to backup
  use arg filename
  file=.stream~new('backup.file')~~open('both replace') 
  file~lineout(filename)
  file~close
  
::routine getbackupfilename -- retrieves the full path of the file to backup
  file=.stream~new('backup.file')
  if file~query("exists")="" then do
    say 'Sorry, you have to define a file for backup first'
    say 'Please start the program again with switch -f' 
  return .nil

69



  end
  name = linein('backup.file')
  file~close
  return name

::requires DBUS.CLS
Script 36: Automated backup of files on registered USB devices

4.3 Script Example: Networkmanager

Networkmanager is  a  toolset  designed for easy interaction with different kind of network
devices.86 A  connection  to  this  tool  can  be  established  over  the
org.freedesktop.NetworkManager DBus  object.  (Redhat,  2014) The  following  example
describes the steps how to acquire the current IP address of the machine. 

This also demonstrates an approach many DBus services are following: An “entry” DBus
service returns a path which enables connection to an active DBus object on the same bus
name. This “brachiation” around the DBus service object until the object path of the desired
service  is  finally  reached  is  common.  In  this  example  this  querying  process  works  as
following.

After a connection to the org.freedesktop.NetworkManager DBus object has been established,
the property ActiveConnections is queried. The return value is an array of objectpaths. Given
that path, connection to the first active connection can be established. In order to know what
device serves this connection, the property Devices has to be queried. This return value again
is an array of objectpaths. Following this path finally leads to the device that is currently
serving the active Internet connection which can then be queried for its ipv4 address. Script
example 35 demonstrates this querying process.

The  DBus  specification  of  Networkmanager informs  that  the  return  value  of  the  property
Ip4Address is an UINT32 value containing the IP address in network byte order. 

In order to convert the decimal IP representation to the common dot-decimal notation, there
are different possibilities. The first  attempt was to first  translate the integer value into its
hexadecimal  representation  with  hexaddress=d2x(decaddress) and  then  separate  the  hex-
address into four hexadecimal value pairs.87 These value pairs were then converted back to
their decimal value and concatenated in reverse order to provide the IP address in the common
endianess. But unfortunately this approach did not always work as expected. For example if
my current  IP address  is  4180922505 in its  decimal  representation,  this  value  equals  the
hexadecimal value F933D089 and converted back to decimal F9 equals 249 and 33 equals 51,
and so on, thus resulting in 137 208 51 249. But if your IP address contains a 0, this approach
might not work properly.
Therefore another approach was used. Rexx offers a handy operator % that enables to divide a
value and crop its fractional digits. The other required operator is the modulo operation //.
Given  the  decimal  IP address,  the  value  that  remains  after  a  division  with  256  (modulo
operation) represents the first part of the common IP address format. The decimal value is
then  divided  through  256,  its  fractional  digits  cropped  and  again  a  modulo  operation  is
effected. When all digits are calculated, the reverse order represents the current IP address.

86 https://wiki.gnome.org/Projects/NetworkManager
87 It would also be possible to use the ping command and pass the decimal representation, the program will

return the common dot-decimal representation.

70



Execution of this script yields in following example output:

71

$ rexx Networkmanager.rexx
Your IP address is: 192.168.0.24

#!/usr/bin/rexx
/*demonstrates how IP address is acquired from org.freedesktop.NetworkManager
  converts decimal IP address to decimal-dot representation */

signal on halt

busname='org.freedesktop.NetworkManager'
conn=.dbus~system
nwmanager = conn~getObject(busname,'/org/freedesktop/NetworkManager')
activeconnectionspaths = nwmanager~ActiveConnections
-- get the path to the first active connection
activeconnection = conn~getObject(busname, activeconnectionspaths[1])
-- get the device path to the first active connection
activedevicespath = activeconnection~Devices
-- get the first active device
activedevice = conn~getObject(busname,activedevicespath[1])

-- Ip4Address returns an UINT32 decimal address
decaddress = activedevice~Ip4Address

numeric digits 20
d = decaddress//256                       -- modulo operation
c = decaddress%256//256                   -- division - no comma values
b = decaddress%256%256//256
a = decaddress%256%256%256//256

ipaddress = d||'.'||c||'.'||b||'.'||a    -- reverse byte order

say 'Your IP address is:' ipaddress

halt:
conn~close

::requires DBUS.CLS         -- get access to DBus
Script 37: Networkmanager, handle decimal IP Address



5. Outlook and Roundup
The aim of this document was to test the functionality of the newly created ooRexx DBus
binding.  Therefore  testcases  were  defined  with  ooTest  and  sample  scripts  have  been
developed.  The  outcome  of  this  work  is  twofold.  Firstly,  the  testgroup  for  the  ooTest
framework  is  valuable  for  programmers  of  DBus  services,  additionally  every  properly
programmed test script is valuable for the ooRexx community, as the testgroup can be tested
upon every new release of an involved program without much effort. Especially changes on
the programming language need not necessarily keep the whole system and most notably the
addons  in  a  stable  state.  The  most  severe  errors  are  unobtrusive  ones,  which  sometimes
influence  the  result  of  a  program.  To overcome these  issues,  an  extensive  testgroup was
created for assessing most functions provided by the binding, which was carried out multiple
thousand times so far. The following output capture of ooTest shows the result of the final
testgroup execution.

It  is  often  difficult  to  test  DBusooRexx  in  detail  as  its  application,  an  interplay  of  the
underlying  operating  system,  the  IPC  mechanism,  the  programing  language  and  other
programs using DBus has to be considered. Analogous to the phrase “too many cooks spoil
the broth”, it is of high importance to identify and narrow down any error to its originator and
separate it  from other systems involved. Of course another party is  involved as well,  the
programmer. Mistakes that I made during exploring DBusooRexx were often difficult do track
down, one example was the numeric digits instruction of ooRexx, that in its default setting,
restricts integer values to nine digits. (That affects all integer object types except int16 and
uint16) If a service does not answer as expected, it was also not that easy to exactly know if
the service was defined wrong or the object type of the message call was defined in a false
way. 

In addition to the testing procedure, the value of a system like DBus was stressed. Using
sophisticated  IPCs  is  inevitable  for  developing  high  quality  services  that  can  be  used  in
different  settings  and  are  accessible  to  any other  service.  It  can  also  be  used  to  enable
concatenation of different services, programmed in different languages. The script example
with the media-player demonstrated, that ooRexx programs can easily interact with another
application on another computer. 

The intention of this work was not only to test the functionality of DBusooRexx, but also to
judge about its ease of use. The ooRexx DBus binding offers a new, easy to use approach to
get  in  contact  with  DBus  without  having  to  know  much  about  the  DBus  at  all.  For
programmers that are new to DBus, this binding might serve as an excellent starting point.
This is also due to the fact that ooRexx provides a straightforward language approach that was

72

Interpreter:     REXX-ooRexx_4.2.0(MT)_64-bit 6.04 28 Dec 2013
Addressing Mode: 64
ooRexxUnit:      2.0.0_3.2.0    ooTest: 1.0.0_4.0.0

Tests ran:           273 
Assertions:          7608
Failures:            0
Errors:              0
Skipped files:       0

Test execution:     00:05:07.553638
Script 38: Result of final testgroup execution



adapted  in  DBusooRexx  to  make  any  DBus  call  look  like  familiar  ooRexx  code.  In
comparison  to  the  approach  of  using  the  Java  language  binding  and  deploy  it  via
BSF4ooRexx, (as described in the introduction) a much easier access has evolved. It might
nonetheless be useful to use BSF4ooRexx to establish a connection to DBus, but this time the
other way round. Java could use DBusooRexx for establishing connection to DBus. Another
impressive functionality was demonstrated as well. A DBus server can be established with
only  a  few  lines  of  code  and  enables  quick  and  easy  connection  and  interaction.  A
DBusooRexx script on the server side can create a connection to its own session and system
bus and forwards any message call, therefore acting as proxy between the buses of different
computers. 

During the tests some errors were found which got corrected. The most severe error occurred
when listening on the system bus for an USB device as done in the backup script example.
Every  time  a  device  was  added,  an  error  occurred  that  teared  down Java  and  the  Rexx
interpreter  due  to  wrong marshalling.  Another  failure  that  got  corrected  in  the  meantime
concerning a threading problem that blocks message calls to DBus if a signal is connected to.
This error resulted in scripts that sometimes work, sometimes not, depending on the time a
message call is issued. These two errors were revealed during the usage of DBusooRexx with
other services. As stated before, bugs like the wrong integer handling for int64 on a 32-bit
operating  system would  probably not  been  uncovered  in  the  wild  as  easily  as  using  big
integers is not that common for DBus services. The testgroup uncovered the bit-swapping and
enabled its elimination. Same is true for double values where the digit limit could not get
raised and therefore big double values could not get processed correctly. To my knowledge no
service the author ever interacted with on the DBus uses a double value as return object type.

It was valuable that results from this testgroup were already used to correct all stated bugs,
therefore this  work already contributed a little bit  to make DBusooRexx even better.  The
testgroup and the testserver are probably also useful for other purpose than serving for tests as
there  are  many  different  approaches  demonstrated  how  DBusooRexx  can  be  used.  That
includes providing services and making usage of services.

Another thing what was intended to be included in the testgroup, but is missing is an assertion
of the performance of DBusooRexx. That is how it actually performs. It would be interesting
to compare different DBus language bindings. This also includes testing their ease of use, but
especially their  performance.  A testsetup  with  bigger  amount  of  data  transferred  between
different services in different languages and assessing their performance sounds interesting
and might result in a further work on this topic

Concerning the application of DBus it is very likely that DBus further evolves. Efforts are
ongoing to integrate DBus much deeper into the system88,  which might further elevate its
relevance and therefore rendering it essential for every programmer to cope with DBus. A
project which aims at moving the DBus into the kernel was nearly finished at the time of
writing. This new more efficient approach, named kdbus89 has certain advantages  (Corbet,
2014) Its main goal is to make the implementation of DBus more efficient. The k in the word
kdbus refers to kernel, which is where the inter-process communication is moved to. Most
sophisticated  operating  systems  dispose  of  a  well  designed  inter-process  communication
mechanism, for example Windows, MacOS and Android. Whilst Linux uses sockets, FIFOS
and shared memory. DBus offers nice functions for handling messages and emit and react to
signals, there are also bindings available for the most popular programming languages (now

88 https://code.google.com/p/d-bus/source/browse/kdbus.txt, accessed on 2 September 2014.
89 Unlike the name might indicate, it has nothing to do with KDE

73

https://code.google.com/p/d-bus/source/browse/kdbus.txt


including ooRexx), but DBus also has some drawbacks. One of the biggest is the way data is
handled during the transmission as DBus is located in the user space. In its current version,
DBus is not the best solution for sharing big amounts of data, the inefficiencies of DBus are
slowing down enormously.  A better implementation will make it necessary to hang in there
and stay up to date with DBus. The usage should not differ much, but the capabilities and
essentially the speed will be further enhanced and new features are going to be introduced as
well.

74



References

Ashley, W. D., Flatscher, R. G., Hessling, M., & Mcguire, R., Miesfeld, M., Peedin, L., 
Wolfers, J. (2009). Open Object RexxTM Programming Guide. Retrieved August 12, 
2014, from http://www.oorexx.org/docs/rexxpg/rexxpg.pdf

Ashley, W. D., Flatscher, R. G., Hessling, M., McGuire, R., Miesfeld, M., Peedin, L., Wolfers,
J. (2009). Open Object Rexx Documentation. Retrieved August 12, 2014, from 
http://www.oorexx.org/docs/rexxref/rexxref.pdf

Corbet, J. (2014). The unveiling of kdbus. Retrieved August 12, 2014, from 
http://lwn.net/Articles/580194/

Cowlishaw, M. (2003). General Decimal Arithmetic Specification, (March), 1–74. Retrieved 
August 12, 2014, from http://speleotrove.com/decimal/decarith.pdf 

Ennaime, M., Carré, R., Saman, J.-P., Derezynski, M., Welch, N., & Merry, A. (2012). MPRIS
D-Bus Interface Specification. Retrieved August 12, 2014, from 
http://specifications.freedesktop.org/mpris-spec/latest/

Feldmann, S. (2003). An indoor Bluetooth-based positioning system: concept, implementation
and experimental evaluation. Retrieved August 12, 2014, from http://projekte.l3s.uni-
hannover.de/pub/bscw.cgi/S48c2249c/d27118/An Indoor Bluetooth-based positioning 
system: concept, Implementation and experimental evaluation.pdf

Flatscher, R. G. (2009). “ The 2009 Edition of BSF4Rexx.”, 1–14. Retrieved August 12, 2014,
from http://wi.wu.ac.at/rgf/rexx/orx20/2009_orx20_BSF4Rexx-20091031-article.pdf

Flatscher, R. G. (2011a). An Introduction to the D-Bus Language Binding for ooRexx. The 
2011 International Rexx Symposium, 1–24. Retrieved August 12, 2014, from 
http://wi.wu.ac.at/rgf/rexx/orx22/201112-DBus4ooRexx-article.pdf

Flatscher, R. G. (2011b). D-Bus Language Bindings for ooRexx. Retrieved August 12, 2014, 
from http://rexxla.org/events/2011/presentations/201112-DBus4ooRexx.pdf

Flatscher, R. G. (2012). BSF4ooRexx - The Bean Scripting Framework for ooRexx. Retrieved
August 12, 2014, from http://sourceforge.net/projects/bsf4oorexx

Flatscher, R. G. (2013). Introduction to Rexx and ooRexx - from Rexx to Open Object Rexx 
(ooRexx). Retrieved September 3, 2014, from http://www.facultas.at/flatscher

Holtmann, M. (2006). Playing BlueZ on the D-Bus. Proceedings of the Linux Symposium. 
Retrieved August 12, 2014, from http://citeseerx.ist.psu.edu/viewdoc/download?
doi=10.1.1.108.5475&rep=rep1&type=pdf#page=421

Hossain, A., & Soh, W. (2007). A comprehensive study of bluetooth signal parameters for 
localization. Personal, Indoor and Mobile Radio. Retrieved August 12, 2014, from 
http://ieeexplore.ieee.org/xpls/abs_all.jsp?arnumber=4394215

IEEE. (1985). IEEE Standard for Binary Floating-Point Arithmetic. ANSI/IEEE Std 754-1985.
doi:10.1109/IEEESTD.1985.82928. Retrieved August 12, 2014, from 
http://www.eecs.berkeley.edu/~wkahan/ieee754status/IEEE754.PDF

Kahan, W. (1996). IEEE Standard 754 for Binary Floating-Point Arithmetic. Retrieved August
12, 2014, from http://www.cs.berkeley.edu/~wkahan/ieee754status/ieee754.ps 

Kikawa, M., Yoshikawa, T., Okubo, S., & Takeshita, A. (2010). A Presence-detection Method 

75



using RSSI of a Bluetooth Device, 2(1), 23–31. Retrieved August 12, 2014, from 
http://lib-repos.fun.ac.jp/dspace/handle/10445/6000

Margiol, S. (2011). Scripting the Linux D-Bus with ooRexx. WU Vienna. Retrieved August 12,
2014, from http://wi.wu-
wien.ac.at:8002/rgf/diplomarbeiten/Seminararbeiten/2011/201106_Margiol_DBus/ooRex
x_Scripting_the_DBus-20110622.pdf

Miesfeld, M. (2009a). The ooTest Framework (Testing the ooRexx Interpreter). Retrieved 
August 12, 2014, from http://wi.wu-wien.ac.at:8002/rgf/rexx/misc/ooTest/ootest.pdf

Miesfeld, M. (2009b). Using the ooTest Framework to Write ooRexx Test Cases (p. 46). 
Retrieved August 12, 2014,from 
http://sourceforge.net/projects/oorexx/files/oorexxunit/4.2.0.Snapshot.06/ooTestQuick.pd
f/download

Pennington, H., Carlsson, A., Larsson, A., Herzberg, S., McVittie, S., & Zeuthen, D. (2014). 
D-Bus Specification. Retrieved July 12, 2014, from 
http://dbus.freedesktop.org/doc/dbus-specification.html#

PKWARE. (2012). .ZIP File Format Specification. Retrieved August 12, 2014, from 
http://www.pkware.com/documents/casestudies/APPNOTE.TXT

Redhat. (2014). NetworkManager DBUS API. Retrieved August 12, 2014, from 
http://people.redhat.com/dcbw/NetworkManager/NetworkManager DBUS API.txt

Thompson, W. (2009). Profiling and Optimizing D-Bus APIs. Gran Canaria Desktop Summit. 
Retrieved September 3, 2014, from http://www.willthompson.co.uk/talks/profiling-and-
optimizing-d-bus-apis.pdf.

udisks.freedesktop.org. (2014). UDisks Reference Manual. Retrieved August 12, 2014, from 
http://udisks.freedesktop.org/docs/latest/

76



Appendix

Troubleshooting

Installation Scripts

The  installation  package  of  the  ooRexx  DBus  binding  might  misbehave  under  certain
circumstances. In its first version,  the installation process failed on an Linux system with
German language settings due to a parsing issue that does not occur on English versions.

copying DBUS Rexx package: cp -pfv dbus.cls /usr/bin
»dbus.cls“ -> »/usr/bin/dbus.cls“
copying DBUS Rexx shared library: cp -pfv libDBusooRexx64.so The NIL 
object/libDBusooRexx.so
cp: angegebenes Ziel »object/libDBusooRexx.so“ ist kein Verzeichnis
updating shared library cache: ldconfig -n /usr/lib /usr/lib32

If you experience any trouble during the installation process, try to copy the required files
manually.  As you can  see  in  the  above error  message,  the  target  directory could  not  get
identified correctly by the script. As the file dbus.cls was copied successfully, there is only
need to move the file libDBusooRexx64.so to its appropriate folder. As I use a 64-bit, Debian-
based system, I decided to copy the file to /usr/lib.

The installation of ooTest also showed some difficulties. The installation package contains a
script called setTestEnv. It intends to make all required files for ooTest available by exporting
them to the search path. The script is available for both, Windows OS and Linux OS. But as it
was accidentally saved in a non-Linux compliant representation by its authors90, it cannot be
executed on an Unix system. This script has to be “repaired” first, which can be effected by
issuing the command  dos2unix setTestEnv.sh91 which renders the script in an executable
state. In my configuration the shell script, although executed successfully, does not work as
expected. Therefore I copied the required files manually to a directory within the search path.
Copying  both,  OOREXXUNIT.CLS and  ooTest.frm to  the  directory  /usr/bin/ made  them
available everywhere.

DBus Debuggers and DBus Services 

If the listed DBus debuggers are not able to either obtain the introspection data correctly in
the case of D-feet or not able to invoke all methods in the case of qdbusviewer that does not
necessarily mean that  your  ooRexx services  do not  work anymore.  Try to  code a simple
“client” application that connects to the implemented service and check whether this works.
The commands .IDBusPathMaker~publishAllServiceObjects(conn) or
conn~serviceObject('add','default',.IDBusPathMaker~new(objectPath)) in  the  case  of
defining introspection without subclassing DBusServiceObject have to be added. But is is not
possible to use both command in the same script as one path would get overwritten by the
other.
If  your DBus application does not work anymore but did so once,  it  might be helpful to
investigate  the  service  object  you  want  to  connect  to.  If  the  service  was  not  written  by
yourself, it might have experienced changes over time and backward compatibility might not

90 The package was created on a Windows OS system which uses other line breaks than Linux.
91 This program is probably not installed per default, it can be obtained by  apt-get install dos2unix on

Debian based systems.

77



be  given  anymore.  This  has  already been  demonstrated  with  mpris  that  now evolved  to
version 2, rendering old scripts useless. In the case of mpris, most services were still available
but the busname was changed and therefore none of the services could be reached anymore.
The same can be observed with the  org.freedesktop.UDisk interface,  that also evolves to
version  2.  Although  always  making  adaptations  it  is  frustrating,  carrying  backwards
compatibility is not a solution on the long sight and introducing improvements of existing
DBus services is necessary and desirable as well. Therefore try investigating the services with
a DBus debugger of your choice or use the command line command qdbus, followed by the
object path of the service that is to be investigated and the interface name. (for example qdbus
org.kde.kwin.Screenshot /Screenshot)

It was already described that the D-Bus debuggers might have difficulties in displaying all
ooRexx Services correctly. This is most probably due to a failure within the introspection.
Try to  use  the  method where  the  introspection  data  is  created  on the  fly with  command
instructions, if the script then does not start up, any of the introspection lines were defined
incorrect.
The command line utility dbus-monitor, which is part of the default DBus installation is also
helpful as it displays all actions on the DBus. It is possible to monitor the Name acquiring
process of the own service and other related information that might be useful.

DBus Profiler

An interesting program that can be used to inspect the activity of DBus services is called
Bustle.92 It is a nice tool that can be configured to listen for all DBus activity and allows to
filter specified services. The output file representation of bustle allows to inspect DBus calls,
their roundtrip time and carried values. Figure 11 shows an example capture of the running
testgroup. In his presentation, the author of Bustle gives a nice overview how this tool can be
used for profiling. (Thompson, 2009) 
In this paper, Bustle is only used to visually present a testrun of the testgroup, no further
inspection of the data was effected. If one of the calls is selected, the transported value get
displayed and the programmer sees what value was transported. In this example the call to
ReplyArrayofVariant was selected. The arguments are nicely presented. It is also visible what
object types are defined with the variant.
The output also nicely demonstrates the alphabetic eradication of the testmethods within the
testgroup. 

92 Bustle http://www.willthompson.co.uk/bustle/, accessed on 2 September 2014.

78

http://www.willthompson.co.uk/bustle/


79

Figure 11: Example output of Bustle (excerpt)


	Abstract
	Kurzfassung
	1. Introduction
	1.1 Mandatory Installation Packages
	1.2 Optional Installation Packages

	2. Implement Automated Testing with ooTest
	2.1 Creating a Testgroup with ooTest
	2.2 Designing Test Methods
	2.3 Error Treatment

	3. Testing the ooRexx DBus Binding with ooTest
	3.1 Connect to DBus and Test the DBus Class
	3.1.2 Type Codes
	3.1.3 Bus Names

	3.2 TestServer – TestClient Architecture
	3.2.1 Providing Introspection Data - DBusServiceObject
	3.2.2 Establish a Private DBus Connection - DBusServer
	3.2.3 Direct DBus Method Calls and the DBusProxyObject
	3.2.4 Assess the TestServices with DBus Debuggers

	3.3 Final Test Services
	3.4 Assessing Different Object Types
	3.4.1 Integer Objects
	3.4.2 Double IEEE 754
	3.4.3 Strings
	3.4.4 Byte
	3.4.5 Signature
	3.4.6 ObjectPath
	3.4.7 Arrays
	3.4.8 ByteArrays
	3.4.9 Struct
	3.5.10 Dict
	3.4.11 Variant

	3.5 DBus and NULL Values
	3.6 DBusooRexx's ReplySlotDir
	3.7 DBus Properties
	3.8 DBus Signals
	3.9 DBus Errors
	3.10 Start Service by Name
	3.11 Penetration Tests
	3.12 Limitations

	4. Exploiting DBusooRexx In a Practical Setting
	4.1 Script Example: Automated Media-Player Control with Bluetooth and DBus
	4.1.2 Listening to Signals and Invoke Methods over Network
	4.1.2 Prerequisites
	4.1.3 The Media-Player-Interface Standard MPRIS
	4.1.4 The Linux Bluetooth Standard BLUEZ
	4.1.5 Establish Connection to Two Media-Players Via DBusServer

	4.2 Script Example: Interaction with Hardware over the System Bus
	4.3 Script Example: Networkmanager

	5. Outlook and Roundup
	References

	Appendix
	Troubleshooting
	Installation Scripts
	DBus Debuggers and DBus Services

	DBus Profiler


