
Developing the ServiceNow App Accelerator

Entwicklung des ServiceNow App Accelerators

Master Thesis

Submitted in partial fulfilment of the requirements for the degree of

Master of Science in Engineering

to the University of Applied Sciences FH Campus Wien
Master Degree Program: IT-Security

Author:

Adrian Baginski, BSc (WU)

Student identification number:

1610537014

Supervisor:

ao.Univ.Prof. Mag. Dr.rer.soc.oec. Rony G. Flatscher

Secondary supervisor:

Priv.-Doz. Mag.rer.soc.oec. Dipl.-Ing. Dipl.-Ing. Dr.techn. Karl M. Göschka

Date:

May 7, 2018

Declaration of authorship:

I declare that this Master Thesis has been written by myself. I have not used any other
than the listed sources, nor have I received any unauthorized help.

I hereby certify that I have not submitted this Master Thesis in any form (to a reviewer
for assessment) either in Austria or abroad.

Furthermore, I assure that the (printed and electronic) copies I have submitted are iden-
tical.

Date: Signature:

Preface

This master thesis was written under supervision of Professor Flatscher from WU Vi-
enna and valuable support from the software engineering company and ServiceNow partner
Wrangu, that allowed for exceptional insight into the workings of ServiceNow. They assisted
by inviting me to a ServiceNow summit in Amsterdam to see the capabilities of cloud com-
puting and how the Now Platform successfully integrates in that ecosystem, which helped a
ton when getting started with ServiceNow Studio to develop the ServiceNow App Accelerator
and writing the chapter "Exploring the ServiceNow Platform" of this master thesis.
Wrangu generally specializes in creating applications for the cloud such as the GDPR

Data Scanner, which is an essential tool in ensuring that a ServiceNow instance does not
fall foul of the impending European law. [1] Others are custom built solutions for various
enterprises, which most often have the common problem that they are looking to migrate local
shadow IT systems, typically built at the department or team level using languages such as
PHP supported by MySQL databases to the ServiceNow cloud. This gives transparency and
allows for oversight and governance as some of these shadow systems may contain sensitive
data.

i

Kurzfassung

Diese praktische Arbeit beschäftigt sich mit der fehlenden Funktionalität des Cloud- Com-
puting Anbieters "ServiceNow", bereits bestehende SQL Datenbanken automatisiert in die
ServiceNow Plattform zu überführen. Die Relevanz ergibt sich durch das Bedürfnis vieler
Organisationen mit tief etablierten, jedoch veralteten Datenbanken, ihre IT-Systeme in die
Cloud zu migrieren. Um diese vollends abschließen zu können ist es notwendig, die wertvollen
Daten selektiv aus den Datenbanken zu extrahieren und automatisiert in die ServiceNow
Cloud hochzuladen. Mit dem jetzigen Stand der Technik ist dies jedoch nicht möglich. Die
Plattform motiviert ihre Benutzer, die bereitgestellten Applikationen mit neuen Datenstruk-
turen zu verwenden, um einen optimalen Neuanfang in der Cloud zu gewährleisten.
Mit Hilfe der Programmiersprache Open Object Rexx wird eine Desktop-Applikation er-

stellt, welche mit SQL Konnektoren und eigens implementierter REST API diese Lücke
schließt. Abschließend werden im Zuge eines Funktionstests zwei MySQL Tabellen einer
Datenbank mit insgesamt 1.600 Datensätzen hochgeladen und auf Übereinstimmung über-
prüft.
Nebenbei werden sowohl ooRexx und das BSF4ooRexx Framework analysiert und dem

Leser mit kurzen und zugleich einfachen Beispielen veranschaulicht. Die Erforschung von Ser-
viceNow’s aktueller und vergangener Marktsituation, den Möglichkeiten und seiner Konkur-
renten sorgt für einen wissenschaftlichen Neuheitswert, da dieses Unternehmen trotz seines
rasanten Wachstums in diesem Umfang noch nicht analysiert wurde.

ii

Abstract

This practical thesis analyses the Platform-as-a-Service provider ServiceNow and docu-
ments the creation of a desktop application to mitigate the lack of functionality to import
existing data in an automatic manner to the platform. Although ServiceNow tries to win its
customers with performing applications provided by them, which handle data in non SQL
related data structures, organisations presumably have valuable assets in existing yet most
often legacy shadow database IT systems which they cannot leave behind while moving to the
cloud. As a result, the migration causes those organisations to gain an additional system they
need to keep track of instead of simplifying their IT infrastructure to just use the services
provided by the cloud and leaving the old ones behind.
The ServiceNow App Accelerator provides a solution with the help of the programming

language ooRexx and the BSF4ooRexx framework. In order to create new table structures
programmatically in ServiceNow, a custom REST API is developed to serve this function-
ality. The Application uses JavaFX to build a complex graphical user interface with the
focus on usability, user experience and fault tolerance. Afterwards, the functionality of the
app is tested with 1,600 data sets that are successfully uploaded to a developer instance of
ServiceNow.

iii

List of Abbreviations

API Application Programming Interface
ASP Active Server Pages
App Application
BSF4ooRexx Bean Scripting Framework for ooRexx
CSO Chief Security Officer
DES Data Encryption Standard
DNS Domain Name Service
FXML JavaFX Extensible Markup Language
GNU General Public License
GUI Graphical User Interface
HR Human Resources
IBM International Business Machines
IT Information Technology
JDBC Java Database Connector
JFXAT JavaFX Application Thread
JSON JavaScript Object Notation
ooRexx Open Object REXX
OS Operating System
PaaS Platform as a Service
REST Representational State Transfer
REXX Restructures Extended Executor
SAA ServiceNow App Accelerator
SHA Secure Hash Algorithm
SN ServiceNow
SQL Structured Query Language
SaaS Software as a Service
URL Uniform Resource Locator
XML Extensible Markup Language

iv

Keywords

JavaFX
ServiceNow
SQL Databases
Migration
Open Object Rexx
BSF4ooRexx

v

Contents

1. Introduction 1

2. Exploring the ServiceNow Platform 2
2.1. The Cloud Computing Market . 2
2.2. The ServiceNow Approach to Cloud Computing 3
2.3. Architecture . 5
2.4. Building Apps for the Cloud . 6
2.5. Security Operations . 7
2.6. Migration issues . 8
2.7. ServiceNow Alternatives . 10
2.8. Conclusion . 11

3. Programming with Open Object Rexx 12
3.1. Nutshell Examples . 13
3.2. The BSF4ooRexx Framework . 15

4. Developing the ServiceNow App Accelerator 18
4.1. Possible Migration Strategies . 18
4.2. Project Overview . 20
4.3. Project Structure . 22
4.4. Application Bootstrap . 24
4.5. Configuration . 34
4.6. Manage Credentials . 51
4.7. The Import Task . 58
4.8. Functional Testing . 75

5. Related Work 80

6. Improvements and Outlook 81

Bibliography 85

List of Figures 85

Listings 86

A. Appendix 88

vi

1. Introduction

The cloud computing market has experienced immense growth since 2010, reaching a volume
of $ 20.1 billion solely in Germany in 2017. It is dominating the IT industry worldwide today.
[2] The concept of cloud computing in general makes use of huge data centre infrastructures,
which can potentially cumulate their processing power for intensive calculations. However,
the most common use is to store data in the cloud, process it in a predefined way and return
it to the user so that he can further work with it. This enables large-scale distributed systems
services without any notable up-front investments.
This master thesis provides an overview of the current cloud computing market and intro-

duces the key concepts of the ServiceNow platform alongside its architecture in chapter 2. A
brief description is given how users can create applications for the ServiceNow cloud and how
to enforce Security Operations using the latest security technology provided by the platform.
Then, the three main competitors in the IT service management and project management
business are compared to ServiceNow.
The following chapter 3 describes the programming language Open Object Rexx alongside

its core strengths that can be utilized to easily build desktop applications. The BSF4ooRexx
framework is also analysed to extend the possibilities of Open Object Rexx by bridging Java
and thereby using all of its classes and interfaces as if they were a huge third party library
for ooRexx.
Chapter 4 is the core of this master thesis and builds on top of the previously gathered

theoretical concepts to develop an application for the ServiceNow platform, that is going to
be published to the Open-Source community eventually. This application titled "ServiceNow
App Accelerator" allows an external SQL database to be replicated into a scoped application
on the ServiceNow cloud platform. It is an application generator; examples of these tools that
are non-ServiceNow related are SQL Maestro’s PHPGenerator or Easy Code ASP Generator.
The costs of these tools vary between 200 dollars for a developer license to 1200 dollars for a
site license.
ServiceNow provides a Platform-as-a-Service and Service-as-a-Service solution used by en-

terprises globally to transform their internal processes from IT to Human Resources. The
ServiceNow platform provides out of the box applications to support IT Service Management,
Risk and Compliance, Security Operations, IT Operations and automation. It also provides
a development environment for the creation of bespoke applications that can take full advan-
tage of platform functionality. This allows lightening speed development of solutions to solve
business problems in the cloud. ServiceNow markets their platform as prime for converting
custom built departmental applications onto their platform to take advantage of the single
source of record and other platform features.
Chapter 4 describes all relevant project files and the main application flow in a clear manner

so that other developers can potentially use this to extend the feature base or to integrate the
ServiceNow App Accelerator in other enterprise applications. This chapter concludes with a
real world test scenario, where a MySQL database with two tables is successfully uploaded
to a ServiceNow instance.
Chapter 5 describes the related work of this master’s thesis. Finally, chapter 6 depicts a

few improvements to the application that can be made to enhance user experience.

1

2. Exploring the ServiceNow Platform

ServiceNow provides a Platform-as-a-Service and Software-as-a-Service solution to business
customers, who wish to neglect annoying IT administrative tasks so they can focus on their
core businesses again. Thus, the deployment model decides the way of delivering the services.
The Platform-as-a-Service paradigm allows to use associated services over the Internet with-
out downloads or installation. [3] With the help of an extensive application market place and
the ServiceNow Studio App, the Now Platform can be tailored to any enterprise’s needs and
redefine previously cumbersome IT systems.

2.1. The Cloud Computing Market

Cloud computing has a huge impact on the modern society as it has become very influential
to the global economy. The total worldwide market of cloud computing was 2016 at $209
billion and is expected to grow to an astonishing $383 billion by 2020. [4] That is an annual
increase of more than 20 percent, which makes cloud computing one of the fastest growing
industries in the 21st century so far. But what is "cloud computing" actually? According to
the official NIST definition, it involves a computing procedure in a shared pool of computing
resources such as networks, servers and storage. It comes with minimal management effort
or service provider interaction. [5] Moving a business’ IT infrastructure to the cloud comes
with lots of benefits. Cloud computing has the following key characteristics: [6]

• Cost efficiency
• Almost unlimited storage
• Backup and recovery
• Automatic software integration
• Easy access to information
• Quick deployment
Cloud computing is cost efficient, as customers only pay for the cloud resources they con-

sume. There is practically no cap for storage space, so that customers can always upgrade if
they need to. From a safety standpoint, backup and recovery plans are very easy to follow
because the usual cloud computing infrastructure already includes some kind of redundancy.
That is why the customer does not have to care about backup plans whilst being able to
recover his whole infrastructure within seconds in case of a breach.
Software integration is something that occurs automatically. The customer only has to

choose from a range of services and applications which suits his business best. The access
to information is also very easy, as long as an internet connection is available. Generally
speaking, the deployment phase is ought to be short.

2

Chapter 2. Exploring the ServiceNow Platform

Figure 2.1.: ServiceNow market opportunities [7]

2.2. The ServiceNow Approach to Cloud Computing

ServiceNow is a new cloud computing provider with a focus on business-to-business solutions.
Its revenue in 2016 exceeded $1 billion for the first time in history and is expected to reach
$4 billion by 2020. According to the third quarter financial report in 2017, the year-over-year
growth of subscription revenues is at 43 percent, while the gross profit accounts for astonishing
82 percent. Those operating numbers show just how fast this industry operates. Besides,
ServiceNow is not even using all its market potential, as figure 2.1 shows. ServiceNow already
serves the Service management market, Customer service market, Information technology and
Business management market but could easily expand to others as well. [7]
ServiceNow offers a Platform-as-a-Service solution. This means, that its customers are

able to use acquired, provided or self-programmed applications on the platform. Those apps
make use of supported libraries, programming languages, services and tools. The customer is
exempted from managing all the underlying systems including the servers, operating systems
and the network. He only deploys and uses applications. That is essentially what a business
needs to do in order to generate value. [8]
The ServiceNow platform provides the infrastructure needed to develop, run and manage

applications. Being cloud based has the advantage that the data does not reside on only one
device, therefore it is accessible from anywhere in the world using any device as long as it has
a stable internet connection. The platform provides a variety of ready-to-use applications to
automate the work-flow of everyday tasks across all departments of a business, as shown in
Figure 2.2. The implemented applications can be divided into those three sections:

• Service Management
• Business Management
• Operations Management

Service Management is by far the biggest sections containing all service oriented compo-

3

Chapter 2. Exploring the ServiceNow Platform

Figure 2.2.: Components of the ServiceNow Platform [10]

nents like Incident Management, Service Catalog, the Configuration Management Database
and facilitating department applications. Operations Management is rather infrastructure
oriented, so it involves managing Servers, Applications, Storage, Virtualization, Cloud and
Network. Those two sections are able to interact with each other to maximize profitability
of the system. This substantial communication happens when notifying Service Manage-
ment about the latest events and alerts of the System or Operations Management reacting
to changes based on Service Management actions.[9]

It is imperative to notice that all applications inside a section can also interact with each
other - that is a key feature of the ServiceNow platform. This was designed based on the
assumption that most business processes have a vibrant ecosystem and generally make use
of several departments. Take the onboarding process of a new employee as an example. This
is a typical work-flow that every business has to partake regularly, despite being always a
headache for its participants. Onboarding an employee means to use the HR department
for most of the process, IT for getting equipment and setting it up properly, Security for a
system briefing, Facilities for a premises induction, Finance for the transactions and Legal
department for legal matters. If the new employee has special requests like a specific Notebook
that he would like to use, than the described work-flow might get really complicated, since
he is not directly communicating with the executive department.
The ServiceNow platform offers a work-flow integration, where its customers can set up

their most common processes to enable automation. This way, the platform does most of
the necessary work like sending the right E-Mails to the right person from there on. That is
how ServiceNow redesigns a process that has always consisted of mostly unstructured, slow
and hard to optimize data flows to one where following business flows makes fun again, given
that they initially sacrifice their time to configure the platform according to their needs.

4

Chapter 2. Exploring the ServiceNow Platform

2.3. Architecture

The ServiceNow platform uses a single system of records and a common data model to
consolidate all business processes. Most other clouds are built on a multi-tenant architecture,
which means that the hardware stack has the following composition:

1. Hardware
2. Virtual machine
3. Operating system
4. Middleware
5. Application
Multi-tenancy aims to provide isolation of the different cloud tenants with full indepen-

dence while optimizing resource sharing capabilities. Due to the enormous popularity of this
architecture it is well-known in the community, despite the fact that it is not the best solution
for building clouds with multiple users. This traditional approach has the disadvantage that
the data is commingled with other customers of the same cloud since it uses only one server
instance to serve them all. Due to this property, there is a high risk of data being leaked or a
possible unprivileged access. [3, p.55] Such architecture solution relies on large and complex
databases that require hardware and software maintenance on a regular basis, which could
lead to availability issues. Additionally, any action on the multi-tenant databases affects all
customers since they strongly depend on it.
The ServiceNow architecture builds on an advanced technology they call "multi-instance".

The composition is slightly different to the traditional approach, since every customer has his
own server instance, that consists of the usual stack described in the multi-tenant model, but
starting at the virtual machine as depicted in figure 2.3. Therefore the only layer all customers
have in common is the Hardware layer - if one would allocate hardware to customers they
would have a cloud on their own. That is why the multi-instance approach has the most
advanced form of separation in every regard, at the expense of higher maintenance complexity
and infrastructure costs.

Figure 2.3.: Multi-instance architecture model

Each customer can have as many instances as he needs. All instances are isolated but can
still communicate with each other on the Application layer. Nevertheless, this architecture

5

Chapter 2. Exploring the ServiceNow Platform

accomplishes true data separation which can be observed if an instance suffers a malfunction
of some kind, then this only instance will be affected by that issue. This property provides
the best quality of service for all tenants and makes locating and maintaining bugs of both
hardware and software on every instance much easier to perform. [11]

2.4. Building Apps for the Cloud

Using applications is a key concept of the ServiceNow cloud. The platform is divided into
many pre-installed applications grouped into modules. They have typically a designated
functionality, which is built to serve a specific purpose for different types of enterprises.
Despite the large quantity of those supplied applications, it could be necessary for a business
owner to get a hold of an app tailored to his needs. In general, one can distinguish between
the following types of applications:

• Configurable pre-built apps
• Apps bought from the store
• Open-source apps provided from the community
• Self-built apps

The app store offers more than 300 free and paid applications that can be installed with
only a few clicks by a privileged user account. Whilst using pre-built apps is a valid option
most of the time, the platform also includes a system application called "ServiceNow Studio",
which can be utilized to build apps. This is especially useful if a business has very individual
needs. Using ServiceNow Studio, one can create both frontend and backend applications
with a graphical user interface, some worker scripts, databases, notifications and many more.
Figure 2.4 shows the different types of files that can be created using ServiceNow Studio.
The selected data model group holds tables and columns that can be used as a persistent
data source for other application files.

6

Chapter 2. Exploring the ServiceNow Platform

Figure 2.4.: "Create Application File" Mask (Source: Screenshot)

ServiceNow Studio enables teams to develop applications together using a source control
system to apply remote changes or to create new branches and release tags. Once an app is
ready to be published, it can be exported as a "Update Set", which is an XML file that can
be easily imported in any ServiceNow instance to use the application it holds.
Managing businesses successfully requires engaging the competition with innovation and

constantly searching for market opportunities, as well as responding quickly to customer
needs. Especially in the cloud-first era, enterprise software is a great enabler of increased
business velocity. ServiceNow Studio allows even inexperienced businesses to build advanced
applications using resources the platform provides. [12]

2.5. Security Operations

Organizations invest in a lot of security products which are mainly for protection and de-
tection of security threats. But when it comes to responding to an ongoing threat they all
draw blank. A recent CSO study suggests that the average enterprise uses more than 70
different security products alongside security experts to control all the redundant products
and manage useless alerts.[13] Despite that, it takes on average nearly three quarters of a
year to spot a breach and another two months afterwards to contain it. The top ten ex-
ploited vulnerabilities in 2015 were over one year old, whereas 48 percent of them were even
older than 5 years. The current situation shows that enterprises are having serious troubles
securing them against digital threats.[14]
ServiceNow concentrates on providing a security response platform to maximise remedi-

ation efforts, streamline response processes and to provide intuitive dashboards that reflect
the company’s security disposition. The platform has a few tweaks to achieve that in the
simplest possible way. First off, all pulled data from different sources is transferred into

7

Chapter 2. Exploring the ServiceNow Platform

a single system record, where it gets prioritized based on incident workload. This is only
possible if the platform understands business criticality of all enterprise assets. ServiceNow
enables IT and security teams to work from the same system so that information gets routed
to the appropriate teams and people. Of course all basic tasks and processes are automated
to minimise threats by human error. [15]

Figure 2.5.: Trusted Security Circles [16]

ServiceNow extended the threat intelligence business by introducing "Trusted Security
Circles" in the latest build of their platform. Those have the purpose to share security relevant
data with members of the supply chain or industry peers based on commonalities using
current industry standards such as the Structured Threat Information eXpression (STIX) and
the Trusted Automated eXchange of Indicator Information (TAXII). By sharing anonymous
observations with other businesses that are also potentially targeted for an exploit, it makes
it possible to get early warnings of an attack and react accordingly, as depicted in figure 2.5.
The concept behind this functionality is that no enterprise truly exists in isolation. There are
also distributors, outsourcers, IT software vendors, affiliates, consultants and resellers that
every business depends on - if they go down, you do too! [16]

2.6. Migration issues

A legacy information system consists of one or many applications with its environments,
whose technological components are outdated but still in use. The development of such sys-
tems was once a huge, long-term investment, but nowadays they suffer from low performance
and non-extensibility. Migrating those well-established systems to the cloud can be a very
exhausting process, especially for bigger organisations with diverse assets. Capturing legacy
system data in a way that can support organisations into the future is thus an important
research area. [17] They are critical for the organisation and their failure can have a serious
impact on the business. [18]
The main issues with legacy information systems are, that they run on obsolete hardware

8

Chapter 2. Exploring the ServiceNow Platform

Figure 2.6.: Solutions to legacy information systems [17, p.104]

with high maintenance costs and low performance, and that the software that runs on them
suffers also from those exact weaknesses. Thus, they can be difficult or even impossible to
extend or integrate with other systems. Additionally, obsolete documentations cause another
barrier so that organisations either leave such legacy systems running without maintaining
them or migrate to an alternative.

There are several solutions to legacy systems that can be generally categorized into the
following:

• Wrapping
• Migration
• Redevelopment

Wrapping the legacy information system in another system that has more and better
interfaces to interact with is only a short-term solution that can even complicate maintenance
in the long run and is therefore generally not recommended solution. Redevelopment on the
other hand is a complete redo of the legacy system and requires a tremendous amount of
resources such as time, money and personnel. It has the most impact on the system as it
comes with the most number of changes to the legacy system.
The most reasonable approach is therefore migration, which essentially means to move a

running system to a new platform while retaining the functionality and ideally causing as
little disruptance as possible. [17] This solution sounds difficult to perform, but has some
welcoming benefits if done correctly such as higher flexibility and reduced maintenance costs.
Migrating databases requires to first map the legacy information system’s schema onto the

target schema before working out the transformation. It can be necessary to also cleanse the
data both before, during and after the migration if it is of poor quality.
The final phase of migration can be one of the following.

• The cut-and-run strategy
• The phased interoperability strategy
• The parallel operations strategy

The cut-and-run strategy performs a full switch of systems on a new feature-rich replace-
ment. The phased interoperability strategy on the other hand uses the cut-and-run strategy

9

Chapter 2. Exploring the ServiceNow Platform

gradually for some parts of the application at a time, until the switch has been done. In
the parallel operations strategy, both systems are running and responding simultaneously
until the replacement system has been tested and trusted fully to shut the legacy information
system down.
The decision upon which strategy to use depends on many factors bound to the organi-

sation. In any case, if performed successfully, the migration to a cloud computing provider
results in high performance boosts and other benefits as described in chapter 2.1 on page
2.1. Many organisations have to face the same issues at this moment of time until some day
businesses will rise starting their venture directly in the cloud instead of creating - what will
later become - legacy information systems.

2.7. ServiceNow Alternatives

ServiceNow might not always fulfill every company’s needs and might even be too expensive
for others. Certainly there are quite some competitors in the markets ServiceNow serves,
especially in the expertise of Project Management Software. The most relevant alternatives
are Mavenlink, Jira ServiceDesk and Redmine. None of them offer quite the same features as
ServiceNow does, but they do have their own unique selling proposition on the market. [19]
Jira ServiceDesk is developed by the Atlassian Corporation, that also offers many additional

products such as Confluence as knowledge base and Bitbucket as version control system.
Jira is an issue tracking software with project management functionality and extensive bug
tracking support with an integrated ticketing system. Its main strength lies in using all
Atlassian products simultaneously, as they are designed to imperceptibly work together. A
user can reference a wiki article from Confluence when creating a new issue in Jira and
attach a Bitbucket project, so that all future changes will be also logged in Jira. Contrary to
ServiceNow all those products have to be installed individually on the customer’s hardware.
This way they run fully isolated from the vendor, but the customer possibly has to outsource
the server related processes to another enterprise or bother with that on his own risks and
expenses. [20]
The most promising competitor Mavelink provides collaborative resource planning and a

project management software in a single application for delivering project-based services.
It also includes project accounting and business intelligence features, so that it can work
independently of the company’s IT structure. All generated data is stored in the Mavenlink
cloud with confidence and the pricing for professional teams starts at 39 dollars per user and
month. [21]
Redmine is an open source project under the terms of the GNU General Public License

v2. It is a cross-platform and cross-database project management web application that can
be downloaded and set up on any server. It features a gantt chart and calendar generator,
news, various feeds, per project wiki and forums, a time tracking system, Supply-Chain-
Management integration, an issue management system and some more. Overall, Redmine
does not have quite the rich feature base as the other mentioned competitors but it is a valid
option for businesses with a tight budget to also manage projects and IT service management
professionally. [22]

10

Chapter 2. Exploring the ServiceNow Platform

2.8. Conclusion

Once a venture reaches a certain growth it becomes very important to keep up with the
competition by providing efficiency across all business divisions. One simple way to do so is
to outsource IT related processes to the cloud. This way the cloud provider has to master
the background work associated with such processes, like a high availability, security across
all realms, backups and redundancy by middleware.
ServiceNow offers its customers a profound experience in automating most of the usual

processes so that they can fully focus on their core tasks again. To achieve that, ServiceNow
provides a platform which is accessible from any device through a web browser. To maximise
efforts it is required to customize the necessary dashboards, applications and service portals
to the business’ needs.
The ServiceNow platform additionally offers a wide range of built-in security tools to

analyse all relevant events. Using those tools, a business can detect and prevent attacks
without the know-how of an IT-Security specialist. One such technology is called Trusted
Security Circles, where threat information is shared with selected industry partners. This
solution makes use of the fact that multiple businesses interconnected by a supply chain are
most likely to be targeted by the same attack. Thus ServiceNow keeps publishing security
applications, their success is highly dependent on customer acceptance. Nevertheless, they
ultimately raise awareness for risks, vulnerabilities and security in general as those fields of
expertise grow in importance with the business’ value.
While ServiceNow takes good care of security and operations tasks, it naturally comes

with privacy concerns, as all data is stored in their own data centres. Their customers have
to heavily rely on ServiceNow not to leak or aid leakage of any sensitive information to the
public or competitors. Additionally, the source code of the platform is closed-source, so no
one really knows what happens behind the scenes of the front end application. It is possible
that they grab more information about its users than they should. On the other hand, hackers
have a hard time penetrating the system if they do not know the code they are facing.
All in all, ServiceNow provides a great solution for a selection of mostly international

enterprises. Others will prefer to invest in private cloud solutions or huge internal networks
for privacy reasons, despite the potentially higher costs. [23]

11

3. Programming with Open Object Rexx

Desktop applications are traditionally programmed using compiled languages, because they
usually offer the best performance. One of the most widely used representatives is C, alongside
its object oriented successor C++. The compiler of such languages transforms the source
code into optimized binaries, that can only be understood by a specific operating system
with an explicit processor architecture. This involves compiling multiple times for numerous
platforms. Java is another widely used programming language with a different approach, as
it enables its users to install a runtime engine holding a virtual machine for the programmers
to compile their applications only once, targeting that exact system.
While compiled languages definitely offer the best performance, hardware limitations on

modern computers have dropped to an insignificant level, so that performance is not that
vital anymore. Naturally, when it comes to gaming and big data calculations, those solutions
are still indomitable - but most applications only use a fraction of memory and processing
power. They do not require a complex compiled language that decelerates the development
process. This is where scripting languages are at their best. [24]
It is no coincidence that Python as the leading scripting language has gained massive

popularity in the community over the past years, resulting in even outpacing Java as the
most popular programming language in 2017. That is because scripting is generally easier for
a programmer than compiling. It involves fewer steps to get an application running, because
it does not have to be compiled before running. [25]
Open Object Rexx is a scripting language which tries to minimize the programming burden

for the user. It is case-insensitive and human-centric in all its instructions. There is only
punctuation involved if it is really necessary, like for mathematical operations or comparisons.
Variable usage is very easy too, as they do not have to be declared or initialized. Every
variable is a string by default, but if it can be interpreted as a decimal number, one can
use it as if it were an integer in any strictly typed programming language. Of course, the
programmer is not forced to use a semicolon at the end of every instruction, as long as there
is only one per line. [26]
Object Rexx offers an object oriented approach with easy concurrency control and some

innovative merits. Classes are defined using the ::CLASS directive and can hold multiple
methods and attributes. In case an object calls a method that is not implemented in the
class, the message will be forwarded to the special unknown method alongside the original
method name. This feature can be used to counteract runtime errors by reacting to unforeseen
events.
When a Rexx program is about to launch, the Rexx Interpreter reads the file content twice.

At the first time, all strings that are not enclosed in single or double quotes are transformed
to upper case and only so called "Directives" are executed by the interpreter. Those can be
external or internal resources, classes, methods, attributes or routines. They always start
with two colons and are often placed at the bottom of an application to separate the main
application flow from the definitions.
The Rexx language was originally invented in 1979 by IBM as "Restructured Extended

Executor" to replace a legacy batch language that is to this day used for IBM mainframes.

12

Chapter 3. Programming with Open Object Rexx

Over the course of time, REXX became the leading scripting language for various operating
systems such as Amiga OS and OS/2. In 2004, IBM released Object REXX as open source
software, which got adapted to ooRexx by the Rexx Language Association. The latest official
version is 4.2.0, although the developers are regularly releasing beta versions of ooRexx 5.0
since 2014. [26]

3.1. Nutshell Examples

Executing ooRexx applications is fairly easy, since the installation process does not require
any dependencies. Sourceforge provides binaries for Windows, Mac and some Linux distri-
butions to get ooRexx running without any issues. [27].

3.1.1. Loops and Arrays

Listing 3.1 shows a simple "Hello World" program written in ooRexx.

1 loop i = 1 to 20 by 2
2 say "Hello World from ooRexx:" i
3 end
4 ---
5 myArray = .Array~of("Array", "handling")
6 say myArray[1] myArray~at(2)
7

8 myArray~append("is nice!")
9 loop item over myArray

10 say item
11 end

Listing 3.1.: Loops and Arrays in ooRexx
This nutshell example shows a basic loop its first three lines. It repeats the loop content

until the variable i reaches the value of 20, increasing the variable value by 2 after each
iteration, which results in an output of 10 lines of "Hello World from ooRexx".
Line 5 initiates a new instance of the array class with two items. The tilde character ~ is

a message operator that can be used to invoke methods. If two tilde characters ~~ are used
together, the output of the operation is neglected.
Line 6 demonstrates two equivalent ways of accessing array values. One can either use

square brackets like as used in C related programming languages or send the ~at message
with the index as parameter. Interestingly, ooRexx always starts collection class indexing
with 1 instead of 0. That is attributable to the language being human centric by design, and
humans also start counting with the number 1. This unusual behaviour ultimately results in
a simplification for the programmer where he uses the nth index to retrieve the nth value.
Another widely used type of loop is demonstrated in lines 8 to 11. It shows the ooRexx

implementation of a forEach loop. The final output of the program is shown below:
Output :
He l lo World from ooRexx : 1
He l lo World from ooRexx : 3
[. . .]
He l l o World from ooRexx : 19
Array handl ing
Array

13

Chapter 3. Programming with Open Object Rexx

handl ing
i s n i c e !

3.1.2. Object Orientated Programming

The next nutshell example in listing 3.2 demonstrates the huge advantage of two globally
accessible directory objects .local and .environment as well as custom class creation in
general. First off, the ::CLASS directive is used to create a class, followed by the constructor
::METHOD init to save the provided parameter at the instantiation in the attribute "type".
Then, it defines the methods "whoAmI?", "getBroadcast" and "sendBroadcast". Rexx allows
to use certain punctuation characters such as explanation marks, dots and question marks
for naming variables, routines and methods.

1 windows = .computer~new("Win10")
2 windows~~whoAmI? -
3 ~~getBroadcast -
4 ~~sendBroadcast("Is there anyone?")
5 mac = .computer~new("MacOS")
6 mac~sendBroadcast("Yeah, Mac rockz!")
7

8

9 ::class "Computer"
10 ::attribute type
11 ::method init
12 expose type
13 use arg type
14

15 ::method whoAmI?
16 expose type
17 say "I am" self~defaultName "of type" type
18

19 ::method getBroadcast
20 if .local~latestMessage = .nil then
21 say "No messages yet"
22 else
23 say .latestMessage
24

25 ::method sendBroadcast
26 expose type
27 use arg message
28 .local~latestMessage = type || ":" message
29 self~getBroadcast

Listing 3.2.: An advanced example demonstrating object-oriented functionality
Output :
I am a Computer o f type Win10
No messages yet
Win10 : I s the re anyone?
MacOS: Yeah , Mac rockz !

The main application flow starting in line 1 creates two instances of the "Computer" class
and calls all defined methods to send and receive messages. The keyword expose exposes the
method to a specific attribute in the class, and the instruction use arg saves the argument in
the attribute for other methods in the class to use it. The keyword self references the object
and is equivalent to "this" in C related programming languages. The method getBroadcast

14

Chapter 3. Programming with Open Object Rexx

also shows an if expression in line 21 with the .nil class. Object Rexx allows to use one
equals sign "=" instead of two to compare values. The dot can also be used to reference
environment variables, as demonstrated in line 24.
This nutshell example shows just how easy it is to make technically separated objects

communicate with each other. They could also depend heavily on variables set in the main
flow of the application, without the programmer ever needing to think about variable scopes.
The second available environment directory object .environment can even communicate
with other ooRexx applications that run in the a different Rexx interpreter instance.

3.1.3. Routines

The last nutshell example in listing 3.3 shows routines in ooRexx, which are defined using the
directive ::ROUTINE. The keyword strict requires the arguments to be set when invoking
that routine. Line 4 shows how to call routines with the call statement, in contrast to the
well known function invocation in line 3 using brackets around the arguments.

1 a = "2"
2 b = 3
3 say add(a,b)
4 call multiply a,b
5

6 ::routine add
7 use strict arg a,b
8 return a + b
9

10 ::routine multiply
11 use strict arg a,b
12 say a * b

Listing 3.3.: Calling routines
Output :
5
6

Overall, Open Object Rexx is a great scripting language with unconventional distinctions
that take time to get used to such as tilde characters to replace dots and array indexing start-
ing at 1. Nevertheless, it is an easy yet powerful language, which supports the programmer
with dynamically typed variables, object orientation and plenty collection classes suited for
every purpose.

3.2. The BSF4ooRexx Framework

The Bean Scripting Framework for Open Object Rexx exposes the Java infrastructure to the
ooRexx programming language. Using this framework, it is possible to interact with Java
classes and interfaces through the ooRexx proxy BSF class and a few related routines.
The Bean Scripting Framework is a set of Java classes that provide scripting language

support for Java applications. It was originally invented by IBM and later handed over to the
Apache Software Foundation. The BSF4ooRexx framework in its first versions implemented
a RexxEngine class to use Rexx inside Java applications. It was extended to even support
the other way around, where Rexx applications make use of Java classes. [28] The following
nutshell example provides an overview of the most relevant BSF4ooRexx functionality:

15

Chapter 3. Programming with Open Object Rexx

1 /* static class usage */
2 call bsf.import "java.lang.System", "System"
3 .System~out~println("Hello World from Java")
4 say "Java Version:" .System~getProperty("java.version")
5

6 /* save the System class for all rexx interpreter instances */
7 .environment~System = bsf.import("java.lang.System")
8

9 /* class instantiation */
10 url = .bsf~new("java.net.URL", "http://www.example.com:1080/docs/resource1.jpg")
11 say "File:" pp(url~getFile)
12 say "Host:" pp(url~getHost)
13 say "Port:" pp(url~getPort)
14

15 /* java interface handling */
16 rexxProxy = bsfCreateRexxProxy(.rexxHandler~new, , "java.lang.Runnable")
17 .bsf~new("java.lang.Thread", rexxProxy)~bsf.dispatch("start")
18 say "Main Thread ID:" bsfGetTID() -- fetch the current thread id
19

20 /* rexx handler class definition */
21 ::class rexxHandler -- this class implements the Runnable

interface
22 ::method run
23 tID = bsfGetTID()
24 .System~out~println("Sub Thread ID:" tID) -- let Java handle

the output
25

26

27 ::requires "BSF.CLS" /* get Java support */

Listing 3.4.: BSF4ooRexx nutshell example
Output :
He l lo World from Java
Java Vers ion : 1 . 8 . 0 _144
F i l e : [/ docs / r e source1 . jpg]
Host : [www. example . com]
Port : [1 0 8 0]
Main Thread ID : 13220
Sub Thread ID : 16368

The bsf.import() routine is used to import Java classes to access their static fields
and methods. This is done by providing the canonical class name and optionally a string
identifier, which will serve as the index in the .local collection for the imported Java class.
This example imports the System class and extracts information about the current version
of Java using the static getProperty method. It also uses the System.out.println() method to
print a simple "Hello World" message.
Line 10 creates a new instance of the java.net.URL class by simply instantiating the ooRexx

.BSF class with the canonical class name and a number of arguments that have to be passed
to the constructor of the Java class. The returned Rexx object acts as a proxy and can
forward messages sent from ooRexx to the corresponding Java object. Lines 11 to 13 invoke
the ~getFile(), ~getHost() and getPort() methods implemented in the java.net.URL
class. The pp() routine is defined in the BSF4ooRexx package and encloses the argument in
square brackets to promote readability.

The iroutine used in line 16 expects a Rexx object, an optional slot argument and the

16

Chapter 3. Programming with Open Object Rexx

canonical name of an abstract class or one or more Java interfaces. It returns a RexxProxy
object representing the given Rexx object on the Java side. Using this functionality, it is
possible for Java to send messages to the Rexx object as shown in the nutshell example. In line
17, a new Rexx object is created representing the java.lang.Thread class with the RexxProxy
from the previous line as argument. After that, the start() method from the Thread class is
invoked using the bsf.dispatch() method from the ooRexx Object class. Usually it is sufficient
to just send the method name as message to the object for it to invoke the right method, but
in that case "start" is one of the few methods that are implemented in the .BSF class - so
simply sending "start" would result in invoking the wrong method and not start the thread
after all. For comparison, here is how the Java equivalent of starting a thread would look
like:

1 public class HelloRunnable implements Runnable {
2 public void run() {
3 System.out.println("Hello from a thread!");
4 }
5

6 public static void main(String args[]) {
7 (new Thread(new HelloRunnable())).start();
8 }
9 }

Listing 3.5.: Starting a thread in Java [29]
One needs to instantiate the Thread class with a Java class that implements the Runnable

interface and invoke the start() method for the run() method to run in its own thread. Using
BSF4ooRexx, it is also possible to implement this functionality in ooRexx. The bsfGetTID()
routine returns the current thread ID in lines 18 and 23 and prints it out to illustrate that
the run() method really runs in its own thread.

Apart from the functions shown there are also other routines that can be utilized for some
special cases such as the box() and unbox() methods to create a Rexx object from a specific
primitive data type. This is actually something that happens under the hood for ooRexx
programmers, as they do not have to care about data types at all. Though in case that
there are multiple methods implemented in Java, each with different argument types it might
happen that the framework invokes the wrong method, so using the box() routine might be
the best way to solve this issue.
Actually BSF4ooRexx already saves the most important Java class objects in the .local col-

lection, so the import of java.lang.System in lines 2 and 7 from listing 3.4 was not necessary, as
this class is already accessible through .java.lang.System or .local~java.lang.System.
The .local~bsf4ooRexx directory also holds interesting values, that can be fetched to get
more information about the operating system:

1 say .bsf4ooRexx~file.separator -- returns "\" on Windows
2 say .bsf4ooRexx~path.separator -- returns ";" on Windows

All in all the BSF4ooRexx framework offers an easy yet powerful way to use all of Java
functionality in the dynamically typed, caseless and human-centric ooRexx language. Con-
sequently it is possible to use even cryptographic functions such as hashes and encryption
services without having to implement them oneself. This framework mitigates the core issue
of creating complex ooRexx solutions - that there are not enough libraries available to use.
Java is fast, handles concurrency well, scales with ease, is built for security and has a great
ecosystem. The Java Virtual Machine is cross-platform and uses run-time information to
manage itself and takes care of memory management automatically. For those reasons it is a
wise choice to build applications with Java support using the BSF4ooRexx framework.

17

4. Developing the ServiceNow App
Accelerator

As of time of this writing, the ServiceNow platform does not offer any possibilities to import
SQL Databases of any kind to fill existing tables with data or to create them in the first
place. Mostly big enterprises move their capacious IT infrastructure to the ServiceNow cloud
with legacy systems that are still running using background databases that do not have to
be created from scratch. Those could hold information about all kinds of user systems, the
employees, events, newsletter subscriptions and many more. Migrating to the cloud results
presents an opportunity to significantly reduce maintenance costs. Since ServiceNow promises
to replace legacy systems with the performing cloud, it is unnatural that businesses are forced
to hold onto their old systems because moving their databases is generally considered difficult.
That is why this master’s thesis focuses on the development of an application to solve this
issue. [3, p.40]
There is a set of REST APIs for application developers to use, which already includes a

Tables API. This utilizes the functionality to programmatically [30]

• retrieve multiple records from a specified table,
• insert one record into a table,
• or delete a record.

Naturally, using this APIs is only possible from within external or internal applications, as
there are no graphical user interfaces for those APIs. Apart from that, there are no REST
APIs to create or modify table structures, which makes it virtually impossible to perform
that task for external applications that do not have access to the ServiceNow infrastructure.

4.1. Possible Migration Strategies

The right choice of a migration strategy is crucial for an organisation to survive the transition
from using legacy information systems to the cloud. Typically, there are many approaches
that each have their respective field of application. One could distinguish between the fol-
lowing strategies.

• The Big Bang Approach
• The Database First Approach
• The Database Last Approach
• The Composite Database Approach
• The Butterfly Methodology

The Big Bang Approach refers to a redevelopment of the legacy system as stated in de-
scribed 2.6 on page 8. Although the risk of failure is quite high, it is sometimes best to
reinvent the wheel and leave old techniques behind, especially if the discussed application is
of small size and not mission crucial. [31]

18

Chapter 4. Developing the ServiceNow App Accelerator

The Database First Approach first transfers all data to the new systems, and than follows
with incrementally migrating legacy applications. This methodology has the huge advantage
of gradually migrating to the cloud with two running systems simultaneously. Transferring
the database first forces the new systems to be able to work with that data. All in all, this
is a quite simplistic migration strategy. [31]
The Database Last Approach is a similar concept that transfers the legacy database after all

new applications are running in the cloud. This prevalent method comes with disadvantages
regarding low performance of the so called "Reverse Gateway" entity, which is responsible for
mapping the target database schema to the legacy database. Another issue is, that complex
features of the new database may not be used due to the lack of support in the old database,
such as consistency constraints, integrity checks and triggers. [31]
Both the Database First Approach and the Database Last Approach are only applicable for

fully decomposable legacy systems, where all functional components are separable. Contrary,
the Composite Database Approach has a wider field of application as it is also available
for semi-decomposable and non-decomposable information systems. This migration strategy
involves operating both the legacy and target platform in parallel and gradually rebuilding
all functions of the archaic information system until it can be shut down. This involves a
powerful transaction co-ordinator to be set up between the applications and the databases,
who is responsible for intercepting all update requests and forwarding those calls to the
database with the corresponding information, albeit it is possible that sometimes both legacy
and target databases have duplicate data sets. If they do, the update is sent to both databases
to ensure consistency throughout the migration process. Another variant of the Composite
Database Approach is the Chicken-Little Strategy, which is an 11-step incremental migration
plan using complex gateways, that differs in functionality and placement of those gateways.
An overview of these 11 steps can be found at [31, p.27].
The Butterfly Strategy is a novel approach that replaces all gateways used in the previously

mentioned strategies with a module called "Database-Access-Allocator", whose responsibility
is to save all manipulation calls to the database in temporary data storages while migration
takes place. A data transformer is then used to perform those changes in the real databases.
This results in an unimpeded availability of the target database as long as the temporary
stores do not exceed their data limits. Certainly, this approach can only work in environments,
where the speed of updating the data stores is greater than filling them, otherwise the target
database would finish the migration. Therefore, it is possible that this is not the best strategy
for high-traffic information systems. [31]
The ServiceNow App Accelerator can be used for the Database Last Approach for migrat-

ing legacy information systems, since ServiceNow already offers a wide variety of pre-built
applications. However, ensuring that the data will work with them is a difficult problem and
definitely requires some configuration work to do, even after the data tables were success-
fully transferred to the platform. Still, a Database First Approach is also feasible since the
platform allows custom applications to be created on top of the data.

19

Chapter 4. Developing the ServiceNow App Accelerator

4.2. Project Overview

Since the ServiceNow App Accelerator is a complex application that involves many routines,
functions, classes and methods in multiple files, the following tree graph provides an abstract
overview of all relevant files and noteworthy directives in their order of appearance.

Legend:
• c: class
• m: method
• a: attribute
• r: routine

ServiceNowAppAccelerator.rxj
c RxApplication

m start
m handle
m setUpDefaultValues
m setUpValidators
m setUpListeners

c formValidator
m changed

c manageComboboxChangeListener
m changed

c configurationTabPaneChangeListener
m changed

c mainTabPaneChangeListener
m changed

c ServiceNow
a url
a username
a password
m init

c Database
a name
a type
a host
a url
a port
a username
a password
a tables
m init
m addTable

c DbTable
a name
a columns
m init
m addColumn

20

Chapter 4. Developing the ServiceNow App Accelerator

c Column
a name
a field
a type
a null
a default
a extra
a key

c JFXTableManager
m init
m setUpCellValueFactoryAndRootNode
m showAndFill
m showTablee
m clearDatae
m fillTablee

c PropertyValueFactory
m init
m call

c GetChildrenCallback
m call

SAA-controller.rxj
r openMail
r openManual
r goToConfiguration
r testDatabaseConnection
r saveDatabase
r saveServiceNow
r testServiceNow
c TestServiceNowCallback

m completed
m failed
m run

r validateForm
r dbConnect
r showPopup
r setLoadingSymbolToButton
r setCheckGraphicToButton
r saveRexxObjToJson
r getRexxObjFromJson
r promptMasterPassword
r prepareImport
r selectAllCheckboxes
r startImport
c ImportTask

m init
m getBasicAuthe
m connectToDatabase
m call

21

Chapter 4. Developing the ServiceNow App Accelerator

m unlockNextStep
m calculateTotalApiCalls
m extractTables
m addTable
m log
m logAndProgress
m progress
m getTableSchema
m getColumnSchema
m createServiceNowTable
m uploadData

c DataInsertionCallback
m completed
m failed

4.3. Project Structure

The ServiceNow App Accelerator consists of those two main parts: firstly, an internal Ser-
viceNow application written in ECMAScript 5 as an scoped application using ServiceNow
Studio. It features a self-built REST API for creating tables and filling it with so-called
"fields", that represent table columns in SQL-like databases. The exact implementation is
discussed in listing 4.49 on page 74. Secondly, the ooRexx application which offers a graphical
user interface (GUI) with the help of BSF4ooRexx and JavaFX. The application structure is
shown in the following graph.
ServiceNowAppAccelerator

java
Java 8

fontawesomefx-commons-8.15.jar
fontawesomefx-materialicons-2.2.0-5.jar
jfoenix-8.0.1.jar

Java 9
fontawesomefx-commons-9.1.2.jar
fontawesomefx-materialicons-2.2.0-9.1.2.jar
jfoenix-9.0.1.jar

commons-codec-1.10.jar
commons-logging-1.1.2.jar
fontawesomefx-fontawesome-4.7.0-5.jar
fontawesomefx-icons525-3.0.0.jar
httpasyncclient-4.0.2.jar
httpclient-4.3.6.jar
httpcore-4.4.6.jar
httpcore-nio-4.4.6.jar
httpmime-4.3.6.jar
jasypt-1.9.2-lite.jar
json-20170516.jar
mysql-connector-java-5.1.43-bin.jar
postgresql-42.1.4.jar
unirest-java-1.4.9.jar

licenses

22

Chapter 4. Developing the ServiceNow App Accelerator

Apache License 2.txt
Unirest MIT License.txt

ooRexx
credentials.json
JFXAlert-controller.rxj
json-rgf.cls
SAA-controller.rxj

resources
fonts

palanquin-regular.ttf
palanquindark-regular.ttf

installation-guide
installation-guide.md
retrieved-update-sets.png
sys_remote_update_set_e10d82a4db020300a3b07d9ebf9619b4.xml

JFXAlert.fxml
put_FXID_objects_into.my.app.rex
SAA.css
SAA.fxml

installation-guide.html
ServiceNowAppAccelerator.rxj
startup.rxj

The root directory holds the installation guide in form of an html file, the "ServiceNowAp-
pAccelerator.rxj" file and the "startup.rxj" file as an entry point to start the application.
The filename extension "rxj" stands for "Rexx with Java" and references Rexx files that use
BSF4ooRexx to access Java functionality.
The java directory holds all necessary Java archives for this BSF4ooRexx application. Its

subdirectories "Java 8" and "Java 9" provide Java version specific JAR files to also support
Java 9 and higher. The java directory includes the following libraries:

• FontAwesomeFX comes with several jars and provides an extensible icon font that
allows the programmer to use high quality icons without handling raw images. All icons
are vector graphics and can be easily resized or colourized. [32]

• Jasypt stands for "Java Simplified Encryption" and removes the burden of handling low
level methods for iterating over arrays filled with bytes. Using Jasypt, the programmer
simply initializes the algorithms, defines a clear text and a password, and receives a
base64 cipher text from the library. [33]

• JFoenix implements the Google Material Design using JavaFX components. [34]
• Unirest is a lightweight library for HTTP requests, which is used for REST API calls

in the ServiceNow App Accelerator project. [35]
• Apache Commons comes with a lot of different jar files which are just dependencies

of the Jasypt library.
• Database connectors for MySQL and PostgreSQL, so that Java can access those

databases.

All of those libraries are Open-Source. Their licenses can be found in the licenses directory.
Apart from Unirest, which is MIT licensed, all libraries use the Apache License version 2.0
(APL 2.0).
The ooRexx directory includes the controller files "SAA-controller.rxj" and "JFXAlert-

23

Chapter 4. Developing the ServiceNow App Accelerator

controller.rxj". They are used for interaction with the JavaFX view components to handle
every event that occurs in the GUI. The file "json-rgf.cls" implements the JSON class for
ooRexx to read and write json files. This is used for the body of various REST API calls and
for the credentials.json file, which is also located in this directory. It is encrypted, so the file
only contains a base64 representation of the cipher credentials.
The resources directory holds all custom fonts, the Markdown resource files of the installa-

tion guide from the root directory, the FXML files, one cascading style sheet and an ooRexx
script that puts all used components into a Rexx directory for easy referencing. FXML files
contain information on the hierarchical component structure of the GUI. See A.1, A.2 and
A.3 for the contents of the FXML and CSS files.

4.4. Application Bootstrap

The startup.rxj file in the root directory bootstraps the application. It starts with the license
agreement according to the Apache License Version 2.0 and a brief summary of the purpose
of this file, its author and version number alongside the date of creation.

1 #!/usr/bin/rexx
2 /**
3 * Inserts the Java archives from the "java" directory and Java-Version

dependent subdirectories
4 * to the classpath to make the classes of those libraries accessible and start

the main application
5 *
6 * @author Adrian Baginski, BSc (WU)
7 * @version 1.0, 2018-03-14
8 *---------------------- Apache Version 2.0 license -------------------------
9 * Copyright 2018 Adrian Baginski

10 *
11 * Licensed under the Apache License, Version 2.0 (the "License");
12 * you may not use this file except in compliance with the License.
13 * You may obtain a copy of the License at
14 *
15 * http://www.apache.org/licenses/LICENSE-2.0
16 *
17 * Unless required by applicable law or agreed to in writing, software
18 * distributed under the License is distributed on an "AS IS" BASIS,
19 * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or

implied.
20 * See the License for the specific language governing permissions and
21 * limitations under the License.
22 *---
23 */
24 signal on syntax
25

26 parse source os . absoluteFilepath
27

28 /* fetch path to this Rexx program */
29 appDirectory = filespec("Location", absoluteFilepath)
30 javaDir = appDirectory || "java" || .file~separator
31

32 /* determine java version */
33 'java -version 2>&1 | rxqueue' -- fetch output into RexxQueue
34 majorVersion = ""
35 do while queued() > 0 -- make sure that all queued lines get read
36 parse pull line

24

Chapter 4. Developing the ServiceNow App Accelerator

37 if majorVersion="" then
38 parse var line "java version """ majorVersion "." minorVersion "." .
39 end
40

41 pathExtension = ""
42 call addJarsToPathExtension
43

44 /* now also add java version dependent jars from the right subdirectory */
45 subDir = (majorVersion >= 9)~?("Java 9", "Java 8")
46 javaDir ||= subdir || .file~separator
47 call addJarsToPathExtension

Listing 4.1.: License and Bootstrap
Line 24 turns on signal messages for the entire application, which in case of a syntax error

triggers the internal routine "syntax". This way, custom error handling can be achieved. It
is a best practice for fetching extended error reports and locating bugs quickly. In this case,
additional information about the nature of the error is printed out and the application shuts
down in lines 74 to 77. This technique can be seen multiple times throughout all parts of the
application.

74 syntax:
75 co = condition("object")
76 say ppCondition2(co)
77 exit -1

Listing 4.2.: Internal Routine "Syntax"
Line 26 parses the source of the Rexx file which exposes it to some information about the

environment it runs in. This call returns three bits of information: [36]

• Operating System
• Command it was invoked with
• Absolute file path including file name

With the help of ooRexx string parsing we save the operating system in the local variable
os, drop the second information, but save the third one in the variable absoluteFilepath.
The built-in function filespec() in line 29 extracts the file path from the variable abso-

luteFilepath, and therefore drops the unnecessary file name. Line 30 concatenates the file path
of the invoked file with the "java" word using the \mintinline{oorexx}{||} symbol and
adds a file separator at the end using a static method of the FILE class. The file separator
depends on the operating system of the application environment - Windows uses a backslash
while Unix based platforms typically use a simple slash.
After that, the code in lines 32 to 39 parses the Java version to later include the right

dependencies by sending the command "java -version" to the console and parsing its response.

62 addJarsToPathExtension:
63 call SysFileTree javaDir, "jars", "F" -- search for files in java/ and save

as a .stem in `jars`
64 loop i = 1 to jars.0 -- the 0th entry of a stem holds the

number of items
65 parse var jars.i jar -- remove the first 4 bits of

information (date, time, size, access control)
66 extension = filespec("extension", jar) -- fetch the extension of the

file
67 if extension = "jar" then do

25

Chapter 4. Developing the ServiceNow App Accelerator

68 pathExtension ||= jar~strip
69 pathExtension ||= .file~pathSeparator -- the pathseparator of the

File class holds ";" or ":" depending on the OS
70 end
71 end
72 return

Listing 4.3.: Internal Routine "addJarsFromDirToClasspath"
The internal routine addJarsFromDirToClasspath() is invoked with the call instruction

in lines 42 and 47. It iterates over all files in the given directory of the variable javaDir,
searches for all Java archives and concatenates the paths to those files with the contents of
the variable pathExtension. This routine is called twice, as the javaDir variable is adjusted
according to the Java version in line 46 right before the second call. This procedure results
in first adding all general Java archives to the pathExtension variable, followed by the version
specific ones either from the subdirectory "Java 8" or "Java 9".

48

49 /* get the current value of the CLASSPATH environment variable */
50 classpath = value("CLASSPATH",,"ENVIRONMENT")
51

52 say time() "updating environment"
53 newClasspath = classpath || .file~pathSeparator || pathExtension -- append

our paths to be looked up last
54 call value "CLASSPATH", newClasspath, "ENVIRONMENT" -- change the classpath
55

56 /* run the Application again making use of the new classpath */
57 'rexxj "ServiceNowAppAccelerator.rxj"' -- this statement will be sent

directly to the terminal/console, which will invoke "rexxj"
58 /* change PATH back to original and return "true" to exit the application */
59 call value "CLASSPATH", classpath, "ENVIRONMENT"
60 exit

Listing 4.4.: Adjusting the Classpath environment variable
Afterwards, the current classpath is extracted from the environment variables. If it does not

yet contain the computed pathExtension, the application sets a new classpath and starts the
ServiceNow App Accelerator application with the new configuration in place. The instruction
in line 57 is quite interesting, as it directly sends a command to the console. This command
is blocking the further execution of wrapping startup.rxj program - it will return only if the
the second application exits.
This approach ensures, that the ServiceNow App Accelerator can use all dependencies

included in the "java" directory. Of course, if the user decides to permanently set each and
every jar file to the classpath, he would not even need the startup application. Given the
sheer amount of jar files involved, it is not feasible to expect that from all users.
The main application ServiceNowAppAccelerator.rxj prints the current time just before

loading all resources in line 38. Lines 40 to 46 import various static Java classes that are
used later on. Those are saved in the .local directory for easy accessing. As the application
grows in lines of code, it is wise to gather those class imports together at this position instead
of scattering it all over the document. The instructions in lines 51 and 52 add the controller
file to the package list, so that this main application file can also use the respective routines
and classes.

1 #!/usr/bin/rexx
2 /**

26

Chapter 4. Developing the ServiceNow App Accelerator

3 * The main application which loads all Fonts and starts the GUI
4 *
5 *
6 * @author Adrian Baginski, BSc (WU)
7 * @version 1.0, 2017-08-27
8 *---------------------- Apache Version 2.0 license -------------------------
9 * Copyright 2017 Adrian Baginski

10 *
11 * Licensed under the Apache License, Version 2.0 (the "License");
12 * you may not use this file except in compliance with the License.
13 * You may obtain a copy of the License at
14 *
15 * http://www.apache.org/licenses/LICENSE-2.0
16 *
17 * Unless required by applicable law or agreed to in writing, software
18 * distributed under the License is distributed on an "AS IS" BASIS,
19 * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or

implied.
20 * See the License for the specific language governing permissions and
21 * limitations under the License.
22 *---
23 */
24

25 /* in case an error occurres, jump to `Syntax:` label for custom error handling

*/
26 signal on syntax
27

28 /* parse operating system and filepath of this script */
29 parse source os . absoluteFilepath
30

31

32 /* add all jars from the java directory to the classpath to make use of the
provided classes

33 determine path to this Rexx program */
34 appDirectory = filespec("Location", absoluteFilepath)
35

36

37 say time() "loading resources"
38

39 /* static class imports */
40 call bsf.import "javafx.beans.value.ChangeListener", "ChangeListener"
41 call bsf.import "javafx.scene.text.Font", "Font"
42 call bsf.import "javafx.util.Callback", "fxCallback"
43 call bsf.import "javafx.collections.FXCollections", "FXCollections"
44 call bsf.import "javafx.beans.property.SimpleStringProperty",

"SimpleStringProperty"
45 call bsf.import "javafx.beans.property.SimpleIntegerProperty",

"SimpleIntegerProperty"
46 call bsf.import "java.util.concurrent.Executors", "Executors"
47

48 /* adding the controller file as a package to the context allows to use its
public routines

49 ::REQUIRES will not work here because the file would be loaded before calling
`addJarsFromDirToClasspath`

50 so the static class imports at the top of the file which reference external
libraries will cause exceptions */

51 package = .package~new("ooRexx/SAA-controller.rxj")
52 .context~package~addPackage(package)

Listing 4.5.: Static class import

27

Chapter 4. Developing the ServiceNow App Accelerator

Lines 55 to 57 define the appClzLdr entry in the .environment. This is a working instance
of the Java class URLClassLoader, which can be utilized to point at certain files and resources
inside the project. This is due to some classes requiring this kind of referencing of files, like
the Font class, which was originally defined in line 41. Both lines 72 and 73 include a font
using this class and they require the resource to be a stream rather than a file path or similar.
The instructions in lines 60 to 66 put some additional Java classes to the .environment

object for having the possibility of also accessing them through the controller files. The
Executor is a JavaFX concurrency feature for creating and managing new threads. The
algorithm used for encrypting and decrypting the credentials is also set here to password
based encryption with SHA1 and tripple DES. Later in the execution cycle, the master
password is used with this algorithm. Jasypt does not offer any algorithms whatsoever - one
has to choose an algorithm based on a list of available algorithms, which highly depends on
the installed providers. One of them could be Bouncycastle, Sun or Oracle. [37] Since each
computer could have a different list of providers it is best to stick to an algorithm that comes
with the Java installation - and PBEWithSHA1AndDESede is one the most secure ones in
that category. Finally, the JavaFX application is launched in line 77. This is yet again a
blocking call, so the next line of code will only start if the GUI is closed, which will result in
exiting the ServiceNow App Accelerator and possibly returning to the wrapping application
startup.rxj which will also shut down immediately.

54 /* prepare the URL class loader for the root directory of this application */
55 jfile = .bsf~new("java.io.File", appDirectory)
56 urlAppDir = jfile~toUri~toUrl
57 .environment~appClzLdr = .bsf~new("java.net.URLClassLoader",

bsf.createJavaArrayOf("java.net.URL", urlAppDir))
58

59 /* setup environment variables */
60 .environment~jsonLocation = "ooRexx/credentials.json"
61 .environment~FXMLLoader = bsf.import("javafx.fxml.FXMLLoader")
62 .environment~ValidationFacade =

bsf.import("com.jfoenix.validation.ValidationFacade")
63 .environment~Executor = .Executors~newSingleThreadExecutor -- create a new

executor for concurrency operations
64 .environment~encryptor =

.bsf~new("org.jasypt.encryption.pbe.StandardPBEStringEncryptor")
65 .encryptor~setAlgorithm("PBEWithSHA1AndDESede") -- use triple DES algorithm

for encryption and decryption operations
66 .environment~masterPassword = .nil
67

68 /* load fonts
69 one could also use @font-face in css to load fonts, but as of 2017-08-24

there is a bug in JavaFX 8 if the
70 path to the fonts has spaces in it. That is why it is safer to use this

method
71 see https://stackoverflow.com/questions/33973921/javafx-font-face-css-error- c

loadstylesheetunprivileged

*/
72 .Font~loadFont(.appClzLdr~getResourceAsStream("resources/fonts/palanquindark-re c

gular.ttf"),
14)

73 .Font~loadFont(.appClzLdr~getResourceAsStream("resources/fonts/palanquin-regula c
r.ttf"),
14)

74

75 /* launch the JavaFX Application Thread */
76 .environment~Application =

bsfCreateRexxProxy(.RxApplication~new,,"javafx.application.Application")

28

Chapter 4. Developing the ServiceNow App Accelerator

77 .Application~launch(.Application~getClass,.nil) -- invoke the "start"
Method of .RxApplication

78 exit 0

Listing 4.6.: JavaFX application start
When starting the application, Java sends a "start" message to the .RxApplication class and

provides the stage as an argument. JavaFX conceptually uses stages and scenes to build the
graphical user interface. A stage is the window that is displayed and the scene represents its
content. Therefore, starting new stages would result in opening new windows, and changing
the scene would refresh its content.
After receiving the stage, line 97 saves the stage object in an environment variable to

make it accessible outside this class. After that, its attribute title is set to the name of the
application, so that the window has an appropriate title.

91 /**
92 * The main GUI class
93 */
94 ::class RxApplication
95 ::method start -- will be invoked by the "launch" method
96 use arg stage -- we get the primary stage to use for our UI
97 .environment~stage = stage
98 stage~title = "ServiceNow App Accelerator"
99 .Platform~setImplicitExit(.false)

100 /* if the user closes the stage, call the "handle" method of this class by the
EventHandler interface */

101 rexxEventHandler = bsfCreateRexxProxy(self,,"javafx.event.EventHandler")
102 stage~setOnCloseRequest(rexxEventHandler)
103 /* load and attach FXML file */
104 sceneFXMLUrl = .appClzLdr~findResource("resources/SAA.fxml")
105 sceneFXML = .FXMLLoader~load(sceneFXMLUrl) -- load the fxml document
106 say time() "starting app"
107 /* create a scene from the FXML DOM and assign it to the stage */
108 scene = .bsf~new("javafx.scene.Scene", sceneFXML) -- create a scene for our

document
109 self~setUpDefaultValues
110 self~setUpListeners
111 self~setUpValidators
112 /* create a new instance of the JFXTableManager Class in scope "local"
113 to make it accessible from anywhere in this file */
114 .local~TableManager = .JFXTableManager~new

Listing 4.7.: The .RxApplication Class
Line 102 activates an event handler for close requests to intervene when the user tries to

close the stage manually. The generic Java class EventHandler is used many times in JavaFX
to handle all kinds of events by invoking the handle method in the provided interface class,
in that case self, which is the RxApplication class.
The handle method causes the Unirest and Executor background event loops to shut down,

before exiting the application. This is compulsory because the main Java application will not
be able to stop otherwise. [38]

120 /**
121 * Shuts down all event loops and exits the platform
122 */
123 ::method handle
124 /* Unirest starts a background event loop until you manually shutdown all the

threads by invoking `shutdown` */

29

Chapter 4. Developing the ServiceNow App Accelerator

125 .Unirest~shutdown
126 /* the same applies to the ExecutorService */
127 .Executor~shutdown
128 /* shutdown the Application */
129 .Platform~exit
130 say time() "shutting down"

Listing 4.8.: CloseRequest Event Handler
Lines 104 to 108 use the static FXMLLoader class to load the main fxml file "SAA.fxml"

into a variable and create a new instance of the Scene class using the previously defined fxml
content as parameter. Afterwards, the three methods setUpDefaultValues, setUpListeners
and setUpValidators of the RxApplication class are called to initialise some functionality of
the JavaFX application as shown in listing 4.9.

132 /**
133 * Points each combo box to the first value as this is not possible in FXML
134 */
135 ::method setUpDefaultValues private
136 comboBoxes = .my.app~SAA.fxml~databaseType, .my.app~SAA.fxml~manageCombobox
137 loop comboBox over comboBoxes
138 comboBox~getSelectionModel~select(0)
139 end
140

141 /**
142 * Creates change listeners on the "focused" property of some predefined

mandatory textfields
143 */
144 ::method setUpValidators private
145 IDs = "databaseHost", "databaseDatabase", "databaseUsername", -
146 "servicenowURL", "servicenowUsername", "servicenowPassword", -
147 "importDatabase", "importServiceNow"
148 loop ID over IDs
149 rexxProxy = bsfCreateRexxProxy(.formValidator~new,, .ChangeListener)
150 control = .my.app~SAA.fxml[ID~upper]
151 control~focusedProperty~addListener(rexxProxy)
152 end
153

154 /**
155 * Sets change listener to various controls of the FXML file
156 */
157 ::method setUpListeners private
158 /* add a change listener to the "manage" combobox */
159 rexxProxy =

bsfCreateRexxProxy(.manageComboboxChangeListener~new,,.ChangeListener)
160 .my.app~SAA.fxml~manageCombobox~valueProperty~addListener(rexxProxy)
161 /* add a change listener to the TabPane in the "Configuration" Tab
162 so we can update the data in the "Manage" Sub-Tab every time the user

visits this Tab */
163 rexxProxy = bsfCreateRexxProxy(.configurationTabPaneChangeListener~new,,.Chan c

geListener)
164 configurationTabPane = .my.app~SAA.fxml~configurationTabPane
165 configurationTabPane~getSelectionModel~selectedItemProperty~addListener(rexxP c

roxy)
166 /* add a change listener to the main TabPane
167 so we can update both ComboBoxes in the "Import Data" Tab each time the

user visits that Tab */
168 rexxProxy =

bsfCreateRexxProxy(.mainTabPaneChangeListener~new,,.ChangeListener)
169 mainTabPane = .my.app~SAA.fxml~mainTabPane

30

Chapter 4. Developing the ServiceNow App Accelerator

170 mainTabPane~getSelectionModel~selectedItemProperty~addListener(rexxProxy)

Listing 4.9.: Completing the Stage initialisation
The method setUpDefaultValues iterates over an predetermined array of combo boxes and

selects each first element. This is a valuable user experience addition to the application,
because the combo boxes would have an empty value otherwise. The method setUpValidators
is very similar, as it attaches a change listener to the focused property of some selected
controls. In case of this event, the changed method of the given interface class formValidator
is invoked with the following three arguments:

• observable: An ObservableValue object that holds the respective property
• oldValue: The value of the property before it was changed
• newValue: The value after the change

The formValidator simply invokes the validate method of the input fields or uses a Valida-
tionFacade to do so for combo boxes since they need special handling. [39] The validators are
located throughout the FXML file and simply check if a value is set, otherwise the bottom
border is coloured red.

173 /**
174 * An implementation of the ChangeListener interface.
175 */
176 ::class formValidator private
177 /**
178 * Valides the control when it looses focus
179 *
180 * @param observable - <code>javafx.beans.value.ObservableValue</code>
181 * @param oldValue - The value of the control before the change
182 * @param newValue - The current value after it has changed
183 */
184 ::method changed
185 use arg observable, oldValue, newValue
186 if \newValue then do
187 control = observable~getBean
188 if control~getClass~getSimpleName = "JFXComboBox" then
189 .ValidationFacade~validate(control) -- JFXComboBox
190 else
191 control~validate -- JFXTextField
192 end

Listing 4.10.: The formValidator class
The setUpListeners method in line 157 attaches a Rexx proxy class called manageCom-

boboxChangeListener as a change listener handler to the manageCombobox. This class simply
invokes the showAndFill method of the TableManager class with the new value of the combo
box, which is described in listing 4.34.

196 /**
197 * A change listener class for the control `manageCombobox` in the `Manage` Tab
198 */
199 ::class manageComboboxChangeListener private
200 /**
201 * This method gets invoked when the value of the `manageCombobox` has changed
202 * It clears the values of the the right table depending on the selection and

fills it with fresh data
203 *
204 * @param observable - <code>javafx.beans.value.ObservableValue</code>

31

Chapter 4. Developing the ServiceNow App Accelerator

205 * @param oldValue - The value of the control before the change
206 * @param newValue - The current value after it has changed
207 */
208 ::method changed
209 use arg observable, oldValue, newValue
210 .TableManager~showAndFill(newValue)

Listing 4.11.: The manageComboboxChangeListener class
Then, it creates two independent Rexx proxies configurationTabPaneChangeListener and

mainTabPaneChangeListener to attach them to the respective tab pane as change listener
handlers. The first mentioned class reloads the displayed table when the user selects the
"Manage" tab by invoking the showAndFill method in line 229, whose implementation is
discussed in listing 4.33.
The mainTabPaneChangeListener is a complex class that observes the main menu on the

left side. If the user clicks on "Import data", implemented in line 247, the script clears all
previous Database and ServiceNow credential combo box values in line 253 and refills them
with fresh data retrieved from the encrypted json file in the next lines. The implementation of
the getRexxObjFromJson() routine is located in the controller file and described in listing
4.22. Line 260 assembles the text for one combo box item using information about the
database type, host, and its name. Moreover the ServiceNow combo box is supposed to show
only the URL. After adding all items to an observable array list, they are attached to the
respective combo boxes in lines 263 and 270. This results in refreshing the data, so that the
user is always presented current data.

214 /**
215 * A change listener class for the JFXTabPane `configurationTabPane`
216 */
217 ::class configurationTabPaneChangeListener private
218 /**
219 * This class will reload the displayed Table when the user selects the "Manage"

Tab
220 *
221 * @param observable - <code>javafx.beans.value.ObservableValue</code>
222 * @param oldValue - The Tab before the change
223 * @param newValue - The current Tab after it has changed
224 */
225 ::method changed
226 use arg observable, oldValue, newValue
227 if newValue~getText = "Manage" then do
228 selectedComboboxItem =

.my.app~SAA.fxml~manageCombobox~getSelectionModel~getSelectedItem
229 .TableManager~showAndFill(selectedComboboxItem)
230 end
231

232

233

234 /**
235 * A change listener class for the main Tab Pane
236 */
237 ::class mainTabPaneChangeListener private
238 /**
239 * Refresh the items of both ComboBoxes on the "Import data" Tab when the user

visits it
240 *
241 * @param observable - <code>javafx.beans.value.ObservableValue</code>
242 * @param oldValue - The Tab before the change
243 * @param newValue - The current Tab after it has changed

32

Chapter 4. Developing the ServiceNow App Accelerator

244 */
245 ::method changed
246 use arg observable, oldValue, newValue
247 if newValue~getText~word(1) = "Import" then do
248 /* get a reference to the combo boxes */
249 databaseCombobox = .my.app~SAA.fxml~importDatabase
250 servicenowCombobox = .my.app~SAA.fxml~importServicenow
251 /* clear the data */
252 loop combobox over databaseCombobox, servicenowCombobox
253 combobox~getItems~clear
254 end
255 jsonObj = getRexxObjFromJson()
256 /* set items for databaseCombobox */
257 items = .FXCollections~observableArrayList
258 if jsonObj~hasEntry("Database") then
259 loop data over jsonObj~Database
260 text = data~type || ":" || data~host || "/" || data~dbName
261 items~add(text)
262 end
263 databaseCombobox~getItems~addAll(items)
264 /* set items for databaseCombobox */
265 items = .FXCollections~observableArrayList
266 if jsonObj~hasEntry("ServiceNow") then
267 loop data over jsonObj~ServiceNow
268 items~add(data~url)
269 end
270 servicenowCombobox~getItems~addAll(items)
271 end
272 else if oldValue~getText = "Import data" & .my.app~hasEntry("importTask") then

do
273 /* if the user switches from last tab to another tab and has started to

prepare the import task, abort it */
274 if .environment~hasEntry("jTask") then
275 .jTask~cancel(.true) -- interrupt the Thread if necessary
276 /* show the first screen for the user to select a database and servicenow

instance */
277 .my.app~SAA.fxml~importTabPane~getSelectionModel~selectFirst
278 end

Listing 4.12.: Tab pane change listener implementations
After all the previous steps have been completed, the application finally attaches the scene

to the stage at line 116 and invokes the show method, causing the graphical user interface to
display, thus concluding the bootstrap phase of the ServiceNow App Accelerator.

115 /* show the GUI */
116 stage~~setScene(scene) -
117 ~~show
118 say time() "app ready"

Listing 4.13.: Completing the Stage Initialisation

33

Chapter 4. Developing the ServiceNow App Accelerator

4.5. Configuration

The graphical design of this application is depicted in figure 4.1 running on Windows 10. It
consists of a menu on the left and the main content area to the right. The overall design
relies heavily on Google Material Design implemented with JFoenix’ custom controls such as
most used tab panes, input text fields, combo boxes, buttons and the progress bar at the last
step of the import data process. At application startup, the user receives an introductory
message that includes the email address of the author to file bugs and a link to the installation
guide located in the root directory. He is then prompted to install an update set inside his
ServiceNow instance for the obligatory REST API support. The main code of the update
set can be found in listing 4.49, whereas the content of the installation guide is depicted in
figure 4.2.

Figure 4.1.: Application Start Screen

34

Chapter 4. Developing the ServiceNow App Accelerator

Figure 4.2.: Installation Manual

35

Chapter 4. Developing the ServiceNow App Accelerator

By pressing the "Start" button, the routine goToConfiguration from the controller file in
line 43 gets invoked, which results in selecting the next item of the main tab pane on the
left. Listing 4.14 shows some static class imports used in the controller file in lines 9 to 17,
as well as the implementation of all routines used in the "Home" tab.
The openMail routine fetches the supplied slotDir as argument. This information is always

attached by BSF4ooRexx as a function call’s last argument and can be used to access the
ScriptContext and its Bindings [40]. Doing so, the routine extracts the value of the click event
target and tries to open an URI using the Application class, so that it is up to the operating
system to decide which program to use for that purpose. In the case of an E-Mail address
as URI starting with the string "mailto:", it will open a pre-installed User Mail Agent. The
openManual routine applies the exact same technique to open the file installation-guide.html
in the Browser.

1 /**
2 * The FXML Controller File communicates directly with the FXML controls from

"SAA.fxml".
3 * All Button or HyperLink clicks in FXML controls result in invoking a public

Routine located in this file.
4 *
5 * @author Adrian Baginski, BSc (WU)
6 * @version 1.0, 2017-08-27
7 */
8

9 /* Java static class imports */
10 call bsf.import "java.sql.DriverManager", "DriverManager"
11 call bsf.import "javafx.scene.control.Alert$AlertType", "AlertType" --

nested classes have a dollar sign in their qualified name
12 call bsf.import "de.jensd.fx.glyphs.materialicons.MaterialIcon", "MaterialIcon"
13 call bsf.import "com.mashape.unirest.http.async.Callback", "Callback"
14 call bsf.import "com.mashape.unirest.http.Unirest", "Unirest"
15 call bsf.import "javafx.application.Platform", "Platform"
16 call bsf.import "java.lang.Runnable", "Runnable"
17

18

19 /**
20 * Fetches the E-Mail address from slotDir and writes a new Mail using the

default Mail client
21 *
22 * @param slotDir - BSF4ooRexx supplies the SlotDir argument at the Java side
23 */
24 ::routine openMail public
25 use arg slotDir
26 scriptContext = slotDir~scriptContext
27 event = scriptContext~getAttribute("event")
28 hyperlink = event~target
29 eMailAddress = hyperlink~text
30 .Application~getHostServices~showDocument("mailto:" || eMailAddress)
31

32

33 /**
34 * Opens the file `installation-guide.md` in the root directory
35 */
36 ::routine openManual public
37 .Application~getHostServices~showDocument("installation-guide.html")
38

39

40 /**
41 * Selects the next Tab ('configuration')

36

Chapter 4. Developing the ServiceNow App Accelerator

42 */
43 ::routine goToConfiguration public
44 TabPane = .my.app~SAA.fxml~mainTabPane
45 SelectionModel = TabPane~getSelectionModel
46 SelectionModel~selectNext

Listing 4.14.: Static Imports and "Home" Routines from SAA-controller.rxj
The "Configuration" Tab consists of another tab pane to choose between "Database", "Ser-

viceNow" and "Manage". By default, "Database" is selected and offers a form to provide
database related information as depicted in figure 4.3. It has the following input fields:

• Database type: an editable combo box with two predefined values "mysql" and "post-
gresql". Adding new database types is possible, albeit they have to follow a strict naming
convention, since the ServiceNow App Accelerator will use this string as identifier for
connecting to the database. [41]

• Host: The IP address of the database host. This information can also be a domain
name, as long as the DNS can resolve it.

• Port: The optional Port of the database. If it is left out, Java will try to contact the
database on the usual ports - 3306 for MySQL for example.

• Database: The unique name of the database.
• Username: The name of the database user.
• Password: The password of the given user for the database. The input text is masked

by big black bullets.
The fields "Database type", "Host", "Database" and "Username" are mandatory and pro-

tected by a validator. If the value is empty, the control’s black bottom border will turn red
and prevent the form from submitting.

Figure 4.3.: Configuration - Database

37

Chapter 4. Developing the ServiceNow App Accelerator

After the user inserts all values properly, he can either save without verification or test the
connection first as described in listing 4.15.

49 /**
50 * Tries to connect to the Database and shows the result as a Popup or Button

image, depending on the result
51 *
52 * @param slotDir - BSF4ooRexx supplies the SlotDir argument at the Java side
53 */
54 ::routine testDatabaseConnection public
55 use arg slotDir
56 /* validate the form fields first */
57 IDs = "databaseHost", "databaseDatabase", "databaseUsername",

"databasePassword"
58 if \validateForm(IDs) then return -- leave the routine if .false returned
59 scriptContext = slotDir~scriptContext
60 /*@get(databaseType databaseHost databasePort databaseUsername

databasePassword databaseDatabase testDatabaseConnectionButton)*/
61 call setLoadingSymbolToButton testDatabaseConnectionButton
62 call SysSleep .5 -- wait 500ms for Java to update its GUI
63 /* now connect to the Database, since the arguments from the scriptContext

reference Java objects, we need
64 to extract the values of them before passing to the routine "dbConnect" */
65 selectedType = databaseType~getSelectionModel~getSelectedItem
66 signal on syntax
67 call dbConnect selectedType, databaseHost~getText, databaseUsername~getText,

databasePassword~getText, -
68 databaseDatabase~getText, databasePort~getText
69 if result~isA(.bsf) then do -- a Connection returned, i.e. dbConnect was

successful
70 call setCheckGraphicToButton testDatabaseConnectionButton
71 end
72 return
73

74 syntax:
75 co = condition('o')
76 message = co['ADDITIONAL'][1]
77 call showPopup message
78 testDatabaseConnectionButton~graphic = .nil -- remove the loading

spinner, test connection failed

Listing 4.15.: testDatabaseConnection Routine
The routine testDatabaseConnection initially calls the validateForm function on all the

previously mentioned mandatory form fields, which simply loops over all items and either calls
the ~validate method or uses the ValidationFacade class for combo boxes. Additionally, it
focuses on the first faulty control to for user experience reasons. This function will return
.false if at least one control did not match the validation pattern defined in the FXML file.
The ServiceNow App Accelerator uses solely RequiredValidators to check for value existence.
After all fields were validated, the testDatabaseConnection routine proceeds with extracting

the ScriptContext entry of the slotDir argument. It uses a decorator provided by BSF4ooRexx
in line 60 to fetch the controls from the fxml file using their respective fx:id attribute values
and saves them in local variables.

235 /**
236 * Calls the "validate" method of every JFXTextField supplied in the argument
237 *
238 * @param IDs - an Array of fx:id attributes of JFXTextField controls

38

Chapter 4. Developing the ServiceNow App Accelerator

239 * @return <code>.false</code> if the validator finds an error, otherwise
<code>.true</code>

240 */
241 ::routine validateForm private
242 parse upper arg IDs
243 loop ID over IDs
244 control = .my.app~SAA.fxml[ID]
245 if control~getClass~getSimpleName = "JFXComboBox" then
246 result = .ValidationFacade~validate(control)
247 else
248 result = control~validate -- JFXTextField
249 if \result then do -- control has an error
250 /* we need to ensure that all controls get validated before exiting this

function */
251 if firstFaultyControl~isA(.string) then
252 firstFaultyControl = control
253 end
254 end
255 /* focus on firstFaultyControl if it is a JavaFX control */
256 if firstFaultyControl~isA(.bsf) then do
257 firstFaultyControl~requestFocus
258 return .false
259 end
260 return .true

Listing 4.16.: validateForm Routine
Line 61 calls the routine setLoadingSymbolToButton with the button that was activated as

argument. This routine simply sets a progress indicator control as graphic with a fixed size of
20 by 20 pixels and a value of -1.0, which is an indeterminate value and is thus displayed as a
spinning circle. This is also a user experience measure to indicate that the script is running
and he is expected to receive a result soon.

309 /**
310 * Sets an indeterminate ProgressIndicator as graphic to the specified Button
311 *
312 * @param button - The reference to a JavaFX Button
313 */
314 ::routine setLoadingSymbolToButton
315 use arg button
316 loadingSymbol = .bsf~new("javafx.scene.control.ProgressIndicator", -1.0)

-- indeterminate progress
317 loadingSymbol~prefHeight = 20.0 -- resize the loading symbol
318 loadingSymbol~prefWidth = 20.0
319 button~graphic = loadingSymbol -- set the progress indicator as

image for the Button

Listing 4.17.: setLoadingSymbolToButton Routine
After this function call, the wrapping routine testDatabaseConnection calls a built-in func-

tion called "SysSleep" in line 62 to suspend the progress of the application for a specific
amount of time, in this case half a second. This is done for Java to update the GUI before
proceeding with the application flow.
Line 67 calls the routine dbConnect with a set of values and expects to return a Connection

object. The mentioned routine assembles a connection string using the provided information
in the arguments. It creates an instance of the Driver class for the database type, registers
it using the static class .DriverManager and tries to get a connection with the credentials.
Line 66 defines signal on syntax, so that if anything causes an error, the label syntax in

39

Chapter 4. Developing the ServiceNow App Accelerator

line 74 gets activated and fetches an error message based on the condition object in line 75.
The syntax subroutine further calls the showPopup routine with the stated error message,
and clears the loading symbol off the testDatabaseConnectionButton.

262 /**
263 * Connects via JDBC to a Database
264 *
265 * @param type - Database type, e.g. mysql or postgresql
266 * @param host - Host or IP address of the Database
267 * @param user - Username of the Database
268 * @param password - Password for the given User
269 * @param dbName - The name of the Database
270 * @param [port] - The Port number for this connection
271 * @return <code>java.sql.Connection</code>
272 */
273 ::routine dbConnect private
274 use arg type, host, user, password, dbName, port
275 /* Assemble the Connection String from the given information */
276 url = "jdbc:" || type || "://" || host
277 if port <> "PORT" & port <> "" then -- if the port was not provided as

argument, ooRexx will assign uppercase PORT to variable port
278 url ||= ":" || port
279 url ||= "/" || dbName
280 /* Get the JDBC-Driver */
281 driver = .bsf~new("com." || type || ".jdbc.Driver")
282 .DriverManager~registerDriver(driver)
283 /* Build the Connection*/
284 connection = .DriverManager~getConnection(url, user, password)
285 return connection

Listing 4.18.: dbConnect Routine
The showPopup routine generates a new custom Alert with an expendable text area and

shows it, therefore blocking the application flow until it has been closed. This provides a
generic way to show all kinds of error messages that can be utilized throughout the entire
application. The ~wrapText attribute of the Alert class in line 301 causes the text area to
not overflow its bounds, so that the user can always read the entire error message.

288 /**
289 * Displays a JavaFX Popup with the error message as expandable content
290 *
291 * @param message - The printed error message
292 */
293 ::routine showPopup
294 use strict arg message
295 alert = .bsf~new("javafx.scene.control.Alert", .AlertType~ERROR)
296 alert~setTitle("An Error occurred")
297 alert~setHeaderText("An Error occurred");
298 alert~setContentText("Ooops, something went wrong! Have a look at the error

message below:" .endOfLine)
299 expContent = .bsf~new("javafx.scene.layout.GridPane")
300 textArea = .bsf~new("javafx.scene.control.TextArea", message)
301 textArea~wrapText = .true
302 expContent~add(textArea, 0, 1)
303 /* Set expandable Exception into the dialog pane */
304 alert~getDialogPane~~setExpandableContent(expContent) -
305 ~~setExpanded(.true)
306 alert~showAndWait

Listing 4.19.: showPopup Routine

40

Chapter 4. Developing the ServiceNow App Accelerator

Finally, if there was no error in the dbConnect execution, the testDatabaseConnection
routine invokes setCheckGraphicToButton with the "Test connection" button as argument,
which simply sets a material icon tick mark as graphic, overriding the previously used loading
symbol.

323 * Sets a Tick mark as graphic to the specified Button
324 *
325 * @param button - The reference to a JavaFX Button
326 */
327 ::routine setCheckGraphicToButton
328 use arg button
329 /* create a tick mark using FontAwesome */
330 checkSymbol = .bsf~new("de.jensd.fx.glyphs.materialicons.MaterialIconView",

.MaterialIcon~CHECK)
331 button~graphic = checkSymbol

Listing 4.20.: setCheckGraphicToButton Routine
The user is also able to save his database connection permanently by invoking the save-

Database routine through the "Save" button. Lines 89 to 93 from listing 4.21 validate the
user input first to prevent saving empty values. Then the app creates a Rexx .stringTable

object to save all information from the form and calls the saveRexxObjToJson routine with
the just created Rexx object and the "Database" string identifier. If that works, the save-
DatabaseButton gets a tick mark too. Figure 4.5 shows how this form would look like after
testing and saving the database connection.

80 /**
81 * Saves the provided Database information in an ooRexx StringTable and
82 * invokes `saveRexxObjToJson` to save the data persistantly
83 * It is recommended to test the connection first, as this routine merely saves

the data!
84 *
85 * @param slotDir - BSF4ooRexx supplies the SlotDir argument at the Java side
86 */
87 ::routine saveDatabase public
88 use arg slotDir
89 /* validate the form fields first */
90 IDs = "databaseHost", "databaseDatabase", "databaseUsername",

"databasePassword"
91 if \validateForm(IDs) then return -- leave the routine if .false returned
92 scriptContext = slotDir~scriptContext
93 /*@get(databaseType databaseHost databasePort databaseUsername

databasePassword databaseDatabase saveDatabaseButton)*/
94 /* create a Rexx Object to hold all information */
95 rxObj = .stringTable~new
96 rxObj~type = databaseType~getSelectionModel~selectedItem
97 rxObj~host = databaseHost~getText
98 rxObj~port = databasePort~getText
99 rxObj~user = databaseUsername~getText

100 rxObj~pass = databasePassword~getText
101 rxObj~dbName = databaseDatabase~getText
102 success = saveRexxObjToJson(rxObj, "Database")
103 if success then
104 call setCheckGraphicToButton saveDatabaseButton

Listing 4.21.: saveDatabase Routine
Saving the database connection conceptually requires to open the json file with the cre-

dentials, decrypt it, extract only the database information, add the new credentials and then

41

Chapter 4. Developing the ServiceNow App Accelerator

Figure 4.4.: Master Password Prompt

encrypt and rewrite it back to its initial location. The getRexxObjFromJson routine creates
a Rexx object in lines 376 to 378, that has a similar structure to that of a JSON string. A
Rexx .queue is a collection class that offers the "push" method where new items are stored
at the beginning of the queue. This is exactly what is needed in this case, because the latest
credentials are the most important ones, thus they should be displayed first. After making
sure that a master password is set, the application opens the file "credentials.json" in line
384, reads its content in line 387 and tries to decrypt it using Jasypt in line 390. If anything
goes wrong, the syntax subroutine gets invoked, closing the stream if necessary and returning
the empty jsonObj. In case of successful decryption, the Database and ServiceNow informa-
tion of the decrypted credentials file is appended to the jsonObj before returning. Note that
Rexx executes all instructions after the syntax: label because there is no exit or return
instruction before that.
The routine saveRexxObjToJson appends the rxObj from the argument to the jsonObj from

the getRexxObjFromJson function call. Then it encrypts the Rexx object holding the old and
new credentials and writes it back line by line to the "credentials.json" file in lines 361 to 363.

334 /**
335 * Reads the contents of .jsonLocation defined in the main app and appends the

provided Rexx Object
336 *
337 * @param rxObj - A Rexx Object which will be converted to Json
338 * @param type - Can be either "Database" or "ServiceNow"
339 */
340 ::routine saveRexxObjToJson
341 use strict arg rxObj, type
342 jsonObj = getRexxObjFromJson()
343 /* we cannot save without a password, so leave the routine if there is no

password set */

42

Chapter 4. Developing the ServiceNow App Accelerator

344 if .masterPassword = .nil then
345 return .false
346 /* prepend our argument `rxObj` based on the type to the `jsonObj` */
347 select
348 when type = "Database" then
349 jsonObj~Database~push(rxObj)
350 when type = "ServiceNow" then
351 jsonObj~ServiceNow~push(rxObj)
352 otherwise
353 raise syntax 40.900 array("Bad Type. Use either `Database` or

`ServiceNow`!")
354 end
355 /* convert `jsonObj` back to a string and write it to the jsonStream */
356 jsonEngine = .json~new
357 jsonString = jsonEngine~toJson(jsonObj)
358 encryptedJsonString = .encryptor~encrypt(jsonString)
359 jsonStream = .stream~new(.jsonLocation)
360 jsonStream~open("write replace") -- open the stream with write access and

replace its content when writing
361 loop line over encryptedJsonString
362 jsonStream~lineOut(line)
363 end
364 jsonStream~close -- release the lock on this file
365 return .true
366

367

368 /**
369 * Reads the JSON String from the hard drive and replaces the used Array with an

Queue
370 *
371 * @return jsonObj - A Rexx Object which holds all information from the Json

file located in .jsonLocation
372 */
373 ::routine getRexxObjFromJson public
374 /* create a new jsonObj with queues instead of the generated arrays and import

the existing data from tmpObj
375 queues offer the "push" method, with which new items land on top of the

collection */
376 jsonObj = .stringTable~new
377 jsonObj~Database = .queue~new
378 jsonObj~ServiceNow = .queue~new
379 /* make sure that the master password is set or return empty jsonObj */
380 passwordIsSet = promptMasterPassword()
381 if \passwordIsSet then
382 call syntax
383 /* load a fresh copy of the json file as a Rexx string */
384 jsonStream = .stream~new(.jsonLocation)
385 jsonStream~open("read")
386 jsonLength = jsonStream~chars
387 encryptedData = jsonStream~charIn(1, jsonLength)
388 /* try decrypting the data, the app throws a Signal if the password is wrong

*/
389 signal on syntax -- go to syntax: in case of exception
390 jsonString = .encryptor~decrypt(encryptedData)
391 /* convert the Rexx string with json syntax to a Rexx object */
392 jsonEngine = .json~new
393 tmpObj = jsonEngine~fromJson(jsonString)
394 jsonObj~Database~appendAll(tmpObj~Database)
395 jsonObj~ServiceNow~appendAll(tmpObj~ServiceNow)
396 syntax:
397 if jsonStream~isA(.stream) then

43

Chapter 4. Developing the ServiceNow App Accelerator

398 jsonStream~close
399 return jsonObj

Listing 4.22.: saveRexxObjToJson and getRexxObjFromJson Routines
The promptMasterPassword routine displays a Google Material Design styled custom alert

box as depicted in figure 4.4 on page 42 Unfortunately there is no out-of-the-box component
to use here, so all controls have to be assembled by the programmer individually to create
such an alert box. To save some lines of code, this application uses the .FXMLLoader class
to import the FXML file shown in A.3. The function bsf.createJavaArrayOf() in line
412 creates a Java array of type Node and length 1 with the fxml content. The application
then adds an OK button to the Alert window and ~setOverlayClose is used to turn overlay
close off, so that the user is not allowed to leave this alert without entering a password when
clicking outside the alert box area. Since Jasypt does not allow empty passwords, lines 421
and 422 test if the result of the alert box is a string or empty. After that, the master password
is saved in the environment object and fed to Jasypt’s password based key derivation function
using the ~setPassword() method.

This popup will only show once given that the user inputs a password properly. If it
matches the previously used password for encrypting credentials, the getRexxObjFromJson
routine will succeed in retrieving them from the encrypted "credentials.json" file and be able
to restore them.

401 /**
402 * Displays a text input dialog if the master password is empty
403 *
404 * @return <code>.true</code> if password is set
405 */
406 ::routine promptMasterPassword
407 if .masterPassword = .nil then do
408 JFXAlert = .bsf~new("com.jfoenix.controls.JFXAlert", .stage)
409 .environment~JFXAlert = JFXAlert -- make it accessible for

JFXAlert-controller.rxj
410 alertFXMLUrl = .appClzLdr~findResource("resources/JFXAlert.fxml")
411 alertFXML = .FXMLLoader~load(alertFXMLUrl) -- load the fxml document
412 JFXAlert~setContent(bsf.createJavaArrayOf("javafx.scene.Node", alertFXML))

-- setContent is expecting a java array of type Node
413 okButtonType = .bsf~new("javafx.scene.control.ButtonType", "OK",

bsf.import("javafx.scene.control.ButtonBar$ButtonData")~OK_DONE)
414 JFXAlert~getDialogPane~getButtonTypes~add(okButtonType)
415 /* usually, if one clicks anywhere in a JFXAlert, it closes.
416 Disable that because we want to encourage the user to use a password */
417 JFXAlert~setOverlayClose(.false)
418 /* show the alert and wait for its answer */
419 Optional = JFXAlert~showAndWait
420 /* if the user clicks on ESC, Optional~get holds the invisible "Close"

Button, return .false in that case */
421 if \Optional~get~isA(.string) then
422 return .false
423 /* save the master password in the environment */
424 .environment~masterPassword = Optional~get
425 /* feed the password based key derivation function */
426 .encryptor~setPassword(.masterPassword)
427 end
428 return .true -- password was set before

Listing 4.23.: promptMasterPassword Routine

44

Chapter 4. Developing the ServiceNow App Accelerator

Figure 4.5.: Database Connection saved

Once the user has tested and saved his database connection details, he can switch to the
second tab "ServiceNow". There he gets presented with a short text and just the those three
input fields, as described below and shown in figure 4.6 on page 46:

• ServiceNow instance URL
• Username
• Password

Since ServiceNow’s REST APIs are secured with basic authentication, username and pass-
word alongside the URL of the ServiceNow instance are mandatory to provide. In this view
the user also gets presented with two buttons to test and save his credentials. Testing invokes
testServiceNow, which works very similar to the testDatabaseConnection routine, just with
less controls to deal with.
After validating all form controls, a loading symbol is attached to the button in line 143.

Then, the API URL is extended with the string "/api/x_146620_serviceno/create_t c

able/%7BtestApiExistence%7D". This calls the custom REST API for creating a table,
which was created for to this project and can be imported with an XML Update Set following
the instructions in the manual. The exact ServiceNow-side JavaScript implementation of this
API is discussed in 4.49 on page 74. Basically, it fetches the table name of the URL and
validates it against the string testApiExistence and eventually returns just a message that
the API exists and works properly. Additionally, ServiceNow obviously inspects the basic
authentication details and returns an error if these are wrong.
Line 150 creates a new Rexx proxy class .TestServiceNowCallback that implements the

Java Callback interface. In line 152 to 154 Unirest is used to create an asynchronous PUT
request to the previously assembled URL of the API authenticated with the given username
and password. In case an error occurs, lines 158 and 159 remove the loading symbol of the

45

Chapter 4. Developing the ServiceNow App Accelerator

Figure 4.6.: Configuration - ServiceNow

button and raise the condition again in the caller of the routine which ultimatelly causes the
error message to show. [42, pp. 69–73]

129 /**
130 * Connects to the URL specified in the control in the `ServiceNow` tab using

basic authentication with
131 * username and password that are also supplied in this tab.
132 *
133 * @param slotDir - BSF4ooRexx supplies the SlotDir argument at the Java side
134 */
135 ::routine testServiceNow public
136 use arg slotDir
137 /* validate the form fields first */
138 IDs = "servicenowURL", "servicenowUsername", "servicenowPassword"
139 if \validateForm(IDs) then return -- leave the routine if .false returned
140 /*@get(servicenowURL servicenowUsername servicenowPassword)*/
141 /* build the REST request using the `Unirest` API */
142 button = .my.app~SAA.fxml~testServiceNowButton
143 call setLoadingSymbolToButton button
144 call SysSleep .5 -- wait 500ms for Java to update the GUI
145 url = servicenowUrl~getText
146 user = servicenowUsername~getText
147 pass = servicenowPassword~getText
148 /* for testing we use a PUT request on the custom rest api with a magic table

name containing { } */
149 API.URL = url || "/api/x_146620_serviceno/create_table/%7BtestApiExistence%7D"
150 rexxProxy = bsfCreateRexxProxy(.TestServiceNowCallback~new,, .Callback)
151 signal on syntax
152 .Unirest~put(API.URL) -
153 ~basicAuth(user, pass) -
154 ~asJsonAsync(rexxProxy)

46

Chapter 4. Developing the ServiceNow App Accelerator

155 return
156

157 syntax:
158 button~setGraphic(.nil) -- remove the loading symbol
159 raise propagate -- show the error message

Listing 4.24.: testServiceNow Routine
The TestServiceNowCallback class implements the three methods

• completed
• failed
• run

Completed and failed are needed for the Callback Java interface, while run is invoked by
the Runnable interface. JavaFX handles all GUI-related operations in the so called "JavaFX
Application Thread". If any other threads want to to change GUI controls, they need to use
the ~runLater() method of the static Platform Java class, as used in lines 179 and 193,
which will invoke the run method.
Both the completed and failed methods create a userData directory with either the re-

sponse or the exception and provide that to the Rexx proxy class as second argument of the
bsfCreateRexxProxy(). This causes the invoked methods through that proxy to hold the
userData in the slotDir argument, which is automatically supplied as last argument anyway.

The run method extracts the status code in case the API call returned with a response and
not an error. If it was 200, the REST API works well and the button receives a tick mark
using the setCheckGraphicToButton routine. Otherwise an error message with the status
code, the exact server response and a hint what could have gone wrong is displayed in the
expendable content area of JFXAlert using the showPopup routine in lines 213 to 219, which
is discussed in listing 4.19 on page 40. In case of an exception, the message, cause and stack
trace are extracted from it and displayed accordingly. The method "failed" is invoked when
the host cannot be reached, so the ServiceNow URL is probably wrong. Either way, this class
provides very exact information on the nature of an error.

161 /**
162 * A Rexx Proxy Class. Java can invoke methods in this class
163 */
164 ::class TestServiceNowCallback
165 /**
166 * The REST API call was successful and returns a response
167 * Examines the status code and displays the result to the user
168 *
169 * @param response - <code>com.mashape.unirest.http.HttpResponse</code>
170 */
171 ::method completed
172 use arg response
173 userData = .stringTable~new
174 userData~response = response
175 /* create another Proxy - let this class carry out the invoked method "run" */
176 runnable = bsfCreateRexxProxy(self, userData, .Runnable)
177 /* since this Async call operates in a separate Thread, we cannot change

controls in the user interface
178 so we need to use Platform.runLater() to queue the GUI changes in the main

JavaFX Application Thread */
179 .Platform~runLater(runnable)
180

181 /**

47

Chapter 4. Developing the ServiceNow App Accelerator

182 * The REST API call was not successful, probably because the host is not
reachable

183 * Displays an error message with the stack trace
184 * Platform~runLater() is used to execute GUI changes
185 *
186 * @param exception -

<code>com.mashape.unirest.http.exceptions.UnirestException</code>
187 */
188 ::method failed
189 use arg exception
190 userData = .stringTable~new
191 userData~exception = exception
192 runnable = bsfCreateRexxProxy(self, userData, .Runnable)
193 .Platform~runLater(runnable)
194

195 /**
196 * Called by a java.lang.Runnable interface
197 * Decides based on the userData in the slotDir argument, whether the response

is 200 OK and a tick mark has to be
198 * displayed, otherwise shows a popup with some information about the error
199 *
200 * @param slotDir - BSF4ooRexx supplies the SlotDir argument at the Java side
201 */
202 ::method run
203 use arg slotDir
204 userData = slotDir~userData
205 button = .my.app~SAA.fxml~testServiceNowButton
206 if userData~hasEntry("response") then do
207 response = userData~response
208 statusCode = response~getStatus
209 message = ""
210 if statusCode = 200 then
211 call setCheckGraphicToButton button
212 else do
213 if statusCode = 400 then
214 message ||= "You probably forgot to import the custom REST APIs. Please

have a detailed look at the information in the `Home` tab."
.endOfLine~copies(2)

215 else if statusCode = 401 then
216 message ||= "Wrong credentials!" .endOfLine~copies(2)
217 message ||= "Status Code:" statusCode .endOfLine
218 message ||= "Server Response:" response~getBody~toString
219 call showPopup message
220 button~setGraphic(.nil) -- remove the loading graphic
221 end
222 end
223 else do
224 /* no response, so method "failed" invoked this runnable */
225 exception = userData~exception
226 message = "The Server could not be reached!" .endOfLine
227 message ||= "Message:" exception~getMessage .endOfLine
228 message ||= "Cause:" exception~getCause .endOfLine
229 message ||= "Stack Trace:" exception~getStackTrace .endOfLine
230 call showPopup message
231 button~setGraphic(.nil)
232 end

Listing 4.25.: TestServiceNowCallback Class
Saving the ServiceNow credentials works just like saving Database information. After

validating the three input fields, their values are saved in the rxObj stringTable and supplied

48

Chapter 4. Developing the ServiceNow App Accelerator

Figure 4.7.: Test ServiceNow returns an error

to the saveRexxObjToJson() routine with the "ServiceNow" string identifier. If this call
returns .true, a tick mark is added to the left button showing the user that all went well.

106 /**
107 * Saves the content of the three input controls in the `ServiceNow` tab
108 *
109 * @param slotDir - BSF4ooRexx supplies the SlotDir argument at the Java side
110 */
111 ::routine saveServiceNow public
112 use arg slotDir
113 /* validate the form fields first */
114 IDs = "servicenowURL", "servicenowUsername", "servicenowPassword"
115 if \validateForm(IDs) then return -- leave the routine if .false returned
116 scriptContext = slotDir~scriptContext
117 /*@get(servicenowURL servicenowUsername servicenowPassword

saveServiceNowButton)*/
118 /* create a Rexx Object to hold all information */
119 rxObj = .stringTable~new
120 rxObj~url = servicenowURL~getText
121 rxObj~user = servicenowUsername~getText
122 rxObj~pass = servicenowPassword~getText
123 success = saveRexxObjToJson(rxObj, "ServiceNow")
124 /* check if there was an error while saving, caused by lack of password */
125 if success then
126 call setCheckGraphicToButton saveServiceNowButton

Listing 4.26.: saveServiceNow Routine
Figures 4.7 and 4.8 show the error message with the status code 400 and the ServiceNow

App Accelerator after successfully testing and saving ServiceNow credentials.

49

Chapter 4. Developing the ServiceNow App Accelerator

Figure 4.8.: ServiceNow Connection tested and saved

50

Chapter 4. Developing the ServiceNow App Accelerator

4.6. Manage Credentials

The last configuration tab "Manage credentials" shows a combo box to switch between
Database and ServiceNow credentials, as well as a table beneath to display the data as
depicted in figure 4.9 There are actually two tables, one for each credentials type - they each
use the visible and managed attributes to hide the currently non-active table. The FXML
source code of the database table shows, that a JFXTreeTableView is used. This is the
material design implementation of a traditional TreeTableView which additionally offers a
grouping mechanism. [43]

383 <JFXTreeTableView fx:id="configurationManageDatabases" managed="true"
visible="true" prefHeight="260.0">

384 <VBox.margin>
385 <Insets top="15.0" />
386 </VBox.margin>
387 <columns>
388 <JFXTreeTableColumn text="Type" prefWidth="100.0" />
389 <JFXTreeTableColumn text="Host" prefWidth="100.0" />
390 <JFXTreeTableColumn text="Port" prefWidth="60.0" />
391 <JFXTreeTableColumn text="Name" />
392 <JFXTreeTableColumn text="Username" />
393 <JFXTreeTableColumn text="Password" />
394 </columns>
395 <columnResizePolicy>
396 <TreeTableView fx:constant="CONSTRAINED_RESIZE_POLICY" />
397 </columnResizePolicy>
398 </JFXTreeTableView>

Listing 4.27.: JFXTreeTableView
Tables are quite difficult to manage in JavaFX, because they offer lots of built-in features

for the correlated data such as sorting or auto-update functionality. It is not as simple as in
html, where one only includes the data row by row - instead, so called "data models" have
to be applied. Those are simple classes that hold some attributes which will be eventually
displayed in the respective table columns. Therefore, each object has its own row and the
programmer does not have to manipulate the table or its content, but the objects it represents.
The data model for the ServiceNow credentials has three attributes "url", "username" and

"password". The constructor method optionally fetches the argument of class .stringTable
and extracts all information about the ServiceNow connection.

282 /**
283 * The data model class "ServiceNow" holds all attributes that are to be shown

in the affiliated Table in the `Manage` Tab
284 */
285 ::class ServiceNow
286 ::attribute url
287 ::attribute username
288 ::attribute password
289 /**
290 * Constructor method
291 * Extracts the information of the supplied stringTable and saves them as class

attributes
292 *
293 * @param informationDirectory - a <code>stringTable</code> which holds all

saved information about
294 * a ServiceNow connection as a result from

calling <code>getRexxObjFromJson</code>

51

Chapter 4. Developing the ServiceNow App Accelerator

Figure 4.9.: Manage credentials

295 */
296 ::method init
297 expose url username password
298 use arg informationDirectory
299 if informationDirectory~isA(.stringTable) then do
300 url = informationDirectory~url
301 username = informationDirectory~user
302 password = informationDirectory~pass
303 end

Listing 4.28.: ServiceNow data model in ServiceNowAppAccelerator.rxj
The database data model is very similar, albeit it holds more attributes and the option

to save and add tables. The addTable method will be used in the final Import Task to add
tables to a given database.

307 /**
308 * The class "Database" holds connection and schema information about one

database
309 */
310 ::class Database
311 ::attribute name
312 ::attribute type
313 ::attribute host
314 ::attribute url
315 ::attribute port
316 ::attribute username
317 ::attribute password
318 ::attribute tables
319 /**
320 * Constructor method

52

Chapter 4. Developing the ServiceNow App Accelerator

321 * Extracts the information of the supplied stringTable and saves them as class
attributes

322 *
323 * @param informationDirectory - a <code>stringTable</code> which holds all

saved information about a Database
324 * as a result from calling

<code>getRexxObjFromJson</code>
325 */
326 ::method init
327 expose tables name type host url port username password
328 use arg informationDirectory
329 tables = .array~new
330 if informationDirectory~isA(.stringTable) then do
331 name = informationDirectory~dbName
332 type = informationDirectory~type
333 host = informationDirectory~host
334 port = informationDirectory~port
335 url = informationDirectory~url
336 username = informationDirectory~user
337 password = informationDirectory~pass
338 end
339

340 /**
341 * Adds a <code>DbTable</code> to the `tables` collection
342 *
343 * @param table - An instance of the DbTable class defined in this file
344 */
345 ::method addTable
346 expose tables
347 use arg table
348 tables~append(table)

Listing 4.29.: Database data model
The start method of the RxApplication class created a new instance of the JFXTableMan-

ager just before showing the graphical user interface in line 114 of listing 4.7 on page 29. This
class is supposed to connect the data models with the tables through cell value factories. The
constructor simply calls the setUpCellValueFactoryAndRootNode method with a reference
to each table individually. The mentioned method loops over all columns of the table and
extracts the column name from the fxml file. This information is used to create a Factory
that implements the Java Callback interface of an instance of the PropertyValueFactory class.
This Rexx proxy is set as cell value factory of the column and will answer to calls about the
expected content of the cell.

395 /**
396 * The class `JFXTableManager` manages both tables from the "Manage" Tab
397 */
398 ::class JFXTableManager
399 /**
400 * Constructor method
401 */
402 ::method init
403 expose databaseTable servicenowTable
404 /* get a reference of both tables and save them in the class */
405 databaseTable = .my.app~SAA.fxml~configurationManageDatabases
406 servicenowTable = .my.app~SAA.fxml~configurationManageServiceNowInstances
407 self~setUpCellValueFactoryAndRootNode(databaseTable)
408 self~setUpCellValueFactoryAndRootNode(servicenowTable)
409

53

Chapter 4. Developing the ServiceNow App Accelerator

410 /**
411 * Sets up the CellValueFactory for every column in the supplied table
412 * After that, it creates an empty root node for the Table
413 *
414 * @param table - A <code>JFXTreeTableView</code>
415 */
416 ::method setUpCellValueFactoryAndRootNode private
417 use strict arg table
418 loop column over table~getColumns
419 heading = column~getText
420 factory = .PropertyValueFactory~new(heading)
421 rexxProxy = bsfCreateRexxProxy(factory,,.fxCallback)
422 column~setCellValueFactory(rexxProxy)
423 end
424 /* create an empty TreeObject */
425 RecursiveTreeObject =

.bsf~new("com.jfoenix.controls.datamodels.treetable.RecursiveTreeObject")
426 callbackFunction = bsfCreateRexxProxy(.GetChildrenCallback~new,,.fxCallback)
427 root = .bsf~new("com.jfoenix.controls.RecursiveTreeItem", RecursiveTreeObject,

callbackFunction)
428 /* expand the root node to automatically display all its child nodes */
429 root~expanded = .true
430 /* set the root node in the table and hide it, because it is empty anyway */
431 table~root = root
432 table~showRoot = .false

Listing 4.30.: JFXTableManager Class
After the set up of each column, an empty RecursiveTreeItem is created and set as root

of the table in lines 425 to 427, whose constructors require a RecursiveTreeObject as first
argument and a callback function as second.[44] The GetChildrenCallback class is used here
to simply return all child nodes of the root node on call. The root node itself is hidden,
because it contains no data and just acts as a hook for the objects holding real data.

549 /**
550 * Another Callback function for retrieving the children of the data model

RecursiveTreeObject
551 */
552 ::class GetChildrenCallback
553 /**
554 * Supplies the caller with the child nodes of RecursiveTreeObject
555 *
556 * @param RecursiveTreeObject - supplied by the caller on Java side. Holds the

proxied extended java class `jObj`
557 * @return The children of the parameter
558 */
559 ::method call
560 use arg RecursiveTreeObject
561 return RecursiveTreeObject~getChildren

Listing 4.31.: GetChildrenCallback Class
The method setUpCellValueFactoryAndRootNode used the .PropertyValueFactory class

in line 420 by supplying the constructor with the column name. Since this class implements
the Java Callback interface, it will invoke the call method whenever the table requests new
data. The supplied argument CellDataFeatures, which is used in line 540, is a nested class of
the TableColumn class and is bound to a specific table, a column and a value. [45]

By extracting the value of the RecursiveTreeItem in line 542, jObj represents the Recursive-
TreeObject and is used to retrieve the underlying Rexx proxy class. Its ~sendMessage0()

54

Chapter 4. Developing the ServiceNow App Accelerator

method is utilized to send a message with the column name to the Rexx object to receive the
attribute value which is then returned and used as cell value. Again, each column has its own
PropertyValueFactory, which retrieves a RecursiveTreeItem, that is an equivalent of a table
row out of the Callback interface call. Having both column and row, it makes it possible to
fetch the cell value.

517 /**
518 * implements javafx.util.Callback<P,R>(P o)
519 * This class allows instances, that remember the message to be sent to the data

model instances to
520 * return the attribute that should be shown in the table cell.
521 */
522 ::class PropertyValueFactory
523 /**
524 * This constructor method saves the attribute name in the class
525 *
526 * attributeName - The name of the Attribute in the data model class
527 */
528 ::method init
529 expose attributeName
530 use strict arg attributeName
531

532 /**
533 * Is called by the Callback Interface whenever the Table needs new Data
534 *
535 * @param CellDataFeatures - is a nested class of <code>TreeTableColumn</code>

and holds information about the Table
536 * @return The attribute value from the data model camouflaged as the java proxy

class
537 */
538 ::method call
539 expose attributeName
540 use arg CellDataFeatures -- an observable value for the ooRexx object

boxed in a Java RexxProxy object
541 RecursiveTreeItem = CellDataFeatures~getValue
542 jObj = RecursiveTreeItem~getValue
543 rexxProxy = jObj~getTargetRexxProxy
544 attributeValue = rexxProxy~sendMessage0(attributeName)
545 return .SimpleStringProperty~new(attributeValue)

Listing 4.32.: PropertyValueFactory Class
At this point, the infrastructure for the table is installed including a root node as hook

for all table rows. Now the data model objects have to be created. The configurationTab-
PaneChangeListener class observes the selected tabs "Database", "ServiceNow" and "Man-
age" in listing 4.12 on page 33. In case the user switches to the last tab, the method
~showAndFill() of the self-built JFXTableManager class gets invoked with the value of
the combo box as argument, which can be either "ServiceNow" or "Database".
The invoked showAndFill method makes use of references to both tables which were al-

ready saved in the object when instantiating the JFXTableManager class. The compulsory
argument of this method determines which table is saved in the currentTable class attribute
and which one should be hidden by calling the showTable method with the second argument
set to .false. The methods showTable, clearData and fillTable are finally called to update
the data in the JFXTreeTableView.
The method showTable checks the existence of the first argument, otherwise it defaults

to the class attribute currentTable in line 471. Then, it shows or hides the mentioned table
based on the second argument, which defaults to .true. So this method basically shows

55

Chapter 4. Developing the ServiceNow App Accelerator

the currentTable if no arguments were specified. The method clearData on the other hand
removes all rows of the table.

434 /**
435 * Is called by value change listeners whenever the user visits the `Manage` Tab
436 * or changes the value of the manageCombobox.
437 * This method calls a number of functions to show the right table, to fill it

with data and to hide the other table
438 *
439 * @param tableDescription - The value of the ComboBox in the `Manage Tab`
440 */
441 ::method showAndFill
442 expose databaseTable servicenowTable currentTable
443 use strict arg tableDescription
444 /* select the right table based on the second word of the supplied argument */
445 select case tableDescription~word(2)
446 when "Databases" then do
447 currentTable = databaseTable
448 self~showTable(servicenowTable, .false) -- hide the servicenowTable
449 end
450 when "ServiceNow" then do
451 currentTable = servicenowTable
452 self~showTable(databaseTable, .false)
453 end
454 otherwise
455 raise syntax 40.900 array("Bad value. Cannot refresh the Data in the

Table")
456 end
457 self~showTable -- show currentTable
458 self~clearData -- clear currentTable
459 self~fillTable -- fill it with fresh data
460

461 /**
462 * Hides or shows the supplied table. If there is none, it will use the current

table from the class
463 *
464 * @param table - The <code>JFXTreeTableView</code> to show/hide
465 * @param [show]- .true to show, .false to hide. Default: .true
466 */
467 ::method showTable private
468 expose currentTable
469 use arg table, show = .true
470 if \table~isA(.bsf) then
471 table = currentTable
472 table~~setManaged(show) -
473 ~~setVisible(show)
474

475 /**
476 * Clears the Data from the current Table
477 */
478 ::method clearData private
479 expose currentTable
480 currentTable~getRoot~getChildren~clear

Listing 4.33.: The JFXTableManager methods showAndFill, showTable and clearData
The fillTable method retrieves the current data from the encrypted json file as described

in listing 4.22 on page 44. Then, it uses the ternary operator ~?() to decide if it holds
Database or ServiceNow related items, based on the amount of columns of the currentTable.
This information is used to retrieve the right data set from the json object in line 490.

56

Chapter 4. Developing the ServiceNow App Accelerator

Then, the .GetChildrenCallback class is instantiated as Rexx proxy that implements the
Callback interface. This will later be needed as second argument for the construction of
RecursiveTreeItem in line 512.
Line 497 uses a new BSF4ooRexx routine bsf.createProxyClass() that creates a new

Java class on the fly and extends the supplied Java class name "RecursiveTreeObject". Un-
fortunately, JFoenix requires all data models to do that.
In lines 499 to 513, the application iterates over all data from the json object. It creates

a new data model object with a directory holding information about one row of credentials
as argument in line 506. Then, it boxes this Rexx object as a Java proxy class in line 508 by
not supplying any interfaces to the bsfCreateRexxProxy routine. Line 510 finally extends this
class with the "RecursiveTreeObject" class, creates a tree item and attaches it to the root
node of the table, which fills the table with data.

482 /**
483 * Retrieves fresh saved Data from the JSON file and displays it in the current

Table
484 */
485 ::method fillTable private
486 expose currentTable
487 jsonObj = getRexxObjFromJson()
488 /* decide based on the number of columns whether this is a Database or

ServiceNow table */
489 kind = (currentTable~getColumns~size > 5)~?("Database", "ServiceNow")
490 jsonData = jsonObj[kind~upper]
491 root = currentTable~getRoot
492 /* this callback function retrievs the children of the tree item on call */
493 callbackFunction = bsfCreateRexxProxy(.GetChildrenCallback~new,,.fxCallback)
494 /* extend the Java class RecursiveTreeObject, which is the data model that is

used in JFXTreeTableView
495 cf. Note: the data object used in JFXTreeTableView must

extends this class
496 https://github.com/jfoenixadmin/JFoenix/blob/master/jfoenix/src/main/jav c

a/com/jfoenix/controls/
497 /datamodels/treetable/RecursiveTreeObject.java */
498 extendRecursiveTreeObject = bsf.createProxyClass("com.jfoenix.controls c

.datamodels.treetable.RecursiveTreeObject")
499 /* iterate over the queue - `informationTable` will be a stringTable */
500 loop informationTable over jsonData
501 /* create a Rexx Object of a Rexx Class based on the kind of Table we are

trying to fill with data */
502 if kind = "Database" then
503 useClass = .Database
504 else
505 useClass = .ServiceNow
506 rxObj = useClass~new(informationTable)
507 /* box this rexx object as a java proxy class */
508 rexxProxy = bsfCreateRexxProxy(rxObj)
509 /* extend our java class with `RecursiveTreeObject`, as this is required by

JFoenix */
510 jObj = extendRecursiveTreeObject~new(rexxProxy)
511 /* create a new instance of the RecursiveTreeItem with our data model and a

callback function as parameters */
512 RecursiveTreeItem = .bsf~new("com.jfoenix.controls.RecursiveTreeItem", jObj,

callbackFunction)
513 /* attach it to the root node */
514 root~getChildren~add(RecursiveTreeItem)

Listing 4.34.: JFXTableManager’s method fillTable

57

Chapter 4. Developing the ServiceNow App Accelerator

4.7. The Import Task

After the user saves all his credentials in the "Configuration" tab, he can switch to the last
option "Import data" on the main tab pane to the left. He is then presented with two combo
boxes and a "Connect" button as shown in figure 4.10. The mainTabPaneChangeListener
class is responsible for refreshing the values of those two combo boxes every time the user
enters the "Import data" tab, as shown in listing 4.12 on page 33.

Figure 4.10.: Application Start Screen

By clicking on the "Connect" button, the prepareImport routine gets called. First, both
combo boxes are checked for validity using the validateForm routine to make sure that a
value is selected. After that, the application fetches all references to both combo boxes and
two currently invisible user interface controls:

• databaseAfterConnect is a short text to let the user know, that the connection to
the database went well.

• databaseCheckboxPane is a layout component that holds all table names wrapped
in check boxes. This way, the user can select which tables he would like to import to
his ServiceNow instance.

After extracting the table names from the selected database, the application removes all
check boxes except for the first one in line 459. The first check box has the predefined
label "Select all" and is described in listing 4.36. The loop in line 461 to 464 creates new
JFXCheckBox items with the table name as constructor argument which will be used as
control label by the check box and adds it to the layout pane. This results in a list of check
boxes holding solely the table names of the database.

58

Chapter 4. Developing the ServiceNow App Accelerator

431 /**
432 * Initialises an object of the .importTask class with the database and

servicenow credentials
433 * Shows the Pane with the fx:id "databaseAfterConnect" including its content
434 * Displays a list of tables in the database in form of checkboxes
435 *
436 * @param slotDir - BSF4ooRexx supplies the SlotDir argument at the Java side
437 */
438 ::routine prepareImport public
439 use arg slotDir
440 signal on syntax
441 scriptContext = slotDir~scriptContext
442 /* validate the form fields first */
443 IDs = "importDatabase", "importServiceNow" -- create an array with those

two items
444 if \validateForm(IDs) then return -- leave the routine if .false has returned
445 /* @get(importDatabase importServiceNow databaseAfterConnect

databaseCheckboxPane) */
446 /* fetch the indices of the selected ComboBox items and supply them to the

.ImportTask class */
447 databaseIndex = importDatabase~getSelectionModel~getSelectedIndex
448 servicenowIndex = importServiceNow~getSelectionModel~getSelectedIndex
449 /* interrupt the last Thread if necessary */
450 if .environment~hasEntry("jTask") then
451 .jTask~cancel(.true)
452 .my.app~importTask = .ImportTask~new(databaseIndex, servicenowIndex)
453 /* call a method to load tables from the database */
454 tableNames = .my.app~importTask~extractTables
455 checkboxes = databaseCheckboxPane~getChildren
456 /* first checkbox should always be "Select all" - delete the rest if available

*/
457 items = checkboxes~size
458 if items > 1 then
459 checkboxes~remove(1, items) -- (from,to) 0 based indices
460 /* now append each table name as a checkbox */
461 loop tableName over tableNames
462 checkbox = .bsf~new("com.jfoenix.controls.JFXCheckBox", tableName)
463 checkboxes~add(checkbox)
464 end
465 databaseAfterConnect~visible = .true
466 return
467 syntax:
468 call showPopup "Connection failed!"

Listing 4.35.: prepareImport Routine
The "Select all" check box calls the selectAllCheckboxes routine, which propagates the value

of the mentioned check box to all other check boxes in the databaseCheckboxPane, selecting
or de-selecting all of them at once.

470 /**
471 * Propagates the selected property of the "Select all" checkbox to all other

checkboxes in the `databaseCheckboxPane`
472 *
473 * @param slotDir - BSF4ooRexx supplies the SlotDir argument at the Java side
474 */
475 ::routine selectAllCheckboxes public
476 use arg slotDir
477 checkboxes =

slotDir~scriptContext~getAttribute("databaseCheckboxPane")~getChildren

59

Chapter 4. Developing the ServiceNow App Accelerator

478 selectAllCheckbox = slotDir~scriptContext~getAttribute("event")~target
479 loop checkbox over checkboxes
480 checkbox~selected = selectAllCheckbox~isSelected
481 end

Listing 4.36.: selectAllCheckboxes Routine
The prepareImport routine created a new instance of the ImportTask class using the indices

of the Database and ServiceNow credentials in lines 447 to 452. Since the combo boxes show
the values according to their sequence in the json file, passing the indices to the constructor
of this class suffices. It is not necessary to access the json file for connection details here.
The ImportTask class is very complex as it offers all methods used for both extracting

database data and sending it to the ServiceNow instance via REST API calls. The construc-
tor method saves some important components as attributes in the class so that subsequent
methods can easily access them. Those components are:

• jsonEngine used for reading and writing json files
• importProgressbar is the JFXProgressBar at the bottom of the progress view after

starting the import process. Figure 4.12 on page 65 shows the structure of the progress
view.

• steps is an array with fixed values of all four steps the application is going to go through
in the import task. More specifically, this array holds the fx:id attributes of the panes
in the next view which will show the progress of the task.

• step is the current index of the the steps array. The import task will obviously begin
with the first step, that is why it is set to 1.

• databaseTables is an array that will be filled in the extractTables method with table
names of this database.

• databaseCredentials and serviceNowCredentials store information about the cre-
dentials, extracted from the encrypted json file using the routine getRexxObjFromJson
in line 537.

• serviceNowURL is the URL of the ServiceNow instance.

The method ~setDefaultHeader("Authorization", basicAuth) from theUnirest class
in line 542 sets a basic authentication string as default authorization header to every Unirest
call from now on. The credentials are not going to change for this .ImportTask object at
all, that is why this will result in a simplification for all future API calls. Furthermore, the
~setTimeouts(0,0) method in line 544 removes all timeouts, so that Unirest never stops
trying to connect to the API. The default value for a connection is 10 seconds. However if the
host has a slow internet connection, it appears possible that Unirest would throw connection
errors, which we want to avoid at this point. Finally, the connectToDatabase method is called
to establish a connection with the database.

515 /**
516 * The main heart of the application: does the extracting and uploading job in a

seperate thread
517 */
518 ::class ImportTask
519 /**
520 * This constructor method saves the database and servicenow credentials in the

class
521 *
522 * @param databaseIndex - The 0 based index of the selected database connection
523 * @param databaseIndex - The 0 based index of the selected servicenow instance

60

Chapter 4. Developing the ServiceNow App Accelerator

524 */
525 ::method init
526 expose databaseCredentials serviceNowCredentials serviceNowURL databaseTables

importProgressbar jsonEngine step steps
527 use strict arg databaseIndex, servicenowIndex
528 jsonEngine = .json~new
529 importProgressbar = .my.app~SAA.fxml~importProgressbar
530 importProgressbar~setProgress(-1.0) -- indeterminate progress
531 /* create an array which holds all fx:ids of panes to get a hook for GUI

manipulation in the `unlockNextStep` method */
532 steps = .array~of("readingDatabasePane", "creatingTablesPane",

"uploadingDataPane", "allDonePane")
533 step = 1
534 databaseTables = .array~new
535 databaseIndex += 1
536 servicenowIndex += 1
537 jsonObj = getRexxObjFromJson()
538 databaseCredentials = jsonObj~Database[databaseIndex] -- only extract

information about this Database connection
539 serviceNowCredentials = jsonObj~ServiceNow[servicenowIndex] -- only extract

information about this ServiceNow instance
540 serviceNowURL = serviceNowCredentials~url
541 basicAuth = self~getBasicAuth(serviceNowCredentials)
542 .Unirest~setDefaultHeader("Authorization", basicAuth)
543 /* remove both timeouts for connection and socket (default values are 10s and

1m) */
544 .Unirest~setTimeouts(0,0)
545 self~connectToDatabase(databaseIndex)

Listing 4.37.: ImportTask Constructor
The getBasicAuth method creates an authentication string in the format "username:password"

in lines 556 to 558 and encodes it with base64 encoding string using the method ~encodeBase64()
of the Rexx’ .string class and returns the result.

547

548

549 /**
550 * Base64 encodes a string with the username and password of the ServiceNow

instance for the REST API calls
551 *
552 * @param credentials - a .stringTable with the entries "user" and "pass"
553 */
554 ::method getBasicAuth private
555 use arg credentials
556 user = credentials~user
557 pass = credentials~pass
558 authString = user":"pass
559 basicAuth = "Basic" authString~encodeBase64 -- encodeBase64 is a method of

the Rexx' string class
560 return basicAuth

Listing 4.38.: ImportTask’s getBasicAuth Method
The connectToDatabase method uses the dbConnect routine with the database information

of the class to get a connection. Thus, it creates a new default Statement object with the use
of the established connection and saves it in the class as databaseStatement. This variable can
now be used to interact with the database by executing SQL commands within the context
of a connection, which will be exploited after the user starts the import task. This concludes
the constructor method of the ImportTask class.

61

Chapter 4. Developing the ServiceNow App Accelerator

562 /**
563 * Calls the `dbConnect` function in its own thread
564 *
565 * @param databaseIndex - the 1-based index of the database to connect to
566 */
567 ::method connectToDatabase
568 expose databaseCredentials databaseConnection databaseStatement
569 use arg databaseIndex
570 d = databaseCredentials
571 databaseConnection = dbConnect(d~type, d~host, d~user, d~pass, d~dbName,

d~port)
572 databaseStatement = databaseConnection~createStatement

Listing 4.39.: ImportTask’s connectToDatabase Method
Previously, the prepareImport routine in listing 4.35 invoked the extractTables method of

the importTask object in line 454. This method extracts only the available table names from
the database with help of the now established databaseStatement attribute.

454 tableNames = .my.app~importTask~extractTables

The Java Database Connector generally offers a lot of functionality regarding meta data.
A connection object provides information about the database’s tables, version, all stored
procedures and more. This information is obtained with the getMetaData method in line
667. Whereas the getTables method can be utilized to extract all tables by supplying the
wildcard operator % as third argument. [46]

660 /**
661 * Extracts the table names with the help of meta data
662 *
663 * @return tableNames - an array of table names in the database
664 */
665 ::method extractTables
666 expose databaseConnection tableNames
667 metaData = databaseConnection~getMetaData
668 resultSet = metaData~getTables(.nil, .nil, "%", .nil)
669 tableNames = .array~new
670 loop while resultSet~next
671 tableName = resultSet~getString("TABLE_NAME")
672 tableNames~append(tableName)
673 end
674 return tableNames

Listing 4.40.: ImportTask’s extractTables Method
Back to the user interface, the startImport routine is called when clicking on the "Start"

button as shown in figure 4.11. The routine extracts all table names and returns with an
error message in lines 496 and 497 if no tables are present. Otherwise, it saves all selected
table names in the importTask object with help of the addTable method.

The "Import data" tab actually consists of another JFXTabPane with hidden tab controls.
That is why the instruction in line 507 selects the next tab in order to navigate to the import
view as depicted in figure 4.12. This is because the JFXTabPane has a nice sliding animation
for switching tabs, which is bound to this class and could not be used otherwise. After waiting
for 500 milliseconds for the graphical user interface to complete the animation, the already
initialized importTask object is used to create a Rexx proxy that implements the Java Task

62

Chapter 4. Developing the ServiceNow App Accelerator

Figure 4.11.: Table selection

interface and supplied to the execute method of the ExecutorService instance to start a new
thread by invoking the call method.

484 /**
485 * Saves the database table choice in the .ImportTask class and starts the

import job as a Task
486 *
487 * @param slotDir - BSF4ooRexx supplies the SlotDir argument at the Java side
488 */
489 ::routine startImport public
490 use arg slotDir
491 scriptContext = slotDir~scriptContext
492 /* @get(importTabPane databaseCheckboxPane) */
493 checkboxes = databaseCheckboxPane~getChildren
494 numOfTables = checkboxes~size - 1
495 if numOfTables = 0 then do
496 call showPopup "No tables selected"
497 return
498 end
499 loop i=1 to numOfTables -- prevent IndexOutOfBound Exception
500 checkbox = checkboxes~get(i)
501 if checkbox~isSelected then do
502 tableName = checkBox~getText
503 .my.app~importTask~addTable(tableName)
504 end
505 end
506 /* switch the view to the Log Area and the Progress Bar to accompany the user

with more information */
507 importTabPane~getSelectionModel~selectNext
508 call SysSleep .5 -- wait for 500 ms for Java to update the GUI
509 /* execute the import task process in its own Thread to not block the GUI */

63

Chapter 4. Developing the ServiceNow App Accelerator

510 .environment~jTask =
bsfCreateRexxProxy(.my.app~importTask,,"javafx.concurrent.Task")

511 .Executor~execute(.jTask)

Listing 4.41.: startImport Routine
The overridden call method from the Task interface gets invoked by the Executor to do

some background work in its own thread. The method first invokes calculateTotalApiCalls to
get an estimate on how many items all tables combined have. This is needed for the progress
bar to calculate the current progress.
Lines 583 to 586 print out the number of tables and data to the console as an information

for the user. Line 589 completes the step "Reading database table schema" and unlocks step
2 "Creating ServiceNow tables". All table names are sent to the custom REST API in the
createServiceNowTable method individually, whose return value is the ServiceNow adjusted
table name. This value is saved in an two-dimensional array serviceNowTables alongside the
original table name of the database table. Now this array can be used to map database table
names to ServiceNow table names.
After creating all tables, the application proceeds to step 3 "Uploading data". This step

solely invokes the uploadData method with the Database and ServiceNow table names. The
switch to the last step 4 "All done" will be done in another method when the last callback of
the uploadData returns.

575 /**
576 * Iterates over all selected tables, extracts meta information and calls the

REST API to create new tables
577 * Runs in a separate thread
578 */
579 ::method call
580 expose databaseTables
581 signal on syntax
582 totalApiCalls = self~calculateTotalApiCalls
583 tableNum = databaseTables~items
584 dataNum = totalApiCalls - tableNum -- one api call per table creation +

data insertion
585 s = (tableNum <> 1)~?("s", "")
586 self~log(dataNum "records found in" tableNum "table" || s)
587 serviceNowTables = .array~new
588 /* show loading symbol at "creating tables" pane */
589 self~unlockNextStep
590 loop tableName over databaseTables
591 /* gather information for the REST API call */
592 serviceNowTable = self~createServiceNowTable(tableName)
593 if serviceNowTable <> .nil then do
594 /* both the database table name and the servicenow table name are needed,

so save them in an array */
595 tableNames = .array~of(tableName, serviceNowTable)
596 serviceNowTables~append(tableNames)
597 end
598 end
599 /* show loading symbol at "uploading data" pane */
600 self~unlockNextStep
601 /* all tables are created, now insert data */
602 loop tableNames over serviceNowTables
603 dbTable = tableNames[1]
604 serviceNowTable = tableNames[2]
605 self~uploadData(dbTable, serviceNowTable)
606 end

64

Chapter 4. Developing the ServiceNow App Accelerator

Figure 4.12.: Uploading started

607 return
608 syntax:
609 say ppCondition2(condition("object"))
610 raise propagate

Listing 4.42.: ImportTask’s "call" Method
The method calculateTotalApiCalls initiates the totalApiCalls value by counting all selected

tables in line 649. After that, it loops over all table names and creates an SQL query that
returns the total sum of items. This query is executed with the ~executeQuery() method
of databaseStatement.
Using the getInt method of the ResultSet object with the ID 1, the application retrieves the

row count of this specific table. This procedure is repeated for every table, each increasing
the return value totalApiCalls. Of course, this approach does not take into account the
complexity of the data or the amount of table columns, but it calculates a basic estimate for
the progress bar. This will definitely come in handy if more than 10,000 or even 100,000 data
sets are imported to ServiceNow using this tool.

641 /**
642 * Calculates the number of all API calls that will be made
643 *
644 * @return totalApiCalls - The number of all tables and its rows
645 */
646 ::method calculateTotalApiCalls
647 expose databaseTables databaseStatement totalApiCalls currentProgress
648 currentProgress = 0
649 totalApiCalls = databaseTables~items -- one api call for each table
650 jInt1 = .java.lang.Integer~new(1) -- convert the Rexx String "1" to a

java.lang.Integer 1

65

Chapter 4. Developing the ServiceNow App Accelerator

651 loop tableName over databaseTables
652 sql = "SELECT COUNT(1) FROM" tableName
653 resultSet = databaseStatement~executeQuery(sql)
654 resultSet~next
655 rowCount = resultSet~getInt(jInt1)
656 totalApiCalls += rowCount -- one api call for each row
657 end
658 return totalApiCalls

Listing 4.43.: ImportTask’s "calculateTotalApiCalls" Method
The log method simply writes the provided message to the output string. The logAnd-

Progress method basically does the same, but also invokes the progress method, which in-
crements the currentProgress and calculates a value between 0 and 1 of the currentProgress
divided by totalApiCalls. The variable finished is set to .true, if the current progress is as
high as totalApiCalls, in which case the last step 4 "All done" is unlocked.

Since this method operates in its own background thread, no GUI related operations can
be performed. However the .FxGUIThread class is supplied by BSF4ooRexx that allows to
update GUI controls by invoking its ~runLater() method with the following arguments:

1. The reference to a GUI control
2. The name of the method that one wants to invoke
3. "A" if the forth argument is an array, otherwise "I"
4. A list of arguments
Using this class, line 714 sets the progress value of the progress bar to the previously

calculated variable progressTo. If this value reaches 1, line 716 unlocks the last step and
therefore concludes the import task.

686 /**
687 * Writes the provided message to the output stream
688 *
689 * @param message - the message without a line break in the beginning/at the end
690 */
691 ::method log
692 use arg message
693 say message
694

695 /**
696 * Forwards the message to the `log` method and invokes `progress`
697 *
698 * @param message - The message that is to be logged
699 */
700 ::method logAndProgress
701 use arg message
702 self~~log(message) -
703 ~~progress
704

705 /**
706 * Progresses by one API call and calculates the new progress
707 * Unlocks the last step if task has finished
708 */
709 ::method progress
710 expose totalApiCalls currentProgress importProgressbar
711 currentProgress += 1
712 progressTo = currentProgress / totalApiCalls
713 finished = progressTo = 1
714 .FxGUIThread~runLater(importProgressbar, "setProgress", "I", progressTo)

66

Chapter 4. Developing the ServiceNow App Accelerator

715 if finished then
716 self~unlockNextStep -- unlock last step, show "All done!" message

Listing 4.44.: ImportTask’s "log", "logAndProgress" and "progress" Methods
The unlockNextStep method creates references to the currentPane and nextPane by fetching

the fx:id properties of the steps array and incrementing the step variable in lines 619, 625
and 626. Each pane of a step consists of a check mark if the step was already completed, a
loading symbol for the current step or no graphic at all by default.
The instructions in line 623 and 624 use the .FxGUIThread class to first remove the loading

symbol of the current pane, and then add a check symbol showing the user that this step is
finished. In lines 630 to 632 the application shows the loading symbol for the next step and
sets its opacity to 100 percent. The FXML source code in A.2 shows, that each step has in
fact a hidden loading symbol and the labels an opacity of only 40 percent, except for the first
step. If the last step was reached, the if condition in line 627 will simply skip the next pane
treatment expectantly.

612 /**
613 * Replaces the loading symbol in the current pane with a tick mark
614 * Displays the loading symbol in the next pane
615 * Increases the font pacity to 100 percent in the label of the next pane
616 */
617 ::method unlockNextStep
618 expose steps step
619 idOfPane = steps~at(step)~upper
620 currentPane = .my.app~SAA.fxml[idOfPane]
621 checkSymbol = .bsf~new("de.jensd.fx.glyphs.materialicons.MaterialIconView",

.MaterialIcon~CHECK) ~~setY(30)
622 paneItems = currentPane~getChildren
623 .FxGUIThread~runLater(paneItems, "remove", "I", 0)
624 .FxGUIThread~runLater(paneItems, "add", "I", checkSymbol)
625 step += 1
626 idOfPane = steps~at(step)~upper
627 if idOfPane <> .nil then do
628 nextPane = .my.app~SAA.fxml[idOfPane]
629 loadingSymbol = nextPane~getChildren~get(0)
630 .FxGUIThread~runLater(loadingSymbol, "setVisible", "I", .true)
631 stepDescriptionLabel = nextPane~getParent~getChildren~get(1)
632 .FxGUIThread~runLater(stepDescriptionLabel, "setOpacity", "I", 1.0)
633 end

Listing 4.45.: ImportTask’s "unlockNextStep" Method
After concluding the first step, the application calls the ~createServiceNowTable()

method for each database table name. This second step is labelled "Creating ServiceNow
tables" and starts by invoking the ~getTableSchema() method in line 782 with the table
name as argument to fetch information about the database table, whose implementation is
discussed in listing 4.48 on page 71 After creating a JSON encoded string with the table
information, the application assembles an http request to the custom REST API in lines
787 to 790. It consists of both a query parameter and a body. The request is intentionally
handled synchronously to guarantee that all tables are created before uploading data to
prevent information loss.
The following lines starting from line 792 fetch the response body and its status code

to determine if the table creation was successful. In case a status code different than 200
returns, the entire response is printed out using the logAndProgress() method. Otherwise,

67

Chapter 4. Developing the ServiceNow App Accelerator

the REST API call was successful and the application extracts the name of the newly created
ServiceNow table alongside the number of columns.

773 /**
774 * Converts the database table and uploads its structure to ServiceNow
775 *
776 * @param tableName - the name of the database table
777 * @return serviceNowTable - the adjusted name of the created ServiceNow table
778 */
779 ::method createServiceNowTable
780 expose serviceNowURL jsonEngine
781 use arg tableName
782 tableSchema = self~getTableSchema(tableName)
783 /* convert to json without unnecessary line breaks and white spaces */
784 jsonString = jsonEngine~toMinifiedJson(tableSchema)
785 body = .bsf~new("com.mashape.unirest.http.JsonNode", jsonString)
786 API.URL = serviceNowURL || "/api/x_146620_serviceno/create_table/" ||

tableName
787 httpResponse = .Unirest~put(API.URL) -
788 ~header("Content-type", "application/json") -
789 ~body(body) -
790 ~asJson -- synchronous call for table creation
791 /* convert HttpResponse to a json encoded string, create a Rexx object,

extract information */
792 jsonResponse = httpResponse~getBody~toString
793 statusCode = httpResponse~getStatus
794 resultObj = jsonEngine~fromJson(jsonResponse)
795 /* no appropriate content returned so output the json response as error

message */
796 if statusCode <> 200 then do -- custom status code
797 self~logAndProgress("[Error]" jsonResponse)
798 return .nil
799 end
800 else do
801 serviceNowTable = resultObj["result"]["Name"]
802 columnCount = resultObj["result"]["Columns"]
803 message = "Table" pp(tableName) "created as" pp(serviceNowTable) "with"

columnCount "columns"
804 end
805 self~logAndProgress(message)
806 return serviceNowTable

Listing 4.46.: ImportTask’s "createServiceNowTable" Method
At this point, all table structures were transferred to the ServiceNow cloud. The next step

is to also transfer the data from the database to the corresponding ServiceNow table using
existing APIs. This step is initiated during the for-loop in lines 602 to 606 in listing 4.42 on
page 65, which calls the uploadData() method for every selected table. It requires the names
of both the database and ServiceNow table as parameter and makes use of the class variables
for the ServiceNow instance URL, the json engine and the database statement.
Line 824 creates a Rexx proxy class of a new instance of the .DataInsertionCallback class

whose definition starts in line 851, therefore extending the Java Callback interface. This
will be used for fetching callback responses for every asynchronous Unirest request. The
variable API.URL consists of the ServiceNow instance url, a fixed string "api/now/table"
and the name of the ServiceNow table. Every instance has a set of predefined REST APIs
for manipulating an existing table - this one inserts a new data set. [30]
In lines 829 and 830, the application executes an SQL statement to fetch all data from

the table. The following for-loop iterates over all rows and creates a new Rexx object of the

68

Chapter 4. Developing the ServiceNow App Accelerator

.stringTable class holding the value of each column. This object is then formatted to a
minimal JSON string using the json utility, forming the body of the request.

If the task was not marked as cancelled, the Unirest object creates a POST request to the
priorly defined API URL with application/json as content type, a body and the Rexx proxy
class as callback. This call is done asynchronously, so that many calls can happen at the
same time. When executed, all the requests are likely to be sent using this technique even
before the first response from the server arrives.
The DataInsertionCallback class implements the methods completed and failed. In both

cases it progresses the progress bar using the progress or logAndProgress method of the
importTask class. In case the request failed, a detailed exception report is additionally printed
out.

814 /**
815 * Iterates over all rows of the database table, extracting all the data and

sending it to the ServiceNow instance
816 *
817 * @param tableName - the name of the database table
818 * @param serviceNowTable - the name of the corresponding ServiceNow table (came

with REST API table creation response)
819 */
820 ::method uploadData
821 expose serviceNowURL jsonEngine databaseStatement
822 use strict arg tableName, serviceNowTable
823 signal on syntax
824 rexxProxy = bsfCreateRexxProxy(.DataInsertionCallback~new,, .Callback)
825 API.URL = serviceNowURL || "/api/now/table/" || serviceNowTable
826 /* get table schema for column name */
827 columns = self~getTableSchema(tableName)
828 /* extract data from this table */
829 sql = "SELECT * FROM" tableName
830 resultSet = databaseStatement~executeQuery(sql)
831 do while resultSet~next
832 rxObj = .stringTable~new
833 loop column over columns
834 rxObj[column~label~lower] = resultSet~getString(column~label) -- save

the value of the database cell in rxObj
835 end
836 jsonString = jsonEngine~toMinifiedJson(rxObj)
837 body = .bsf~new("com.mashape.unirest.http.JsonNode", jsonString)
838 if \.jTask~isCancelled then
839 .Unirest~post(API.URL) -
840 ~header("Content-type", "application/json") -
841 ~body(body) -
842 ~asJsonAsync(rexxProxy)
843 end
844 return
845 syntax:
846 say ppCondition2(condition("object"))
847 raise propagate
848

849

850

851 ::class DataInsertionCallback
852 /**
853 * The REST API call was successful and returns a response
854 * Examines the status code and displays the result to the user
855 *
856 * @param response - <code>com.mashape.unirest.http.HttpResponse</code>

69

Chapter 4. Developing the ServiceNow App Accelerator

857 */
858 ::method completed
859 use arg response
860 .my.app~importTask~progress
861

862

863 ::method failed
864 use arg exception
865 message = exception~getMessage
866 suppressed = exception~getSuppressed
867 cause = exception~getCause
868 .my.app~importTask~log("Upload failed")
869 .my.app~importTask~logAndProgress("Message:" message suppressed cause)

Listing 4.47.: ImportTask’s "uploadData" Method
Both the createServiceNowTable and uploadData methods make use of the getTableSchema

method in lines 782 and 827. This helper method uses the database’s meta data to get a result
set of column information about a specific table. It iterates over all of them and passes the
result set, pointing to a specific column, to the getColumnSchema method, whose returned
result is stored in an array called fieldList and finally returned.

The getColumnSchema method extracts various information about the column:
• COLUMN_NAME: the label
• IS_NULLABLE: if set to "NO", the data in this column cannot be NULL, which

makes it mandatory
• REMARKS: custom meta data
• TYPE_NAME: the column type
The last bit of information can be one of the ones defines in lines 751 to 765. If it is not in

that list, it will most likely be a string and handled as such. The saved value of the variable
type has to be one of the predefined field types set by the ServiceNow Platform. It is worth
noting that ServiceNow offers many more types that SQL databases do, like CHOICE or
HTML. After determining the corresponding ServiceNow field type, it is saved in a stringTable
object holding all information about the provided column. The primary property is always
set to .false, because ServiceNow has its own unique indexing mechanism.

719 /**
720 * Extracts all relevant information about the given table using JDBC meta data
721 *
722 * @param tableName - the name of a table
723 * @return fieldList - a .stringTable with the naming convention based on a

ServiceNow `fieldList`
724 */
725 ::method getTableSchema
726 expose databaseConnection
727 use arg tableName
728 fieldList = .array~new
729 metaData = databaseConnection~getMetaData
730 resultSet = metaData~getColumns(.nil, .nil, tableName, .nil)
731 loop while resultSet~next
732 columnInfo = self~getColumnSchema(resultSet)
733 fieldList~append(columnInfo)
734 end
735 return fieldList
736

737 /**
738 * Converts column information about a table to a .stringTable object

70

Chapter 4. Developing the ServiceNow App Accelerator

739 *
740 * @param resultSet - pointed to a specific table
741 * @return columnInfo - a stringTable object containing relevant information

about the table
742 */
743 ::method getColumnSchema
744 use arg resultSet
745 columnInfo = .stringTable~new
746 columnInfo~label = resultSet~getString("COLUMN_NAME")
747 nullable = resultSet~getString("IS_NULLABLE")
748 columnInfo~mandatory = (nullable = "NO")~?(.true, .false) -- if the field is

not nullable, it is mandatory
749 columnInfo~comments = resultSet~getString("REMARKS")
750 columnInfo~max_length = resultSet~getString("COLUMN_SIZE")
751 select case resultSet~getString("TYPE_NAME")
752 when "TINYINT", "SMALLINT", "MEDIUMINT", "INT" then
753 type = "Integer"
754 when "BIGINT" then
755 type = "Long"
756 when "DECIMAL", "FLOAT", "REAL", "DOUBLE" then
757 type = "Decimal"
758 when "BIT", "BOOLEAN" then
759 type = "Boolean"
760 when "DATE" then
761 type = "Date"
762 when "TIME" then
763 type = "Time"
764 when "DATETIME", "TIMESTAMP" then
765 type = "DateTime"
766 otherwise
767 type = "String"
768 end
769 columnInfo~type = type
770 columnInfo~primary = .false
771 return columnInfo

Listing 4.48.: ImportTask’s "getTableSchema" and "getColumnSchema" Methods
When the last response arrives, the progress method realizes that the task is finished and

unlocks the last step. This action displays the user a final message labelled "All done!". Now
he can switch to his ServiceNow instance in the Browser to use the newly created table and
examine, if the import task went well.

4.7.1. Create Table API Implementation

The REST API was created using ServiceNow Studio and its tools. It utilizes the following
globally scoped Script Includes:

• TableUtils to fetch a valid ServiceNow table name
• TableDescriptor is a script that allows creating new tables
• FieldDescriptor is used to create fields, the equivalent of an SQL database’s column
The script itself uses ECMAScript 5 but can also run in compatibility mode. A custom

REST API script has to overwrite a process() function with the parameters RESTAPIRequest
and RESTAPIResponse. Both are objects that hold various information about the request
and response of the API call.

In line 5, the script uses the request object to extract the tableLabel parameter from the
request path. If the value is empty or set to "{testApiExistence}", it returns from this function

71

Chapter 4. Developing the ServiceNow App Accelerator

call without further processing. This will let the ServiceNow App Accelerator know, that this
REST API script is installed properly and the basic authentication was successful.
The indefinite loop starting from line 11 tries to repeatedly adapt the table name to the

Platform’s needs. After sanitizing the table name and retrieving a valid identification in
the global scope, line 18 checks if there is a table with that name. In case the sanitization
returned with an error, the table name would result in u_undefined, where the prefix u_ is
generally used for global tables.
After agreeing on a table name, the script sets up a table creator using the TableDescriptor

class. In lines 27 to 37, all data of the request body is extracted and iterated over. It consists
of an array of objects, which hold information about all fields in the table. Every one of those
information objects is then used as parameter to the createField() function defined in lines
51 to 67 and finally added to the table using the addField() method.

The createField() function fetches some predefined values from the parameter object, that
were set using the ooRexx getColumnSchema() method from the Import class in Listing 4.48,
such as LABEL, TYPE and MAX_LENGTH. Those are attached to a field object using the
setField() method in line 62.
The described field object is initially created with the _generateFieldDescriptor() function

defined in lines 68 to 83. The FieldDescriptor object works similar to the TableDescriptor.
It holds a list of properties that describe a field. The _generateFieldDescriptor() function
iterates over all properties in lines 78 to 80 and sets them to null, because the implementation
of the constructor of the field descriptor falsely sets them to the string value "NULL", instead
of the JavaScript null object. This incorrect implementation makes it impossible to create
tables that use the FieldDescriptor class, because some values cannot be expressed as string,
such as number identifiers.
The final lines of code set some default roles to the table, create it and return the final

name of the table, its label and the number of created fields with the status code 200.

1 /*jshint esnext: true*/
2 (function process(/*RESTAPIRequest*/ request, /*RESTAPIResponse*/ response) {
3 /* fetch query parameters */
4 var tableLabel = request.pathParams.tableLabel;
5

6 /* return nothing if the label is empty or has a specific predefined value
for testing api existence purposes */

7 if(tableLabel.trim().length === 0 || tableLabel == "{testApiExistence}")
8 return;
9

10 /* sanitize the table name to serve all ServiceNow specifications */
11 while(true) {
12 var tableUtils = new global.TableUtils(tableLabel);
13 tableName = tableUtils.sanitizeTableName(tableLabel);
14 tableName = tableUtils.getValidTableName("global", tableName);
15 tableUtils.tableName = tableName;
16

17 /* check if the table already exists */
18 if(tableUtils.tableExists() ||

tableUtils.tableName.includes("u_undefined"))
19 tableLabel = tableName + "_new";
20 else
21 break;
22 }
23

24 /* set up the table creator */
25 var table = new global.TableDescriptor(tableName, tableLabel);

72

Chapter 4. Developing the ServiceNow App Accelerator

26

27 /* iterate over the fields array */
28 var requestBody = request.body;
29 var entry, field;
30 if(requestBody.data instanceof Array) {
31 while(requestBody.hasNext()){
32 /* create a field and add it to the table */
33 entry = requestBody.nextEntry();
34 field = createField(entry);
35 table.addField(field);
36 }
37 }
38

39 /* set default roles and finally create the table */
40 table.setRoles(tableName);
41 table.create();
42

43 return {
44 "Name": tableName,
45 "Label": tableLabel,
46 "Columns": table.fields.length
47 };
48

49

50

51 /**
52 * Extracts some predefined properties from the information object and saves

them in the FieldDescriptor
53 *
54 * @param informationObj - An Object with information about the NAME, LABEL

and TYPE of the Field
55 * @return field - A FieldDescriptor
56 */
57 function createField(informationObj) {
58 var name = informationObj.LABEL;
59 var field = _generateFieldDescriptor(name);
60 var fieldProperties = ["label", "type", "primary", "mandatory",

"comments", "max_length"];
61 fieldProperties.forEach(function(prop) {
62 field.setField(prop, informationObj[prop.toUpperCase()]); // rexx

translates all properties to upper case
63 }
64);
65 return field;
66 }
67

68 /**
69 * As of 2017-09-02, there is a bug in the global Script Include

"FieldDescriptor", where the constructor calls "_setFieldNames" and
automatically defaults all values to the string <code>"NULL"</code> instead
of the nil object <code>null</code>, which ultimately breaks the
table.create() method.

70 * This function iterates over the object properties of the FieldDescriptor
and sets them all to nil

71 *
72 * @param fieldName - the name of the Field, accessible through

FieldDescriptor.fieldName, *warning*: the field name is unchangeable after
table.create()!

73 * @return field - the FieldDescriptor
74 */
75 function _generateFieldDescriptor(fieldName) {

73

Chapter 4. Developing the ServiceNow App Accelerator

76 var field = new global.FieldDescriptor(fieldName);
77 var fieldList = field.fieldList;
78 Object.keys(fieldList).forEach(function(key) {
79 fieldList[key] = null;
80 }
81);
82 return field;
83 }
84

85 })(request, response);

Listing 4.49.: REST API JavaScript

74

Chapter 4. Developing the ServiceNow App Accelerator

4.8. Functional Testing

The ServiceNow App Accelerator was tested on Windows 10 with Java 8 Update 162 and
Java 9.0.4, ooRexx Version 5.0.0 and BSF4ooRexx Version 600.20180317. The used MySQL
database is of type MariaDB Version 10.1.16 with a phpMyAdmin front end user interface.
The two tables "Newsletter" and "User" were created for testing purposes to simulate a real

world scenario. The table structure is shown in figure 4.13. Newsletter has the following five
fields:

• id: the unique identifier mainly used for MySQL indexing. It is an integer with a
default maximum length of 11 characters.

• name: a text that holds the name of the newsletter subscriber
• email: the E-Mail address of the subscriber
• html: a random boolean value to indicate if the subscriber wants to receive html

formatted eMails. MySQL expresses booleans as tiny integers with length 1.
• time: the current timestamp
The user table uses similar field types:
• id of type integer
• username of type text
• password is a text whose maximum number of characters is limited to 64. This is due

to the hashing algorithm SHA256 used. It hashes the user’s password to a fixed size
string of always 256 bits, which can be saved in hexadecimal characters of length 64
where each byte is represented as two hex characters.

• admin of type boolean

Figure 4.13.: The table structure of "Newsletter" and "User"

Both tables were filled with dummy data generated through an ooRexx script, which will
not be discussed in this master’s thesis. This way, 100 random users and 1,500 newsletter
subscribers were dumped to the database.
After saving the database credentials in the ServiceNow App Accelerator, one can select

both tables to be extracted and uploaded to the respective ServiceNow instance. The upload
took 12 seconds to complete and logged the following information:
REXXout>1600 r e co rd s found in 2 t ab l e s
REXXout>Table [n ews l e t t e r] c r ea ted as [u_newsletter] with 5 columns
REXXout>Table [user] c r ea ted as [u_user] with 4 columns

The upload speed may vary depending on the general network speed of the host and
ServiceNow server availability. Every output that comes from Rexx side is automatically
appended to the fixed string REXXout> to distinguish between Rexx and Java outputs.

75

Chapter 4. Developing the ServiceNow App Accelerator

The credentials file holding the login data is encrypted as stated in listing 4.22. It is not
possible to reconstruct the plain text without the right master password, therefore its content
is tenuous for unauthorized users without access to the decryption key:

gqHXz86BjNOE8fJO7njp7H4R3DNJHGTSag1VOzM5M5vVfc7F6wkcWA5U1XqhOmLrBT
Tuvf7CUJIWG7lk2n17BwoZWy+IcMqJC6qctvtXZTjM/rhTG/jqC9L7EL7CwSJ9/
oWGPwTile50fGtYYCHsCtQURJYmgbp5UJFx4RB5MntledtN+
nMamsjRTELKSSIi66cm45BBjfMGLn/B50Xox1jr j6ptJcojJ+1
Ypk6USDStW09xO0IJdC1oozUK/2NfGffjZolIbFWned4/
GG3oHIcxHEboKeDk8r61cNZiQGSUFez5BjbXQnKYS3h8V+
gGU04YkPsKYyRfAkArktFPTc55kVMUrL5HLgnrOoqjIN/h95Try9glXz+
aBKMuJfnP

Figure 4.14.: Both tables can be selected in the last step of the Import data tab

A login in the ServiceNow instance reveals the newly created tables under System defini-
tions > Tables. They have a few more additional meta fields than their database counterparts,
because those were automatically filled in by ServiceNow. Figure 4.16 shows the exact struc-
ture of the users table. The fields "Created by", "Created", "Sys ID", "Updates", "Updated
by" and "Updated" are necessary for the ServiceNow table to work properly.

76

Chapter 4. Developing the ServiceNow App Accelerator

Figure 4.15.: Filtered table list of tables that contain "newsletter" or "user" in their name

Figure 4.16.: The table structure of our "user" table

This table now offers many possibilities to use it. One of which is a list view as shown in
figure 4.17, which ultimately displays all 100 imported users and their data.

77

Chapter 4. Developing the ServiceNow App Accelerator

Figure 4.17.: The list view of our "user" table

Also, one can create an empty form to insert new users to that list as shown in Figure 4.18.
This view can be easily displayed in the service portal, other applications or in the front end
using the AngularJS framework.

Figure 4.18.: An empty form of our "user" table

The exact same applies to the newsletter table. In the end, both tables were created with
the right amount of columns, the right information about those columns and 1,600 data sets
in total. The upload speed was very quick, although real world databases would hold a lot
more data than used for this testing purpose. Nevertheless, since the data upload to the
cloud is usually a one time thing when migrating the business infrastructure to the cloud, its
importance really is negligible.

78

Chapter 4. Developing the ServiceNow App Accelerator

Figure 4.19.: The list view of our "newsletter" table

79

5. Related Work

Albeit the scientific resources on ServiceNow are scarce at the time of writing, the com-
pany itself provides a wide range of white papers, eBooks, case studies, analyst reports
and webinars in the ServiceNow Resource Center at https://www.servicenow.com/
resources.html. Those assets are available in multiple languages such as English, French,
German and Spanish. Most of those resources are protected by a registration form that needs
to be filled out in order to download all provided files. Apart from this, they are publicly
available and regularly updated, which makes them a great source to understand what Ser-
viceNow offers and how it works.

Open Object Rexx on the other hand is a very well researched topic. There are numerous
resources available online, mainly because the original REXX language has been around
for a long time, since 1979. The research paper "Resurrecting REXX, Introducing Object
Rexx" by Rony G. Flatscher [26] depicts the main concepts of IBM’s former programming
language REXX and its rewritten object-oriented counterpart "ooRexx" using simple, yet
powerful nutshell examples. Further, the research paper "The 2009 Edition of BSF4Rexx"
[47] describes the progress of the Bean Scripting Framework for ooRexx which it made since
its creation in 2001. To this date, the core of the framework stayed the same and is well
described in the mentioned paper. On top of that, the recent article "JavaFX for ooRexx -
Creating Powerful Portable GUIs for ooRexx" from 2017 [48] describes the creation of GUI
applications with help of the JavaFX framework provided by Java and how BSF4ooRexx can
be used to take advantage those classes to build advanced graphical user interfaces with less
code and complexity.
An excellent reference for cryptography related tasks, such as choosing an appropriate

encryption algorithm for the Jasypt library used in the ServiceNow App Accelerator is "Ev-
eryday Cryptography: Fundamental Principles and Applications" by Keith Martin [49]. This
book provides a detailed overview of the history of cryptography, the current standards for
encryption, signing, key derivation and many more, as well as real life cryptography applica-
tions.
The book "Essentials of Cloud Computing" by K. Chandrasekaran [3] is a good reference

for exploring the cloud computing processes. It describes the importance of cloud computing,
cloud deployment and service models, migration plans to the cloud and a new perspective
of software development in the cloud. The provided detailed analysis of cloud computing
allows for a deeper understanding of the ServiceNow cloud, and is therefore essential for this
master’s thesis.
Migration concepts are best described in "Legacy Information Systems: Issues and Direc-

tions" by J. Bisbal et al. [17] The discussed topics in this research paper show just how
many options there are when moving away from a legacy information system that is cur-
rently in place to a modern solution using the latest architecture, tools and hardware. The
research paper "Strategies and Methods for Cloud Migration" by J.-F. Zhao and J.-T. Zhou
[50] additionally compares many different migration strategies for all cloud computing service
models.

80

https://www.servicenow.com/resources.html
https://www.servicenow.com/resources.html

6. Improvements and Outlook

The ServiceNow App Accelerator in this version serves as a prototype for transferring SQL
databases to the ServiceNow Cloud. Although the graphical user interface seems finished with
the help of JFoenix’s Material Design Implementation for JavaFX, there are improvements
to make that might enhance user experience even more or add new features.
Most of the future user interface development improvements can be made in the "Manage

credentials" tab under "Configuration", which features a JFXTreeTableView to only display
the saved data. It is indeed possible to implement a double click handler in the respective
table rows which could lead to changing the value of existing data cells. [51] Alternatively,
one could insert an extra table column with buttons to change or delete a row. This is
especially useful in case some login data change over time or the user makes a mistake when
inserting new credentials. Some organizations enforce a cyclic password change policy, which
could also affect the ServiceNow login.
The Import step currently imports both a table structure and its content. Certainly there

are some use-cases where the user would only need to import one of which, for example to
update the ServiceNow table with new data of the still active SQL database. However this
version of the ServiceNow App Accelerator forces him to create a new table and re-import all
the data again, instead of calculate a delta and update the data sets. This way an interactive
synchronisation functionality can be offered.
This application was developed with the intention of submitting it to the ServiceNow app

market as an open source project, so that other talented programmers can build on top
of it. Obviously the easiest solution to this research topic is for ServiceNow to natively
implement such SQL importing functionality to the platform themselves. Since even the
Kingston release from 11th January 2018 did not include that and they do not seem to be
working on it, the ServiceNow App Accelerator is a great tool for enterprises to migrate their
existing applications to the cloud quickly.

81

Bibliography

[1] (2018, feb) Wrangu gdpr data scanner press release. [Online]. Available: http:
//wrangu.com/2017/07/24/wrangu-gdpr-data-scanner-press-release/ i

[2] (2018, feb) Studie zu prognostiziertem umsatz von cloud computing. [On-
line]. Available: https://de.statista.com/statistik/daten/studie/180537/umfrage/
prognostizierter-umsatz-im-b2bund-b2c-segment-von-cloud-computing/ 1

[3] K. Chandrasekaran, Essentials of Cloud Computing, 1st ed. Chapman & Hall/CRC,
2014. 2, 5, 18, 80

[4] (2017, oct) Gartner prediction. [Online]. Available: https://www.gartner.com/
newsroom/id/3616417 2

[5] P. M. T. Grance, “The NIST Definition of Cloud Computing,” Recommendations of the
National Institute of Standards and Technology, pp. 2–3, nov 2011. 2

[6] (2017, oct) Cloud computing advantages. [Online]. Available: https://www.lifewire.
com/cloud-computing-explained-2373125 2

[7] (2017, oct) Servicenow financial reports. [Online]. Avail-
able: http://www.businesswire.com/news/home/20171025006277/en/
ServiceNow-Reports-Financial-Results-Quarter-2017 3, 85

[8] M. Fouquet, H. Niedermayer, and G. Carle, “Cloud computing for the masses,” in Pro-
ceedings of the 1st ACM workshop on User-provided networking: challenges and oppor-
tunities. ACM, 2009, pp. 31–36. 3

[9] (2017, oct) Foundamental Course I. [Online]. Available: https://www.youtube.com/
watch?v=yDmGTeEDp5g 4

[10] (2018, jan) ServiceNow’s components. [Online]. Available: https://www.t-systems.com/
de/de/loesungen/cloud/saas-loesungen/soa/service-oriented-architecture-361370 4, 85

[11] (2017, oct) Platform architecture. [Online]. Available: https://www.youtube.com/
watch?v=CHlGvbqirQs 6

[12] “Building Business Apps at Lightspeed - Profiles in Digital Transformation,” Servi-
ceNow, Tech. Rep., 2017. 7

[13] K. Zurkus. (2017, oct) Defense in depth: Stop spending, start consoli-
dating. [Online]. Available: https://www.csoonline.com/article/3042601/security/
defense-in-depth-stop-spending-start-consolidating.html 7

[14] Ponemon Institute, “2017 cost of data breach study,” IBM Security, Research Report,
2017. 7

[15] “Streamlining Security Incident and Vulnerability Response,” ServiceNow Security Op-
erations, Tech. Rep., 2017. 8

[16] “ServiceNow Trusted Security Circles: Sharing Threat Intelligence to Curb Targeted
Attacks,” ServiceNow Security Operations, Tech. Rep., 2017. 8, 85

[17] J. Bisbal, D. Lawless, B. Wu, and J. Grimson, “Legacy information systems: issues and
directions,” IEEE Software, vol. 16, no. 5, pp. 103–111, Sep 1999. 8, 9, 80, 85

82

http://wrangu.com/2017/07/24/wrangu-gdpr-data-scanner-press-release/
http://wrangu.com/2017/07/24/wrangu-gdpr-data-scanner-press-release/
https://de.statista.com/statistik/daten/studie/180537/umfrage/prognostizierter-umsatz-im-b2bund-b2c-segment-von-cloud-computing/
https://de.statista.com/statistik/daten/studie/180537/umfrage/prognostizierter-umsatz-im-b2bund-b2c-segment-von-cloud-computing/
https://www.gartner.com/newsroom/id/3616417
https://www.gartner.com/newsroom/id/3616417
https://www.lifewire.com/cloud-computing-explained-2373125
https://www.lifewire.com/cloud-computing-explained-2373125
http://www.businesswire.com/news/home/20171025006277/en/ServiceNow-Reports-Financial-Results-Quarter-2017
http://www.businesswire.com/news/home/20171025006277/en/ServiceNow-Reports-Financial-Results-Quarter-2017
https://www.youtube.com/watch?v=yDmGTeEDp5g
https://www.youtube.com/watch?v=yDmGTeEDp5g
https://www.t-systems.com/de/de/loesungen/cloud/saas-loesungen/soa/service-oriented-architecture-361370
https://www.t-systems.com/de/de/loesungen/cloud/saas-loesungen/soa/service-oriented-architecture-361370
https://www.youtube.com/watch?v=CHlGvbqirQs
https://www.youtube.com/watch?v=CHlGvbqirQs
https://www.csoonline.com/article/3042601/security/defense-in-depth-stop-spending-start-consolidating.html
https://www.csoonline.com/article/3042601/security/defense-in-depth-stop-spending-start-consolidating.html

Bibliography

[18] K. Bennett, “Legacy systems: Coping with success,” IEEE Softw., vol. 12, no. 1, pp.
19–23, Jan. 1995. [Online]. Available: https://doi.org/10.1109/52.363157 8

[19] (2018, jan) Servicenow review. [Online]. Available: https://reviews.financesonline.com/
p/servicenow-express/ 10

[20] (2018, jan) Servicenow alternatives. [Online]. Available: https://www.g2crowd.com/
products/servicenow/competitors/alternatives 10

[21] (2018, jan) Mavenlink Website. [Online]. Available: https://www.mavenlink.com/
pricing/project-management-software-comparison 10

[22] (2018, jan) Redmine Website. [Online]. Available: https://www.redmine.org/projects/
redmine/wiki 10

[23] (2018, jan) Servicenow’s customers are 80 percent enterprises. [Online]. Available:
https://www.g2crowd.com/compare/jira-service-desk-vs-servicenow 11

[24] J. K. Ousterhout, “Scripting: higher level programming for the 21st century,” Computer,
vol. 31, no. 3, pp. 23–30, Mar 1998. 12

[25] (2017, nov) The ieee 2017 top programming languages. [Online]. Available: https:
//spectrum.ieee.org/computing/software/the-2017-top-programming-languages 12

[26] R. G. Flatscher, “Resurrecting rexx, introducing object rexx,” Wirtschaftsuniversitaet
Wien, Tech. Rep., may 2006. 12, 13, 80

[27] (2017, nov) Sourceforge oorexx download links. [Online]. Available: https:
//sourceforge.net/projects/oorexx/files/oorexx/ 13

[28] R. G. Flatscher, “The 2009 edition of bsf4rexx,” WU Wien, Tech. Rep., 2009. 15
[29] Oracle. (2017, dec) Defining and starting a thread. [Online]. Available: https:

//docs.oracle.com/javase/tutorial/essential/concurrency/runthread.html 17, 86
[30] ServiceNow. (2017, dec) Table api. [Online]. Avail-

able: https://docs.servicenow.com/bundle/geneva-servicenow-platform/page/
integrate/inbound_rest/concept/c_TableAPI.html 18, 68

[31] J. Bisbal, D. Lawless, B. Wu, J. Grimson, V. Wade, R. Richardson, and D. O’Sullivan,
“A survey of research into legacy system migration,” Tech. Rep., 1997. 18, 19

[32] (2017, dec) Fontawesomefx at bitbucket. [Online]. Available: https://bitbucket.org/
Jerady/fontawesomefx 23

[33] (2017, dec) Jasypt official website. [Online]. Available: http://www.jasypt.org/ 23
[34] (2017, dec) Jfoenix official website. [Online]. Available: http://www.jfoenix.com/ 23
[35] (2017, dec) Unirest official website. [Online]. Available: http://unirest.io/ 23
[36] (2017, dec) Open object rexx: Reference (parse). [Online]. Available: http:

//www.oorexx.org/docs/rexxref/x3647.htm 25
[37] (2017, dec) Bouncy castle provider. [Online]. Available: http://bouncycastle.org/wiki/

display/JA1/Provider+Installation 28
[38] (2017, dec) Unirest java shutdown. [Online]. Available: http://unirest.io/java.html#

user-content-exiting-an-application 29
[39] (2017, dec) Jfoenix validators combobox issue. [Online]. Available: https://github.com/

jfoenixadmin/JFoenix/issues/130 31
[40] (2017, dec) Javafx for oorexx(creating powerful portable

guis). [Online]. Available: http://www.rexxla.org/events/2017/presentations/
AutoJava-BSF4ooRexx-07-JavaFx-201711.pdf 36

83

https://doi.org/10.1109/52.363157
https://reviews.financesonline.com/p/servicenow-express/
https://reviews.financesonline.com/p/servicenow-express/
https://www.g2crowd.com/products/servicenow/competitors/alternatives
https://www.g2crowd.com/products/servicenow/competitors/alternatives
https://www.mavenlink.com/pricing/project-management-software-comparison
https://www.mavenlink.com/pricing/project-management-software-comparison
https://www.redmine.org/projects/redmine/wiki
https://www.redmine.org/projects/redmine/wiki
https://www.g2crowd.com/compare/jira-service-desk-vs-servicenow
https://spectrum.ieee.org/computing/software/the-2017-top-programming-languages
https://spectrum.ieee.org/computing/software/the-2017-top-programming-languages
https://sourceforge.net/projects/oorexx/files/oorexx/
https://sourceforge.net/projects/oorexx/files/oorexx/
https://docs.oracle.com/javase/tutorial/essential/concurrency/runthread.html
https://docs.oracle.com/javase/tutorial/essential/concurrency/runthread.html
https://docs.servicenow.com/bundle/geneva-servicenow-platform/page/integrate/inbound_rest/concept/c_TableAPI.html
https://docs.servicenow.com/bundle/geneva-servicenow-platform/page/integrate/inbound_rest/concept/c_TableAPI.html
https://bitbucket.org/Jerady/fontawesomefx
https://bitbucket.org/Jerady/fontawesomefx
http://www.jasypt.org/
http://www.jfoenix.com/
http://unirest.io/
http://www.oorexx.org/docs/rexxref/x3647.htm
http://www.oorexx.org/docs/rexxref/x3647.htm
http://bouncycastle.org/wiki/display/JA1/Provider+Installation
http://bouncycastle.org/wiki/display/JA1/Provider+Installation
http://unirest.io/java.html#user-content-exiting-an-application
http://unirest.io/java.html#user-content-exiting-an-application
https://github.com/jfoenixadmin/JFoenix/issues/130
https://github.com/jfoenixadmin/JFoenix/issues/130
http://www.rexxla.org/events/2017/presentations/AutoJava-BSF4ooRexx-07-JavaFx-201711.pdf
http://www.rexxla.org/events/2017/presentations/AutoJava-BSF4ooRexx-07-JavaFx-201711.pdf

Bibliography

[41] (2017, dec) The java tutorials - establishing a connection. [Online]. Available:
https://docs.oracle.com/javase/tutorial/jdbc/basics/connecting.html 37

[42] W. D. A. et al, ooRexx Documentation 5.0.0.r11316 Open Object Rexx Reference. Rexx
Language Association, 2017. 46

[43] (2018, jan) Jfxtreetableview at Github. [Online]. Avail-
able: https://github.com/jfoenixadmin/JFoenix/blob/master/jfoenix/src/main/java/
com/jfoenix/controls/JFXTreeTableView.java 51

[44] (2018, jan) Recursivetreeitem source at Github. [Online]. Avail-
able: https://github.com/jfoenixadmin/JFoenix/blob/master/jfoenix/src/main/java/
com/jfoenix/controls/RecursiveTreeItem.java 54

[45] (2018, jan) Celldatafeatures source. [Online]. Available: https://docs.oracle.com/javase/
8/javafx/api/javafx/scene/control/TableColumn.CellDataFeatures.html 54

[46] (2018, jan) Connection source. [Online]. Available: https://docs.oracle.com/javase/8/
docs/api/java/sql/Connection.html 62

[47] R. G. Flatscher, “The 2009 edition of bsf4rexx,” Business Informatics, Vienna University
for Economics and Business Administration, Vienna, 2009. 80

[48] ——, “Javafx for oorexx - creating powerful portable guis for oorexx,” Business Infor-
matics, Vienna University for Economics and Business Administration, Vienna, 2017.
80

[49] K. Martin, Everyday Cryptography: Fundamental Principles and Applications, ser.
Everyday Cryptography: Fundamental Principles and Applications. OUP Oxford,
2012. [Online]. Available: https://books.google.at/books?id=5DZ_vv-gl4oC 80

[50] J.-F. Zhao and J.-T. Zhou, “Strategies and methods for cloud migration,” International
Journal of Automation and Computing, vol. 11, no. 2, pp. 143–152, Apr 2014. [Online].
Available: https://doi.org/10.1007/s11633-014-0776-7 80

[51] (2018, feb) Demo source code of JFXTreeTableView. [Online]. Avail-
able: https://github.com/jfoenixadmin/JFoenix/blob/master/demo/src/main/java/
demos/components/TreeViewDemo.java 81

84

https://docs.oracle.com/javase/tutorial/jdbc/basics/connecting.html
https://github.com/jfoenixadmin/JFoenix/blob/master/jfoenix/src/main/java/com/jfoenix/controls/JFXTreeTableView.java
https://github.com/jfoenixadmin/JFoenix/blob/master/jfoenix/src/main/java/com/jfoenix/controls/JFXTreeTableView.java
https://github.com/jfoenixadmin/JFoenix/blob/master/jfoenix/src/main/java/com/jfoenix/controls/RecursiveTreeItem.java
https://github.com/jfoenixadmin/JFoenix/blob/master/jfoenix/src/main/java/com/jfoenix/controls/RecursiveTreeItem.java
https://docs.oracle.com/javase/8/javafx/api/javafx/scene/control/TableColumn.CellDataFeatures.html
https://docs.oracle.com/javase/8/javafx/api/javafx/scene/control/TableColumn.CellDataFeatures.html
https://docs.oracle.com/javase/8/docs/api/java/sql/Connection.html
https://docs.oracle.com/javase/8/docs/api/java/sql/Connection.html
https://books.google.at/books?id=5DZ_vv-gl4oC
https://doi.org/10.1007/s11633-014-0776-7
https://github.com/jfoenixadmin/JFoenix/blob/master/demo/src/main/java/demos/components/TreeViewDemo.java
https://github.com/jfoenixadmin/JFoenix/blob/master/demo/src/main/java/demos/components/TreeViewDemo.java

List of Figures

2.1. ServiceNow market opportunities [7] . 3
2.2. Components of the ServiceNow Platform [10] 4
2.3. Multi-instance architecture model . 5
2.4. "Create Application File" Mask (Source: Screenshot) 7
2.5. Trusted Security Circles [16] . 8
2.6. Solutions to legacy information systems [17, p.104] 9

4.1. Application Start Screen . 34
4.2. Installation Manual . 35
4.3. Configuration - Database . 37
4.4. Master Password Prompt . 42
4.5. Database Connection saved . 45
4.6. Configuration - ServiceNow . 46
4.7. Test ServiceNow returns an error . 49
4.8. ServiceNow Connection tested and saved . 50
4.9. Manage credentials . 52
4.10. Application Start Screen . 58
4.11. Table selection . 63
4.12. Uploading started . 65
4.13. The table structure of "Newsletter" and "User" 75
4.14. Both tables can be selected in the last step of the Import data tab 76
4.15. Filtered table list of tables that contain "newsletter" or "user" in their name . 77
4.16. The table structure of our "user" table . 77
4.17. The list view of our "user" table . 78
4.18. An empty form of our "user" table . 78
4.19. The list view of our "newsletter" table . 79

85

Listings

3.1. Loops and Arrays in ooRexx . 13
3.2. An advanced example demonstrating object-oriented functionality 14
3.3. Calling routines . 15
3.4. BSF4ooRexx nutshell example . 16
3.5. Starting a thread in Java [29] . 17

4.1. License and Bootstrap . 25
4.2. Internal Routine "Syntax" . 25
4.3. Internal Routine "addJarsFromDirToClasspath" 26
4.4. Adjusting the Classpath environment variable 26
4.5. Static class import . 27
4.6. JavaFX application start . 29
4.7. The .RxApplication Class . 29
4.8. CloseRequest Event Handler . 30
4.9. Completing the Stage initialisation . 31
4.10. The formValidator class . 31
4.11. The manageComboboxChangeListener class 32
4.12. Tab pane change listener implementations . 33
4.13. Completing the Stage Initialisation . 33
4.14. Static Imports and "Home" Routines from SAA-controller.rxj 37
4.15. testDatabaseConnection Routine . 38
4.16. validateForm Routine . 39
4.17. setLoadingSymbolToButton Routine . 39
4.18. dbConnect Routine . 40
4.19. showPopup Routine . 40
4.20. setCheckGraphicToButton Routine . 41
4.21. saveDatabase Routine . 41
4.22. saveRexxObjToJson and getRexxObjFromJson Routines 44
4.23. promptMasterPassword Routine . 44
4.24. testServiceNow Routine . 47
4.25. TestServiceNowCallback Class . 48
4.26. saveServiceNow Routine . 49
4.27. JFXTreeTableView . 51
4.28. ServiceNow data model in ServiceNowAppAccelerator.rxj 52
4.29. Database data model . 53
4.30. JFXTableManager Class . 54
4.31. GetChildrenCallback Class . 54
4.32. PropertyValueFactory Class . 55
4.33. The JFXTableManager methods showAndFill, showTable and clearData . . . 56
4.34. JFXTableManager’s method fillTable . 57
4.35. prepareImport Routine . 59
4.36. selectAllCheckboxes Routine . 60

86

Listings

4.37. ImportTask Constructor . 61
4.38. ImportTask’s getBasicAuth Method . 61
4.39. ImportTask’s connectToDatabase Method . 62
4.40. ImportTask’s extractTables Method . 62
4.41. startImport Routine . 64
4.42. ImportTask’s "call" Method . 65
4.43. ImportTask’s "calculateTotalApiCalls" Method 66
4.44. ImportTask’s "log", "logAndProgress" and "progress" Methods 67
4.45. ImportTask’s "unlockNextStep" Method . 67
4.46. ImportTask’s "createServiceNowTable" Method 68
4.47. ImportTask’s "uploadData" Method . 70
4.48. ImportTask’s "getTableSchema" and "getColumnSchema" Methods 71
4.49. REST API JavaScript . 74

A.1. SAA.css . 91
A.2. SAA.fxml . 104
A.3. JFXAlert.fxml . 105

87

A. Appendix

1 .h1 {
2 -fx-font-family: "Palanquin Dark";
3 -fx-font-size: 22px;
4 }
5

6 .root {
7 -fx-font-size:14px;
8 }
9

10 .root > .tab-pane > .tab-header-area > .tab-header-background {
11 -fx-opacity: 0;
12 }
13

14 .tabGraphic {
15 -glyph-size:20px;
16 }
17

18 .root > .tab-pane > .tab-header-area {
19 -fx-font-family: "Palanquin Dark";
20 -fx-cursor: hand;
21 -fx-font-size:16px;
22 -fx-background-color:#181621;
23 -fx-border-width:0 0 9 0;
24 -fx-border-color:#214778;
25 -fx-padding: 22 0 0 6;
26 }
27

28 .tab-content-area {
29 -fx-font-family: Palanquin;
30 }
31

32 .root > .tab-pane
33 {
34 -fx-tab-min-width:20px;
35 -fx-tab-min-height:70px;
36 }
37 .tab {
38 -fx-focus-color: transparent;
39 -fx-focus-faint-color: transparent;
40 -fx-background-color:transparent;
41 }
42

43 .tab:selected {
44 -fx-background-color: #214778;
45 -fx-focus-color: transparent;
46 -fx-focus-faint-color: transparent;
47 }
48

49 .root > .tab-pane > .tab:hover > .tab-label {
50 -fx-text-fill:white;
51 }
52

88

Appendix A. Appendix

53 .tab .tab-label {
54 -fx-alignment: CENTER;
55 -fx-text-fill: #d8d8d8;
56 -fx-font-size: 12px;
57 -fx-font-weight: bold;
58 }
59

60 .tab:selected .tab-label {
61 -fx-alignment: CENTER;
62 -fx-text-fill: white;
63 }
64

65

66 .tab-pane:focused > .tab-header-area > .headers-region > .tab:selected
.focus-indicator {

67 -fx-focus-color: transparent;
68 -fx-faint-focus-color: transparent;
69 }
70

71

72 .tab *.tab-label {
73 -fx-rotate: 90;
74 }
75

76 .tab {
77 -fx-padding: 70px 5px;
78 }
79

80

81 .scroll-pane {
82 -fx-background-color:transparent;
83 }
84

85 .button {
86 -fx-padding: 5 22;
87 -fx-border-color: #113666;
88 -fx-border-width: 2;
89 -fx-border-radius: 5;
90 -fx-background-color: #181621;
91 -fx-font-size: 10pt;
92 -fx-text-fill: #d8d8d8;
93 -fx-background-insets: 0 0 0 0, 0, 1, 2;
94 -fx-cursor:hand;
95 -fx-min-width:120px;
96 -fx-max-height: 20px;
97 }
98

99 .glyph-icon {
100 -fx-fill: white;
101 }
102

103 .info-button > .glyph-icon {
104 -fx-fill: inherit;
105 }
106

107 .hasGraphic {
108 -fx-padding: 5 22 5 0;
109 }
110

111 .button:hover {
112 -fx-text-fill: white;

89

Appendix A. Appendix

113 -fx-background-color:#214778;
114 }
115

116 .info-button {
117 -fx-background-color:white;
118 -fx-text-fill:#333;
119 -fx-border-color:transparent;
120 }
121

122 .info-button:hover {
123 -fx-text-fill: inherit;
124 -fx-background-color: #f4f5f7;
125 }
126

127

128 .check-box {
129 -fx-cursor:hand;
130 -fx-focus-color: transparent;
131 -fx-focus-faint-color: transparent;
132 -fx-background-insets: 0, 0, 1, 2;
133 -jfx-checked-color: #214778;
134 -fx-padding:0 0 5px 0;
135 }
136

137

138 .jfx-progress-bar > .track, .jfx-progress-bar > .bar {
139 -fx-background-radius: 0;
140 -fx-background-insets: 0;
141 }
142

143 .jfx-progress-bar > .track {
144 -fx-background-color: #E0E0E0;
145 }
146

147 .jfx-progress-bar > .bar {
148 -fx-background-color: #214778;
149 }
150

151 .jfx-tab-pane .headers-region,
152 .jfx-tab-pane .tab-header-background {
153 -fx-background-color: transparent;
154 -fx-effect:null;
155 }
156

157 .jfx-tab-pane .tab-selected-line {
158 -fx-background-color:#214778;
159 }
160

161 .jfx-tab-pane .tab-header-area .jfx-rippler{
162 -jfx-rippler-fill: #E0E0E0;
163 }
164

165 .jfx-tab-pane .tab *.tab-label {
166 -fx-rotate: 0;
167 }
168

169 .jfx-tab-pane .tab:selected {
170 -fx-text-fill: white;
171 -fx-background-color:transparent;
172 }
173 .jfx-tab-pane .tab:selected .tab-label {

90

Appendix A. Appendix

174 -fx-text-fill: #214778;
175 }
176

177 .jfx-tab-pane {
178 -fx-padding:0 0 0 0;
179 -fx-tab-min-width:200px;
180 -fx-tab-min-height:50px;
181 -fx-background-color: transparent;
182 }
183

184 .jfx-tab-pane .tab-header-area {
185 -fx-cursor:hand;
186 }
187

188 .jfx-tab-pane .tab-label {
189 -fx-text-fill:#181621;
190 }
191

192 .jfx-tab-pane .tab {
193 -fx-padding:0;
194 }
195

196 .jfx-tab-pane .tab-header-area {
197 -fx-padding:15px 0 0 40px;
198 }
199

200 .no-tab-header {
201 -fx-tab-max-height: 0 ;
202 }
203

204 .no-tab-header .tab-header-area {
205 visibility: hidden ;
206 }
207

208 .importProgressStep .glyph-icon {
209 -fx-fill: #289637;
210 -fx-effect: dropshadow(one-pass-box, rgba(0,0,0,0.8), 4, 0.0, 1, 1);
211 -glyph-size: 30;
212 }

Listing A.1.: SAA.css

1 <?xml version="1.0" encoding="UTF-8"?>
2

3 <?import com.jfoenix.controls.JFXButton?>
4 <?import com.jfoenix.controls.JFXCheckBox?>
5 <?import com.jfoenix.controls.JFXComboBox?>
6 <?import com.jfoenix.controls.JFXPasswordField?>
7 <?import com.jfoenix.controls.JFXProgressBar?>
8 <?import com.jfoenix.controls.JFXTabPane?>
9 <?import com.jfoenix.controls.JFXTextField?>

10 <?import com.jfoenix.controls.JFXTreeTableColumn?>
11 <?import com.jfoenix.controls.JFXTreeTableView?>
12 <?import com.jfoenix.validation.RequiredFieldValidator?>
13 <?import com.jfoenix.validation.ValidationFacade?>
14 <?import de.jensd.fx.glyphs.fontawesome.FontAwesomeIconView?>
15 <?import de.jensd.fx.glyphs.materialicons.MaterialIconView?>
16 <?import java.lang.String?>
17 <?import javafx.collections.FXCollections?>
18 <?import javafx.geometry.Insets?>

91

Appendix A. Appendix

19 <?import javafx.scene.control.Hyperlink?>
20 <?import javafx.scene.control.Label?>
21 <?import javafx.scene.control.ProgressIndicator?>
22 <?import javafx.scene.control.ScrollPane?>
23 <?import javafx.scene.control.Tab?>
24 <?import javafx.scene.control.TabPane?>
25 <?import javafx.scene.control.TreeTableView?>
26 <?import javafx.scene.layout.AnchorPane?>
27 <?import javafx.scene.layout.HBox?>
28 <?import javafx.scene.layout.Pane?>
29 <?import javafx.scene.layout.VBox?>
30 <?import javafx.scene.text.Font?>
31 <?import javafx.scene.text.Text?>
32 <?import javafx.scene.text.TextFlow?>
33 <?language rexx?>
34

35 <AnchorPane maxHeight="-Infinity" maxWidth="-Infinity" minHeight="50.0"
minWidth="-Infinity" prefHeight="600.0" prefWidth="1000.0"
stylesheets="@SAA.css" xmlns="http://javafx.com/javafx/8.0.102"
xmlns:fx="http://javafx.com/fxml/1">

36 <!-- the controller file holds all onAction target routines of this fxml file
-->

37 <fx:script source="../ooRexx/SAA-controller.rxj" />
38 <children>
39 <TabPane fx:id="mainTabPane" maxWidth="200.0" minHeight="50.0"

minWidth="50.0" prefHeight="400.0" prefWidth="600.0" rotateGraphic="true"
side="LEFT" tabClosingPolicy="UNAVAILABLE" AnchorPane.bottomAnchor="0.0"
AnchorPane.leftAnchor="0.0" AnchorPane.rightAnchor="0.0"
AnchorPane.topAnchor="0.0">

40 <tabs>
41 <Tab text="Home">
42 <graphic>
43 <FontAwesomeIconView glyphName="HOME" styleClass="tabGraphic" />
44 </graphic>
45 <content>
46 <ScrollPane>
47 <content>
48 <VBox prefHeight="371.0" prefWidth="690.0">
49 <children>
50 <Text fontSmoothingType="LCD" strokeType="OUTSIDE"

strokeWidth="0.0" styleClass="h1" text="Welcome to the
ServiceNow App Accelerator!">

51 <VBox.margin>
52 <Insets bottom="20.0" />
53 </VBox.margin>
54
55
56
57 </Text>
58 <Label lineSpacing="0.0" text="This ooRexx based application

will help you to extract local databases into your
ServiceNow instance while avoiding unnecessary
complexity. Simply follow the instructions by connecting
to the database and your ServiceNow instance and start
uploading. Be assured that all data will be treated in
confidence and not saved or shared in any way
persistantly." textAlignment="JUSTIFY" wrapText="true" />

59 <TextFlow lineSpacing="0.0" textAlignment="JUSTIFY">
60 <children>
61 <Label text="If you are missing the necessary APIs,

follow the instructions">

92

Appendix A. Appendix

62 <padding>
63 <Insets top="2.0" />
64 </padding>
65 </Label>
66 <Hyperlink onAction="call openManual" text="in the

installation manual">
67 <opaqueInsets>
68 <Insets />
69 </opaqueInsets>
70 </Hyperlink>
71 <Text strokeType="OUTSIDE" strokeWidth="0.0" text="." />
72 </children>
73 <VBox.margin>
74 <Insets top="2.0" />
75 </VBox.margin>
76 </TextFlow>
77 <TextFlow lineSpacing="0.0" textAlignment="JUSTIFY">
78 <children>
79 <Label text="Should you encounter any unforeseen errors,

do not hesitate to contact">
80 <padding>
81 <Insets top="2.0" />
82 </padding>
83 </Label>
84 <Hyperlink onAction="call openMail arg(arg())"

text="abaginski@live.de">
85 <opaqueInsets>
86 <Insets />
87 </opaqueInsets>
88 </Hyperlink>
89 <Text strokeType="OUTSIDE" strokeWidth="0.0" text="." />
90 </children>
91 <VBox.margin>
92 <Insets top="2.0" />
93 </VBox.margin>
94 </TextFlow>
95 <JFXButton ButtonType="RAISED" defaultButton="true"

onAction="call goToConfiguration" text="Start">
96 <VBox.margin>
97 <Insets top="20.0" />
98 </VBox.margin>
99 </JFXButton>

100 </children>
101 <padding>
102 <Insets left="40.0" top="25.0" />
103 </padding>
104 </VBox>
105 </content>
106 </ScrollPane>
107 </content>
108 </Tab>
109 <Tab text="Configuration">
110 <graphic>
111 <MaterialIconView glyphName="BUILD" styleClass="tabGraphic" />
112 </graphic>
113 <content>
114 <AnchorPane minHeight="0.0" minWidth="0.0" prefHeight="180.0"

prefWidth="200.0">
115 <children>

93

Appendix A. Appendix

116 <JFXTabPane fx:id="configurationTabPane" prefHeight="500.0"
prefWidth="783.0" tabClosingPolicy="UNAVAILABLE"
AnchorPane.bottomAnchor="0.0" AnchorPane.leftAnchor="0.0"
AnchorPane.rightAnchor="0.0" AnchorPane.topAnchor="0.0">

117 <tabs>
118 <Tab text="Database">
119 <content>
120 <ScrollPane>
121 <content>
122 <VBox prefWidth="700.0">
123 <children>
124 <Text fontSmoothingType="LCD"

strokeType="OUTSIDE" strokeWidth="0.0"
styleClass="h1" text="Database connection">

125 <VBox.margin>
126 <Insets bottom="20.0" />
127 </VBox.margin>
128
129
130
131 </Text>
132 <Label text="Please provide the required

database related information below and ensure
that the ServiceNow App Accelerator is
allowed to access the given database."
wrapText="true" />

133 <HBox layoutX="10.0" layoutY="173.0"
maxWidth="360.0">

134 <children>
135 <Text strokeType="OUTSIDE" strokeWidth="0.0"

text="Database type">
136 <HBox.margin>
137 <Insets top="5.0" />
138 </HBox.margin>
139 </Text>
140 <Pane HBox.hgrow="ALWAYS" />
141 <JFXComboBox fx:id="databaseType"

editable="true" prefWidth="250.0"
promptText="please choose">

142 <items>
143 <FXCollections

fx:factory="observableArrayList">
144 <String fx:value="mysql" />
145 <String fx:value="postgresql" />
146 <String fx:value="sqlserver" />
147 </FXCollections>
148 </items>
149 </JFXComboBox>
150 </children>
151 <VBox.margin>
152 <Insets top="10.0" />
153 </VBox.margin>
154 </HBox>
155 <HBox layoutX="50.0" layoutY="125.0"

maxWidth="360.0">
156 <children>
157 <Text strokeType="OUTSIDE" strokeWidth="0.0"

text="Host">
158 <HBox.margin>
159 <Insets top="5.0" />
160 </HBox.margin>

94

Appendix A. Appendix

161 </Text>
162 <Pane HBox.hgrow="ALWAYS" />
163 <JFXTextField fx:id="databaseHost"

prefWidth="250.0" promptText="localhost
or IP address">

164 <validators>
165 <RequiredFieldValidator />
166 </validators>
167 </JFXTextField>
168 </children>
169 <VBox.margin>
170 <Insets top="10.0" />
171 </VBox.margin>
172 </HBox>
173 <HBox fx:id="databasePortpane" maxWidth="360.0">
174 <children>
175 <Text strokeType="OUTSIDE" strokeWidth="0.0"

text="Port">
176 <HBox.margin>
177 <Insets top="5.0" />
178 </HBox.margin></Text>
179 <Pane HBox.hgrow="ALWAYS" />
180 <JFXTextField fx:id="databasePort"

prefWidth="250.0" promptText="(optional)
Port number" />

181 </children>
182 <VBox.margin>
183 <Insets right="10.0" top="10.0" />
184 </VBox.margin>
185 </HBox>
186 <HBox maxWidth="360.0">
187 <children>
188 <Text strokeType="OUTSIDE" strokeWidth="0.0"

text="Database">
189 <HBox.margin>
190 <Insets top="5.0" />
191 </HBox.margin>
192 </Text>
193 <Pane HBox.hgrow="ALWAYS" />
194 <JFXTextField fx:id="databaseDatabase"

prefWidth="250.0" promptText="enter
Database name">

195 <validators>
196 <RequiredFieldValidator />
197 </validators>
198 </JFXTextField>
199 </children>
200 <VBox.margin>
201 <Insets right="10.0" top="10.0" />
202 </VBox.margin>
203 </HBox>
204 <HBox maxWidth="360.0">
205 <children>
206 <Text strokeType="OUTSIDE" strokeWidth="0.0"

text="Username">
207 <HBox.margin>
208 <Insets top="5.0" />
209 </HBox.margin>
210 </Text>
211 <Pane HBox.hgrow="ALWAYS" />

95

Appendix A. Appendix

212 <JFXTextField fx:id="databaseUsername"
prefWidth="250.0" promptText="enter
Username">

213 <validators>
214 <RequiredFieldValidator />
215 </validators>
216 </JFXTextField>
217 </children>
218 <VBox.margin>
219 <Insets right="10.0" top="10.0" />
220 </VBox.margin>
221 </HBox>
222 <HBox maxWidth="360.0">
223 <children>
224 <Text strokeType="OUTSIDE" strokeWidth="0.0"

text="Password">
225 <HBox.margin>
226 <Insets top="5.0" />
227 </HBox.margin>
228 </Text>
229 <Pane HBox.hgrow="ALWAYS" />
230 <JFXPasswordField fx:id="databasePassword"

prefWidth="250.0" promptText="enter
Password" />

231 </children>
232 <VBox.margin>
233 <Insets right="10.0" top="10.0" />
234 </VBox.margin>
235 </HBox>
236 <HBox>
237 <VBox.margin>
238 <Insets top="30.0" />
239 </VBox.margin>
240 <children>
241 <JFXButton fx:id="saveDatabaseButton"

ButtonType="RAISED" defaultButton="true"
mnemonicParsing="false" onAction="call
saveDatabase arg(arg())" text="Save">

242 <graphic>
243 <FontAwesomeIconView glyphName="SAVE" />
244 </graphic>
245 </JFXButton>
246 <JFXButton

fx:id="testDatabaseConnectionButton"
ButtonType="RAISED" onAction="call
testDatabaseConnection arg(arg())"
styleClass="info-button" text="Test
connection">

247 <HBox.margin>
248 <Insets left="25.0" />
249 </HBox.margin>
250 </JFXButton>
251 </children>
252 </HBox>
253 </children>
254 <padding>
255 <Insets bottom="20.0" left="40.0" right="20.0"

top="15.0" />
256 </padding>
257 </VBox>
258 </content>

96

Appendix A. Appendix

259 </ScrollPane>
260 </content>
261 </Tab>
262 <Tab text="ServiceNow">
263 <content>
264 <ScrollPane prefWidth="600.0">
265 <content>
266 <VBox prefWidth="700.0">
267 <children>
268 <Text fontSmoothingType="LCD"

strokeType="OUTSIDE" strokeWidth="0.0"
styleClass="h1" text="ServiceNow instance">

269
270
271
272 <VBox.margin>
273 <Insets bottom="20.0" />
274 </VBox.margin>
275 </Text>
276 <Label text="Please enter the URL of your

ServiceNow instance as well as Username and
Password for authentication purposes."
wrapText="true" />

277 <HBox maxWidth="360.0">
278 <children>
279 <Text fontSmoothingType="LCD"

strokeType="OUTSIDE" strokeWidth="0.0"
text="Instance URL">

280 <HBox.margin>
281 <Insets top="5.0" />
282 </HBox.margin>
283 </Text>
284 <Pane HBox.hgrow="ALWAYS" />
285 <JFXTextField fx:id="servicenowURL"

prefWidth="250.0" promptText="e.g.
https://dev36664.service-now.com/">

286 <validators>
287 <RequiredFieldValidator />
288 </validators>
289 </JFXTextField>
290 </children>
291 <VBox.margin>
292 <Insets top="25.0" />
293 </VBox.margin>
294 </HBox>
295 <HBox layoutX="30.0" layoutY="120.0"

maxWidth="360.0">
296 <children>
297 <Text fontSmoothingType="LCD"

strokeType="OUTSIDE" strokeWidth="0.0"
text="Username">

298 <HBox.margin>
299 <Insets top="5.0" />
300 </HBox.margin>
301 </Text>
302 <Pane HBox.hgrow="ALWAYS" />
303 <JFXTextField fx:id="servicenowUsername"

prefWidth="250.0" promptText="Username
for this instance">

304 <validators>
305 <RequiredFieldValidator />

97

Appendix A. Appendix

306 </validators>
307 </JFXTextField>
308 </children>
309 <VBox.margin>
310 <Insets top="10.0" />
311 </VBox.margin>
312 </HBox>
313 <HBox layoutX="30.0" layoutY="145.0"

maxWidth="360.0">
314 <children>
315 <Text fontSmoothingType="LCD"

strokeType="OUTSIDE" strokeWidth="0.0"
text="Password">

316 <HBox.margin>
317 <Insets top="5.0" />
318 </HBox.margin>
319 </Text>
320 <Pane HBox.hgrow="ALWAYS" />
321 <JFXPasswordField fx:id="servicenowPassword"

prefWidth="250.0" promptText="Password
for this instance">

322 <validators>
323 <RequiredFieldValidator />
324 </validators>
325 </JFXPasswordField>
326 </children>
327 <VBox.margin>
328 <Insets top="10.0" />
329 </VBox.margin>
330 </HBox>
331 <HBox>
332 <children>
333 <JFXButton fx:id="saveServiceNowButton"

ButtonType="RAISED" defaultButton="true"
mnemonicParsing="false" onAction="call
saveServiceNow arg(arg())" text="Save">

334 <graphic>
335 <FontAwesomeIconView glyphName="SAVE" />
336 </graphic>
337 </JFXButton>
338 <JFXButton fx:id="testServiceNowButton"

ButtonType="RAISED" onAction="call
testServiceNow arg(arg())"
styleClass="info-button" text="Test
connection">

339 <HBox.margin>
340 <Insets left="25.0" />
341 </HBox.margin>
342 </JFXButton>
343 </children>
344 <VBox.margin>
345 <Insets top="30.0" />
346 </VBox.margin>
347 </HBox>
348 </children>
349 <padding>
350 <Insets bottom="20.0" left="40.0" right="20.0"

top="15.0" />
351 </padding>
352 </VBox>
353 </content>

98

Appendix A. Appendix

354 </ScrollPane>
355 </content>
356 </Tab>
357 <Tab text="Manage">
358 <content>
359 <ScrollPane prefWidth="600.0">
360 <content>
361 <VBox prefWidth="770.0">
362 <children>
363 <Text fontSmoothingType="LCD"

strokeType="OUTSIDE" strokeWidth="0.0"
styleClass="h1" text="Manage credentials">

364
365
366
367 <VBox.margin>
368 <Insets bottom="20.0" />
369 </VBox.margin>
370 </Text>
371 <Label lineSpacing="6.0" text="Here you can

manage your saved Database connections and
ServiceNow instances." wrapText="true" />

372 <JFXComboBox fx:id="manageCombobox" promptText="
List Databases">

373 <items>
374 <FXCollections

fx:factory="observableArrayList">
375 <String fx:value="List Databases" />
376 <String fx:value="List ServiceNow

instances" />
377 </FXCollections>
378 </items>
379 <VBox.margin>
380 <Insets top="10.0" />
381 </VBox.margin>
382 </JFXComboBox>
383 <JFXTreeTableView

fx:id="configurationManageDatabases"
managed="true" visible="true"
prefHeight="260.0">

384 <VBox.margin>
385 <Insets top="15.0" />
386 </VBox.margin>
387 <columns>
388 <JFXTreeTableColumn text="Type" prefWidth="100.0" />
389 <JFXTreeTableColumn text="Host" prefWidth="100.0" />
390 <JFXTreeTableColumn text="Port" prefWidth="60.0" />
391 <JFXTreeTableColumn text="Name" />
392 <JFXTreeTableColumn text="Username" />
393 <JFXTreeTableColumn text="Password" />
394 </columns>
395 <columnResizePolicy>
396 <TreeTableView fx:constant="CONSTRAINED_RESIZE_POLICY" />
397 </columnResizePolicy>
398 </JFXTreeTableView>
399 <JFXTreeTableView

fx:id="configurationManageServiceNowInstances"
managed="false" prefHeight="260.0"
visible="false">

400 <columns>
401 <JFXTreeTableColumn text="URL" />

99

Appendix A. Appendix

402 <JFXTreeTableColumn text="Username" />
403 <JFXTreeTableColumn text="Password" />
404 </columns>
405 <columnResizePolicy>
406 <TreeTableView

fx:constant="CONSTRAINED_RESIZE_POLICY"
/>

407 </columnResizePolicy>
408 </JFXTreeTableView>
409 </children>
410 <padding>
411 <Insets bottom="20.0" left="40.0" right="20.0"

top="15.0" />
412 </padding>
413 </VBox>
414 </content>
415 </ScrollPane>
416 </content>
417 </Tab>
418 </tabs>
419 </JFXTabPane>
420 </children>
421 </AnchorPane>
422 </content>
423 </Tab>
424 <Tab text="Import data">
425 <graphic>
426 <MaterialIconView glyphName="CLOUD_UPLOAD" styleClass="tabGraphic"

/>
427 </graphic>
428 <content>
429 <AnchorPane>
430 <children>
431 <Text fontSmoothingType="LCD" layoutX="38.0" layoutY="45.0"

strokeType="OUTSIDE" strokeWidth="0.0" styleClass="h1"
text="Import data">

432
433
434
435 </Text>
436 <JFXTabPane fx:id="importTabPane" styleClass="no-tab-header"

AnchorPane.bottomAnchor="0.0" AnchorPane.leftAnchor="0"
AnchorPane.rightAnchor="0.0" AnchorPane.topAnchor="40.0">

437

438 <tabs>
439 <Tab>
440 <content>
441 <ScrollPane>
442 <content>
443 <VBox fx:id="importStep1VBox" prefWidth="760.0">
444 <children>
445 <Label lineSpacing="6.0" text="Please select one

Database which will be merged to one
ServiceNow instance. After that you will be
connected to the Database and provided with a
list of all found tables, where you can
choose which one you like to import."
textAlignment="JUSTIFY" wrapText="true" />

446 <HBox maxWidth="500.0">
447 <children>

100

Appendix A. Appendix

448 <Text strokeType="OUTSIDE" strokeWidth="0.0"
text="Database">

449 <HBox.margin>
450 <Insets top="6.0" />
451 </HBox.margin>
452 </Text>
453 <Pane HBox.hgrow="ALWAYS" />
454 <ValidationFacade maxHeight="10.0">
455 <control>
456 <JFXComboBox fx:id="importDatabase"

editable="false" prefWidth="390.0"
promptText="please choose" />

457 </control>
458 <validators>
459 <RequiredFieldValidator />
460 </validators>
461 </ValidationFacade>
462 </children>
463 <VBox.margin>
464 <Insets top="10.0" />
465 </VBox.margin>
466 </HBox>
467 <HBox maxWidth="500.0">
468 <children>
469 <Text strokeType="OUTSIDE" strokeWidth="0.0"

text="ServiceNow">
470 <HBox.margin>
471 <Insets top="6.0" />
472 </HBox.margin>
473 </Text>
474 <Pane HBox.hgrow="ALWAYS" />
475 <ValidationFacade maxHeight="10.0">
476 <control>
477 <JFXComboBox fx:id="importServiceNow"

editable="false" prefWidth="390.0"
promptText="please choose" />

478 </control>
479 <validators>
480 <RequiredFieldValidator />
481 </validators>
482 </ValidationFacade>
483 </children>
484 </HBox>
485 <JFXButton ButtonType="RAISED"

defaultButton="true" mnemonicParsing="false"
onAction="call prepareImport arg(arg())"
text="Connect">

486 <VBox.margin>
487 <Insets top="20.0" />
488 </VBox.margin>
489 </JFXButton>
490 <VBox fx:id="databaseAfterConnect"

visible="false">
491 <children>
492 <Label text="Successfully connected! Which

of the following tables would you like to
import?">

493 <VBox.margin>
494 <Insets bottom="10.0" top="5.0" />
495 </VBox.margin>
496 </Label>

101

Appendix A. Appendix

497 <VBox fx:id="databaseCheckboxPane">
498 <children>
499 <JFXCheckBox fx:id="databaseSelectAll"

mnemonicParsing="false"
onAction="call selectAllCheckboxes
arg(arg())" text="Select all">

500
501 <Font name="System Italic"

size="12.0" />
502
503 </JFXCheckBox>
504 </children>
505 <VBox.margin>
506 <Insets top="5.0" />
507 </VBox.margin>
508 </VBox>
509 <JFXButton ButtonType="RAISED"

mnemonicParsing="false" onAction="call
startImport arg(arg())" text="Start">

510 <VBox.margin>
511 <Insets top="15.0" />
512 </VBox.margin>
513 </JFXButton>
514 </children>
515 <opaqueInsets>
516 <Insets />
517 </opaqueInsets>
518 <VBox.margin>
519 <Insets top="20.0" />
520 </VBox.margin>
521 </VBox>
522 </children>
523 <padding>
524 <Insets bottom="20.0" left="40.0" right="20.0"

top="30.0" />
525 </padding>
526 </VBox>
527 </content>
528 </ScrollPane>
529 </content>
530 </Tab>
531 <Tab>
532 <content>
533 <VBox prefHeight="453.0" prefWidth="768.0">
534 <children>
535 <Label minHeight="-Infinity" text="This page will

transfer all selected tables from the database
with its data to your ServiceNow instance. The
logging area and the progress bar will show
additional information and inform you once the
task has finished." textAlignment="JUSTIFY"
wrapText="true">

536 <VBox.margin>
537 <Insets bottom="20.0" />
538 </VBox.margin>
539 </Label>
540 <HBox styleClass="importProgressStep">
541 <children>
542 <Pane fx:id="readingDatabasePane"

prefWidth="60.0">
543 <children>

102

Appendix A. Appendix

544 <ProgressIndicator prefHeight="34.0"
prefWidth="30.0" />

545 </children>
546 <HBox.margin>
547 <Insets left="30.0" />
548 </HBox.margin>
549 </Pane>
550 <Label text="Reading database table schema">
551 <HBox.margin>
552 <Insets top="5.0" />
553 </HBox.margin>
554 </Label>
555 </children>
556 <VBox.margin>
557 <Insets top="30.0" />
558 </VBox.margin>
559 </HBox>
560 <HBox layoutX="50.0" layoutY="100.0"

styleClass="importProgressStep">
561 <children>
562 <Pane fx:id="creatingTablesPane"

prefWidth="60.0">
563 <children>
564 <ProgressIndicator prefHeight="34.0"

prefWidth="30.0" visible="false" />
565 </children>
566 <HBox.margin>
567 <Insets left="30.0" />
568 </HBox.margin>
569 </Pane>
570 <Label opacity="0.4" text="Creating ServiceNow

tables">
571 <HBox.margin>
572 <Insets top="5.0" />
573 </HBox.margin>
574 </Label>
575 </children>
576 <VBox.margin>
577 <Insets top="40.0" />
578 </VBox.margin>
579 </HBox>
580 <HBox layoutX="50.0" layoutY="154.0"

styleClass="importProgressStep">
581 <children>
582 <Pane fx:id="uploadingDataPane"

prefWidth="60.0">
583 <children>
584 <ProgressIndicator prefHeight="34.0"

prefWidth="30.0" visible="false" />
585 </children>
586 <HBox.margin>
587 <Insets left="30.0" />
588 </HBox.margin>
589 </Pane>
590 <Label opacity="0.4" text="Uploading data">
591 <HBox.margin>
592 <Insets top="5.0" />
593 </HBox.margin>
594 </Label>
595 </children>
596 <VBox.margin>

103

Appendix A. Appendix

597 <Insets top="40.0" />
598 </VBox.margin>
599 </HBox>
600 <HBox layoutX="50.0" layoutY="208.0"

styleClass="importProgressStep">
601 <children>
602 <Pane fx:id="allDonePane" prefWidth="60.0">
603 <HBox.margin>
604 <Insets left="30.0" />
605 </HBox.margin>
606 <children>
607 <MaterialIconView glyphName="CHECK"

visible="false" y="30.0" />
608 </children>
609 </Pane>
610 <Label opacity="0.4" text="All done!">
611 <HBox.margin>
612 <Insets top="5.0" />
613 </HBox.margin>
614 </Label>
615 </children>
616 <VBox.margin>
617 <Insets top="40.0" />
618 </VBox.margin>
619 </HBox>
620 <JFXProgressBar fx:id="importProgressbar"

prefWidth="787.0" progress="0.0"
VBox.vgrow="ALWAYS">

621 <VBox.margin>
622 <Insets top="120.0" />
623 </VBox.margin>
624 </JFXProgressBar>
625 </children>
626 <padding>
627 <Insets bottom="20.0" left="40.0" right="20.0"

top="30.0" />
628 </padding>
629 </VBox>
630 </content>
631 </Tab>
632 </tabs>
633 </JFXTabPane>
634 </children>
635 </AnchorPane>
636 </content>
637 </Tab>
638 </tabs>
639 </TabPane>
640 </children>
641 <!-- comment: Rexx program that stores all fx:id objects in .local~SAA.fxml

directory -->
642 <fx:script source="put_FXID_objects_into.my.app.rex" />
643 </AnchorPane>

Listing A.2.: SAA.fxml

1 <?xml version="1.0" encoding="UTF-8"?>
2

3 <?import com.jfoenix.controls.JFXButton?>
4 <?import com.jfoenix.controls.JFXPasswordField?>

104

Appendix A. Appendix

5 <?import com.jfoenix.validation.RequiredFieldValidator?>
6 <?import javafx.scene.control.Label?>
7 <?import javafx.scene.layout.AnchorPane?>
8 <?import javafx.scene.text.Font?>
9 <?language rexx?>

10

11 <AnchorPane maxHeight="-Infinity" maxWidth="-Infinity" minHeight="-Infinity"
minWidth="-Infinity" prefHeight="200.0" prefWidth="400.0"
stylesheets="@SAA.css" xmlns="http://javafx.com/javafx/8.0.111"
xmlns:fx="http://javafx.com/fxml/1">

12 <fx:script source="../ooRexx/JFXAlert-controller.rxj" />
13 <children>
14 <Label layoutX="23.0" layoutY="14.0" text="Input Password">
15
16
17
18 </Label>
19 <JFXPasswordField fx:id="inputMasterPassword" layoutX="25.0"

layoutY="92.0" prefHeight="25.0" prefWidth="350.0">
20 <validators>
21 <RequiredFieldValidator />
22 </validators>
23 </JFXPasswordField>
24 <JFXButton defaultButton="true" layoutX="255.0" layoutY="146.0" text="OK"

onAction="call passwordEntered arg(arg())" />
25 <Label layoutX="25.0" layoutY="47.0" prefHeight="49.0" prefWidth="350.0"

text="Please provide a master password to save and retrieve
credentials." wrapText="true" />

26 </children>
27 </AnchorPane>

Listing A.3.: JFXAlert.fxml

105

	1 Introduction
	2 Exploring the ServiceNow Platform
	2.1 The Cloud Computing Market
	2.2 The ServiceNow Approach to Cloud Computing
	2.3 Architecture
	2.4 Building Apps for the Cloud
	2.5 Security Operations
	2.6 Migration issues
	2.7 ServiceNow Alternatives
	2.8 Conclusion

	3 Programming with Open Object Rexx
	3.1 Nutshell Examples
	3.2 The BSF4ooRexx Framework

	4 Developing the ServiceNow App Accelerator
	4.1 Possible Migration Strategies
	4.2 Project Overview
	4.3 Project Structure
	4.4 Application Bootstrap
	4.5 Configuration
	4.6 Manage Credentials
	4.7 The Import Task
	4.8 Functional Testing

	5 Related Work
	6 Improvements and Outlook
	Bibliography
	List of Figures
	Listings
	A Appendix

