Department of Information Systems
and Operations Management

Procedural and Object-oriented Programming 4

Abstract Datatype, Classes, Methods, Attributes, Messages, Scopes, Generalizing

Class Hierarchy, Inheritance

Business Programming 1

: Business Programming 2

Vienna University of Economics and Business = Welthandelsplatz 1, D2-C = A-1020 Vienna

Rg),.(x REXX @@ ooRexx @ BSF4ooReX)>
. Graphical User
Basics, Commands, Wmd_ow . Security, Interfaces (GUI),
Parsing APIs Automatisation, Debugging Sockets
Web-Scripting ’

Prof. Rony G. Flatscher

Datatype (DT), 1 mlﬁgﬂx@

 What is a datatype?
- Examples from school?

 What gets determined with a datatype?
 What is an abstract datatype (ADT)?

Prof. Rony G. Flatscher

Datatype (DT), 2 mR?)Q\’

LANGU.

* A datatype determines
- The allowable values
— The operations that can be carried out with these values

« Abstract datatype (ADT)
- A generalized description/definition ("schema") of a datatype
— Defines the allowable values in general terms
— Defines the operations that can be carried out in general terms

Prof. Rony G. Flatscher

Datatype (DT), 3 mlﬁgwxm

 Examples
- Datatype Birthday
* E.g.defines avalid date and a valid time attribute (field), i.e. a structure

* Allowable operations, e.g. change/query the values of the stored date and time, calculate
differences, e.g. how many years have passed since the birthday

- Datatype Person
» E.g. defines first name, family name, salary attributes (fields), i.e. a structure

* Allowable operations, e.g. changing/querying the values for first name, family name, salary,
increase salary

 Problem in Classic Rexx

- No means to explicitly define structures to represent and name a datatype
- No means to explicitly define operations for a specific datatype only

Prof. Rony G. Flatscher

Possible Solution 1: Encoding with Strings WR—\/:gwxﬁ

* Encoding of data of type Birthday

"20050901 16:00"
"20080229 19:19"

* Encoding of data of type Person
"Albert Einstein 45000"
"Vera Withanyname 25000"

* Processing only possible if the following is known to everyone
- Number and sequence of the DT attributes (fields)
- Dimension of the columns (variable, fixed width)
- Forinstance encoded ASCII-files could be encoded as
» Fixed column width: each attribute (field) starts at the same position (column)

* Variable column width: a separating (delimiting) character necessary between attributes

- E.g. ablank or using "comma-separated values (CSV)" to separate attribute (field) values

Prof. Rony G. Flatscher

Possible Solution 2: Encoding with Stems mlﬁg@x@

« Data of type Birthday
- Encoding of data in a string, storing a collection with a stem (birth.)
birth.1 = "20320901 16:00"
birth.2 = "20360229 19:19"

* Processing only possible if one knows the number, sequence and width of the values
representing the DT attributes (fields), e.g. SysFileTree()

— Structuring and collecting of data with a stem (birth.) and indexes (eDate, eTime)
birth.l.eDate = "20320901"
birth.1.eTime = "16:00"
birth.2.eDate = "20360229"
birth.2.eTime = "19:19"

» Processing already possible, if one knows only the identifiers (indexes) of the
individual DT attributes (fields)!

Cf. rexxref.pdf (1.13.4. Stems) Prof. Rony G. Flatscher

Possible Solution 3: Encoding with Stems mlﬁg@x@

 Data of type Person
— Structuring with the help of stems
pers.eFirstName = "Albert"
pers.elLastName = "Einstein”

pers.eSalary = "45000"
and

pers.eFirstName = "Vera"
pers.eLastName = "Withanyname"

pers.eSalary = "25000"
e If using stems one must introduce an additional index (e.g. a number) in
order to be able to store both persons above, independent of each other!

- Otherwise the latter assignments ("Vera" ..) would replace
("overwrite") the first ones ("Albexrt" ..)!

Cf. rexxref.pdf (1.13.4. Stems) Prof. Rony G. Flatscher

Discussion of Possible Solutions mR?)(\/

LANGUAGE

DT structure
- Encoding in strings and stems
* Crook, as implementation dependent!

* Error prone

DT operations
- No possibility to define operations for datatypes!
» Internal routines (Functions or procedures) must be defined on their own

» Direct access to strings and stems must be realized via EXPOSE statements
- Problems with scopes, source of errors

e Insulating ("Encapsulating") of individual DT extensions ("instances")
not possible

Prof. Rony G. Flatscher

Abstract Datatype (ADT) @@

 Implementing an ADT schema with ooRexx
— :CLASS directive

* Definition of attributes (fields) and therefore the internal datastructure
— = ATTRIBUTE directive, or
- EXPOSE statement denoting attributes (fields) within methods

» Definition of operations (method routines)
- ::METHOD directive

« Instances ("values", "objects") of datatypes ("classes", "types")
- Individual, unambiguously distinguishable instantiations of the same type

- Possess all the same attributes (constitute the datastructure as defined in the
class) and operations ("methods of the class")

Cf. rexxref pdf (3.3. ::CLASS) Prof. Rony G. Flatscher

Definition of an Abstract Datatype (ADT) @@

e Object Rexx implementation of the ADT Birthday
/x%/
: :CLASS Birthday

: :ATTRIBUTE date
: :ATTRIBUTE time

 Object
- Instance (extension, value) of an ADT, i.e., of a class
* Uniquely distinguishable from other objects (even) of the same type
— Creation: sending the message NEW to a class

* Accessing the class via its environment symbol
- Dot, immediately followed by the class identifier (name of the class), e.g.

objectl = .String~NEW("hallo") /* Object Rexx version */
object2 = "hallo" /* classic Rexx version */

10 Cf. rexxref.pdf (3.3. ::CLASS) Prof. Rony G. Flatscher

Object Rexx Messages, 1 e

* Conceptually, objects are regarded to be living things in ooRexx with

which one communicates using messages! :)
- If an object receives a message (with or without arguments) it

« Searches for a method by the name of the received message in its class

- If found, it invokes the method, supplying the received message arguments, if any, and
returns any value the method may have returned

- If not found the object searches the class hierarchy to find and invoke the method as
described above

« If there is no method found by the object it will raise a runtime condition with the error
message "Object does not understand message" and the interpreter stops the
execution of the program

- A message term consists at least of the receiving object, the message operator
(~) and the message name to be sent to the object, e.g.

object = .birthday~new

11 Cf. rexxref.pdf (1.11.4. Message Terms) Prof. Rony G. Flatscher

Object Rexx Messages, 2 e

« Interaction (activating of methods) with objects (instances, values) is

only possible via messages
— Names of messages are the names of the methods, that the object must find
and invoke on behalf of the programmer
- Message operator ("twiddle") is the tilde character: ~
« "ABC"~REVERSE yields: CBA
"Cascading" messages, two twiddles: ~~
« "ABC"~~REVERSE vyields (attention!): ABC

* Sent messages activate the respective methods of the receiving object, however,
upon return the interpreter changes the result to be always the receiving object!

- Therefore multiple messages intended for the same object can be "cascaded" one after the
other ("cascading messages) by using two tildes (~~)

- Execution (resolution) of messages: from left to right

12 Cf. rexxref.pdf (1.11.4. Message Terms) Prof. Rony G. Flatscher

Using of an Abstract Datatype (ADT), 1 @@

e Object Rexx implementation of the ADT Birthday

/**/

gl = .Birthday~New

gl~Date= "20320901"

gl~Time= "16:00"
g2=.Birthday~New~~"Date="("20360229")~~"Time="("19:19")
SAY gl~date g2~date gl~time g2~time

: :CLASS Birthday
: :ATTRIBUTE date
: :ATTRIBUTE time

Output:
20320901 20360229 16:00 19:19

13 Cf. rexxref.pdf (1.11.4. Message Terms) Prof. Rony G. Flatscher

Using of an Abstract Datatype (ADT), 2 @@

e Object Rexx implementation of the ADT Birthday

/**/

gl = .Birthday~New

gl~Date= "20320901" [o
gl~Time= "16:00" ¥ 1 — \

g2=.Birthday~ New\[:]~L"Date_"("20360229")[]~4"T1me—"("19 19") |
SAY gl~date g2~date gl~time g2~time

: :CLASS Birthday
: :ATTRIBUTE date
: :ATTRIBUTE time

Output:
20320901 20360229 16:00 19:19

14 Cf. rexxref.pdf (1.11.4. Message Terms) Prof. Rony G. Flatscher

Scope, 1 @@

« Scope: Determines the visibility of labels, variables, classes,
routines, methods and attributes

« "Standard Scope"
- Determines which labels are visible

» Labels are only visible within a program (until the end of the program or until the first
directive led in by a double colon ::, whatever comes first)

* Labels within of ::ROUTINE and ::METHOD directives are only visible within these
directives

15 Prof. Rony G. Flatscher

Scope, 2 @@

 "Procedure Scope"

- Determines, which variables of the caller are visible (accessible) from within the
called internal routine (procedure/function)

« Internal routines (labels), without a PROCEDURE statement
- All variables of the calling part of the program are accessible

* Internal routines (labels), followed by a PROCEDURE statement
- Variables of the calling part of the program are not accessible (are hidden)
* "Local scope"

However: with the help of the EXPOSE subkeyword on a PROCEDURE statement one
can deliberately define direct access to variables of the calling part of the program

16 Prof. Rony G. Flatscher

Scope, 3 @@

 "Program/Package Scope"
— Determines that all classes and routines defined in a program are accessible
* Local classes and routines cannot be hidden/overwritten
» Classes and routines can be defined to be public
- Inaddition, this scope determines, that public classes and public routines of
called or required (::REQUIRES directive) programs become accessible

* Attention!

- If different programs are called one after the after, and contain public classes or public
routines with the same names, then those classes/routines are accessible that are defined
in the last called program

17 Prof. Rony G. Flatscher

Scope, 4 @@

18

 "Routine Scope"
— Defines its own scope for
* Labels ("standard scope") and
» Variables ("procedure scope")
— Accessing classes and routines is determined by the "program/package scope”

Prof. Rony G. Flatscher

Scope, 5 @@

 "Method Scope"
- Defines its own scope for
» Labels ("standard scope") and
» Variables ("procedure scope")
- Accessing classes and routines is determined by the "program/package
scope”
- Direct access to attributes

» Within a method it is possible to use the EXPOSE statement (must be the first
statement in the method routine) to list those attributes of the class which should be
made directly available for access from within the method routine

19 Prof. Rony G. Flatscher

Scope, 6 @@

 "Method Scope" (continued)
- Determines which attributes can be accessed directly from within a method

— There are two types of methods which determine the accessibility of attributes

» Methods that are assigned to classes
- Method and attribute directives defined after a class directive get assigned to that class

- Expose and share the same set of instance/object attributes

» "Floating methods" (advanced concept, can be used for dynamic programming)
- Methods which are defined before a class directive are called "floating methods"
- All floating methods can expose and share the same attributes with each other
- Hint: accessing floating methods is possible via the environment symbol .METHODS from
within the program where they are defined

Prof. Rony G. Flatscher

20

Overview of Scopes @@

21

* Rexx und Object Rexx
- Standard scope

e Labels, variables
- Procedure scope

* Variables in internal routines (procedures/functions)

* Object Rexx
- Program/Package scope

* Accessing local and public classes and routines of called/required programs/packages
- Routine scope

* Standard+procedure+program/package scope
- Method scope

* Standard+procedure+program plus accessibility of attributes
- Methods assigned to a class: methods, which are defined for a class ("instance/object attributes")
- Floating methods: methods, which are defined before any class directive ("floating attributes")

Prof. Rony G. Flatscher

Abstract Datatype "Person’, 1

/**/

pl = .Person~New; pl~firstName= "Albert";

pl~familyName= "Einstein"; pl~salary=45000
p2=.Person~New~~"firstName="("Vera")~~"salary="("25000")
p2~~"familyName=" ("Withanyname")

SAY pl~firstName pl~familyName pl~salary

SAY p2~firstName p2~familyName p2~salary

SAY "Total costs of salaries:" pl~salary + p2~salary

: :CLASS Person

: :ATTRIBUTE firstName
: :ATTRIBUTE familyName
: :ATTRIBUTE salary

Output:

Albert Einstein 45000
Vera Withanyname 25000
Total costs of salaries: 70000

22

Prof. Rony G. Flatscher

Abstract Datatype "Person', 2

23

/**/
pl = .Person~New; pl~firstName= "Albert";
pl~familyName= "Einstein"; pl~salary= "45000"
p2=.Person~New~~"firstName="("Vera")~~"salary="(25000)
p2~~"familyName=" ("Withanyname")
SAY pl~firstName pl~familyName pl~salary p2~firstName
SAY pl~firstName pl~salary pl~~increaseSalary(10000)~salary
::CLASS Person
: :ATTRIBUTE firstName
: :ATTRIBUTE familyName
: :ATTRIBUTE salary
: :METHOD increaseSalary

EXPOSE salary

USE ARG increase

salary = salary + increase

Output:

Albert Einstein 45000 Vera
Albert 45000 55000

Prof. Rony G. Flatscher

Abstract Datatype "Person", 3

(Without Cascading Message)

pl = .Person~New; pl~firstName= "Albert";
pl~familyName= "Einstein"; pl~salary= "45000"
p2=.Person~New~~"firstName="("Vera")~~"salary="(25000)
p2~~"familyName=" ("Withanyname")
SAY pl~firstName pl~familyName pl~salary p2~firstName
tmpSalary=pl~salary
pl~increaseSalary (10000)
SAY pl~firstName tmpSalary pl~salary
::CLASS Person
: :ATTRIBUTE firstName
: :ATTRIBUTE familyName
: :ATTRIBUTE salary
: :METHOD increaseSalary

EXPOSE salary

USE ARG increase

salary = salary + increase

Output:

Albert Einstein 45000 Vera
Albert 45000 55000

24

Prof. Rony G. Flatscher

Creating Objects R

* Creating (constructing) new objects (values, instances) can be done by
sending the NEW message to a class

- The NEW method will create the new object (instance, value) and will send it the
message INIT to allow it to initialise

* Ifthe NEW message has arguments, they get forwarded with the INIT
message in the same order

- The NEW method returns the reference to the newly created object (instance,
value) as its result

* Hence, if we define an INIT method for a class, we can use it to initialise an object
immediately after it got created (constructed)

— The INIT method is therefore also called "constructor"

Cf. rexxref.pdf (4.2.9. Initialization) Prof. Rony G. Flatscher

Abstract Datatype "Person”, 2
Constructor

/**/

pl = .Person~New("Albert",

p2

::CLASS Person
: :METHOD INIT

"Einstein", "45000")

.Person~New("Vera", "Withanyname",b 25000)
SAY pl~firstName pl~familyName pl~salary p2~firstName
SAY pl~firstName pl~salary pl~~increaseSalary(10000)~salary

EXPOSE firstName familyName salary
USE ARG firstName, familyName, salary

: :ATTRIBUTE firstName
: :ATTRIBUTE familyName
: :ATTRIBUTE salary

: :METHOD increaseSalary

EXPOSE salary
USE ARG increase

salary = salary + increase

Output:

Albert Einstein 45000 Vera

Albert 45000 55000

26

Cf. rexxref.pdf (4.2.9. Initialization)

Prof. Rony G. Flatscher

Deleting of Objects @@

* Objects are automatically deleted from the runtime system, if they are not
referenced anymore (becoming "garbage")

- Ifthere is a method named UNINIT defined for a class, then this
method will be invoked, right before the unreferenced object gets
deleted by the garbage collector by sendig it the UNINIT message.

e The UNINIT method is therefore called "destructor"

27 Cf. rexxref.pdf (4.2.10. Object Destruction and Uninitialization) Prof. Rony G. Flatscher

The Rexx "DROP" statement @:@

e DROP statement

- The DROP statement allows the explicit deletion of a variable
- Ifavariable is destroyed its reference to an existing object is removed

» There is still the possibility that there are other variables that reference such an
object

28 Cf. rexxref.pdf (2.5. DROP) Prof. Rony G. Flatscher [®®

Abstract Datatype "Person”
Destructor

29

/**/
pl = .Person~New("Albert","Einstein", "45000")
p2 = .Person~New("Vera", "Withanyname",6 25000)
SAY pl~firstName pl~familyName pl~salary p2~firstName
SAY pl~firstName pl~salary pl~~increaseSalary(10000)~salary
DROP pl1; DROP p2; CALL SysSleep(15); SAY "Finish."
::CLASS Person
: :METHOD INIT
EXPOSE firstName familyName salary
USE ARG firstName, familyName, salary
: :METHOD UNINIT
EXPOSE firstName familyName salary
SAY "Object: <"firstName familyName salary"> is about to be destroyed."
: :ATTRIBUTE firstName
: :ATTRIBUTE familyName
: :ATTRIBUTE salary
: :METHOD increaseSalary
EXPOSE salary
USE ARG increase
salary = salary + increase

Output (maybe as uninit may run at different times):

Albert Einstein 45000 Vera

Albert 45000 55000

Object: <Vera Withanyname 25000> is about to be destroyed.
Finish.

Object: <Albert Einstein 55000> is about to be destroyed.

Prof. Rony G. Flatscher

Abstract Datatype (ADT) - Roundup @@

30

« Abstract datatype
- Schema for the implementation of datatypes
* Definition of Attributes — Results in the data structure

» Definition of Operations (“Behaviour”) — Method routines (Functions, Procedures)

* Internal datastructures and values are
- Not visible from the "outside"
- Not directly editable from the "outside"
= Encapsulation!

 Schema must be implemented in an appropriate Programming language
- Classic Rexx is not really appropriate for this
— Object Rexx is - as any other object-oriented - programming language appropriate

Prof. Rony G. Flatscher

Classification Tree, 1 e

* Generalization Hierarchy, "Classification Tree"
- Allows classification of instances (Objects), e.g. from biology
- Ordering of classes in superclasses and subclasses (schemata)

» Subordered classes ("subclasses") inherit all properties of all superclasses up to and
including the root class

» Subclasses specialize in one way or the other the superclass(es)
- "Defining of differences”
- Sometimes it may make sense, that a subclass specializes directly more than
one superclass at the same time ("multiple inheritance")
 Example: Classes representing landborne and waterborne animals, where there

exists a class "amphibians”, which inherits directly from the landborne and
waterborne animals

31 Prof. Rony G. Flatscher

Classification Tree, 2 e

32

» Prefabricated "class tree"

Root class of Object Rexx is named Object

All user defined classes are assumed to specialize the class Object, if no
superclass is explicitly given

Single and multiple inheritance possible

Prof. Rony G. Flatscher

Classification Tree: Search Order, 1 @@

* Conceptually, the object receiving a message, starts searching for a
method by the name of the received message and if found invokes it
with the supplied arguments

e Ifsuch a method is not found in the class, from which the object is
created, then the search is continued in the direct superclass up to
and including the root class Object

« Ifthe method is not even found in the root class Object, then an error
condition gets thrown ("object does not understand message")

- Ifthere is a method named UNKNOWN defined, then instead of creating an
exception the runtime system will invoke that method, supplying the name of
the unknown method and its arguments, if any were supplied with the message

33 Prof. Rony G. Flatscher

Classification Tree: Search Order, 2 @@

* Forthe purpose of searching there are special, pre-set variables

which are only available from within methods
- super
* Always contains a reference to the immediate superclass
* Allows re-routing the starting class for searching for methods to the superclass
- self

» Always contains a reference to the object for which the method got invoked
» This way it becomes possible to send messages to the object from within a method

« super and self determine the class, where the search for methods
starts which carry the same name as the message

34 Prof. Rony G. Flatscher

Example "Dog", 1 @:@

35

* Problem description
"Animal SIG" keeping dogs

 Normal dogs
» Little dogs
 Bigdogs

- All dogs possess a name and are able to bark
* Normal dogs bark "Wuff Wuff"
» Little dogs bark "wuuf"
» Bigdogs bark "WUFFF! WUFFF!! WUFFF!!!"

- Define appropriate classes taking advantage of inheritance (search order)

Prof. Rony G. Flatscher

Example "Dog", 2 @:@

36

* Definition of a class "Dog", which possess all properties which are
common to all types of dogs

/**/
hl = .Dog ~NEW ~~"NAME="("Sweety") ~~Bark

::CLASS Dog
: :ATTRIBUTE Name
: :METHOD Bark
SAY self~Name":" "Wuff Wuff"

Output:
Sweety: Wuff Wuff

Prof. Rony G. Flatscher

Example "Dog", 3

R

« Definition of a class "BigDog", which possesses all properties

common to all big dogs

/**/
hl = .Dog ~NEW ~~"NAME="("Sweety") ~~Bark
.Bighog ~NEW ~~"NAME="("Grobian") ~Bark
::CLASS Dog SUBCLASS Object
: :ATTRIBUTE Name
: :METHOD Bark
SAY self~Name":" "Wuff Wuff"
::CLASS BigDog SUBCLASS dog
: :METHOD Bark
SAY self~Name":" "WUFFF! WUFFF!! WUFFF!!!"

Output:

Sweety: Wuff Wuff
Grobian: WUFFF! WUFFF!! WUFFF!!!

37

Prof. Rony G. Flatscher

Example "Dog", 4

R

38

Definition of a class "LittleDog", which possesses all properties common to all little dogs

/**/

.Dog~NEW ~~"NAME=" ("Sweety") ~Bark
.BigDog~NEW ~~"NAME=" ("Grobian") ~Bark
.LittleDog~NEW ~~"NAME="("Arnie") ~Bark
::CLASS Dog

: :ATTRIBUTE Name
: :METHOD Bark
SAY self~Name":" "Wuff Wuff"
::CLASS BigDog SUBCLASS dog
: :METHOD Bark
SAY self~Name":" "WUFFF! WUFFF!! WUFFF!!!"
::CLASS LittleDog SUBCLASS dog
: :METHOD Bark
SAY self~Name":" "wuuf"

Output:

Sweety: Wuff Wuff
Grobian: WUFFF! WUFFF!! WUFFF!!!
Arnie: wuuf

Prof. Rony G. Flatscher

Example "Dog", 4 @@

39

» Definition of a class "LittleDog", which possesses all properties common to all little dogs

/**/

.Dog~NEW ~~"NAME=" ("Sweety") ~Bark
.BigDog~NEW ~~"NAME=" ("Grobian") ~Bark
.LittleDog~NEW ~~"NAME="("Arnie") ~Bark
::CLASS Dog SUBCLASS Object

: :ATTRIBUTE Name
: :METHOD Bark

SAY self~Name":" "Wuff Wuff" "-" self
::CLASS BigDog SUBCLASS dog
: :METHOD Bark
SAY self~Name":" "WUFFF! WUFFF!! WUFFF!!!" "-" self

::CLASS "LittleDog" SUBCLASS dog
: :METHOD Bark
SAY self~Name":" "wuuf" "-" self

Output:

Sweety: Wuff Wuff - a DOG
Grobian: WUFFF! WUFFF!! WUFFF!!! - a BIGDOG
Arnie: wuuf - a LittleDog

Prof. Rony G. Flatscher

Multithreading @@

e Multithreading
- Multiple parts of a program execute at the same time (in parallel)
— Possible problems
» Data integrity (Object integrity)
* Deadlocks

* Object Rexx
— Inter Object-Multithreading

» Different objects (even of one and the same class) are sheltered from each other and
can be active at the same time

— Intra Object-Multithreading

« Within an instance (an object) multiple methods can execute at the same time, if they
are defined in different classes

40 Prof. Rony G. Flatscher

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	Slide 33
	Slide 34
	Slide 35
	Slide 36
	Slide 37
	Slide 38
	Slide 39
	Slide 40

