Open Object Rexx™

Reference
Version 4.1.0 Edition
Draft - SVN Rev 6346

November 2010

W. David Ashley
Rony G. Flatscher
Mark Hessling
Rick McGuire
Mark Miesfeld
Lee Peedin
Jon Wolfers

Open Object Rexx™: Reference
by

W. David Ashley

Rony G. Flatscher

Mark Hessling

Rick McGuire

Mark Miesfeld

Lee Peedin

Jon Wolfers

Version 4.1.0 Edition

Published November 2010

Copyright © 1995, 2004 IBM Corporation and others. All rights reserved.

Copyright © 2005, 2006, 2007, 2008, 2009, 2010 Rexx Language Association. All rights reserved.

This program and the accompanying materials are made available under the terms of the Common Public License Version 1.0.

Before using this information and the product it supports, be sure to read the general information under Notices.

This document was originally owned and copyrighted by IBM Corporation 1995, 2004. It was donated as open source under the Common Public
License Version 1.0 to the Rexx Language Association in 2004.

Thanks to Julian Choy for the ooRexx logo design.

Table of Contents

About This Book XXXV
1. Related INFOIrMAationcc.coeeiiriiriiniiiieienieet ettt ettt ettt e e e XXXV
2. How to Read the Syntax DIa@ramscccueecveerieenieriieiienieesieeieesieestesseeseeseesiaessseesseessnesanes XXXV
3 GELHNGZ HEIP ettt ettt sttt e st e et e e be e s abeebe et e e baesnbeenbeennes XXXVi

3.1. The Rexx Language Association Mailing List........ccccceevienieniiinnienienieeieeneeeee e XXXVi
3.2. The Open Object Rexx SourceForge Site.........occvvieriiirniiiniieniiiiienienie et XXXVii
3.3. cOmMP.Jang.reXX NEWSZTOUD ...eevveeruierirreiieniteniteeieesieesiteeteesteesseessseeseesseesasessseesseenes XXXViii

1. Open Object Rexx General Concepts 1
1.1. What Is Object-Oriented Programming?ccccceceerierieriieniienienieenieesee st eieesieesieesveesaeesaee s 1
1.2. MOAUIATIZING DALA ...evviiiiiiieiiieieeteee ettt sttt e sttt e bt e sat e st eenaeenbee s 1
1.3. MOAEING ODJECLS ..ottt ettt ettt ettt sttt e sttt et e e s bt e sate s bt e sbtesatesabeesbeesutesabeenseenneens 3
1.4. HOW ODbjJECtS INEEIACK.coueiuiieiieieiieieieeitcteetceere ettt ettt et s sae e 5
TR 1Y 1 T 16 PSSRt 5
1.6. POLYMOTPRISIIoniiiiiiiiieiieieeee ettt et st et s sne e 6
1.7. Classes aNd INSTANCES ...ecvvieerieeiiieeeiieesieeesteeereteeeteesteeeaseeesseeessseeessseessssaeansseesssseessssessnseesnne 6
1.8, DAta ADSITACHION ..eeiiiviiieiiieeiieesieeeeteeeetee ettt e eeteeesteesntaeeassaeeasseeessseeanssaesssaeansseessseessseesnseesnnee 8
1.9. Subclasses, Superclasses, and INhETItANCEc...oovveeriiriiriiiiiiirieteeeee e 8
1.10. Structure and General SYNTAXcccoiiiiiiiiiiiiiiiee et 9

110, 1. CRATACLETS ...veeeueieeeiieeetee et eeeeiee ettt e et e e tte e et e e e bt e eesseeesabeeeanseessseeensseesnsseesnseassnsaesnnes 9
L.10.2. WRIEESPACE ..ottt ettt ettt ettt sttt ea et e sbe et et e ebe e teeaeentesaeenean 10
1.10.3. COMIMENES.....eeetiieeiieeeiieeetieeetteeeiee ettt e eettee st eeebteeebeeesabeeessseesanseessseeensseesanseesseeenn 10
L1004, TOKEIIS .. ce ettt ettt ettt ettt e ettt e et e e st e e s bt e e s bt e eaaseeesnteesnnseessseessaeennes 12
1.10.4. 1. Literal SEEINES. . eoveeueeieitieienieeitete ettt ettt sttt sbe e 12
1.10.4.2. Hexadecimal SEIINEScecverueeieririeienieeteieetteteste ettt sttt 13
1.10.4.3. BINATY STINZS ..overiieieiieieieeiienie sttt ettt ettt ettt st sb et eeesbeenees 13
1.10.4.4. SYMDOLS ..iniiiiiiiieiieee ettt 14
L1045 INUIMDETS ...ttt sttt ettt ettt sttt b e e b enees 14
1.10.4.6. Operator ChATACTETScccuevueeeeriirieenienienteniestteteereete et ete st eere st eseeeesaeenees 15
1.10.4.7. Special CharaCterS........cueecveerieerierieeieenieesieeteesteeseesresseesseessnesseesseessnesssens 16
1.10.4.8. EXQAMPIE ..eeouviiiiieieeiiesiieeieeit ettt ettt ettt esae st esaaesaaesabaebeesanesneen 16
1.10.5. Implied SeMICOIONSeeruieriieiieiieeie ettt ettt ettt e sitesbeesseesseesebeenseenseenns 16
1.10.6. CONTNUALIONS.....evteutiteeienteetenieeitetenteeitente ettt este st st et ebeeeesbeessenbesbeentesbeenaesaeeneen 17
1.11. Terms, EXpressions, and OPETratorsS..........ceceerierieerieeneerieerieesieeseeeseeseesseessessseesseesssesssesnnes 17
1.11.1. Terms and EXPIESSIONSceeveeiieriierieriieiientesteeitenieesiteebeesieesstesbeesseesseesaseenseesseesns 17
L1 1.2, OPETALOTS «..veenvieiieeiieeiteniteeite et erttesite st e bt e satesateesbeesbeesatesabee st esstesabeenseeseesasesnseeseenas 18
L1121, String COnCateNAtION.ueeveerteeriieeieeitesieeteeieesiteeteeteesieesasesseesbeessbesaseenses 19
L11.2.20 ATTRMETIC ..ottt 19
1.11.2.3. COMPATISOM ..eiieeiiieiieeiieeieetee sttt ettt et e e sbteeabesbeesbeesabesabeenbeesabesnseenses 20
1.11.2.4. Logical (BOOILAN)cc.eeiiiieiiiiiriieieniecieeeiteteetc ettt 21
1.11.3. Parentheses and Operator Precedencecoeeeevereeieniinieniinceneneeeeneeeereeeeees 21
1.11.4. MeSSAZE TOIMIScoiiiiiiiiiieiete ettt st e 23
1.11.5. MESSAZE SEQUEINICES «..c..euviniiiiiiieiieie ettt ettt sttt st e s neeneeaee 25
1.12. Clauses and INSIUCHONS.ieicuieeeiieeeieeesieeesteeesteeeteeetaeessareesseeessseessnsesessseeessseessssessnsseens 25
T 12,1 INUIL CIAUSES. ceeuvveeeiieeeiieeeieeeeieeeetee et eette e st e e e taeestaeesaseeesnseessnseeasseeesseesssessseeenn 26
1.12.2. DATECHIVESvveeeiieeeiieeeiteeeteeeetee ettt e ettt e s ette e s et e e ensaeeensaeesaseeessseesanseeasseeensseesssasssneenn 26

ooRexx Reference Version 4.1.0 iii Draft - SVN Rev 6346

L1230 LabIS i 26

L12.4, INSTIUCHIONS ..ottt s 26
L.12.5. ASSIZNIMNENLS ...eevieriiieiieiienieeteerttesitesteesteestee sttt ebeesteesatesbeesbeesseesabeenseenseesaseenseenseenas 27
1.12.5.1. Extended ASSIZNMENLS. ...ccc.certiirierriieniienieeieeieesiteeteeieesteesreereesbeesbesareennes 27

1.12.5.2. Message INSIUCLIONS.eeviiriierieeiieiie ittt ettt ettt s 27

1.12.5.3. Keyword INSIrUCHIONSc..oouieieriiriieienieeieteeieerestc ettt 27

1.12.6. COMMANAS ...c.oeiiiiiieiiiieicieee ettt e s e s 27

1.13. Assignments and SYMDOLScccoiiriiiiiiiiiiiietecereee et 27
1.13.1. Extended ASSIZIMENLSccceeruirieriiriiiieiieiiete ettt s ene s s eae 28
1.13.2. Constant SYMDOISc..cocuiiiiiiiiiiieeeeee et 29
1.13.3. SImPple SYmMDOIS......coouiiiiiiiii e e 29
TL1304L STEIMIS .ttt ettt et ettt et e bt e at e st e bt et st e be e bt et s 29
1.13.5. Compound SYMDOIScoeieriiiiiiiieiieeiteteee ettt ettt et 32
1.13.5.1. Evaluated Compound Variables............ccccererierienienienenieienieeesieece e 33

1.13.6. Environment SYMDOLScc.ceiiriiiierieniieienie ettt st eae e s 33

1.14. MeSSAZE INSIIUCTIONSveuiintieiieie ittt sttt ettt b et e st eat et bt et e b e ese et e eseeneesaeeneen 34
1.15. Commands to External EnvIironments...........coeevuevieienerienienieiene ettt 35
L. 15,1, ENVIOMIMENE «.utintieniiiieiestt ettt ettt ettt sh et ei et b et sbe et e nbeebee e ebeentesaeeneen 35
L.15.2. COMMANGS ...ttt ettt ettt e b et b et e b e sbe et ebeentesaeeneen 35

1.16. Using Rexx on Windows and UniXcoceereeeeriniiiinenieieneeiesieecenee ettt 37
2. Keyword Instructions 39
2.1 ADDRESS ..ttt ettt ettt be et sbeenees 39
2.2 ARG e e e 41
230 CALL et 42
24 DO et 45
2.5 . DROP ...t 46
2.6 EXIT ..o e e 47
27 BXPOSE.....oiiiiie e e 47
2.8, FORWARDooiiiiiiiiiiiiicic e e 49
2.9, GUARD ...t e e 50
2UL0.TF o e e 51
201 INTERPRET ..ottt et st st 53
202 ITERATE ..ottt sttt sttt e ennen 54
23U LEAVE .ottt e ettt sttt 55
T4 LOOP .ttt bttt et a et ettt be e 56
2UIS INOP ettt bbbttt ettt et h bbb 57
2.16. NUMERIC ...ttt ettt sttt st sttt et e 58
207 OPTIONS ...ttt ettt sttt ettt ettt eat bttt a e eaeene b e 59
28 PARSEttt ettt e 59
2.19. PROCEDUREccooiiiiiiiiiiietitetteestestet ettt sttt ettt st st 62
2.20. PULL ...ttt ettt ettt sttt et sttt et bttt et e 64
22T PUSH ettt sttt s st et 65
222 QUEUE ...ttt sttt et st sttt e 65
223 RAISE .o ettt 66
224 REPLY ottt s st 68
225 RETURN ..ottt sttt et st bbb e 69
2.20. SAY e ettt ettt 69

Draft - SVN Rev 6346 2% ooRexx Reference Version 4.1.0

227 SELECT ...ttt st s e 70

228 SIGINAL .ottt sttt sttt a et st ettt aeeneen 72
2.29. TRAGCE ...ttt ettt sttt ettt bt sttt st st ean et sae e e e saeeneen 73
2.29.1. Trace Alphabetic Character (Word) OPtionsS..........ccecvevverrieerienieriieenieeneesieesieenieenas 74
2.20.2. PIEfixX OPLION ..covviiiiiiieiiieeieeitee sttt ettt et ettt sat e et esbte st sabe e bt e saeesaneensaenaeenas 75
2.29.3. INUMETIC OPLIONS uvveeurieriiieieeiteeniteeieeieesttesite st esbeesatesateesbeesstesatesabeenseesseesaseenseesseenas 76
2.29.3.1. Tracing TIPS «.ecveeverieuieiieiieiereeeee ettt ettt e 76

2.29.3.2. EXAMPIE ...ooniiiiiiiiiiiceeee e 76

2.29.3.3. The Format of Trace OULPULcc.cocveeuirieiiiriiieieneeeeeeeeseeeee e 76

2.30. USE ettt ettt ettt et h e a et e st et e heea e e aeeae e te bt ent e teeneenteeneenean 78
3. Directives 81
3.1 TATTRIBUTE ...ttt ettt ettt et et e b et bt et e st ebt et e ebeeneesaeenean 81
B2 IO A S ettt bt bttt h et he e b bt et bt et e bt enean 83
3.3 LICONSTANT . ..ttt ettt ettt b e et e b eb et e e bt et e s bt est e beebe et e ebeeneesbeenean 84
34, IMEETHOD ...ttt sttt b et e bt et s b ettt eb et bt et e b enean 85
3.5 TIOPTIONS ...ttt h ettt b e e bt et s bt et esbe et e bt ebe et e sbeeneenbeeneen 88
3.6. TREQUIRES ...ttt ettt e b et sttt e bt et sbe e e sbeesees 89
3.7, TROUTINE ...ttt ettt et b e bttt e b et et et e b ebt et s b e e e nbeeneen 90
4. Objects and Classes 93
4.1, TYPES OF CLASSES c.vveruverurieriieeieeieesttesteeteesttesteseteesteesteessseeseesseesssessseeseesssesnseenseesseesnseensesnseesns 93
41,1, ODJECE CIASSES uvveeuveereeriieeieeieenttesteeteenteestesseesteesstessseesbeesssesssessseesssesssessseenseesssesnsen 93
4.1.2. MIXIN CLASSES .uvenviiienieiieiiiiieitenie ettt sttt sttt st eae et bt et esbesae et sbeeseesbeesnensesueennesneenee 93
4.1.3. ADSIIACE ClASSES.c.vevrenreiieiriieeitenteeitente sttt et ettt et bt et e b e sae et sbeesaesbeesaensesaeennesbeenee 94
414, METACIASSES .. ettt ettt ettt ettt ettt bt et b et b e s bt et bt e bbb saeenee 94

4.2. Creating and Using Classes and MethodsS..........c.covierieriiiniienienieeieeneenee et sie e 97
4.2, 1. USING ClaSSS.cuurieuteerieriieeieeieenttesteeteesteesitesteesbeesstesssesbeesstesasesabeessaesssesnseenseesseesnsenn 98
4.2.2. SCOPE ettt ettt et s et ettt e s bt st e et e bt e s a e et e bt e s a b e e it e e bt e bt e e abesa bt e bt e ateeateenbeenatesateen 99
4.2.3. Defining Instance Methods with SETMETHOD or ENHANCED.............ccccccoeueunene. 99
4.2.4. Method NAMES.......cceeiuiriiiiiiietetcetee ettt ettt sae e s nesae e 99
4.2.5. Default Search Order for Method Selection..........cccceeviervieenienieniieeneeneesieeeeeee e 100
4.2.6. Defining an UNKNOWN Method.......c..cocevieiiiiiniinieiineeeeneereeeeeee e 100
4.2.7. Changing the Search Order for Methods...........cccccieieiiiiiiiniiiicceeeceees 100
4.2.8. Public and Private Methodsccooueriiiiiiiniiniiiiieieeieceeeetc et 101
4.2.9. INTHATIZAION . ..eeutieiieiieeitteeteet ettt ettt ettt et ettt st e bt e sbte st e bt e sbeesaeeebeebeenaee 102
4.2.10. Object Destruction and UninitialiZationcoc.eereerieiieeneenieenieesieeneeneeeieeiee e 103
4.2.11. Required String ValUESccc.eeruiiriiriiiiieniteeieeieesteete ettt s 103

4.2, 12, CONCUITENCY ..nvveureruteeniteeteettenteeeite st e bt esstesate e bt esbeesstesabeesbeesbtesabeeseesbeesaeeeseenseenaee 104

4.3. Overview of Classes Provided by REeXXcccooieiiiriiieniiieesiieeieee e 105
4.3.1. The Class HIerarchycccceeieiinieieiiiieiesi ettt 105
4.3.2. Class Library INOTESc.eeverieruieiiriietesie ettt ettt et sttt et sbe et e b st e neesbeenaens 109

5. The Builtin Classes 111
5.1. The Fundamental CLASSES.ccvuererierierieiinieeienieetente sttt sttt te st st e e st eat et saeeaesbeennens 111
5.1.1. The ODBJECT CIaSS..cuviruirieiiriieieniieitenieeiterte sttt ettt st sttt st et sbeesaesbeennens 111
5.1.1.1. new (Class Method)ccouiieiiiiieiiieciie ettt 112

5.1.1.2. Operator MEthOdscccuevirieriiriiienienieicreeteseet sttt 112

5.1.1.3. Concatenation Methodscccereeriererieniiniiiieneeieeseeeeeeenee e 113

5114 CLASS ettt ettt st st 113

ooRexx Reference Version 4.1.0)% Draft - SVN Rev 6346

Draft - SVN Rev 6346

S L LS. COPY ettt ettt ettt sttt ettt sttt s e b e e s atesat e e beesaeesateen 113

5.1.1.6. defaultiNAMEoeeeeiieeiiie ettt ettt e e be e e b e e etr e e saveeeessaeeasaeenevaeas 114
5.1.1.7. DaSNCOME.......ccceiiieiiie ettt ettt e e re e et e e e tb e e s beeeesbaeesaraeeeraeas 114
5.1.1.8. haSMEtROU.......c.uiiiiiieeiiie et e e e e e tr e st e e e sbaeesanaeesraeas 115
5.1.1.9. 1dentity Hash c...coouveiiiiiii ettt 115
e 0 0 2 5 L USSP 115
5.1.1.11. inStanCeMEthodcccviieeiieeiiieeiie ettt e e seree e e eeree s 115
5.1.1.12. inStanCeMEtROASccoeiuviiiiieciiiee e et 115
T 0 1 T T NS 115
5.1.1.14. 3SINStANCEOT ..o et 116
S5.1.1.15. OBJECTNAIME ...ttt ettt et e st 116
S5.1.1.16. OBJECNAME=eetieiiiiiieeieeiee ettt ettt ettt e e s 116
Sl L 17 TOQUESE .ttt ettt ettt et ettt b ettt et eaesaeeneen 116
ST L L8 TUN ottt ettt et et e e et e e et e e ete e et e e eaaeean 117
511190 SENA o ettt e et e et eeeaaea s 118
5.1.1.20. SENAWILI ..ot e 118
5.1.1.21. SEtIMEtNOA.......c.eviieiiieeee e e ettt e 119
1122, SEATL ettt ettt ettt ettt e et e e eett e e eteeeeteeeeataeeaaraaan 120
51123, StArtWItN ..ot 120
S.101.240 SN ettt ettt ettt st st 121
5.1.1.25. UNSEtMENOM.ccviiieiiiieiee ettt et ettt e 121
5.1.2. THE CIaSS ClaSS....cccriieeiieeiirieeeiiee et e et e eeeteeeeteeeetveeeeareeesaseaetseeesseessseesasesenssseenareaas 122
5.1.2.1. Inherited MethOdSc..ccoeiiiiiiiieiie ettt e 122
5.1.2.2. DASECIASS ..c.eviieiiieeiiee ettt ettt ettt e et e ta e e e tb e e e b e e etaeeeaba e e areeenaraaas 123
5.1.2.3. defaultiNAMEveieiiieeiiie ettt e et etr e e s v e e eate e e areeeavaeas 123
S5.1.2.4, TN .c.uiiiiiii e e ettt e e eab e e e araeearae s 123
5.1 2.5, dEICLE ..t e et e et eetr e e ete e e e nba e e araeearaaas 124
5.1.2.6. €NNANCEAvviiiiiieiiieeeee ettt ettt s ra e e e b e e e abaeearaeas 124
S.L.2. 700 et e e e b e e etb e e sbaeeenbeeeearaeearaaas 125
T N TR 111 1 1S o L TSP RUPRUUUR 125
5.1.2.9. 1SSUDCIASSOLoeiiiiieeiie ettt e eetr e e sbeeesabeeesasaeeeraeas 126
5.1.2.10. MELACTASS ..vveeeveeeiiieeitieeeieeetieeeieeesteeesbeeesseeestbeeeaseesssseessseeesssesesssseesssenns 126
T S0 B S 43111 1o e USSR 126
T N B 11151 1 4 1o e USSP 126
5.1.2.13. MIXINCIASS 1eeeevieeiiieeiiieecieeeitieeeieeesteeesteeesree e ebeeaseseeesseessseeessseeessseeenssenns 127
T N B B 4 1< TSR 127
5.1.2.15. qQUEryMIXINCLaSScuiiuiiiiiiiiiiieieeeeeteeteeee et e s 128
5.1.2.16. SUDCIASS ..ttt e e ettt eeetae e e e earae e e e e etaae e e e e taaeaeens 128
5.1.2.17. SUDCIASSESvvveeeeeeitieeeeeeiiee ettt e ettt e e e ettt e e e et e e e e e etvaeeeeeentaaeeeeeenraaeeaeas 129
5.1.2.18. SUPETCIASS ...ttt e s 129
5.1.2.19. SUPETCIASSES ...ttt e s 129
5.1.2.20. UNINNETIE ...ttt ettt e e et e e et e e et e e eaeeeeaeeean 129
5.1.3. The String CLASS ..cc.eeeuieieiiiieieet ettt ettt et e e stesbe et e be e st enteeaeenaesbeennans 130
5.1.3.1. Inherited MethOdSc..ooooiiiiiiiieeiie ettt et e 131
5.1.3.2. new (Class Method)coouriiiuiiieiiieciie ettt et e 132
5.1.3.3. Arithmetic MethOdSocuiiiiiiiieiii et e 132
5.1.3.4. CompariSon Methodscc.ceeeriiiiiininiiiieeeseeeetee et 133
5.1.3.5. Logical MEthodscc.ceueriirieniiiiiienieeieeet ettt st s 134

Vi ooRexx Reference Version 4.1.0

ooRexx Reference Version 4.1.0

5.1.3.6. Concatenation MethOdsScooovviiiiiiiiiiieeereee et 135

5.1.3.7. DIVtiieiiie ettt e e et eetb e e b e e e enba e e araeearaeas 135
T 0 IR TR 1 o ST SU PSPPI 136
T R K IR o 1 SRR 136
T 0 0 T o) 172N T USSR 137
e 5 I O o) 1 5 SRR 137
T 5 0 B o 1) SRR 138
T 5 1 T« TSR 138
T R B S USSR 139
5.1.3.15. CASEIESSADDICYuviiiiieciiieie ettt 139
5.1.3.16. caselesSCRANZESIT.......coueiieiiiiiieeeeeet ettt 140
5.1.3.17. CaSCIESSCOMPALEeeuveiruteeieeiieriteeteeiee sttt ettt et et e st ebeesaeesaeeeas 140
5.1.3.18. caselesSCOmMPArETOc.ueevueiriiiiiiieeeeteeteeeeee ettt 141
5.1.3.19. CaSEleSSCOUNESIIvviiiiiiiiiee ettt et e e eeare e e e e e eabaeeeeeas 141
5.1.3.20. caselesSEQUALS.....ccccoiiiiiiriiieiteeeeeeeeee e 141
5.1.3.21. CaseleSSLaStPOSooiiiiiiiiecceee e 142
5.1.3.22. CASEIESSIMALCH ...ttt 142
5.1.3.23. caseleSSMatChCRAT..........c..oooiiiieiii et e 142
5.1.3.24. CASCIESSPOSuviieieieee e ettt 143
5.1.3.25. CaseleSSWOTAPOScc.uiiiiiieeiiieeee ettt et 143
5.1.3.26. CENLEI/CENLICveeeevveeeeiieeiiee et eetee et e e et e e eeaee e taeeeeaseeeteeesveeeeaseeenaseeenareeas 144
5.1.3.27. CRANZESII ..ttt st 144
5.1.3.28. COMPATC.....eouiiniiiiiieieeiteie ettt ettt sttt sttt ettt ae e eanens 144
5.1.3.29. COMPATETO.....eiivieiieiie ittt ettt ettt e be e beesaaesabeebeesaneseseens 145
5.1.3.30. COPIES tuvieiieiiieiieieerite sttt et e ste ettt e st e sabesabeesbaesabessteebeesanesnseensaensnennsenns 145
5.1.3.3 1. COUNESEE 1ottt et e et e e e tbeeeareeeataeesavaeessseeenaseeearaeas 145
51,332 A2 ittt et et e e b e e e ta e e e b e e enaraeearaaas 146
51,333 A2ttt e et b e e e tb e e e b e e etb e e sbaeeenbaeenaraeearaaas 146
5.1.3.34. AAtATYPE cuveeeieeieeieeite ettt ettt et sttt st e beesaee et en 147
5.1.3.35. decOdEBaSEO4ooeceiiieiieeeiieeeee ettt et ettt e raeeaaae s 148
5.1.3.30. AeISHI .uiiiiiiii et e e eetb e e st e e et e e e araeetraeas 149
5.1.3.37. AeIWOId......ooiiiiieeeeee ettt et e e e e e tb e e st e e sbae e ssaeesraeas 149
5.1.3.38. nCOAEBASEO4ooeeeiiieiiieeieeeee ettt ettt ettt e e b e e araeas 149
5.1.3.39. @QUALS ..eeenieiee ettt st e b et 150
5.1.3.40. TOIMAL....eccctiiieiieetieecieeeeieeete et e et e e st eeseseeeebeeesseesssseessseeessseeensseeenssenns 150
5.1.3.41. NASNCOAE ... s 151
51342 IS8T . uviiee e ettt ettt e ee e e e e et e e et e e e et a e e e e earaeeeeeetareaeeeeraraaeaas 151
51,3143, 1ASTPOS ceeeieeeieeee e et e e e et e e e e e traeaeaas 152
T G R 1= U TSSOSO 152
513045, 1eNGHN. ..ttt et st 152
513140, JOWET ..vveeiieeiiiiee ettt e e e e et e e e et e e e e etaa e e e eebaaeeeeeenraaeaeeas 153
5.1.3.47. MAKEATTAY ..ccnvvieiiieiieite ettt ettt ettt sae e et e et e saaeea 153
5.1.3.48. MAKESIIING c..eoviiiiieitieiee ettt ettt st b e et 154
5.1.3.49. MALCH....ooiiice ettt 154
5.1.3.50. MALCHCRATviiiiiieciee e et et e et 154
S L35 L IMAX ettt et et e e et e e ete e e eteeeebeeeeraeeaaraeas 154
513520 I ceiitie ettt et e et e e e tr e e eteeeeteeeeateeeearaean 155
513,530 OVEIIAY ...ttt st s 155

vii Draft - SVN Rev 6346

Draft - SVN Rev 6346

513,54 POS ettt sttt ettt e b e e s atesat e e beesaeesaneen 156
5.1.3.55. TEPIACEAL c..eeeieeteeteeete ettt ettt st ettt st e b et saae e 156
5. 1.3.50. TEVETSE ..eeeurieeeiiieeiiiieeeite ettt e e tteeetteesbaeesabeeessseeesbaeassseeassseesssseaassesanssaeessanns 156
51357 TIZNE ettt ettt st e b et 157
5130580 SIEMuuuiiiiiiiiieiie ettt ettt ettt e b e st st b e i e sateea 157
5.1.3.59. SPACE..uetetteite ettt sttt et et sat e e b et e st e 157
51,3000, SLEIP eveentieiieitie ettt ettt et e sat e st be e bt e st ea 158
513,01 SUDCRAT ...t e e traeeeean 158
L3602, SUDSI ..vvieiieeiieee et ete e e e e e e e et e e e eata e e e e etaae e e e eetaaeaeaas 158
5.1.3.63. SUDWOIA ... et en 159
513,04 trANSIALE ... et e e e e etaaeaaeas 159
5.1.3.05. TIUINC .ttt et e e e e e e e et e e et e e eaeeeeteeeeneeeeaneean 160
513000, UPPET ittt ettt sttt ettt et sttt st et sbe e st e b e saeesaeeea 161
513007 VEIIEY ettt bttt ettt 161
5.1.3.08. WOIA ... et ettt e e et e e teeeeaaeean 162
5.1.3.69. WOLAINAEXcvvieieiieeiiee ettt ettt et et e e eteeeeaeeeeaaeean 162
5.1.3.70. WOIdLENGth ..ottt s 162
51371 WOTAPOS. ...ttt et et et e e et e e et e e teeeearaaan 162
51372, WOTAS .ttt et e e e et e et e et e e eta e e eteeeenteeeeateeeearaaan 163
51373 X 2D ettt e ta e e e be e e ataeeaaraean 163
S L. 3.7 X 2C ittt et e e ete e e e teeenataeearaaan 164
51375, X2 et ettt et a e e et e e e eataeeearae s 164
5.1.4. The MEthOd CIaSS.......cccuiiiiiieeeiieeeiiee ettt ettt ettt e e treeetaeeetaeestaeesaveeenaseeenereaas 165
5.1.4.1. Inherited MethOdSc.eeeeuiiiiiiiiieiii ettt ree e 165
5.1.4.2. new (Class Method)cooviiiiiiiieiiicciieectie ettt e e 166
5.1.4.3. newFile (Class Method)cooovuvviiiiiiieiiieeeieee et 166
5.1.4.4. loadExternalMethod (Class Method)ccovvereeieiiiriieiiiiieieeieieeeeeeeieeeeenn 166
5.1.4.5.1SGUATEAeeoeiieeiiieeiee ettt e e e e e e ab e e e tb e e sbaeeenba e e abaeearaeas 167
5146, ISPIIVALE...cccutiiiiiieeiie ettt ettt et e et e e e e e tbeeeabeeeasbeesasaeeesseeenssaeesraeas 167
5147, ISPIOtECIEA. .. ittt ettt e et e e e ab e e s ve e e e sbe e e araeearaeas 167
5148, PACKAZE ..ottt st b et 167
5.1.4.9. SEtGUATAEAcevveeiiieeiiieeiee ettt et et e et e e be e e b e e e abeesareeesssaeenssaeesseeas 167
5.1.4.10. SEPIIVALEeeeeiie ettt et e e b e e e tr e sateeeesbaeesnsaeenraeas 167
5. 14,11, SEtPIOtECLEd ... veieiiieeiie ettt et st e e e e abaeeereeas 167
5.1.4.12. setSecUrityManageT........ccveveeruiriereniieietenieete st ettt ae e ne e eanens 168
5.1.4.13. setUnguardedco.coceeeiieieiiiiieieeeeeeeeeeee e e 168
S L 14 SOUICE .ottt e et e e e ette e e e e eabaeeeeeearaeeeeeeataaeeeeeenreaeeeens 168
5.1.5. The ROULNE CLASS.....eeiiiiiiiiieeeeiiiee ettt e ettt e ettt eeeetee e e e eetaeeeeeeebareeeeeerbaseeeeennns 168
5.1.5.1. Inherited MethOdSccccuiiiiiiiiiiee et 169
5.1.5.2. new (Class MethOd)eeeeeeeeiiieeeiiieeiieeeiee ettt seee e e e e es 169
5.1.5.3. newFile (Class Method)ccueieouiiiiiieeeiie e 170
5.1.5.4. loadExternalRoutine (Class method)cocuveeoiieeiiiieeiiicceeeeee e 170
S L.5.5. CAll ettt e et eeearaa s 170
5.1.5.6. CAlIWIN ..ottt ettt e e eaaee s 170
5157, PACKAZE .ottt s 170
5.1.5.8. SEtSECUITEYMANAZETccueeiiriieieiiieieieeitete ettt sttt st st 171
5. 1.5.9. SOUICE ...ttt ettt et e ettt e et e et e e e eat e e eaeeesaeeeeaseseeaseeenareean 171
5.1.6. The Package Classccceririereriieieniietere ettt sttt et s s 171
Viii 0oRexx Reference Version 4.1.0

5.1.6.1. Inherited MeEthOdSccooveiiiiiiiiiiie e e et ee e 172

5.1.6.2. neW (Class MethOd)coovviiiiiiiiiiiieieieee et eeeee et 172
5.1.6.3. newFile (Class Method)ccoovuviiiiiiiiiiieeeeieee et eeeeee e 173
5.1.6.4. AdACIASS ..eceviieiiiieiieeeiee ettt ettt e et e et e et ee e tbeeeabeeetaeesabaeeenraeennraeesraeas 173
5.1.6.5. addPaCKaZEeevuvieiiiiieiieeeete ettt 173
5.1.6.6. AddPUDIICCIASSccvvieieiieeiiie ettt eeieeeeite et e esre e e reeeebeeessreesseeesssaeesssaeesseens 173
5.1.6.7. addPUDLICROULINEcccuviieiiieeiiieeiie ettt st e e eeneeeeaee s 173
5.1.6.8. AddROULINEoeeiieiiiiieieeeiieee ettt eeare e e e e etrae e e e eebareeeenn 173
5.1.60.9. CLASSES ..vveeeeeeiiieee ettt ettt e et e e e e e e et e e e eeata e e e e e etaaaeeeeetaaeaeaas 174
5.1.6.10. definedMEethods.ccoooeiuiiiiieeiiiee e e 174
oI 0 I R 1RSSR 174
5.1.6.12. fINACIASS ...ttt et eaeean 174
5.1.6.13. fiNAROULINE......oeeiiiieeiee ettt et e e e et e et eeeaneean 174
510,14 Ot ettt e e an 174
L. 15, fUZZ ettt n 175
5.1.6.16. IMPOTLEACLASSESveuvieueeniieiieiesicete ettt ettt et stt et et e e e saeenaesaeeneens 175
5.1.6.17. IMPOTtEAROULINEGScuveeieniieiieie ettt ettt 175
5.1.6.18. 10AdLIDIATY ..coviiiiiniitieiieieecee sttt sttt st st 175
5.1.6.19. 10adPaCKAZEcoveemeeiieiieiieieee sttt e 175
5.1.6.20. NAMCveeieiiieeiiee ettt ettt e et e et e e et e e e tteeeeateeeteeeeteeeeateeeeareeenaraeas 175
5.1.6.21. PUDICCIASSES. c..euveeuientieiieiieieete sttt ettt sttt st ettt st s eneens 176
5.1.6.22. PUDLICROULINGSeouventieiieiieiieienieeieieeit ettt sttt et st 176
5.1.6.23. TOULINES...c.utiieeiiieeiiie ettt e ettt e et e e et e e eve e e et eeeetsee e taeeeaseeenaseesaveeessseeenaseeenareeas 176
5.1.6.24. SetSECUTTtYMANAZETccveeeieeieeieeieeiiesireeteeteesteestesteesbeesseesnseeseessnessnenns 176
5.1.60.25. SOUICE ..veeeeriieiiieeciiee et e ettt e et e e et e e e te e e et e e e tsee e taeeesaseeessseesasaeasssesenssseesraeas 176
5.1.6.26. SOUICELINEG.......viiiiiiiieiiiectiee ettt ettt e et e e etr e e s veeeeabeeesaseeeavaeas 176
5.1.6.27. SOUICESIZE ..eeeevieeiiieeiieeeeiieeetee e ettt eeteeeeebeeeeasee e tbeeeaseeessseesaseeaassesenssaeenssaeas 177
5. 1.60.28. LTACE ... vieeeiiieeeiieecitee et e ettt e et e et e et e e et e e e tb e e e tbeeeabeeertbeesbaeeanbaeenaraeearaaas 177
5.1.7. The MeSSAZE ClaSS ..veeriiriiieieiiieniieeie ettt site sttt et e st e s be e bt esbeesabeebeebeesabesasesnseas 177
5.1.7.1. Inherited MeEthOdScc.eeeviieiiiiieeiii ettt ettt e e b e e areeeevaeas 177
5.1.7.2. new (Class MethOd)ccocvveiiiiiiiiriiieeeieeee ettt 178
51,730 ATZUMEIIES c..eeneteeiteeieeite ettt sttt ettt st ea e bte st e s te e beesbtesateebeesanesaneens 178
S5.1.7.4. COMPIELEd.....eoniieiiiiiieiie ettt ettt st e be e esaneea 179
5.1.7.5. errOrCONAILIONccuiieeceiieeciie ettt eetee et e e etee e e e e beeeebeeesreesaseeessseeessseeensseens 179
T B A TR0 1 2T 2 1o) SRR 179
5.1.7.7. MeSSAZEINAIMEeouiiniiiiiiieiicie ettt st s 179
5178 MOUIEY ettt et a e e eeen 179
5. 17,9, TESULL. ...ttt e et e e e et e e e eara e e e e e taae e e e eenrraeaeaas 180
517100 SENA oot eeeaae s 180
T A B N ¥ 1 SO TSRO 181
517020 EXAMPLE ottt ettt sttt 181
S LT 030 LATZEL ettt sttt ettt ettt et ettt e b e sae e st ea 182
5.2. The Stream ClaSSEScccciviieiieiiiieeeeeeiieeeeeett e e e eesiteeeeeetvaeeeeeetaeaeeeetbaeeeeeessaseeeeesssaseeseanssreas 182
5.2.1. The INputSIream CLaSSccccererieierieiene ettt ettt sttt et saeeneesaeenaens 182
5.2.1.1. Inherited MethOdSc..oooeiiiiiiieeiie ettt e 183
5.2.1.20 AITAYII ettt st 183
5.2.1.3.Charln oo ettt eaaae s 183
5.2.1.4. ChATOUL. ...ttt ettt et e e eete e e etee e eateeeearaeeearaean 183

ooRexx Reference Version 4.1.0

ix Draft - SVN Rev 6346

Draft - SVN Rev 6346

5.2.2.

5.2.3.

5.24.

52015 CRATS ottt ettt et st be et et ea 184
52,106, CLOSE ettt sttt sttt et st e b e it e st ea 184
5.2 17 HNEIN ettt et sttt st e b e saee st 184
5.2, 1.8, HINEOUL. ettt ettt ettt et s e et be e sate st e ebeesaeesaneens 184
520109 TINES ottt ettt et st beesaee st ea 184
5.2, 1100 OPCIM.iiiiiiieiie ettt ettt sttt ettt st s e bt e sat e st e be e bt e sateea 184
52,111 POSTHON .. cuiiieniiiitciieieetete ettt et ae s s 184
The OutputStream CLaASS........cceeviriieieiiiieeeeeeeee et 184
5.2.2.1. Inherited MethOdsScc.eeeeiieiiiiieeiii ettt eee e e e e 185
5.2.2.2.ATAYOUL ..ottt e e 185
5.2.2.3. Charlil c.ceieeiie e et s e et e e nnaeenree s 185
5.2.2.4. ChATOUL....ccciiiiiie ettt ettt e et e et e e e ateeesteesnseeeenseeeensaeenseeas 185
5.2.2.5. CRATS c.tieetieteecie ettt ettt ettt e et e e e et e st e e b e e be e beestaeenbeenbaensaeesneans 186
5.2.2.6. CLOSE c.evientieiieeiie ettt e tte et ettt e st eete e te e s tbeetbe et e e taeenbeenbe e baeeraeenbeentaensaeesaeans 186
5.2.2.7 TINEIN ettt ettt ettt s eete et e e aeesaeesbe e beessaeenbeensaensaessseans 186
5.2.2.8. TINEOUL....teetieeiieieeteecite ettt ertte e e te et e st eesbe e beessaessseesseesseesseessseenseesseessseans 186
5.2.2.9. TINES vt etieieeeiie et ettt e ete et et e st e e te e te e s st e esbe e beestaeenbeente e beeeseeenseentaensaeenseans 186
5.2.2. 10, OPCMcuiiiiiieitete ettt et ettt b et e st st sbe et 186
5.2. 2.1 1. POSTHION ...ttt ettt sttt ettt et ettt et b et nae st eaesbeeneens 186
The InputOutputStream CIASSc..coeeverirriererieieneetene ettt 186
5.2.3.1. Inherited MethOdSeocueeriiiiieiieeieeceeete ettt seee v et saneesneens 187
The SIrEAM ClaSSueeiuieeieeiiieriieeiteeieerieeste et ebeesteesaesteesseessaessbeenseesseessseenseenseesssenns 187
5.2.4.1. Inherited MethOdsSccocueeriiinieiiieieeieeste ettt sre st e saneseae e 188
5.2.4.2. new (Inherited Class Method)...........cocuiiieiireiiiiecieeecieeeee e 189
5.2.4.3. AITAYIN 1ottt ettt sttt e st e e beenaaeeaneen 189
5.2.4.4. AITAYOUL ..eonviiiieiieeieecite ettt sttt ettt s e et e st e st e s be e beesatesateenbaessaesnneens 189
5.2.4.5. ChATTI oo ettt st et en 190
5.2.4.6. ChATOUL....couiiiiiiiiieiiecite ettt ettt et s e st e beesatesateenbeesanesaneens 190
5.204.77. CRATS ettt ettt ettt ebe et et ea 190
5.204.8. CLOSE .ttt ettt sttt sat e e be et e sateen 190
5.2.4.9. COMMANG.....eiiiiiiiiiieitie ittt sttt ettt ete et e st e st e st e bt e satesateebeesaeesaneens 191
5.2.4.9.1. Command SIIINES ..ccc.eerveerreerienieerieerieeneeeteerteenbee st et enbee e eareeeees 191
5.2.4.10. AESCTIPHOMN .c.uueirutieiietieeiteeieette st ettt et e et et e st e sabeste e bt e satesateebeesaeesaeeens 197
524 T T ATUSR ettt sttt 197
5204120 AME cotiiieiieeieeeeee ettt ettt ettt et et e s e e st et et e et e aeeneenesneennens 197
524130 HNCIN .ttt e 197
5.2.4. 14 THINEOUL. ..ottt ettt ettt ettt sae et e te s et et e s st eneesaeeneesesneennans 197
520415, NS vttt ettt ettt ettt ettt ettt et s a et e ettt e et eneeteeneennen 197
5.2.4.16. MAKEATTAYoviimiiiiiiiieiieiee sttt s e 198
5204 17T OPCM.ciiiie et e e 198
5.2.4. 18, POSILION . ..cueiieieeiieieetiete ettt ettt ettt ettt e tesat e e bt et e saeeaeeeesaeeneans 200
52419, QUALIEY vttt 200
5.24.20. QUETY oneieiieieeeieeteeette ettt sttt ettt st ettt et e sbe e st e beesaeesaaeea 201
5. 20421 SAY ettt ettt h et ettt h et b et e sttt e besaeenten 202
5.2.4.22. SEEK evietieeiieeit ettt ettt ae et e e ae e te e beeeateenbeebeenaeeesseans 203
5.2.4.23. SEALE .veeveeseieeiieeieesteestteeteeste et e steete e tee st eenbe e be e taeenbeenbe e teeaseeenbeentaenseeesseans 204
5.2.4.24. SEING oottt ettt ettt b ettt sttt 205
5.2.4.25. SUPPIICT ..ottt ettt sttt e 205
X ooRexx Reference Version 4.1.0

52426, UNINIE c.eoiiiiiiiiicieieiecce et 205

5.3. The CoOllECtiON ClASSES.....uiiiirieeiiieiiieeeitieeitreesteeesreeesbeeestreeeseseessssaeessaeesssseesssseesssesesssessnsses 205
5.3.1. Organization of the Collection ClaSSescccueruirrieerierieriieeieenee sttt eee e 207
5.3.2. The ColleCtion CIaSS.......ucevvieerrieerreeeiiieeeireeescteeesreeesreeesseeessseesssseessseessesesssseessseens 207

I 757750 R 1) SRR PRUU 208
TG TS 1) TSRS 208
5.3.2.3. AlIINACKES .uveevrierieiieeiie ettt et e e et e st e e e e b e taeeaeebeebeessaesaseebaessaeesseans 208
5.3.2.4. AlIIEEINIS. ..ceeieeiiieee ettt e et e et e e eara e e e e etaa e e e e eetaraaeeas 208
T T8 TR | SO RR 209
5.3.2.6. dIffEIENCE ...ttt e e e traa e 209
5.3.2. 7. NaSINACK ..oeeiiiiee e e et e e aaeeas 209
5.3.2.8. NaSIEEIM...eeiiiieiee et 209
5.3.2.9. INAEX ...t ettt e eaeean 209
5.3.2.10. INLETSECHIONvveeeeiieeeeeee et e et et et e et e e e e e et e e e eateeeeaeeeeeaeeeeteeeeseeeeaeeeas 210
5.3 2.1 1. TERIMIS 1.ttt et e et e et e e e et e e eeaa e e ete e e eteeeeteeeeareean 210
5.3.2.12. MAKEATTAY ..cuveiintieieeiee ittt ettt sttt et e sae e beesbeesaee e 210
5320130 PUL ettt sttt b et b ettt st sbe et 210
5.3 2. 14 SUDSEL....iiiitii ettt ettt et et e et e e eae e e e te e e ateeeearaaan 210
5.3 2,15, SUPPIICT ..ottt ettt ettt st e 210
5.3.2. 160, UNION ..eviiiiiiieeiiieecieee ettt e e e e e e et e e eeaaee e taeeeeaseeeseeesseeeensesenaseeenareeas 211
5.3, 2. 17 XOT ittt ettt e e e et e et e et e e et e e e ett e e eta e e eteeeenteeenaraeenaraaan 211
5.3.3. The MapCollection CIaSSc..coeeuerierienirieieniieienieeitenee ettt et s sreeanens 211
5.3.3.1. Inherited MethOdSc..ccooiiiiiiiieiiecciee ettt e 212
5.3.3. 2. PULALL .ottt ettt sttt ettt ate st e enbeenaaeeaneens 212
5.3.3.3. MAKEATITAY ...eevuveetieiieriie et eieerite sttt e et et esabe e bt e s ttesabesabe e beessaesnseenbeensnessneans 212
5.3.4. The OrderedCollection CIaSSc.ececuieeeiuiieeiiieeireeeereeeeteeesireeeetreesreeeeveeesseeeseveaas 213
5.3.4. 1. QPPN ...ttt sttt sabe e beesaaeeateen 213
5.3.4.2. APPENAALL....eiiiiiiieiieie ettt st 213
5.3.4.3. dITEICIICE ..uviiiiiiieiiee ettt et tb e s ta e e b e e e araeearaeas 214
5.3 4.4, INTEISECHION ..veiiiiiieirieeeitieeeiteeetieeeteeeeteeesebeeesssee e sbeeaaseeassseesasseassseeenssaeesssenns 214
I T e T o] F USSP 214
5.3.4.6. UNIOM o..eviiiiiieeeiieeciiee et e eteeeteeeeteeesbaeesebeeessseeessseeassseeessseesssseeassesensseeessanns 214
I T (o) USSR PR 214
5.3.5. The SetCollECtion ClaSSeeervieeireeeiiieeeiireeieeesreeesreeesereeesereeessseesseeesssesesseeessseens 214
5.3.5.1. Inherited MEthOdSccccviiiiiiiiiieee et et 215
5.3.6. The ArTay Class.......coieieriiiieieiieieri ettt ettt st n e s ene e enens 215
5.3.6.1. Inherited MethOdScccoviiiiiiiiiieec e et 217
5.3.6.2. new (Class MethOd)eeecieeeiiieieiiiecieeeete ettt stee e e e e eeeee s 217
5.3.6.3. 0f (Class MEthod)cooeiuiiiiiiiiiiieeceecieee et et 217
T I T S 1 USSR 218
T I T TR 1) T TSN USRS RROR 218
5.3.6.6. AlIINACKESevvviieeeciiiie ettt e e e e e e e e et ra e e e e e eararaaeens 218
5.3.6.7. AlITEEIMIS ...ttt ettt et e et e et et e e et e e eaeeeeareean 219
5.3.0.8. APPENA ...ttt ettt st st 219
5.300.9. Attt et e ettt e e et e e e teeeearaean 219
5.3.6.10. AIMENSIONecvviiiiiieeeiiee et e et e et ete e et e eeae e e tteeeeteeeeteeeeaeeeenseeenaseeenareeas 220
5301 L. BIMPLY ettt sttt b ettt bt 220
5.300. 12, fITSt oot et ettt e e e aa e eta e e e te e e taeeearaean 220

ooRexx Reference Version 4.1.0

Xi Draft - SVN Rev 6346

Draft - SVN Rev 6346

5.3.7.

5.3.8.

5.3.9.

5.3.60.13. NASINAEX ..cvvvviiieeeieee ettt e e ea e et ae s 221

5.3.6. 14, NASTEEIM ..coueiiiiiiiieeeeee ettt sttt st e b et en 221
5300, 15, INAEX ettt ettt ettt et et st e beesaeesateen 221
5.3.6.16. ISEMPLY weonviiiiiiiieieeie ettt ettt st e 221
5300, 17, TLEIMIS ettt ettt ettt sttt ettt e e st et e st e st e bt e satesat e ebeesaeesateens 222
TG TN O I T P] TSRS 222
5.3.6.19. MAKEATTAYeiitieiieiieiieeieette ettt ettt ettt ettt e st e beesaeesaeeeas 222
5.3.6.20. MAKESIIING ...oovviiieiiiiieieiieeee ettt ettt et 222
5.300.2 1. NEXL..uiiiuiieiieciie et ettt e et e et et e st eete e teesebeeabe e beesbaeesbeesbe e baeesaeeabeebaensaeasneans 223
5.3.0.22. PIEVIOUS ..cuiiiiniieiecteieeeett ettt st s 223
530023 PUL ettt ettt sttt b ettt e etesneeneen 223
5.3.0.24 TEIMOVE...ccciiiuiiieeeeeieee e eeetee e e e ettt e e e e et e e e e eetteeeeeeeabaeeeeeesraseeesentaaeeeeeensereaeans 224
5.3.6.25. 1T€MOVEILEIMooiiiiiiiiccceee e et 224
5.3.60.26. SECHION ..ttt eete e et e et e e et e eeaaeeeeate e eeaaeeeeteeeeteeeeaeeeeaaeean 225
5.300.27 . SIZE oot e e e e et e e teeeearee s 225
530028, SOT ittt ettt e et e et e et e e e e e et e e e et e e eete e e eteeeeteeeeaaeeeaaeean 225
5.3.6.29. SOTEWItN....ooiiiiiiiiiiie e ettt et e et e et e e eaaee s 225
5.3.6.30. StADIESOIL.....eccuiieeiiie ettt et ettt e et e e et e et e e eteeeeteeeeareaan 225
5.3.6.31. StableSOrtWith........ooiiiiieiiece et et 226
5.3.0.32. SUPPIICT ..ottt ettt sttt st st 226
5.3.0.33. TOSIIINEZ .ottt ettt ettt et st st 226
5.3.0.34. EXQAMPIES....ccueeiiriiiiiniieieieeitee ettt ettt st st 227
The Bag Class ...cc.ceouiiieriiieienieeiteteeteete ettt ettt ettt s ae b eanens 227
5.3.7.1. Inherited MethOdsScocuieriiiriiiieeieeieeste ettt ettt saneseneens 228
5.3.7.2. 0f (Class MEthOQ)uveiiiiiuiiiieiieieeie ettt e et e e 229
T G TR 1) T OO OO OO PO UURPORUSRRUPPRRPON 229
5.3.7.4. QUTETENCE ..eeeeieeieeieee ettt sttt st et seneen 229
5.3.7.5. NASINAEX ..couvieiiieiiieieecite ettt et sttt e b e saaeeaneen 229
5.3.7.6. INLETSECHOM ..eeuvveeutieiieiiesiteeieeite st e e et e st e sabe et esbaesabesateesbeesaeesateenbeesaeesanenns 229
5377 PUL ettt sttt et ettt e be e s at e st e ebeesateeateen 230
5.3.7. 8. PULALL ..ttt ettt et et st b e saee st ea 230
5.3.7.9. SUDSEL...eeutteiieite ettt ettt ettt sttt et et st e beesaee st ea 230
5.3.7. 100 UNTOM ittt st ettt et et et e st e st e bt e saeesateebeesaeesaaeens 230
5.3 7 11 XOT ittt sttt ettt ettt e b e s at e st e b e it e sateea 230
5.3.7.12. EXAMPIES....cviiiiiiiiiiiieieieeece ettt sttt et s 230
The CircularQUEUE Class........cccuveiiiieeiireeiiresieeesieeerreeeteeeereeseseeesseeesseeenssaeessseens 231
5.3.8.1. Inherited MethOdScccoviiiiiiiiiiee e et 231
5.3.8.2. 0f (Class MethOod)ccccueeeeuieeiiiieeeiie ettt e ettt e st e e e e eaeeenaee s 232
53083 M uieiiieiiecieeeie ettt ettt e st e et e et e s tbeeabe et e e tb e e b e eabe e baeesaeenbeetaenseeesneans 232
5.3.8.4. MAKEATITAY ...coovtiiniietieiie ettt ettt sttt et st et esaeesaeeea 233
5385 PUSH ettt et ae et 233
5.3.810. QUEUE ...ttt ettt sttt et ettt et et st e b e saeesaeeea 233
5.3.8. 7. TESIZE et et e e et e e tae e s 234
5.3.8.8. SIZE ettt et e et e e et e e eete e e eteeeeteeeaaanaan 234
5.308.0. SIIIIE ettt ettt sttt 234
5.3.8.10. SUPPIIET...cuiiiiiiiiietet ettt sttt sttt st st 235
5.3.8. 11 EXAMPIE ..ottt st st 235
The DiIreCtory CLaSSccoueiueeieriieiieiieieeie sttt sttt sttt sae s eaesbeeneens 236

Xii ooRexx Reference Version 4.1.0

5.3.9.1. Inherited MEthOASccooveiiiiiiiieiee ettt e etareee e 237

5.3.9.2. neW (Class MethOd)ccovveiiiiiiiiiiiieieieee et et 238
I TE 5 TR 1) OSSP RPN 238
I TR S 1) USRS 238
5.3.9.5. AlIINAEXKESvvieirieeiiieeiie et ettt tee et e et e et e e e beeetbeeessbeesaraeeessaeennsaeenraeas 238
5.3.9.6. AlITEEIMISeecuiii et eiieette ettt ettt e et e et ee e tbeeeabeeensaeesntaeeensaeennsaeenraens 238
53007 ALttt e b e b e e b e e be e beeeraeeabeebaenraenaneans 238
53098 BIMPLY ..t st s 239
5.3.9.90 BNUTY i e e 239
5.3.9.10. haSENLTY ..o e e 239
5.3.9.11. haSINAEXuuviieiieiiiiee e e et e e et eaeean 239
5.3.9.12. NaSIEEMI.ccccciiiiiee e e et e e e e e errreaeeas 239
5.3.9. 13, ANACX ettt e et e e eaaaean 239
5.3.9. 14 ISEMPLY .o 240
5.3.0. 15, TEEIMIS ...ttt ettt e e et e et e e et e e eeaa e e ete e e eteeeeteeeeareean 240
5.3.9.16. MAKCATITAYccveveureieeiieiiniertetetet ettt sttt eb e 240
5.3L9. 170 PUL ettt sttt ettt st sbe et 240
5.3.9. 18 TRIMOVE ...ttt ettt et e e et e e et e e et e e eeate e eteeeeteeeeateeeeaseeenarneas 240
5.3.9.19. re€MOVEILEIMoooiiiiiieiiee et ettt et e 240
5.3.9.20. SELENIIY ..ouviiiieiiiiieiesieetee ettt ettt sttt st e 241
5.3.9.21. SEtIMEtNOA........oiiiiiieeiiee ettt et et et 241
5.3.9.22. SUPPIICT ...cneiiiiiiieeteteete ettt sttt st e 241
5.3.9.23. UNKNOWI....oiiiiiiiiiiiieciiee ettt ettt et e e v e e e treeesareeeataeesavaeesnsesenaseeenareeas 241
5.3.9.24. UNSEtMETNOM.cuiiieiiiieiiee et et st ara e e arae s 242
5,300, 25, XOT cttiiiitiieeiee ettt ettt et e ettt e et e e tr e e e b e e e abeeetbeeebaeeaabeeenaraeearaaas 242
5.3.9.26. EXAMPIES...cevuiiiiieiieiiieiieeieerite sttt ettt et a e st e s te e beesaaesateenbaesanesaneens 242
5.3.10. THE LiSt CIaSS ..ueeeeuriiieiiieeiiieeeiteeeeiteeeieeeeieeesveeestveeeseree e tbeeesaseessseesasaeesssesesssseensreans 243
5.3.10.1. Inherited MethOdScccceieiiiiieeiiieeiee ettt et svee e areeeavae s 244
5.3.10.2. new (Class MEthOd)ccvveieeieiriiiieeeiieeee et eeeeee et 245
5.3.10.3. Of (Class MEthOA)cooeiuveiiiiiiiiiiee ettt eeeee e et e e 245
TG T8 02 S 1 USSP RUUPRRUI 245
TG T 05 T 1 TSP SUPRUUUR 245
5.3.10.6. QlIINAEXES ...eeeeereeeirieeieiieeeieeeiieeeieeeereeesteeesreeeebeeeebeeessseessseeesssesessseeesssenns 245
5.3.10.7. @lIIEIMS. ... eviieeiieeiieeiee et et e et e et e e v e e e ebeeeaaeeessseesnseeesssaeenssaeesseens 245
5.3.10.8. @PPENM ...ttt et e 246
RICT (O I TR 246
5.3.10.10. BIMIPLY ..ottt st e 246
TG T (O I T ¢ USRS 246
5.3.10.12. AISIEEIM ...t e e e e an 246
5.3.10.13. haSINACX ...cuviiiiceiiiee et et et eaeean 246
5.3.10.14. NASTEEIMoeiiieie e et 247
5.3, 01015, INAEX .ttt et ettt e e e te e e teeeeaaeean 247
5.3.10.16. INSETT ettt ettt e e e et e et e e e eat e e eeaeeeeteeeeteeeeneeeeareean 247
5.3.10. 17 ISEMIPLY caveiieieeeeeet ettt et 248
5.3.10. 18, TEEIMIS .ttt ettt ettt et e et e e et e e e e e et e e eetteeeeaeeeeteeeeateeeeateeeeareean 248
5.3.010.19. TASE ot ettt ettt e eat e e ta e e eteeeetaeeearaaan 248
5.3.10.20. TaSIEEIM.....eiiieiieiiie ettt ettt et e e et e e eateeeeateeeeaaeaan 248
5.3.10.21. MAKEATTAY ..ccuveiveenietieiieieeitee sttt ettt st ettt st e e b eaeens 248
ooRexx Reference Version 4.1.0 Xiii Draft - SVN Rev 6346

Draft - SVN Rev 6346

5301022, MEXLuetiutieiieiieeieeieeette sttt et e st e et e st e st e et e st e st e st e e beesatesateebeesaeesaneens 248
5.3.10.23. PIEVIOUS c..eenviieireeiieite st eteette st e e et e st e sabe e bt e sbaesabesate e beesaeesaseenbeesseesanenns 249
5.3.10.24. PUL ettt ettt et ettt e b e st st e beesaaesateen 249
5.3.10.25. TEIMOVE. cutteiieiiieiieitte ettt ertte st ettt e st e st e st e s bt e sabesate e bt e satesaseebeesaeesaneens 249
5.3.10.26. TEMOVEILEIM ..c.eviiiieiiiiieeieete sttt ettt et e s e s 249
5.3.10.27. SECHOMN 1utteniieeiieeiteeite ettt ettt ettt sbt e et e e st e st e st e bt e sbtesateebeesaeesaneeas 249
5.3.10.28. SUPPLET....ceeemiiiieieiieiete ettt sttt et e 250
5.3.11. The Properties Classc.cccerieiiriiriieninteierieeteteeeeee e ae s s 250
5.3.11.1. Inherited MethOdsSccecvieiiiiieeiie ettt seee e e eeeeeeaee s 250
5.3.11.2. load (Class MEthOA)cccueerruieeeiiiieiiieeeiieeeieeetee et seee e e e e eereees 251
5.3.11.3. new (Class Method).......ccueiiiiiiiiiiiiiieiiiee e e 251
IR T 1 I T 1 USRS URRRUSRUPRP 251
5.3.11.5. GELLOZICAL ..ottt et s 251
5.3.11.6. GEPIOPEITY ..ottt ettt sttt sttt st sae et 252
53117, ZBEWHROLE ..ttt et s 252
5.3 11,8, J0AMu ittt ettt et et eeaaeenbeebeenraeenaeens 252
53011090 PUL ettt sttt b et b et st sbe et 252
5.3 T 1. 10. SAVE..eetieeiieeiiieteeeieeeite et et estt e et eete e te e st eenbe et e e raeenbeenbe e beeasaeenbeebaenseeesaeans 252
531111, SEtLOZICAL. ..ottt s 253
531112, SEIPIOPEILY ..ttt st s 253
5.3 11,13, SEEWROLE vttt sttt ettt et ae et et esaaesnbeenbeesaneenneans 253
5.3.12. The QUEUE CIASS......cccuieeiurieeeiieeeiiee ettt eeete e e eteeeetteeeeeteeeeaseeetaeeetaeesseeeeasesenssseenereaas 253
5.3.12.1. Inherited MethOdScceevuiiriieiiieiieiierie ettt et e e eeaeens 254
5.3.12.2. new (Class MEthOd)cccuvviiiiieiiiiieiiieeiee ettt 255
5.3.12.3. Of (CIass MethOd)c..eeevuiiiiiiieeiiieciie ettt 255
5.3 120 [ettt ettt ettt et e st e et e e be e s it e sateenbaenaeesnteens 255
T TN 0 TR [OO OO OO SEORURRPORUSRRUPPRRPON 255
5.3.12.6. QlIINAEXES ..ceuvveenrieiieriie ettt sttt ettt ettt e st este st e bt e satesateebeesaaesaneens 255
5.3 127, QIS .ceueeiie ettt ettt sttt ettt et ettt be e st sat e ebeesaee et ens 255
5.3.12.8. APPENA ..ottt sttt ettt e be e e st en 256
5.3 1209 Lttt sttt e b e st st e be et e sateea 256
5.3 12.10. @IMPLY .etiiieiieeieeiterite ettt ettt ettt st st e b e st st e beesaeesaneen 256
5.3 L2011 ITSE ittt ettt st e b e sae et en 256
5.3 12,12, haSINAEX ..eenviiiiieiieiie ettt st 256
5.3 12,13, RaSTEEM ettt st 256
5.3 12,14, INAEX . .utiiiieciieeteeteeette ettt ettt tb e e te et e e tbeeaaeebe e beesraeeabeebaensaenaneans 256
TG T8 5 B TR 1 4 1<) o ARSI 257
5.3.12. 16, ISEMPLY .ottt ettt e eaeen 257
5.3 12,17, TEEIMIS c.tietieeieeteeteee e et et etee st e e te e teestbeesbeesbeessaeesseesseessaassseanseensaasssensseans 257
5.3 12,18, ST utieutieiieceie ettt ettt ettt e e et e e tb e e e et e e baeesaeetbe e baeenaeenbeentaennaennneans 258
5.3.12.19. MAKEATTAY ..ottt e s 258
5.3 12,20 MEXLurietieiuieiereeteesttesteeeteesteesteesteeteesteessseesseesseessaeasseesseeseasssessseensaesseensseans 258
5301221 PEEK .ttt ettt et s 258
5.3.12.22. PIEVIOUS ..ceeenteieeniesteeetete ettt sttt ettt ettt et e sae et esbesat et e bt esee et saeebesaeeneans 258
5.3012.23. PULL et st st 258
5.3012.24. PUSH .ttt st e 259
5301225, PUL ittt st b ettt st sbe et 259
5.3.12.20. QUEUL ...eoniiieneeiteeet ettt sttt sttt ettt et e enten 259
Xiv 0oRexx Reference Version 4.1.0

5.3.12.27 . TEIMOVEuvreeeeeeetreeeeeeeetee e e eeeteeeeeeeeteeeeeeetreeeeeeeataseeeeensrereeeeentrreeeesetereeeens 259

5.3.12.28. T@MOVEILEINeeiviiiieiiiiciiee ettt e e te e et e e tr e e sv e e earaeesasaeeevaeas 259
5.3.12.29. SUPPLICT ettt ettt ettt et st ebe e e st 259
5.3.13. The Relation CIaSS......c.ccevuieeiiiiiiiieeiieeecieeeeteeesreeesreeeereeesereesssseesseeesssaeenssseesssenns 259
5.3.13.1. Inherited MethOodsSccecvieiiiieeiieeciie ettt sree e eseseeeeaeeas 260
5.3.13.2. new (Class Method)ccuveieeeeiiriiieieiieeee ettt 261
TG 70 G T8 T 1 TS RUPRP 261
T T G T S 1 TR 261
TG T G TR Y 1 N SRR 261
5.3.13.6. QAIIINAECK ..ceveeeeeeeeeeeeee et et et eareean 261
5.3.13.7. QAlIINAEXESuvveeeeeeiriee ettt e et e et e e e etta e e e e e ertae e e e e enraaeaeens 261
5.3.13.8. AIIIEEIMISt e et e et et e et e e e e eaaeean 262
5.3 013.9. ALt e et e et eeeareean 262
5.3.13.10. AIffEIENCE ..ottt 262
5.3 13 L CIMPEY ettt ettt sttt et ae et 262
5.3.13.12. RASINAEX ..o e ettt 262
5.3.13.13. haSTEEMI....eiiiiiii e e ettt e 262
5.3 01314 INACX c.tiiiitie ettt ettt ettt et e e e tr e e e te e e eteeeeaeeeeareaan 263
5.3.13.15. INEEISECHONveiieiieeiiee ettt e et e et et e eteeeeaee e tteeeetteeeteeeeveeeeaseseeaseeeeasneas 263
531316, ISEMPLY c.eeiieiiieeet ettt st 263
5.3 13017, TEEIMIS ettt ettt ettt e e e et e e et e e e e taee e tteeeeabeeeteeeeteeeenteeeeareeenaraeas 263
5.3.13. 18 MAKEATITAY ..ccuveviinietieiieiieieete sttt sttt b et st s eanens 263
53013019 PUL ittt sttt sttt 263
5.3.13.20. TEIMOVE....uviiieiiieeiiieeiiee ettt e eetee e ettt e eveeeeteeeearee e taeeeaseeessseesasseaessesenasaeenareeas 264
5.3.13.21. r@MOVEILEIN ...oeiiiiiiciiic ettt e e e b e e e areeeavaeas 264
5,313,222, SUDSEL . eeiuiiieiiieeciiee et e ettt e et e ettt et e et e et e e e tb e e e b e e e taeesraeeenbee e araeearaeas 264
5.3.13.23. SUPPIICT .ueteeie ettt sttt sttt ettt ettt st st e st e st e ebeesanesaneens 264
5.3.13. 24 UNHOM w1eiiiiiiiiiie ettt et ete e e b e e av e e e tbeeetbeesssseesasseessseeenssaeassaeas 264
5.3 13,25, XOT tiiutieeeiiieeeiee et e ettt e ettt e et e e et e e e et e e e et e e e tbee e tbeeeabeeenbbeesabaaaantaeenaraeetraaas 265
5.3.13.26. EXAMPIES..cuutiiiiiiieiieiieeieeite sttt ettt ettt sttt et st et e s e saneen 265
5.3.14. THE SEt CLASS ...vveeeurieeeiieeirieeeteeerteeeiteeetteeebeeesebeeesebeeeseseaassseesssseesesseesssasenssseesssenns 265
5.3.14.1. Inherited MethOdsSccecvieieiiieeiiieciie ettt evee e raeeserae e s 266
5.3.14.2. of (Class MEthOd)coeeuviiieeiiiiiiee ettt 267
TG T T 1 USSP 267
5.3.14. 4. INLEISECTION ...vveeieeiiriieeeeetieeeeeeeteeeeeeeeteeeeeeeetreeeeeeebareeeeeeareeeeeeessseeeeeeseseaeens 267
TR T 7 s TR o | PR STRURR PR 267
53146, PULALL ..ottt ettt et ae e eaeen 268
5.3, 14,7 SUDSEL . eeeiieeiiiiee ettt ettt et e e et e e e et e e e et r e e e e earae e e e e etaaaeeeeetaaeaeaas 268
5.3.14.8. UINIOM «.vvieiieeiiiiee ettt ettt e ettt e e e et e e e e eettae e e e eeataeeeeeeaaaeeeeeensraeeeeeenseseaeans 268
5.3 4.9, XOT et e e et e e eane s 268
5.3.15. The Stem CLaSS ...uuuviiiieeiiiiee ettt e et e e e eate e e e e eettaeeeeeeabaseeeeeessaseeeeennes 268
5.3.15.1. Inherited MethOdSccouiieiuiiieiie et e 270
5.3.15.2. new (Class Method)c.uueiieieiiiiieiiiiie ettt 270
T 70 5 T5C T [TSSOSO SO USSP 270
5.3 S [ttt e e et e e te e e eaaaaan 271
5.3.15.5. QAIIINAECKES «.veeeeevieetiie ettt ettt et e e e et e et e e et e e eeae e e eteeeeareeeeareeeearaeas 271
5.3.15.6. QIIILEINS.uviiieiiie ettt ettt et et e et e e ete e e e ae e e enteeeeateeeearaaan 271
5.3 057 ALttt e et e e ta e e e be e e taeeaaraaan 271
ooRexx Reference Version 4.1.0 xv Draft - SVN Rev 6346

Draft - SVN Rev 6346

5.3, 158 BIMIPLY.eueieiieiieeieeteertte ettt ettt ettt ettt st e b e satesateebeesaeesaneens 271

5.3.15.9. RASINACX ...uviiiiiiieiiie ettt ettt e et e et e e e ab e e e abeesareeeessaeesssaeeaaaeas 271
5.3.15.10. RASTEEIM . ..viiiiiieeiiie ettt ettt be e e b e e e tb e e sraeeesbaeearaeeeraeas 272
TG T B T I R 1 £ USSR 272
5.3 1512 ASEMIPLY ottt st ettt 272
TG T o T G TR 1155 o TSRS 272
5.3.15. 14, MAKEATTAY ..eeeuveeeieiie ettt sttt ettt ettt st e be e st e st e e beesaeesaneeas 272
5.3 15 L5, PUL ettt sttt ettt et aesneeneen 272
5.3, 15,16, TEIMOVE....eeviiee et eeetee ettt e et eeetve e e e e e eatae e e e e eaaeeeeeeetaaeeeesenteaeaeens 272
5.3.15.17. 1€MOVEILEIM ..cocceiiiiiii e e e et e e e araeaeeas 273
5.3 1518, TEQUESE .ttt ettt ettt ettt sat e st e b et 273
53,1519, SUPPLET ...t e 273
5.3.15.20. tODITECIOTY w.eeuvieieeiieiiieeieenite sttt ettt et sttt ettt e sb e sate st et e saeesaeeeas 273
5.3.15.21. UNKNOWIL....uviiiiieiiiiie ettt e e etvee e e e e eatae e e e e etvaeeeeeensraeeeeeenseeeeeaas 273
5.3.16. The TabIe ClaSSveeeeueieeeiiieeeiee ettt ettt e et e et eeeaae e et eeeteeeeneeeeareaan 274
5.3.16.1. Inherited MethOdSccouiiiiuiiieiie et 274
5.3.16.2. new (Class Method)cceoeeiuiiieiiiieiiie et et 275
5.3 00,3, [oot et e et e te e e e te e eetaeeearaaan 275
5.3 0. [ttt et e e e te e e taeeearaaan 275
5.3.16.5. QAIIINACKES ..veeeeevieeiiie et ettt ete et e e e e et e e e eareeeteeeeteeeeeteeeeaseeeeareaas 275
5.3.16.6. QIIILEIMNS.viiiiiii ettt e ettt et eeett e e ete e e saeeeeabeeeeareeenaraeas 275
5.3.10. 7. AL et e et e e eta e e e te e e eteeeearaeearaaas 275
5.3.16.8. BIMPLY ..ttt sttt sttt sttt st st 275
5.3.16.9. NASINACK ...veiiiiiieiiie ettt ettt et e et e e ete e e steeeeareeeeabeeearaaas 276
5.3.16.10. haSTEEMI.....eiiiiiieiieciee et et ettt e st e e e abe e e areeeavaeas 276
5.3.160. 11 INACX c.tiiiiiiieiieeeciiee ettt ettt et e et e e ta e e e abeeeabeeeatseesaraeeeabeeenanaeearaeas 276
5.3 160,12, ISEMIPLY eeeiiiieieeiieeie ettt ettt ettt st e be et en 276
5,310 13, TEEIMIS cuveeeeiieeeiiie et ee et e ettt e e tee e et eeevee e abee e asee e tbaeessseeessseesasaeaasseeenssaeesraeas 276
5.3.160. 14, MAKEATTAY ..eeeveeeieieieiieeieertte sttt ettt ettt e st e st s te e bt e satesateebeesaeesaneens 276
5.3 10,15, PUL ettt sttt ettt et st b e sat e st e ebeesaeesaneen 277
5.3.16.16. TRIMOVE......uiiieeiiieiiieeiiieectteeette e et e esveeesbeeessseeetbeeeaseeessseesssseasssesenssseassenns 277
5.3.16.17. T@MOVEILEIN ...oeeiviiiieiiieciiee ettt et e e e e e tr e sreeeesbaeeesaeesreeas 277
5.3.16.18. SUPPLICT c.eentiieieeitette ettt ettt sttt e st 277
5.3.17. The IdentityTable CLasscoceerierieriiieniierienie ettt et sttt et eaees 277
5.3.17.1. Inherited MethOodsScceciieeiiiiieiiieeiieeeiie et ettt e e eesesee e e s 278
5.3.17.2. new (Class Method)ccueeecuiiieiiieiiieeeiie ettt 279
R TC 70 0 T 1 TSR 279
I T A S 1 OSSR 279
5.3.17.5. QAlIIINAEXESuvveeeeeeiiiie ettt ettt e ettt e et e e e etra e e e e e etrae e e e e earaaeaeens 279
5.3.17.6. QIIIEEINS. ..ot e e et e e e et e e e e eaneean 279
5.3 07T ALt eaee s 279
530178 BMIPLY .. e e e 279
5.3.17.9. haSINAEXuuviiiiieiiiee e et e e et a e e e e e ntaraaeeas 279
5.3.17.10. RASTEEMIo et ettt 280
5.3 07 11 ANACK ittt ettt ettt e et e e et e e et e e eeteeeeaaeean 280
5.3 07 12, ISEMPLY coveiieieeieet ettt st e 280
5.3 0713, TEEIMIS ottt ettt e e et e e et e e et e e et e e eeat e e ete e e etaeeenteeeeataeeaaraaan 280
5.3.17. 14, MAKEATITAY ...cveiveenietieiieieeitee sttt ettt sttt st b ettt st eae b eanens 280

xvi ooRexx Reference Version 4.1.0

SBULTULS. PUL e 280

5.3 1716, TEIMOVE.cueieiieeiieeieeitte ettt ette sttt et e st sab e et e s bte st e sate e beesatesateenbeesaeesaneens 281

5.3 1717, TEMOVEILEIM ittt sttt sttt saeesaneea 281

5.3 1718, SUPPLICT ettt ettt et e st sttt e st e saneea 281
5.3.18. SOTHNZ ATTAYS c.uevieuteeiieriieeieeteertt et ettt e st e st et e e it e sbte s bt e bt esbeesabeebeebeesabesasesaseas 281
5.3.18.1. SOrting NON-SIINZSeerverreiriierieeieeiee st ete ettt et ete e bt e sitesateenbeesaeesaneens 281
5.3.18.2. Sorting with more than 0ne Ordercoceceveerienenieiienieeeni e 282
5.3.18.3. Builtin COmMPATALOTS.......ccuieieiiriieieieeiieteeteeresee ettt e eanens 283
5.3.18.4. Stable and UnStable SOTITSceecuiiereiieeriieeeiieetee e e eeee et eeeeee e 283
5.3.19. The Concept of Set OPEIAtiONS.........cccvevuirierieriieieniieieie et enens 284
5.3.19.1. The Principles of OPeration............cccceceecuirieiiinieiienenieiesieeeie e e 285
5.3.19.2. Set Operations on Collections without Duplicatesc.ccccceeieveninennen. 285
5.3.19.3. Set-Like Operations on Collections with Duplicates..........cccceceeverveveeenenne. 286
5.3.19.4. Determining the Identity of an Item..........ccccceveninininieininininencceeee, 286

5.4, The ULIIEY CLASSES ...uvevieuieiietieiertieiieste et tete et et st et e tesbe e e s bt este et estenbesbe e tesbeeseenaeeseenaesbeennans 288
5.4.1. The DAteTime CLASSc.eeeiiuiieeeiiee ettt ettt ee e et e e et e e et eeereeeeneeeeaeeaan 288
5.4.1.1. Inherited MethOdSc..oooiiiiiiiiieeiie ettt et 289
5.4.1.2. minDate (Class Method)cc.ooeiuiiiiiiiiieiieeeee e 289
5.4.1.3. maxDate (Class Method)cccoovuiiiiiiiiiiiiieciie e 289
5.4.1.4. today (Class Method).......coceeeereriiiininieienieeteseeteeste et 289
5.4.1.5. fromNormalDate (Class Method)coouveeeiiiiiiieeiiieeciee e 289
5.4.1.6. fromEuropeanDate (Class Method)ccceceevuireriinenienieninienieiiene e 290
5.4.1.7. fromOrderedDate (Class Method)cccveeeiiieeiieeiiieeieecee e 290
5.4.1.8. fromStandardDate (Class Method)ccoovvvviiiiiiiiriieiiiieiee e 290
5.4.1.9. fromUsaDate (Class Method)coovvueeiiiiiireiieiiiiieiee et 291
5.4.1.10. fromNormalTime (Class Method)coovvvviieiiiiiriieiiieiee e 291
5.4.1.11. fromCivilTime (Class Method)........cccouviieiiireiieiiiiirieeeeeieeeee e 291
5.4.1.12. fromLongTime (Class Method)cccevveriierriienienieeieeieesee st 291
5.4.1.13. fromBaseDate (Class Method).........cccvvveeeeiveireeiiiiiieeeeeeeeee et 292
5.4.1.14. fromTicks (Class Method)ccuveeeiiiriieiiieiieeeee et 292
5.4.1.15. fromIsoDate (Class Method)...........coocuvriieeeiriiieiiiiiieee et 292
5.4.1.16. fromUTClIsoDate (Class Method)............coovvvveieiiiciiieeiiiiieiee e 292
SA T LT ANttt ettt ettt ettt et s e st b e s ate st ebeesaeesateen 293
5.4.1.18. Arithmetic Methodscoceiriiiiiiniiiiiieiieeieeeeee ettt 293
5.4.1.19. COMPATETO......oviiieiiiiieiieiieeee ettt st s 294
541,20, YRAT ...ttt sttt st s 294
S5.A.T.21 MONEN c.etiiiiiie ettt et e e e raeeab e e baenaaeerneans 294
54122 AAY ettt ettt ettt et enaesneeneen 295
54123, HOULS...utieieeeiiiee e ettt e e e ettt e e e et be e e e e eeabae e e e e eaaaeeeeeebraeeeeeenraaeeaeas 295
54124, ININULES ..oeooiiiieeeeeieeeeeeetee e e ettt e e e ette e e e e eetteeeeeeeataseeeeesraseeeeensaseeeesensereaeans 295
5.4.1.25. SECONAS ..oiiiiuiiiie et ettt et e e e ettt e e e etre e e e e e eabae e e e e etraeeeeeentraeeaeeentareaeaas 295
5.4.1.26. MICTOSECONAS.ccnvvieeeiieeetiee et et et et e e et e eeeeeeeaeeeeeaaeeeeteeeeteeeeaeeeeaeeean 295
S5.4.1.27. daYMINULES.....c..eveeeeiieiieienienteteteeet ettt eve et enes 295
5.4.1.28. daySECONAS ..c.veveuienieiiriiriinteicieeet ettt 295
5.4.1.29. dayMICIOSECONMSevieuiiiieiieieeicetert ettt ettt sttt et s 296
5.4.1.30. haSHCOAC......cuviieiiieeee e ettt et e e et earea s 296
S5.4.1.31. AAAYCATS c.uveeeeeeteeieeciie ettt ete e et te e st eeaeebe e s b e enbeete e beeesaesnbeebeensneesneens 296
5.4.1.32. AAAWEEKS ..ccuvveeevierieciie ettt este st ettt st eete et estaesaeesbe e seessaesnseenseensnessseans 296
00Rexx Reference Version 4.1.0 xvii Draft - SVN Rev 6346

Draft - SVN Rev 6346

54.2.

5.4.3.

5.4.1.33. AAdDAYS.ccuueeiuieeiieiierite ettt ettt et et st ebeesaee st en 296

5.4.1.34, AddHOUTS ...couviiiiieiieiie ettt ettt et et e st e st e ebeesaeesaneens 297
5.4.1.35. AddMINULES......couveeiieriieeieeieeite sttt ettt et s e st et esatesateebeesaeesaneens 297
5.4.1.36. AddSECONASeouvieiieiiiiieeieete ettt ettt ettt et e esaneea 297
5.4.1.37. addMICTOSECONAS ...eevvviruieeieiiieriteeieeiee sttt et ettt esite st e beesaeesaneeas 297
54138, ASODALE ..enveeniiieiieeieeite ettt ettt e b et 297
5.4.1.39. ULCISODALEeeveeeeiieeiee ettt et et e e e et e e eeestb e e sareeesnsaeenseeensseens 297
5.4.1.40. DASEDALEvveieieeiieeee e e e e e e etraaaaeas 298
S5.4.1.41. YearDayccoooiiiiiiiiceee e e e 298
5.4.1.42. WEEKDAY ..o e 298
5.4.1.43. europeanDatecc.cocueiiiiiiiiiiiii e e e 298
5.4.1.44.1anGUAZEDALE.ccoiiuiiiiiiiiei e e e 298
5.4.1.45. MONtANAMEC......ccoiiiiiiiieeiie e e ete e e e etra e e e e e ebaeeeeean 299
SA.1.46. dAYNAINIE ..ottt sttt eb e e 299
5.4.1.47. NOIMAIDALE.......ccoiiuiiiiieeeiiee e ettt et e e e e e eaaraaeean 299
5.4.1.48. OrderedDAe........c..veeeeeeeeeiee et ettt 299
5.4.1.49. StandardDAtecoouiieeiiieiiiieeee et e 299
5.4.1.50. USADALE......vii ittt ettt et et e et e e taeeearaean 300
54151, CIVIITIME .eeiiieiieieeciie ettt ettt eae et eebeete e beessaesnseensaensnassseans 300
5.4.1.52. NOTMAITIMEcuvieiieiiie ettt ettt ete et ee st eebe e beesaressbeenseessnessseans 300
5.4.1.53. T0NETIME .ottt sttt st s 300
S5.4.1.54. FUIIDALE ..cuveeeieeiieieeciie ettt et ettt e e et esaesabeesbe e beesseesnseenbaensnessneans 300
S5.4.1.55. UECDALE ..couviiiie ettt ettt ettt ettt st ebeenaaeenaeens 301
5.4.1.56. tOLOCAITIMEveeiieiieiiieieeiie ettt ettt e saee st e ebeesaaeseneens 301
S5.4.1.57. LOULCTIIME .eouvveenrieieeieieeieeieesite st e ettt ete et e taesabesate e beessaesaseenseensnesaneans 301
5.4.1.58. tOTIMEZIONEc..veeneeeeieeieeieeiteste et eteesiteete e bt e s aesabesateesbeesstesaseenseensnesnnenns 301
5.4 1.59. TICKS ettt ettt st ettt ettt st s it e st e e beenaaeeateen 301
S5.4.1.60. OFFSEL .euvieiieiieiieeteeste ettt sttt et et s e st e st e st e ebeesaeeeateen 301
SAT.01. AALB..ueiiniiiiieiie ettt sttt st e beesaee st en 302
5.4.1.62. tIMEOTDAY.....eiiiiiiieiie ittt sttt st 302
541,03, ClaAPSEA...coiiiiiieiieiieie ettt st b et 302
5.4, 1,64, 1SLEAPYCATeeeieieiieite ettt ettt ettt et st e b et saae e 302
5.4.1.65. daySINMONooviiiiiiiieiieeie ettt sttt 302
5.4.1.66. AAYSINYEAT ...eevuviiiieiieiieeieete sttt ettt ettt e b et e s 302
5.4 T.07. SN ettt ettt et st 303
The Al CLaSScuvveeiieeiieee ettt eeere e e e e e erae e e e eetaeeeeeeanaeeeeeensreeeeennns 303
5.4.2.1. Inherited MethOdScccoviiiiiiiiiieie e e 303
S5.4.2.2. CANCEL .. e et e e e e traaaaeas 303
54,230 TN uieiiieiieciiecte ettt et e et et e et eeae e be e s b e eabe e be e ta e e b e ebe e baeeseeenbeebaensaeesaeans 304
5.4.2.4. EXAMPIES.cuviiiiiiiiiiiieiie ittt ettt ettt 304
The TImeSPan Classccueeuiiuieieriieiesie ettt ettt ettt et see s e st et e seeeaeeaesaeeneens 305
5.4.3.1. Inherited MethOdSc..ooooiiiiieiieeiie et 306
5.4.3.2. fromDays (Class Method).........ccooeeriiriirieiiiiieiereeee e 306
5.4.3.3. fromHours (Class Method)cccuiiiiuiiioiiiieeiie e 306
5.4.3.4. fromMinutes (Class Method)........c...ooviiieiiieeiiie et 306
5.4.3.5. fromSeconds (Class Method)........c...oovuirieiireiiiieeeiieeeiie e 306
5.4.3.6. fromMicroseconds (Class Method)..........ccceeevvieeeiieeiiieeiiecciieeeee e 307
5.4.3.7. fromNormalTime (Class Method)cccveeeiiieeiieeiiieeceec e 307

XViii 0oRexx Reference Version 4.1.0

5.4.3.8. fromCivilTime (Class Method).........coovvueiieeiiireiieiiiiiiiee et 307

5.4.3.9. fromLongTime (Class Method)cccceevieriierniienienienieeeestesee et 307
5.4.3.10. fromStringFormat (Class Method)........c.ceecuerriienieniienieiniienieniceieeseeseens 307
T 1 O 31 L USSP 307
5.4.3.12. Arithmetic MEthOdScccveeeiiieeiiieciieeeiie ettt svee e e ree e 308
5.4.3.13. COMPATETO.c..eeieitieiieiie ittt ettt et sat e et e s e saneeas 309
R B B L1 216 (o) s SRR 309
543,15, AAYS ettt ettt ettt ettt e sttt e aesneentens 309
543,10, IMOULS....oeii it et e e et e e e e etar e e e e etaee e e e eetraeeeeeenraaeeeans 309
54317 ININULES .ot ecieee e eeetee ettt e e e et e e e e eettee e e e eeataeeeeeearaeeeesensaaeeeeeenseseaeaas 309
5.4.3.18. SECONAS ...ccittiieeieecieee ettt eetee e e e et e e e et e e e e e eara e e e e eetaaeeeeeenraaeaeeas 310
5.4.3.19. MICIOSECONAS.ceiuriiieieeiiiiieeeeetiee e e e et e e e eeeree e e e eebareeeeeeraeeeesetaeeeeeeenreseaeens 310
5.4.3.20. LOLAIDAYS «.eeneeieiiieieeiie ettt st sttt 310
5.4.3.21. tOtAlHOULS.....oviiiieiiiiee et etre e e et rae e e e e eabaeeeeean 310
5.4.3.22. tOLAIIMINULESoeiviieiiiee ettt ettt e e et e et e e et e e eteeeeteeeeaeeeeaeeean 310
5.4.3.23. tOtalSECONAS ...eeiieiiiiiieeeie ettt e et e e e e e eas 310
5.4.3.24. totalMiCIOSECONMSvviieviieeiieeetieeeiee ettt et e et e et e et e e et e eeteeeeareean 311
5.4.3.25. NaSNCOACcuviieiiieeeee e e ettt 311
5.4.3.26. AdAWEECKSoouviiiiiieeeee ettt ettt et et ta e e eaaae s 311
5.4.3.27. AddDAYS.....couiiiiiiieieieee ettt st 311
5.4.3.28. @dAHOUTISooouviiiiiieciee et ettt et et e e et e eeateeeearaaan 311
5.4.3.29. @ddMINULES......ooiiiurieeeiiieeiiee ettt eete et e e et eeetteeeeareeeteeesveeeeaseseeasaeenareeas 311
5.4.3.30. @ddSECONASuveieiriieiiie ettt et ettt et e e e ra e e arae s 311
5.4.3.31. addMICIOSECONMS ...eeevviieiiieeiieeeiieeeiee et e et e et e ettt e eteeesveeeeebeeeeaseeesaveeas 312
543,32 SIEMuuiiiiieiieeiie ettt ettt ettt ettt et e et e st e et e e te e beesabesabeenbaenaeenateens 312
5.4.3.33. SIIINZ 1eeuveeriieeiieeteerteeeite sttt ettt e et e et e st e eabe et e bt e st e ea b e e beesatesabeenbeenaeesnteen 312
5.4.4. The ComPArable ClassS.......eecuerriierieriieriierieeniesieeieesieestresbeesieesseesseeseesseesssesssesses 312
5.4.4.1. Inherited MeEthOdSccueieiiieiiiieeiie ettt s e e eve e e are e e 313
5.4.4.2. COMPATETO...cccueieiieiieiie ettt ettt ettt e st e st e beesaee st e ebeesaeesaneens 313
5.4.5. The Orderable CIasscccueeeeiiieiieeeiieeeeieeeieeesreeesereeesbeeestbeesssseesseeessseeesssseensseeas 313
5.4.5.1. Inherited MEthOdScc.eeeviieiiiiieeiie ettt svee e e earaeeaveeas 314
5.4.5.2. CompariSOn MEthOdSeevueiriiiriiiieiiierieeie ettt 314
5.4.6. The CompParator Classcecueerueerierierieeitente sttt ettt et esbeesateebe e bt e sasesaseeabees 315
5.4.6.1. Inherited MeEthOdScc.ueeciieeiiiieeiie ettt ettt e e ereeeeeaee e s 315
5.4.0.2. COMPATE.....c.eeeuienierieeteiieitett ettt ettt ettt sae et re st se st e e e eaeeaeenesaeennens 316
5.4.7. The CaselessComparator Classcceoirierierieieniieiierieeeeie et 316
5.4.7.1. Inherited MethOdScccoviiiiiiiiiiei et 316
5472, COMPATE ...ttt sttt et ettt ettt s 317
5.4.8. The ColumnComparator CLASScccueevueerieerieriieieereente ettt e et seeeaees 317
5.4.8.1. Inherited MethOdSccccviiiiiiiiiiie e e e 317
5.4.8.2. COMPATE...ccueeiuiieneieteenite ettt st et et esbteeate st esbeesabesate e beesbtesateebeenneenneeeas 318
S.A.8.3 ANt oot e e e et e e teeeeaaaean 318
5.4.9. The CaselessColumnComparator CIaSSccoeeveeverririniinreniereeeenene e 318
5.4.9.1. Inherited MethOdSc..ooooiiiiieiieeiie ettt 319
5.4.9.2. COMPATE.....oviuieiiitieieet ettt sttt ettt ettt et sae et e be bt et e sb e et enaesaeeaesbeeneens 319
5493 AN0E it ettt e e et e e eeteeeeteeeetaeeearaaan 319
5.4.10. The DescendingComparator Classcoccevereerienierienenienieneeteneeeeneeseeseesieenaens 319
5.4.10.1. Inherited MethOdScooiiiiiiiieeiie ettt e 320

ooRexx Reference Version 4.1.0 Xix Draft - SVN Rev 6346

Draft - SVN Rev 6346

5.4.10.2. COMPATE...ueeeruiienreeiiestiesteenteenttesteete e teesetesabesabeesbeesabesateesseesseesaseenseesseesssenns 320

5.4.11. The CaselessDescendingComparator Classcceceerverrieeneeneeniennieeneeneeseeennees 320
5.4.11.1. Inherited MethOdsScceeiieiiiiieeiieeciieeciee ettt svee e eseraeeeveeas 321
5.4 T1.2. COMPATE...ueiiiiiiiieiieitie ettt sttt ettt sat et e st e st e sabe e bt e satesabeebeesaeesaneens 321

5.4.12. The InvertingComparator CLaSS.........coceerveerierieirieeienie ettt 322
5.4.12.1. Inherited MethOodsScceevieiiiiieeiie ettt stee e eeseaee e s 322
S5.4.12.2. COMPALC.....coueeiiriieieiieiiett ettt ettt et et et e st ae e enesaeennens 322
T B T 11 L USSR 323

5.4.13. The MORNItOL CLASS ...eeceeiviieiieeciiieeeeeciee e ettt e ettt eeeeetee e e e eetraeeeeeebaeeeeeeerreeeeeeennns 323
5.4.13.1. Inherited MeEthodScccveiiiiiiiiieee ettt e e 323
54132, CUITENL oottt e e ettt e e e eetve e e e e eeataaeeeeearaseeesentaseeeeeenseeeaeans 323
5.4.13.3. deStINATIONvvieieeiiiiieeeeeiieee e e ettt e e e ettt e e e eetteeeeeeeabaeeeeeeaaaeeeesensaaeeeeeenseseaeens 324
SA B AN oot et et e et e e e e et e e ereeeearaean 324
5.4.13.5. UNKNOWIL.....cuviiiiieiiiiie ettt e e et e e e e eatae e e e e eeva e e e e eenbaaeeeesenreseaaans 324
5.4.13.6. EXQAMPIES....cuieiiiiiiiitieiee ettt et e 324

5.4.14. The MutableBuffer Class...........coouiiiiuiiieiiee ettt eae e e 324
5.4.14.1. Inherited MethOdScooviiiiuiiieiii ettt e 325
S T4 2 NIBW et ettt et ettt e e eta e e eteeeeteeeetaeeearaean 326
54143, aPPENMA ..ottt 326
5.4.14.4. caselessSChangeSIr......cccuiiiiieririeiereeteeeteete ettt 326
5.4.14.5. CaSEIeSSCOUNISEoeeuiiieiiie ettt ettt et et e et e e eveeeeebeeeeareeeeareeas 326
5.4.14.6. CasSeleSSLASTPOScccuviiiiiiieiiieeee ettt e 326
5.4.14.7. CaSeleSSIMALCRviiiiiiiciieeeeeee et et 327
5.4.14.8. caselesSMatChCRAT..........c..cooiiiiieiiicciee et 327
5.4.14.9. CASCIESSPOSuviieiiieeiee e et 327
5.4.14.10. caSleSSWOIAPOSeeeeuiiiiiiieeiie ettt et ettt ete e sveeeeebe e e araeesareeas 327
5.4 T4 11, CRANZESIT.....eiiiieteeiie ettt ettt et saee st e ebeesaaesaneens 328
5.4 T4.12. COUNESIE ..ttt ettt e e e et e e et e e eabeeesbaeesabaeeesseeenssaeesraeas 328
54 T4.03. ALELE ..eeeerii et eciee ettt ettt e e e e e e e tb e e e tb e e sbeeeenbeeeearaeearaaas 328
SATA A, QIS ucuiiiiiiieiie ettt ettt et e e bt e e v e e e tbeeeabeeessbeesasaeeessaeenssaeesraeas 328
541415, AEIWOT....oiiiiiieiieeie ettt e ae e e eetb e e svaeessbaeeasaeeeraeas 329
5.4.14.16. etBUTETSIZE ...eovvieiiiiiieieeie ettt 329
T o R 1 1<) o USSR PRI 329
T o TR P T 6 o TSRS 329
541419 I8NGHN ..ottt eneen 330
541420, JOWET oottt eete e e e e et e e e e etaa e e e e etta e e e e eetaaeeeeeentareaeeas 330
5.4.14.21. MAKEATTAY ...cviimieiiiieieiieeee ettt e s 330
541422, MALCH....ccvii it an 330
5.4.14.23. MAtCHCRATccciiiiiieeeeee e ettt 331
S.4.T4. 24, OVETIAY .neiiiiiiieeeete ettt ettt et ettt et 331
S 1425, POS ettt ettt sttt a et b et e sttt e tesaeeneen 331
5.4.14.26. TEPLACCAL ..ottt sttt st b et ettt 331
5.4.14.27. SEtBUTEISIZE ... 332
541428, SIIIINE c.eeieeeiieieeieete ettt ettt sttt s bt bt et e sttt e aesaeeneen 332
5.4.14.29. SUDCRATooioiiiiiiiie ettt et e et et e e et e e teeeeaaeean 332
541430, SUDSIE ..ottt ettt ettt et e et e e e e e et e e eeateeetaeeeeteeeeateeeeateeeearaean 332
541431, SUDWOTI ..ottt ettt et et e e e eaeeeeaaee s 332
541432 tTANSIALE ..ottt ettt ettt e et et e et e e e te e e ataeeearaaan 333

XX ooRexx Reference Version 4.1.0

5.4 T4 33 UPPET ettt ettt ettt ettt et e bt e st s abe et e s bae st e st e e bt e satesateebeesaeesaneens 333

S TA.34. VETIEY oottt sttt st et 333
S.AT4.35. WOTA .ttt ettt sttt ettt et et st beesaee st ea 334
5.4.14.36. WOTAINAEXoouvieiieiiiiiieieeite sttt ettt ettt ebe e s esaneeas 334
5.4.14.37. WOTALENGN ..c..eeiiiiiiiiieeec ettt sttt 334
S5.4.14.38. WOTAPOS. ...ttt ettt et ettt et 335
5.4 T4.39. WOTAS ..ttt ettt ettt et st be et e 335
5.4.15. The RegularEXpression ClIass........c..cocevirierierieieniieieie et eneesnesaeenens 335
5.4.15.1. Inherited MethOodsScceeveeiiiiieeiieeeiie ettt e e e eae e e 337
5.4 T5.2. ML ceiiieiieciiecie ettt ettt e st e et e et e e s tb e et e e be e raeeaaeebe e beeeraeenbeebaensaeasneans 337
54153, MALCH..c.tiiiiecie et ettt e ettt e et e e beesraeesbeebaenaaeeaneans 338
S LS4 PATSE ettt ettt et ettt et e aeesaeeea 338
S 5.5, POS ettt ettt ettt h et e bt ettt et et saeennen 340
5.4, 15.6. POSILION. ..c.eeuieiieiieiest ettt ettt ettt ettt ettt sbt et e et et e st et eaesaeentans 341
5.4.16. The ReXXQUEUE CLASScuvieiueiiiiieeetie et et ettt ettt eeeaee e et e e eteeeeaeeeeaneaan 341
5.4.16.1. Inherited MethodSceeruiiiieiiieiieesiecre ettt esee et saesveebeesaeesene e 342
5.4.16.2. create (Class MethOd)oeecuiiieiuiiiiiie ettt et 342
5.4.16.3. delete (Class MEthOd)c..oeecuiiieiuiiieiie ettt et e 343
5.4.16.4. exists (Class Method).........ccocuiiieuiiiiiiieeciee ettt 343
5.4.16.5. open (Class Method)ccceoeeruireiienirieiinieeeseeerestee et 343
S5.4.16.6. AEIELE ...uveeueeeeie ettt ettt ettt ettt st ete et e e s b e e be e beesateenbeebaenaneenaeens 343
54 10.7. BIMPLY ..ttt sttt ettt sttt et sttt st et 343
S 10.8. L.ttt sttt st st 343
5S4 T60.9. ML ceueiiiiieiiecie ettt ettt et e et e e s b et e e beenaaesnteenbeenaaenateens 344
S5.4.16.10. TINEIN .veeniiiiieeieeieecie ettt ettt et e st et e beesaaesabeenbaesanesaneens 344
S5.4.T6. 11, TINEOUL.cueeiieeiieeieecite sttt ettt ettt e bae st e sate e beesatesnseenbeessnesanenns 344
5.4.16.12. MAKEATTAY ..eeeveerientieiieeieeniteste et eieesiteete e bt e sieesabessteesbeesaaesaseeseessnesnsenns 344
SA L0 13, PUIL .ttt ettt sttt et st e ebeenaaeeaneen 344
S T0. 14 PUSH ..ttt sttt st et ea 344
S TO. 15, QUEUE ...eoueieiieeieeteeette ettt sttt ettt ettt et st be e st e st e e be e it e sateen 344
S5.4.16.16. QUEUEeoiiieiiieiieiie ettt ettt ettt ettt beesaee st en 345
S T0. 17, SAY ettt ettt ettt e b e sate st e ebe e it e sateea 345
S T0.18. SBL ettt ettt e b e st st b e it e sateen 345
5.4.17. The SUPPHET ClaSS...cecuieruiirieriieniieeie sttt esite sttt sit e sttt esbe e st e be e beesaaesaneeabees 345
5.4.17.1. Inherited Methodsc.eoveiriiiiiriieiiieteeeeeeee ettt 346
5.4.17.2. new (Class Method)ccueeeiuiiieiiiieeiie ettt 346
5.4.17.3. QlIINACKES ..veeeereeeiiieeeiieeieeetie e et ett e et e e stee e reeeaaeesssreesnseaeassaeesnseeensseens 347
54174, QlIIEEMIS. ..c.veeieveeieeieeeiie ettt et eete e e e st eeaae e beestaeeabeesse e seesssessseenseasseensseans 347
5.4.17.5. @VAILADIEeeeiieeiie et ettt et e e s 347
5.4 17,6, INACK . .ecutieiieeiiieieeeieeette et et et e st eete e teestbeesbeeabeessaeesseesseesaesssessseensaesssansseans 347
SA 1T T AN ettt ettt ettt ettt e et e e e e s tbeeabe et e e taeesbeesbe e baeeraeeabeenraensaeesaeans 347
S.AT7 8. ALEIM evieuiieiieeiie et et e tteete et esteesteete e teestbeesbeesbe e saeesseesseesseasssessseensaesseensseans 347
54179, NEXL.uuvietieeteeeeie et et e tte e et et e st e e te e teestbeesbeesbeessaeesbaesseeseessaesnseensaesseansseans 347
S5.4.17.10. EXQAMPIES...nueiiiiiiiiiiiiieeieeiee ettt sttt st 348
SA1T 11 SUPPICT ..ttt ettt sttt st st 348
5.4.18. The StreamSUuPPLET CLASS ...c.evveeiiriirieniirieienieetestee ettt 348
5.4.18.1. Inherited MethOdSceeruiirieiiieiieeiieeie ettt see st ebeeseneesaeens 349
5.4.18.2. AVAILADIE ...eevvieiieieeciie et sttt e saeeenaeen 349

ooRexx Reference Version 4.1.0 XXi Draft - SVN Rev 6346

SAT8.3. INAEX ittt 349

54184 TMHE .eviiiiieeeiiie ettt et e ettt e et e e et e e et e et e e e tbee e tbeeetbeeentbeesbaeeansaeennraeeeraaas 350

54185, TLEIM 1ouiiiieeiieeeieeectte et ettt e et e et e e et e e et e e e tbee e taeeesaseeessseesasaeasssaeenssaeesseens 350

R B ST 1 1S < ST PSP 350

5.4.19. The ReXXCONEXE CIASSuvieererieeirieeiieeeiieesieeesteeesreeeereeeereesssseesseeesssaeenssseensseens 350
5.4.19.1. Inherited MethOodsSeceeeieeciiieeiie e eeiie ettt e seee e esreeeseaaeeeaeeas 351

S92 AIES ittt et st 351

5.4.19.3. CONAITION ...evvviieieeiiieeeeeeciiee e e ettt e e eeete e e e eeette e e e e eetareeeeeeareeeeeeetrseeeeeesraeaeens 351

R L S 1 | £ TSR SRRUTR 352

5.4.19.5. €XECULADIC......eeiiieiiiiie e e e 352

5.4.19.6. O ...t n 352

5107 AUZZ et an 352

54198, TNC. ettt e e eaaae s 352

5.4.19.9. PACKAZEviiiiiiiciei e e 352

19,10, TSttt et e et e e et e e eete e e eteeeeteeeeareean 352

5.4.19.11. VATIADIESccvviieiiie ettt et et et e et e e eaaea s 353

5.4.20. The WeakReference CIaSScccuuiiiiuieieiiieeeiieeeiee e ettt eetee e et eve e e eaeeeeaaeean 353
5.4.20.1. Inherited MethOdScooiieiiuiiieiii ettt et e 353

5.4.20.2. new (Class Method)cccueiiiuiiieiuiiiiiie ettt e 354

5.4.20.3. VAIUCvieiiie ettt et et et et e ta e et e e e eateeeearaaan 354

5.4.21. The POINEEr ClaSS.....ccccuiiiiuiieeeiieeeiiee et et et e ettt eeevee e treeeeteeeeetaeesaaeeeareseeaseeenereaas 354
5.4.21.1. Inherited MethOdScooviieiiiiieiie ettt e 354

5.4.21.2. new (Class Method)cccueeeiuiiieiiiieiieeciie ettt 355

5.4.21.3. Operator MEthOdscccveeviiirieiiieieeieeste et esee et sreseeeebeesaaesaneens 355

54214 GSNUIL...oiiiiii ettt ettt e e sab e e e tr e e s veeeeabaeeeareeeavaeas 355

5.4.22. The BUTTEr CIASSuiiiiiiiiiiieeiiie ettt et e e e are e s veeeeareeeeasneeeveeas 355
5.4.22.1. Inherited MethOdSc..ececviieeiiieeiieeciie ettt evee e eeareeeavee s 356

5.4.22.2. new (Class MEthOd)ccvveiieieiieieeieieee et eeeee et 356

6. Rexx Runtime Objects 357
6.1. The Environment Directory (ENVIRONMENT).......cccccovvitriiiiniiniinieeieesitenteeeeeieesiee s 357
6.1.1. The ENDOFLINE Constant (ENDOFLINE)c.ccccoiiiiiiiiieiieeiee e 357
6.1.2. The FALSE Constant ((FALSE)oooiiiieiieceece ettt e 357
6.1.3. The NIL ObJect (INIL) .coouirieieeiieieeiieieie sttt sae et seeste e ensesneennens 357
6.1.4. The TRUE Constant (TRUE)c..ccooiiiiiiiieee e 357

6.2. The Local Directory ((LOCAL)cooiiiiiiiieeeite ettt ettt et 357
6.3. The Error Monitor (LERROR)ccooiiieiiieie ettt 358
6.4. The Input Monitor (INPUT) ...ooiiiiiiiiieee ettt ettt 358
6.5. The Output Monitor ((OUTPUT) ..ccc.ceiiiiiiiiiiiiiieeteeesteee ettt et 359
6.6. The STDERR Stream (.STDERR)cccoiiiiiiiiieiee e 359
6.7. The STDIN Stream (.STDIN)ooiiiiiieie e et e e et 359
6.8. The STDOUT Stream (.STDOUT)ooouiiieieeeee ettt e 359
6.9. The STDQUE Queue (.STDQUE)ooouiiioiieeeie ettt et e 359
6.10. The Rexx ConteXt ((CONTEXT)uoiiiiiiieieeeee ettt et e e et e 359
6.11. The Line Number ((LINE)cccoiiiiiiiiiiieie ettt ettt et et e 360
6.12. The METHODS Directory (METHODS)ccccoiiiiiiiiiienieieneeteeseeeseeeee e e 360
6.13. The Return Status ((RS) ..ooouiiiieee e ettt et et 360

Draft - SVN Rev 6346 Xxii ooRexx Reference Version 4.1.0

7. Functions 361
T 1. SYNEAX ettt ettt ettt ettt b e st e bt e bt e s bt e e a b e e bt e s b e e e ab e e bt e bt e sabeeate e bt enaaenaneea 361
7.2. Functions and SUDTOULINEScccveeiiieeeiiiieeiieesiieeereeesreeeseaeeesereesereesssaeeessseesssaeesssesssssessnnnes 361

T.2.1. SEATCH OTAETccuiiiieiiieciie ettt tee et et e e e e ea e e etbeestaeesssbeesssaeessseaenssesennnes 362
7.2.1.1. Locating External Rexx Files........cccccooeeciiiiiniiiiniiiienieieniceeic e 364
7.2.2. Errors during EXECULION.c..coiiiiiiiiiiiiieieniceicte ettt 366
7.3, REUIN VALUES ...eeeiieiiiiee ettt e ettt e e e e tae e e e e e tae e e e eetaaeeeeeentaaeeeeensaeeeeeennnnens 366
7.4, BUIt-I0 FUNCHOISvviiiiiiiiiiei ettt ettt e et e e e ettt e e e eetaaeeeeeeataaeeeeenraeeeeeennnneas 367
7.4.1. ABBREV (ADDIEVIAtION) ..veevieiiieiiieiieiiieeiieeteesteesieesereeveesseesseessseesseesseesssesseensessens 368
7.4.2. ABS (ADSOIULE VAIUE)oeiiiiiieiiieciiee ettt ettt e et e e e e 369
T4.3. ADDRESS ...ttt et e be e be e ba e s beebe e teesrbeenaeenreas 369
7. 4.4, ARG (ATUINICIIL) ...eouiiiiiiriiieiieeieeniteeite ettt et sttt e bt e sbt e s te e bt esbeesaseebeenbeesaaesaeeeanees 369
7.4.5. B2X (Binary to HeXadecimal)coeeiiriieienieiiieiesieeee et 371
TA6.BEEP ... ettt e e e e e eaeaan 371
7.4.7. BITAND (Bit by Bit AND) ..coiiitiiiiiieieeeeee et 372
7.4.8. BITOR (Bit by Bit OR) ..ecuiiiiiiiiiiiiiiieiee ettt 372
7.4.9. BITXOR (Bit by Bit EXCIUsive OR)....cc.coiiviiiiiiiiiiiieiiieeeieteeeeeeee e 373
7.4.10. C2D (Character to Decimal).........cccueiiiuiiieiiiiieiie ettt e e 373
7.4.11. C2X (Character to Hexadecimal)c..ccoouiieiiiiiiiiiieiiee e e e 374
7.4.12. CENTER (Or CENTRE)ooiiiiiiiiiiicee ettt e e 374
TA413. CHANGESTR ...ttt et e e e ve e e areeeans 375
7.4.14. CHARIN (Character INPUL)cc.eeerierinierienirieieeee ettt 375
7.4.15. CHAROUT (Character OULPUL)......eeveerieerererieeiieniienreereeseeesieesseesseenseesssesssessseesens 376
7.4.16. CHARS (Characters Remaining)cccceecveerueerieerieniesieenieeneesieesieeneesneesseenseenens 377
TA1T. COMPARE ...ttt ettt et e e st e e e te e s ara e e s be e e asesenens 378
T.4.18. CONDITIONoooiiiiiiiie ettt ettt ettt e e e tb e e e taee s beeesbaeesavaeesaseeessesernnes 378
TA.019. COPIES ...ttt ettt s e e te e e s b e e e tb e e etbeesbaeessbaeesssaeessseeenssesernnes 380
T.4.20. COUNTSTR ..ottt e ve e e b e eta e e s tb e e s bae e easaeesabeeesnsesennnes 380
7.4.21. D2C (Decimal t0 CRATACIET).......vvveieeiiriieeeeiieeeeeecireeeeeeerre e e eeetreeeeeeeareeeeeeanreeeeenens 380
7.4.22. D2X (Decimal to Hexadecimal)ccveeieeeiiiiiiieiiiiee e 381
TA423. DATATYPE ...ttt ettt e eta e e st e e e bb e e e araeesaseeesseeennns 381
TA24. DATEooioie ettt et et e e sttt e b e e e tbe e e sbeestbeesssaeeensaeesssaeessseaensseeennnes 383
7.4.25. DELSTR (Delete StrINE) ...cccueevveerieriiiiieniieeieeieesitesite et esieesitesete st esiee s eseesseesae 387
7.4.26. DELWORD (Delete WOrd)........ccoouieiieiiieeiieeiieeieesiieere et esreesiee e esveesveeseveesseesee e 387
TA2T. DIGITS ..ottt ettt et e st e et e et e e beesaeesabeebeeseessseenseenseesens 388
7.4.28. DIRECTORY ...ttt ettt ettt et e taeeaaessveesseesasesaseesaesseessseenseenseesens 388
7.4.29. ENDLOCAL (LinUX ONLY) w.etteiietteierieeiesiesteeiesieeseesieseeeeeseeeseessesseeeeseeeneessesseennens 388
7.4.30. ERRORTEXT ..ottt ettt ettt ete et ite e sseesaaeseseebeesseessseensaenseenens 389
T A1 FILESPEC ..ottt ettt ettt e ta et e s tveebeeaeesaaesesaesseenseessseenseensens 389
TA.32. FORM .. oottt ettt e tte st te e st esebeestaeteessbeesbaesseeseesssaensaessaesssansseensens 390
T 433 FORMAT ...ttt ettt ettt ettt e st e s e etaeaeestbeesbaesseesseesssaensaenseesssansseensens 390
TABA. FUZZ oottt ettt te sttt e s atesebe e ta e st e s sb e e sbeesseessaesssaenseenseesssasssaensens 391
TAB5. INSERT ...ttt e et e e et e e et e e eteeeeaaeeeeaaeaan 392
7.4.36. LASTPOS (Last POSItION)cocuiiieiiiiieiieeeiie ettt ettt eaee e e e 392
FA 3T LEFRT ..ottt et e ettt e et e et e e et e e te e e ateeeeans 392
TA38. LENGTH ...ttt e et e e e e ve e e eaaeeeeans 393
7.4.39. LINEIN (Line INPUL) we.eeiuiiiiiiiiiiniieieneeteesi ettt s 393
7.4.40. LINEOUT (LN OULPUL).....eeutetiiiriieniiniteienieeitenteeicete e etesiesitetesieesteseesseenaesieennens 394
0oRexx Reference Version 4.1.0 XXiii Draft - SVN Rev 6346

Draft - SVN Rev 6346

7.4.41. LINES (Lines RemMaining)........cceecverrueeriienieniieeniieniieniesieesieesieesireesseesseesenesnseenseesens 396
TAA2 LOWER ..ottt ettt st sb et sttt e b e st e b ebee e 397
T.4.43. MAX (IMAXIIMUITL) ©evvvriieiiireeeeeiireeeeeeiiareeeeeeitreeeeeesiaseeeeeesssseeseesisseseseesissesesessssseesennsns 397
T.4.44, MIN (IMENIIUIN)ovviieeeeiiieeeeeceieeeeeeenreeeeeeetreeeeeesareeeeeesasseeseessreeeeeessnsesesensssseeeennses 397
TAAS. OVERLAY ..ottt ettt ettt sttt sttt e bt e st e beebeesaee 398
7.4.46. POS (POSTHON) ...veveeuietieiieieeiieieetteee st stestesseenteteeseessesseenaessesseensesseensessesneensesseensens 398
TAAT. QUALIFY ..oeiiteeeeeteeete ettt ettt et ettt s e et e e taesaae b e e sbaesaaessbeenbeeseeseseensaenseenens 398
T.4.48. QUEUED ...ttt ettt ettt et et ta et e b e e steasaeessbaebeesseeseseenseenseenens 399
T.4.49. RANDOM ..ottt ettt ettt et et e e tae st e e sbeesaaesabeebeesseessveenseenseesens 399
T.4.50. REVERSE ..ottt ettt te e te et e b e e beesaeesebeensaenseesens 400
TAS5T. RIGHT ...ttt ettt ettt et a et e et e e beesabesabaebeeseessseensaenseeens 400
7.4.52. RXFUNCADDccottitiecteeit ettt ettt ttesveeveesaeesaeebeesseesaaesesaessaeseesssesssasnsens 400
7.4.53. RXFUNCDROPooitiiitiieitettecteete ettt ettt ete et s v e veesveesaaeseveebaessaesssesnseensens 401
7.4.54. RXFUNCQUERY ...coctiiiiieiiiiiecieeie et esteeetesveeteesaeessaesveesaeessaesssaeseeseesssasssasnsens 401
7.4.55. RXQUEUEcctietietie sttt ettt seve et esae e s sa e e baeaeestaesssaensaensaesssasssesnseas 401
7.4.56. SETLOCAL (LiNUX ONLY) 1.eetteitieiiniieienieeteiest ettt s s 403
A I N) U\ PSR SUURPRP 403
7.4.58. SOURCELINEcccutiiiiiiieiteieeteeit ettt ettt siteste e saeesaaessbaesbeesaeessseenseenseenens 403
T4.59. SPACE ...ttt ettt ettt ettt ettt e e et e st e et e st e bt e naa e s nbeebe e taeesbeebaenteennes 404
T4.60. STREAMooiiiiiieieeseeteett ettt ettt te et e te e st eestesnbeesaeessaesssaeseenseesssesnseenseennns 404
7.4.60.1. Stream COmMMANAScccveeriierieiieeiieerierteeie et eseeeaeereesseessressseeseessnessseans 405
7.4.60.1.1. Command SrNEZSccceeveriererierienieetenteneere ettt eseesee e eeens 405

7.4.60.1.2. QUERY Stream Commands............cceeeevuireeeiiieniiieenieeeereeeevee e 409

T4, STRIP ..ottt ettt ettt ettt e st e st e e beesatesaseebeenaeessbeenseenseenans 411
7.4.62. SUBSTR (SUDSIIING) teuvveereeiieiienieeieeiitesie et ettesitesitesbeeseeesieeseseesseenseeseseenseenseenens 412
T.4.63. SUBWORDoooiiiitiiieeteettete ettt ettt st sate s beebeesaeesabeenbeenseenene 412
T4.64. SYMBOLooiiiiiiiiteeeteetett ettt ettt ettt st e st e e sat e sabeebeesbeesabeenbeenseenans 413
TA.05. TIME ..ottt ettt ettt et et e st st e beesaeesabeebeeaeesabeenseenseenane 413
TA.60. TRACE ..ottt ettt st e sbe e sat e st e e bt e sbeesateenbeebeesane 416
TA4.67. TRANSLATE ..ottt ettt sttt et sttt e sbe e st e be e b e e 417
T7.4.68. TRUNC (TIUNCALE) ..vveieeeirreeeeeeiirieeeeeeireeeeeeiteee e eeeareeeeeeitraeeeeeenreeeeeeetnreeeeeeanseeeeennns 418
T4.69. UPPER ..ottt ettt ettt st e sb et sttt e b e sateebe e beesaee 418
TATO. USERID ...ttt ettt ettt sttt sat e sttt e bt e st ebeebeesaee 418
TATL VALUE oottt ettt st e sb et sttt e sbe e st e beebeesaee 419
TAT2. VAR ettt ettt ettt et et et et et e e ebaenateeabeebeeaeesebeebeeteenens 421
T4 T3 VERIFY ..ottt ettt ettt ettt s st e e abeebeasasesebaebeesseessveensaenseenens 422
TATA WORDoootiiieeeeeeee ettt ettt et e et e et e e s ta e e st e ssbe e beesssessbeebeesseessseensaenseeens 422
T.4.75. WORDINDEZXooitiiiiiiiieiieteete et ettt este et e e aesveesseesaeeseseeseesseessseenseenseesens 422
7.4.76. WORDLENGTH......ccciiiiieiiiieeteee ettt ettt ettt sveebe v s eveeaeesee e 423
7.4.77. WORDPOS (WOrd POSItION)cecvveeiieiieiieeiiesiieieesieesteesreesveesieesveesseesseessaesssesssens 423
TATE. WORDS ...ttt ettt ettt e e st e et e e teestbeesbeebeesseesssaenseesaesssassseensens 423
7.4.79. X2B (Hexadecimal to BINary).......ccceeeuererierieiiieienieeeie et 424
7.4.80. X2C (Hexadecimal t0 CRArACter)ccecueiieuieeeiieeeeiee ettt eetee et 424
7.4.81. X2D (Hexadecimal to Decimal)c..ccooiiiiiiiiieiiiciie e 425
7.4.82. XRANGE (Hexadecimal RaANge).......ccceeeerieniirieniiiierieieeeniesiteeieete e 425
XXxiv 0oRexx Reference Version 4.1.0

8. Rexx Utilities (RexxUtil) 427

8.1. A Note 0N Error COAEs........couiiiiiiiiiiiiiiiiiiciii e 427
8.2. List of RexX UtIlity FUNCHONS.ccvitiiiiiieiieiieeitesie ettt ettt ebe e e saneea 427
8.3. RxMessageBox (WINAOWS ONLY)...cc.uiiiiiriiniiiiiiiierie ettt et 430
8.4. RXWINEXeC (WINAOWS ONLY)....iiriiiiiiiiiiiiieiieiieeitesite sttt sttt sttt sbeesaeesaneea 432
8.5. SYSAAAREXXIVIACTO «..cviiiiniiiieiieiieiee ettt ettt 434
8.6. SysBootDrive (WIndOWS ONLY) ..c..cccucouiiiiriiiiiiieieiieeeierceeee sttt 434
8.7. SySClearRexXXIMaCTOSPACEcveruieuiiiieiieie ittt ettt sttt s e 434
8.8. SYSCIOSEEVENTSEIM ...ttt et s 435
8.9. SYSCIOSEMULEXSEIM ...ttt sttt e et s e 435
810, SYSCIS ittt sttt ettt ettt ettt ettt ettt ae sttt ere e 436
8. 11, SYSCIeateEVENESEIM ..c.ueeiiiiieietieeet ettt ettt et b et et nae et e b eneenes 436
8.12. SYSCIEAtEMULEXSECINeeuteiieuietietieitettete st et et e it e e te e e see et e sbesbeenbesbeentesteeatenbesseeneenbeeneenes 436
8.13. SysCreatePipe (UNiX ONLY)....ccceiieteririeieiieieiteeiiete ettt sttt st 437
8.14. SysCurPos (WIndOWS ONLY)eoueeuieriiiieieiieieiteeitee ettt e 437
8.15. SysCurState (WINAOWS ONLY) c..coueeiiriiiieiiiieteiteeieeece ettt st 438
8.16. SysDrivelnfo (WIindows ONLY)cccueoirieriiiiienieieieeeees ettt et 438
8.17. SysDriveMap (WINdOWS ONLY)ccueriirieriiiieieniieieeeeete ettt e 439
818, SYSDIOPFUNCSeuiiiiiiiiiiiteet ettt ettt sttt st ettt st nae st besae e 440
8.19. SYSDIOPREXXIVIACTO ...c.ueeniiiieniitieiteit ettt ettt ettt sttt ettt et bt besae e 440
8.20. SySDUMPVATTADIEScueeniiiiiiiiieiieie ettt sttt ettt et 440
8.21. SYSFIIECOPY ..ttt ettt ettt ettt sttt et ettt ettt beeae e 441
8.22. SYSFIIEDIEIELEc.evievieiieeiiietiete ettt ettt et ettt e teestte s beebeesaeesnseessaenseesasesnseanseessnenns 441
823, SYSFIIEEXISIS 1.uvveiutieiieiieiitetterite st et et e st et eteesttesabe e seesateseteeseesseesaseensaenseesasesnseenseenssenns 443
8.24. SysFileMove (WINAOWS ONLY)....cciiiiriienienieiiiieniientesieesitesite st esieesieeseteebeesaeesaeesbeesseesaneens 443
8.25. SYSFIIESCATCH ...ttt ettt sttt st ettt st et e saaesaneea 444
8.26. SysFileSystemType (Windows ONLY) ..ccc.ceeiiiriiinieniiiiienienie sttt siee st esiee e ens 445
827, SYSFILETIEE. ..ccueeiiiieiieiieeit ettt ettt ettt sttt e st e s bt e bt e satesateesbeesaeesatesnbeansaesanenas 446
8.28. SYSFOTK (UNIX ONLY).etetiiiiiiiiieniieniieeieeitesite ettt sttt et e st e st e bt e saeesateebeesaeesatesbeensaesanenns 449
8.29. SysFromUnicode (WindOWS ONLY)eeruieriiriiiniieniieiieeritenite sttt sttt et st sveesaeesaneens 450
8.30. SYSGEIETTOTIEXE .. eeuveeeieritietieritesite et ette sttt ebeestte st esabe e bt e sbtesateesbeesbtesateebeenseesasesbeessaesanenns 453
8.31. SYSGEtFIlEeDAtETIMEcevuviiuiieiieniiieieeiteete ettt ettt sttt ettt e beesatesatesbeesbaesaeeeas 453
8.3, SYSGEIKEY ...ttt ettt sttt b e st e b e at e st e b e at e st e s be e bt e saeeea 454
8.33. SysGetMessage (UNixX ONLY) .o..ccuieiiriieieriiiieieieeieieeeererrc ettt 454
8.34. SysGetMessageX (UNiX ONLY) .o.cocveoiiieriiiiiieieieieeeere e 455
8.35. SysIni (WINAOWS ONLY) ...cuiiiiiiiiiiiiiiiieie et 456
8.30. SYSISFILE ..ttt sttt sttt 458
8.37. SyslsFileCompressed (Windows Only)ccccooiiiiiiiniiiiniiiiciieicseeee e 459
8.38. SYSISFIIEDIIECIOTYeviiiiiiiiiiiiciet e e s 459
8.39. SysIsFileEncrypted (WIndOWS ONLY).....cccoverieieirireniinieieieteiinrenesteneeeee e seesseneeeneenens 460
8.40. SYSISFIIELINK ...c..eeuiiiieiieieee ettt sttt ettt beene e 460
8.41. SysIsFileNotContentIndexed (Windows ONLY)........cccceieriirerieninienienieiere e 461
8.42. SysIsFileOffline (WIindows ONLY)cccceriiiiriiririeiieiee et 461
8.43. SysIsFileSparse (Windows ONLY)cocceriiierieririeiinieie ettt s 462
8.44. SyslsFileTemporary (Windows ONLY)c.ccoceereririeriinieieneeteiesieeiesieete et 462
8.45. SysLANVer (LINUX ONLY)....iiuiiriiiiiiiiiiteie ettt sttt sttt 463
8.40. SYSLOAAFUNCS ...c..eouiiiiiiiiiiiteet ettt sttt st st b e s 463
8.47. SySLOAdREXXIMACTOSPACE «..cvveuviutiniieiieie ettt ettt sttt st ettt st ae st eae e 463

ooRexx Reference Version 4.1.0 XXV Draft - SVN Rev 6346

848, SYSMKDIT ...ttt 464

8.49. SYSOPENEVENISEIM....ccuuiiiiiiiiiiiieiit ettt ettt sttt sttt e st e s bt e bt esaeesatesbeessaesaneens 465
8.50. SYSOPENIMULEXSEIM...ccuuiiiiiiiiieiienieeieeiee sttt sit e sttt e sttesateesbeesbtesateebeesaeesatesbeenseesanesas 465
8.51. SYSPOSIEVENISEM......iiiiiiiiiiiiiiieiie ettt sttt st e b e st e st sbeesbaesaeeeas 465
8.52. SysPulseEventSem (WindowWs ONLY)c.cooiiiiiiiiiniiiiiiitenite sttt 466
8.53. SYSQUETYPIOCESS...cuttiiiiiiiitieiteee ettt ettt sttt e st st e be e bt e satesbeesbeesaeeeas 466
8.54. SYSQUETYREXXIMIACTOcovviiieiiiniieiieiieitete ettt sttt s 468
8.55. SYSREICASEMULEXSEIM ...ttt ettt s e 468
8.56. SySREOrderREXXIMACTOc.eeiuiiniiiiiiieiicic ettt et e e 469
8.57. SYSREQUESIMULEXSEIMI......cuiiiiiiiiiiiiieiieie ettt st s e 469
8.58. SYSRESEIEVENTSEIM....couuiiiiiiiiiiiiiii ettt et sttt et s be e et e saee e 470
8.59. SYSRIMDIT ...t s e 470
8.60. SYSSAVEREXXIMACTOSPACEcuvenvieuieiieiiete sttt ettt ettt ettt sttt e sb et e sttt enae st eaeesbeeneenes 471
8.61. SYSSEAICHPALNcouiiiiiiiie et e 472
8.62. SYSSELFIIEDAtETIMEcetiiuieietieiieie ettt ettt ettt e b ene e 472
803, SYSSEIPIIONIEY ...cutteutitieiiete ettt ettt ettt sttt ettt ettt et e s bt et e b s bt et e s bt e st e bt e st enbesbe et e beeneenes 473
8.64. SysShutdownSystem (Windows ONLY)ccccerueririerinienieneiiene ettt 474
805, SYSSIEEP .ttt ettt ettt ettt a et b e s bbbt sttt e a et bt et e b eaeenee 476
800, SYSSIEMECOPY -.euveeutintiriieienieetent et ettt et st e et et e bt et e s bt et e seeeatenbesbeentesbeeste bt saeetesbeemsenbesneenee 476
8.07. SYSSTEMDICIELE ...ttt ettt sttt st et b ettt st e b st be e 478
808, SYSSTEMINMSEIT...c..eeutiiiriieiiriietert ettt sttt ettt ettt e et st et b e st et satenbesbe et e b eaeenee 478
809, SYSSTEIMSOIT ...ttt ettt ettt sttt ettt et sa e et e st sb e et sbeeat e bt satebesbeensenbeeaeenee 479
8.70. SysSwitchSession (WIindOWs ONLY).....ccceoirerriinirieniinieieneetenesieetesteete e 480
8.71. SysSystemDirectory (Windows ONLY)cccueeriierierieiiiienieniesieenieeseesveesieesieeseressseesseessnesns 481
8.72. SYSTEMPFIIEINGAINEcovveiirieiieiieiie ettt ettt e sttt e st e steesbeesaeesabeesbeenaeesasesnseenseessnenns 481
8.73. SysTextScreenRead (WINAOWS ONLY) ..ccveeriiiiiirieniiiiieienite sttt st siee st s esaeesaneens 482
8.74. SysTextScreenSize (WindOWS ONLY) ..ccoieriiiriienieniiiieeneenite sttt e st s e esaeesaneens 483
8.75. SysToUnicode (WINAOWS ONLY) ..ccuervviiriieriiiiieiieniesieenitenite st esieesitesteesieesaeesaeesbeesaeesaneens 483
8.76. SYSULITVETSION .cuviiiiieiieiiiiiiieitesit ettt sttt ettt sttt et e st e bt e satesateenbeesaeesatesbeensaesanenas 485
8.7 7. SYSVRTSIONeiuiiiiiietteite ettt site ettt s e ettt e s bt e st e bt e satesabe e beesatesabeenbeenstesatesabeansaenanenns 486
8.78. SysVolumeLabel (WindOWS ONLY).....c.ciruiiriiiiiiniienieiieeritesite sttt ettt sbe e s 486
8.79. SYSWaIt (UNIX ONLY).eeeuiiriiiiiiiiienieeieeteste ettt sttt et sat e sbeesatesateebeesatesatesbeensaesaeeens 487
8.80. SYSWAIEVENTSEIMeouiiiiiiiiiieiieeiie ettt sttt sttt et sat e e bt e sate st e sbeesbaesaneeas 487
8.81. SysWaitNamedPipe (WINdOWS ONLY) ...cc.coviirriiiriiniiiiiiitenite ettt 488
8.82. SysWinDecryptFile (WINdOWS OnLY)cc.coeeiiiiiiiiiiieiinicieeceeteseeeere e 488
8.83. SysWinEncryptFile (WIndOws ONlY)cccooieiiiiiiiiiiiieiiceeseceeeeeeee e 489
8.84. SysWinGetDefaultPrinter (Windows Only).........ccccccieieiiniiiininieiinieeceeeee e 490
8.85. SysWinGetPrinters (Windows ONly)cocceoeiiriiiiiiiiiiniiieeneeieseeeee e 490
8.86. SysWinSetDefaultPrinter (Windows Only)ccccccieiiiiniiiininiiinic e 490
8.87. SysWinVer Windows ONLY)cc.cccuiiiiiiiiiiiiiiiiicieeeee e 492
9. Parsing 493
9.1. Simple Templates for Parsing into WOords.........c.ceccvervevierienieininienencnieieeeceeseseseeeeeeneenes 493
9.1.1. Message Term ASSIZNIMENLSc..ccueeuerreierirrinenienieeereeeiesreeresreneseereesesesaessessenneneene 495
9.1.2. The Period as a Placeholdercoeevieriiiineiiiiieniieeie et 495

9.2. Templates Containing String Patternscoceeviiriiiienierieieneeteestee e 495
9.3. Templates Containing Positional (NUMeric) Patternsccoceeveererienenienienenieneneene e 496
9.3.1. Combining Patterns and Parsing into WOrdsccccecevereenenernienieniieneneeneneenns 500

Draft - SVN Rev 6346 XXVI ooRexx Reference Version 4.1.0

9.4. Parsing with Variable Patternscceeuiriiieriiniiiieeieeiteste ettt sttt st st 501

9.5. Using UPPER, LOWER, and CASELESSccccociiiiiiieietreeeneeeseeeene e 502
9.6. Parsing INStructions SUMMATYccccceriirriieneeniieiteeteesiee et eteesitestesbeesbeesatesateebeesaeesaneens 502
9.7. Parsing Instructions EXamMPIEScccceeiiiiiiiiiniiiiieiteiee ettt sttt sttt 503
9.8. Advanced TopicCs 1N Parsingc.covieriiiiiiniiiniiiieeeeeeste ettt sttt 504
0.8.1. Parsing SeVeral StINES ...ccveeuerrieerierieriteriteste sttt ettt ettt et e st s ebees 504
9.8.2. Combining String and Positional Patterns...........cccccevecevinienininiininieieceeneenens 505
9.8.3. Conceptual Overview of Parsing..........ccccccoceeviiiiiiinieiiniiicnenecieeeecte e 506

10. Numbers and Arithmetic 511
LO. L. PIECISION .ttt ettt sttt e e et e s bt et sa e bt e s bt e sat e e bt e sstesateebeesaeenaeeens 512
10.2. ArIthMETIC OPEIALOLS. ..c..teutieeierierteeiierteetteteeteete et etesteeteeste bt estesaesaeesaesbeensesbeeseensesneeneesaeennens 512
TO. 2.1, POWET ..ttt st st sttt be e st e e bee e 513
10.2.2. TNtEET DIVISION ...ttt ettt ettt et a e st b e 513
10.2.3. REMAINACT ...c..eeitiiieieiteeiteeet ettt ettt ettt sbe et besbt e e b et e st eseentesaeeneans 513
10.2.4. Operator EXAmMPIESccceouiiiiiinirieiesi ettt s 513

10.3. EXponential NOTATION ..c..cecuieuierieririenientieienteetenie ettt ettt e e sbeeste st eseeneesaeeaesbeennens 514
10.4. NUMETIC COMPATISOMNS. c..eutintieuieieritententtetenteestentesitentesbtestesteeseentesaeessesbeessenseestensesseensesbessnens 515
10.5. Limits and Errors when Rexx Uses Numbers Directlycocceverieneniineniniienicncenencens 516
11. Conditions and Condition Traps 519
11.1. Action Taken when a Condition IS NOt Trapped........cccccveerieriierriienienieeieeeeree e 521
11.2. Action Taken when a Condition IS Trapped........ccceceereerieriieerieenienie et see e 522
11.3. Condition INfOrmation.coccecuereiieririeiireeteeete ettt sttt sve e s 523
11.3.1. DESCIIPVE SIINZS ..evuvieiieriieiiieriieniesteeieenitesite et enttesttesbeebeesbeessbesaseenbeesasesasesnseas 524
11.3.2. Additional Object INfOrmationccecueerueerierieiiiienienie ettt 525
11.3.3. The Special Variable RCc.coooioriiiiiiiiiiieneeeetee ettt 525
11.3.4. The Special Variable SIGL.........cccociiiiiiiiniiiiieeeteste ettt 525
11.3.5. CONAItION ODBJECLS c..viuvieiieriieiiiienitenite sttt sttt et e sttesbe e bt esbeesabesabeenbeesatesaseenseas 526

12. Concurrency 529
12,1 Barly REPLY ..ottt et s 529
12.2. MESSAZE ODJECLS ..eeeniniieiiiiieierieeeeie ettt ettt ettt et ae st e s e s et e e eaeeaeenesaeeanens 531
12.3. Default CONCUITENCYc..eecviriieiiiieieeieeiieteete ettt st ettt sae st e sesb e s et eaesaeeanens 531
12.3.1. Sending Messages within an ACHVILYccccoceevieriiriiirinieicienecieeeeee e 533

12.4. Using Additional Concurrency MeChaniSmsccccceceerieriieriieeniiniieniiieneeseeneeeieeseeseens 535
12.4.1. SETUNGUARDED Method and UNGUARDED Optioncccceeeeeenereeneneenenne 535
12.4.2. GUARD ON and GUARD OFFccccioiiiiiiieieiee et 536
12.4.3. Guarded MEthOdScc.eeieriiiiieiieeee ettt sttt et s 536
12.4.4. Additional EXamPLEScc.oeieriiiiriiieitieieeieeee sttt s 536
12.4.4. 1. SEMAPNOTES ..cuvitieiiiiieiieiieieeie sttt ettt sttt et sb e te bt este et saeeaesbeeneens 537

12.4.4.2. Monitors (Bounded Buffer)ccoooiiiiiioiiiiiceeeecceeeee e 541

12.4.4.3. Readers and WITEETSeouireeriererienieriteeeieete sttt ettt s eae e 542

13. The Security Manager 543
13.1. Calls to the Security Mana@ercoceeeerteriieierierienienitetenteeite st sieeste et st eseentesieenaesaeennens 543
13,11 EXAMPIE ...eoniiieiiiieetesteet ettt bbbttt st 545

ooRexx Reference Version 4.1.0 XXVil Draft - SVN Rev 6346

14. Input and Output Streams 549

14.1. The Input and OUtPUt MOAEL.......cccueiriiiiiiiiiiiieiieeieeeeste ettt ettt saee s en 549
T4, 1. 1. TNPUL SITCAIMNS ..cnvteiieiuiieiteite ettt ettt ettt e sttt et e bt e s bt e s abe e bt e bt e sabeeabeenbeesateenseeaseas 549

T4.1.2. OULPUL STIEAIMS ...eonveerutieiieiie ettt ettt et et e st e et e bt e sbtesateebeesbeesabesaseenbeesatesasesabeas 550

14.1.3. External Data QUEUE..........cocceeiurieeieiiiiee e et eeeite e eeteee e e eeeaeeeeeeetrreeeeeearreeeeennns 551

14.1.3.1. Unnamed QUEUESueervieeeiieeeieeesieeesreeereeeeeeeeereessseessseeesssesensseeessseens 551

14.1.3.2. Named QUEUESeeecueeeeiieeeiieeeieeesteeesreeesteeseaeeeereessseessseeesssesennsaeessseens 551

14.1.3.3. Multiprogramming Considerations...........ceccecuerueeeenereesreneereesneeeesneseenens 553

14.1.4. Default Stream NAMES.......cocueevviirieriiiieeeerie ettt sttt 553

14.1.5. Line versus Character POSIHONINGc.coveiriirieiniiniiiieeieesecseeeeiee e 554

14.2. IMPIEMENTALION ..uveiniiiiiiiiiiiiiie ittt ettt et st sab e sbee s st e st e e bt e sseesateebeesaeenneeens 555

14.3. Operating SYSteM SPECITICS ..eeveruiruieriiitieieetieieete ettt ettt e et eseeseeeaeeneesaeeneens 555

14.4. Examples of Input and OULPULoouiiieiiirieiiieeeieei ettt s 555

14.5. Errors during Input and OULPULcc.eruieiiirieiiieeiee ettt 557

14.6. Summary of Rexx I/O Instructions and Methodsccccoeeeeierinienenieieneeiee e 557

15. Debugging Aids 559
15.1. Interactive Debugging Of PrOZramsc..ccccecieririinenieiienieieneseenie ettt 559

15.2. DebuZ@ING ATAS ...eoueeniiriieiiiieiereeteeet ettt sttt ettt st s 559

15.3. RXTRACE Variable........ccccioiiiiiiiiiiiiiiiinesiceeeetee sttt st 560

16. Reserved Keywords 563
17. Special Variables 565
18. Useful Services 567
18.1. WIindows COMMANGScccceruiruiiiiiiiiiiiiiitiicieeiee e 567

18.2. Linux ComMMANMSccueiiiiiiiiiiiiiiiiiiiiiiiieeceee et 567

18.3. Subcommand Handler SErviCes ..ot 568
18.3.1. The RXSUBCOM COommand...........cccceceeuerrieienuerienienieneeieneerenseeeesnesneenessessnenne 568

18.3.1.1. RXSUBCOM REGISTERcocecctiiiiiiiiinieienieeeeenecreseeeene e 568

18.3.1.2. RXSUBCOM DROP.....c..ooviiiiiiiiniinietenctetetse ettt 569

18.3.1.3. RXSUBCOM QUERY ..ottt ettt 570

18.3.1.4. RXSUBCOM LOADcc.ootiiiiiiriiineecteteese ettt 570

18.3.2. The RXQUEUE FIlterccertirtiriiieieiiiinerienteteieeeiteiteteste ettt s sae e eene v 571

18.4. Distributing Programs withOut SOUICE.........ccoeiiiiriiiiiiiiiieieeeeteeteee et 573

A. Using DO and LOOP 575
AL, SIMPIE DO GIOUP .ottt t e et e st s bt e s bt ese et eseeaesbeeneens 575

A2, REPEIIEIVE LOOPS. . eutentieiieiietiete sttt ettt ettt ettt et s b et e s bt ese et sseeaesbeennens 575
A.2.1. SImple Repetitive LOOPS....cc.eeuieiiriiienieiteiest ettt st 575

A.2.2. Controlled Repetitive LOOPSccueruirieririeierieeiesieei ettt e 575

A.3. Repetitive Loops OVer COIIECLIONScc.eeueruieriiriirieieniteiesieetente ettt sttt s eneens 577

A.4. Conditional Phrases (WHILE and UNTIL)cccooiiiiiiiiiiiieeeeecee e e 578

A5 LABEL PRIASE ...ttt sttt 578

A.6. Conceptual Model Of LOOPS ...ccuereriiriirieiinieteniteteesiteteseetese sttt 579

Draft - SVN Rev 6346 XXVIIL ooRexx Reference Version 4.1.0

B. Migration 583

B.1. Error Codes and Return Codescoeeveriirieieniiienenteienieeeenteeeete st eeeesne e saeennens 583
B.2. Error Detection and REPOTTINGccceeviiriiiiiiniiiiiieteiee ettt sttt ebe e s ea 583
B.3. Environment VariabIescccccoiiiiiririiiiinieientceeneeteseetere ettt s 583
B.4. Stems VErsus COLECTIONSc.cecuiruieiiiiriieientetentc ettt ettt ettt e st e eneseeesnesaeeanens 583
B.5. Input and Output Using Functions and Methods.............ccceeievininienininiininieieeeneenns 583
B.6. .ENVITONIMENT ..eutiiiiiriiiiiieeiteeite ettt ettt sttt ettt et e bt e s beesabe s bt e bt e satesateebeessaesaneeas 584
B.7. Deleting Environment Variables............cccccoiiiiiiiiiiiiiniiieiciieieieeeeee e 584
B.8. Trace in MaCIOSPACE.......c.cccuiruieiiriiiieieeiictee ettt ettt st s s 584
C. Error Numbers and Messages 585
Gl BITOT LESE 1ttt ettt ettt b et b et e et e b e s bt e e et e ene e beeseenaesbeennans 585
C.1.1. Error 3 - Failure during initialiZation...........ccceeeeierieeienieeceie et 585
C.1.2. Error 4 - Program interruptedeoeeieririenieniieiesieecenee ettt s 585
C.1.3. Error 5 - System resources eXhausted..........ccoereeruerieeieninienienieeieseeiesee e 586
C.1.4. Error 6 - Unmatched "/#" OF QUOLE.....cccueruireerieriieienieeiente ettt s 586
C.1.5. Error 7 - WHEN or OTHERWISE expectedccoceeeieririeneniinienienieniescenee e 587
C.1.6. Error 8 - Unexpected THEN or ELSEcccccoiiiiiiiniiiiiiiiieeeeeeeeeseee e 587
C.1.7. Error 9 - Unexpected WHEN or OTHERWISE.........cccccooiiiininiiiininienincencncens 588
C.1.8. Error 10 - Unexpected or unmatched END.........cccccoceeviininiinininiiininienciceneneeens 588
C.1.9. Error 11 - Control stack full.........ccccceeieiieiiiiiiniiiiiiniccceeee e 589
C.1.10. Error 13 - Invalid character in Programceceereerveerieeneeneessveesseeneesvessvesnves 589
C.1.11. Error 14 - Incomplete DO/SELECT/IFccccoctiiiiirienieiieeeenie et sve e 590
C.1.12. Error 15 - Invalid hexadecimal or binary String.........ccecceeveeveenienvieeneeneeneeseeenenn 590
C.1.13. Error 16 - Label not foundccccoeeiiinirieniniiienieecceesecreeeteee e e 591
C.1.14. Error 17 - Unexpected PROCEDUREcccccooiiiniiniiiiiiieic et 591
C.1.15. E1ror 18 - THEN €XPECLEA...cc.vtiiieriieriieiieniesie ettt sttt ettt et eaaeeiees 592
C.1.16. Error 19 - String or Symbol eXpected.........cccuervirrieenienieiieeieeniie et see e 592
C.1.17. Error 20 - SymbOl XPECtedccuveriiriiiiriieniieniieieeieesite ettt st et e eiees 594
C.1.18. Error 21 - Invalid data on end of Clause.........c..cccevuievieniinienincniieninicienceieneeens 595
C.1.19. Error 22 - Invalid Character SNcoceeveerierrieenienieeieerieeniee e eieesieesieeeeeeaees 596
C.1.20. Error 23 - Invalid data SNc.eeevuerieirienienieeieeieesiie ettt ettt eaeeeaees 597
C.1.21. Error 24 - Invalid TRACE FeqUESTccuerveerieriieieniieieiieeciesieereie e sieenens 597
C.1.22. Error 25 - Invalid subkeyword found............cocceceiiiiininiiiiiieicccecee s 598
C.1.23. Error 26 - Invalid Whole NUMDETc.c.coviirieriiiieiienieeeeeeiee et 600
C.1.24. Error 27 - Invalid DO SYNTaXccccoieiiiriiiieiiiiieieniieeeee e 601
C.1.25. Error 28 - Invalid LEAVE or ITERATEcccooiiiiiimininiecceeeeeneseeceeeee 602
C.1.26. Error 29 - Environment name t00 [ONgcccceuevveiririninenieieeeeneneseeeeeeeeenene 602
C.1.27. Error 30 - Name or String t00 LONEcceeieriiriieiiriieienie ettt 603
C.1.28. Error 31 - Name starts with number or ".".........cccooiriiiiiieieeeeee e 603
C.1.29. Error 33 - Invalid eXpression reSulf........c.ceivererierieirenininieneeeeeenene e 604
C.1.30. Error 34 - Logical value not 0 O 1cccoocieiiiiiiiiiniieee et 604
C.1.31. Error 35 - Invalid @XPIeSSION......ccueruirieruirienientieienteeiieneeeteertesteeeesiesseentesseeneesveennens 605
C.1.32. Error 36 - Unmatched "(" or "[" in @XPression.........eecuerereerienieereenienienieseenieseeaens 608
C.1.33. Error 37 - Unexpected ",", "), OF "] oot 608
C.1.34. Error 38 - Invalid template OF PAtEINcevverueeuenieeienienierienieetenieeiteneeeieeneesieenaens 609
C.1.35. Error 39 - Evaluation stack overflowccceeeuevieiniinininicnicniiiinececieee 609
C.1.36. Error 40 - Incorrect call to TOULINEc..cevuiriirienieiiiiiriiniieceeeeee e 610

ooRexx Reference Version 4.1.0 XXIX Draft - SVN Rev 6346

C.1.37. Error 41 - Bad arithmetiC CONVEISION........ccvvvieeiiirreeeeeeiieeeeeeeireeeeeeeitereeeeeerereeeeeans 612

C.1.38. Error 42 - Arithmetic overflow/underflowcoccecevirvenininiininiieninencneenns 613
C.1.39. Error 43 - Routine not found.........c..ceceeirveeninieieninienineeneneereseeeete e 614
C.1.40. Error 44 - Function or message did not return dataceeeceeveevieeneeneeneenseennnen. 614
C.1.41. Error 45 - No data specified on function RETURN..........cccccceiniiniiiiinienienienen. 615
C.1.42. Error 46 - Invalid variable reference..........cccccoeevveriieiieniinienineeieneeieieeeeie e 615
C.1.43. Error 47 - Unexpected 1abel..........cccoocuiviirieiiniiiiniieeieeeienecreeeeere e 616
C.1.44. Error 48 - Failure in SYSteM SEIVICEcc.cocuevueruieieniieiereeeeenenieeresteeeeeeeeesnesaeennens 616
C.1.45. Error 49 - INterpretation EITOTcocuevuieierueruieientieeeeeeeesne e eneieeeeaeeneesnesaeennens 616
C.1.46. Error 88 - Invalid argument...........cc.cccuevuirieiieniriiniieieie et 616
C.1.47. Error 89 - Variable or message term eXpected..........ccccoveievinirieninieniineenieneenens 618
C.1.48. Error 90 - External name not found...........coccovieiiiiieienieeesceeee e 618
C.1.49. Error 91 - NO 1eSult ODJECTc..ccouiiiiiiiiiiiiciiciei e 619
C.1.50. E1TOT 92 = OLE EITOT ...ccutieiiiiiieiieeiienit ettt sttt sttt ettt enees 619
C.1.51. Error 93 - Incorrect call to Methodcceoeiiieiiiniieienieeeceeeee e 620
C.1.52. Error 97 - Object method not found...........cccooeeiiiieiiniiieeeeee e 625
C.1.53. E1r0r 98 - EXCCULION CITOTeutieuiiiieiieieniteienteeiiesteeseenteeeeesaesbeestenbesseeneesaeenaesbeennens 625
C.1.54. Error 99 - Translation @ITOTccuevueetererienienteeienteetenteeieertesteetesteesteneesseeneesaeennens 628

C.2. RXSUBCOM ULty PrOGIam ...c.eeuviiiiiieiiniieieniteteniesitete sttt sttt s enaens 630
C.2.1. Error 116 - The RXSUBCOM parameter REGISTER is incorrect.coccevueruennen. 630
C.2.2. Error 117 - The RXSUBCOM parameter DROP iS inCOITect......ccevvervenuereeneenennnens 631
C.2.3. Error 118 - The RXSUBCOM parameter LOAD 1S iNCOITECT.couervereereeneenennnens 631
C.2.4. Error 125 - The RXSUBCOM parameter QUERY iS iNCOITECt......ccervereereeruerennnens 631

C.3. RXQUEUE ULility Program..........cccccoerieriirienieneiieneniteiesicetesiesitente sttt seeeae e ennens 632
C.3.1. Error 119 - The REXX queuing system is not initialized.........cc.cceevveeveereerrencuennnen. 632
C.3.2. Error 120 - The size of the data iS INCOITECT. ...c..cccveruiriiruireenienierrenierteieeeenee e 632
C.3.3. Error 121 - Storage for data queues is eXhausted.cccceeveereenerriieenieenienienieeenn 632
C.3.4. Error 122 - The name %1 is not a valid qUEUE NAME.cccueevueerierierrieeriienieeieeneen 632
C.3.5. Error 123 - The queue access MOde 1S NOt COTTECT. ...cuveerureruerrueenieerieeieenieesireeeeeeees 633
C.3.6. Error 124 - The queue %1 dOeS NOt €XIST....ecvuveruirrieeriieniierieerieeniee e eieesieesreeeeeaees 633
C.3.7. Error 131 - The syntax of the command iS iNCOITECLcovverrueereerierrieerieerienieenenn 633
C.3.8. Error 132 - System error occurred while processing the commandcc.ceeueeeee. 633

C.4. ReXXC ULItY PrOZIam....cocuiiiiiiiieiieeii ettt ettt sttt st s beesaaesaeeen 633
C.4.1. Error 127 - The REXXC command parameters are inCOITeCt.cecceerveeruverruernnenn 633
C.4.2. Error 128 - Output file name must be different from input file name........................ 634
C.4.3. Error 129 - SYNTAX: REXXC InProgramName [OutProgramName] [/S] 634
C.4.4. Error 130 - Without OutProgramName REXXC only performs a syntax check....... 634
C.4.5. Error 133 - SYNTAX: REXXC InProgramName [OutProgramName] [-s].............. 634

D. Notices 635
DL TrademarksSoooveeeiiiieeieeeet ettt sttt sttt et 635
D.2. Source Code For This DOCUMENLcc.eeueeiiriieienieiieieeitee ettt 636
E. Common Public License Version 1.0 637
B 1. DEIINITIONS .ttt ettt ettt ettt et et b ettt et et bt e besbeeate b e ebeetesbeenees 637
E.2. Grant of RIGIESooueiiiiiiiiiieee ettt sttt et 637
E.3. REQUITEIMEILS ...ttt sttt ettt et ettt b e bt et bt et e sbeeate b e ebeenaesbeenees 638
E.4. Commercial DiStriDULIONco.eeviriiriiiniiiiiieiietecete ettt sttt 638
EL5. INO WAITANLY ..c.tteeiieeiiieiiesteete ettt ettt et et e ste e be e beesstessbeesbeesseesasaenseesaesaseenseensaesssenssesnsens 639

Draft - SVN Rev 6346 XXX ooRexx Reference Version 4.1.0

E.6. Disclaimer Of Liability......cccueriieriienieniiiieeieeriie ettt sttt sttt e st st e ebeesaaesaneeas 639
EL7. GENEIAL ...ttt ettt st ettt ettt e bt e st e sate e beesaeesateen 640

Index 641

ooRexx Reference Version 4.1.0 XXXT Draft - SVN Rev 6346

Draft - SVN Rev 6346 XXXil ooRexx Reference Version 4.1.0

List of Tables

8-1. Rexx Utility Library FUNCHONScc..coviiiiiiiiiiiiniiiiiteteteeecee ettt st 427
O-1. Parsing SOUICE STIIMZS.....eeriieiiieriieriieiieeiteestteriteeteeeteesteestesseebeesssesssesseesseesseesnsessseessessssesnsesnseenses 503
10-1. Whole NUMDBET LIMILS...c..eotiiiriiiiiieniieientietene sttt ettt sttt sttt et et sae st e s e b ae e 516

ooRexx Reference Version 4.1.0 XXXTIT Draft - SVN Rev 6346

Draft - SVN Rev 6346 XXXIV ooRexx Reference Version 4.1.0

About This Book

This book describes the Open Object Rexx Interpreter, called the interpreter or language processor in
the following, and the object-oriented Rexx language.

This book is intended for people who plan to develop applications using Rexx. Its users range from the
novice, who might have experience in some programming language but no Rexx experience, to the
experienced application developer, who might have had some experience with Object Rexx.

This book is a reference rather than a tutorial. It assumes you are already familiar with object-oriented
programming concepts.

Descriptions include the use and syntax of the language and explain how the language processor
"interprets” the language as a program is running.

1. Related Information

See also: Open Object Rexx: Programming Guide

2. How to Read the Syntax Diagrams

Throughout this book, syntax is described using the structure defined below.

« Read the syntax diagrams from left to right, from top to bottom, following the path of the line.
The >>--- symbol indicates the beginning of a statement.
The ---> symbol indicates that the statement syntax is continued on the next line.
The >--- symbol indicates that a statement is continued from the previous line.
The --->< symbol indicates the end of a statement.

Diagrams of syntactical units other than complete statements start with the >--- symbol and end with
the ---> symbol.

+ Required items appear on the horizontal line (the main path).

>>-STATEMENT--required_item -- -- -><

+ Optional items appear below the main path.

>>-STATEMENT--—+-- + - - -><
+-optional_item—+

« If you can choose from two or more items, they appear vertically, in a stack. If you must choose one of
the items, one item of the stack appears on the main path.

>>-STATEMENT--+-required_choicel-+--—-----------————————-——— ><
+-required_choice2-+

« If choosing one of the items is optional, the entire stack appears below the main path.

>>-STATEMENT-—+-—-———————————————— P __ s<
+-optional_choicel-+

ooRexx Reference Version 4.1.0 XXXV Draft - SVN Rev 6346

About This Book

+-optional_choice2-+

« If one of the items is the default, it appears above the main path and the remaining choices are shown
below.

+-default_choice—--+
>>-STATEMENT--+-- S, _ ><
+-optional_choice-+

+-optional_choice-+

+ An arrow returning to the left above the main line indicates an item that can be repeated.

>>-STATEMENT----repeatable_item—-+-----— - ><
A repeat arrow above a stack indicates that you can repeat the items in the stack.

« A set of vertical bars around an item indicates that the item is a fragment, a part of the syntax diagram
that appears in greater detail below the main diagram.

>>-STATEMENT--| fragment | -= ><

fragment:

| -—expansion_provides_greater_detail-- -

« Language keywords appear in uppercase (for example, SAY). They must be spelled exactly as shown
but you can type them in upper, lower, or mixed case. Variables appear in all lowercase letters (for
example, parmx). They represent user-supplied names or values.

« Class and method names appear in mixed case (for example, .0bject new). They must be spelled
exactly as shown but you can type them in upper, lower, or mixed case.

« If punctuation marks, parentheses, arithmetic operators, or such symbols are shown, you must enter
them as part of the syntax.

The following example shows how the syntax is described:

v |
>>-MAX (----number—-+--) --- -- ><

3. Getting Help

The Open Object Rexx Project has a number of methods to obtain help for ooRexx. These methods, in
no particular order of preference, are listed below.

3.1. The Rexx Language Association Mailing List

The Rexx Language Association (http://www.rexxla.org/) maintains a mailing list for its members. This
mailing list is only available to RexxLA members thus you will need to join RexxLA in order to get on
the list. The dues for RexxLA membership are small and are charged on a yearly basis. For details on
joining RexxLA please refer to the RexxLA Home Page (http://rexxla.org/) or the RexxLA Membership
Application (http://www.rexxla.org/rexxla/join.html) page.

Draft - SVN Rev 6346 XXXVI ooRexx Reference Version 4.1.0

About This Book

3.2. The Open Object Rexx SourceForge Site

The Open Object Rexx Project (http://www.oorexx.org/) utilizes SourceForge (http://sourceforge.net/) to
house the ooRexx Project (http://sourceforge.net/projects/oorexx) source repositories, mailing lists and
other project features. Here is a list of some of the most useful facilities.

The ooRexx Forums

The ooRexx project maintains a set of forums that anyone may contribute to or monitor. They are
located on the ooRexx Forums (http://sourceforge.net/forum/?group_id=119701) page. There are
currently three forums available: Help, Developers and Open Discussion. In addition, you can
monitor the forums via email.

The Developer Mailing List

You can subscribe to the oorexx-devel mailing list at ooRexx Mailing List Subscriptions
(http://sourceforge.net/mail/?group_id=119701) page. This list is for discussing ooRexx project
development activities and future interpreter enhancements. It also supports a historical archive of
past messages.

The Users Mailing List

You can subscribe to the oorexx-users mailing list at ooRexx Mailing List Subscriptions
(http://sourceforge.net/mail/?group_id=119701) page. This list is for discussing using ooRexx. It
also supports a historical archive of past messages.

The Announcements Mailing List

You can subscribe to the oorexx-announce mailing list at ooRexx Mailing List Subscriptions
(http://sourceforge.net/mail/?group_id=119701) page. This list is only used to announce significant
ooRexx project events.

The Bug Mailing List

You can subscribe to the oorexx-bugs mailing list at ooRexx Mailing List Subscriptions
(http://sourceforge.net/mail/?group_id=119701) page. This list is only used for monitoring changes
to the ooRexx bug tracking system.

Bug Reports

You can create a bug report at ooRexx Bug Report
(http://sourceforge.net/tracker/?group_id=119701&atid=684730) page. Please try to provide as
much information in the bug report as possible so that the developers can determine the problem as
quickly as possible. Sample programs that can reproduce your problem will make it easier to debug
reported problems.

Request For Enhancement
You can suggest ooRexx features at the ooRexx Feature Requests
(http://sourceforge.net/tracker/?group_id=119701&atid=684733) page.
Patch Reports

If you create an enhancement patch for ooRexx please post the patch using the ooRexx Patch Report
(http://sourceforge.net/tracker/?group_id=119701&atid=684732) page. Please provide as much

ooRexx Reference Version 4.1.0 XXXVII Draft - SVN Rev 6346

About This Book

information in the patch report as possible so that the developers can evaluate the enhancement as
quickly as possible.

Please do not post bug patches here, instead you should open a bug report and attach the patch to it.

3.3. comp.lang.rexx Newsgroup

The comp.lang.rexx (news:comp.lang.rexx) newsgroup is a good place to obtain help from many
individuals within the Rexx community. You can obtain help on Open Object Rexx or on any number of
other Rexx interpreters and tools.

Draft - SVN Rev 6346 XXXVIIT ooRexx Reference Version 4.1.0

Chapter 1. Open Object Rexx General Concepts

The Rexx language is particularly suitable for:

» Application scripting

« Command procedures

+ Application front ends

« User-defined macros (such as editor subcommands)
+ Prototyping

« Personal computing

As an object-oriented language, Rexx provides data encapsulation, polymorphism, an object class
hierarchy, class-based inheritance of methods, and concurrency. It includes a number of useful base
classes and allows you create new object classes of your own.

Open Object Rexx is compatible with earlier Rexx versions, both non-object based Rexx and IBM’s
Object Rexx. It has the usual structured-programming instructions, for example IF, SELECT, DO
WHILE, and LEAVE, and a number of useful built-in functions.

The language imposes few restrictions on the program format. There can be more than one clause on a
line, or a single clause can occupy more than one line. Any indentation scheme is allowed. You can,
therefore, code programs in a format that emphasizes their structure, making them easier to read.

There is no limit to the size of variable values, as long as all values fit into the storage available. There
are no restrictions on the types of data that variables can contain.

A language processor (interpreter) runs Rexx programs. That is, the program runs line by line and word
by word, without first being translated to machine language (compiled.) One of the advantages of this is
that you can fix the error and rerun the program faster than when using a compiler.

Note: Open Object Rexx also supplies the rexxc program that can be used to tokenize Rexx programs.
Tokenizing a program is not the same as compiling a program to machine language. See Appendix A.
Distributing Programs without Source of the Open Object Rexx Programming Guide for details on rexxc
and tokenizing.

1.1. What Is Object-Oriented Programming?

Object-oriented programming is a way to write computer programs by focusing not on the instructions
and operations a program uses to manipulate data, but on the data itself. First, the program simulates, or
models, objects in the physical world as closely as possible. Then the objects interact with each other to
produce the desired result.

Real-world objects, such as a company’s employees, money in a bank account, or a report, are stored as
data so the computer can act upon it. For example, when you print a report, print is the action and report
is the object acted upon. Essentially, the objects are the "nouns", while the actions are the "verbs".

ooRexx Reference Version 4.1.0 1 Draft - SVN Rev 6346

Chapter 1. Open Object Rexx General Concepts

1.2. Modularizing Data

In conventional, structured programming, actions like print are often isolated from the data by placing
them in subroutines or modules. A module typically contains an operation for implementing one simple
action. You might have a PRINT module, a SEND module, an ERASE module. The data these modules
operate on must be constructed by the programmer and passed to the modules to perform an action.

PROGRAM ...

data
data

data data data

data data

data

But with object-oriented programming, it is the data that is modularized. And each data module includes
its own operations for performing actions directly related to its data. The programmer that uses the
objects need only be aware of the operations an object performs and not how the data is organized

internally.

Draft - SVN Rev 6346

ooRexx Reference Version 4.1.0

Chapter 1. Open Object Rexx General Concepts

Figure 1-1. Modular Data—a Report Object

PRINT
Report

data
data
data
data
data

SEND
ERIE

ERASE

In the case of report, the report object would contain its own built-in PRINT, SEND, ERASE, and FILE
operations.

Object-oriented programming lets you model real-world objects—even very complex ones—precisely
and elegantly. As a result, object manipulation becomes easier and computer instructions become simpler
and can be modified later with minimal effort.

Object-oriented programming hides any information that is not important for acting on an object, thereby
concealing the object’s complexities. Complex tasks can then be initiated simply, at a very high level.

1.3. Modeling Objects

In object-oriented programming, objects are modeled to real-world objects. A real-world object has
actions related to it and characteristics of its own.

Take a ball, for example. A ball can be acted on—rolled, tossed, thrown, bounced, caught. But it also has
its own physical characteristics—size, shape, composition, weight, color, speed, position. An accurate
data model of a real ball would define not only the physical characteristics but all related actions and
characteristics in one package:

ooRexx Reference Version 4.1.0 3 Draft - SVN Rev 6346

Chapter 1. Open Object Rexx General Concepts

Figure 1-2. A Ball Object

BOUNCE

Size
Shape
Comp
Weight
Color

Speed
Pos
ROLL ——TOSS

In object-oriented programming, objects are the basic building blocks—the fundamental units of data.

HOLVO J

THROW

There are many kinds of objects; for example, character strings, collections, and input and output
streams. An object—such as a character string—always consists of two parts: the possible actions or
operations related to it, and its characteristics or variables. A variable has a name, and an associated data
value that can change over time. The variables represent the internal state of the object, and can be
directly accessed only by the code that implements the object’s actions.

Figure 1-3. Ball Object with Variable Names and Values

BOUNCE

Size = 3

Shape = round
= Comp = rubber g
8 Weight = 2 5'
|:|—: Color = yellow T

Speed = 32

Pos = 4

ROLL ——TOSS

To access an object’s data, you must always specify an action. For example, suppose the object is the
number 5. Its actions might include addition, subtraction, multiplication, and division. Each of these
actions is an interface to the object’s data. The data is said to be encapsulated because the only way to
access it is through one of these surrounding actions. The encapsulated internal characteristics of an
object are its variables. The variables are associated with an object and exist for the lifetime of that
object:

Draft - SVN Rev 6346 4 ooRexx Reference Version 4.1.0

Chapter 1. Open Object Rexx General Concepts

Figure 1-4. Encapsulated 5 Object

fSubtraction T

5

L Multiplication J

1.4. How Obijects Interact

The actions defined by an object are its only interface to other objects. Actions form a kind of "wall" that
encapsulates the object, and shields its internal information from outside objects. This shielding is called
information hiding. Information hiding protects an object’s data from corruption by outside objects, and
also protects outside objects from relying on another object’s private data, which can change without

Addition
UuoIsIAI]g

warning.

One object can act upon another (or cause it to act) only by calling that object’s actions, namely by
sending messages. Objects respond to these messages by performing an action, returning data, or both. A
message to an object must specify:

+ A receiving object
« The "message send" symbol, ~, which is called the rwiddle

+ The action and, optionally in parentheses, any parameters required by the action

So the message format looks like this:

object~action(parameters)

Assume that the object is the string !'iH. Sending it a message to use its REVERSE action:
"liH""reverse

returns the string object Hi! .

ooRexx Reference Version 4.1.0 5 Draft - SVN Rev 6346

Chapter 1. Open Object Rexx General Concepts

1.5. Methods

Sending a message to an object results in performing some action; that is, it executes some underlying
code. The action-generating code is called a method. When you send a message to an object, the message
is the name of the target method. Method names are character strings like REVERSE. In the preceding
example, sending the reverse message to the !iH object causes it to run the REVERSE method. Most
objects are capable of more than one action, and so have a number of available methods.

The classes Rexx provides include their own predefined methods. The Message class, for example, has
the COMPLETED, INIT, NOTIFY, RESULT, SEND, and START methods. When you create your own
classes, you can write new methods for them in Rexx code. Much of the object programming in Rexx is
writing the code for the methods you create.

1.6. Polymorphism

Rexx lets you send the same message to objects that are different:

"IiH""reverse /* Reverses the characters "!iH" to form "Hi!" x/
pen“reverse /* Reverses the direction of a plotter pen x/
ball"reverse /* Reverses the direction of a moving ball */

As long as each object has its own REVERSE method, REVERSE runs even if the programming
implementation is different for each object. This ability to hide different functions behind a common
interface is called polymorphism. As a result of information hiding, each object in the previous example
knows only its own version of REVERSE. And even though the objects are different, each reverses itself
as dictated by its own code.

Although the !iH object’s REVERSE code is different from the plotter pen’s, the method name can be
the same because Rexx keeps track of the methods each object owns. The ability to reuse the same
method name so that one message can initiate more than one function is another feature of
polymorphism. You do not need to have several message names like REVERSE_STRING,
REVERSE_PEN, REVERSE_BALL. This keeps method-naming schemes simple and makes complex
programs easy to follow and modify.

The ability to hide the various implementations of a method while leaving the interface the same
illustrates polymorphism at its lowest level. On a higher level, polymorphism permits extensive code
reuse.

1.7. Classes and Instances

In Rexx, objects are organized into classes. Classes are like templates; they define the methods and
variables that a group of similar objects have in common and store them in one place.

If you write a program to manipulate some screen icons, for example, you might create an Icon class. In
that Icon class you can include all the icon objects with similar actions and characteristics:

Draft - SVN Rev 6346 6 ooRexx Reference Version 4.1.0

Figure 1-5. A Simple Class

Chapter 1. Open Object Rexx General Concepts

Icon class

Windows system icon instance
shredder icon instance
information icon instance

All the icon objects might use common methods like DRAW or ERASE. They might contain common
variables like position, color, or size. What makes each icon object different from one another is the data
assigned to its variables. For the Windows system icon, it might be position="20,20", while for the

shredder it is "20,30" and for information it is "20,40":

Figure 1-6. Icon Class

Icon class

Windows system icon instance
(position='20,20")

shredder icon instance
(position="20,30")

information icon instance
(position='20,40")

Objects that belong to a class are called instances of that class. As instances of the Icon class, the
Windows system icon, shredder icon, and information icon acquire the methods and variables of that
class. Instances behave as if they each had their own methods and variables of the same name. All
instances, however, have their own unique properties—the data associated with the variables. Everything

else can be stored at the class level.

ooRexx Reference Version 4.1.0 7

Draft - SVN Rev 6346

Chapter 1. Open Object Rexx General Concepts

Figure 1-7. Instances of the Icon Class

Icon class
(position=)

Windows system icon instance
('20,20"

shredder icon instance
('20,30")

information icon instance
('20,40")

If you must update or change a particular method, you only have to change it at one place, at the class
level. This single update is then acquired by every new instance that uses the method.

A class that can create instances of an object is called an object class. The Icon class is an object class
you can use to create other objects with similar properties, such as an application icon or a drives icon.

An object class is like a factory for producing instances of the objects.

1.8. Data Abstraction

The ability to create new, high-level data types and organize them into a meaningful class structure is
called data abstraction. Data abstraction is at the core of object-oriented programming. Once you model
objects with real-world properties from the basic data types, you can continue creating, assembling, and
combining them into increasingly complex objects. Then you can use these objects as if they were part of
the original programming language.

1.9. Subclasses, Superclasses, and Inheritance

When you write your first object-oriented program, you do not have to begin your real-world modeling
from scratch. Rexx provides predefined classes and methods. From there you can create additional
classes and methods of your own, according to your needs.

Rexx classes are hierarchical. Any subclass (a class below another class in the hierarchy) inherits the
methods and variables of one or more superclasses (classes above a class in the hierarchy):

Draft - SVN Rev 6346 8 ooRexx Reference Version 4.1.0

Chapter 1. Open Object Rexx General Concepts

Figure 1-8. Superclass and Subclasses

Superclass

Subclass Subclass Subclass

You can add a class to an existing superclass. For example, you might add the Icon class to the
Screen-Object superclass:

Figure 1-9. The Screen-Object Superclass

Screen-Obiject class
|
I I I

Iconclass Window class Bitmap class

In this way, the subclass inherits additional methods from the superclass. A class can have more than one
superclass, for example, subclass Bitmap might have the superclasses Screen-Object and Art-Object.
Acquiring methods and variables from more than one superclass is known as multiple inheritance:

Figure 1-10. Multiple Inheritance

Screen-Object Art-Object
|
I I I

Icon Window Bitmap

1.10. Structure and General Syntax

A Rexx program is built from a series of clauses that are composed of:

« Zero or more whitespace characters (blank or horizontal tabs) (which are ignored)

« A sequence of tokens (see Tokens)

« Zero or more whitespace characters (again ignored)

« A semicolon (;) delimiter that the line end, certain keywords, or the colon (:) implies.

Conceptually, each clause is scanned from left to right before processing, and the tokens composing it
are identified. Instruction keywords are recognized at this stage, comments are removed, and sequences
of whitespace characters (except within literal strings) are converted to single blanks. Whitespace
characters adjacent to operator characters and special characters are also removed.

ooRexx Reference Version 4.1.0 9 Draft - SVN Rev 6346

Chapter 1. Open Object Rexx General Concepts

1.10.1. Characters

A character is a member of a defined set of elements that is used for the control or representation of data.
You can usually enter a character with a single keystroke. The coded representation of a character is its
representation in digital form. A character, the letter A, for example, differs from its coded
representation or encoding. Various coded character sets (such as ASCII and EBCDIC) use different
encodings for the letter A (decimal values 65 and 193, respectively). This book uses characters to convey
meanings and not to imply a specific character code, except where otherwise stated. The exceptions are
certain built-in functions that convert between characters and their representations. The functions C2D,
C2X, D2C, X2C, and XRANGE depend on the character set used.

A code page specifies the encodings for each character in a set. Be aware that:

« Some code pages do not contain all characters that Rexx defines as valid (for example, the logical
NOT character).

+ Some characters that Rexx defines as valid have different encodings in different code pages, for
example the exclamation mark (!).

1.10.2. Whitespace

A whitespace character is one that the interpreter recognizes as a "blank" or "space" character. There are
two characters used by Rexx as whitespace that can be used interchangably:

(blank)

A "blank" or "space" character. This is represented by *20’X in ASCII implementations.

(horizontal tab)
A "tab". This is represented by *09°X in ASCII implementations.

Horizontal tabs encountered in Rexx program source are converted into blanks, allowing tab characters
and blanks to be use interchangeably in source. Additionally, Rexx operations such as the PARSE
instruction or the SUBWORD() built-in function will also accept either blank or tab characters as word
delimiters.

1.10.3. Comments

A comment is a sequence of characters delimited by specific characters. It is ignored by the program but
acts as a separator. For example, a token containing one comment is treated as two tokens.

The interpreter recognizes the following types of comments:

« A line comment, where the comment is limited to one line
« The standard Rexx comment, where the comment can cover several lines

A line comment is started by two subsequent minus signs (--) and ends at the end of a line. Example:

Draft - SVN Rev 6346 10 ooRexx Reference Version 4.1.0

Chapter 1. Open Object Rexx General Concepts

||Fred||
"Don't Panic!"
'You shouldn''t' -- Same as "You shouldn't"

In this example, the language processor processes the statements from 'Fred' to 'You shouldn''t', ignores
the words following the line comment, and continues to process the statement "".

A standard comment is a sequence of characters (on one or more lines) delimited by /* and */. Within
these delimiters any characters are allowed. Standard comments can contain other standard comments, as
long as each begins and ends with the necessary delimiters. They are called nested comments. Standard
comments can be anywhere and of any length.

/* This is an example of a valid Rexx comment */

Take special care when commenting out lines of code containing /* or */ as part of a literal string.
Consider the following program segment:

01 parse pull input

02 if substr(input,1,5) = "/*123"
03 then call process

04 dept = substr(input,32,5)

To comment out lines 2 and 3, the following change would be incorrect:

01 parse pull input

02 /* if substr(input,1,5) = "/*123"
03 then call process

04 */ dept = substr(input,32,5)

This is incorrect because the language processor would interpret the /#* that is part of the literal string
/%123 as the start of a nested standard comment. It would not process the rest of the program because it
would be looking for a matching standard comment end (*/).

You can avoid this type of problem by using concatenation for literal strings containing /* or */; line 2
would be:

if substr(input,1,5) = "/" || "*123"
You could comment out lines 2 and 3 correctly as follows:

01 parse pull input

02 /* if substr(input,1,5) = "/" || "*123"
03 then call process

04 */ dept = substr(input,32,5)

Both types of comments can be mixed and nested. However, when you nest the two types, the type of
comment that comes first takes precedence over the one nested. Here is an example:

I|Fredll

"Don't Panic!"

'You shouldn''t' /* Same as "You shouldn't"

e -- The null string */

ooRexx Reference Version 4.1.0 11 Draft - SVN Rev 6346

Chapter 1. Open Object Rexx General Concepts

In this example, the language processor ignores everything after 'You shouldn''t' up to the end of the last
line. In this case, the standard comment has precedence over the line comment.

When nesting the two comment types, make sure that the start delimiter of the standard comment /* is
not in the line commented out with the line comment signs.

Example:

IIFredll

"Don't Panic!"

'You shouldn''t' —-- Same as /* "You shouldn't"
" The null string */

This example produces an error because the language processor ignores the start delimiter of the
standard comment, which is commented out using the line comment.

1.10.4. Tokens

A token is the unit of low-level syntax from which clauses are built. Programs written in Rexx are
composed of tokens. Tokens can be of any length, up to an implementation-restricted maximum. They
are separated by whitespace or comments, or by the nature of the tokens themselves. The classes of
tokens are:

« Literal strings

» Hexadecimal strings
« Binary strings

« Symbols

+ Numbers

« Operator characters

« Special characters

1.10.4.1. Literal Strings

A literal string is a sequence including any characters except line feed (X"10") and delimited by a single
quotation mark (') or a double quotation mark ("). You use two consecutive double quotation marks ("")
to represent one double quotation mark (") within a string delimited by double quotation marks.
Similarly, you use two consecutive single quotation marks (") to represent one single quotation mark (')
within a string delimited by single quotation marks. A literal string is a constant and its contents are
never modified when it is processed. Literal strings must be complete on a single line. This means that
unmatched quotation marks can be detected on the line where they occur.

A literal string with no characters (that is, a string of length 0) is called a null string.

These are valid strings:

||Fred||
"Don't Panic!"
'You shouldn''t' /* Same as "You shouldn't" */

Draft - SVN Rev 6346 12 ooRexx Reference Version 4.1.0

Chapter 1. Open Object Rexx General Concepts
e /* The null string */

Implementation maximum: A literal string has no upper bound on the number of characters, limited
on by available memory.

Note that a string immediately followed by a left parenthesis is considered to be the name of a function.
If immediately followed by the symbol X or x, it is considered to be a hexadecimal string. If followed
immediately by the symbol B or b, it is considered to be a binary string.

1.10.4.2. Hexadecimal Strings

A hexadecimal string is a literal string, expressed using a hexadecimal notation of its encoding. It is any
sequence of zero or more hexadecimal digits (0-9, a-f, A-F), grouped in pairs. A single leading O is
assumed, if necessary, at the beginning of the string to make an even number of hexadecimal digits. The
groups of digits are optionally separated by one or more whitespace characters, and the whole sequence
is delimited by single or double quotation marks and immediately followed by the symbol X or x. Neither
x nor X can be part of a longer symbol. The whitespace characters, which can only be byte boundaries
(and not at the beginning or end of the string), are to improve readability. The language processor ignores
them.

A hexadecimal string is a literal string formed by packing the hexadecimal digits given. Packing the
hexadecimal digits removes whitespace and converts each pair of hexadecimal digits into its equivalent
character, for example, "41"X to A.

Hexadecimal strings let you include characters in a program even if you cannot directly enter the
characters themselves. These are valid hexadecimal strings:

"ABCD"x
"1d ec £8"X
"1 d8"x

Note: A hexadecimal string is not a representation of a number. It is an escape mechanism that lets
a user describe a character in terms of its encoding (and, therefore, is machine-dependent). In
ASCII, "20"X is the encoding for a blank. In every case, a string of the form "....."x is an alternative to
a straightforward string. In ASCII "41"x and "A" are identical, as are "20"x and a blank, and must be
treated identically.

Implementation maximum: The packed length of a hexadecimal string (the string with whitespace
removed) is unlimited.

1.10.4.3. Binary Strings

A binary string is a literal string, expressed using a binary representation of its encoding. It is any
sequence of zero or more binary digits (0 or 1) in groups of 8 (bytes) or 4 (nibbles). The first group can
have less than four digits; in this case, up to three 0 digits are assumed to the left of the first digit, making
a total of four digits. The groups of digits are optionally separated by one or more whitespace characters,
and the whole sequence is delimited by matching single or double quotation marks and immediately
followed by the symbol b or B. Neither b nor B can be part of a longer symbol. The whitespace

ooRexx Reference Version 4.1.0 13 Draft - SVN Rev 6346

Chapter 1. Open Object Rexx General Concepts

characters, which can only be byte or nibble boundaries (and not at the beginning or end of the string),
are to improve readability. The language processor ignores them.

A binary string is a literal string formed by packing the binary digits given. If the number of binary digits
is not a multiple of 8, leading zeros are added on the left to make a multiple of 8 before packing. Binary
strings allow you to specify characters explicitly, bit by bit. These are valid binary strings:

"11110000"b /% == "f0"x */
"101 1101"b /% == "5d"x ./
"1"b /* == "00000001"b and "01"x */
"10000 10101010"b /* == "0001 0000 1010 1010"b */
iy J* == nv */

Implementation maximum: The packed length of a binary-literal string is unlimited.

1.10.4.4. Symbols

Symbols are groups of characters, selected from the:

+ English alphabetic characters (A-Z and a-z).
« Numeric characters (0-9)
« Characters . ! 7 and underscore (_).

Any lowercase alphabetic character in a symbol is translated to uppercase (that is, lowercase a-z to
uppercase A-Z) before use.

These are valid symbols:

Fred
Albert.Hall
WHERE?

If a symbol does not begin with a digit or a period, you can use it as a variable and can assign it a value.
If you have not assigned a value to it, its value is the characters of the symbol itself, translated to
uppercase (that is, lowercase a-z to uppercase A-Z). Symbols that begin with a number or a period are
constant symbols and cannot directly be assigned a value. (See Environment Symbols.)

One other form of symbol is allowed to support the representation of numbers in exponential format. The
symbol starts with a digit (0-9) or a period, and it can end with the sequence E or e, followed immediately
by an optional sign (- or +), followed immediately by one or more digits (which cannot be followed by
any other symbol characters). The sign in this context is part of the symbol and is not an operator.

These are valid numbers in exponential notation:

17.3E-12
.03e+9

Draft - SVN Rev 6346 14 ooRexx Reference Version 4.1.0

Chapter 1. Open Object Rexx General Concepts

1.10.4.5. Numbers

Numbers are character strings consisting of one or more decimal digits, with an optional prefix of a plus
(+) or minus (-) sign, and optionally including a single period (.) that represents a decimal point. A
number can also have a power of 10 suffixed in conventional exponential notation: an E (uppercase or
lowercase), followed optionally by a plus or minus sign, then followed by one or more decimal digits
defining the power of 10. Whenever a character string is used as a number, rounding can occur to a
precision specified by the NUMERIC DIGITS instruction (the default is nine digits). See Numbers and
Arithmetic for a full definition of numbers.

Numbers can have leading whitespace (before and after the sign) and trailing whitespace. Whitespace
characters cannot be embedded among the digits of a number or in the exponential part. Note that a
symbol or a literal string can be a number. A number cannot be the name of a variable.

These are valid numbers:

12
"-17.9"
127.0650
73e+128

"+ 7.9E5 "

You can specify numbers with or without quotation marks around them. Note that the sequence -17.9
(without quotation marks) in an expression is not simply a number. It is a minus operator (which can be
prefix minus if no term is to the left of it) followed by a positive number. The result of the operation is a
number, which might be rounded or reformatted into exponential form depending on the size of the
number and the current NUMERIC DIGITS setting.

A whole number is a number that has a no decimal part and that the language processor would not
usually express in exponential notation. That is, it has no more digits before the decimal point than the
current setting of NUMERIC DIGITS.

Implementation maximum: The exponent of a number expressed in exponential notation can have up
to nine digits.

1.10.4.6. Operator Characters

The characters + - \ / % * | & = = > < and the sequences >= <= \> \< \= >< <> == \== // &&
[] %% —=> =< == === >> << >= \<< =<< \>> —>> <<= indicate operations (see Operators). A
few of these are also used in parsing templates, and the equal sign and the sequences +=, -=, *= /=,
%=, //=, |l=, &=, |=, and &&= are also used to indicate assignment. Whitespace characters adjacent
to operator characters are removed. Therefore, the following are identical in meaning:

345>=123
345 >=123
345 >= 123
345 > = 123

Some of these characters (and some special characters—see the next section) might not be available in
all character sets. In this case, appropriate translations can be used. In particular, the vertical bar (l) is
often shown as a split vertical bar (i).

ooRexx Reference Version 4.1.0 15 Draft - SVN Rev 6346

Chapter 1. Open Object Rexx General Concepts

Note: The Rexx interpreter uses ASCII character 124 in the concatenation operator and as the
logical OR operator. Depending on the code page or keyboard for your particular country, ASCIl 124
can be shown as a solid vertical bar (|) or a split vertical bar (}). The character on the screen might
not match the character engraved on the key. If you receive error 13, Invalid character in program,
on an instruction including a vertical bar character, make sure this character is ASCIl 124.

Throughout the language, the NOT (—) character is synonymous with the backslash (\). You can use
the two characters interchangeably according to availability and personal preference.

The Rexx interpreter recognizes both ASCII character 170 " AA’X) and ASCII character 172 (" AC’X)
for the logical NOT operator. Depending on your country, the — might not appear on your keyboard. If
the character is not available, you can use the backslash (\) in place of —.

1.10.4.7. Special Characters

The following characters, together with the operator characters, have special significance when found
outside of literal strings:

s o C) L 1 -

These characters constitute the set of special characters. They all act as token delimiters, and whitespace
characters (blank or horizontal tab) adjacent to any of these are removed. There is an exception: a
whitespace character adjacent to the outside of a parenthesis or bracket is deleted only if it is also
adjacent to another special character (unless the character is a parenthesis or bracket and the whitespace
character is outside it, too). For example, the language processor does not remove the blank in A (Z).
This is a concatenation that is not equivalent to A(Z), a function call. The language processor removes
the blanks in (&) + (Z) because this is equivalent to (A)+(Z).

1.10.4.8. Example

The following example shows how a clause is composed of tokens:
"REPEAT" A+ 3;

This example is composed of six tokens—a literal string ("REPEAT"), a blank operator, a symbol (4,
which can have an assigned value), an operator (+), a second symbol (3, which is a number and a
symbol), and the clause delimiter (;). The blanks between the A and the + and between the + and the 3 are
removed. However, one of the blanks between the "REPEAT" and the A remains as an operator. Thus, this
clause is treated as though written:

"REPEAT" A+3;

1.10.5. Implied Semicolons

The last element in a clause is the semicolon (;) delimiter. The language processor implies the semicolon
at a line end, after certain keywords, and after a colon if it follows a single symbol. This means that you

Draft - SVN Rev 6346 16 ooRexx Reference Version 4.1.0

Chapter 1. Open Object Rexx General Concepts

need to include semicolons only when there is more than one clause on a line or to end an instruction
whose last character is a comma.

A line end usually marks the end of a clause and, thus, Rexx implies a semicolon at most end of lines.
However, there are the following exceptions:

« The line ends in the middle of a comment. The clause continues on to the next line.

+ The last token was the continuation character (a comma or a minus sign) and the line does not end in
the middle of a comment. (Note that a comment is not a token.)

Rexx automatically implies semicolons after colons (when following a single symbol or literal string, a
label) and after certain keywords when they are in the correct context. The keywords that have this effect
are ELSE, OTHERWISE, and THEN. These special cases reduce typographical errors significantly.

Note: The two characters forming the comment delimiters, /* and =/, must not be split by a line end
(that is, 7 and * should not appear on different lines) because they could not then be recognized
correctly; an implied semicolon would be added.

1.10.6. Continuations

One way to continue a clause on the next line is to use the comma or the minus sign (-), which is referred
to as the continuation character. The continuation character is functionally replaced by a blank, and,
thus, no semicolon is implied. One or more comments can follow the continuation character before the
end of the line.

The following example shows how to use the continuation character to continue a clause:

say "You can use a comma", -- this line is continued
"to continue this clause."

or

say "You can use a minus"- -- this line is continued
"to continue this clause."

1.11. Terms, Expressions, and Operators

Expressions in Rexx are a general mechanism for combining one or more pieces of data in various ways
to produce a result, usually different from the original data. All expressions evaluate to objects.

Everything in Rexx is an object. Rexx provides some objects, which are described in later sections. You
can also define and create objects that are useful in particular applications—for example, a menu object
for user interaction. See Modeling Objects for more information.

ooRexx Reference Version 4.1.0 17 Draft - SVN Rev 6346

Chapter 1. Open Object Rexx General Concepts

1.11.1. Terms and Expressions

Terms are literal strings, symbols, message terms, function calls, or subexpressions interspersed with
zero or more operators that denote operations to be carried out on terms.

Literal strings, which are delimited by quotation marks, are constants.

Symbols (no quotation marks) are translated to uppercase. A symbol that does not begin with a digit or a
period can be the name of a variable; in this case the value of that variable is used. A symbol that begins
with a period can identify an object that the current environment provides; in this case, that object is
used. Otherwise a symbol is treated as a constant string. A symbol can also be compound.

Message terms are described in Message Terms.

Function calls (see Functions), which are of the following form:

>>-symbolorstring(-—--+-- i) Bt ><
+-expression-+

The symbolorstring is a symbol or literal string.

An expression consists of one or more terms. A subexpression is a term in an expression surrounded
with a left and a right parenthesis.

Evaluation of an expression is left to right, modified by parentheses and operator precedence in the usual
algebraic manner (see Parentheses and Operator Precedence). Expressions are wholly evaluated, unless
an error occurs during evaluation.

As each term is used in an expression, it is evaluated as appropriate. The result is an object.
Consequently, the result of evaluating any expression is itself an object (such as a character string).

1.11.2. Operators

An operator is a representation of an operation, such as an addition, to be carried out on one or two
terms. Each operator, except for the prefix operators, acts on two terms, which can be symbols, strings,
function calls, message terms, intermediate results, or subexpressions. Each prefix operator acts on the
term or subexpression that follows it. Whitespace characters (and comments) adjacent to operator
characters have no effect on the operator; thus, operators constructed from more than one character can
have embedded whitespace and comments. In addition, one or more whitespace characters, if they occur
in expressions but are not adjacent to another operator, also act as an operator. The language processor
functionally translates operators into message terms. For dyadic operators, which operate on two terms,
the language processor sends the operator as a message to the term on the left, passing the term on the
right as an argument. For example, the sequence

say 1+2
is functionally equivalent to:

say 1~||+u (2)

Draft - SVN Rev 6346 18 ooRexx Reference Version 4.1.0

Chapter 1. Open Object Rexx General Concepts

"non

The blank concatenation operator sends the message " " (a single blank), and the abuttal concatenation
operator sends the "" message (a null string). When the — character is used in an operator, it is changed
to a \. That is, the operators —= and \= both send the message \= to the target object.

For an operator that works on a single term (for example, the prefix - and prefix + operators), Rexx sends
a message to the term, with no arguments. This means -z has the same effect as z~"-".

See Operator Methods for operator methods of the Object class and Arithmetic Methods for operator
methods of the String class.

There are four types of operators:

« Concatenation
« Arithmetic
« Comparison

+ Logical

1.11.2.1. String Concatenation

The concatenation operators combine two strings to form one string by appending the second string to
the right-hand end of the first string. The concatenation may occur with or without an intervening blank.
The concatenation operators are:

(blank) Concatenate terms with one blank in between
Il Concatenate without an intervening blank
(abuttal) Concatenate without an intervening blank

You can force concatenation without a blank by using the | | operator.

The abuttal operator is assumed between two terms that are not separated by another operator. This can
occur when two terms are syntactically distinct, such as a literal string and a symbol, or when they are
only separated by a comment.

Examples:

An example of syntactically distinct terms is: if Fred has the value 37.4, then Fred"%" evaluates to 37.4%.

If the variable PETER has the value 1, then (Fred) (Peter) evaluates to 37.41.
The two adjoining strings, one hexadecimal and one literal, "4a 4b"x"LMN" evaluate to JKLMN.

In the case of

Fred/* The NOT operator precedes Peter. x/—Peter

there is no abuttal operator implied, and the expression is not valid. However,
(Fred)/* The NOT operator precedes Peter. */(—Peter)

results in an abuttal, and evaluates to 37.40.

ooRexx Reference Version 4.1.0 19 Draft - SVN Rev 6346

Chapter 1. Open Object Rexx General Concepts

1.11.2.2. Arithmetic

You can combine character strings that are valid numbers (see Numbers) using the following arithmetic

operators:

+ Add

- Subtract

* Multiply

/ Divide

% Integer divide (divide and return the integer part of the result)
// Remainder (divide and return the remainder—not modulo, because the result can

be negative)

w3k Power (raise a number to a whole-number power)

Prefix - Same as the subtraction: 0 - number

Prefix + Same as the addition: 0 + number

See Numbers and Arithmetic for details about precision, the format of valid numbers, and the operation
rules for arithmetic. Note that if an arithmetic result is shown in exponential notation, it is likely that
rounding has occurred.

1.11.2.3. Comparison

The comparison operators compare two terms and return the value 1 if the result of the comparison is
true, or 0 otherwise.

The strict comparison operators all have one of the characters defining the operator doubled. The ==,
\==, and —== operators test for an exact match between two strings. The two strings must be identical
(character by character) and of the same length to be considered strictly equal. Similarly, the strict
comparison operators such as >> or << carry out a simple character-by-character comparison, with
no padding of either of the strings being compared. The comparison of the two strings is from left to
right. If one string is shorter than the other and is a leading substring of another, then it is smaller than
(less than) the other. The strict comparison operators also do not attempt to perform a numeric
comparison on the two operands.

For all other comparison operators, if both terms involved are numeric, a numeric comparison (see
Numeric Comparisons) is effected. Otherwise, both terms are treated as character strings, leading and
trailing whitespace characters are ignored, and the shorter string is padded with blanks on the right.

Character comparison and strict comparison operations are both case-sensitive, and the exact collating
order might depend on the character set used for the implementation. In an ASCII environment, such as
Windows and *nix, the ASCII character value of digits is lower than that of the alphabetic characters,
and that of lowercase alphabetic characters is higher than that of uppercase alphabetic characters.

The comparison operators and operations are:
= True if the terms are equal (numerically or when padded)

\=, —= True if the terms are not equal (inverse of =)
> Greater than

Draft - SVN Rev 6346 20 ooRexx Reference Version 4.1.0

Chapter 1. Open Object Rexx General Concepts

< Less than

>< Greater than or less than (same as not equal)
<> Greater than or less than (same as not equal)
>= Greater than or equal to

\<, =< Not less than

<= Less than or equal to

>, > Not greater than

== True if terms are strictly equal (identical)
\==, == True if the terms are not strictly equal (inverse of ==
>> Strictly greater than

<< Strictly less than

>>= Strictly greater than or equal to

\<<, << Strictly not less than

<<= Strictly less than or equal to

\>>, a>> Strictly not greater than

Note: Throughout the language, the NOT (=) character is synonymous with the backslash(\). You
can use the two characters interchangeably, according to availability and personal preference. The
backslash can appear in the following operators: \ (prefix not),\=, \==, \<, \>, \<<, and \>>.

1.11.2.4. Logical (Boolean)

A character string has the value false if it is 0, and true if it is 1. The logical operators take one or two
such values and return 0 or 1 as appropriate. Values other than 0 or 1 are not permitted.

& AND — returns 1 if both terms are true.
| Inclusive OR — returns 1 if either term or both terms are true.
&& Exclusive OR — returns 1 if either term, but not both terms, is true.

Prefix \, — Logical NOT— negates; 1 becomes 0, and 0 becomes 1.

1.11.3. Parentheses and Operator Precedence

Expression evaluation is from left to right; parentheses and operator precedence modify this:

« When parentheses are encountered—other than those that identify the arguments on messages (see
Message Terms) and function calls—the entire subexpression between the parentheses is evaluated
immediately when the term is required.

» When the sequence

ooRexx Reference Version 4.1.0 21 Draft - SVN Rev 6346

Chapter 1. Open Object Rexx General

Concepts

terml operatorl term2 operator2 term3

is encountered, and operator2 has precedence over operatori, the subexpression (term2 operator2

term3) is evaluated first.

Note, however, that individual terms are evaluated from left to right in the expression (that is, as soon
as they are encountered). The precedence rules affect only the order of operations.

For example, * (multiply) has a higher priority than + (add), so 3+2+5 evaluates to 13 (rather than the 25
that would result if a strict left-to-right evaluation occurred). To force the addition to occur before the
multiplication, you could rewrite the expression as (3+2)*5. Adding the parentheses makes the first three
tokens a subexpression. Similarly, the expression -3**2 evaluates to 9 (instead of -9) because the prefix

minus operator has a highe

1 priority than the power operator.

The order of precedence of the operators is (highest at the top):

~ ~\

+ - =\
skek

* | % [
+ -
(blank) I
= > <
= >> <<

(abuttal)

\= =
> <>
> >
\< <

== ==

S>> —>>

<< <<
>= >>=

<= <L=
&

| &&

Examples:

(message send)

(prefix operators)

(power)

(multiply and divide)

(add and subtract)

(concatenation with or without blank)

(comparison operators)

(and)

(or, exclusive or)

Suppose the symbol A is a variable whose value is 3, DAY is a variable whose value is Monday, and other
variables are uninitialized. Then:

A+5 ->
A-4%2 ->
A/2 ->
0.5%%*2 ->
(A+1)>7 ->

non=nn ->

Draft - SVN Rev 6346

ngn
II_5||

"5

"0.25"

"o /* that is, False */
" /* that is, True =*/

22

ooRexx Reference Version 4.1.0

Chapter 1. Open Object Rexx General Concepts

W -> non /* that is, False */
nom\==nn - nqn

/* that is, True */

(A+1)*3=12 -> " /* that is, True */
no7TNSNLLN N nyn /* that is, True */
"oTT" >> "11v -> "o" /* that is, False */
"abc" >> "ab" -> mn /* that is, True */
"abc" << "abd" -> " /* that is, True */
"ab " << "abd" -> " /* that is, True */
Today is Day -> "TODAY IS Monday"

"If it is" day -> "If it is Monday"
Substr(Day,2,3) -> "ond" /* Substr is a function */
"lxxx"" -> "IXXXn

Note: The Rexx order of precedence usually causes no difficulty because it is the same as in
conventional algebra and other computer languages. There are two differences from common
notations:

+ The prefix minus operator always has a higher priority than the power operator.

- Power operators (like other operators) are evaluated from left to right.

For example:

—3%*2 == 9 /x not -9 x/
-(2+1)**2 == 9 /x not -9 */
2%x2*%x3 == 64 /* not 256 */

1.11.4. Message Terms

You can include messages to objects in an expression wherever a term, such as a literal string, is valid. A
message can be sent to an object to perform an action, obtain a result, or both.

A message term can have one of the following forms:

>>-receiver-+- ~ --+-messagename-—+---- + -
=77 -+ +-:symbol-+
e +- ><
B e R +--) -+
| +-,—————————- + |
| v 1

+--—expression-+-+

>>-receiver [-—+---————————————- +==]-——- ><
| 4=, - + |
| v (I
+---expression-+-+

ooRexx Reference Version 4.1.0 23 Draft - SVN Rev 6346

Chapter 1. Open Object Rexx General Concepts

The receiver is a term (see Terms and Expressions for a definition of term). It receives the message. The
~ or ~~ indicates sending a message. The messagename is a literal string or a symbol that is taken as a
constant. The expressions (separated by commas) between the parentheses or brackets are the arguments
for the message. The receiver and the argument expressions can themselves include message terms. If the
message has no arguments, you can omit the parentheses.

The left parenthesis, if present, must immediately follow a token (messagename or symbol) with no
blank in between them. Otherwise, only the first part of the construct is recognized as a message term. (A
blank operator would be assumed at that point.) Only a comment (which has no effect) can appear
between a token and the left parenthesis.

You can use any number of expressions, separated by commas. The expressions are evaluated from left to
right and form the arguments during the execution of the called method. Any ARG, PARSE ARG, or
USE ARG instruction or ARG() built-in function in the called method accesses these objects while the
called method is running. You can omit expressions, if appropriate, by including extra commas.

The receiver object is evaluated, followed by one or more expression arguments. The message name (in
uppercase) and the resulting argument objects are then sent to the receiver object. The receiver object
selects a method to be run based on the message name (see Classes and Inheritance), and runs the
selected method with the specified argument objects. The receiver eventually returns, allowing
processing to continue.

If the message term uses ~, the receiver method must return a result object. This object is included in the
original expression as if the entire message term had been replaced by the name of a variable whose
value is the returned object.

For example, the message POS is valid for strings, and you could code:

c="escape"
a="Position of 'e' is:" c"pos("e",3)
/* would set A to "Position of 'e' is: 6" */

If the message term uses ~~, the receiver method need not return a result object. Any result object is
discarded, and the receiver object is included in the original expression in place of the message term.

For example, the messages INHERIT and SUBCLASS are valid for classes (see The Class Class) and,
assuming the existence of the Persistent class, you could code:

account = .object~subclass("Account")”“inherit(.persistent)
/* would set ACCOUNT to the object returned by SUBCLASS, */
/* after sending that object the message INHERIT */

If the message term uses brackets, the message [] is sent to the receiver object. (The expressions within
the brackets are available to the receiver object as arguments.) The effect is the same as for the
corresponding ~ form of the message term. Thus, a[b] is the same as a~" [1" (b).

For example, the message [] is valid for arrays (see The Array Class) and you could code:
a = .array~of (10,20)
say "Second item is" a[2] /* Same as: a“at(2) x/

/* or a~"[1"(2) */

/* Produces: "Second item is 20" */

Draft - SVN Rev 6346 24 ooRexx Reference Version 4.1.0

Chapter 1. Open Object Rexx General Concepts

A message can have a variable number of arguments. You need to specify only those required. For
example, "ESCAPE" “POS("E") returns 1.

A colon (:) and symbol can follow the message name. In this case, the symbol must be the name of a
variable (usually the special variable SUPER--see page SUPER) or an environment symbol (see
Environment Symbols). The resulting value changes the usual method selection. For more information,
see Changing the Search Order for Methods.

1.11.5. Message Sequences

The ~ and ~~ forms of message terms differ only in their treatment of the result object. Using ~ returns
the result of the method. Using ~~ returns the object that received the message. Here is an example:

/* Two ways to use the INSERT method to add items to a list */
/* Using only ~ */

team = .list”of ("Bob","Mary")

team~insert ("Jane")

team~insert ("Joe")

team~insert ("Steve")

say "First on the team is:" team"firstitem /* Bob %/

say "Last on the team is:" team™lastitem /* Steve */

/* Do the same thing using ~~ */

team=.list~of ("Bob","Mary")

/* Because "~ returns the receiver of the message */
/* each INSERT message following returns the list */
/* object (after inserting the argument value). */
team™“insert("Jane") “~insert("Joe") "~insert("Steve")

say "First on the team is:" team"firstitem /* Bob */
say "Last on the team is:" team™lastitem /* Steve */

Thus, you would use ~ when you want the returned result to be the receiver of the next message in the
sequence.

1.12. Clauses and Instructions

Clauses can be subdivided into the following types:

« Null clauses

«+ Directives

« Labels

« Instructions

« Assignments

« Message instructions

+ Keyword instructions

ooRexx Reference Version 4.1.0 25 Draft - SVN Rev 6346

Chapter 1. Open Object Rexx General Concepts

« Commands

1.12.1. Null Clauses

A clause consisting only of whitespace characters, comments, or both is a null clause. It is completely
ignored.

Note: A null clause is not an instruction; for example, putting an extra semicolon after the THEN or
ELSE in an IF instruction is not equivalent to using a dummy instruction (as it would be in the C
language). The NOP instruction is provided for this purpose.

1.12.2. Directives

A clause that begins with two colons is a directive. Directives are nonexecutable code and can start in
any column. They divide a program into separate executable units (methods and routines) and supply
information about the program or its executable units. Directives perform various functions, such as
creating new Rexx classes (::CLASS directive) or defining a method (:: METHOD directive). See
Directives for more information about directives.

1.12.3. Labels

A clause that consists of a single symbol or string followed by a colon is a label. The colon in this
context implies a semicolon (clause separator), so no semicolon is required.

The label’s name is taken from the string or symbol part of the label. If the label uses a symbol for the
name, the label’s name is in uppercase. If a label uses a string, the name can contain mixed-case
characters.

Labels identify the targets of CALL instructions, SIGNAL instructions, and internal function calls. Label
searches for CALL, SIGNAL, and internal function calls are case-sensitive. Label-search targets
specified as symbols cannot match labels with lowercase characters. Literal-string or computed-label
searches can locate labels with lowercase characters.

Labels can be any number of successive clauses. Several labels can precede other clauses. Labels are
treated as null clauses and can be traced selectively to aid debugging.

Duplicate labels are permitted, but control is only passed to the first of any duplicates in a program. The
duplicate labels occurring later can be traced but cannot be used as a target of a CALL, SIGNAL, or
function invocation.

Draft - SVN Rev 6346 26 ooRexx Reference Version 4.1.0

Chapter 1. Open Object Rexx General Concepts

1.12.4. Instructions

An instruction consists of one or more clauses describing some course of action for the language
processor to take. Instructions can be assignments, message instructions, keyword instructions, or
commands.

1.12.5. Assighments

A single clause of the form symbol=expression is an instruction known as an assignment. An assignment
gives a (new) value to a variable. See Assignments and Symbols.

1.12.5.1. Extended Assignments

The character sequences +=, -=, *= /=, %=, //=, ||=, &=, |=, and &&= can be used to create
extended assignments. These sequences combine an operation with the assignment. See Extended
Assignments for more details.

1.12.5.2. Message Instructions

A message instruction is a single clause in the form of a message term (see Message Terms) or in the
form messageterm=expression. A message is sent to an object, which responds by performing some
action. See Message Instructions.

1.12.5.3. Keyword Instructions

A keyword instruction is one or more clauses, the first of which starts with a keyword that identifies the
instruction. Keyword instructions control, for example, the external interfaces and the flow of control.
Some keyword instructions can include nested instructions. In the following example, the DO construct
(DO, the group of instructions that follow it, and its associated END keyword) is considered a single
keyword instruction.

DO
instruction
instruction
instruction

END

A subkeyword is a keyword that is reserved within the context of a particular instruction, for example, the
symbols TO and WHILE in the DO instruction.

1.12.6. Commands

A command is a clause consisting of an expression only. The expression is evaluated and the result is
passed as a command string to an external environment.

ooRexx Reference Version 4.1.0 27 Draft - SVN Rev 6346

Chapter 1. Open Object Rexx General Concepts

1.13. Assighments and Symbols

A variable is an object whose value can change during the running of a Rexx program. The process of
changing the value of a variable is called assigning a new value to it. The value of a variable is a single
object. Note that an object can be composed of other objects, such as an array or directory object.

You can assign a new value to a variable with the ARG, PARSE, PULL, or USE instructions, the VALUE
built-in function, or the but the most common way of changing the value of a variable is the assignment
instruction itself. Any clause in the form

symbol=expression;

is taken to be an assignment. The result of expression becomes the new value of the variable named by
the symbol to the left of the equal sign.

Example:

/* Next line gives FRED the value "Frederic" x/
Fred="Frederic"

The symbol naming the variable cannot begin with a digit (0-9) or a period.

You can use a symbol in an expression even if you have not assigned a value to it, because a symbol has
a defined value at all times. A variable to which you have not assigned a value is uninitialized. Its value
is the characters of the symbol itself, translated to uppercase (that is, lowercase a-z to uppercase A-Z).
However, if it is a compound symbol (described under Compound Symbols), its value is the derived
name of the symbol.

Example:

/* If Freda has not yet been assigned a value, */
/* then next line gives FRED the value "FREDA" */
Fred=Freda

The meaning of a symbol in Rexx varies according to its context. As a term in an expression, a symbol
belongs to one of the following groups: constant symbols, simple symbols, compound symbols,
environment symbols, and stems. Constant symbols cannot be assigned new values. You can use simple
symbols for variables where the name corresponds to a single value. You can use compound symbols and
stems for more complex collections of variables although the collection classes might be preferable in
many cases. See The Collection Classes.

1.13.1. Extended Assignments

The character sequences +=, -=, *= /=, %=, //=, |l=, &=, |=, and &&= can be used to create
extended assignment instructions. An extended assignment combines a non-prefix operator with an
assignment where the term on the left side of the assignment is also used as the left term of the operator.
For example,

a +=1

is exactly equivalent to the instruction

Draft - SVN Rev 6346 28 ooRexx Reference Version 4.1.0

Chapter 1. Open Object Rexx General Concepts

Extended assignments are processed identically to the longer form of the instruction.

1.13.2. Constant Symbols

A constant symbol starts with a digit (0-9) or a period.

You cannot change the value of a constant symbol. It is simply the string consisting of the characters of
the symbol (that is, with any lowercase alphabetic characters translated to uppercase).

These are constant symbols:

7

827.53

.12345

12e5 /* Same as 12E5 */
3D

17E-3

Symbols where the first character is a period and the second character is alphabetic are environment
symbols. Environment symbols). may have a value other other than the symbol name.

1.13.3. Simple Symbols

A simple symbol does not contain any periods and does not start with a digit (0-9).

By default, its value is the characters of the symbol (that is, translated to uppercase). If the symbol has
been assigned a value, it names a variable and its value is the value of that variable.

These are simple symbols:

FRED
Whatagoodidea? /* Same as WHATAGOODIDEA? x/
712

1.13.4. Stems

A stem is a symbol that contains a single period as the last character of the name. It cannot start with a
digit.
These are stems:

FRED.
A.

The value of a stem is always a Stem object. (See The Stem Class.) The stem variable’s Stem object is
automatically created the first time you use the stem variable or a compound variable) containing the
stem variable name. The Stem object’s assigned name is the name of the stem variable (with the
characters translated to uppercase). If the stem variable has been assigned a value, or the Stem object has
been given a default value, the assigned name override the default stem name. A reference to a stem
variable will return the associate Stem object.

ooRexx Reference Version 4.1.0 29 Draft - SVN Rev 6346

Chapter 1. Open Object Rexx General Concepts

When a stem is the target of an assignment, the action taken depends on the value being assigned. If the
new value is a Stem object, the new Stem object will replace the the Stem object that is currently
associated with the stem variable. This can result in multiple stem variables referring to a the same Stem
object, effectively creating a variable alias.

Example:

hole. = "empty"

hole.19 = "full"

say hole.l1 hole.mouse hole.19
/* Says "empty empty full" =/

hole2. = hole. /* copies reference to hole. stem to hole2. */

say hole2.1 hole2.mouse hole2.19

/* Also says "empty empty full" */

If the new value is not a Stem object, a new Stem object is created and assigned to the stem variable,

replacing the Stem object currently associated with the stem variable.

The new value assigned to the stem variable is given to the new Stem object as a default value. Following
the assignment, a reference to any compound symbol with that stem variable returns the new value until
another value is assigned to the stem, the Stem object, or the individual compound variable.

Example:

hole. = "empty"

hole.19 = "full"

say hole.l1 hole.mouse hole.19
/* says "empty empty full" x*/

Thus, you can initialize an entire collection of compound variables to the same value.

You can pass stem collections as function, subroutine, or method arguments.

Example:

/* CALL RANDOMIZE count, stem. calls routine */
Randomize: Use Arg count, stem.
do i =1 to count
stem.i = random(1,100)
end
return

The USE ARG instruction functions as an assignment instruction. The variable STEM. in the example
above is functionally equivalent to:

stem. = arg(2)

Note: USE ARG must be used to access the stem variable as a collection. PARSE and PARSE ARG
will force the stem to be a string value.

Draft - SVN Rev 6346 30 ooRexx Reference Version 4.1.0

Chapter 1. Open Object Rexx General Concepts

Stems can also be returned as function, subroutine, or method results. The resulting return value is the
Stem object associated with the stem variable.

Example:

/* RANDOMIZE(count) calls routine */
Randomize: Use Arg count
do i = 1 to count
stem.i = random(1,100)
end
return stem.

When a stem. variable is used in an expression context, the stem variable reference returns the associated
Stem object. The Stem object will forward many object messages to it’s default value. For example, the
STRING method will return the Stem object’s default value’s string representation:

total. = 0
say total. /* says "O" */

The [] method with no arguments will return the currently associated default value. variables can always
be obtained by using the stem. However, this is not the same as using a compound variable whose
derived name is the null string.

total. = 0

null = "

total.null = total.null + 5

say total.[] total.null /* says "O 5" %/

You can use the DROP, EXPOSE, and PROCEDURE instructions to manipulate collections of variables,
referred to by their stems. DROP FRED. assigns a new Stem object to the specified stem. (See DROP.)
EXPOSE FRED. and PROCEDURE EXPOSE FRED. expose all possible variables with that stem (see EXPOSE
and PROCEDURE).

The DO instruction can also iterate over all of the values assigned to a stem variable. See DO for more
details.

Notes:

1. When the ARG, PARSE, PULL, or USE instruction, the VALUE built-in function, or the variable
pool interface changes a variable, the effect is identical with an assignment.

2. Any clause that starts with a symbol and whose second token is (or starts with) an equal sign (=) is
an assignment, rather than an expression (or a keyword instruction). This is not a restriction, because
you can ensure that the clause is processed as a command, such as by putting a null string before the
first name, or by enclosing the expression in parentheses.

If you unintentionally use a Rexx keyword as the variable name in an assignment, this should not
cause confusion. For example, the following clause is an assignment, not an ADDRESS instruction:

Address="10 Downing Street";

3. You can use the VAR function (see VAR) to test whether a symbol has been assigned a value. In
addition, you can set SIGNAL ON NOVALUE to trap the use of any uninitialized variables (except
when they are tails in compound variables or stem variables, which are always initialized with a
Stem object when first used.

ooRexx Reference Version 4.1.0 31 Draft - SVN Rev 6346

Chapter 1. Open Object Rexx General Concepts

1.13.5. Compound Symbols

A compound symbol contains at least one period and two other characters. It cannot start with a digit or a
period, and if there is only one period it cannot be the last character.

The name begins with a stem (that part of the symbol up to and including the first period) and is followed
by a tail, which are parts of the name (delimited by periods) that are constant symbols, simple symbols,
or null. Note that you cannot use constant symbols with embedded signs (for example, 12.3E+5) after a
stem; in this case the whole symbol would not be valid.

These are compound symbols:

FRED.3
Array.I.J
AMESSY. .0One.2.

Before the symbol is used, that is, at the time of reference, the language processor substitutes in the
compound symbol the character string values of any simple symbols in the tail (I, J, and One in the
examples), thus generating a new, derived tail. The value of a compound symbol is, by default, its the
name of the Stem object associated with the stem variable concatenated to the derived tail or, if it has
been used as the target of an assignment, the value of Stem element named by the derived tail.

The substitution in the symbol permits arbitrary indexing (subscripting) of collections of variables that
have a common stem. Note that the values substituted can contain any characters (including periods and
blanks). Substitution is done only once.

More formally, the derived name of a compound variable that is referenced by the symbol

s0.s1.s82. --- .sn
is given by
d0.v1i.v2. --- .vn

where 40 is the name of the Stem object associated with the stem variable s0 and v1 to vn are the values
of the constant or simple symbols s1 through sn. Any of the symbols s1 to sn can be null. The values v1
to va can also be null and can contain any characters (including periods). Lowercase characters are not
translated to uppercase, blanks are not removed, and periods have no special significance. There is no
limit on the length of the evaluated name.

Some examples of simple and compound symbols follow in the form of a small extract from a Rexx

program:

a=3 /* assigns "3" to the variable A */
z=4 /% "4 to Z */
c="Fred" /* "Fred" to C */
a.z="Fred" /* "Fred" to A.4 */
a.fred=5 /x 5" to A.FRED */
a.c="Bill" /* "Bill" to A.Fred */
c.c=a.fred /* "B to C.Fred */
y.a.z="Annie" /* "Annie" to Y.3.4 */
say a z ¢ a.a a.z a.c c.a a.fred y.a.4
/* displays the string: */
/* "3 4 Fred A.3 Fred Bill C.3 5 Annie" x/

Draft - SVN Rev 6346 32 ooRexx Reference Version 4.1.0

Chapter 1. Open Object Rexx General Concepts

You can use compound symbols to set up arrays and lists of variables in which the subscript is not
necessarily numeric, thus offering a great scope for the creative programmer. A useful application is to
set up an array in which the subscripts are taken from the value of one or more variables, producing a
form of associative memory (content-addressable).

1.13.5.1. Evaluated Compound Variables

The value of a stem variable is always a Stem object (see The Stem Class for details). A Stem object is a
type of collection that supports the [] and []= methods used by other collection classes. The [] method
provides an alternate means of accessing compound variables that also allows embedded subexpressions.

Examples:

a=3 /* assigns "3" to the variable A */
z=4 /* "4 to Z */
c="Fred" /* "Fred" to C */
a.[z]="Fred" /* "Fred" to A.4 */
a.[z+1]="Rick" /* "Rick" to A.5 */
a.[fred]=5 /* "s5" to A.FRED */
a.[c]="Bill" /* "Bill" to A.Fred */
c.[cl=a.fred /* "B to C.Fred */
y.[a,z]="Annie" /* "Annie" to Y.3.4 */

say a z c¢ a.lal a.[z] a.[z+1]

a.[c] c.[al a.[fred] y.[a,z]

/* displays the string: */

/* "3 4 Fred A.3 Fred Rick Bill C.3 5 Annie" */

1.13.6. Environment Symbols

An environment symbol starts with a period and has at least one other character. This character must not
be a digit. By default the value of an environment symbol is the string consisting of the characters of the
symbol (translated to uppercase). If the symbol identifies an object in the current environment, its value
is the mapped object.

These are environment symbols:

.method // A reference to the Rexx Method class
.true // The Rexx "true" object. Has the value "1"
.XyZ // Normally the value .XYZ

When you use an environment symbol, the language processor performs a series of searches to see if the
environment symbol has an assigned value. The search locations and their ordering are:

1. The directory of classes declared on ::CLASS directives (see ::CLASS) within the current program
package or added to the current package using the addClass() method.

ooRexx Reference Version 4.1.0 33 Draft - SVN Rev 6346

Chapter 1. Open Object Rexx General Concepts

2. The directory of PUBLIC classes declared on ::CLASS directives of other files included with a
=:REQUIRES directive or added to the current Package instance using the addPackage() method.

3. The local environment directory specific to the current interpreter instance. The local environment
includes process-specific objects such as the INPUT and .OUTPUT objects. You can directly access
the local environment directory by using the .LOCAL environment symbol. (See The Local
Environment Object (.LOCAL).)

4. The global environment directory. The global environment includes all permanent Rexx objects such
as the Rexx supplied classes (ARRAY and so on) and constants such as .TRUE and .FALSE. You
can directly access the global environment by using the . ENVIRONMENT environment symbol (see
The Environment Object). Entries in the global environment directory can also be accessed via the
VALUE built-in function (see VALUE) by using a null string for the selector argument.

5. Rexx defined symbols. Other simple environment symbols are reserved for use by Rexx built-in
environment objects. The currently defined built-in objects are .RS, .LINE, METHODS,
.ROUTINES, and .CONTEXT.

If an entry is not found for an environment symbol, then the default character string value is used.

Note: You can place entries in both the .LOCAL and the .ENVIRONMENT directories for programs to
use. To avoid conflicts with future Rexx defined entries, it is recommended that the entries that you
place in either directory include at least one period in the entry name.

Example:

/* establish settings directory */
.local”setentry("MyProgram.settings", .directory new)

1.14. Message Instructions

You can send a message to an object to perform an action, obtain a result, or both. You use a message
instruction if the main purpose of the message is to perform an action. You use a message term (see
Message Terms) if the main purpose of the message is to obtain a result.

A message instruction is a clause of the form:

>>-messageterm—--—+-—--—-—-—-----—- Fo— e - ><
+-=expression-+

If there is only a messageterm, the message is sent in exactly the same way as for a message term (see
Message Terms). If the message yields a result object, it is assigned to the sender’s special variable
RESULT. If you use the ~~ form of message term, the receiver object is used as the result. If there is no
result object, the variable RESULT is dropped (becomes uninitialized). A message term using ~~ is
sometimes referred to as a cascading message.

Example:

Draft - SVN Rev 6346 34 ooRexx Reference Version 4.1.0

Chapter 1. Open Object Rexx General Concepts
mytable~add("John",123)
This sends the message ADD to the object MYTABLE. The ADD method need not return a result. If

ADD returns a result, the result is assigned to the variable RESULT.

The equal sign (=) sets a value. If =expression follows the message term, a message is sent to the
receiver object with an = concatenated to the end of the message name. The result of evaluating the
expression is passed as the first argument of the message.

Example:
person~age = 39 /* Same as person”"AGE="(39) */
table[i] = 5 /* Same as table™"[]="(5,i) =*/

The expressions are evaluated in the order in which the arguments are passed to the method. That is, the
language processor evaluates the =expression first. Then it evaluates the argument expressions within
any [] pairs from left to right.

The extended assignment form may also be used with messaging terms.

Example:
table[i] += 1 -- Same as table[i] = table[i] + 1

See Extended Assignments for more details

1.15. Commands to External Environments

Issuing commands to the surrounding environment is an integral part of Rexx.

1.15.1. Environment

The base system for the language processor is assumed to include at least one environment for
processing commands. An environment is selected by default on entry to a Rexx program. You can
change the environment by using the ADDRESS instruction. You can find out the name of the current
environment by using the ADDRESS built-in function. The underlying operating system defines
environments external to the Rexx program. The environments selected depend on the caller. Normally
the default environment is the used shell, mostly "CMD" on Windows systems and "bash" on Linux
systems. If called from an editor that accepts subcommands from the language processor, the default
environment can be that editor.

A Rexx program can issue commands—called subcommands—to other application programs. For
example, a Rexx program written for a text editor can inspect a file being edited, issue subcommands to
make changes, test return codes to check that the subcommands have been processed as expected, and
display messages to the user when appropriate.

An application that uses Rexx as a macro language must register its environment with the Rexx language
processor. See the Open Object Rexx: Programming Guide for a discussion of this mechanism.

ooRexx Reference Version 4.1.0 35 Draft - SVN Rev 6346

Chapter 1. Open Object Rexx General Concepts

1.15.2. Commands

To send a command to the currently addressed environment, use a clause of the form:
expression;

The expression (which must not be an expression that forms a valid message instruction—see Message
Instructions) is evaluated, resulting in a character string value (which can be the null string), which is
then prepared as appropriate and submitted to the environment specified by the current ADDRESS
setting.

The environment then processes the command and returns control to the language processor after setting
areturn code. A return code is a string, typically a number, that returns some information about the
command processed. A return code usually indicates if a command was successful but can also represent
other information. The language processor places this return code in the Rexx special variable RC. See
Special Variables.

In addition to setting a return code, the underlying system can also indicate to the language processor if
an error or failure occurred. An error is a condition raised by a command to which a program that uses
that command can respond. For example, a locate command to an editing system might report requested
string not found as an error. A failure is a condition raised by a command to which a program that
uses that command cannot respond, for example, a command that is not executable or cannot be found.

Errors and failures in commands can affect Rexx processing if a condition trap for ERROR or FAILURE
is ON (see Conditions and Condition Traps). They can also cause the command to be traced if TRACE E
or TRACE F is set. TRACE Normal is the same as TRACE F and is the default—see TRACE.

The .RS environment symbol can also be used to detect command failures and errors. When the
command environment indicates that a command failure has occurred, the Rexx environment symbol .RS
has the value -1. When a command error occurs, .RS has a value of 1. If the command did not have a
FAILURE or ERROR condition, .RS is 0.

Here is an example of submitting a command. Where the default environment is Windows, the sequence:

"CHESHIRE"
exten "CAT"
"TYPE" fname"."exten

fname

would result in passing the string TYPE CHESHIRE.CAT to the command processor, CMD.EXE. The
simpler expression:

"TYPE CHESHIRE.CAT"

has the same effect.

On return, the return code placed in RC will have the value 0 if the file CHESHIRE.CAT were typed, or a
nonzero value if the file could not be found in the current directory.

Note: Remember that the expression is evaluated before it is passed to the environment. Constant
portions of the command should be specified as literal strings.

Windows Example:

Draft - SVN Rev 6346 36 ooRexx Reference Version 4.1.0

Chapter 1. Open Object Rexx General Concepts

delete "*".1st /* not "multiplied by" */
var.003 = anyvalue

type "var.003" /* not a compound symbol */
W = any

dir"/w" /* not "divided by ANY" x*/

Linux Example:

rm "x".1lst /* not "multiplied by" */
var.003 = anyvalue

cat "var.003" /* not a compound symbol */
W = any

1s "/w" /* not "divided by ANY" */

Enclosing an entire message instruction in parentheses causes the message result to be used as a
command. Any clause that is a message instruction is not treated as a command. Thus, for example, the
clause

myfile“linein

causes the returned line to be assigned to the variable RESULT, not to be used as a command to an
external environment, while

(myfile~linein)

would submit the return value from the linein method as a command to the external environment.

1.16. Using Rexx on Windows and Unix

Rexx programs can call other Rexx programs as external functions or subroutines with the call
instruction.

If a program is called with the call instruction, the program runs in the same process as the calling
program. If you call another program by a Rexx command, the program is executed in a new process and
therefore does not share .environment, .local, or the Windows/Unix shell environment.

Examples:

call "other.REX" /* runs in the same process */

"rexx other.REX" /* runs in a new child process */
"start rexx other.REX" /% runs in a new detached process */

When Rexx programs call other Rexx programs as commands, the return code of the command is the exit
value of the called program provided that this value is a whole number in the range -32768 to 32767.
Otherwise, the exit value is ignored and the called program is given a return code of 0.

ooRexx Reference Version 4.1.0 37 Draft - SVN Rev 6346

Chapter 1. Open Object Rexx General Concepts

Draft - SVN Rev 6346 38 ooRexx Reference Version 4.1.0

Chapter 2. Keyword Instructions

A keyword instruction is one or more clauses, the first of which starts with a keyword that identifies the
instruction. Some keyword instructions affect the flow of control, while others provide services to the
programmer. Some keyword instructions, like DO, can include nested instructions.

In the syntax diagrams on the following pages, symbols (words) in capitals denote keywords or
subkeywords. Other words, such as expression, denote a collection of tokens as defined previously. Note,
however, that the keywords and subkeywords are not case-dependent. The symbols if, If, and iF all
have the same effect. Note also that you can usually omit most of the clause delimiters (;) shown
because the end of a line implies them.

A keyword instruction is recognized only if its keyword is the first token in a clause and if the second
token does not start with an equal (=) character (implying an assignment) or a colon (implying a label).
The keywords ELSE, END, OTHERWISE, THEN, and WHEN are treated in the same way. Note that
any clause that starts with a keyword defined by Rexx cannot be a command. Therefore,

arg(fred) rest

is an ARG keyword instruction, not a command that starts with a call to the ARG built-in function. A
syntax error results if the keywords are not in their correct positions in a DO, IF, or SELECT instruction.
The keyword THEN is also recognized in the body of an IF or WHEN clause. In other contexts,
keywords are not reserved and can be used as labels or as the names of variables (though this is generally
not recommended).

Subkeywords are reserved within the clauses of individual instructions. For example, the symbols
VALUE and WITH are subkeywords in the ADDRESS and PARSE instructions, respectively. For
details, see the description of each instruction.

Whitespace characters (blanks or horizontal tabs) adjacent to keywords separate the keyword from the
subsequent token. One or more whitespace characters following VALUE are required to separate the
expression from the subkeyword in the example following:

ADDRESS VALUE expression

However, no whitespace character is required after the VALUE subkeyword in the following example,
although it would improve readability:

ADDRESS VALUE"ENVIR"| |number

2.1. ADDRESS

>>-ADDRESS--+ -- -- -- -- e -- ><
+-environment--+------——----—- +-+

| +-expression-+ |
R +--expressionl------ +
+-VALUE-+

39 Draft - SVN Rev 6346
ooRexx Reference Version 4.1.0

Chapter 2. Keyword Instructions

ADDRESS temporarily or permanently changes the destination of commands. Commands are strings
sent to an external environment. You can send commands by specifying clauses consisting of only an
expression or by using the ADDRESS instruction. (See Commands to External Environments.)

To send a single command to a specified environment, code an environment, a literal string or a single
symbol, which is taken to be a constant, followed by an expression. The environment name is the name
of an external procedure or process that can process commands. The expression is evaluated to produce a
character string value, and this string is routed to the environment to be processed as a command. After
execution of the command, environment is set back to its original state, thus temporarily changing the
destination for a single command. The special variable RC and the environment symbol .RS are set and
errors and failures in commands processed in this way are trapped or traced.

Windows Example:

ADDRESS CMD "DIR C:\CONFIG.SYS"
Linux Example:

ADDRESS "bash" "ls /usr/lib"

If you specify only environment, a lasting change of destination occurs: all commands (see Commands)
that follow are routed to the specified command environment, until the next ADDRESS instruction is
processed. The previously selected environment is saved.

Examples:

Assume that the environment for a Windows text editor is registered by the name EDIT:

address CMD

"DIR C:\AUTOEXEC.BAT"

if rc=0 then "COPY C:\AUTOEXEC.BAT C:*.TMP"
address EDIT

Subsequent commands are passed to the editor until the next ADDRESS instruction.

Similarly, you can use the VALUE form to make a lasting change to the environment. Here expressionl,
which can be a variable name, is evaluated, and the resulting character string value forms the name of the
environment. You can omit the subkeyword VALUE if expressionl does not begin with a literal string or
symbol, that is, if it starts with a special character such as an operator character or parenthesis.

Example:

ADDRESS ("ENVIR"||number) /* Same as ADDRESS VALUE "ENVIR"| |number */

With no arguments, commands are routed back to the environment that was selected before the previous
change of the environment, and the current environment name is saved. After changing the environment,
repeated execution of ADDRESS alone, therefore, switches the command destination between two

environments. Using a null string for the environment name ("") is the same as using the default

environment.

The two environment names are automatically saved across internal and external subroutine and function
calls. See the CALL instruction (CALL) for more details.

Draft - SVN Rev 6346 40 ooRexx Reference Version 4.1.0

Chapter 2. Keyword Instructions

The address setting is the currently selected environment name. You can retrieve the current address
setting by using the ADDRESS built-in function. (See ADDRESS.) The Open Object Rexx:
Programming Guide describes the creation of alternative subcommand environments.

2.2. ARG

>>-ARG--+ - ———y - - - ><
+-template_list-+

ARG retrieves the argument strings provided to a program, internal routine, or method and assigns them
to variables. It is a short form of the instruction:

>>-PARSE UPPER ARG——+---—- - Fom e ><
+-template_list-+

The template_list can be a single template or list of templates separated by commas. Each template
consists of one or more symbols separated by whitespace characters, patterns, or both.

The objects passed to the program, routine, or method are converted to string values and parsed into
variables according to the rules described in Parsing.

The language processor converts the objects to strings and translates the strings to uppercase (that is,
lowercase a-z to uppercase A-Z) before processing them. Use the PARSE ARG instruction if you do not
want uppercase translation.

You can use the ARG and PARSE ARG instructions repeatedly on the same source objects (typically
with different templates). The source objects do not change.

Example:

/* String passed is "Easy Rider" x*/
Arg adjective noun .

/* Now: ADJECTIVE contains "EASY" */
/* NOUN contains "RIDER" */

If you expect more than one object to be available to the program or routine, you can use a comma in
the parsing remplate_list so each template is selected in turn.

Example:

/* Function is called by FRED("data X",1,5) */
Fred: Arg string, numl, num2

/* Now: STRING contains "DATA X" */
/* NUM1 contains "1" */
/* NUM2 contains "5" */
Notes:

1. The ARG built-in function can also retrieve or check the arguments. See ARG (Argument).

ooRexx Reference Version 4.1.0 41 Draft - SVN Rev 6346

Chapter 2. Keyword Instructions

2. The USE ARG instruction (see USE) is an alternative way of retrieving arguments. USE ARG
performs a direct, one-to-one assignment of argument objects to Rexx variables. You should use this
when your program needs a direct reference to the argument object, without string conversion or
parsing. ARG and PARSE ARG produce string values from the argument objects, and the language
processor then parses the string values.

2.3. CALL

e +
v |
>>-CALL--+-+-name--—+---—+----—— +—+ - ———t-—;--><
| +-(expr)-+ +-expression—+ |
+-0FF-—+-ANY-—-—-————-——————- Hom oo +
| +-ERROR------———------ + |
| +-FATLURE------------~- + |
| +-HALT----------—-———- + |
| +-NOTREADY-----------~- + |
| +-USER--usercondition-+ |
+-0N-—+-ANY--——————————————— o +—+
+-ERROR-——-——————————- + +-NAME--trapname-+
+-FATLURE------------~- +
+-HALT-------—-—--=--- +
+-NOTREADY------------ +

+-USER--usercondition-+

CALL calls a routine (if you specify name) or controls the trapping of certain conditions (if you specify
ON or OFF).

To control trapping, you specify OFF or ON and the condition you want to trap. OFF turns off the
specified condition trap. ON turns on the specified condition trap. All information on condition traps is
contained in Conditions and Condition Traps.

To call a routine, specify name, which must be a literal string or symbol that is taken as a constant. The
usercondition is a single symbol that is taken as a constant. The trapname is a symbol or string taken as a
constant. The routine called can be:

An internal routine
A subroutine that is in the same program as the CALL instruction or function call that calls it.
Internal routines are located using label instructions.

A built-in routine

A function that is defined as part of the Rexx language.

An external routine

A subroutine that is neither built-in nor a label within the same same program as the CALL
instruction call that invokes it. See Search Order for details on the different types of external
routines.

Draft - SVN Rev 6346 42 ooRexx Reference Version 4.1.0

Chapter 2. Keyword Instructions

If name is a literal string (that is, specified in in quotation marks), the search for internal routines is
bypassed, and only a built-in function or an external routine is called. Note that built-in function names
are in uppercase. Therefore, a literal string call to a built-in function must also use uppercase characters.

You can also specify (expr), any valid expression enclosed in parentheses. The expression is evaluated
before any of the argument expressions, and the value is the target of the CALL instruction. The

language processor does not translate the expression value into uppercase, so the evaluated name must
exactly match any label name or built-in function name. (See Labels for a description of label names.)

The called routine can optionally return a result. In this case, the CALL instruction is functionally
identical with the clause:

>>-result=name (----+ -- b—t—=) === -- -- ><
+-expression-+

You can use any number of expressions, separated by commas. The expressions are evaluated from left
to right and form the arguments during execution of the routine. Any ARG, PARSE ARG, or USE ARG
instruction or ARG built-in function in the called routine accesses these objects while the called routine
is running. You can omit expressions, if appropriate, by including extra commas.

The CALL then branches to the routine called name, using exactly the same mechanism as function
calls. See Functions. The search order is as follows:

Internal routines

These are sequences of instructions inside the same program, starting at the label that matches name
in the CALL instruction. If you specify the routine name in quotation marks, then an internal
routine is not considered for that search order. The RETURN instruction completes the execution of
an internal routine.

Built-in routines

These are routines built into the language processor for providing various functions. They always
return an object that is the result of the routine. (See ARG (Argument).)

Note: You can call any built-in function as a subroutine. Any result is stored in RESULT. Simply
specify cALL, the function name (with no parenthesis) and any arguments:

call length "string" /* Same as length("string") */
say result /* Produces: 6 */

External routines

Users can write or use routines that are external to the language processor and the calling program.
You can code an external routine in Rexx or in any language that supports the system-dependent
interfaces. If the CALL instruction calls an external routine written in Rexx as a subroutine, you can
retrieve any argument strings with the ARG, PARSE ARG, or USE ARG instructions or the ARG
built-in function.

For more information on the search order, see Search Order.

ooRexx Reference Version 4.1.0 43 Draft - SVN Rev 6346

Chapter 2. Keyword Instructions

During execution of an internal routine, all variables previously known are generally accessible.
However, the PROCEDURE instruction can set up a local variables environment to protect the
subroutine and caller from each other. The EXPOSE option on the PROCEDURE instruction can expose
selected variables to a routine.

Calling an external program or routine defined with a ::ROUTINE directive is similar to calling an
internal routine. The external routine, however, is an implicit PROCEDURE in that all the caller’s
variables are always hidden. The status of internal values, for example NUMERIC settings, start with
their defaults (rather than inheriting those of the caller). In addition, you can use EXIT to return from the
routine.

‘When control reaches an internal routine, the line number of the CALL instruction is available in the
variable SIGL (in the caller’s variable environment). This can be used as a debug aid because it is
possible to find out how control reached a routine. Note that if the internal routine uses the
PROCEDURE instruction, it needs to EXPOSE SIGL to get access to the line number of the CALL.

After the subroutine processed the RETURN instruction, control returns to the clause following the
original CALL. If the RETURN instruction specified an expression, the variable RESULT is set to the
value of that expression. Otherwise, the variable RESULT is dropped (becomes uninitialized).

An internal routine can include calls to other internal routines, as well as recursive calls to itself.

Example:

/* Recursive subroutine execution... */

arg z

call factorial z

say z"! =" result

exit

factorial: procedure /* Calculate factorial by */
arg n /* recursive invocation. */

if n=0 then return 1
call factorial n-1
return result * n

During internal subroutine (and function) execution, all important pieces of information are
automatically saved and then restored upon return from the routine. These are:

« The status of loops and other structures: Executing a SIGNAL within a subroutine is safe because
loops and other structures that were active when the subroutine was called are not ended. However,
those currently active within the subroutine are ended.

« Trace action: After a subroutine is debugged, you can insert a TRACE Off at the beginning of it
without affecting the tracing of the caller. If you want to debug a subroutine, you can insert a TRACE
Results at the start and tracing is automatically restored to the conditions at entry (for example, Off)
upon return. Similarly, ? (interactive debug) is saved across routines.

+ NUMERIC settings: The DIGITS, FUZZ, and FORM of arithmetic operations (in NUMERIC) are
saved and then restored on return. A subroutine can, therefore, set the precision, for example, that it
needs to use without affecting the caller.

+ ADDRESS settings: The current and previous destinations for commands (see ADDRESS) are saved
and then restored on return.

Draft - SVN Rev 6346 44 ooRexx Reference Version 4.1.0

Chapter 2. Keyword Instructions

« Condition traps: CALL ON and SIGNAL ON are saved and then restored on return. This means that
CALL ON, CALL OFF, SIGNAL ON, and SIGNAL OFF can be used in a subroutine without
affecting the conditions the caller set up.

+ Condition information: This information describes the state and origin of the current trapped
condition. The CONDITION built-in function returns this information. See CONDITION.

+ .RS value: The value of the .RS environment symbol. (See .RS.)

» Elapsed-time clocks: A subroutine inherits the elapsed-time clock from its caller (see TIME), but
because the time clock is saved across routine calls, a subroutine or internal function can
independently restart and use the clock without affecting its caller. For the same reason, a clock started
within an internal routine is not available to the caller.

2.4.DO

>>-D0---+ +==+ -

+-—+ - +-—y >

3

+-LABEL--name-+ +-| repetitor |-+ +-| conditional |-+

PR — ——+——END-—+-———— T — ———><
| = + | +--name--+
|V I
+---instruction-—;--+-+

repetitor:

| -—+-controll=expri--+----------- e i +-—+ -- +=+--|

| +-TO--exprt-+

+-BY--exprb-+ +-FOR--exprf-+ |

+-control2--0VER--collection- - - -——+

+-FOREVER- - - - -— -+

+-exprr- -— - —-——+
conditional:

| -—+-WHILE--exprw—+---—--- -=
+-UNTIL--expru-+

DO groups instructions and optionally processes them repetitively. During repetitive execution, a control
variable (controll or control2) can be stepped through some range of values.

Notes:

1. The LABEL phrase, if used, must precede any repetitor or conditional.

2. The exprr, expri, exprb, exprt, and exprf options, if present, are any expressions that evaluate to a
number. The exprr and exprf options are further restricted to result in a positive whole number or
zero. If necessary, the numbers are rounded according to the setting of NUMERIC DIGITS.

3. The exprw or expru options, if present, can be any expression that evaluates to 1 or 0. This includes
the list form of conditional expression supported by IF and WHEN, which is a list of expressions

non

separated by ",". Each subexpression must evaluate to either 0 or 1. The list of expressions is

ooRexx Reference Version 4.1.0

45 Draft - SVN Rev 6346

Chapter 2. Keyword Instructions

evaluated left-to-right. Evaluation will stop with the first 0 result and 0 will be returned as the
condition result. If all of the subexpressions evaluate to 1, then the condition result is also 1.

4. The TO, BY, and FOR phrases can be in any order, if used, and are evaluated in the order in which
they are written.

5. The instruction can be any instruction, including assignments, commands, message instructions, and
keyword instructions (including any of the more complex constructs such as IF, SELECT, and the
DO instruction itself).

6. The subkeywords WHILE and UNTIL are reserved within a DO instruction in that they cannot be
used as symbols in any of the expressions. Similarly, TO, BY, and FOR cannot be used in expri,
exprt, exprb, or exprf. FOREVER is also reserved, but only if it immediately follows the keyword
DO and is not followed by an equal sign.

7. The exprb option defaults to 1, if relevant.

8. The collection can be any expression that evaluates to an object that supports a MAKEARRAY
method. Array and List items return an array with the items in the appropriate order, as do Streams.
Tables, Stems, Directories, etc. are not ordered so the items get placed in the array in no particular
order.

For more information, refer to Using DO and LOOP.

2.5. DROP

>>-DROP----+-name--—+-+--; ——---- ><
+-(name) -+

DROP "unassigns" variables, that is, restores them to their original uninitialized state. If name is not
enclosed in parentheses, it identifies a variable you want to drop and must be a symbol that is a valid
variable name, separated from any other name by one or more whitespace characters or comments.

If parentheses enclose a single name, then its value is used as a subsidiary list of variables to drop.
Whitespace characters are not necessary inside or outside the parentheses, but you can add them if
desired. This subsidiary list must follow the same rules as the original list, that is, be valid character
strings separated by whitespace, except that no parentheses are allowed. The list need not contain any
names—that is, it can be empty.

Variables are dropped from left to right. It is not an error to specify a name more than once or to drop a
variable that is not known. If an exposed variable is named (see EXPOSE and PROCEDURE), then the
original variable is dropped.

Example:

j=4

Drop a z.3 z.j

/* Drops the variables: A, Z.3, and Z.4 */
/* so that reference to them returns their names. */

Here, a variable name in parentheses is used as a subsidiary list.

Draft - SVN Rev 6346 46 ooRexx Reference Version 4.1.0

Chapter 2. Keyword Instructions

Example:

mylist="c d e"

drop (mylist) f

/* Drops the variables C, D, E, and F */
/* Does not drop MYLIST x/

Specifying a stem (that is, a symbol that contains only one period as the last character) assigns the stem
variable to a new, empty stem object.

Example:

Drop =z.
/* Assigns stem variable z. to a new empty stem object */

2.6. EXIT

>>-EXIT--+-———————---— e R ><
+-expression-+

EXIT leaves a program unconditionally. Optionally, EXIT returns a result object to the caller. The
program is stopped immediately, even if an internal routine is being run. If no internal routine is active,
RETURN (see RETURN) and EXIT are identical in their effect on the program running.

If you specify expression, it is evaluated and the object resulting from the evaluation is passed back to the
caller when the program stops.

Example:

j=3
Exit j*4
/* Would exit with the string "12" x/

If you do not specify expression, no data is passed back to the caller. If the program was called as a
function, this is detected as an error.

You can also use EXIT within a method. The method is stopped immediately, and the result object, if
specified, is returned to the sender. If the method has previously issued a REPLY instruction (see
REPLY), the EXIT instruction must not include a result expression.

Notes:

1. If the program was called through a command interface, an attempt is made to convert the returned
value to a return code acceptable by the underlying operating system. The returned string must be a
whole number whose value fits in a 16-bit signed integer (within the range -(2**15) to (2¥*15-1). If
the conversion fails, no error is raised, and a return code of 0 is returned.

2. If you do not specify EXIT, EXIT is implied at the end of the program, but no result value is
returned.

3. On Unix/Linux systems the returned value is limited to a numerical value between 0 and 255 (an
unsigned byte).

ooRexx Reference Version 4.1.0 47 Draft - SVN Rev 6346

Chapter 2. Keyword Instructions

2.7. EXPOSE

>>-EXPOSE----+-name---+-+--; ——-= - - - ><
+-(name) -+

EXPOSE causes the object variables identified in name to be exposed to a method. References to
exposed variables, including assigning and dropping, access variables in the current object’s variable
pool. (An object variable pool is a collection of variables that is associated with an object rather than
with any individual method.) Therefore, the values of existing variables are accessible, and any changes
are persistent even after RETURN or EXIT from the method.

Any changes a method makes to an object variable pool are immediately visible to any other methods
that share the same object variable scope. All other variables that a method uses are local to the method
and are dropped on RETURN or EXIT. If an EXPOSE instruction is included, it must be the first
instruction of the method.

If parentheses enclose a single name, then, after the variable name is exposed, the character string value
of name is immediately used as a subsidiary list of variables. Whitespace characters are not necessary
inside or outside the parentheses, but you can add them if desired. This subsidiary list must follow the
same rules as the original list, that is, valid variable names separated by whitespace characters, except
that no parentheses are allowed.

Variables are exposed in sequence from left to right. It is not an error to specify a name more than once,
or to specify a name that has not been used as a variable.

Example:

/* Example of exposing object variables */

myobj = .myclass"new
myobj~c
myobj~d /* Would display "Z is: 120" */
::class myclass /* The ::CLASS directive x/
/* (see ::CLASS) */
: :method c /* The ::METHOD directive */
/* (see ::METHOD) */
expose z
z = 100 /* Would assign 100 to the object variable z */
return
::method d
expose z
z=z+20 /* Would add 20 to the same object variable z */

say "Z is:" z
return

You can expose an entire collection of compound variables (see Compound Symbols) by specifying their
stem in the variable list or a subsidiary list. The variables are exposed for all operations.

Example:

expose j k c. d.

Draft - SVN Rev 6346 48 ooRexx Reference Version 4.1.0

Chapter 2. Keyword Instructions

/* This exposes "J", "K", and all variables whose */
/* name starts with "C." or "D." */
c.1="7." /* This sets "C.1" in the object */
/* variable pool, even if it did not */
/* previously exist. */

2.8. FORWARD

>>-FORWARD-—+---------- e e N
+-CONTINUE-+ +-ARGUMENTS--expra------- +
| o, mm——m + |
| \ | |
+-ARRAY--(-——-expri-+--)-+

So—t—- ————4— - —tm o dommm ><
+-MESSAGE--exprm-+ +-CLASS--exprs-+ +-TO--exprt-+

Note: You can specify the options in any order.

FORWARD forwards the message that caused the currently active method to begin running. The
FORWARD instruction can change parts of the forwarded message, such as the target object, the
message name, the arguments, and the superclass override.

If you specify the TO option, the language processor evaluates exprt to produce a new target object for
the forwarded message. The exprt is a literal string, constant symbol, or expression enclosed in
parentheses. If you do not specify the TO option, the initial value of the Rexx special variable SELF is
used.

If you specify the ARGUMENTS option, the language processor evaluates expra to produce an array
object that supplies the set of arguments for the forwarded message. The expra can be a literal string,
constant symbol, or expression enclosed in parentheses. The ARGUMENTS value must evaluate to a
Rexx array object.

If you specify the ARRAY option, each expri is an expression (use commas to separate the expressions).
The language processor evaluates the expression list to produce a set of arguments for the forwarded
message. It is an error to use both the ARRAY and the ARGUMENTS options on the same FORWARD
instruction.

If you specify neither ARGUMENTS nor ARRAY, the language processor uses the same arguments
specified on the original method call.

If you specify the MESSAGE option, the exprm is a literal string, a constant symbol, or an expression
enclosed in parentheses. If you specify an expression enclosed in parentheses, the language processor
evaluates the expression to obtain its value. The uppercase character string value of the MESSAGE
option is the name of the message that the FORWARD instruction issues.

If you do not specify MESSAGE, FORWARD uses the message name used to call the currently active
method.

ooRexx Reference Version 4.1.0 49 Draft - SVN Rev 6346

Chapter 2. Keyword Instructions

If you specify the CLASS option, the exprs is a literal string, a constant symbol, or an expression
enclosed in parentheses. This is the class object used as a superclass specifier on the forwarded message.

If you do not specify CLASS, the message is forwarded without a superclass override.

If you do not specify the CONTINUE option, the language processor immediately exits the current
method before forwarding the message. Results returned from the forwarded message are the return
value from the original message that called the active method (the caller of the method that issued the
FORWARD instruction). Any conditions the forwarded message raises are raised in the calling program
(without raising a condition in the method issuing the FORWARD instruction).

If you specify the CONTINUE option, the current method does not exit and continues with the next
instruction when the forwarded message completes. If the forwarded message returns a result, the
language processor assigns it to the special variable RESULT. If the message does not return a result, the
language processor drops (uninitializes) the variable RESULT.

The FORWARD instruction passes all or part of an existing message invocation to another method. For
example, the FORWARD instruction can forward a message to a different target object, using the same
message name and arguments.

Example:

::method substr
forward to (self”string) /* Forward to the string value */

You can use FORWARD in an UNKNOWN method to reissue to another object the message that the
UNKNOWN method traps.

Example:

::method unknown
use arg msg, args
/* Forward to the string value */
/* passing along the arguments */
forward to (self”string) message (msg) arguments (args)

You can use FORWARD in a method to forward a message to a superclass’s methods, passing the same
arguments. This is very common usage in object INIT methods.

Example:

::class savings subclass account

::method init
expose type penalty
forward class (super) continue /* Send to the superclass */
type = "Savings" /* Now complete initialization */
penalty = "1, for balance under 500"

In the preceding example, the CONTINUE option causes the FORWARD message to continue with the
next instruction, rather than exiting the Savings class INIT method.

Draft - SVN Rev 6346 50 ooRexx Reference Version 4.1.0

Chapter 2. Keyword Instructions

2.9. GUARD

>>-GUARD-—+-0N-—+-=—=—===—————————— e ><
| +-WHEN--expression-+ |
+-0FF——+——————————— o +—+

+-WHEN--expression-+

GUARD controls a method’s exclusive access to an object.

GUARD ON acquires for an active method exclusive use of its object variable pool. This prevents other
methods that also require exclusive use of the same variable pool from running on the same object. If
another method has already acquired exclusive access, the GUARD instruction causes the issuing
method to wait until the variable pool is available.

GUARD OFF releases exclusive use of the object variable pool. Other methods that require exclusive use
of the same variable pool can begin running.

If you specify WHEN, the method delays running until the expression evaluates to 1 (true). If the
expression evaluates to 0 (false), GUARD waits until another method assigns or drops an object variable
(that is, a variable named on an EXPOSE instruction) used in the WHEN expression. When an object
variable changes, GUARD reevaluates the WHEN expression. If the expression evaluates to true, the
method resumes running. If the expression evaluates to false, GUARD resumes waiting.

Example:

::method c
expose y
if y>0 then
return 1
else
return 0
::method d
expose z
guard on when z>0
self”c /* Reevaluated when Z changes */
say "Method D"

If you specify WHEN and the method has exclusive access to the object’s variable pool, then the
exclusive access is released while GUARD is waiting for an object variable to change. Exclusive access
is reacquired before the WHEN expression is evaluated. Once the WHEN expression evaluates to 1
(true), exclusive access is either retained (for GUARD ON WHEN) or released (for GUARD OFF
WHEN), and the method resumes running.

Note: If the condition expression cannot be met, GUARD ON WHEN puts the program in a
continuous wait condition. This can occur in particular when several activities run concurrently. See
Guarded Methods for more information.

ooRexx Reference Version 4.1.0 51 Draft - SVN Rev 6346

Chapter 2. Keyword Instructions

2.10.IF

>>-IF--expression-—+--—+--THEN--+---+--instruction-------------- >
+-; -+ +-; -+
>——t-- ittt bttt +- - - - ><
+-ELSE-—-+--—-+--instruction-+
+=; =+

IF conditionally processes an instruction or group of instructions depending on the evaluation of the
expression. The expression is evaluated and must result in 0 or 1.

The instruction after the THEN is processed only if the result is 1 (true). If you specify an ELSE, the
instruction after ELSE is processed only if the result of the evaluation is 0 (false).

Example:

if answer="YES" then say "OK!"
else say "Why not?"

Remember that if the ELSE clause is on the same line as the last clause of the THEN part, you need a
semicolon before ELSE.

Example:

if answer="YES" then say "OK!"; else say "Why not?"

ELSE binds to the nearest IF at the same level. You can use the NOP instruction to eliminate errors and
possible confusion when IF constructs are nested, as in the following example.

Example:

If answer = "YES" Then
If name = "FRED" Then
say "OK, Fred."
Else
nop
Else
say "Why not?"

The expression may also be a list of expressions separated by ",". Each subexpression must evaluate to
either 0 or 1. The list of expressions is evaluated left-to-right. Evaluation will stop with the first 0 result
and 0 will be returned as the condition result. If all of the subexpressions evaluate to 1, then the condition
result is also 1.

Example:

If answer~datatype(’w’), answer//2 = O Then
say answer "is even"

Else
say answer "is odd"

The example above is not the same as using the following

If answer~datatype(’w’) & answer//2 = O Then

Draft - SVN Rev 6346 52 ooRexx Reference Version 4.1.0

Chapter 2. Keyword Instructions

say answer "is even"
Else
say answer "is odd"

The logical & operator will evaluate both terms of the operation, so the term "answer//2" will result in a
syntax error if answer is a non-numeric value. With the list conditional form, evaluation will stop with
the first false result, so the "answer//2" term will not be evaluated if the datatype test returns 0.

Notes:

1. The instruction can be any assignment, message instruction, command, or keyword instruction,
including any of the more complex constructs such as DO, LOOP, SELECT, or the IF instruction
itself. A null clause is not an instruction, so putting an extra semicolon (or label) after THEN or
ELSE is not equivalent to putting a dummy instruction (as it would be in C). The NOP instruction is
provided for this purpose.

2. The symbol THEN cannot be used within expression, because the keyword THEN is treated
differently in that it need not start a clause. This allows the expression on the IF clause to be ended
by THEN, without a semicolon (;) being required.

2.11. INTERPRET

>>-INTERPRET--expression--;----- - - ><

INTERPRET processes instructions that have been built dynamically by evaluating expression.

The expression is evaluated to produce a character string, and is then processed (interpreted) just as
though the resulting string were a line inserted into the program and bracketed by a DO; and an END:;,.

Any instructions (including INTERPRET instructions) are allowed, but note that constructions such as
DO...END and SELECT...END must be complete. For example, a string of instructions being interpreted
cannot contain a LEAVE or ITERATE instruction (valid only within a repetitive loop) unless it also
contains the whole repetitive DO...END or LOOP...END construct.

A semicolon is implied at the end of the expression during execution, if one was not supplied.

Examples:

/* INTERPRET example */

data="FRED"

interpret data "= 4"

/* Builds the string "FRED = 4" and */
/* Processes: FRED = 4; */
/* Thus the variable FRED is set to "4" */

/* Another INTERPRET example */
data="do 3; say "Hello there!"; end"

interpret data /* Displays: */
/* Hello there! */
/* Hello there! */
/* Hello there! */

ooRexx Reference Version 4.1.0 53 Draft - SVN Rev 6346

Chapter 2. Keyword Instructions

Notes:

1. Labels within the interpreted string are not permanent and are, therefore, an error.

2. Executing the INTERPRET instruction with TRACE R or TRACE I can be helpful in interpreting the
results you get.

Example:

/* Here is a small Rexx program. */
Trace Int

name="Kitty"

indirect="name"

interpret 'say "Hello"' indirect'"!"'

When this is run, you get the following trace:

3 *-* name="Kitty"
>L> "Kitty"
>>> "Kitty"
4 x-x indirect="name"
>L> "name"
>>> "name"
5 *-* interpret ’say "Hello"’ indirect’"!"’
>L> "say "Hello""
>V> INDIRECT => "name"

>0> " " => "say "Hello" name"
>L> nn ! nn

>0> """ => "say "Hello" name"!""
>>> llsay IIHelloll namel! | nn

5 *-* say "Hello" name"!"
>L> "Hello"
>V> NAME => "Kitty"

>0> " " => "Hello Kitty"
SL> npn
>0> "" => "Hello Kitty!"

>>> "Hello Kitty!"
Hello Kitty!

Lines 3 and 4 set the variables used in line 5. Execution of line 5 then proceeds in two stages. First
the string to be interpreted is built up, using a literal string, a variable (INDIRECT), and another literal
string. The resulting pure character string is then interpreted, just as though it were actually part of
the original program. Because it is a new clause, it is traced as such (the second *-* trace flag under
line 5) and is then processed. Again a literal string is concatenated to the value of a variable (NAME)
and another literal, and the final result (Hello Kitty!) is then displayed.

3. For many purposes, you can use the VALUE function (see VALUE) instead of the INTERPRET
instruction. The following line could, therefore, have replaced line 5 in the previous example:

say "Hello" value(indirect)"!"

INTERPRET is usually required only in special cases, such as when two or more statements are to
be interpreted together, or when an expression is to be evaluated dynamically.

4. You cannot use a directive (see Directives) within an INTERPRET instruction.

Draft - SVN Rev 6346 54 ooRexx Reference Version 4.1.0

Chapter 2. Keyword Instructions

2.12. ITERATE

>>-ITERATE-—+-—————+-—; —- - - - ><
+-name-+

ITERATE alters the flow within a repetitive loop (that is, any DO construct other than that with a simple
DO or a LOOP instruction).

Execution of the group of instructions stops, and control is passed to the DO or LOOP instruction just as
though the END clause had been encountered. The control variable, if any, is incremented and tested, as
usual, and the group of instructions is processed again, unless the DO or LOOP instruction ends the loop.

The name is a symbol, taken as a constant. If name is not specified, ITERATE continues with the current
repetitive loop. If name is specified, it must be the name of the control variable or the LABEL name of a
currently active loop, which can be the innermost, and this is the loop that is stepped. Any active loops
inside the one selected for iteration are ended (as though by a LEAVE instruction).

Example:

loop label MyLabelName i=1 to 4 /* label set to ’MYLABELNAME’ */
if i=2 then iterate
say 1

end myLabelName

/* Displays the numbers:
1

4
*/

Notes:

1. If specified, name must match the symbol naming the control variable or LABEL name in the DO or
LOOP clause in all respects except the case. No substitution for compound variables is carried out
when the comparison is made.

2. A loop is active if it is currently being processed. If a subroutine is called, or an INTERPRET
instruction is processed, during the execution of a loop, the loop becomes inactive until the
subroutine has returned or the INTERPRET instruction has completed. ITERATE cannot be used to
continue with an inactive loop.

3. If more than one active loop uses the same name, ITERATE selects the innermost loop.

2.13. LEAVE

>>-LEAVE-—+------ oy -- -- -- ><
+-name-+

LEAVE causes an immediate exit from one or more repetitive loops or block instruction (simple DO or
SELECT).

Processing of the group of instructions is ended, and control is passed to the instruction following the
END clause, just as though the END clause had been encountered and the termination condition had

ooRexx Reference Version 4.1.0 55 Draft - SVN Rev 6346

Chapter 2. Keyword Instructions

been met. However, on exit, the control variable, if any, contains the value it had when the LEAVE
instruction was processed.

The name is a symbol, taken as a constant. If name is not specified, LEAVE ends the innermost active
repetitive loop. If name is specified, it must be the name of the control variable or LABEL name of a
currently active LOOP, DO, or SELECT, which can be the innermost, and that block, and any active
block inside it, are then ended. Control then passes to the clause following the END that matches the
instruction of the selected block.

Example:

max=>5
do label myDoBlock /* define a label ’MYDOBLOCK’ */
loop i=1 to max /* label defaults to control variable ’I’ */
if i = 2 then iterate i
if i = 4 the leave myDoBlock
say i
end i
say ’after looping’ max ’times’
end myDoBlock
/* Displays the following
1
3
after looping 4 times

*/

Notes:

1. If specified, name must match the symbol naming the control variable or LABEL name in the DO,
LOOP, or SELECT clause in all respects except the case. No substitution for compound variables is
carried out when the comparison is made.

2. A loop is active if it is currently being processed. If a subroutine is called, or an INTERPRET
instruction is processed, during execution of a loop, the loop becomes inactive until the subroutine
has returned or the INTERPRET instruction has completed. LEAVE cannot be used to end an
inactive block.

3. If more than one active block uses the same control variable, LEAVE selects the innermost block.

2.14. LOOP

>>-L00P--+-———————————— PR S S S
+-LABEL--name-+ +-| repetitor |-+ +-| conditional |-+

>o—t—— +=—END-—+-——————— e R e e e ><
| #=—mmm + | +--name--+
| v [
+---instruction--;-+-+

repetitor:

| -—+-controll=expri--+----------- e +-—+ - +—+

Draft - SVN Rev 6346 56 ooRexx Reference Version 4.1.0

Chapter 2. Keyword Instructions

| +-TO0--exprt-+ +-BY--exprb-+ +-FOR--exprf-+ |

+-control2--0VER--collection- - -—=+

+-FOREVER-——----——---- - —————— - -——+

+-exprr- - - -——+
conditional:

| -=+-WHILE--exprw-+-----=---=-—=——=——-——-———— -- -- -
+-UNTIL--expru-+

LOOP groups instructions and processes them repetitively. During repetitive execution, a control
variable (controll or control2) can be stepped through some range of values.

Notes:

1. The LABEL phrase, if used, must precede any repetitor or conditional.

2. The exprr, expri, exprb, exprt, and exprf options, if present, are any expressions that evaluate to a
number. The exprr and exprf options are further restricted to result in a positive whole number or
zero. If necessary, the numbers are rounded according to the setting of NUMERIC DIGITS.

3. The exprw or expru options, if present, can be any expression that evaluates to 1 or 0. This includes
the list form of conditional expression supported by IF and WHEN, which is a list of expressions
separated by ",". Each subexpression must evaluate to either 0 or 1. The list of expressions is
evaluated left-to-right. Evaluation will stop with the first 0 result and 0 will be returned as the

condition result. If all of the subexpressions evaluate to 1, then the condition result is also 1.

4. The TO, BY, and FOR phrases can be in any order, if used, and are evaluated in the order in which
they are written.

5. The instruction can be any instruction, including assignments, commands, message instructions, and
keyword instructions (including any of the more complex constructs such as IF, SELECT, and the
LOOP instruction itself).

6. The subkeywords WHILE and UNTIL are reserved within a LOOP instruction in that they cannot be
used as symbols in any of the expressions. Similarly, TO, BY, and FOR cannot be used in expri,
exprt, exprb, or exprf. FOREVER is also reserved, but only if it immediately follows the keyword
LOOP and is not followed by an equal sign.

7. The exprb option defaults to 1, if relevant.

8. The collection can be any expression that evaluates to an object that supports a MAKEARRAY
method. Array and List items return an array with the items in the appropriate order, as do Streams.
Tables, Stems, Directories, etc. are not ordered so the items get placed in the array in no particular
order.

For more information, refer to Using DO and LOOP.

2.15. NOP

>>-NOP;---- -- ><

NOP is a dummy instruction that has no effect. It can be useful as the target of a THEN or ELSE clause.

ooRexx Reference Version 4.1.0 57 Draft - SVN Rev 6346

Chapter 2. Keyword Instructions

Example:

Select
when a=c then nop /* Do nothing */
when a>c then say "A > C"
otherwise say "A < C"

end

Note: Putting an extra semicolon instead of the NOP would merely insert a null clause, which would
be ignored. The second WHEN clause would be seen as the first instruction expected after the
THEN, and would, therefore, be treated as a syntax error. NOP is a true instruction, however, and is,
therefore, a valid target for the THEN clause.

2.16. NUMERIC

>>-NUMERIC--+-DIGITS-—+-- 4 e ><
| +-expressionl-+ |
| +-SCIENTIFIC----------=-- +
+-FORM-—+---- e +=+
| +-ENGINEERING-----------— +
| Fotmm oo +--expression2-+ |
| +-VALUE-+ |
+-FUZZ-—+===—=—————=—— Hmmm e +

+-expression3-+

NUMERIC changes the way in which a program carries out arithmetic operations. The options of this
instruction are described in detail in Numbers and Arithmetic.

NUMERIC DIGITS

controls the precision to which arithmetic operations and built-in functions are evaluated. If you
omit expressionl, the precision defaults to 9 digits, but can be overridden on a source-file basis
using the ::OPTIONS directive. Otherwise, the character string value result of expressionl must
evaluate to a positive whole number and must be larger than the current NUMERIC FUZZ setting.

There is no limit to the value for DIGITS (except the amount of storage available), but high
precisions are likely to require a great amount of processing time. It is recommended that you use
the default value whenever possible.

You can retrieve the current NUMERIC DIGITS setting with the DIGITS built-in function. See
DIGITS.

NUMERIC FORM

controls the form of exponential notation for the result of arithmetic operations and built-in
functions. This can be either SCIENTIFIC (in which case only one, nonzero digit appears before the
decimal point) or ENGINEERING (in which case the power of 10 is always a multiple of 3). The
default is SCIENTIFIC. The subkeywords SCIENTIFIC or ENGINEERING set the FORM directly,
or it is taken from the character string result of evaluating the expression (expression2) that follows

Draft - SVN Rev 6346 58 ooRexx Reference Version 4.1.0

Chapter 2. Keyword Instructions

VALUE. The result in this case must be either SCIENTIFIC or ENGINEERING. You can omit the
subkeyword VALUE if expression2 does not begin with a symbol or a literal string, that is, if it
starts with a special character, such as an operator character or parenthesis.

You can retrieve the current NUMERIC FORM setting with the FORM built-in function. See
FORM.

NUMERIC FUZZ

controls how many digits, at full precision, are ignored during a numeric comparison operation.
(See Numeric Comparisons.) If you omit expression3, the default is 0 digits. Otherwise, the
character string value result of expression3 must evaluate to 0 or a positive whole number rounded,
if necessary, according to the current NUMERIC DIGITS setting, and must be smaller than the
current NUMERIC DIGITS setting.

NUMERIC FUZZ temporarily reduces the value of NUMERIC DIGITS by the NUMERIC FUZZ
value during every numeric comparison. The numbers are subtracted under a precision of DIGITS
minus FUZZ digits during the comparison and are then compared with 0.

You can retrieve the current NUMERIC FUZZ setting with the FUZZ built-in function. See FUZZ.

Note: The three numeric settings are automatically saved across internal subroutine and function
calls. See the CALL instruction (CALL) for more details.

2.17. OPTIONS

>>-0PTIONS--+-—-————————— el — - N
+-expression-+

The OPTIONS instruction is used to pass special requests to the language processor.

The expression is evaluated, and individual words in the result that are meaningful to the language
processor will be obeyed. Optiions might control how the interpreter optimizes code, enforces standards,
enables implementation-dependent features, etc.). Unrecognized words in the result are ignored, since
they are assumed to be instructions for a different language processor.

Open Object Rexx does not recognize any option keywords.

2.18. PARSE

>>-PARSE-—+-—————- +——t——- + - - - ->
+-UPPER-+ +-CASELESS-+
+-LOWER-+
>-—+-ARG--- - e e ettt Fo— ><
+-LINEIN ---+ +-template_list-+
+-PULL-- -- -——+
+-SOURCE-- - -——+

ooRexx Reference Version 4.1.0 59 Draft - SVN Rev 6346

Chapter 2. Keyword Instructions

+-VALUE-—+-----------~- +--WITH-+
| +-expression—+ |
+-VAR--name---------————--———- +
+-VERSION -———+

Note: You can specify UPPER and CASELESS or LOWER and CASELESS in either order.

PARSE assigns data from various sources to one or more variables according to the rules of parsing. (See
Parsing.)

If you specify UPPER, the strings to be parsed are translated to uppercase before parsing. If you specify
LOWER, the strings are translated to lowercase. Otherwise no translation takes place.

If you specify CASELESS, character string matches during parsing are made independent of the case.
This means a letter in uppercase is equal to the same letter in lowercase.

The template_list can be a single template or list of templates separated by commas. Each template
consists of one or more symbols separated by whitespace, patterns, or both.

Each template is applied to a single source string. Specifying several templates is not a syntax error, but
only the PARSE ARG variant can supply more than one non-null source string. See Parsing Several
Strings for information on parsing several source strings.

If you do not specify a template, no variables are set but the data is prepared for parsing, if necessary.
Thus for PARSE PULL, a data string is removed from the current data queue, for PARSE LINEIN (and
PARSE PULL if the queue is empty), a line is taken from the default input stream, and for PARSE
VALUE, expression is evaluated. For PARSE VAR, the specified variable is accessed. If it does not have
a value, the NOVALUE condition is raised, if it is enabled.

The following list describes the data for each variant of the PARSE instruction.

PARSE ARG

parses the strings passed to a program, routine, or method as input arguments. (See the ARG
instruction in ARG for details and examples.)

Note: Parsing uses the string values of the argument objects. The USE ARG instruction provides
direct access to argument objects. You can also retrieve or check the argument objects to a
Rexx program, routine, or method with the ARG built-in function (see ARG (Argument)).

PARSE LINEIN

parses the next line of the default input stream. (See Input and Output Streams for a discussion of
Rexx input and output.) PARSE LINEIN is a shorter form of the following instruction:

>>-PARSE VALUE LINEIN() WITH--+- ————t-=; - - -><
+-template_list-+

If no line is available, program execution usually pauses until a line is complete. Use PARSE
LINEIN only when direct access to the character input stream is necessary. Use the PULL or

Draft - SVN Rev 6346 60 ooRexx Reference Version 4.1.0

Chapter 2. Keyword Instructions

PARSE PULL instructions for the usual line-by-line dialog with the user to maintain generality.
PARSE LINEIN will not pull lines from the external data queue.

To check if any lines are available in the default input stream, use the built-in function LINES. See
LINES (Lines Remaining) and LINEIN (Line Input).

PARSE PULL

parses the next string of the external data queue. If the external data queue is empty, PARSE PULL
reads a line of the default input stream (the user’s terminal), and the program pauses, if necessary,
until a line is complete. You can add data to the head or tail of the queue by using the PUSH and
QUEUE instructions, respectively. You can find the number of lines currently in the queue with the
QUEUED built-in function. (See QUEUED.) The queue remains active as long as the language
processor is active. Other programs in the system can alter the queue and use it to communicate
with programs written in Rexx. See also the PULL instruction in PULL.

Note: PULL and PARSE PULL read the current data queue. If the queue is empty, they read the
default input stream, .INPUT (typically, the keyboard).

PARSE SOURCE

parses data describing the source of the program running. The language processor returns a string
that does not change while the program is running.

The source string contains operating system name, followed by either COMMAND, FUNCTION,
SUBROUTINE, or METHOD, depending on whether the program was called as a host command or from a
function call in an expression or using the CALL instruction or as a method of an object. These two
tokens are followed by the complete path specification of the program file.

The string parsed might, therefore, look like this:
WindowsNT COMMAND C:\MYDIR\RexxTRY.CMD
or

LINUX COMMAND /opt/orexx/bin/rexxtry.cmd

PARSE VALUE

parses the data, a character string, that is the result of evaluating expression. If you specify no
expression, the null string is used. Note that WITH is a subkeyword in this context and cannot be
used as a symbol within expression.

Thus, for example:
PARSE VALUE time() WITH hours ":" mins ":" secs

gets the current time and splits it into its constituent parts.

PARSE VAR name

parses the character string value of the variable name. The name must be a symbol that is valid as a
variable name, which means it cannot start with a period or a digit. Note that the variable name is
not changed unless it appears in the template, so that, for example:

ooRexx Reference Version 4.1.0 61 Draft - SVN Rev 6346

Chapter 2. Keyword Instructions

PARSE VAR string wordl string

removes the first word from string, puts it in the variable wordl, and assigns the remainder back to
string.

PARSE UPPER VAR string wordl string

also translates the data from string to uppercase before it is parsed.

PARSE VERSION

parses information describing the language level and the date of the language processor. This
information consists of five blank-delimited words:

+ The string REXX-ooRexx
+ The language level description, for example 6.03.

« Three tokens that describe the language processor release date in the same format as the default
for the DATE built-in function (see DATE), for example, "27 Sep 2007".

2.19. PROCEDURE

>>-PROCEDURE--

+

|

| v I

+-EXPOSE----+-name---+-+-+
+-(name) -+

PROCEDURE, within an internal routine (subroutine or function), protects the caller’s variables by
making them unknown to the instructions that follow it. After a RETURN instruction is processed, the
original variable environment is restored and any variables used in the routine (that were not exposed)
are dropped. (An exposed variable is one belonging the caller of a routine that the PROCEDURE
instruction has exposed. When the routine refers to, or alters, the variable, the original (caller’s) copy of
the variable is used.) An internal routine need not include a PROCEDURE instruction. In this case the
variables it is manipulating are those the caller owns. If the PROCEDURE instruction is used, it must be
the first instruction processed after the CALL or function invocation; that is, it must be the first
instruction following the label.

If you use the EXPOSE option, any variable specified by the name is exposed. Any reference to it
(including setting and dropping) is made to the variables environment the caller owns. Hence, the values
of existing variables are accessible, and any changes are persistent even on RETURN from the routine. If
the name is not enclosed in parentheses, it identifies a variable you want to expose and must be a symbol
that is a valid variable name, separated from any other name with one or more whitespace characters.

If parentheses enclose a single name, then, after the variable name is exposed, the character string value
of name is immediately used as a subsidiary list of variables. Whitespace characters are not necessary
inside or outside the parentheses, but you can add them if desired. This subsidiary list must follow the
same rules as the original list, that is, valid variable names separated by whitespace characters, except
that no parentheses are allowed.

Variables are exposed from left to right. It is not an error to specify a name more than once, or to specify
a name that the caller has not used as a variable.

Draft - SVN Rev 6346 62 ooRexx Reference Version 4.1.0

Chapter 2. Keyword Instructions

Any variables in the main program that are not exposed are still protected. Therefore, some of the caller’s
variables can be made accessible and can be changed, or new variables can be created. All these changes
are visible to the caller upon RETURN from the routine.

Example:

/* This is the main Rexx program */

j=1; z.1="a"

call toft

say j km /* Displays "1 7 M" x/

exit

/* This is a subroutine */

toft: procedure expose j k z.j
say j k z.j /* Displays "1 K a" x/
k=7; m=3 /* Note: M is not exposed x/
return

Note that if z. J in the EXPOSE list is placed before J, the caller’s value of J is not visible, so Z.1 is not
exposed.

The variables in a subsidiary list are also exposed from left to right.

Example:

/* This is the main Rexx program */
j=1;k=6;m=9

a="j km"

call test

exit

/* This is a subroutine */

test: procedure expose (a) /* Exposes A, J, K, and M x/
say a j km /* Displays "j km 1 6 9" */
return

You can use subsidiary lists to more easily expose a number of variables at a time or, with the VALUE
built-in function, to manipulate dynamically named variables.

Example:

/* This is the main Rexx program */
c=11; d=12; e=13

Showlist="c 4" /* but not E */

call Playvars

say c d e f /* Displays "11 New 13 9" x/

exit

/* This is a subroutine */

Playvars: procedure expose (showlist) f
say word(showlist,2) /* Displays "d" */
say value(word(showlist,2),"New") /* Displays "12" and sets new value */
say value(word(showlist,2)) /* Displays "New" */
e=8 /* E is not exposed */
£=9 /* F was explicitly exposed */

ooRexx Reference Version 4.1.0 63 Draft - SVN Rev 6346

Chapter 2. Keyword Instructions
return

Specifying a stem as name exposes this stem and all possible compound variables whose names begin
with that stem. (See .)

Example:

/* This is the main Rexx program */
a.=11; i=13; j=15

i=1+1

C.5 = "FRED"

call lucky7

say a. a.1 1 j c. c.b

say "You should see 11 7 14 15 C. FRED"
exit

lucky7:Procedure Expose i j a. c.

/* This exposes I, J, and all variables whose */
/* names start with A. or C. */
A.1="7" /x This sets A.1 in the caller-'s */
/* environment, even if it did not */
/* previously exist. */
return

Note: Variables can be exposed through several generations of routines if they are included in all
intermediate PROCEDURE instructions.

See the CALL instruction and function descriptions in CALL and Functions for details and examples of
how routines are called.

2.20. PULL

>>-PULL--+-===———======—— R -- -- ><
+-template_list-+

PULL reads a string from the head of the external data queue or, if the external data queue is empty, from
the standard input stream (typically the keyboard). (See Input and Output Streams for a discussion of
Rexx input and output.) It is a short form of the following instruction:

>>-PARSE UPPER PULL--+--- - oy ><
+-template_list-+

The current head of the queue is read as one string. Without a template_list specified, no further action is
taken and the string is thus effectively discarded. The template_list can be a single template or list of
templates separated by commas, but PULL parses only one source string. Each template consists of one
or more symbols separated by whitespace, patterns, or both.

If you specify several comma-separated templates, variables in templates other than the first one are
assigned the null string. The string is translated to uppercase (that is, lowercase a-z to uppercase A-Z) and

Draft - SVN Rev 6346 64 ooRexx Reference Version 4.1.0

Chapter 2. Keyword Instructions

then parsed into variables according to the rules described in Parsing. Use the PARSE PULL instruction
if you do not desire uppercase translation.

Note: If the current data queue is empty, PULL reads from the standard input (typically, the
keyboard). If there is a PULL from the standard input, the program waits for keyboard input with no
prompt.

Example:

Say "Do you want to erase the file? Answer Yes or No:"
Pull answer .
if answer="NO" then say "The file will not be erased."

Here the dummy placeholder, a period (.), is used in the template to isolate the first word the user enters.

If the external data queue is empty, a line is read from the default input stream and the program pauses, if
necessary, until a line is complete. (This is as though PARSE UPPER LINEIN had been processed. See
PARSE LINEIN.)

The QUEUED built-in function (see QUEUED) returns the number of lines currently in the external data
queue.

2.21. PUSH

>>-PUSH--+--—————=-=-= 4oy o ><
+-expression-+

PUSH stacks the string resulting from the evaluation of expression LIFO (Last In, First Out) into the
external data queue. (See Input and Output Streams for a discussion of Rexx input and output.)

If you do not specify expression, a null string is stacked.

Example:
a="Fred"
push /* Puts a null line onto the queue */
push a 2 /* Puts "Fred 2" onto the queue */

The QUEUED built-in function (described in QUEUED) returns the number of lines currently in the
external data queue.

2.22. QUEUE

>>-QUEUE-—+-——-——-——-—- e - - - ><
+-expression-+

ooRexx Reference Version 4.1.0 65 Draft - SVN Rev 6346

Chapter 2. Keyword Instructions

QUEUE appends the string resulting from expression to the tail of the external data queue. That is, it is
added FIFO (First In, First Out). (See Input and Output Streams for a discussion of Rexx input and
output.)

If you do not specify expression, a null string is queued.

Example:

a="Toft"

queue a 2 /* Enqueues "Toft 2" */

queue /* Enqueues a null line behind the last */

The QUEUED built-in function (described in QUEUED) returns the number of lines currently in the
external data queue.

2.23. RAISE

>>-RAISE--+-condition----------—- Rttt Fo— o ><
+-ERROR--errorcode----- + +-| options |-+
+-FAILURE--failurecode-+
+-SYNTAX--number------- +
+-USER--usercondition-—-+
+-PROPAGATE----——------ +
options:
| ——+-- B S o —— >
+-ADDITIONAL--expra------ + +-DESCRIPTION--exprd-+
| e +
| v | |

+-| EXIT |--------—- +
S +- - -
+-RETURN-—+-----—- +-+

+-exprr-+

EXIT:

| -~EXIT-—+- + - - - - -
+-expre-+

Note: You can specify the options ADDITIONAL, ARRAY, DESCRIPTION, RETURN, and EXIT in
any order. However, if you specify EXIT without expre or RETURN without exprr, it must appear last.

RAISE returns or exits from the currently running routine or method and raises a condition in the caller
(for a routine) or sender (for a method). See Conditions and Condition Traps for details of the actions
taken when conditions are raised. The RAISE instruction can raise all conditions that can be trapped.

If you specify condition, it is a single symbol that is taken as a constant.

Draft - SVN Rev 6346 66 ooRexx Reference Version 4.1.0

Chapter 2. Keyword Instructions

If the ERROR or FAILURE condition is raised, you must supply the associated return code as errorcode
or failurecode, respectively. These can be literal strings, constant symbols, or expressions enclosed in
parentheses. If you specify an expression enclosed in parentheses, a subexpression, the language
processor evaluates the expression to obtain its character string value.

If the SYNTAX condition is raised, you must supply the associated Rexx error number as number. This
error number can be either a Rexx major error code or a Rexx detailed error code in the form nn.nnn. The
number can be a literal string, a constant symbol, or an expression enclosed in parentheses. If you
specify an expression enclosed in parentheses, the language processor evaluates the expression to obtain
its character string value.

If a USER condition is raised, you must supply the associated user condition name as usercondition. This
can be a literal string or a symbol that is taken as a constant.

If you specify the ADDITIONAL option, the language processor evaluates expra to produce an object
that supplies additional object information associated with the condition. The expra can be a literal string,
constant symbol, or expression enclosed in parentheses. The ADDITIONAL entry of the condition object
and the "A" option of the CONDITION built-in function return this additional object information. For
SYNTAX conditions, the ADDITIONAL value must evaluate to a single-dimension Rexx array object.

If you specify the ARRAY option, each expri is an expression (use commas to separate the expressions).
The language processor evaluates the expression list to produce an array object that supplies additional
object information associated with the condition. The ADDITIONAL entry of the condition object and
the "A" option of the CONDITION built-in function return this additional object information as an array
of values. It is an error to use both the ARRAY option and the ADDITIONAL option on the same RAISE
Instruction.

The content of expra or expri is used as the contents of the secondary error message produced for a
condition.

If you specify neither ADDITIONAL nor ARRAY, there is no additional object information associated
with the condition.

If you specify the DESCRIPTION option, the exprd can be a literal string, a constant symbol, or an
expression enclosed in parentheses. If you specify an expression enclosed in parentheses, the language
processor evaluates the expression to obtain its character string value. This is the description associated
with the condition. The "D" option of the CONDITION built-in function and the DESCRIPTION entry
of the condition object return this string.

If you do not specify DESCRIPTION, the language processor uses a null string as the descriptive string.

If you specify the RETURN or EXIT option, the language processor evaluates the expression exprr or
expre, respectively, to produce a result object that is passed back to the caller or sender as if it were a
RETURN or EXIT result. The expre or exprr is a literal string, constant symbol, or expression enclosed
in parentheses. If you specify an expression enclosed in parentheses, the language processor evaluates
the expression to obtain its character string value. If you do not specify exprr or expre, no result is passed
back to the caller or sender. In either case, the effect is the same as that of the RETURN or EXIT
instruction (see RETURN). Following the return or exit, the appropriate action is taken in the caller or
sender (see Action Taken when a Condition Is Not Trapped). If specified, the result value can be obtained
from the RESULT entry of the condition object.

Examples:

raise syntax 40 /* Raises syntax error 40 */

ooRexx Reference Version 4.1.0 67 Draft - SVN Rev 6346

Chapter 2. Keyword Instructions

raise syntax 40.12 array (1, number) /* Raises syntax error 40, subcode 12 */
/* Passing two substitution values x/
raise syntax (errnum) /* Uses the value of the variable ERRNUM */
/* as the syntax error number x/
raise user badvalue /* Raises user condition BADVALUE */

If you specify PROPAGATE, and there is a currently trapped condition, this condition is raised again in
the caller (for a routine) or sender (for a method). Any ADDITIONAL, DESCRIPTION, ARRAY,
RETURN, or EXIT information specified on the RAISE instruction replaces the corresponding values
for the currently trapped condition. A SYNTAX error occurs if no condition is currently trapped.

Example:

signal on syntax

a = " XyZ "
c = at2 /* Raises the SYNTAX condition */
exit
syntax:
raise propagate /* Propagates SYNTAX information to caller */

2.24. REPLY

>>-REPLY--+---——————-—- e e ><
+-expression-+

REPLY sends an early reply from a method to its caller. The method issuing REPLY returns control, and
possibly a result, to its caller to the point from which the message was sent; meanwhile, the method
issuing REPLY continues running on a newly created thread.

If you specify expression, it is evaluated and the object resulting from the evaluation is passed back. If
you omit expression, no object is passed back.

Unlike RETURN or EXIT, the method issuing REPLY continues to run after the REPLY until it issues an
EXIT or RETURN instruction. The EXIT or RETURN must not specify a result expression.

Example:

reply 42 /* Returns control and a result x/
call tidyup /* Can run in parallel with sender */
return

Notes:

1. You can use REPLY only in a method.
2. A method can execute only one REPLY instruction.

3. When the method issuing the REPLY instruction is the only active method on the current thread with
exclusive access to the object’s variable pool, the method retains exclusive access on the new thread.

Draft - SVN Rev 6346 68 ooRexx Reference Version 4.1.0

Chapter 2. Keyword Instructions

When other methods on the thread also have access, the method issuing the REPLY releases its
access and reacquires the access on the new thread. This might force the method to wait until the
original activity has released its access.

See Concurrency for a complete description of concurrency.

2.25. RETURN

>>-RETURN--+-——————————— e - - - %
+-expression-+

RETURN returns control, and possibly a result, from a Rexx program, method, or routine to the point of
its invocation.

If no internal routine (subroutine or function) is active, RETURN and EXIT are identical in their effect
on the program that is run. (See EXIT.)

If called as a routine, expression (if any) is evaluated, control is passed back to the caller, and the Rexx
special variable RESULT is set to the value of expression. If you omit expression, the special variable
RESULT is dropped (becomes uninitialized). The various settings saved at the time of the CALL (for
example, tracing and addresses) are also restored. (See CALL.)

If a function call is active, the action taken is identical, except that expression must be specified on the
RETURN instruction. The result of expression is then used in the original expression at the point where
the function was called. See the description of functions in Functions for more details.

If a method is processed, the language processor evaluates expression (if any) and returns control to the
point from which the method’s activating message was sent. If called as a term of an expression,
expression is required. If called as a message instruction, expression is optional and is assigned to the
Rexx special variable RESULT if a return expression is specified. If the method has previously issued a
REPLY instruction, the RETURN instruction must not include a result expression.

If a PROCEDURE instruction was processed within an internal subroutine or internal function, all
variables of the current generation are dropped (and those of the previous generation are exposed) after
expression is evaluated and before the result is used or assigned to RESULT.

Note: If the RETURN statement causes the program to return to the operating system on a
Unix/Linux system the value returned is limited to a numerical value between 0 and 255 (an unsigned
byte). If no expression is supplied then the default value returned to the operating system is zero.

2.26. SAY

>>-SAY-—+--—- ———t—; -- - - - ><
+-expression-+

SAY writes a line to the default output stream, which displays it to the user. However, the output
destination can depend on the implementation. See Input and Output Streams for a discussion of Rexx

ooRexx Reference Version 4.1.0 69 Draft - SVN Rev 6346

Chapter 2. Keyword Instructions

input and output. The string value of the expression result is written to the default character output
stream. The resulting string can be of any length. If you omit expression, the null string is written.

The SAY instruction is a shorter form of the following instruction:

>>-CALL LINEQUT,--+4------------ +-—; - ><
+-expression-+

except that:

» SAY does not affect the special variable RESULT.

« If you use SAY and omit expression, a null string is used.

« CALL LINEOUT can raise NOTREADY; SAY will not.

See LINEOUT (Line Output) for details of the LINEOUT function.

Example:

data=100
Say data "divided by 4 =>" data/4
/* Displays: "100 divided by 4 => 25" */

Notes:

1. Data from the SAY instruction is sent to the default output stream (.OUTPUT). However, the
standard rules for redirecting output apply to the SAY output.

2. The SAY instruction does not format data; the operating system and the hardware handle line
wrapping. However, formatting is accomplished, the output data remains a single logical line.

2.27. SELECT

>>-SELECT--+ +—;-——= -—>
+-LABEL--name-+

4+

+ - -+
v I
>----WHEN--expression--+---+--THEN--+---+--instruction--;-+-—-———->
+=; -+ +-; -+
b T - - —+-END-+-———————+—; =><
+-0THERWISE-—+-—-—+-—+-——-———————ommm - —— +-+ +--name--+
+=;=+ | Hmmmmmmmmmmmeeeo + |
| v I
+---instruction—-;-+-+

SELECT conditionally calls one of several alternative instructions.

Each expression after a WHEN is evaluated in turn and must result in 0 or 1. If the result is 1, the
instruction following the associated THEN (which can be a complex instruction such as IF, DO, LOOP,

Draft - SVN Rev 6346 70 ooRexx Reference Version 4.1.0

Chapter 2. Keyword Instructions

or SELECT) is processed and control is then passed to the END. If the result is 0, control is passed to the
next WHEN clause.

If none of the WHEN expressions evaluates to 1, control is passed to the instructions, if any, after
OTHERWISE. In this situation, the absence of an OTHERWISE produces an error, however, you can
omit the instruction list that follows OTHERWISE.

Example:

balance=100
check=50
balance = balance - check
Select
when balance > O then
say "Congratulations! You still have" balance "dollars left."
when balance = 0 then do
say "Warning, Balance is now zero! STOP all spending."
say "You cut it close this month! Hope you do not have any"
say "checks left outstanding."
end
Otherwise do
say "You have just overdrawn your account."
say "Your balance now shows" balance "dollars."
say "Oops! Hope the bank does not close your account."
end
end /* Select */
/

The expression may also be a list of expressions separated by ",". Each subexpression must evaluate to
either 0 or 1. The list of expressions is evaluated left-to-right. Evaluation will stop with the first 0 result
and 0 will be returned as the condition result. If all of the subexpressions evaluate to 1, then the condition
result is also 1.

Example:
select
when answer~datatype(’w’), answer//2 = 0 Then
say answer "is even"
when answer~datatype(’w’), answer//2 = 1 Then

say answer "is odd"
otherwise
say answer "is not a number"
end

The example above is not the same as using the following

select
when answer~datatype(’w’) & answer//2 = 0 Then
say answer "is even"
when answer~datatype(’w’) & answer//2 = 1 Then
say answer "is odd"
otherwise
say answer "is not a number"
end

ooRexx Reference Version 4.1.0 71 Draft - SVN Rev 6346

Chapter 2. Keyword Instructions

The logical & operator will evaluate both terms of the operation, so the term "answer//2" will result in a
syntax error if answer is a non-numeric value. With the list conditional form, evaluation will stop with
the first false result, so the "answer//2" term will not be evaluated if the datatype test returns 0 (.false).

Notes:

1. The instruction can be any assignment, command, message instruction, or keyword instruction,
including any of the more complex constructs, such as DO, LOOP, IF, or the SELECT instruction

itself.

2. A null clause is not an instruction, so putting an extra semicolon (or label) after a THEN clause is
not equivalent to putting a dummy instruction. The NOP instruction is provided for this purpose.

3. The symbol THEN cannot be used within expression, because the keyword THEN is treated
differently in that it need not start a clause. This allows the expression on the WHEN clause to be

ended by the THEN without a semicolon ().

2.28. SIGNAL

>>-SIGNAL-- - - ->
>--+-labelname - ——t—— =<
Fotm— +--expression--—-----------------———-——-— +
| +-VALUE-+ I
+-0FF-—+-ANY--——————————————- Ao +
| +-ERROR----———------—- + I
| +-FAILURE-—----———--—- + I
| +-HALT-----——-—————-—- + |
| +-LOSTDIGITS---------- + I
| +-NOMETHOD----=-=----- + I
| +-NOSTRING-———-—-—————- + I
| +-NOTREADY----------—- + I
| +-NOVALUE-—---—-——-———- + I
| +-SYNTAX-—-——-—————=—- + I
| +-USER--usercondition-+ I
+=0N-=+-ANY-====————————— R e +=+
+-ERROR——-————————————— + +-NAME--trapname-+
+-FAILURE--—-—-——————- +
+-HALT-----——————————- +
+-LOSTDIGITS-—-———-——- +
+-NOMETHOD------------ +
+-NOSTRING----————-——- +
+-NOTREADY-----——————- +
+-NOVALUE-----———----- +
+-SYNTAX-————————————- +

+-USER--usercondition-+

SIGNAL causes an unusual change in the flow of control (if you specify labelname or VALUE
expression), or controls the trapping of certain conditions (if you specify ON or OFF).

Draft - SVN Rev 6346 72

ooRexx Reference Version 4.1.0

Chapter 2. Keyword Instructions

To control trapping, you specify OFF or ON and the condition you want to trap. OFF turns off the
specified condition trap. ON turns on the specified condition trap. All information on condition traps is
contained in Conditions and Condition Traps.

To change the flow of control, a label name is derived from labelname or taken from the character string
result of evaluating the expression after VALUE. The labelname you specify must be a literal string or
symbol that is taken as a constant. If you specify a symbol for labelname, the search looks for a label
with uppercase characters. If you specify a literal string, the search uses the literal string directly. You
can locate label names with lowercase letters only if you specify the label as a literal string with the same
case. Similarly, for SIGNAL VALUE, the lettercase of labelname must match exactly. You can omit the
subkeyword VALUE if expression does not begin with a symbol or literal string, that is, if it starts with a
special character, such as an operator character or parenthesis. All active pending DO, IF, SELECT, and
INTERPRET instructions in the current routine are then ended and cannot be resumed. Control is then
passed to the first label in the program that matches the given name, as though the search had started at
the beginning of the program.

The labelname and usercondition are single symbols, which are taken as constants. The trapname is a
string or symbol taken as a constant.

Example:

Signal fred; /* Transfer control to label FRED below */

Fred: say "Hi!"

If there are duplicates, control is always passed to the first occurrence of the label in the program.

When control reaches the specified label, the line number of the SIGNAL instruction is assigned to the
special variable SIGL. This can aid debugging because you can use SIGL to determine the source of a
transfer of control to a label.

2.29. TRACE

>>-TRACE-—+-+ R - - N ><
| +-number-+ |

| +-Normal-------- + |
B R e e +-+
| +=mm—— + | +-All--—--—————- +
| v | | +-Commands------ +
+———- ?-——+-+ +-Error--------- +
+-Failure------- +

+-Labels-------- +
+-0f f-————-————- +
+-Results-——------ +
Or, alternatively:
>>-TRACE--+ ————t-=; ><
+-string---------------- +

ooRexx Reference Version 4.1.0 73 Draft - SVN Rev 6346

Chapter 2. Keyword Instructions

+-symbol-----————-----—- +
ot +--expression-+
+-VALUE-+

TRACE controls the tracing action (that is, how much is displayed to the user) during the processing of a
Rexx program. Tracing describes some or all of the clauses in a program, producing descriptions of
clauses as they are processed. TRACE is mainly used for debugging. Its syntax is more concise than that
of other Rexx instructions because TRACE is usually entered manually during interactive debugging.
(This is a form of tracing in which the user can interact with the language processor while the program is
running.)

Note: TRACE cannot be used in the Rexx macrospace. See Trace in Macrospace.

If specified, the number must be a whole number.

The string or expression evaluates to:

+ A numeric option

+ One of the valid prefix or alphabetic character (word) options described in Trace Alphabetic Character
(Word) Options

« Null

The symbol is taken as a constant and is therefore:

+ A numeric option

+ One of the valid prefix or alphabetic character (word) options described in Alphabetic Character
(Word) Options

The option that follows TRACE or the character string that is the result of evaluating expression
determines the tracing action. You can omit the subkeyword VALUE if expression does not begin with a
symbol or a literal string, that is, if it starts with a special character, such as an operator or parenthesis.

2.29.1. Trace Alphabetic Character (Word) Options

Although you can enter the word in full, only the first capitalized letter is needed; all following
characters are ignored. That is why these are referred to as alphabetic character options.

TRACE actions correspond to the alphabetic character options as follows:
All
Traces (that is, displays) all clauses before execution.

Commands

Traces all commands before execution. If the command results in an error or failure (see
Commands), tracing also displays the return code from the command.

Draft - SVN Rev 6346 74 ooRexx Reference Version 4.1.0

Chapter 2. Keyword Instructions

Error
Traces any command resulting in an error or failure after execution (see Commands), together with
the return code from the command.

Failure
Traces any command resulting in a failure after execution (see Commands), together with the return
code from the command. This is the same as the Normal option.

Intermediates
Traces all clauses before execution. Also traces intermediate results during the evaluation of
expressions and substituted names.

Labels

Traces only labels passed during execution. This is especially useful with debug mode, when the
language processor pauses after each label. It also helps the user to note all internal subroutine calls
and transfers of control because of the SIGNAL instruction.

Normal

Traces any failing command after execution, together with the return code from the command. This
is the default setting.

For the default Windows command processor, an attempt to enter an unknown command raises a
FAILURE condition. The CMD return code for an unknown command is 1. An attempt to enter a
command in an unknown command environment also raises a FAILURE condition; in such a case,
the variable RC is set to 30.

Off

Traces nothing and resets the special prefix option (described later) to OFF.

Results

Traces all clauses before execution. Displays the final results (in contrast with Intermediates
option) of the expression evaluation. Also displays values assigned during PULL, ARG, PARSE,
and USE instructions. This setting is recommended for general debugging.

2.29.2. Prefix Option

The prefix 7 is valid alone or with one of the alphabetic character options. You can specify the prefix
more than once, if desired. Each occurrence of a prefix on an instruction reverses the action of the
previous prefix. The prefix must immediately precede the option (no intervening whitespace).

The prefix ? controls interactive debugging. During normal execution, a TRACE option with a prefix of ?
causes interactive debugging to be switched on. (See Debugging Aids for full details of this facility.)
When interactive debugging is on, interpretation pauses after most clauses that are traced. For example,
the instruction TRACE ?E makes the language processor pause for input after executing any command that
returns an error, that is, a nonzero return code or explicit setting of the error condition by the command
handler.

ooRexx Reference Version 4.1.0 75 Draft - SVN Rev 6346

Chapter 2. Keyword Instructions

Any TRACE instructions in the program being traced are ignored to ensure that you are not taken out of
interactive debugging unexpectedly.

You can switch off interactive debugging in several ways:

- Entering TRACE 0 turns off all tracing.

+ Entering TRACE with no options restores the defaults—it turns off interactive debugging but continues
tracing with TRACE Normal (which traces any failing command after execution).

« Entering TRACE 7 turns off interactive debugging and continues tracing with the current option.

» Entering a TRACE instruction with a ? prefix before the option turns off interactive debugging and
continues tracing with the new option.

Using the ? prefix, therefore, switches you in or out of interactive debugging. Because the language
processor ignores any further TRACE statements in your program after you are in interactive debug
mode, use CALL TRACE "?" to turn off interactive debugging.

2.29.3. Numeric Options

If interactive debugging is active and the option specified is a positive whole number (or an expression
that evaluates to a positive whole number), that number indicates the number of debug pauses to be
skipped. (See Debugging Aids for further information.) However, if the option is a negative whole
number (or an expression that evaluates to a negative whole number), all tracing, including debug pauses,
is temporarily inhibited for the specified number of clauses. For example, TRACE -100 means that the
next 100 clauses that would usually be traced are not displayed. After that, tracing resumes as before.

2.29.3.1. Tracing Tips

« When a loop is traced, the DO clause itself is traced on every iteration of the loop.

» You can retrieve the trace actions currently in effect by using the TRACE built-in function (see
TRACE).

« The trace output of commands traced before execution always contains the final value of the
command, that is, the string passed to the environment, and the clause generating it.

» Trace actions are automatically saved across subroutine, function, and method calls. See CALL for
more details.

2.29.3.2. Example

One of the most common traces you will use is:

TRACE 7R
/* Interactive debugging is switched on if it was off, */
/* and tracing results of expressions begins. */

Draft - SVN Rev 6346 76 ooRexx Reference Version 4.1.0

Chapter 2. Keyword Instructions

2.29.3.3. The Format of Trace Output

Every clause traced appears with automatic formatting (indentation) according to its logical depth of
nesting, for example. Results, if requested, are indented by two extra spaces and are enclosed in double
quotation marks so that leading and trailing whitespace characters are apparent. Any control codes in the
data encoding (ASCII values less than "20"x) are replaced by a question mark (?) to avoid screen
interference. Results other than strings appear in the string representation obtained by sending them a
STRING message. The resulting string is enclosed in parentheses. The line number in the program
precedes the first clause traced on any line. All lines displayed during tracing have a three-character
prefix to identify the type of data being traced. These can be:

Identifies the source of a single clause, that is, the data actually in the program.

+++

Identifies a trace message. This can be the nonzero return code from a command, the prompt
message when interactive debugging is entered, an indication of a syntax error when in interactive
debugging.

>>>

Identifies the result of an expression (for TRACE R) or the the value returned from a subroutine call,
or a value evaluated by execution of a DO loop.

Identifies a variable assignment or a message assignment result. The trace message includes both
the name of the assignment target and the assigned value. Assignment trace lines are displayed by
assignment instructions, variable assigned via PARSE, ARG, PULL, or USE ARG, as well as
control variable updates for DO and LOOP instructions.

Identifies the value assigned to a placeholder during parsing (see The Period as a Placeholder).

The following prefixes are used only if TRACE Intermediates is in effect:

>A>

Identifies a value used as a function, subroutine, or message argument.

>C>

The data traced is the orignal name of the compound variable and the name of a compound variable,
after the name has been replaced by the value of the variable but before the variable is used. If no
value was assigned to the variable, the trace shows the variable in uppercase characters.

>E>

The data traced is the name and value of an environment symbol.

>F>

The data traced is the name and result of a function call.

ooRexx Reference Version 4.1.0 77 Draft - SVN Rev 6346

Chapter 2. Keyword Instructions

>L>

The data traced is a literal (string, uninitialized variable, or constant symbol).

>M>

The data traced is the name and result of an object message.

>0>

The data traced is the name and result of an operation on two terms.

>P>

The data traced is the name and result of a prefix operation.

>V>

The data traced is the name and contents of a variable.

Note: The characters => indicate the value of a variable or the result of an operation.

The characters <= indicate a value assignment. The name to the left of the marker is the assignment
topic. The data to the right of the marker is the assigned value.

The character 7 could indicate a non-printable character in the output.

If no option is specified on a TRACE instruction, or if the result of evaluating the expression is null, the
default tracing actions are restored. The defaults are TRACE N and interactive debugging (?) off.

Following a syntax error that SIGNAL ON SYNTAX does not trap, the clause in error is always traced.

2.30. USE

+-,- -—+
v I
>>-USE-—+---- +==ARG--=—+- - —t - - o<
+-- STRICT--+ +-name—+-————————— PR
+-=--expr--+

USE ARG retrieves the argument objects provided in a program, routine, function, or method and
assigns them to variables or message term assignments.

Each name must be a valid variable name. The names are assigned from left to right. For each name you
specify, the language processor assigns it a corresponding argument from the program, routine, function,
or method call. If there is no corresponding argument, name is assigned the value of expr. If expr is not
specified for the given argument, the variable name is dropped. If the assignment target is a messaging
term, no action is taken for omitted arguments.

A USE ARG instruction can be processed repeatedly and it always accesses the same current argument
data.

Draft - SVN Rev 6346 78 ooRexx Reference Version 4.1.0

Chapter 2. Keyword Instructions

If expr is specified for an argument, the expression is evaluated to provide a default value for an
argument when the corresponding argument does not exist. The default expr must be a literal string, a
constant expression, or an expression enclosed in parentheses.

The names may be any valid symbol or message term which can appear on the left side of an assignment
statement (See Assignments and Symbols).

The STRICT options imposes additional constraints on argument processing. The number of arguments
must match the number of names, otherwise an error is raised. An argument may be considered optional
if expr has been specified for the argument.

The ellipsis ("...") can be given in place of the last variable in the USE STRICT ARG statement and
indicates that more arguments may follow. It allows defining a minimum amount of arguments that must
be supplied or for which there are default values defined and that may be followed optionally by any
additional arguments.

Example:
/* USE Example */

/* FRED("Ogof X",1,5) calls function */
Fred: use arg string, numl, num2

/* Now: STRING contains "Ogof X" */
/* NUM1 contains "1" */
/* NUM2 contains "5" */

/* Another example, shows how to pass non-string arguments with USE ARG */
/* Pass a stem and an array to a routine to modify one element of each */

stem.1 = "Value"

array = .array of ("Item")

say "Before subroutine:" stem.l array[1] /* Shows "Value Item" */
Call Change_First stem. , array

say "After subroutine:" stem.1 array[1] /* Shows "NewValue NewItem" */
Exit

Change_First: Procedure
Use Arg substem., subarray

substem.1 = "NewValue"
subarray[1] = "NewItem"
Return
/* USE STRICT Example */

/* FRED("Ogof X",1) calls function */
Fred: use strict arg string, numl, num2=4

/* Now: STRING contains "Ogof X" */
/* NUM1 contains "1" */
/* NUM2 contains "4" */

In the above example, a call to the function FRED may have either 2 or 3 arguments. The STRICT
keyword on the USE instruction will raise a syntax error for any other combination of arguments.

Example:

call test "one"

ooRexx Reference Version 4.1.0 79 Draft - SVN Rev 6346

Chapter 2. Keyword Instructions

call test "one", "two"

call test "one", "two", "three"
call test "one", , "three", "four", "five"
exit

test: procedure /* a minimum of one argument must be supplied */
use strict arg vl, v2="zwei",
say "There are ["arg()"] argument(s); v1,v2=["vi", "v2"]"
do i=3 to arg()
say " arg #" i"=["arg(i)"]"
end
say "--"
return

Output:

There are [1] argument(s); vl,v2=[one,zwei]

There are [2] argument(s); vl,v2=[one,two]

There are [3] argument(s); vl,v2=[one,two]
arg # 3=[threel

There are [5] argument(s); vl,v2=[one,zwei]
arg # 3=[threel
arg # 4=[four]
arg # 5=[five]

The assignment targets may be any term that can be on the left side of an assignment statement. For
example,

expose myArray myDirectory
use arg myArray[1], myDirectory~name

would be equivalent to

myArray[1] = arg(1)
myDirectory name = arg(2)

You can retrieve or check the arguments by using the ARG built-in function (see ARG (Argument)). The
ARG and PARSE ARG instructions are alternative ways of retrieving arguments. ARG and PARSE ARG
access the string values of arguments. USE ARG performs a direct, one-to-one assignment of arguments.
This is preferable when you need direct access to an argument, without translation or parsing. USE ARG
also allows access to both string and non-string argument objects; ARG and PARSE ARG convert the
arguments to values before parsing.

Draft - SVN Rev 6346 80 ooRexx Reference Version 4.1.0

Chapter 3. Directives

A Rexx program contains one or more executable code units. Directive instructions separate these
executable units. A directive begins with a double colon (::) and is a nonexecutable instruction. For
example, it cannot appear in a string for the INTERPRET instruction to be interpreted. The first directive
instruction in a program marks the end of the main executable section of the program.

For a program containing directives, all directives are processed first to set up the program’s classes,
methods, and routines. Then any program code in the main code unit (preceding the first directive) is
processed. This code can use any classes, methods, and routines that the directives established.

3.1. ::ATTRIBUTE

The ::ATTRIBUTE directive creates attribute methods and defines the method properties.

>>-: : ATTRIBUTE--name-—+----- toomomee +ommomee +mmmome -- -- >
+-GET-+ +-CLASS-+
+-SET-+

+-PUBLIC--+ +-GUARDED---+ +-UNPROTECTED-+
So—tm—— do—tm +-—+ - +———- - —-—=>
+-PRIVATE-+ +-UNGUARDED-+ +-PROTECTED---+

>——t- ——t——; - - -—=><
+-EXTERNAL-spec-+

The ::ATTRIBUTE directive creates accessor methods for object instance variables. An accessor method
allows an object instance variable to be retrieved or assigned a value. :: ATTRIBUTE can create an
attribute getter method, a setter method, or the getter/setter pair.

The name is a literal string or a symbol that is taken as a constant. The name must also be a valid Rexx
variable name. The :: ATTRIBUTE directive creates methods in the class specified in the most recent
::CLASS directive. If no ::CLASS directive precedes an :: ATTRIBUTE directive, the attribute methods
are not associated with a class but are accessible to the main (executable) part of a program through the
.METHODS built-in object. Only one ::ATTRIBUTE directive can appear for any method name not
associated with a class. See . METHODS for more details.

If you do not specify either SET or GET, :: ATTRIBUTE will create two attribute methods with the
names name and name=. These are the methods for getting and setting an attribute. These generated
methods are equivalent to the following code sequences:

::method "NAME=" /* attribute set method */
expose name /* establish direct access to object variable (attribute) */
use arg name /* retrieve argument and assign it to the object variable */

: :method name /* attribute get method */
expose name /* establish direct access to object variable (attribute) */
return name /* return object's current value x/

ooRexx Reference Version 4.1.0 81 Draft - SVN Rev 6346

Chapter 3. Directives

Both methods will be created with the same method properties (for example, PRIVATE, GUARDED,
etc.). If GET or SET are not specified, the pair of methods will be automatically generated. In that case,
there is no method code body following the directive, so another directive (or the end of the program)
must follow the ::ATTRIBUTE directive.

If GET or SET is specified, only the single get or set attribute method is generated. Specifying separate
GET or SET ::ATTRIBUTE directives allows the methods to be created with different properties. For
example, the sequence:

::attribute name get
::attribute name set private

will create a NAME method with PUBLIC access and a NAME= method with PRIVATE access.

The GET and SET options may also be used to override the default method body generated for the
attribute. This is frequently used so the SET attribute method can perform new value validation.

::attribute size get
::attribute size set
expose size /* establish direct access to object variable (attribute) */
use arg value /* retrieve argument */
if datatype(value, "Whole") = .false | value < O then
raise syntax 93.906 array ("size", value)
size=value

If you specify the CLASS option, the created methods are class methods. See Objects and Classes. The
attribute methods are associated with the class specified on the most recent ::CLASS directive. The
::ATTRIBUTE must be preceded by a ::CLASS directive if CLASS is specified.

If the EXTERNAL option is specified, then spec identifies a method in an external native library that will
be invoked as the named method. The spec is a literal string containing a series of whitespace delimited
tokens defining the external method. The first token must be the word LIBRARY, which indicates the
method resides in a native library of the type allowed on a ::REQUIRES directive. The second token
must identify the name of the external library. The external library is located using platform-specific
mechanisms for loading libraries. For Unix-based systems, the library name is case-sensitive. The third
token is optional and specifies the name of the method within the library package. If not specified, the
::METHOD name is used. The target package method name is case insensitive.

If the SET or GET option is not specified with the EXTERNAL option, then two method objects need to
be created. The target method name is appended to the string "GET" to derive the name of the getter
attribute method. To generate the setter attribute method, the name is appended to the string "SET". If
GET or SET is specified and the method name is not specified within spec, then the target library method
name is generated by concatenating name with "GET" or "SET" as appropriate. If the method name is
specified in spec and GET or SET is specified, the spec name will be used unchanged.

Example:

-- maps "NAME" method to "GETNAME and

-- "NAME=" to "SETNAME"

: :ATTRIBUTE name EXTERNAL "LIBRARY mylib"

-- maps "ADDRESS" method to "GETADDRESS"

::ATTRIBUTE address GET EXTERNAL "LIBRARY mylib"

-- maps "ADDRESS=" method to "setHomeAddress"

: :ATTRIBUTE address SET EXTERNAL "LIBRARY mylib setHomeAddress"

Draft - SVN Rev 6346 82 ooRexx Reference Version 4.1.0

Chapter 3. Directives

Notes:

1. You can specify all options in any order.

2. If you specify the PRIVATE option, the created methods are private methods. Private methods have
restricted access rules on how they can be invoked. See Public versus Private Methods for details of
how private methods can be used. If you omit the PRIVATE option or specify PUBLIC, the method
is a public method that any sender can activate.

3. If you specify the UNGUARDED option, the methods can be called while other methods are active
on the same object. If you do not specify UNGUARDED, the method requires exclusive use of the
object variable pool; it can run only if no other method that requires exclusive use of the object
variable pool is active on the same object.

4. If you specify the PROTECTED option, the method methods are protected methods. (See The
Security Manager for more information.) If you omit the PROTECTED option or specify
UNPROTECTED, the methods are not protected.

5. It is an error to specify :: ATTRIBUTE more than once within a class definition that creates a
duplicate get or set method.

3.2. ::CLASS

The ::CLASS directive causes the interpreter to create a Rexx class.

>>-::CLASS--classname--+- - - + -—=>
+-METACLASS--metaclass—+

.—SUBCLASS--0Object---. +-PRIVATE-+

>——t—e - oo mm +-—t——= - e
+-MIXINCLASS--mclass-+ +-PUBLIC--+ +-INHERIT--iclasses-+
+-SUBCLASS--sclass——-+

-=><

The ::CLASS directive creates a Rexx class named classname. The classname is a literal string or symbol
that is taken as a constant. The created class is available to programs through the Rexx environment
symbol .classname. The classname acquires all methods defined by subsequent ::METHOD directives
until the end of the program or another ::CLASS directive is found. Only null clauses (comments or
blank lines) can appear between a ::CLASS directive and any following directive instruction or the end
of the program. Only one ::CLASS directive can appear for classname in a program.

If you specify the METACLASS option, the instance methods of the metaclass class become class
methods of the classname class. (See Objects and Classes .) The metaclass and classname are literal
strings or symbols that are taken as constants. In the search order for methods, the metaclass methods
precede inherited class methods and follow any class methods defined by ::METHOD directives with the
CLASS option.

If you specify the PUBLIC option, the class is visible beyond its containing Rexx program to any other
program that references this program with a ::REQUIRES directive. (See ::REQUIRES.) If you do not
specify the PUBLIC option, the class is visible only within its containing Rexx program. All public
classes defined within a program are used before PUBLIC classes created with the same name.

ooRexx Reference Version 4.1.0 83 Draft - SVN Rev 6346

Chapter 3. Directives

If you specify the SUBCLASS option, the class becomes a subclass of the class sclass for inheritance of
instance and class methods. The sclass is a literal string or symbol that is taken as a constant.

If you specify the MIXINCLASS option, the class becomes a subclass of the class mclass for inheritance
of instance and class methods. You can add the new class instance and class methods to existing classes
by using the INHERIT option on a ::CLASS directive or by sending an INHERIT message to an existing
class. If you specify neither the SUBCLASS nor the MIXINCLASS option, the class becomes a
non-mixin subclass of the Object class.

If you specify the INHERIT option, the class inherits instance methods and class methods from the
classes iclasses in their order of appearance (leftmost first). This is equivalent to sending a series of
INHERIT messages to the class object, with each INHERIT message (except the first) specifying the
preceding class in iclasses as the classpos argument. (See INHERIT .) As with the INHERIT message,
each of the classes in iclasses must be a mixin class. The iclasses is a whitespace-separated list of literal
strings or symbols that are taken as constants. If you omit the INHERIT option, the class inherits only
from sclass.

Example:

::class rectangle

: :method area /* defined for the RECTANGLE class */
expose width height
return widthxheight

::class triangle

: :method area /* defined for the TRIANGLE class */
expose width height
return width*height/2

The ::CLASS directives in a program are processed in the order in which they appear. If a ::CLASS
directive has a dependency on ::CLASS directives that appear later in the program, processing of the
directive is deferred until all of the class’s dependencies have been processed.

Example:

::class savings subclass account /* requires the ACCOUNT class */
::method type
return "a Savings Account"

::class account
::method type
return "an Account"

The Savings class in the preceding example is not created until the Account class that appears later in the
program has been created.

Notes:

1. You can specify the options METACLASS, MIXINCLASS, SUBCLASS, and PUBLIC in any order.
2. If you specify INHERIT, it must be the last option.

Draft - SVN Rev 6346 84 ooRexx Reference Version 4.1.0

Chapter 3. Directives

3.3. ::CONSTANT

The ::CONSTANT directive creates methods that return constant values for a class and its instances.

>>-: :CONSTANT--name--value———————————————— o ><

A ::CONSTANT directive defines a method that returns a constant value. This is useful for creating
named constants associated with a class.

The name is a literal string or a symbol that is taken as a constant. A method of the given name is created
as both an instance method and a class method of the most recent ::CLASS directive. A ::CLASS
directive is not required before a ::CONSTANT directive. If no ::CLASS directive precedes
::CONSTANT, a single constant method method is created that is not associated with a class but is
accessible to the main (executable) part of a program through the . METHODS built-in object. Only one
::CONSTANT directive can appear for any method name not associated with a class. See METHODS
for more details.

The methods created by a ::CONSTANT directive are UNGUARDED and will have a return result that is
specified by value. The constant value must be a single literal string or symbol that is taken as a constant.
Also permitted is the single character "-" or "+" followed by a literal string or symbol that is a valid
number. Here are some examples of valid constants:

::class MathConstants public
::constant pi 3.1415926
::constant author "Isaac Asimov"
::constant absolute_zero -273.15

A ::CONSTANT directive is a shorthand syntax for creating constants associated with a class. The
created name constant can be accessed using either the class object or an instance of the class itself. For

example:

say "Pi is" .MathConstants™pi -- displays "Pi is 3.1415926"
instance = .MathConstants™new

say "Pi is" instance”pi -- also displays "Pi is 3.1415926"

::class MathConstants public
::constant pi 3.1415926

3.4. ::XMETHOD

The ::METHOD directive creates a method object and defines the method attributes.

>>-::METHOD--methodname--+------- e Fo—tm— +===>
+-CLASS-+ +-ATTRIBUTE-+ +-ABSTRACT-+

+-PUBLIC--+ +-GUARDED---+ +-UNPROTECTED-+
So—tmmmm - to—tmmmm e +-——= - -—>
+-PRIVATE-+ +-UNGUARDED-+ +-PROTECTED---+

>——t- ————t—; -- - - ——-><
+-EXTERNAL-spec-+

ooRexx Reference Version 4.1.0 85 Draft - SVN Rev 6346

Chapter 3. Directives

A ::METHOD directive creates method objects that may be associated with a class instance. The created
method may be from Rexx code, mapped to method in an external native library, or automatically
generated. The type of method is determined by the combination of options specified.

The methodname is a literal string or a symbol that is taken as a constant. The method is defined as
methodname in the class specified in the most recent ::CLASS directive. Only one ::METHOD directive
can appear for any methodname in a class.

A ::CLASS directive is not required before a ::METHOD directive. If no ::CLASS directive precedes
::METHOD, the method is not associated with a class but is accessible to the main (executable) part of a
program through the METHODS built-in object. Only one ::METHOD directive can appear for any
method name not associated with a class. See METHODS for more details.

If you specify the CLASS option, the method is a class method. See Objects and Classes. The method is
associated with the class specified on the most recent ::CLASS directive. The ::METHOD directive must
follow a ::CLASS directive when the CLASS option is used.

If ABSTRACT, ATTRIBUTE, or EXTERNAL is not specified, the ::METHOD directive starts a section
of method code which is ended by another directive or the end of the program. The ::METHOD is not
included in the source of the created METHOD object.

Example:

r = .rectangle new(20,10)
say "Area is" r~area /* Produces "Area is 200" */

::class rectangle

::method area /* defined for the RECTANGLE class */
expose width height
return widthxheight

::method init
expose width height
use arg width, height

::method perimeter
expose width height
return (width+height)*2

If you specify the ATTRIBUTE option, method variable accessor methods are created. In addition to
generating a method named methodname, another method named methodname= is created. The first
method returns the value of object instance variable that matches the method name. The second method
assigns a new value to the object instance variable.

For example, the directive

: :method name attribute

creates two methods, NAME and NAME=. The NAME and NAME= methods are equivalent to the
following code sequences:

: :method "NAME="
expose name
use arg name

Draft - SVN Rev 6346 86 ooRexx Reference Version 4.1.0

Chapter 3. Directives

: :method name
expose name
return name

If you specify the ABSTRACT option, the method creates an ABSTRACT method placeholder.
ABSTRACT methods define a method that an implementing subclass is expected to provide a concrete
implementation for. Any attempt to invoke an ABSTRACT method directly will raise a SYNTAX
condition.

If the EXTERNAL option is specified, then spec identifies a method in an external native library that will
be invoked as the named method. The spec is a literal string containing a series of whitespace delimited
tokens defining the external method. The first token must be the word LIBRARY, which indicates the
method resides in a native library of the type allowed on a ::REQUIRES directive. The second token
must identify the name of the external library. The external library is located using platform-specific
mechanisms for loading libraries. For Unix-based systems, the library name is case-sensitive. The third
token is optional and specifies the name of the method within the library package. If not specified, the
::METHOD name is used. The target package method name is case insensitive.

Example:

-- creates method INIT from method RegExp_Init
-- in library rxregexp
::METHOD INIT EXTERNAL "LIBRARY rxregexp RegExp_Init"

-- creates method INIT from method POS
-- in library rxregexp
: :METHOD POS EXTERNAL "LIBRARY rxregexp"

If the ATTRIBUTE option is specified with the EXTERNAL option, then two method objects need to be
created. The target method name is appended to the string "GET" to derive the name of the getter
attribute method. To generate the setter attribute method, the name is appended to the string "SET".

Example:
-- maps "NAME" method to "GETNAME and

-- "NAME=" to "SETNAME"
::METHOD name ATTRIBUTE EXTERNAL "LIBRARY mylib"

-- maps "ADDRESS" method to "GETMyAddress and
—-- "ADDRESS=" to "SETMyAddress"
: :METHOD address ATTRIBUTE EXTERNAL "LIBRARY mylib MyAddress"

Notes:

1. You can specify all options in any order.

2. If you specify the PRIVATE option, the created methods are private methods. Private methods have
restricted access rules on how they can be invoked. See Public versus Private Methods for details of
how private methods can be used. If you omit the PRIVATE option or specify PUBLIC, the method
is a public method that any sender can activate.

3. If you specify the UNGUARDED option, the method can be called while other methods are active
on the same object. If you do not specify UNGUARDED, the method requires exclusive use of the

ooRexx Reference Version 4.1.0 87 Draft - SVN Rev 6346

Chapter 3. Directives

object variable pool; it can run only if no other method that requires exclusive use of the object
variable pool is active on the same object.

4. If you specify the PROTECTED option, the method is a protected method. (See The Security
Manager for more information.) If you omit the PROTECTED option or specify UNPROTECTED,
the method is not protected.

5. If you specify ATTRIBUTE, ABSTRACT, or EXTERNAL, another directive (or the end of the
program) must follow the ::METHOD directive.

6. It is an error to specify ::METHOD more than once within the same class and use the same
methodname.

3.5. ::OPTIONS

The ::OPTIONS directive defines default values for numeric and trace settings for all Rexx code
contained within a package.

>>=: :OPTIONS-—+-—————————————- e +——4 ————tm——eD>
+-DIGITS-digits-+ +-FORM-form-+ +-FUZZ-fuzz-+

Sommm e Fom - +-—= - -=><
+-TRACE-trace—+

Any of the options may be specified on a single ::OPTIONS directive in any order. If an option is
specified more than once, the last specified value will the be one used. If more than one ::OPTIONS
directive appears in a source file, the options are processed in the order they appear and the effect is
accumulative. If a given option type is specified on more than directive, the last specified will be the
value used.

The specified options will override the normal default settings for all Rexx code contained in the source
file. For example,

: :OPTIONS DIGITS 20

would direct that all method and routine code defined in this source package execute with an initial
NUMERIC DIGITS setting of 20 digits. The ::OPTIONS directive controls only the initial setting. A
method or routine may change the current setting with the NUMERIC DIGITS instruction as normal.
The values specified with ::OPTIONS only apply to code that appears in the same source file. It does not
apply to code in other source files that may reference or use this code. For example, a subclass of a class
defined in this source package will not inherit the :: OPTIONS settings if the subclass code is located in a
different source package.

The following options may be specified on an ::OPTIONS directive:

Draft - SVN Rev 6346 88 ooRexx Reference Version 4.1.0

3.6

Chapter 3. Directives

DIGITS controls the precision to which arithmetic operations and built-in functions are
evaluated. The value digits must be a symbol or string that is a valid positive whole
number value and must be larger than the current FUZZ ::OPTIONS setting. The
package value can be retrieved using the Package class digits method.

There is no limit to the value for DIGITS (except the amount of storage available),
but high precisions are likely to require a great amount of processing time. It is
recommended that you use the default value whenever possible.

FORM controls the form of exponential notation for the result of arithmetic operations and
built-in functions. This can be either SCIENTIFIC (in which case only one, nonzero
digit appears before the decimal point) or ENGINEERING (in which case the power
of 10 is always a multiple of 3). The default is SCIENTIFIC. The subkeywords
SCIENTIFIC or ENGINEERING must be specified as symbols. The package value
can be retrieved using the Package class form method.

FUZZ controls how many digits, at full precision, are ignored during a numeric comparison
operation. (See Numeric Comparisons.) The value fuzz must be a symbol or string
that is a valid positive whole number value and must be smaller than the current
DIGIT ::OPTIONS setting. The package value can be retrieved using the Package
class fuzz method.

NUMERIC FUZZ temporarily reduces the value of NUMERIC DIGITS by the
NUMERIC FUZZ value during every numeric comparison. The numbers are
subtracted under a precision of DIGITS minus FUZZ digits during the comparison
and are then compared with 0.

TRACE controls the tracing action (that is, how much is displayed to the user) during the
processing of all Rexx code contained in the package. Tracing describes some or all
of the clauses in a program, producing descriptions of clauses as they are processed.
TRACE is mainly used for debugging. The value trace must be one of the Trace
Alphabetic Character (Word) Options valid for the Trace instruction. The package
value can be retrieved using the Package class trace method.

REQUIRES

The ::REQUIRES directive specifies that the program requires access to the classes and objects of the
Rexx program programname.

>>-::REQUIRES--"programname"--+--------- L Sttt ><
+-LIBRARY-+

If the LIBRARY option is not specified, all public classes and routines defined in the named program are
made available to the executing program. The programname is a literal string or a symbol that is taken as
a constant. The string or symbol programname can be any string or symbol that is valid as the target of a
CALL instruction. The program programname is called as an external routine with no arguments. The
program is searched for using normal external program search order. See Search Order for details. The
main program code, which precedes the first directive instruction, is run.

ooRexx Reference Version 4.1.0 89 Draft - SVN Rev 6346

Chapter 3. Directives

If any Rexx code preceeds the first directive in programname then that code is executed at the time the
::REQUIRES is processed by the interpreter. This will be executed prior to executing the main Rexx
program in the file that specifies the ::REQUIRES statement.

If the LIBRARY option is specified, programname is the name of an external native library that is
required by this program. The library will be loaded using platform-specific mechanisms, which
generally means the library name is case sensitive. Any routines defined in the library will be made
available to all programs running in the process. If the native library cannot be loaded, the program will
not be permitted to run. All LIBRARY ::REQUIRES directives will be processed before ::REQUIRES
for Rexx programs, which will ensure that the native libraries are available to the initialization code of
the Rexx packages.

::REQUIRES directives can be placed anywhere after the main section of code in the package. The order
of ::REQUIRES directives determines the search order for classes and routines defined in the named
programs and also the load order of the referenced files. Once a program is loaded by a ::REQUIRES
statement in a program, other references to that same program by ::REQUIRES statements in other
programs will resolve to the previously loaded program. The initialization code for the ::REQUIRES file
will only be executed on the first reference.

The following example illustrates that two programs, ProgramA and ProgramB, can both access classes
and routines that another program, ProgramC, contains. (The code at the beginning of ProgramC runs
prior to the start of the main Rexx program.)

/* ProgramA */ /* ProgramB */
: :Requires 'ProgramC' : :Requires 'ProgramC'
/* ProgramC */

The language processor uses local routine definitions within a program in preference to routines of the
same name accessed through ::REQUIRES directives. Local class definitions within a program override
classes of the same name in other programs accessed through ::REQUIRES directives.

Another directive, or the end of the program, must follow a ::REQUIRES directive. Only null clauses can
appear between them.

Draft - SVN Rev 6346 90 ooRexx Reference Version 4.1.0

3.7

Chapter 3. Directives

ROUTINE

The ::ROUTINE directive creates named routines within a program.

+-PRIVATE-+
>>-::ROUTINE--routinename--+--------- L Fo—————= ><
+-PUBLIC--+ +-EXTERNAL-spec-+

The routinename is a literal string or a symbol that is taken as a constant. Only one ::ROUTINE directive
can appear for any routinename in a program.

If the EXTERNAL option is not specified, the ::ROUTINE directive starts a routine, which is ended by
another directive or the end of the program.

If you specify the PUBLIC option, the routine is visible beyond its containing Rexx program to any other
program that references this program with a ::REQUIRES directive. If you do not specify the PUBLIC
option, the routine is visible only within its containing Rexx program.

Routines you define with the ::ROUTINE directive behave like external routines. In the search order for
routines, they follow internal routines and built-in functions but precede all other external routines.

Example:

::class c
::method a
call r "A" /* displays "In method A" */

::method b
call r "B" /* displays "In method B" */

::routine r
use arg name
say "In method" name

If the EXTERNAL option is specified, then spec identifies a routine in an external native library that will
be defined as the named routine for this program. The spec is a literal string containing a series of
whitespace delimited tokens defining the external function. The first token identifies the type of native
routine to locate:

LIBRARY

Identifies a routine in an external native library of the type supported by the ::REQUIRES directive.
The second token must identify the name of the external library. The external library is located
using platform-specific mechanisms for loading libraries. For Unix-based systems, the library name
is case-sensitive. The third token is optional and specifies the name of the routine within the library
package. If not specified, the ::ROUTINE name is used. The routine name is not case sensitive.

REGISTERED

Identifies a routine in an older-style Rexx function package. The second token must identify the
name of the external library. The external library is located using platform-specific mechanisms for
loading libraries. For Unix-based systems, the library name is case-sensitive. The third token is
optional and specifies the name of the function within the library package. If not specified, the
::ROUTINE name is used. Loading of the function will be attempted using the name as given and as

ooRexx Reference Version 4.1.0 91 Draft - SVN Rev 6346

Chapter 3. Directives

all uppercase. Using REGISTERED is the equivalent of loading an external function using the
RXFUNCADD() built-in function. See . METHODS for more details.

Example:

-- load a function from rxmath library

::routine RxCalcPi EXTERNAL "LIBRARY rxmath"

—- same function, but a diffent internal name

::routine Pi EXTERNAL "LIBRARY rxmath RxCalcPi"

-- same as call rxfuncadd "SQLLoadFuncs", "rexxsql", "SQLLoadFuncs"
::routine SQLLoadFuncs "REGISTERED rexxsql SQLLoadFuncs"

Notes:

1. It is an error to specify ::ROUTINE with the same routine name more than once in the same
program. It is not an error to have a local ::ROUTINE with the same name as another ::ROUTINE in

another program that the ::REQUIRES directive accesses. The language processor uses the local
::ROUTINE definition in this case.

. Calling an external Rexx program as a function is similar to calling an internal routine. For an

external routine, however, the caller’s variables are hidden and the internal values (NUMERIC
settings, for example) start with their defaults.

Note: If you specify the same ::ROUTINE routinename more than once in different programs, the last
one is used. Using more than one ::ROUTINE routinename in the same program produces an error.

Draft - SVN Rev 6346 92 ooRexx Reference Version 4.1.0

Chapter 4. Objects and Classes

This chapter provides an overview of the Rexx class structure.

A Rexx object consists of object methods and object variables ("attributes"). Sending a message to an
object causes the object to perform some action; a method whose name matches the message name
defines the action that is performed. Only an object’s methods can access the object variables belonging
to an object. EXPOSE instructions within an object’s methods specify which object variables the
methods will use. Any variables not exposed are local to the method and are dropped on return from a
method.

You can create an object by sending a message to a class object—typically a "new" method. An object
created from a class is an instance of that class. The methods a class defines for its instances are called
the instance methods of that class. These are the object methods that are available for every instance of
the class. Classes can also define class methods, which are a class’s own object methods.

Note: When referring to instance methods (for objects other than classes) or class methods (for
classes), this book uses the term methods when the meaning is clear from the context. When
referring to instance methods and class methods of classes, this book uses the qualified terms to
avoid possible confusion.

4.1. Types of Classes

There are four kinds of classes:

+ Object classes
« Mixin classes
» Abstract classes
« Metaclasses

The following sections explain these.

4.1.1. Object Classes

An object class is a factory for producing objects. An object class creates objects (instances) and
provides methods that these objects can use. An object acquires the instance methods of the class to
which it belongs at the time of its creation. If a class gains additional methods, objects created before the
definition of these methods do not acquire the new or changed methods.

The instance variables within an object are created on demand whenever a method EXPOSEs an object
variable. The class creates the object instance, defines the methods the object has, and the object instance
completes the job of constructing the object.

The String class and the Array Class are examples of object classes.

ooRexx Reference Version 4.1.0 93 Draft - SVN Rev 6346

Chapter 4. Objects and Classes

4.1.2. Mixin Classes

Classes can inherit from more than the single superclass from which they were created. This is called
multiple inheritance. Classes designed to add a set of instance and class methods to other classes are
called mixin classes, or simply mixins.

You can add mixin methods to an existing class by sending an INHERIT message or using the INHERIT
option on the ::CLASS directive. In either case, the class to be inherited must be a mixin. During both
class creation and multiple inheritance, subclasses inherit both class and instance methods from their
superclasses.

Mixins are always associated with a base class, which is the mixin’s first non-mixin superclass. Any
subclass of the mixin’s base class can (directly or indirectly) inherit a mixin; other classes cannot. For
example, a mixin class created as a subclass of the Array class can only be inherited by other Array
subclasses. Mixins that use the Object class as a base class can be inherited by any class.

To create a new mixin class, you send a MIXINCLASS message to an existing class or use the ::CLASS
directive with the MIXINCLASS option. A mixin class is also an object class and can create instances of
the class.

4.1.3. Abstract Classes

Abstract classes provide definitions for instance methods and class methods but are not intended to
create instances. Abstract classes often define the message interfaces that subclasses should implement.

You create an abstract class like object or mixin classes. No extra messages or keywords on the ::CLASS
directive are necessary. Rexx does not prevent users from creating instances of abstract classes. It is
possible to create abstract methods on a class. An abstract method is a placeholder that subclasses are
expected to override. Failing to provide a real method implementation will result in an error when the
abstract version is called.

4.1.4. Metaclasses

A metaclass is a class you can use to create another class. The only metaclass that Rexx provides is
.Class, the Class class. The Class class is the metaclass of all the classes Rexx provides. This means that
instances of .Class are themselves classes. The Class class is like a factory for producing the factories
that produce objects.

To change the behavior of an object that is an instance, you generally use subclassing. For example, you
can create Statarray, a subclass of the Array class. The statArray class can include a method for
computing a total of all the numeric elements of an array.

/* Creating an array subclass for statistics */

::class statArray subclass array public

::method init /* Initialize running total and forward to superclass */
expose total

total = 0
/* init describes the init method. */

Draft - SVN Rev 6346 94 ooRexx Reference Version 4.1.0

Chapter 4. Objects and Classes
forward class (super)

::method put /* Modify to increment running total */
expose total
use arg value
total = total + value /* Should verify that value is numeric!!! */
forward class (super)

::method "[]=" /#* Modify to increment running total */
forward message "PUT"

::method remove /* Modify to decrement running total */
expose total
use arg index
forward message "AT" continue
total = total - result
forward class (super)

::method average /* Return the average of the array elements */
expose total
return total / self~items

::method total /* Return the running total of the array elements */
expose total
return total

You can use this method on the individual array instances, so it is an instance method.

However, if you want to change the behavior of the factory producing the arrays, you need a new class
method. One way to do this is to use the ::METHOD directive with the CLASS option. Another way to
add a class method is to create a new metaclass that changes the behavior of the Statarray class. A new
metaclass is a subclass of .class.

You can use a metaclass by specifying it in a SUBCLASS or MIXINCLASS message or on a ::CLASS
directive with the METACLASS option.

If you are adding a highly specialized class method useful only for a particular class, use the :METHOD
directive with the CLASS option. However, if you are adding a class method that would be useful for
many classes, such as an instance counter that counts how many instances a class creates, you use a
metaclass.

The following examples add a class method that keeps a running total of instances created. The first
version uses the ::METHOD directive with the CLASS option. The second version uses a metaclass.

Version 1

/* Adding a class method using ::METHOD */

a = .point~new(1,1) /* Create some point instances */
say "Created point instance" a
b = .point~new(2,2) /* create another point instance */
say "Created point instance" b
c = .point~new(3,3) /* create another point instance */
say "Created point instance" c

/* ask the point class how many */

ooRexx Reference Version 4.1.0 95 Draft - SVN Rev 6346

Chapter 4. Objects and Classes

/* instances it has created

say "The point class has created" .point~instances "instances."

:class point public

::method init class
expose instanceCount
instanceCount = 0
forward class (super)

::method new class
expose instanceCount
instanceCount = instanceCount + 1
forward class (super)

::method instances class
expose instanceCount
return instanceCount

::method init
expose xVal yVal
use arg xVal, yVal

::method string
expose xVal yVal

return "("xVal","yVal")"

Version 2

/*

/*
/*

/*
/*
/*

/*

/*

/*

/*
/*

create Point class

Initialize instanceCount

*/

*/

Forward INIT to superclass */

Creating a new instance
Bump the count
Forward NEW to superclass

Return the instance count

Set object variables

as passed on NEW

Use object variables
to return string value

/* Adding a class method using a metaclass */

a = .point~new(1,1)
say "Created point instance" a
b = .point~new(2,2)
say "Created point instance" b
c = .point~“new(3,3)
say "Created point instance" c

*/
*/
*/

*/

*/

*/

*/
*/

/* Create some point instances */

/* ask the point class how many */
/* instances it has created */
say "The point class has created" .point~instances "instances."

::class InstanceCounter subclass class /* Create a new metaclass

::method init
expose instanceCount
instanceCount = 0
forward class (super)

::method new
expose instanceCount

Draft - SVN Rev 6346

that */
/* will count its instances */
/* Initialize instanceCount */

/* Forward INIT to superclass */

/* Creating a new instance */

96

ooRexx Reference Version 4.1.0

Chapter 4. Objects and Classes

instanceCount = instanceCount + 1 /* Bump the count */
forward class (super) /* Forward NEW to superclass x/

::method instances
expose instanceCount /* Return the instance count x/
return instanceCount

::class point public metaclass InstanceCounter /* Create Point class */
/* using InstanceCounter metaclass */
::method init
expose xVal yVal /* Set object variables x/
use arg xVal, yVal /* as passed on NEW x/

::method string
expose xVal yVal /* Use object variables x/
return "("xVal","yVal")" /* to return string value */

4.2. Creating and Using Classes and Methods

You can define a class using either directives or messages.
To define a class using directives, you place a ::CLASS directive after the main part of your source
program:

::class "Account"

This creates an Account class that is a subclass of the Object class. Object is the default superclass if one
is not specified. (See The Object Class for a description of the Object class.) The string "Account" is a
string identifier for the new class. The string identifier is both the internal class name and the name of the
environment symbol used to locate your new class instance.

Now you can use ::METHOD directives to add methods to your new class. The ::METHOD directives
must immediately follow the ::CLASS directive that creates the class.

::method type
return "an account"

: :method "name="
expose name
use arg name

: :method name
expose name

return name

This adds the methods TYPE, NAME, and NAME-= to the Account class.

You can create a subclass of the Account class and define a method for it:

::class "Savings" subclass account

ooRexx Reference Version 4.1.0 97 Draft - SVN Rev 6346

Chapter 4. Objects and Classes

::method type
return "a savings account"

Now you can create an instance of the Savings class with the NEW method (see NEW) and send TYPE,
NAME, and NAME= messages to that instance:

asav = .savings“new
say asav type
asav name = "John Smith"

The Account class methods NAME and NAME-= create a pair of access methods to the account object
variable NAME. The following directive sequence creates the NAME and NAME= methods:

::method "name="
expose name
use arg name

: :method name
expose name
return name

You can replace this with a single :: ATTRIBUTE directive. For example, the directive
::attribute name

adds two methods, NAME and NAME-= to a class. These methods perform the same function as the
NAME and NAME= methods in the original example. The NAME method returns the current value of
the object variable NAME; the NAME= method assigns a new value to the object variable NAME.

In addition to defining operational methods and attribute methods, you can add "constant" methods to a
class using the ::CONSTANT directive. The ::CONSTANT directive will create both a class method and
an instance method to the class definition. The constant method will always return the same constant
value, and can be invoked by sending a message to either the class or an instance method. For example,
you might add the following constant to your Account class:

::constant checkingMinimum 200

This value can be retrieved using either of the following methods

say .Account”checkingMinimum -- displays "200"
asave = .savings new
say asave”checkingMinimum -- also displays "200"

4.2.1. Using Classes

When you create a new class, it is always a subclass of an existing class. You can create new classes with
the ::CLASS directive or by sending the SUBCLASS or MIXINCLASS message to an existing class. If
you specify neither the SUBCLASS nor the MIXINCLASS option on the ::CLASS directive, the
superclass for the new class is the Object class, and it is not a mixin class.

Example of creating a new class using a message:

persistence = .object mixinclass("Persistence")

Draft - SVN Rev 6346 98 ooRexx Reference Version 4.1.0

Chapter 4. Objects and Classes

myarray=.array subclass("myarray")~~inherit(persistence)

Example of creating a new class using the directive:

::class persistence mixinclass object
::class myarray subclass array inherit persistence

4.2.2. Scope

A scope refers to the methods and object variables defined for a single class (not including the
superclasses). Only methods defined in a particular scope can access the object variables within that
scope. This means that object variables in a subclass can have the same names as object variables used
by a superclass, because the variables are created at different scopes.

4.2.3. Defining Instance Methods with SETMETHOD or
ENHANCED

In Rexx, methods are usually associated with instances using classes, but it is also possible to add
methods directly to an instance using the SETMETHOD (see SETMETHOD) or ENHANCED (see
ENHANCED) method.

All subclasses of the Object class inherit SETMETHOD. You can use SETMETHOD to create one-off
objects, objects that must be absolutely unique so that a class that is capable of creating other instances is
not necessary. The Class class also provides an ENHANCED method that lets you create new instances
of a class with additional methods. The methods and the object variables defined on an object with
SETMETHOD or ENHANCED form a separate scope, like the scopes the class hierarchy defines.

4.2.4. Method Names

A method name can be any string. When an object receives a message, the language processor searches
for a method whose name matches the message name in uppercase.

Note: The language processor also translates the specified name of all methods added to objects
into uppercase characters.

You must surround a method name with quotation marks when it contains characters that are not allowed
in a symbol (for example, the operator characters). The following example creates a new class (the Cost
class), defines a new method (%), creates an instance of the Cost class (mycost), and sends a % message
to mycost:

cost=.object subclass("A cost")
cost”define("},", 'expose p; say "Enter a price."; pull p; say p*1.07;")
mycost=cost new
mycost™"%" /* Produces: Enter a price. x/
/* If the user specifies a price of 100, */

ooRexx Reference Version 4.1.0 99 Draft - SVN Rev 6346

Chapter 4. Objects and Classes

/* produces: 107.00 x/

4.2.5. Default Search Order for Method Selection

The search order for a method name matching the message is for:

1. A method the object itself defines with SETMETHOD or ENHANCED. (See SETMETHOD .)

2. A method the object’s class defines. (Note that an object acquires the instance methods of the class
to which it belongs at the time of its creation. If a class gains additional methods, objects created
before the definition of these methods do not acquire these methods.)

3. A method that a superclass of the object’s class defines. This is also limited to methods that were
available when the object was created. The order of the INHERIT (see INHERIT) messages sent to
an object’s class determines the search order of the superclass method definitions.

This search order places methods of a class before methods of its superclasses so that a class can
supplement or override inherited methods.

If the language processor does not find a match for the message name, the language processor checks the
object for a method name UNKNOWN. If it exists, the language processor calls the UNKNOWN method
and returns as the message result any result the UNKNOWN method returns. The UNKNOWN method
arguments are the original message name and a Rexx array containing the original message arguments.

If the object does not have an UNKNOWN method, the language processor raises a NOMETHOD
condition. If there are no active traps for the NOMETHOD condition, a syntax error is raised.

4.2.6. Defining an UNKNOWN Method

When an object that receives a message does not have a matching message name, the language processor
checks if the object has a method named UNKNOWN. If the object has an UNKNOWN method, the
language processor calls UNKNOWN, passing two arguments. The first argument is the name of the
method that was not located. The second argument is an array containing the arguments passed with the
original message.

For example, the following UNKNOWN method will print out the name of the invoked method and then

invoke the same method on another object. This can be used track the messages that are sent to an object:

::method unknown

expose target -- will receive all of the messages

use arg name, arguments

say name "invoked with" arguments”toString

forward to(target) -- send along the message with the original args

4.2.7. Changing the Search Order for Methods

You can change the usual search order for methods by:

Draft - SVN Rev 6346 100 ooRexx Reference Version 4.1.0

Chapter 4. Objects and Classes

1. Ensuring that the receiver object is the sender object. (You usually do this by specifying the special
variable SELF.

2. Specitfying a colon and a class symbol after the message name. The class symbol can be a variable
name or an environment symbol. It identifies the class object to be used as the starting point for the
method search.

The class object must be a superclass of the class defining the active method, or, if you used
SETMETHOD to define the active method, the object’s own class. The class symbol is usually the
special variable SUPER (see SUPER) but it can be any environment symbol or variable name whose
value is a valid class.

Suppose you create an Account class that is a subclass of the Object class, define a TYPE method for the
Account class, and create the Savings class that is a subclass of Account. You could define a TYPE
method for the Savings class as follows:

savings~define("TYPE", 'return "a savings account"')

You could change the search order by using the following line:
savings~define("TYPE", 'return self type:super "(savings)"')

This changes the search order so that the language processor searches for the TYPE method first in the
Account superclass (rather than in the Savings subclass). When you create an instance of the Savings
class (asav) and send a TYPE message to asav:

say asav type

an account (savings) is displayed. The TYPE method of the Savings class calls the TYPE method of
the Account class, and adds the string (savings) to the results.

4.2.8. Public and Private Methods

A method can be public or private. Any object can send a message that runs a public method. A private
method can only be invoked from specific calling contexts. These contexts are:

1. From within a method owned by the same class as the target. This is frequently the same object,
accessed via the special variable SELF. Private methods of an object can also be accessed from other
instances of the same class (or subclass instances).

2. From within a method defined at the same class scope as the method. For example:

::class Savings

: :method newCheckingAccount CLASS
instance = self™new
instance “makeChecking
return instance

: :method makeChecking private

expose checking
checking = .true

ooRexx Reference Version 4.1.0 101 Draft - SVN Rev 6346

Chapter 4. Objects and Classes

The newCheckingAccount CLASS method is able to invoke the makeChecking method because the
scope of the makeChecking method is .Savings.

3. From within an instance (or subclass instance) of a class to a private class method of its class. For
example:
::class Savings
::method init class

expose counter
counter = 0

::method allocateAccountNumber private class
expose counter
counter = counter + 1
return counter

::method init
expose accountNumber
accountNumber = self”class™allocateAccountNumber

The instance init method of the Savings class is able to invoke the allocate AccountNumber private
method of the .Savings class object because it is owned by an instance of the .Savings class.

Private methods include methods at different scopes within the same object. This allows superclasses to
make methods available to their subclasses while hiding those methods from other objects. A private
method is like an internal subroutine. It shields the internal information of an object to outsiders, but
allowing objects to share information with each other and their defining classes.

4.2.9. Initialization

Any object requiring initialization at creation time must define an INIT method. If this method is defined,
the class object runs the INIT method after the object is created. If an object has more than one INIT
method (for example, it is defined in several classes), each INIT method must forward the INIT message
up the hierarchy to complete the object’s initialization.

Example:

asav = .savings“new(1000.00, 6.25)
say asav type

asav name = "John Smith"

::class Account

::method INIT
expose balance
use arg balance

::method TYPE
return "an account"

::method name attribute

::class Savings subclass Account

Draft - SVN Rev 6346 102 ooRexx Reference Version 4.1.0

Chapter 4. Objects and Classes

::method INIT
expose interest_rate
use arg balance, interest_rate
self~init:super(balance)

::method type
return "a savings account"

The NEW method of the Savings class object creates a new Savings object and calls the INIT method of
the new object. The INIT method arguments are the arguments specified on the NEW method. In the
Savings INIT method, the line:

self~init:super(balance)

calls the INIT method of the Account class, using just the balance argument specified on the NEW
message.

4.2.10. Object Destruction and Uninitialization

Object destruction is implicit. When an object is no longer in use, Rexx automatically reclaims its
storage. If the object has allocated other system resources, you must release them at this time. (Rexx
cannot release these resources, because it is unaware that the object has allocated them.)

Similarly, other uninitialization processing may be needed, for example, by a message object holding an
unreported error. An object requiring uninitialization should define an UNINIT method. If this method is
defined, Rexx runs it before reclaiming the object’s storage. If an object has more than one UNINIT
method (defined in several classes), each UNINIT method is responsible for sending the UNINIT
method up the object hierarchy.

4.2.11. Required String Values

Rexx requires a string value in a number of contexts within instructions and built-in function calls.

« DO statements containing exprr or exprf

+ Substituted values in compound variable names

« Commands to external environments

« Commands and environment names on ADDRESS instructions

« Strings for ARG, PARSE, and PULL instructions to be parsed

« Parenthesized targets on CALL instructions

+ Subsidiary variable lists on DROP, EXPOSE, and PROCEDURE instructions
« Instruction strings on INTERPRET instructions

« DIGITS, FORM, and FUZZ values on NUMERIC instructions

+ Options strings on OPTIONS instructions

ooRexx Reference Version 4.1.0 103 Draft - SVN Rev 6346

Chapter 4. Objects and Classes

« Data queue strings on PUSH and QUEUE instructions

« Label names on SIGNAL VALUE instructions

+ Trace settings on TRACE VALUE instructions

+ Arguments to built-in functions

« Variable references in parsing templates

+ Data for PUSH and QUEUE instructions to be processed

+ Data for the SAY instruction to be displayed

» Rexx dyadic operators when the receiving object (the object to the left of the operator) is a string

If you supply an object other than a string in these contexts, by default the language processor converts it
to some string representation and uses this. However, the programmer can cause the language processor
to raise the NOSTRING condition when the supplied object does not have an equivalent string value.

To obtain a string value, the language processor sends a REQUEST("STRING") message to the object.
Strings and other objects that have string values return the appropriate string value for Rexx to use. (This
happens automatically for strings and for subclasses of the String class because they inherit a suitable
MAKESTRING method from the String class.) For this mechanism to work correctly, you must provide
a MAKESTRING method for any other objects with string values.

For other objects without string values (that is, without a MAKESTRING method), the action taken
depends on the setting of the NOSTRING condition trap. If the NOSTRING condition is being trapped
(see Conditions and Condition Traps), the language processor raises the NOSTRING condition. If the
NOSTRING condition is not being trapped, the language processor sends a STRING message to the
object to obtain its readable string representation (see the STRING method of the Object class STRING)
and uses this string.

When comparing a string object with the Nil object, if the NOSTRING condition is being trapped, then
if string = .nil
will raise the NOSTRING condition, whereas

if .nil = string

will not as the Nil object’s "=" method does not expect a string as an argument.
Example:

d = .directory new

say substr(d,5,7) /* Produces "rectory" from "a Directory" */
signal on nostring

say substr(d,5,7) /* Raises the NOSTRING condition */

say substr(d~string,3,6) /* Displays "Direct" */

For arguments to Rexx object methods, different rules apply. When a method expects a string as an
argument, the argument object is sent the REQUEST("STRING") message. If REQUEST returns the Nil
object, then the method raises an error.

Draft - SVN Rev 6346 104 ooRexx Reference Version 4.1.0

Chapter 4. Objects and Classes

4.2.12. Concurrency

Rexx supports concurrency, multiple methods running simultaneously on a single object. See
Concurrency for a full description of concurrency.

4.3. Overview of Classes Provided by Rexx

This section gives a brief overview of the classes and methods Rexx defines.

4.3.1. The Class Hierarchy

Rexx provides the following classes belonging to the object class:

+ Alarm class
+ Array class
+ Class class
« Collection class
- MapCollection class
« OrderedCollection class

. SetCollection class

« Comparable class
+ Orderable class
« Comparator class
+ CaselessColumnComparator class
- CaselessComparator class
« CaselessDescendingComparator class
+ ColumnComparator class
« DescendingComparator class

« InvertingComparator class
« DateTime class
+ Directory class

- Properties class

 InputOutputStream class

ooRexx Reference Version 4.1.0 105 Draft - SVN Rev 6346

Chapter 4. Objects and Classes

« Stream class

InputStream class
List class
Message class
Method class
Method class

Routine class

« MutableBuffer class

OutputStream class
Queue class

« CircularQueue class

RegularExpression class
Relation class

- Bagclass

RexxQueue class
Stem class
String class
Supplier class

- StreamSupplier class

Table class

. Set class

IdentityTable class
TimeSpan class
WeakReference class
RexxContext class
Buffer class

Pointer class

(The classes are in a class hierarchy with subclasses indented below their superclasses.)

Note that there might also be other classes in the system, depending on the operating system. Additional
classes may be accessed by using an appropriate ::requires directive to load the class definitions.

Draft - SVN Rev 6346

106

ooRexx Reference Version 4.1.0

Chapter 4. Objects and Classes

The following figures show Rexx built-in classes.

Figure 4-1. Classes and Inheritance (part 1 of 9)

| Object |

. Alarm | | Array | | Class | | Collection |

| MapCollection |

| OrderedCollection |

\ SetCollection \

Figure 4-2. Classes and Inheritance (part 2 of 9)

| Object

| Comparator | DateTime |

| CaselessColumnComparator |

| CaselessComparator |

| ColumnComparator |

| CaselessDescendingComparator |

| DescendingComparator |

| InvertingComparator |

ooRexx Reference Version 4.1.0 107 Draft - SVN Rev 6346

Chapter 4. Objects and Classes

Figure 4-3. Classes and Inheritance (part 3 of 9)

| Object
| | |

| Directory | | InputOutputStream | | InputStream |
| |

| Properties | | Stream |

Figure 4-4. Classes and Inheritance (part 4 of 9)

| Object |

| List | |Message | Method = | Monitor | |[MutableBuffer

Figure 4-5. Classes and Inheritance (part 5 of 9)

| Object |

\OutputStream\ \ Queue \ \RegularExpression\ \Relation\

| CircularQueue | Bag

Figure 4-6. Classes and Inheritance (part 6 of 9)

| Object

| RexxQueue | | Stem | | String | | Supplier |

 StreamSupplier |

Draft - SVN Rev 6346 108 ooRexx Reference Version 4.1.0

Chapter 4. Objects and Classes

Figure 4-7. Classes and Inheritance (part 7 of 9)

| Object

| Table | | TimeSpan | | IdentifyTable |

Figure 4-8. Classes and Inheritance (part 8 of 9)

Object |

| Comparable | ' Routine | | RexxContext| | WeakReference|

Figure 4-9. Classes and Inheritance (part 9 of 9)

| Object

4.3.2. Class Library Notes

The chapters that follow describe the classes and other objects that Rexx provides and their available
methods. Rexx provides the objects listed in these sections and they are generally available to all
methods through environment symbols (see Environment Symbols).

Notes:

1. In the method descriptions in the chapters that follow, methods that return a result begin with the
word "returns".

2. For [] and []= methods, the syntax diagrams include the index or indexes within the brackets. These
diagrams are intended to show how you can use these methods. For example, to retrieve the first
element of a one-dimensional array named Arrayl, you would typically use the syntax:

Arrayi1[1]
rather than:
Array1~"[1"(1)

even though the latter is valid and equivalent. For more information, see Message Terms and
Message Instructions.

ooRexx Reference Version 4.1.0 109 Draft - SVN Rev 6346

Chapter 4. Objects and Classes

3. When the argument of a method must be a specific kind of object (such as array, class, method, or
string) the variable you specify must be of the same class as the required object or be able to produce
an object of the required kind in response to a conversion message. In particular, subclasses are
acceptable in place of superclasses (unless overridden in a way that changes superclass behavior),
because they inherit a suitable conversion method from their Rexx superclass.

The isA method of the Object class can perform this validation.

Draft - SVN Rev 6346 110 ooRexx Reference Version 4.1.0

Chapter 5. The Builtin Classes

This chapter describes all of the Rexx built-in classes.

Fundamental Classes
This set of classes are the fundamental building blocks for all other classes. It includes the Object
class, the Class class, the String class, the Method class, and the Routine class, and the Package
class, and the Message class.

Stream Classes
This set of classes implement the classic Rexx streams. It includes the Stream class, the
InputStream class, the OutputStream class, and the InputOutputStream class.

Collection Classes

This set of classes implement object collections. It includes the Directory class, the Properties class,
the Relation class, the Stem class, the Table class, the IdentityTable class, the Array class, the List
class, the Queue class, the CircularQueue class, the Bag class, and the Set class.

Utility Classes

This set of classes are utility in nature and hard to classify. It includes the Alarm class, the
Comparable class, the Comparator class, the Orderable class, the DateTime class, the
MutableBuffer class, the RegularExpression class, the RexxContext class, the RexxQueue class, the
StreamSupplier class, the Supplier class, the TimeSpan class and the WeakReference class.

5.1. The Fundamental Classes

This section describes the Rexx fundamental classes.

5.1.1. The Object Class

The Object class is the root of the class hierarchy. The instance methods of the Object class are,
therefore, available on all objects.

ooRexx Reference Version 4.1.0 111 Draft - SVN Rev 6346

Chapter 5. The Builtin Classes

Figure 5-1. The Object class and methods

Object

new

=\===\== <> ><
class

copy
defaultName
hashCode
hasMethod
identityHash
init
instanceMethod
instanceMethods
isSA

instanceOf
objectName
objectName=
request

run

send

sendWith
setMethod

start

startWith

string
unsetMethod

Note: The Object class also has available class methods that its metaclass, the Class class, defines.

5.1.1.1. new (Class Method)

>>-new - - - - ><

Returns a new instance of the receiver class.

5.1.1.2. Operator Methods

>>-comparison_operator (argument) - - - ><

Draft - SVN Rev 6346 112 ooRexx Reference Version 4.1.0

Chapter 5. The Builtin Classes

Returns 1 (true) or 0 (false), the result of performing a specified comparison operation.

For the Object class, if argument is the same object as the receiver object, the result is 1 (true), otherwise
0 (false) is returned. Subclasses may override this method to define equality using different criteria. For
example, the String class determines equality based on the value of the string data.

Note: The MapCollection classes such as Table and Relation use the == operator combined with the
hashCode method to determine index and item equivalence. It is generally necessary for a class to
override both the hashCode method and the == operator method to maintain the contract specified
for the hashCode method. See hashCode Method for details on the contract.

The comparison operators you can use in a message are:

True if the terms are the same object.

\=, ><, <>, \==

True if the terms are not the same object (inverse of =).

5.1.1.3. Concatenation Methods
>>-concatenation_operator (argument)-———-----—----—-————————————— ><

Returns a new string that is the concatenation the of receiver object’s string value with argument. (See
String Concatenation.) The concatenation_operator can be:

nn

is the null string. The language
processor uses the abuttal operator to concatenate two terms that another operator does not separate.

concatenates without an intervening blank. The abuttal operator

concatenates without an intervening blank.

"non

concatenates with one blank between the receiver object and the argument. (The operator " " is a
blank.)

5.1.1.4. class

>>-class-—- - - - - ><

Returns the class object that created the object instance.

ooRexx Reference Version 4.1.0 113 Draft - SVN Rev 6346

Chapter 5. The Builtin Classes

5.1.1.5. copy

>>-copy---——-— - - ettt - ><

Returns a copy of the receiver object. The copied object has the same methods as the receiver object and
an equivalent set of object variables, with the same values.

Example:

myarray=. array"of("N" s ngn s ngn s uwu)

/* Copies array myarray to array directions */
directions=myarray” copy

Note: The copy method is a "shallow copy". Only the target object is copied. Additional objects
referenced by the target object are not copied. For example, copying an Array object instance only
copies the array, it does not copy any of the objects stored in the array.

5.1.1.6. defaultName

>>-defaultName---- - e~ - —— ><

Returns a short human-readable string representation of the object. The exact form of this representation
depends on the object and might not alone be sufficient to reconstruct the object. All objects must be able
to produce a short string representation of themselves in this way, even if the object does not have a
string value. See Required String Values for more information. The defaultName method of the Object
class returns a string that identifies the class of the object, for example, an Array or a Directory. See also
objectName and string. See objectName= for an example using defaultName.

5.1.1.7. hashCode

>>-hashCode-—----- - e et ><

Returns a string value that is used as a hash value for MapCollections such as Table, Relation, Set, Bag,
and Directory. MapCollections use this string value to hash an object for hash table-based searches.

Object implementations are expected to abide by a general contract for hash code usage:

« Whenever hashCode is invoked on the same object more than once, hashCode must return the same

hashcode value, provided than none of the internal information the object uses for an "==" comparison
has changed.
« If two object instances compare equal using the "==" operator, the hashCode methods for both object

instances must return the same value.

- Itis not required that two object instances that compare unequal using "==" return different hash code
values.

Draft - SVN Rev 6346 114 ooRexx Reference Version 4.1.0

Chapter 5. The Builtin Classes
« Returning a wide range of hash values will produce better performance when an object is used as an

index for a MapCollection. A return value of 4 string characters is recommended. The characters in
the hash value may be any characters from *00’x to *ff’x, inclusive.

5.1.1.8. hasMethod

>>-hasMethod (methodname) - - ><

Returns 1 (true) if the receiver object has a method named methodname (translated to uppercase).
Otherwise, it returns 0 (false).

Note: The hasMethod object will return true even if the target method is defined as private. A private
method has restricted access rules, so its possible to receive an unknown method error (error 97)
when invoking methodname even if hasMethod indicates the method exists. See Public versus
Private Methods for private method restrictions.

5.1.1.9. identityHash

>>-identityHash--- - ><

Returns a unique identity number for the object. This number is guaranteed to be unique for the receiver
object until the object is garbage collected.

5.1.1.10. init

>>-injit---- - ><

Performs any required object initialization. Subclasses of the Object class can override this method to
provide more specific initialization.

5.1.1.11. instanceMethod

>>-instanceMethod (methodname)--- ><

Returns the corresponding Method class instance if the methodname is a valid method of the class.
Otherwise it returns the Nil object.

5.1.1.12. instanceMethods

>>-instanceMethods(class) - -><

Returns a Supplier instance containing the names and corresponding method objects defined by class. If
the receiver object is not an instance of class, the Nil object is returned.

ooRexx Reference Version 4.1.0 115 Draft - SVN Rev 6346

Chapter 5. The Builtin Classes

5.1.1.13.isA

>>-isA(class) - - ————— - ><

Note: This method is an alias of the isInstanceOf method.

5.1.1.14. islnstanceOf

>>-isInstanceOf (class)-—-— - ><

Returns .true ("1") if the object is an instance of the specified class, otherwise it returns .false ("0"), An
object is an instance of a class if the object is directly an instance of the specified class or if class is in
the object’s direct or mixin class inheritance chain. For example:

"abc"~isInstanceOf (.string) -> 1
"abc"“isInstanceOf (.object) -> 1
"abc"~isInstanceOf (.mutablebuffer) -> 0

5.1.1.15. objectName

>>-objectName - - - _— ><

Returns any name set on the receiver object using the objectName= method. If the receiver object does
not have a name, this method returns the result of the defaultName method. See Required String Values
for more information. See the objectName= method for an example using objectName.

5.1.1.16. objectName=

>>-objectName=(newname) -— - - - ><

Sets the receiver object’s name to the string newname.

Example:

points=.array~of ("N","S","E","W")

say points~objectName /* (no change yet) Says: "an Array" */
points~objectName=("compass") /* Changes obj name POINTS to "compass"*/
say points~objectName /* Shows new obj name. Says: "compass" */
say points~defaultName /* Default is still available. */
/* Says "an Array" */
say points /* Says string representation of */
/* points "compass" x/
say points[3] /* Says: "E"Points is still an array */
/* of 4 items */

Draft - SVN Rev 6346 116 ooRexx Reference Version 4.1.0

Chapter 5. The Builtin Classes

5.1.1.17. request

>>-request (classid)------ - - - - ><

Returns an object of the classid class, or the Nil object if the request cannot be satisfied.

This method first compares the identity of the object’s class (see the id method of the Class class in id) to
classid. If they are the same, the receiver object is returned as the result. Otherwise, request tries to
obtain and return an object satisfying classid by sending the receiver object the conversion message make
with the string classid appended (converted to uppercase). For example, a request ("string") message
causes a makeString message to be sent. If the object does not have the required conversion method,
request returns the Nil object.

The conversion methods cause objects to produce different representations of themselves. The presence
or absence of a conversion method defines an object’s capability to produce the corresponding
representations. For example, lists can represent themselves as arrays, because they have a makeArray
method, but they cannot represent themselves as directories, because they do not have a makeDirectory
method. Any conversion method must return an object of the requested class. For example, makeArray
must return an array. The language processor uses the makeString method to obtain string values in
certain contexts; see Required String Values.

5.1.1.18. run

>>-run(method-+--- -- Sttt e e ettt ><
| o + |
| v I
+-,Individual---+--—---———--- +—+-+
| +-,argument-+ |
+-,Array,argument-----—-------—--- +

Runs the method object method (see The Method Class). The method has access to the object variables
of the receiver object, as if the receiver object had defined the method by using setMethod.

If you specify the Individual or Array option, any remaining arguments are arguments for the method.
(You need to specify only the first letter; all characters following the first character are ignored.)

Individual

Passes any remaining arguments to the method as arguments in the order you specify them.

Array

Requires argument, which is an array object. (See The Array Class.) The member items of the array
are passed to the method as arguments. The first argument is at index 1, the second argument at
index 2, and so on. If you omitted any indexes when creating the array, the corresponding arguments
are omitted when passing the arguments.

If you specify neither Individual nor Array, the method runs without arguments.

The method argument can be a string containing a method source line instead of a method object.
Alternatively, you can pass an array of strings containing individual method lines. In either case, run
creates an equivalent method object.

ooRexx Reference Version 4.1.0 117 Draft - SVN Rev 6346

Chapter 5. The Builtin Classes

Notes:

1. The run method is a private method. See Public versus Private Methods for information private
method restrictions.

2. The RUN method is a protected method.

5.1.1.19. send

>>-send (messagename—-—+----------- +-+-) ——==><
+-,argument—+

Returns a result of invoking a method on the target object using the specified message name and
arguments. The send() method allows methods to be invoked using dynamically constructed method
names.

The messagename can be a string or an array. If messagename is an array object, its first item is the name
of the message and its second item is a class object to use as the starting point for the method search. For
more information, see Classes and Inheritance.

Any arguments are passed to the receiver as arguments for messagename in the order you specify them.

Example:

world=.WorldObject “new

// the following 3 calls are equivalent
msgl=world~hello("Fred")

msg2=world~send ("HELLO", "Fred")

msg3=.message new(world,"HELLO", "i", "Fred") ™ ~send

say msgl-result /* Produces Hello Fred 21:04:25.065000 */
/* for example x/
say msg2~result /* Produces Hello Fred 21:04:25.081000 */
/* for example */
say msg3~result /* Produces Hello Fred 21:04:25.101000 */
/* for example */

::class ’WorldObject’ public
: :method hello
use arg name
return "Hello" name time(’L’)

5.1.1.20. sendWith

>>-sendWith(messagename,arguments)-—-------- - - —-—=><

Returns a result of invoking a method on the target object using the specified message name and
arguments. The send() method allows methods to be invoked using dynamically constructed method
names and arguments.

Draft - SVN Rev 6346 118 ooRexx Reference Version 4.1.0

Chapter 5. The Builtin Classes

The messagename can be a string or an array. If messagename is an array object, its first item is the name
of the message and its second item is a class object to use as the starting point for the method search. For
more information, see Classes and Inheritance.

The arguments argument must be a single-dimension array instance. The values contained in arguments
are passed to the receiver as arguments for messagename in the order you specify them.

Example:

world=.WorldObject “new

// the following 3 calls are equivalent
msgl=world~hello("Fred")

msg2=world~sendWith ("HELLO", .array~of("Fred"))

msg3=.message “new(world,"HELLO", "A", .array~of("Fred")) " ~send

say msgl~result /* Produces Hello Fred 21:04:25.065000 */
/* for example x/
say msg2~result /* Produces Hello Fred 21:04:25.081000 */
/* for example x/
say msg3 result /* Produces Hello Fred 21:04:25.101000 */
/* for example x/

::class ’WorldObject’ public
: :method hello
use arg name
return "Hello" name time(’L’)

5.1.1.21. setMethod

>>-setMethod (methodname—+--—-—-————————————————— Fmm) e ><
| +=,"FLOAT"-+ |
+-,method-+-----——--- +-+
+--,scope-—+

Adds a method to the receiver object’s collection of object methods. The methodname is the name of the
new method. This name is translated to uppercase. If you previously defined a method with the same
name using setMethod, the new method replaces the earlier one. If you omit method, setMethod makes
the method name methodname unavailable for the receiver object. In this case, sending a message of that
name to the receiver object runs the unknown method (if any).

The method can be a string containing a method source line instead of a method object. Or it can be an
array of strings containing individual method lines. In either case, setMethod creates an equivalent
method object.

The third parameter describes if the method that is attached to an object should have object or float
scope. "Float" scope means that it shares the same scope with methods that were defined outside of a
class. "Object" scope means it shares the scope with other, potentially statically defined, methods of the
object it is attached to.

Notes:

1. The setMethod method is a private method. See the setPrivate method in setPrivate for details.

ooRexx Reference Version 4.1.0 119 Draft - SVN Rev 6346

Chapter 5. The Builtin Classes

2. The setMethod method is a protected method.

5.1.1.22. start

>>-start (messagename--—+--—----—----—- e ><
+-,argument-+

Returns a message object (see The Message Class) and sends it a start message to start concurrent
processing. The object receiving the message messagename processes this message concurrently with the
sender’s continued processing.

The messagename can be a string or an array. If messagename is an array object, its first item is the name
of the message and its second item is a class object to use as the starting point for the method search. For
more information, see Classes and Inheritance.

Any arguments are passed to the receiver as arguments for messagename in the order you specify them.

When the receiver object has finished processing the message, the message object retains its result and
holds it until the sender requests it by sending a result message. For further details, see start.

Example:

world=.WorldObject “"new
msgl=world~start ("HELLO") /* same as next line */
msg2=.message new(world,"HELLO") ““start /+* same as previous line */

say msgl-result /* Produces Hello world 21:04:25.065000 */
/* for example */
say msg2-result /* Produces Hello world 21:04:25.081000 */
/* for example */

::class ’WorldObject’ public
::method hello
return "Hello world" time(’L’)

5.1.1.23. startWith

>>-startWith(messagename,arguments) ———------- - - —-——=><

Returns a message object (see The Message Class) and sends it a start message to start concurrent
processing. The object receiving the message messagename processes this message concurrently with the
sender’s continued processing.

The messagename can be a string or an array. If messagename is an array object, its first item is the name
of the message and its second item is a class object to use as the starting point for the method search. For
more information, see Classes and Inheritance.

The arguments argument must be a single-dimension array instance. Any values contained in arguments
are passed to the receiver as arguments for messagename in the order you specify them.

Draft - SVN Rev 6346 120 ooRexx Reference Version 4.1.0

Chapter 5. The Builtin Classes

When the receiver object has finished processing the message, the message object retains its result and
holds it until the sender requests it by sending a result message. For further details, see start.

Example:

world=.WorldObject " new

msgl=world~startWith("HELLO", .array~of("Fred") /* same as next line */
msg2=.message new(world,"HELLO", ’i’, .array~of("Fred")) "start /* same as previous line */
say msgl~result /* Produces Hello Fred 21:04:25.065000 */

/* for example x/
say msg2 result /* Produces Hello Fred 21:04:25.081000 */

/* for example x/

::class ’WorldObject’ public
: :method hello
use arg name
return "Hello" name time(’L’)

5.1.1.24. string

>>-string-- -- -- ><

Returns a human-readable string representation of the object. The exact form of this representation
depends on the object and might not alone be sufficient to reconstruct the object. All objects must be able
to produce a string representation of themselves in this way.

The object’s string representation is obtained from the objectName method (which can in turn use the
defaultName method). See also the objectName method (OBJECTNAME) and the defaultName
method (defaultName).

The distinction between this method, the makeString method (which obtains string values—see
makeString) and the request method (see request) is important. All objects have a string method, which
returns a string representation (human-readable form) of the object. This form is useful in tracing and
debugging. Only those objects that have information with a meaningful string form have a makeString
method to return this value. For example, directory objects have a readable string representation (a
Directory), but no string value, and, therefore, no makeString method.

Of the classes that Rexx provides, only the String class has a makeString method. Any subclasses of the
String class inherit this method by default, so these subclasses also have string values. Any other class
can also provide a string value by defining a makeString method.

5.1.1.25. unsetMethod

>>-unsetMethod (methodname) -————- - ><

Cancels the effect of all previous setMethods for method methodname. It also removes any method
methodname introduced with enhanced when the object was created. If the object has received no
setMethod method, no action is taken.

Notes:

ooRexx Reference Version 4.1.0 121 Draft - SVN Rev 6346

Chapter 5. The Builtin Classes

Draft -

1. The unsetMethod method is a private method. See the setPrivate method in setPrivate for details.

2. The unsetMethod method is a protected method.

5.1.2. The Class Class

The Class class is like a factory that produces the factories that produce objects. It is a subclass of the
Object class. The instance methods of the Class class are also the class methods of all classes.

Figure 5-2. The Class class and methods

Object

Class

=\= == \== <> ><
baseClass
defaultName
define

delete
enhanced

id

inherit
isSubclassOf
metaClass
method
methods
mixinClass

new
queryMixinClass
subClass
subClasses
superClass
superClasses
uninherit

5.1.2.1. Inherited Methods

Methods inherited from the Object class.

new (class method) instanceMethod
=\===\== <> >< instanceMethods

SVN Rev 6346

ooRexx Reference Version 4.1.0

Chapter 5. The Builtin Classes

class iSA setMethod
copy isInstanceOf start
defaultName objectName startWith
hasMethod objectName= string
identityHash Request unsetMethod
init Run

5.1.2.2. baseClass

>>-baseClass - - — - ><

Returns the base class associated with the class. If the class is a mixin class, the base class is the first
superclass that is not also a mixin class. If the class is not a mixin class, the base class is the class
receiving the baseClass message.

5.1.2.3. defaultName

>>-defaultName -- - - - ><

Returns a short human-readable string representation of the class. The string returned is of the form

The id class

where id is the identifier assigned to the class when it was created.

Examples:

say .array defaultName /* Displays "The Array class" x/
say .account”defaultName /% Displays "The ACCOUNT class" */
say .savings“defaultName /* Displays "The Savings class" */

::class account /* Name is all upper case x/
::class "Savings" /* String name is mixed case */

5.1.2.4. define

>>-define (methodname-+--------—- +-)-—- ><
+-,method-+

Incorporates the method object method in the receiver class’s collection of instance methods. The
method name methodname is translated to to uppercase. Using the define method replaces any existing
definition for methodname in the receiver class.

If you omit method, the method name methodname is made unavailable for the receiver class. Sending a
message of that name to an instance of the class causes the unknown method (if any) to be run.

The method argument can be a string containing a method source line instead of a method object.
Alternatively, you can pass an array of strings containing individual method lines. Either way, define
creates an equivalent method object.

Notes:

ooRexx Reference Version 4.1.0 123 Draft - SVN Rev 6346

Chapter 5. The Builtin Classes

1. The classes Rexx provides do not permit changes or additions to their method definitions.
2. The define method is a protected method.

Example:

bank_account=.object“subclass("Account")
bank_account~define("TYPE",'return "a bank account"')

5.1.2.5. delete

>>-delete(methodname)-—-- - - - ><

Removes the receiver class’s definition for the method name methodname. If the receiver class defined
methodname as unavailable with the define method, this definition is nullified. If the receiver class had
no definition for methodname, no action is taken.

Notes:

1. The classes Rexx provides do not permit changes or additions to their method definitions.

2. delete deletes only methods the target class defines. You cannot delete inherited methods the target’s
superclasses define.

3. The delete method is a protected method.

Example:

myclass=.object subclass("Myclass") /* After creating a class */
myclass~define ("TYPE",'return "my class"') /* and defining a method */
myclass~delete ("TYPE") /* this deletes the method */

5.1.2.6. enhanced

>>-enhanced (methods—+----—----—-—-—-—- +-) ><

I v 1
+---,argument—+-+

Returns an enhanced new instance of the receiver class, with object methods that are the instance
methods of the class, enhanced by the methods in the collection methods. The collection indexes are the
names of the enhancing methods, and the items are the method objects (or strings or arrays of strings
containing method code). (See the description of define.) You can use any collection that supports a
supplier method.

enhanced sends an init message to the created object, passing the arguments specified on the enhanced
method.

Example:

/* Set up rclass with class method or methods you want in your */
/* remote class */

Draft - SVN Rev 6346 124 ooRexx Reference Version 4.1.0

Chapter 5. The Builtin Classes
rclassmeths = .directory™new
rclassmeths ["DISPATCH"]=d_source /* d_source must have code for a */
/* DISPATCH method. */

/* The following sends init("Remote Class") to a new instance */
rclass=.class"enhanced(rclassmeths,"Remote Class")

5.1.2.7.id

>>-id-——-——m——m o - e -- -- ><

Returns the class identity (instance) string. (This is the string that is an argument on the subClass and
mixinClass methods.) The string representations of the class and its instances contain the class identity.

Example:

myobject=.object~subClass("my object") /* Creates a subclass */
say myobject~id /* Produces: "my object" */

5.1.2.8. inherit

>>-inherit(classobj-—+----------- +-)-- -- -- ><
+-,classpos-+

Causes the receiver class to inherit the instance and class methods of the class object classobj. The
classpos is a class object that specifies the position of the new superclass in the list of superclasses. (You
can use the superClasses method to return the immediate superclasses.)

The new superclass is inserted in the search order after the specified class. If the classpos class is not
found in the set of superclasses, an error is raised. If you do not specify classpos, the new superclass is
added to the end of the superclasses list.

Inherited methods can take precedence only over methods defined at or above the base class of the
classobj in the class hierarchy. Any subsequent change to the instance methods of classobj takes
immediate effect for all the classes that inherit from it.

The new superclass classobj must be created with the mixinClass option of the ::CLASS directive or the
mixinClass method and the base class of the classobj must be a direct superclass of the receiver object.
The receiver must not already descend from classobj in the class hierarchy and vice versa.

The method search order of the receiver class after inherit is the same as before inherit, with the
addition of classobj and its superclasses (if not already present).

Notes:

1. You cannot change the classes that Rexx provides by sending inherit messages.
2. The inherit method is a protected method.

Example:

room~inherit(.location)

ooRexx Reference Version 4.1.0 125 Draft - SVN Rev 6346

Chapter 5. The Builtin Classes

5.1.2.9. isSubClassOf

>>-isSubclass0f (class)--- - —————————————— -—=><

Returns .true ("1") if the object is a subclass of the specified class. Returns .false ("0") if the object is not
a subclass of the specified class. A class is a subclass of a class if the target class is the same as class or if
class is in the object’s direct or mixin class inheritance chain. For example:

.String~isSubclass0f (.object) -> 1
.String~isSubclassOf (.mutablebuffer) -> 0

5.1.2.10. metaClass

>>-metaClass------ - ittty - - ><

Returns the receiver class’s default metaclass. This is the class used to create subclasses of this class
when you send subClass or mixinClass messages (with no metaclass arguments). The instance methods
of the default metaclass are the class methods of the receiver class. For more information about class
methods, see Object Classes. See also the description of the subClass method in subClass.

5.1.2.11. method

>>-method (methodname) -———-—---—————————————— - - ><

Returns the method object for the receiver class’s definition for the method name methodname. If the
receiver class defined methodname as unavailable, this method returns the Nil object. If the receiver class
did not define methodname, an error is raised.

Example:

/* Create and retrieve the method definition of a class */

myclass=.object“subClass("My class") /* Create a class */
mymethod=.method new(" ","Say arg(1)") /* Create a method object */
myclass~define ("ECHO" ,mymethod) /* Define it in the class */
method_source = myclass method("ECHO") “source /* Extract it */
say method_source /* Says "an Array" x/
say method_source[1] /* Shows the method source code */

5.1.2.12. methods

>>-methods-+--—---- - t— ><
+-(class_object) -+

Returns a Supplier object for all the instance methods of the receiver class and its superclasses, if you
specify no argument. If class_object is the Nil object, methods returns a supplier object for only the
instance methods of the receiver class. If you specify a class_object, this method returns a supplier object

Draft - SVN Rev 6346 126 ooRexx Reference Version 4.1.0

Chapter 5. The Builtin Classes

containing only the instance methods that class_object defines. The supplier enumerates all the names
and methods existing at the time of the supplier’s creation.

Note: Methods that have been hidden with a setMethod or define method are included with the
other methods that methods returns. The hidden methods have the Nil object for the associated
method.

Example:

objsupp=.object“methods
do while objsupp~available

say objsupp”index -- displays all instance method
objsupp next -- names of the Object class
end

5.1.2.13. mixinClass

>>-mixinClass(classid-+-- - ————t=) ><
+-,metaclass—+-————-——-- +-+
+-,methods-+

Returns a new mixin subclass of the receiver class. You can use this method to create a new mixin class
that is a subclass of the superclass to which you send the message. The classid is a string that identifies
the new mixin subclass. You can use the id method to retrieve this string.

The metaclass is a class object. If you specify metaclass, the new subclass is an instance of metaclass. (A
metaclass is a class that you can use to create a class, that is, a class whose instances are classes. The
Class class and its subclasses are metaclasses.)

If you do not specify a metaclass, the new mixin subclass is an instance of the default metaclass of the
receiver class. For subclasses of the Object class, the default metaclass is the Class class.

The methods is a collection whose indexes are the names of methods and whose items are method
objects (or strings or arrays of strings containing method code). If you specify methods, the new class is
enhanced with class methods from this collection. (The metaclass of the new class is not affected.)

The metaClass method returns the metaclass of a class.

The method search order of the new subclass is the same as that of the receiver class, with the addition of
the new subclass at the start of the order.

Example:

buyable=.object mixinClass("Buyable") /* New subclass is buyable */
/* Superclass is Object class */

5.1.2.14. new

>>-new-+---——————----—- +- - -- ><

ooRexx Reference Version 4.1.0 127 Draft - SVN Rev 6346

Chapter 5. The Builtin Classes

| v I |
+-(-———arg-+--) -+

Returns a new instance of the receiver class, whose object methods are the instance methods of the class.
This method initializes a new instance by running its init methods. (See Initialization.) new also sends an
init message. If you specify args, new passes these arguments on the init message.

Example:

/* new method example */

a = .account"new /* => Object variable balance=0 */
y = .account”new(340.78) /* —> Object variable balance=340.78 */
/* plus free toaster oven x/

::class account subclass object

::method init /* Report time each account created x/
/* plus free toaster when more than $100 */

Expose balance

Arg opening_balance

Say "Creating" self”objectName "at time" time()

If datatype(opening balance, "N") then balance = opening_balance

else balance = 0

If balance > 100 then Say " You win a free toaster oven"

5.1.2.15. queryMixinClass

>>-queryMixinClass - - ><

Returns 1 (true) if the class is a mixin class, or 0 (false).

5.1.2.16. subclass

>>-subclass(classid-+---- - - ——t=)—- - ><
+-,metaclass—+--——-—----- +-+
+-,methods-+

Returns a new subclass of the receiver class. You can use this method to create a new class that is a
subclass of the superclass to which you send the message. The classid is a string that identifies the
subclass. (You can use the id method to retrieve this string.)

The metaclass is a class object. If you specify metaclass, the new subclass is an instance of metaclass. (A
metaclass is a class that you can use to create a class, that is, a class whose instances are classes. The
Class class and its subclasses are metaclasses.)

If you do not specify a metaclass, the new subclass is an instance of the default metaclass of the receiver
class. For subclasses of the Object class, the default metaclass is the Class class.

The methods is a collection whose indexes are the names of methods and whose items are method
objects (or strings or arrays of strings containing method code). If you specify methods, the new class is
enhanced with class methods from this collection. (The metaclass of the new class is not affected.)

The metaclass method returns the metaclass of a class.

Draft - SVN Rev 6346 128 ooRexx Reference Version 4.1.0

Chapter 5. The Builtin Classes

The method search order of the new subclass is the same as that of the receiver class, with the addition of
the new subclass at the start of the order.

Example:

room=.object subclass("Room") /* Superclass is .object */
/* Subclass is room */
/* Subclass identity is Room */

5.1.2.17. subclasses

>>-subclasses----- - ittty - - ><

Returns the immediate subclasses of the receiver class in the form of a single-index array of the required
size, in an unspecified order. (The program should not rely on any order.)

5.1.2.18. superClass

>>-superClass—---- -- -- —————— ><

Returns the immediate superclass of the receiver class. The immediate superclass is the original class
used on a subClass or a mixinClass method. For the Object Class, superClass returns .Nil.

Example:

say .object”superclass -- displays "The Nil object"
say .class”superclass -- displays "The Object class"
say .set”superclass -- displays "The Table class"

5.1.2.19. superClasses

>>-superClasses—-- - - - - - ><

Returns the immediate superclasses of the receiver class in the form of a single-index array of the
required size. The immediate superclasses are the original class used on a subClass or a mixinClass
method, plus any additional superclasses defined with the inherit method. The array is in the order in
which the class has inherited the classes. The original class used on a subClass or mixinClass method is
the first item of the array.

Example:

z=.class " superClasses
/* To obtain the information this returns, you could use: */
do i over z
say i
end

ooRexx Reference Version 4.1.0 129 Draft - SVN Rev 6346

Chapter 5. The Builtin Classes

5.1.2.20. uninherit

>>-uninherit(classobj)--- -- ittt -- ><

Nullifies the effect of any previous inherit message sent to the receiver for the class classobj.

Note: You cannot change the classes that Rexx provides by sending uninherit messages.

Example:

location=.object mixinClass("Location")

room=.object“subclass("Room") “~“inherit(location) /* Creates subclass */
/* and specifies inheritance */

room~uninherit(location)

5.1.3. The String Class

String objects represent character-string data values. A character string value can have any length and
contain any characters.

Draft - SVN Rev 6346 130 ooRexx Reference Version 4.1.0

Figure 5-3. The String class and methods

Chapter 5. The Builtin Classes

Object

String
+ Comparable
new
+ - % center/centre overlay
\ = \= <> >< ==\== changestr pos
> >=\> < <= \< compare replaceAt
>> >>= << <<= compareTo reverse
\<< \>> & && | || copies right
"' (abuttal) countstr sign
" ' (blank) d2c space
abbrev d2x strip
abs dataType subChar
b2x decodeBase64 subStr
bitAnd delStr subWord
bitOr delWord translate
bitXor encodeBase64 trunc
c2d equals upper
c2X format verify
caselessAbbrev insert word
caselessChangeStr lastPos wordIndex
caselessCompare left wordLength
caselessCompareTo length wordPos
caselessCountStr lower words
caselessEquals makeArray x2b
caselessLastPos makeString X2c
caselessMatch match x2d
caselessMatchChar matchChar
caselessPos max
cadelessWordPos min

Note: The String class also has available class methods that its metaclass, the Class class, defines.

ooRexx Reference Version 4.1.0

131

Draft - SVN Rev 6346

Chapter 5. The Builtin Classes

5.1.3.1. Inherited Methods

Methods inherited from the Object class.

new (class method) instanceMethod send

=\===\== <> >< instanceMethods sendWith
class isA setMethod
copy isInstanceOf start
defaultName objectName startWith
hasMethod objectName= string
identityHash Request unsetMethod
init Run

Methods inherited from the Comparable class.

- compareTo

5.1.3.2. new (Class Method)

>>-new(stringvalue) - ><

Returns a new string object initialized with the characters in stringvalue.

5.1.3.3. Arithmetic Methods

>>-arithmetic_operator(argument) - ><

Note: The syntax diagram above is for the non-prefix operators. The prefix + and argument.

Returns the result of performing the specified arithmetic operation on the receiver object. The receiver
object and the argument must be valid numbers (see Numbers). The arithmetic_operator can be:

+ Addition

- Subtraction

* Multiplication

/ Division

% Integer division (divide and return the integer part of the result)

// Remainder (divide and return the remainder—not modulo, because the result can
be negative)

wE Exponentiation (raise a number to a whole-number power)

Prefix - Same as the subtraction: 0 - number

Prefix + Same as the addition: 0 + number

See Numbers and Arithmetic for details about precision, the format of valid numbers, and the operation
rules for arithmetic. Note that if an arithmetic result is shown in exponential notation, it might have been
rounded.

Draft - SVN Rev 6346 132 ooRexx Reference Version 4.1.0

Examples:

5+5 -> 10
8-5 -> 3
5%2 -> 10
6/2 -> 3
9//4 -> 1
9%4 -> 2
2% %3 -> 8
+5 -> 5
-5 -> -5

/* Prefix + x/
/* Prefix - %/

5.1.3.4. Comparison Methods

>>-comparison_operator (argument)

Chapter 5. The Builtin Classes

><

Returns 1 (true) or 0 (false), the result of performing the specified comparison operation. The receiver
object and the argument are the terms compared. Both must be string objects. If argument is not a string
object, it is converted to its string representation for the comparison. The one exception is when argument
is the Nil object for the ==, \==, =, \=, ><, and <> operators. A string object will never compare equal
to the Nil object, even when the string matches the string value of the Nil object ("The Nil object").

The comparison operators you can use in a message are:

\= ><, <>

>

<

>=

\<

<=

\>
Examples:

5=5 ->
42\=41 ->
42><41 ->
42<>41 ->
13>12 ->
12<13 ->
13>=12 ->
12\<13 ->
12<=13 ->
12\>13 ->

ooRexx Reference Version 4.1.0

True if the terms are equal (for example, numerically or when padded)

True if the terms are not equal (inverse of =)

Greater than

Less than

Greater than or equal to

Not less than

Less than or equal to

Not greater than

/*
/*

S

/*
/*
/*

R RO R e

equal
A1l of these are

"not equal"

Variations of
less than and
greater than

133

*/

*/
*/

*/
*/
*/

Draft - SVN Rev 6346

Chapter 5. The Builtin Classes

All strict comparison operations have one of the characters doubled that define the operator. The == and
\== operators check whether two strings match exactly. The two strings must be identical (character by
character) and of the same length to be considered strictly equal.

The strict comparison operators such as >> or << carry out a simple character-by-character comparison.
There is no padding of either of the strings being compared. The comparison of the two strings is from
left to right. If one string is shorter than and a leading substring of another, then it is smaller than (less
than) the other. The strict comparison operators do not attempt to perform a numeric comparison on the
two operands.

For all the other comparison operators, if both terms are numeric, the String class does a numeric
comparison (ignoring, for example, leading zeros—see Numeric Comparisons). Otherwise, it treats both
terms as character strings, ignoring leading and trailing whitespace characters and padding the shorter
string on the right with blanks.

Character comparison and strict comparison operations are both case-sensitive, and for both the exact
collating order can depend on the character set. In an ASCII environment, the digits are lower than the
alphabetic characters, and lowercase alphabetic characters are higher than uppercase alphabetic
characters.

The strict comparison operators you can use in a message are:

== True if terms are strictly equal (identical)

== True if the terms are NOT strictly equal (inverse of ==

>> Strictly greater than

<< Strictly less than

>>= Strictly greater than or equal to

\<< Strictly NOT less than

<<= Strictly less than or equal to

\>> Strictly NOT greater than

Examples:

"space'"=="space" -> 1 /* Strictly equal */
"space"\==" space" > 1 /* Strictly not equal */
"space">>" space" -> 1 /* Variations of */
" space"<<"space" -> 1 /* strictly greater */
"space">>=" space" > 1 /* than and less than */
"space"\<<" space" > 1

" space'"<<="space" -> 1

" space"\>>"space" > 1

5.1.3.5. Logical Methods

>>-logical_operator (argument)--- - ><

Draft - SVN Rev 6346 134 ooRexx Reference Version 4.1.0

Chapter 5. The Builtin Classes

Note: For NOT (prefix \), omit the parentheses and argument.

Returns 1 (true) or o (false), the result of performing the specified logical operation. The receiver
object and the argument are character strings that evaluate to 1 or o.

The logical_operator can be:

& AND (Returns 1 if both terms are true.)

| Inclusive OR (Returns 1 if either term or both terms are true.)

&& Exclusive OR (Returns 1 if either term, but not both terms, is true.)
Prefix \ Logical NOT (Negates; 1 becomes 0, and 0 becomes 1.)
Examples:

1&0 -> 0

1o -> 1

1&&0 -> 1

\1 -> 0

5.1.3.6. Concatenation Methods

>>-concatenation_operator (argument)-- - ><

Concatenates the receiver object with argument. (See String Concatenation.) The
concatenation_operator can be:

concatenates without an intervening blank. The abuttal operator "" is the null
string. The language processor uses the abuttal to concatenate two terms that
another operator does not separate.

Il concatenates without an intervening blank.

"non

concatenates with one blank between the receiver object and the argument. (The
operator " " is a blank.)

Examples:
f = llabcll
f"def" -> "abcdef"
f || "def" -> "abcdef"
£ "def" -> "abc def"

5.1.3.7. abbrev

>>-abbrev(info-+--------- +=)———— - - —-— S<
+-,length-+

ooRexx Reference Version 4.1.0 135 Draft - SVN Rev 6346

Chapter 5. The Builtin Classes

Returns 1 if info is equal to the leading characters of the receiving string and the length of info is not less
than length. Returns 0 if either of these conditions is not met.

If you specify length, it must be a positive whole number or zero. The default for length is the number of
characters in info.

Examples:

"Print"~abbrev("Pri") -> 1
"PRINT" “abbrev("Pri") -> 0
"PRINT" “abbrev("PRI",4) -> 0
"PRINT" ~abbrev("PRY") -> 0
"PRINT" “abbrev("") -> 1
"PRINT" “abbrev("",1) -> 0

Note: A null string always matches if a length of o, or the default, is used. This allows a default
keyword to be selected automatically if desired.

Example:

say "Enter option:"; pull option .

select /* keywordl is to be the default */
when "keywordl"~abbrev(option) then ...
when "keyword2"~abbrev(option) then ...

otherwise nop;
end;

5.1.3.8. abs

>>-abs - - ><

Returns the absolute value of the receiving string. The result has no sign and is formatted according to
the current NUMERIC settings.

Examples:
12.37abs -> 12.3
"-0.307""abs -> 0.307

5.1.3.9. b2x

>>-b2x - ><

Returns a string, in character format, that represents the receiving binary string converted to hexadecimal.

The receiving string is a string of binary (0 or 1) digits. It can be of any length. It can optionally include
whitespace characters (at 4-digit boundaries only, not leading or trailing). These are to improve
readability and are ignored.

Draft - SVN Rev 6346 136 ooRexx Reference Version 4.1.0

Chapter 5. The Builtin Classes

The returned string uses uppercase alphabetic characters for the values A-F and does not include
whitespace.

If the receiving binary string is a null string, b2x returns a null string. If the number of binary digits in
the receiving string is not a multiple of four, up to three 0 digits are added on the left before the
conversion to make a total that is a multiple of four.

Examples:

"11000011""b2x -> "c3"
"10111""b2x -> "
"101""b2x -> ngn

"1 1111 0000""b2x -> "1FO"

You can combine b2x with the methods x2d and x2¢ to convert a binary number into other forms.

Example:

"10111""b2x"x2d > "23" /* decimal 23 */

5.1.3.10. bitAnd

>>-bitAnd-+ e g
+-(string—+-—————+-)—+
+-,pad-+

Returns a string composed of the receiver string and the argument string logically ANDed together, bit
by bit. (The encodings of the strings are used in the logical operation.) The length of the result is the
length of the longer of the two strings. If you omit the pad character, the AND operation stops when the
shorter of the two strings is exhausted, and the unprocessed portion of the longer string is appended to
the partial result. If you provide pad, it extends the shorter of the two strings on the right before the
logical operation. The default for string is the zero-length (null) string.

Examples:

"12"x~bitAnd -> "12"x

"73"x~bitAnd ("27"x) -> "23"x

"13"x " bitAnd ("5555"x) -> "1155"x
"13"x"bitAnd("5555"x,"74"x) -> "1154"x

"pQrS" “bitAnd(, "DF"x) -> "PQRS" /* ASCII */

5.1.3.11. bitOr

>>=bitOr—+=———m———m——mmmm e — e — g
+-(string-+--————+-) -+
+-,pad-+

Returns a string composed of the receiver string and the argument string logically inclusive-ORed, bit by
bit. The encodings of the strings are used in the logical operation. The length of the result is the length of
the longer of the two strings. If you omit the pad character, the OR operation stops when the shorter of
the two strings is exhausted, and the unprocessed portion of the longer string is appended to the partial

ooRexx Reference Version 4.1.0 137 Draft - SVN Rev 6346

Chapter 5. The Builtin Classes

result. If you provide pad, it extends the shorter of the two strings on the right before the logical
operation. The default for string is the zero-length (null) string.

Examples:

"12"x~bit0r -> "12"x
"15"x"bit0r("24"x) -> "35"x

"15"x~bit0r ("2456"x) -> "3556"x

"15"x~bit0r ("2456"x,"FO"x) -> "35F6"x
"1111"x"bit0r(,"4D"x) -> "5D5D"x
"pQrsS"~bit0r(,"20"x) -> "pgrs" /% ASCII */

5.1.3.12. bitXor

>>-bitXor-+-- e g
+-(string—+-—————+-) -+
+-,pad-+

Returns a string composed of the receiver string and the argument string logically eXclusive-ORed, bit
by bit. The encodings of the strings are used in the logical operation. The length of the result is the length
of the longer of the two strings. If you omit the pad character, the XOR operation stops when the shorter
of the two strings is exhausted, and the unprocessed portion of the longer string is appended to the partial
result. If you provide pad, it extends the shorter of the two strings on the right before carrying out the
logical operation. The default for string is the zero-length (null) string.

Examples:

"12"x"bitXor -> "12"x

"12"x bitXor ("22"x) -> "30"x
"1211"x"bitXor("22"x) -> "3011"x

"1111"x"bitXor ("444444"x) -> "55b5544"x
"1111"x"bitXor ("444444"x,"40"x) -> "b55504"x
"1111"x~bitXor(,"4D"x) -> "5CbC"x
"C711"x"bitXor("222222"x," ") -> "Eb3302"x /* ASCII =x/

5.1.3.13. c2d

>>-c2d-+-----+ - -— -— ><
+-(n)-+

Returns the decimal value of the binary representation of the receiving string. If the result cannot be
expressed as a whole number, an error results. That is, the result must not have more digits than the
current setting of NUMERIC DIGITS. If you specify n, it is the length of the returned result. If you do
not specify n, the receiving string is processed as an unsigned binary number. If the receiving string is
null, C2D returns 0.

Examples:
"09"X"c2d -> 9
"81"X"c2d -> 129

Draft - SVN Rev 6346 138 ooRexx Reference Version 4.1.0

Chapter 5. The Builtin Classes

"FF81"X"c2d -> 65409
nn~eod -> 0
"an~c2d -> 97 /* ASCII */

If you specify n, the receiving string is taken as a signed number expressed in 7 characters. The number
is positive if the leftmost bit is off, and negative if the leftmost bit is on. In both cases, it is converted to a
whole number, which can therefore be negative. The receiving string is padded on the left with "00"x
characters (not "sign-extended"), or truncated on the left to n characters. This padding or truncation is as
though receiving_string right(n,'00'x) had been processed. If n is 0, ¢2d always returns 0.

Examples:

"81"X~c2d (1) -> -127
"81"X~c2d(2) -> 129
"FF81"X~c2d(2) -> -127
"FF81"X~c2d (1) -> -127
"FF7F"X~c2d (1) -> 127
"FO81"X~c2d(2) -> -3967
"FO81"X~c2d (1) -> -127
"0031"X~c2d(0) -> 0

5.1.3.14. c2x

>>-c2x - ><

Returns a string, in character format, that represents the receiving string converted to hexadecimal. The
returned string contains twice as many bytes as the receiving string. On an ASCII system, sending a ¢2x
message to the receiving string 1 returns 31 because "31"X is the ASCII representation of 1.

The returned string has uppercase alphabetic characters for the values A-F and does not include
whitespace. The receiving string can be of any length. If the receiving string is null, ¢2x returns a null

string.

Examples:

"0123"X"c2x -> "0123" /* "30313233"X in ASCII */
"ZD8" " c2x -> "5A4438" /* "354134343338"X in ASCII */

5.1.3.15. caselessAbbrev

>>-caselessAbbrev(info—+-—-———————+-)- - - - -><
+-,length-+

Returns 1 if info is equal to the leading characters of the receiving string and the length of info is not less
than length. Returns 0 if either of these conditions is not met. The characters are tested using a caseless
comparison.

If you specify length, it must be a positive whole number or zero. The default for length is the number of
characters in info.

Examples:

ooRexx Reference Version 4.1.0 139 Draft - SVN Rev 6346

Chapter 5. The Builtin Classes

"Print"~caselessAbbrev("Pri") -> 1
"PRINT"~caselessAbbrev("Pri") -> 1
"PRINT"~caselessAbbrev("PRI",4) -> 0
"PRINT"~caselessAbbrev("PRY") -> 0
"PRINT"~caselessAbbrev("") -> 1
"PRINT"~caselessAbbrev("",1) -> 0

Note: A null string always matches if a length of o, or the default, is used. This allows a default
keyword to be selected automatically if desired.

Example:

say "Enter option:"; parse pull option .

select /* keywordl is to be the default */
when "keywordl"~caselessAbbrev(option) then ...
when "keyword2"~caselessAbbrev(option) then ...

otherwise nop;
end;

5.1.3.16. caselessChangeStr

>>-caselessChangeStr (needle,newneedle——+-——----- +—=)—————- - - -><
+-,count-+

Returns a copy of the receiver object in which newneedle replaces occurrences of needle. If count is not
specified, all occurrences of needle are replaced. If count is specified, it must be a positive, whole
number that gives the maximum number of occurrences to be replaced. The needle searches are
performed using caseless comparisons.

Here are some examples:

"AbaAbb"~caselessChangeStr("A","") -> "bbb"
AbaBabAB~changeStr("ab","xy") -> "xyxyxyxy"
AbaBabAB~changeStr("ab", "xy",1) -> "xyaBabAB"

5.1.3.17. caselessCompare

>>-caselessCompare (string—+------+-)- - - - - -><
+-,pad-+

Returns 0 if the argument string is identical to the receiving string using a caseless comparison.
Otherwise, returns the position of the first character that does not match. The shorter string is padded on
the right with pad if necessary. The default pad character is a blank.

Examples:

"abc"“caselessCompare ("ABC") -> 0

Draft - SVN Rev 6346 140 ooRexx Reference Version 4.1.0

Chapter 5. The Builtin Classes

"abc"~caselessCompare ("Ak") -> 2

"ab "“caselessCompare("AB") -> 0

"AB "~caselessCompare("ab"," ") -> 0

"ab "“caselessCompare("ab","x") -> 3

"abXX "“caselessCompare("ab","x") -> 5

5.1.3.18. caselessCompareTo

>>-caselessCompareTo (string—+--- —+=)-—- - ><

e e S it T

+-n-+ +-,length-+

Performs a caseless sort comparison of the target string to the string argument. If the two strings are
equal, 0 is returned. If the target string is larger, 1 is returned. -1 if the string argument is the larger
string. The comparison is performed starting at character n for length characters in both strings. n must
be a positive whole number. If n is omitted, the comparison starts at the first character. length must be a
non-negative whole number. If omitted, the comparison will take place to the end of the target string.

Examples:

"abc" " caselessCompareTo ("abc") ->
"b"~caselessCompareTo("a") -> 1
"a"~caselessCompareTo("b") -> -1
"abc"~caselessCompareTo("aBc") -> 0
"aBc"~caselessCompareTo ("abc") -> 0

"000abc000" “caselessCompareTo(1lliabcl11l", 4, 3) -> 0

5.1.3.19. caselessCountStr

>>-caselessCountStr (needle)-—--- ————————— e - - -><

Returns a count of the occurrences of needle in the receiving string that do not overlap. All matches are
made using caseless comparisons.

Here are some examples:

"a0AaOA"~caselessCountStr("a") ->
"JOkKkO"~caselessCountStr ("KK") -> 1

5.1.3.20. caselessEquals

>>-caselessEquals(other)--—------——-——-——-——- -- -- -- -><

Returns .true ("1") if the target string is strictly equal to the other string, using a caseless comparison.
Returns .false ("0") if the two strings are not strictly equal. Examples:

"a""caselessEquals("A") -> 1
"aa""caselessEquals("A") ->
"4"~caselessEquals("3") -> 0

ooRexx Reference Version 4.1.0 141 Draft - SVN Rev 6346

Chapter 5. The Builtin Classes

5.1.3.21. caselessLastPos

>>-caselessLastPos(needle—+-——--———=—————————————————— +=)—==><
T oo +—+

s
+-start-+ +-,length-+

Returns the position of the last occurrence of a string, needle, in the receiving string. (See also POS.) It
returns 0 if needle is the null string or not found. By default, the search starts at the last character of the
receiving string and scans backward to the beginning of the string. You can override this by specifying
start, the point at which the backward scan starts and length, the range of characters to scan. The start
must be a positive whole number and defaults to receiving_string~length if larger than that value or
omitted. The length must be a non-negative whole number and defaults to start. The search is performed
using caseless comparisons.

Examples:

"abc def ghi"“caselessLastPos(" ") -> 8

"abcdefghi"“caselessLastPos(" ") -> 0

"efgxyz"~caselessLastPos ("XY") -> 4

"abc def ghi"“caselessLastPos(" ",7) -> 4

"abc def ghi"“caselessLastPos(" ",7,3) -> 0

5.1.3.22. caselessMatch

>>-caselessMatch(start,other-+-- - +-)———- - -—=><
e e e T o +

>

+-n-+ +-,length-+

Returns .true ("1") if the characters of the other match the characters of the target string beginning at
position start. Return .false ("0") if the characters are not a match. The matching is performed using
caseless comparisons. start must be a positive whole number less than or equal to the length of the target
string.

If n is specified, the match will be performed starting with character n of other. The default value for n is
"1". n must be a positive whole number less than or equal to the length of other.

If length is specified, it defines a substring of other that is used for the match. length must be a positive
whole number and the combination of n and length must be a valid substring within the bounds of other.

The caselessMatch method is useful for efficient string parsing as it does not require new string objects
be extracted from the target string.

Examples:
"Saturday"~caselessMatch(6, "day") ->
"Saturday"~caselessMatch(6, "DAY") -

"Saturday"~caselessMatch(6, "SUNDAY", 4, 3) ->
"Saturday””caselessMatch(G, "daytime", 1, 3) >

N =

Draft - SVN Rev 6346 142 ooRexx Reference Version 4.1.0

Chapter 5. The Builtin Classes

5.1.3.23. caselessMatchChar

>>-caselessMatchChar(n,chars)----—-—-—-—-—-——————-—-————————— ><

Returns .true ("1") if the character at position n matches any character of the string chars. Returns .false
("0") if the character does not match any of the characters in the reference set. The match is made using
caseless comparisons. The argument n must be a positive whole number less than or equal to the length
of the target string.

Examples:

"a+b"~caselessMatchChar (2, "+-*/") -> 1
"a+b"~caselessMatchChar (1, "+-%/") -> 0
"Friday"~caselessMatchChar(3, "aeiou") -> 1
"FRIDAY"~caselessMatchChar (3, "aeiou") -> 1
5.1.3.24. caselessPos

>>-caselessPos(needle-+-- - —+-)-—=><

e e B +-+
+-start-+ +-,length-+

Returns the position in the receiving string of another string, needle. (See also caselessLastPos.) It returns
0 if needle is the null string or is not found or if start is greater than the length of the receiving string. The
search is performed using caseless comparisons. By default, the search starts at the first character of the
receiving string (that is, the value of start is 1), and continues to the end of the string. You can override
this by specifying start, the point at which the search starts, and length, the bounding limit for the search.
If specified, start must be a positive whole number and length must be a non-negative whole number.

Examples:

"Saturday"~caselessPos("DAY") -> 6

"abc def ghi"“caselessPos("x") -> 0

"abc def ghi"“caselessPos(" ") -> 4

"abc def ghi"“caselessPos(" ",5) -> 8

"abc def ghi"“caselessPos(" ",5,3) -> 0

5.1.3.25. caselessWordPos

>>-caselessWordPos (phrase-+-------- =) mmmmm - - -><

+-,start-+

Returns the word number of the first word of phrase found in the receiving string, or 0 if phrase contains
no words or if phrase is not found. Word matches are made independent of case. Several whitespace
characters between words in either phrase or the receiving string are treated as a single blank for the
comparison, but, otherwise, the words must match exactly.

By default the search starts at the first word in the receiving string. You can override this by specifying
start (which must be positive), the word at which the search is to be started.

Examples:

ooRexx Reference Version 4.1.0 143 Draft - SVN Rev 6346

Chapter 5. The Builtin Classes

"now is the time"“caselessWordPos("the") -> 3

"now is the time"“caselessWordPos("The") -> 3

"now is the time"“caselessWordPos("IS THE") -> 2

"now is the time"“caselessWordPos("is the") -> 2

"now is the time""caselessWordPos("is time ") -> 0

"To be or not to be" caselessWordPos("BE") -> 2

"To be or not to be" caselessWordPos("BE",3) -> 6
5.1.3.26. center/centre

>>-+-center (-+-length-+-------- +-)-—- ><

+-centre(-+ +-,--pad-+

Returns a string of length length with the receiving string centered in it. The pad characters are added as
necessary to make up length. The length must be a positive whole number or zero. The default pad
character is blank. If the receiving string is longer than length, it is truncated at both ends to fit. If an odd
number of characters are truncated or added, the right-hand end loses or gains one more character than
the left-hand end.

Note: To avoid errors because of the difference between British and American spellings, this method
can be called either center or centre.

Examples:

abc™center(7) -> " ABC "
abc~CENTER(8,"-") -> "--ABC-——-"
"The blue sky"“centre(8) -> "e blue s"
"The blue sky"~centre(7) -> "e blue "

5.1.3.27. changeStr

>>-changeStr(needle,newneedle-—+--——----- +--) - - - ><
+-,count—+
Returns a copy of the receiver object in which newneedle replaces occurrences of needle.

If count is not specified, all occurrences of needle are replaced. If count is specified, it must be a positive,
whole number that gives the maximum number of occurrences to be replaced.

Here are some examples:

101100~ changeStr("1","") -> "000"
101100~ changeStr("1","X") -> "X0XX00"
101100~ changeStr("1","X",1) -> "X01100"

Draft - SVN Rev 6346 144 ooRexx Reference Version 4.1.0

Chapter 5. The Builtin Classes

5.1.3.28. compare

>>-compare (string-+------+-)---- ————— - ><
+-,pad-+

Returns 0 if the argument string is identical to the receiving string. Otherwise, returns the position of the
first character that does not match. The shorter string is padded on the right with pad if necessary. The
default pad character is a blank.

Examples:

"abc"~compare ("abc") -> 0

"abc"~compare ("ak") -> 2

"ab "“compare("ab") -> 0

"ab "“compare("ab"," ") -> 0

"ab "“compare("ab","x") -> 3

"ab-- ""compare("ab","—") -> 5

5.1.3.29. compareTo

>>-compareTo(string-+-------——————-—-—————— =) mm e ><
R B e

+-n-+ +-,length-+

Performs a sort comparison of the target string to the string argument. If the two strings are equal, 0 is
returned. If the target string is larger, 1 is returned. -1 if the string argument is the larger string. The
comparison is performed starting at character n for length characters in both strings. n must be a positive
whole number. If n is omitted, the comparison starts at the first character. length must be a non-negative
whole number. If omitted, the comparison will take place to the end of the target string.

Examples:

"abc"~compareTo("abc") ->
"b"~compareTo("a" -> 1
"a"~compareTo("b") -> -1
"abc" “compareTo ("aBc") -> 1
"aBc"~compareTo("abc") -> -1

"000abc000" ~compareTo(11labc11l", 4, 3) -> 0

5.1.3.30. copies

>>-copies(n) - - - ><

Returns n concatenated copies of the receiving string. The n must be a positive whole number or zero.

Examples:
"abc"~copies(3) -> "abcabcabc"
"abc"~copies(0) -> "

ooRexx Reference Version 4.1.0 145 Draft - SVN Rev 6346

Chapter 5. The Builtin Classes

5.1.3.31. countStr

>>-countStr(needle) -————-- - - - - ><

Returns a count of the occurrences of needle in the receiving string that do not overlap.

Here are some examples:

"101101"“countStr("1") ->

" JOKKKO" ~“CountStr ("KK") -> 1

5.1.3.32. d2c

>>-d2c—+-————+--—- -- -- -- -- -- ><
+-(n)-+

Returns a string, in character format, that is the ASCII representation of the receiving string, a decimal
number. If you specify n, it is the length of the final result in characters; leading blanks are added to the
returned string. The n must be a positive whole number or zero.

The receiving string must not have more digits than the current setting of NUMERIC DIGITS.

If you omit n, the receiving string must be a positive whole number or zero, and the result length is as
needed. Therefore, the returned result has no leading "00"x characters.

Examples:

"65""d2c -> A" /* "41"x is an ASCII "A" x/
"65"~d2c (1) -> "A"

"65"~d2c(2) -> "A"

"65"~d2c(5) -> Av

"109"~d2c -> "m" /* "6D"x is an ASCII "m" x/
"-109""d2c(1) -> "o" /* "93"x is an ASCII "&" x/
"76"~d2c(2) -> "L /* "4C"x is an ASCII " L" x*/
"-180""d2c(2) -> "L

Implementation maximum: The returned string must not have more than 250 significant characters,
although a longer result is possible if it has additional leading sign characters ("00"x and "FF"x).

5.1.3.33. d2x

>>-d2x—+----- +-——- -- -- - ><
+-(n)-+

Returns a string, in character format, that represents the receiving string, a decimal number converted to
hexadecimal. The returned string uses uppercase alphabetic characters for the values A-F and does not
include whitespace.

The receiving string must not have more digits than the current setting of NUMERIC DIGITS.

Draft - SVN Rev 6346 146 ooRexx Reference Version 4.1.0

Chapter 5. The Builtin Classes

If you specify n, it is the length of the final result in characters. After conversion the returned string is
sign-extended to the required length. If the number is too big to fit into n characters, it is truncated on the
left. If you specify n, it must be a positive whole number or zero.

If you omit n, the receiving string must be a positive whole number or zero, and the returned result has
no leading zeros.

Examples:

"9"~"d2x -> "o
"129""d2x -> "g1"
"129"~d2x (1) -> "
"129"~d2x(2) -> "g1"
"129"~d2x (4) -> "0081"
"257"~d2x (2) -> "o1"
"-127""d2x(2) -> "g1"
"-127""d42x(4) > "FF81"
"12"~d2x(0) -> nn

Implementation maximum: The returned string must not have more than 500 significant hexadecimal
characters, although a longer result is possible if it has additional leading sign characters (0 and F).

5.1.3.34. dataType

>>-dataType-+ ———t-—- - - ><
+-(type) -+

Returns NUM if you specify no argument and the receiving string is a valid Rexx number that can be added
to 0 without error. It returns CHAR if the receiving string is not a valid number.

If you specify type, it returns 1 if the receiving string matches the type. Otherwise, it returns 0. If the
receiving string is null, the method returns 0 (except when the fype is X or B, for which dataType returns
1 for a null string). The following are valid fypes. You need to specify only the capitalized letter, or the
number of the last type listed. The language processor ignores all characters surrounding it.

Alphanumeric

returns 1 if the receiving string contains only characters from the ranges a-z, A-Z, and 0-9.

Binary

returns 1 if the receiving string contains only the characters 0 or 1, or whitespace. Whitespace
characters can appear only between groups of 4 binary characters. It also returns 1 if string is a null
string, which is a valid binary string.

Lowercase

returns 1 if the receiving string contains only characters from the range a-z.

Mixed case

returns 1 if the receiving string contains only characters from the ranges a-z and A-Z.

ooRexx Reference Version 4.1.0 147 Draft - SVN Rev 6346

Chapter 5. The Builtin Classes

Number

returns 1 if receiving_string~dataType returns NUM.

10gical

returns 1 if the receiving string is exactly "0" or "1". Otherwise it returns 0.

Symbol
returns 1 if the receiving string is a valid symbol, that is, if SYMBOL(string) does not return BAD.
(See Symbols.) Note that both uppercase and lowercase alphabetic characters are permitted.
Uppercase

returns 1 if the receiving string contains only characters from the range A-Z.

Variable
returns 1 if the receiving string could appear on the left-hand side of an assignment without causing
a SYNTAX condition.

Whole number

returns 1 if the receiving string is a whole number under the current setting of NUMERIC DIGITS.

heXadecimal

returns 1 if the receiving string contains only characters from the ranges a-f, A-F, 0-9, and
whitespace characters (as long as whitespace characters appear only between pairs of hexadecimal
characters). Also returns 1 if the receiving string is a null string.

9 Digits

returns 1 if receiving_string~dataType ("W") returns 1 when NUMERIC DIGITS is set to 9.
Examples:
" 12 ""dataType -> "NUM"
""~“dataType -> "CHAR"
"123*""dataType -> "CHAR"
"12.3"~dataType ("N") > 1
"12.3"~dataType ("W") > 0
"Fred"~dataType ("M") -> 1
nn~dataType ("M") > 0
"Fred"~dataType("L") -> 0
"?20K"~“dataType("s") -> 1
"BCd3"~dataType ("X") -> 1
"BC d3""dataType("X") -> 1
"1"~dataType("0") -> 1
"11"~dataType("0") -> 0

Note: The dataType method tests the meaning or type of characters in a string, independent of the
encoding of those characters (for example, ASCIl or EBCDIC).

Draft - SVN Rev 6346 148 ooRexx Reference Version 4.1.0

Chapter 5. The Builtin Classes

5.1.3.35. decodeBase64

>>-decodeBase64--- -- - - - - ><

Returns a new string containing the decoded version of the base64 encoded receiving string. If the
receiving string is not in base64 format then the returned result is undefined.

Examples:

"YWJJFZGVm" “decodeBase64 -> "abcdef"

5.1.3.36. delStr

>>-delStr (n——+--------- e ><
+-,length-+

Returns a copy of the receiving string after deleting the substring that begins at the nth character and is of
length characters. If you omit length, or if length is greater than the number of characters from 7 to the
end of string, the method deletes the rest of string (including the nth character). The length must be a
positive whole number or zero. The n must be a positive whole number. If n is greater than the length of
the receiving string, the method returns the receiving string unchanged.

Examples:

"abcd"~delStr(3) -> "ab"
"abcde"~delStr(3,2) -> "abe"
"abcde"~delStr(6) -> "abcde"

5.1.3.37. delWord

>>-delWord (n——+--- +m=)———= ><
+-,length-+

Returns a copy of the receiving string after deleting the substring that starts at the nth word and is of
length blank-delimited words. If you omit length, or if length is greater than the number of words from n
to the end of the receiving string, the method deletes the remaining words in the receiving string
(including the nth word). The length must be a positive whole number or zero. The n must be a positive
whole number. If 7 is greater than the number of words in the receiving string, the method returns the
receiving string unchanged. The string deleted includes any whitespace characters following the final
word involved but none of the whitespace characters preceding the first word involved.

Examples:

"Now is the time"“delWord(2,2) -> "Now time"
"Now is the time "~delWord(3) -> "Now is "
"Now is the time"~delWord(5) -> "Now is the time"
"Now is the time"“delWord(3,1)

|
\

"Now is time"

ooRexx Reference Version 4.1.0 149 Draft - SVN Rev 6346

Chapter 5. The Builtin Classes

5.1.3.38. encodeBase64

>>-encodeBase64—-- - - e _ %

Returns a new string that is the base64 encoded version of the receiving string.

Examples:

"abcdef" “encodeBase64 -> "YWJFZGVm"

5.1.3.39. equals

>>-equals(other)-- - — -><

Returns .true ("1") if the target string is strictly equal to the other string. Returns .false ("0") if the two

strings are not strictly equal. This is the same comparison performed by the "==" comparison method.
Examples:

"3""equals("3") -> 1

"33"~equals("3") ->

"4"~equals("3") -> 0

5.1.3.40. format

>>-format-+ e +-><
+=(-before—+----=======————mm—mm e -- -- —+=) =+
T e +-+

]

+-after—-+ +-,——t-—————t——t———————t—+

+-expp-+ +-,expt-+

Returns a copy of the receiving string, a number, rounded and formatted.

The number is first rounded according to standard Rexx rules, as though the operation
receiving_string+0 had been carried out. If you specify no arguments the result of the method is the
same as the result of this operation. If you specify any options, the number is formatted as described in
the following.

The before and after options describe how many characters are to be used for the integer and decimal
parts of the result. If you omit either or both of them, the number of characters for that part is as needed.

If before is not large enough to contain the integer part of the number (plus the sign for a negative
number), an error results. If before is larger than needed for that part, the number is padded on the left
with blanks. If after is not the same size as the decimal part of the number, the number is rounded (or
extended with zeros) to fit. Specifying 0 causes the number to be rounded to an integer.

Examples:

"3"~format (4) -> " 3"
"1.73""format (4,0) -> " 2"
"1.73""format (4,3) -> " 1.730"
"-.76""format(4,1) -> " -0.8"

Draft - SVN Rev 6346 150 ooRexx Reference Version 4.1.0

Chapter 5. The Builtin Classes

"3.03"~format (4) -> " 3.03"
" - 12.73""format (,4) -> "-12.7300"
" - 12.73""format -> "-12.73"
"0.000""format -> "o"

expp and expt control the exponent part of the result, which, by default, is formatted according to the
current NUMERIC settings of DIGITS and FORM. expp sets the number of places for the exponent part;
the default is to use as many as needed (which can be zero). expt specifies when the exponential
expression is used. The default is the current setting of NUMERIC DIGITS.

If expp is 0, the number is not an exponential expression. If expp is not large enough to contain the
exponent, an error results.

If the number of places needed for the integer or decimal part exceeds expt or twice expt, respectively,
exponential notation is used. If expz is 0, exponential notation is always used unless the exponent would
be 0. (If expp is 0, this overrides a 0 value of expt.) If the exponent would be 0 when a nonzero expp is
specified, then expp+2 blanks are supplied for the exponent part of the result. If the exponent would be 0
and expp is not specified, the number is not an exponential expression.

Examples:

"12345.73"~format(, ,2,2) -> "1.234573E+04"
"12345.73""format(,3, ,0) -> "1.235E+4"
"1.234573""format(,3, ,0) -> "1.2356"
"12345.73""format(, ,3,6) -> "12345.73"
"1234567e5" “format(,3,0) -> "123456700000.000"

5.1.3.41. hashCode

>>-hashCode - -———=><

Returns a string value that is used as a hash value for MapCollection such as Table, Relation, Set, Bag,
and Directory. The String hash code method will return the same hash value for all pairs of string
instances for which the == operator is true. See hashCode Method for details.

5.1.3.42. insert

>>-insert (new-+--- - SRS UV ><
i ———t-+

+-n—+ = b+
+-length-+ +-,pad-+

Returns a copy of the receiver string with the string new, padded or truncated to length length, inserted
after the nth character. The default value for » is 0, which means insertion at the beginning of the string.
If specified, n and length must be positive whole numbers or zero. If n is greater than the length of the
receiving string, the string new is padded at the beginning. The default value for length is the length of
new. If length is less than the length of the string new, then insert truncates new to length length. The
default pad character is a blank.

Examples:

ooRexx Reference Version 4.1.0 151 Draft - SVN Rev 6346

Chapter 5. The Builtin Classes

"abc"~insert ("123") -> "123abc"
"abcdef"~insert(" ",3) -> "abc def"
"abc"~insert("123",5,6) -> "abc 123 "
"abc"~insert("123",5,6,"+") -> "abc++123+++"
"abc"~insert("123", ,5,"-") -> "123--abc"

5.1.3.43. lastPos

>>-lastPos(needle-+ - ——+=)——-><
T pmmbmm e

+-start-+ +-,length-+

Returns the position of the last occurrence of a string, needle, in the receiving string. (See also POS.) It
returns 0 if needle is the null string or not found. By default, the search starts at the last character of the
receiving string and scans backward to the beginning of the string. You can override this by specifying
start, the point at which the backward scan starts and length, the range of characters to scan. The start
must be a positive whole number and defaults to receiving_string~length if larger than that value or
omitted. The length must be a non-negative whole number and defaults to start.

Examples:

"abc def ghi"“lastPos(" ") -> 8

"abcdefghi"~“lastPos(" ") -> 0

"efgxyz"~“lastPos("xy") -> 4

"abc def ghi"“lastPos(" ",7) -> 4

"abc def ghi"“lastPos(" ",7,3) -> 0

5.1.3.44. left

>>-left(length—+----——+-) -- ><

+-,pad-+

Returns a string of length length, containing the leftmost length characters of the receiving string. The
string returned is padded with pad characters (or truncated) on the right as needed. The default pad
character is a blank. The /length must be a positive whole number or zero. The left method is exactly
equivalent to:

>>-SUBSTR(string,1,length—+--————+-)- - ><
+—,pad—+

Examples:

"abc d""1left(8) -> "abc d "

"abc d""left(8,".") -> "abc d..."

"abc def""left(7) -> "abc de"

Draft - SVN Rev 6346 152 ooRexx Reference Version 4.1.0

Chapter 5. The Builtin Classes

5.1.3.45. length

>>-length---- -- -- -- -- -- ><

Returns the length of the receiving string.

Examples:

"abcdefgh"“length -> 8

"abc defg"“length -> 8

""“length -> 0

5.1.3.46. lower

>>-lower (+-——+——+-———————— +-—-)- --><

+-n-+ +-,length-+

Returns a new string with the characters of the target string beginning with character n for length
characters converted to lowercase. If n is specified, it must be a positive whole number. If n is not
specified, the case conversion will start with the first character. If length is specified, it must be a

non-negative whole number. If length the default is to convert the remainder of the string.

Examples:

"Albert Einstein""lower -> "albert einstein"
"ABCDEF" ~lower (4) -> "ABCdef"
"ABCDEF"~lower(3,2) -> "ABcdEF"

5.1.3.47. makeArray

>>-makeArray (-+----------- +=)———= ><
+-Separator-+

This method returns an array of strings containing the single lines that were separated using the
separator string. The separator may be any string, including the null string. If the null string is used, an
array containing each character of the string is returned. If the target string starts with the separator, the
first array item will be a null string. If the string ends with a separator, no extra null string item will be
added. The default separator is the newline character.

Example:
string = "hello".endofline"world".endofline"this is an array."

array = string makeArray
say "the second line is:" array[2] /* world */

string = "hello*world*this is an array."
array = string“makeArray("*")

say "the third line is:" array[3] /* this is an array. */

string = "hello*world*this is an array.*"
array = string~makeArray("x") /* contains 3 items */

ooRexx Reference Version 4.1.0 153 Draft - SVN Rev 6346

Chapter 5. The Builtin Classes

5.1.3.48. makeString

>>-makeString - - - - - ><

Returns a string with the same string value as the receiver object. If the receiver is an instance of a
subclass of the String class, this method returns an equivalent string object. If the receiver is a string
object (not an instance of a subclass of the String class), this method returns the receiver object. See
Required String Values.

5.1.3.49. match

>>-match(start,other-+--- - - e B ><
e S e +

s
+-n-+ +-,length-+

Returns .true ("1") if the characters of the other match the characters of the target string beginning at
position start. Return .false ("0") if the characters are not a match. start must be a positive whole number
less than or equal to the length of the target string.

If n is specified, the match will be performed starting with character n of other. The default value for n is
"1". n must be a positive whole number less than or equal to the length of other.

If length is specified, it defines a substring of other that is used for the match. length must be a positive
whole number and the combination of n and length must be a valid substring within the bounds of other.

The match method is useful for efficient string parsing as it does not require new string objects be
extracted from the target string.

Examples:

"Saturday" “match(6, "day") -> 1
"Saturday" “match(6, "DAY") -> 0
"Saturday" “match(6, "Sunday", 4, 3) -> 1
"Saturday" “match(6, "daytime", 1, 3) -> 1
5.1.3.50. matchChar

>>-matchChar (n,chars)---- - -=><

Returns .true ("1") if the character at position n matches any character of the string chars. Returns .false
("0") if the character does not match any of the characters in the reference set. The argument n must be a
positive whole number less than or equal to the length of the target string.

Examples:

"a+b"“matchChar(2, "+-%/") -> 1
"a+b"“matchChar (1, "+-%/") -> 0
"Friday" “matchChar(3, "aeiou" -> 1
"FRIDAY" “matchChar (3, "aeiou") -> 0

Draft - SVN Rev 6346 154 ooRexx Reference Version 4.1.0

Chapter 5. The Builtin Classes

5.1.3.51. max

Returns the largest number from among the receiver and any arguments. The number that max returns is
formatted according to the current NUMERIC settings. You can specify any number of numbers.

Examples:

12 max(6,7,9) -> 12
17.3"max(19,17.03) -> 19
l|_7ll"'max(ll_3ll,ll_4.3I|) _> _3

1"max(2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21) -> 21

5.1.3.52. min

————— -- ——————- -- ><

Returns the smallest number from among the receiver and any arguments. The number that min returns
is formatted according to the current NUMERIC settings. You can specify any number of numbers.

Examples:

12"min(6,7,9) -> 6
17.3"min(19,17.03) -> 17.03
l|_7ll"'MIN(ll_3ll ll_4.3I|) _> _7
21"min(20,19,18,17,16,15,14,13,12,11,10,9,8,7,6,5,4,3,2,1) -> 1

5.1.3.53. overlay

>>-overlay (new—+--------- - ————mm +-)————- ><
e B ——+—+

+-n-+ -, ——t————————m—o e+
+-length-+ +-,pad-+

Returns a copy of the receiving string, which, starting at the nth character, is overlaid with the string new,
padded or truncated to length length. The overlay can extend beyond the end of the receiving string. If
you specify length, it must be a positive whole number or zero. The default value for length is the length
of new. If n is greater than the length of the receiving string, padding is added before the new string. The
default pad character is a blank, and the default value for 7 is 1. If you specify #, it must be a positive
whole number.

Examples:

"abcdef"~overlay(" ",3) -> "ab def"

ooRexx Reference Version 4.1.0 155 Draft - SVN Rev 6346

Chapter 5. The Builtin Classes

"abcdef"~“overlay(".",3,2) -> "ab. ef"
"abcd"~“overlay("qq") -> "qqcd"
"abcd"“overlay("qq",4) -> "abcqq"
"abc"~overlay("123",5,6,"+") -> "abc+123+++"

5.1.3.54. pos

>>-pos (needle—+--- - - —————t=)——=><
e s SR +—+

s
+-start-+ +-,length-+

Returns the position in the receiving string of another string, needle. (See also lastPos.) It returns 0 if
needle is the null string or is not found or if start is greater than the length of the receiving string. By
default, the search starts at the first character of the receiving string (that is, the value of start is 1), and
continues to the end of the string. You can override this by specifying start, the point at which the search
starts, and length, the bounding limit for the search. If specified, start must be a positive whole number
and length must be a non-negative whole number.

Examples:

"Saturday" “pos("day") -> 6

"abc def ghi"“pos("x") -> 0

"abc def ghi"~pos(" ") -> 4

"abc def ghi"“pos(" ",5) -> 8

"abc def ghi"“pos(" ",5,3) -> 0

5.1.3.55. replaceAt

>>-replaceAt (new,n,length-+------ +=)————- ><
+-,pad-+

Returns a copy of the receiving string, with the characters from the nth character for length characters
replaced with new. The replacement position and length can extend beyond the end of the receiving
string. The starting position, n, must be a positive whole number, and the length must be a positive whole
number or zero. If n is greater than the length of the receiving string, padding is added before the new
string. The default pad character is a blank.

Examples:

"abcdef"“replaceAt (" ",3, 1) -> "ab def"
"abcdef"“replaceAt(" ",3, 3) -> "ab f"
"abc"“replaceAt("123",5,6,"+") -> "abc+123"

5.1.3.56. reverse

> > VL @ — T T e ><

Returns a copy of the receiving string reversed.

Draft - SVN Rev 6346 156 ooRexx Reference Version 4.1.0

Chapter 5. The Builtin Classes

Examples:
"ABc.""reverse -> ".cBA"
"XYZ "“reverse -> "Zyx"

5.1.3.57. right

>>-right (length—+------ =) —————= - - - ><
+-,pad-+

Returns a string of length length containing the rightmost length characters of the receiving string. The
string returned is padded with pad characters, or truncated, on the left as needed. The default pad
character is a blank. The length must be a positive whole number or zero.

Examples:

"abc d""right(8) -> " abc 4"

"abc def""right(5) -> "c def"

"12" right(5,"0") -> "00012"

5.1.3.58. sign

>>-sign---- -- - - - - ><

Returns a number that indicates the sign of the receiving string, which is a number. The receiving string
is first rounded according to standard Rexx rules, as though the operation receiving_string+0 had been
carried out. It returns -1 if the receiving string is less than 0, 0 if it is 0, and 1 if it is greater than 0.

Examples:

"12.3""sign -> 1
" -0.307""sign -> -1
0.07sign -> 0

5.1.3.59. space

>>-space-+-————————=—---—- Fo———— - - - ><
+-(n-+-—————-+-)—+
+-,pad-+

Returns a copy of receiving string, with n pad characters between each whitespace-delimited word. If
you specify n, it must be a positive whole number or zero. If it is 0, all whitespace characters are
removed. Leading and trailing whitespace characters are always removed. The default for n is 1, and the
default pad character is a blank.

Examples:
"abc def "“space -> "abc def"
" abc def"“space(3) -> "abc def"

ooRexx Reference Version 4.1.0 157 Draft - SVN Rev 6346

Chapter 5. The Builtin Classes

"abc def "“space(1) -> "abc def"
"abc def "“space(0) -> "abcdef"
"abc def "“space(2,"+") -> "abc++def"
5.1.3.60. strip
>>-strip-+- - -+ ><
+-(option—+--—————+-) -+
+-,char—+

Returns a copy of the receiving string with leading characters, trailing characters, or both, removed,
based on the option you specify. The following are valid options. (You need to specify only the first
capitalized letter; all characters following it are ignored.)

Both

Removes both leading and trailing characters. This is the default.

Leading

Removes leading characters.

Trailing
Removes trailing characters.

The char specifies the character to be removed, and the default is a blank. If you specify char, it must be
exactly one character long.

Examples:

" ab ¢ ""strip -> "ab c"

n ab c ""Strip("L") -> nab c n

n ab c ""strip("t") -> n ab C"

"12.7000""strip(,0) -> "12.7"

"0012.700""strip(,0) -> "12.7"

5.1.3.61. subchar

>>-subchar (n) - - -><

Returns the n’th character of the receiving string. n» must be a positive whole number. If n is greater that
the length of the receiving string then a zero-length string is returned.

5.1.3.62. substr
>>-substr (n-+----- - —+=)——- . 5S¢
B et S

+-length-+ +-,pad-+

Draft - SVN Rev 6346 158 ooRexx Reference Version 4.1.0

Chapter 5. The Builtin Classes

Returns the substring of the receiving string that begins at the nth character and is of length length,
padded with pad if necessary. The n must be a positive whole number. If n is greater than
receiving_string~length, only pad characters are returned.

If you omit length, the rest of the string is returned. The default pad character is a blank.

Examples:

"abc" “substr(2) -> "be"
"abc"“substr(2,4) -> "bc "
"abc"“substr(2,6,".") -> "bc...."

Note: In some situations the positional (numeric) patterns of parsing templates are more convenient
for selecting substrings, in particular if you need to extract more than one substring from a string.
See also left and right.

5.1.3.63. subWord

>>-subWord (n-+---------) - - ><
+-,length-+

Returns the substring of the receiving string that starts at the nth word and is up to length blank-delimited
words. The n must be a positive whole number. If you omit length, it defaults to the number of remaining
words in the receiving string. The returned string never has leading or trailing whitespace, but includes
all whitespace characters between the selected words.

Examples:

"Now is the time"~subWord(2,2) -> "is the"
"Now is the time"~subWord(3) -> "the time"
"Now is the time"~subWord(5) -> "

5.1.3.64. translate

>>-translate—-+---- - - S,
><
+-(--+ B o +-)-——+

+-tableo=—=+-—==-—--—mee e e i i et EL L e et B
e e et S e +-n-+ +-,length-+
+-tablei-+ +-,pad-+

Returns a copy of the receiving string with each character translated to another character or unchanged.
You can also use this method to reorder the characters in the output table. (See last example)

The output table is fableo and the input translation table is fablei. translate searches tablei for each
character in the receiving string. If the character is found, the corresponding character in tableo is used in
the result string. If there are duplicates in fablei, the first (leftmost) occurrence is used. If the character is

ooRexx Reference Version 4.1.0 159 Draft - SVN Rev 6346

Chapter 5. The Builtin Classes

not found, the original character in the receiving string is used. The result string is always of the same
length as the receiving string.

The tables can be of any length. If you specify neither translation table and omit pad, the receiving string
is translated to uppercase (that is, lowercase a-z to uppercase A-Z), but if you include pad the entire string
is translated to pad characters. fablei defaults to XRANGE("00"x, "FF"x), and tableo defaults to the null
string and is padded with pad or truncated as necessary. The default pad is a blank.

n is the position of the first character of the translated range. The default starting position is 1. length is
the range of characters to be translated. If omitted, length remainder of the string from the starting
position to the end is used.

Examples:

"abcdef"“translate -> "ABCDEF"
"abcdef"~translate(, , , 3, 2) -> "abCDef"
"abcdef"“translate("12", "ec") -> "ab2d1f"
"abcdef"~translate("12", "abcd", ".") -> "12. . ef"
"APQRV"~translate(, "PR") -> "AQV"
"APQRV"~translate (XRANGE("00"X, "Q")) -> "APQ "
"4123"~translate("abcd", "1234") -> "dabc"
"4123"~translate("abcd", "1234", , 2, 2) -> "4abl"

Note: The last example shows how to use the translate method to reorder the characters in a string.
In the example, the last character of any 4-character string specified as the first argument would be
moved to the beginning of the string.

5.1.3.65. trunc

>>-trunc-+--————+-- - ><
+-(n) -+

Returns the integer part the receiving string, which is a number, and n decimal places. The default n is 0
and returns an integer with no decimal point. If you specify n, it must be a positive whole number or
zero. The receiving string is first rounded according to standard Rexx rules, as though the operation
receiving_string+0 had been carried out. This number is then truncated to n decimal places or trailing
zeros are added if needed to reach the specified length. The result is never in exponential form. If there
are no nonzero digits in the result, any minus sign is removed.

Examples:

12.37trunc -> 12
127.09782 trunc(3) -> 127.097
127 .17 trunc(3) -> 127.100
127 trunc(2) -> 127.00

Note: The number is rounded according to the current setting of NUMERIC DIGITS if necessary,
before the method processes it.

Draft - SVN Rev 6346 160 ooRexx Reference Version 4.1.0

Chapter 5. The Builtin Classes

5.1.3.66. upper

>>-upper (+-——+-——+-———————— +-—=)- - -——=><
+-n-+ +-,length-+

Returns a new string with the characters of the target string beginning with character n for length
characters converted to uppercase. If n is specified, it must be a positive whole number. If n is not
specified, the case conversion will start with the first character. If length is specified, it must be a

non-negative whole number. If length the default is to convert the remainder of the string.

Examples:

"Albert Einstein"~upper -> "ALBERT EINSTEIN"

"abcdef" “upper (4) -> "abcDEF"

"abcdef" “upper (3,2) -> "abCDef"

5.1.3.67. verify

>>-verify(reference-+---- -- -- -- ————4-) —=><
e +——+ -- ——+-+

+-option—+ +-,-—+- +——t———- +-+

+-start-+ +-,length-+

Returns a number that, by default, indicates whether the receiving string is composed only of characters
from reference. It returns 0 if all characters in the receiving string are in reference or returns the position
of the first character in the receiving string not in reference.

The option can be either Nomatch (the default) or Match. (You need to specify only the first capitalized
and highlighted letter; all characters following the first character are ignored)

If you specify Match, the method returns the position of the first character in the receiving string that is in
reference, or returns 0 if none of the characters are found.

The default for start is 1. Thus, the search starts at the first character of the receiving string. You can
override this by specifying a different start point, which must be a positive whole number.

The default for length is the length of the string from start to the end of the string. Thus, the search
proceeds to the end of the receiving string. You can override this by specifying a different length, which
must be a non-negative whole number.

If the receiving string is null, the method returns 0, regardless of the value of the option. Similarly, if
start is greater than receiving_string~length, the method returns 0. If reference is null, the method
returns 0 if you specify Match. Otherwise, the method returns the start value.

Examples:

"123"~verify("1234567890") -> 0
"1Z3"“verify("1234567890") -> 2
"ABAT"~verify("1234567890") -> 1
"AB4T""verify("1234567890","M") -> 3
"ABAT"“verify("1234567890","N") -> 1
"1P3Q4"“verify("1234567890", ,3) -> 4
"123"~verify("",N,2) -> 2
"ABCDE"~verify("", ,3) -> 3

ooRexx Reference Version 4.1.0 161 Draft - SVN Rev 6346

Chapter 5. The Builtin Classes

"AB3CD5“”verify(”1234567890","M",4) -> 6
"ABCDEF"“verify("ABC","N",2,3) -> 4
"ABCDEF"“verify("ADEF","M",2,3) -> 4

5.1.3.68. word

>>-word(n)- - - - - ><

Returns the nth whitespace-delimited word in the receiving string or the null string if the receiving string
has fewer than n words. The n must be a positive whole number. This method is exactly equivalent to

receiving_string~subWord(n,1).

Examples:

"Now is the time"“word(3) -> "the"

"Now is the time"“word(5) -> "

5.1.3.69. wordindex

>>-wordIndex(n)--- - ><

Returns the position of the first character in the nth whitespace-delimited word in the receiving string. It
returns 0 if the receiving string has fewer than n words. The » must be a positive whole number.

Examples:
"Now is the time"~wordIndex(3) -> 8
"Now is the time"~wordIndex(6) -> 0

5.1.3.70. wordLength

>>-wordLength(n)-- - s¢

Returns the length of the nth whitespace-delimited word in the receiving string or 0 if the receiving string
has fewer than n words. The n must be a positive whole number.

Examples:

"Now is the time"~wordLength(2) -> 2

"Now comes the time"“wordLength(2) -> 5

"Now is the time"“wordLength(6) -> 0

5.1.3.71. wordPos

>>-wordPos (phrase-+--—--————+-)—— - ><

+-,start-+

Draft - SVN Rev 6346 162 ooRexx Reference Version 4.1.0

Chapter 5. The Builtin Classes

Returns the word number of the first word of phrase found in the receiving string, or 0 if phrase contains
no words or if phrase is not found. Several whitespace characters between words in either phrase or the
receiving string are treated as a single blank for the comparison, but, otherwise, the words must match
exactly.

By default the search starts at the first word in the receiving string. You can override this by specifying
start (which must be positive), the word at which the search is to be started.

Examples:

"now is the time"“wordPos("the") -> 3

"now is the time"“wordPos("The") -> 0

"now is the time"“wordPos("is the") -> 2

"now is the time""wordPos("is the") -> 2

"now is the time"“wordPos("is time ") -> 0

"To be or not to be" wordPos("be") -> 2

"To be or not to be" wordPos("be",3) -> 6

5.1.3.72. words

>>-words————————————--——— - ><

Returns the number of whitespace-delimited words in the receiving string.

Examples:

"Now is the time"“words -> 4

" "“yords -> 0

5.1.3.73. x2b

>>-x2b - - - - ><

Returns a string, in character format, that represents the receiving string, which is a string of hexadecimal
characters converted to binary. The receiving string can be of any length. Each hexadecimal character is
converted to a string of 4 binary digits. The receiving string can optionally include whitespace characters
(at byte boundaries only, not leading or trailing) to improve readability; they are ignored.

The returned string has a length that is a multiple of four, and does not include any whitespace.

If the receiving string is null, the method returns a null string.

Examples:

"C3"~"x2b -> "11000011"
"7"~x2b -> "o111"

"1 C1""x2b -> "000111000001"

You can combine x2b with the methods d2x and ¢2x to convert numbers or character strings into binary
form.

Examples:

ooRexx Reference Version 4.1.0 163 Draft - SVN Rev 6346

Chapter 5. The Builtin Classes

"C3"x"c2x"x2b -> "11000011"

"129"~d2x"x2b -> "10000001"

"1297d2x"x2b -> "1100"

5.1.3.74. x2c

>>-x2c - - ><

Returns a string, in character format, that represents the receiving string, which is a hexadecimal string
converted to character. The returned string is half as many bytes as the receiving string. The receiving
string can be any length. If necessary, it is padded with a leading O to make an even number of
hexadecimal digits.

You can optionally include whitespace in the receiving string (at byte boundaries only, not leading or
trailing) to improve readability; they are ignored.

If the receiving string is null, the method returns a null string.

Examples:

"4865 6c6c 6f""x2c -> "Hello" /* ASCII x/

"3732 73""x2c -> "72s" /* ASCII x/
5.1.3.75. x2d

>>-x2d-+----—+ - - - ><

+-(n)-+

Returns the decimal representation of the receiving string, which is a string of hexadecimal characters. If
the result cannot be expressed as a whole number, an error results. That is, the result must not have more
digits than the current setting of NUMERIC DIGITS.

You can optionally include whitespace characters in the receiving string (at byte boundaries only, not
leading or trailing) to improve readability; they are ignored.

If the receiving string is null, the method returns 0.

If you do not specify n, the receiving string is processed as an unsigned binary number.

Examples:

"OE"~x2d -> 14

"81"~x2d -> 129

"F81"~x2d -> 3969

"FF81"~x2d -> 65409

"46 30"X"x2d -> 240 /* ASCII x/
"66 30"X~x2d -> 240 /* ASCII %/

If you specify n, the receiving string is taken as a signed number expressed in 7 hexadecimal digits. If the
leftmost bit is off, then the number is positive; otherwise, it is a negative number. In both cases it is
converted to a whole number, which can be negative. If n is 0, the method returns 0.

Draft - SVN Rev 6346

164 ooRexx Reference Version 4.1.0

Chapter 5. The Builtin Classes

If necessary, the receiving string is padded on the left with 0 characters (note, not "sign-extended"), or
truncated on the left to n characters.

Examples:

"81"~x2d (2) -> -127
"81""x2d(4) -> 129
"FO81"~x2d (4) -> -3967
"FO81""x2d(3) -> 129
"FO81""x2d(2) -> -127
"FO81"~x2d (1) -> 1
"0031"~x2d(0) -> 0

5.1.4. The Method Class

The Method class creates method objects from Rexx source code. It is a subclass of the Object class.

Figure 5-4. The Method class and methods

Object

Method

new
newFile
loadExternalMethod

isGuarded

isPrivate
isProtected
package
setGuarded
setPrivate
setProtected
setSecurityManager
setUnguarded
source

Note: The Method class also has available class methods that its metaclass, the Class class,
defines.

ooRexx Reference Version 4.1.0 165 Draft - SVN Rev 6346

Chapter 5. The Builtin Classes
5.1.4.1. Inherited Methods

Methods inherited from the Object class.

new (class method) instanceMethod send
=\===\== <> >< instanceMethods sendWith

class isA setMethod
copy isInstanceOf start
defaultName objectName startWith
hasMethod objectName= string
identityHash Request unsetMethod
init Run

5.1.4.2. new (Class Method)

>>-new(name, source-—+---- R e ><
+--, context--+

Returns a new instance of method class, which is an executable representation of the code contained in
the source. The name is a string. The source can be a single string or an array of strings containing
individual method lines.

The context allows the created method to inherit class and routine lookup scope from another source. If
specified, context can be a Method object, a Routine object, a Package object, or the string
"PROGRAMSCOPE". PROGRAMSCOPE is the default, and specifies that the newly created method
will inherit the class and routine search scope from the caller of new method.

5.1.4.3. newFile (Class Method)

>>-newFile(filename)----- - - - ><

Returns a new instance of method class, which is an executable representation of the code contained in
the file filename. The filename is a string.

5.1.4.4. loadExternalMethod (Class Method)

>>-loadExternalMethod(name,descriptor) ————— ><

Resolves a native method in an external library package and returns a Method object instance that can
used to call the external method. The descriptor is a string containing blank-delimited tokens that
identify the location of the native method. function. The first token identifies the type of native function
and must be "LIBRARY". The second token must identify the name of the external library. The external
library is located using platform-specific mechanisms for loading libraries. For Unix-based systems, the
library name is case-sensitive. The third token is optional and specifies the name of the method within
the library package. If not specified, name is used. The method name is not case sensitive. If the target
method cannot be resolved, .nil is returned.

Example:

method = .Method~loadExternalMethod("homeAddress=", ’LIBRARY mylib setHomeAddress’)

Draft - SVN Rev 6346 166 ooRexx Reference Version 4.1.0

Chapter 5. The Builtin Classes

5.1.4.5. isGuarded

>>-isGuarded- -- -- it ><

Returns true ("1") if the method is a Guarded method. Returns false ("0") for Unguarded methods.

5.1.4.6. isPrivate

>>-isPrivate---—-———----—---"-"-""""""""---——— ><

Returns true ("1") if the method is a Private method. Returns false ("0") for Public methods. See Public
versus Private Methods for details on private method restrictions.

5.1.4.7. isProtected

>>-isProtected---- - ittty - - -><

Returns true ("1") if the method is a Protected method. Returns false ("0") for unprotected methods.

5.1.4.8. package

>>-package- -- -- -- -- -- -- ><

Returns the Package class instance that defined the method instance. The package instance controls and
defines the search order for classes and routines referenced by the method code.

5.1.4.9. setGuarded

>>-setGuarded - - - - ><

Specifies that the method is a guarded method that requires exclusive access to its scope variable pool to
run. If the receiver is already guarded, a setGuarded message has no effect. Guarded is the default state
for method objects.

5.1.4.10. setPrivate

>>-setPrivate -- - - - ><

Specifies that a method is a private method. By default, method objects are created as public methods.
See Public versus Private Methods for details on private method restrictions.

5.1.4.11. setProtected

>>-setProtected--- -- - — - ><

ooRexx Reference Version 4.1.0 167 Draft - SVN Rev 6346

Chapter 5. The Builtin Classes

Specifies that a method is a protected method. Method objects are not protected by default. (See The
Security Manager for details.)

5.1.4.12. setSecurityManager

>>-setSecurityManager—-—-+- - + ><
+-(security_manager_object) -+

Replaces the existing security manager with the specified security_manager_object. If
security_manager_object is omitted, any existing security manager is removed.

5.1.4.13. setUnguarded

>>-setUnguarded--- - mmmm e - - ><

Turns off the guard attribute of the method, allowing this method to run on an object even if another
method has acquired exclusive access to the scope variable pool. Methods are unguarded by default.

A guarded method can be active for an object only when no other method requiring exclusive access to
the object’s variable pool is active in the same object. This restriction does not apply if an object sends
itself a message to run a method and it already has exclusive use of the same object variable pool. In this
case, the method runs immediately regardless of its guarded state.

5.1.4.14. source

>>-source-- - ><

Returns the method source code as a single-index array of source lines. If the source code is not
available, source returns an array of zero items.

5.1.5. The Routine Class

The Routine class creates routine objects from Rexx source code. It is a subclass of the Object class.

Draft - SVN Rev 6346 168 ooRexx Reference Version 4.1.0

Chapter 5. The Builtin Classes

Figure 5-5. The Routine class and methods

Object

Routine

new
newFile
loadExternalRoutine

call

callWith

package
setSecurityManager
source

Note: The Routine class also has available class methods that its metaclass, the Class class,
defines.

5.1.5.1. Inherited Methods

Methods inherited from the Object class.

new (class method) instanceMethod send
=\===\== <> >< instanceMethods sendWith

class iSA setMethod
copy isInstanceOf start
defaultName objectName startWith
hasMethod objectName= string
identityHash Request unsetMethod
init Run

5.1.5.2. new (Class Method)

>>-new(name, source-—+------------- +---) -- -=><
+-—, context--+

Returns a new instance of the routine class, which is an executable representation of the code contained
in the source. The name is a string. The source can be a single string or an array of strings containing
individual method lines.

ooRexx Reference Version 4.1.0 169 Draft - SVN Rev 6346

Chapter 5. The Builtin Classes
The context allows the created routine to inherit class and routine lookup scope from another source. If

specified, context can be a Method object, a Routine object, or a Package object. If not specified, the
newly created method will inherit the class and routine search scope from the caller of new method.

5.1.5.3. newFile (Class Method)

>>-newFile(filename)---—- - ><

Returns a new instance of the routine class, which is an executable representation of the code contained
in the file filename. The filename is a string.

5.1.5.4. loadExternalRoutine (Class method)

>>-loadExternalRoutine (name,descriptor) ><

Resolves a native routine in an external library package and returns a Routine object instance that can
used to call the external routine. The descriptor is a string containing blank-delimited tokens that
identify the location of the native routine. function. The first token identifies the type of native routine
and must be "LIBRARY". The second token must identify the name of the external library. The external
library is located using platform-specific mechanisms for loading libraries. For Unix-based systems, the
library name is case-sensitive. The third token is optional and specifies the name of the routine within the
library package. If not specified, name is used. The routine name is not case sensitive. If the target
routine cannot be resolved, .nil is returned.

Example:

routine = .Routine~loadExternalRoutine("Pi", "LIBRARY rxmath RxCalcPi")

5.1.5.5. call

- - -—-><

Calls the routine object using the provided arguments. The code in the routine object is called as if it was
an external routine call. The return value will be any value returned by the executed routine.

5.1.5.6. callWith

>>-call(array)---- - ——><

Calls the routine object using the arguments provided in array. Each element of array will be mapped to
its corresponding call argument. The code in the routine object is called as if it was an external routine
call. The return value will be any value returned by the executed routine.

Draft - SVN Rev 6346 170 ooRexx Reference Version 4.1.0

Chapter 5. The Builtin Classes

5.1.5.7. package

>>-package-—- - - mm———————————— -= ><

Returns the Package class instance that defined the routine instance. The package instance controls and
defines the search order for classes and routines referenced by the routine code.

5.1.5.8. setSecurityManager

>>-setSecurityManager--+-------—--------——-—-——--——- Fommm ><
+-(security_manager_object)-+

Replaces the existing security manager with the specified security_manager_object. If
security_manager_object is omitted, any existing security manager is removed.

5.1.5.9. source

>>-source--— - ><

Returns the routine source code as a single-index array of source lines. If the source code is not available,
source returns an array of zero items.

5.1.6. The Package Class

The Package class contains the source code for a package of Rexx code. A package instance holds all of
the routines, classes, and methods created from a source code unit and also manages external
dependencies referenced by ::REQUIRES directives. The files loaded by ::REQUIRES are also
contained in Package class instances. It is a subclass of the Object class.

ooRexx Reference Version 4.1.0 171 Draft - SVN Rev 6346

Chapter 5. The Builtin Classes

Figure 5-6. The Package class and methods

Object
Package
new
newFile
addClass loadLibrary
addPackage loadPackage
addPublicClass name

addPublicRoutine
addRoutine
classes
definedMethods
digits

findClass
findRoutine

form

fuzz
importedClasses
importedPackages
importedRoutines

publicClasses
publicRoutines
routines
setSecurityManager
source

sourceLine
sourceSize

trace

Note: The Package class also has available class methods that its metaclass, the Class class,

defines.

5.1.6.1. Inherited Methods

Methods inherited from the Object class.

new (class method) instanceMethod send
=\===\== <> >< instanceMethods sendWith

class iSA setMethod
copy isInstanceOf start
defaultName objectName startWith
hasMethod objectName= string
identityHash Request unsetMethod
init Run

172

Draft - SVN Rev 6346

ooRexx Reference Version 4.1.0

Chapter 5. The Builtin Classes

5.1.6.2. new (Class Method)

>>-new(name, source-—+---- -- e ><
+-—, methodobject--+

Returns a new instance of the package class, which is a representation of the code contained in the
source. The name is a string. The source can be a single string or an array of strings containing
individual method lines.

The third parameter influences the scope of the routine. If none is given, the program scope is used. If
another method or routine object is specified, the scope of the provided method or routine is used.

5.1.6.3. newFile (Class Method)

>>-newFile(filename)----- - - - ><

Returns a new instance of the package class, which is an executable representation of the code contained
in the file filename. The filename is a string.

5.1.6.4. addClass

>>-addClass (name,class)-- - - - ><

Adds the class object class to the available classes under the name name. This is added to the package as
a non-public class.

5.1.6.5. addPackage

>>-addPackage (package) —--- - ettt ><

Adds the package object package to the dependent packages under the name name. The added package is
processed as if it had been added using a ::REQUIRES directive in the original package source.

5.1.6.6. addPublicClass

>>-addPublicClass (name,class)-—- - - ><

Adds the class object class to the available public classes under the name name. This is added to the
package as a public class.

5.1.6.7. addPublicRoutine

>>-addPublicRoutine (name,routine)---- - - —-==><

Adds the routine object routine to the available routines under the name name. This is added to the
package as a public routine.

ooRexx Reference Version 4.1.0 173 Draft - SVN Rev 6346

Chapter 5. The Builtin Classes

5.1.6.8. addRoutine

>>-addRoutine (name,routine)----- —————— e - -————><

Adds the routine object routine to the available routines under the name name. This is added to the
package as a non-public routine.

5.1.6.9. classes

>>-classes————————————------——-- oo ><

Returns a directory containing all classes defined by this package or imported as public classes from
another package.

5.1.6.10. definedMethods

>>-definedMethods- - ettt ><

Returns a directory containing all unattached methods defined by this package. This is the same directory
available to code within the package via the METHODS environment symbol.

5.1.6.11. digits

>>-digits-———----—- -~ - - - ><

Returns the initial NUMERIC DIGITS setting used for all Rexx code contained within the package. The
default value is 9. The ::OPTIONS directive can override the default value.

5.1.6.12. findClass

>>-findClass (name) -- ————— -- -- ><

Performs the standard environment symbol searches given class name. The search is performed using the
same search mechanism used for environment symbols or class names specified on ::CLASS directives.
If the name is not found, .nil will be returned.

5.1.6.13. findRoutine

>>-findRoutine (name)----- -- - -- -- -=><

Searches for a routine within the package search order. This includes ::ROUTINE directives within the
package, public routines imported from other packages, or routines added using the addRoutine method.
The argument name must be a string object. If the name is not found, .nil will be returned.

Draft - SVN Rev 6346 174 ooRexx Reference Version 4.1.0

Chapter 5. The Builtin Classes

5.1.6.14. form

>>-form - - - e — ><

Returns the initial NUMERIC FORM setting used for all Rexx code contained within the package. The
default value is SCIENTIFIC. The ::OPTIONS directive can override the default value.

5.1.6.15. fuzz

>>-fuzz----——-——-——"——— ><

Returns the initial NUMERIC FUZZ setting used for all Rexx code contained within the package. The
default value is 0. The ::OPTIONS directive can override the default value.

5.1.6.16. importedClasses

>>-importedClasses - ettt ><

Returns a directory containing all public classes imported from other packages.

5.1.6.17. importedRoutines

>>-importedRoutines———-—=——-=——-———————————————— oo ><

Returns a directory containing all public routines imported from other packages.

5.1.6.18. loadLibrary

>>-loadLibrary(name)----- - ————————— ><

Loads a native library package and adds it to the list of libraries loaded by the interpreter. The name
identifies a native external library file that will be located and loaded as if it had been named on a
::REQUIRES LIBRARY directive. If the library is successfully loaded, loadLibrary will return 1 (true),
otherwise it returns O (false).

5.1.6.19. loadPackage

>>-loadPackage (name-+--------- +-)——-- e ><
+-,source-+

Loads a package and adds it to the list of packages loaded by the package manager. If only name is
specified, name identifies a file that will be located and loaded as if it had been named on a ::REQUIRES
directive. If source is given, it must be an array of strings that is the source for the loaded package. If a
package name has already been loaded by the package manager, the previously loaded version will be
use. The resolved package object will be added to the receiving package object’s dependent packages.

ooRexx Reference Version 4.1.0 175 Draft - SVN Rev 6346

Chapter 5. The Builtin Classes

5.1.6.20. name

Returns the string name of the package.

5.1.6.21. publicClasses
>>-publicClasses———-————-—-—-————————————————————————————— ><

Returns a directory containing all public classes defined in this package.

5.1.6.22. publicRoutines

>>-publicRoutines- - Ittt ><

Returns a directory containing all public routines defined in this package.

5.1.6.23. routines

>>-routines -- - - ———><

Returns a directory containing all routines defined in this package.

5.1.6.24. setSecurityManager

>>-setSecurityManager--+- - o ><
+-(security_manager_object) -+

Replaces the existing security manager with the specified security_manager_object. If
security_manager_object is omitted, any existing security manager is removed.

5.1.6.25. source

>>-source---- - - ittt - ><

Returns the package source code as a single-index array of source lines. If the source code is not
available, source returns an array of zero items.

5.1.6.26. sourcelLine

>>-sourcelLine (n) --------- - ———m—m e - - ><

Returns the nth source line from the package source. If the source code is not available or the indicated
line does not exist, a null string is returned.

Draft - SVN Rev 6346 176 ooRexx Reference Version 4.1.0

Chapter 5. The Builtin Classes

5.1.6.27. sourceSize

>>-sourceSize-—————-——----- - e - - ><

Returns the size of the source code for the package object. If the source code is not available, O is
returned.

5.1.6.28. trace
D v o= Y o = ><

Returns the initial TRACE setting used for all Rexx code contained within the package. The default
value is Normal. The ::OPTIONS directive can override the default value.

5.1.7. The Message Class

A message object provides for the deferred or asynchronous sending of a message. You can create a
message object by using the new method of the Message class or the start method of the Object class.

Figure 5-7. The Message class and methods

Object

Message

new

arguments
completed
errorCondition
hasError
messageName
notify

result

send

start

target

Note: The Message class also has available class methods that its metaclass, the Class class,
defines.

ooRexx Reference Version 4.1.0 177 Draft - SVN Rev 6346

Chapter 5. The Builtin Classes

5.1.7.1. Inherited Methods

Methods inherited from the Object class.

new (class method) instanceMethod send

=\===\== <> >< instanceMethods sendWith
class isA setMethod
copy isInstanceOf start
defaultName objectName startWith
hasMethod objectName= string
identityHash Request unsetMethod
init Run

5.1.7.2. new (Class Method)

>>-new(target ,messagename—+-—————————————————————————————— +-)--><
| o + |
I v I
+-,Individual---+----—-—----—- +—+-+
| +-,argument—+ |
+-,Array,argument--------------- +

Initializes the message object for sending the message name messagename to object target.

The messagename can be a string or an array. If messagename is an array object, its first item is the name
of the message and its second item is a class object to use as the starting point for the method search. For
more information, see Classes and Inheritance.

If you specify the Individual or Array option, any remaining arguments are arguments for the message.
(You need to specify only the first letter; all characters following the first are ignored.)

Individual
If you specify this option, specifying argument is optional. Any arguments are passed as message
arguments to farget in the order you specify them.

Array

If you specify this option, you must specify an argument, which is an array object. (See The Array
Class.) The member items of the array are passed to farget as arguments. The first argument is at
index 1, the second argument at index 2, and so on. If you omitted any indexes when creating the
array, the corresponding message arguments are also omitted.

If you specify neither Individual nor Array, the message sent has no arguments.

Note: This method does not send the message messagename to object target. The SEND or
START method (described later) sends the message.

Draft - SVN Rev 6346 178 ooRexx Reference Version 4.1.0

Chapter 5. The Builtin Classes

5.1.7.3. arguments

>>-arguments- - - ittt -=><

Returns an array of argument objects used to invoke the message.

5.1.7.4. completed

>>-completed—————————————————-—--— ><

Returns 1 if the message object has completed executing its message, or 0. You can use this method to
test for completion as an alternative to calling result and waiting for the message to complete.

5.1.7.5. errorCondition

>>-errorCondition-----------=-=--=-—-—--—---—o - - ><

Returns an error condition object from any execution error with the message object’s message invocation.
If the message completed normally, or is still executing, errorCondition returns the Nil object.

5.1.7.6. hasError

>>-hasError------- - ittty - - ><

Returns 1 if the message object’s message was terminated with an error condition. Returns 0 if the
message has not completed or completed without error.

5.1.7.7. messageName

>>-messageName---- -= -- - - ———><

Returns the string message name used to invoke a method.

5.1.7.8. notify

>>-notify(message) -- - — - ><

Requests notification about the completion of processing of the message send or start. The message
object message is sent as the notification. You can use notify to request any number of notifications.

After the notification message, you can use the result method to obtain any result from the messages
send or start.

Example:
/* Event-driven greetings */

.prompter “new”prompt (.nil)

ooRexx Reference Version 4.1.0 179 Draft - SVN Rev 6346

Chapter 5. The Builtin Classes

::class prompter

::method prompt
expose name
use arg msg

if msg \= .nil then do
name = msg result

if name = "quit" then return
say "Hello," name
end

say 'Enter your name ("quit" to quit):'

/* Send the public default object .INPUT a LINEIN message asynchronously */
msg=.message new(.input,"LINEIN") "“start

/* Sends self prompt(msg) when data available */
msg notify(.message new(self,"PROMPT","I" ,msg))

/* Don't leave until user has entered "quit" */
guard on when name="quit"

5.1.7.9. result

>>-result-- - - - - ><

Returns the result of the message send or start. If message processing is not yet complete, this method
waits until it completes. If the message send or start raises an error condition, this method also raises an
error condition.

Example:

/* Example using result method */

string="700" /* Create a new string object, string */
bond=string~start("reverse") /* Create a message object, bond, and */
/* start it. This sends a REVERSE */
/* message to string, giving bond */
/* the result. */

/* Ask bond for the result of the message */

say "The result of message was" bond"result /* Result is 007 */
5.1.7.10. send
>>-send--+- ——t-——= - ><

+-(target) -+

Draft - SVN Rev 6346 180 ooRexx Reference Version 4.1.0

Chapter 5. The Builtin Classes

Returns the result (if any) of sending the message. If you specify target, this method sends the message
to target. Otherwise, this method sends the message to the farget you specified when the message object
was created. send does not return until message processing is complete.

You can use the notify method to request notification that message processing is complete. You can use
the result method to obtain any result from the message.

5.1.7.11. start

>>-start--+---------- o -- -- ><
+-(target) -+

Sends the message to start processing at a specific target whereas the sender continues processing. If you
specify rarget, this method sends the message to farget. Otherwise, this method sends the message to the
target that you specified when the message object was created. This method returns as soon as possible
and does not wait until message processing is complete. When message processing is complete, the
message object retains any result and holds it until requested via the result method. You can use the
notify method to request notification when message processing completes.

5.1.7.12. Example

/* Using Message class methods */
/* Note: In the following example, ::METHOD directives define class Testclass */

/* with method SHOWMSG */
ez=.testclass"new /* Creates a new instance of Testclass x/
mymsg=ez~start ("SHOWMSG", "Hello, 0llie!",5) /* Creates and starts */
/* message mymsg to send */
/* SHOWMSG to ez */
/* Continue with main processing while SHOWMSG runs concurrently */
do 5
say "Hello, Stan!"
end
/* Get final result of the SHOWMSG method from the mymsg message object x/
say mymsg result
say "Goodbye, Stan..."
exit
::class testclass public /* Directive defines Testclass x/
: :method showmsg /* Directive creates new method SHOWMSG */
use arg text,reps /* class Testclass x/
do reps
say text
end

reply "Bye Bye, 0Ollie..."
return

ooRexx Reference Version 4.1.0 181 Draft - SVN Rev 6346

Chapter 5. The Builtin Classes

The following output is possible:

Hello,
Hello,
Hello,
Hello,
Hello,
Hello,
Hello,
Hello,
Hello,
Hello,

Bye Bye, Ollie...
Goodbye, Stan...

5.1.7.13. target
>>-target—-

Returns the object that is the target of the invoked message.

5.2. The Stream Classes

0llie!
Stan!
O0llie!
Stan!
O0llie!
Stan!
O0llie!
Stan!
O0llie!
Stan!

This section describes the Rexx classes which implement Rexx data streams.

5.2.1. The InputStream Class

This class is defined as an abstract mixin class. It must be implemented by subclassing it or inheriting
from it as a mixin. Many of the methods in this class are abstract and must be overridden or they will

throw a syntax error when invoked.

Draft - SVN Rev 6346

182

ooRexx Reference Version 4.1.0

Figure 5-8. The InputStream class and methods

Object

InputStream

arrayln
charln
charOut
chars
close
lineln
lineOut
lines
open
position

Chapter 5. The Builtin Classes

Note: The InputStream class also has available class methods that its metaclass, the Class class,

defines.

5.2.1.1. Inherited Methods

Methods inherited from the Object class.

new (class method) instanceMethod
=\===\== <> >< instanceMethods

class iSA

copy isInstanceOf
defaultName objectName
hasMethod objectName=
identityHash Request

init Run

5.2.1.2. arrayln

send
sendWith
setMethod
start

startWith
string
unsetMethod

This is a default implementation of the arrayln method using linein() method calls to fill the array.

5.2.1.3. charln

This method is defined as an abstract method. Invoking it will cause syntax error 93.965 to be raised.

ooRexx Reference Version 4.1.0

183

Draft - SVN Rev 6346

Chapter 5. The Builtin Classes

5.2.1.4. charOut

This is an unsupported operation for InputSteams. Invoking it will cause syntax error 93.963 to be raised.

5.2.1.5. chars

This method is defined as an abstract method. Invoking it will cause syntax error 93.965 to be raised.

5.2.1.6. close
This method is a NOP by default.

5.2.1.7. lineln

This method is defined as an abstract method. Invoking it will cause syntax error 93.965 to be raised.

5.2.1.8. lineOut

This is an unsupported operation for InputSteams. Invoking it will cause syntax error 93.963 to be raised.

5.2.1.9. lines

This method is defined as an abstract method. Invoking it will cause syntax error 93.965 to be raised.

5.2.1.10. open
This method is a NOP method.

5.2.1.11. position

This method is an optionally supported operation. By default, it will cause syntax error 93.963 to be
raised.

5.2.2. The OutputStream Class

This class is defined as an abstract mixin class. It must be implemented by subclassing it or inheriting
from it as a mixin. Many of the methods in this class are abstract and must be overridden or they will
throw a syntax error when invoked.

Draft - SVN Rev 6346 184 ooRexx Reference Version 4.1.0

Figure 5-9. The OutputStream class and methods

Object

OutputStream

arrayOut
charln
charOut
chars
close
lineln
lineOut
lines
open
position

Chapter 5. The Builtin Classes

Note: The OutputStream class also has available class methods that its metaclass, the Class class,

defines.

5.2.2.1. Inherited Methods

Methods inherited from the Object class.

new (class method) instanceMethod
=\===\== <> >< instanceMethods

class iSA

copy isInstanceOf
defaultName objectName
hasMethod objectName=
identityHash Request

init Run

5.2.2.2. arrayOut

send
sendWith
setMethod
start

startWith
string
unsetMethod

This method is a default arrayOut implementation that writes all lines to the stream using lineout.

5.2.2.3. charln

This is an unsupported operation for OutputSteams. Invoking it will cause syntax error 93.963 to be

raised.

ooRexx Reference Version 4.1.0

185

Draft - SVN Rev 6346

Chapter 5. The Builtin Classes

5.2.2.4. charOut

This method is defined as an abstract method. Invoking it will cause syntax error 93.965 to be raised.

5.2.2.5. chars

This is an unsupported operation for OutputSteams. Invoking it will cause syntax error 93.963 to be
raised.

5.2.2.6. close
This method is a NOP by default.

5.2.2.7. lineln

This is an unsupported operation for OutputSteams. Invoking it will cause syntax error 93.963 to be
raised.

5.2.2.8. lineOut

This method is defined as an abstract method. Invoking it will cause syntax error 93.965 to be raised.

5.2.2.9. lines

This is an unsupported operation for OutputSteams. Invoking it will cause syntax error 93.963 to be
raised.

5.2.2.10. open
This method is a NOP by default.

5.2.2.11. position

This method is an optionally supported operation. By default, it will cause syntax error 93.963 to be
raised.

5.2.3. The InputOutputStream Class

This class is defined as an abstract mixin class. It must be implemented by subclassing it or inheriting
from it as a mixin. Many of the methods in this class are abstract and must be overridden or they will
throw a syntax error when invoked.

Draft - SVN Rev 6346 186 ooRexx Reference Version 4.1.0

Chapter 5. The Builtin Classes

Figure 5-10. The InputOutputStream class

Object

InputOutputStream
+ InputStream
+ OutputStream

Note: The InputOutputStream class also has available class methods that its metaclass, the Class
class, defines.

5.2.3.1. Inherited Methods

Methods inherited from the Object class.

new (class method) instanceMethod send
=\===\== <> >< instanceMethods sendWith

class iSA setMethod
copy isInstanceOf start
defaultName objectName startWith
hasMethod objectName= string
identityHash Request unsetMethod
init Run

Methods inherited from the InputStream class.

Note: This class is searched second for inherited methods.

arrayln close open
charln lineln position

charOut lineOut
chars lines

Methods inherited from the OutputStream class.

Note: This class is searched first for inherited methods.

arrayOut close open
charln lineln position

charOut lineOut
chars lines

ooRexx Reference Version 4.1.0 187 Draft - SVN Rev 6346

Chapter 5. The Builtin Classes

5.2.4. The Stream Class

A stream object allows external communication from Rexx. (See Input and Output Streams for a
discussion of Rexx input and output.)

The Stream class is a subclass of the InputOutputStream class.

Figure 5-11. The Stream class and methods

Object
InputOutputStream

+ InputStream
+ OQutputStream

Stream
arrayln lines
arrayOut makeArray
charln open
charOut position
chars qualify
close query
command say
description seek
flush state
init string
lineln supplier
lineout unlinit

Note: The Stream class also has available class methods that its metaclass, the Class class,

defines. It also inherits methods from the InputOutputStream class.

5.2.4.1. Inherited Methods

Methods inherited from the Object class.

new (class method)
=\===\== <> ><

class

copy
defaultName

Draft - SVN Rev 6346

instanceMethod send
instanceMethods sendWith

iSA setMethod

isInstanceOf start

objectName startWith
188

ooRexx Reference Version 4.1.0

Chapter 5. The Builtin Classes

hasMethod objectName= string
identityHash Request unsetMethod
init Run

Methods inherited from the InputStream class.

Note: This class is searched second for inherited methods.

arrayln close open
charln lineln position

charOut lineOut
chars lines

Methods inherited from the OutputStream class.

Note: This class is searched first for inherited methods.

arrayOut close open
charln lineln position

charOut lineOut
chars lines

5.2.4.2. new (Inherited Class Method)

>>-new(name) - ><

Initializes a stream object for stream name, but does not open the stream. Returns the new stream object.

5.2.4.3. arrayln

+-(LINES) -+
>>-arrayIn-—-+--—-—-—----—- +-- ><
+-(CHARS) -+

Returns a fixed array that contains the data of the stream in line or character format, starting from the
current read position. The line format is the default.

If you have used the charIn method, the first line can be a partial line.

5.2.4.4. arrayOut

+-,--LINES-+
>>-arrayOut (array-+---------- +-) ><
+-,--CHARS-+

ooRexx Reference Version 4.1.0 189 Draft - SVN Rev 6346

Chapter 5. The Builtin Classes
Writes the data in array array to the stream. If LINES is specified, each element of the array is written

using lineout(). If CHARS is specified, each element is written using charout(). The default method is
LINES.

5.2.4.5. charln

>>-charIn-+ - _ R, S<
B o e - +-)—+

+-start-+ +-,length-+

Returns a string of up to length characters from the input stream. The stream advances advances the read
pointer by the number of characters read. If you omit length, it defaults to 1. If you specify start, this
positions the read pointer before reading. The start value must be a positve whole number within the
bounds of the stream. If the value is not a positive whole number, a syntax condition is raised. When the
value is past the end of the stream, the empty string is returned and the NOTREADY condition is raised.
If the stream is not already open, the stream attempts to open for reading and writing. If that fails, the
stream opens for input only.

5.2.4.6. charOut

>>-charQut-+ - e S<
B G e e e e e e B

+-string-+ +-,start-+
Returns the count of characters remaining after trying to write string to the output stream. The stream
also advances the write pointer.

The string can be the null string. In this case, charOut writes no characters to the stream and returns 0. If
you omit string, charOut writes no characters to the stream and returns 0. The stream is also closed.

If you specify start, this positions the write pointer before writing. If the stream is not already open, the
stream attempts to open for reading and writing. If that fails, the stream opens for for output only.

5.2.4.7. chars

>>-chars----------------- - —mmmmm e - ><

Returns the total number of characters remaining in the input stream. The count includes any line
separator characters, if these are defined for the stream. For persistent the count is the count of characters
from the current read position. (See Input and Output Streams for a discussion of Rexx input and output.)
The total number of characters remaining cannot be determined for some streams (for example, STDIN).
For these streams. the CHARS method returns 1 to indicate that data is present, or 0 if no data is present.
For Windows devices, CHARS always returns 1.

5.2.4.8. close

>>-close-—--—- - - - - - ><

Draft - SVN Rev 6346 190 ooRexx Reference Version 4.1.0

Chapter 5. The Builtin Classes

Closes the stream. close returns READY: if closing the stream is successful, or an appropriate error
message. If you have tried to close an unopened file, then the close method returns a null string ("").

5.2.4.9. command

>>-command (stream_command) -———--— ><

Returns a string after performing the specified stream_command. The returned string depends on the
stream_command performed and can be the null string. The following stream_commands:

+ Open a stream for reading, writing, or both

« Close a stream at the end of an operation

« Move the line read or write position within a persistent stream (for example, a file)
+ Get information about a stream

If the method is unsuccessful, it returns an error message string in the same form that the description
method uses.

For most error conditions, the additional information is in the form of a numeric return code. This return
code is the value of ERRNO that is set whenever one of the file system primitives returns with a -1.

5.2.4.9.1. Command Strings

The argument stream_command can be any expression that to one of the following command strings:

+-BOTH--| Write Options |-+

>>=+-0PEN-—+-————————————— +——t——- +-+ ><

| +-READ---————————————————- + +-| Optioms |-+ |
| +-WRITE--+--------- tomm- + |
I +-APPEND--+ |
I +-REPLACE-+ |
+-CLOSE- - +
+=FLUSH-—————=—=== === +
| +- = -+ +-CHAR-+ |
+—+-SEEK----- e +-offset-—+- +o—tm—————to -t
| +-POSITION-+ +- < -+ +-READ--+ +-LINE-+ |
| +- + -+ +-WRITE-+ |
I - - -+ |
+-QUERY-—+-DATETIME--- - e e +

+-EXISTS----- -- -- -————+

+-HANDLE - —

| +-CHAR-+ |

+—+-SEEK--———+--+-READ——+--————+——+—+

| +-POSITION-+ | +-LINE-+ | |

| | +-CHAR-+ | |

| +-WRITE--+--——-- +-+ |

| | +-LINE-+ | |

| +-8YS-——-————————- + |

+-SIZE -- - +

+-STREAMTYPE- -- ———+

ooRexx Reference Version 4.1.0 191 Draft - SVN Rev 6346

Chapter 5. The Builtin Classes

+-TIMESTAMP-- - - _——

Write Options:

| ——4+———————— +———= - -
+-APPEND--+
+-REPLACE-+

Options:

| -—t=mmm +----+-NOBUFFER- ————t-+ -
+-SHARED----- + +-BINARY-—+-—————————————————- +—+
+-SHAREREAD--+ +-RECLENGTH--length-+
+-SHAREWRITE-+

OPEN

Opens the stream object and returns READY :. (If unsuccessful, the previous information about return
codes applies.) The default for OPEN is to open the stream for both reading and writing data, for
example: '0PEN BOTH'. To specify that the stream be only opened for input or output, add READ or
WRITE, to the command string.

The following is a description of the options for OPEN:

READ

Opens the stream only for reading.

WRITE

Opens the stream only for writing.

BOTH

Opens the stream for both reading and writing. (This is the default.) The stream maintains
separate read and write pointers.

APPEND

Positions the write pointer at the end of the stream. The write pointer cannot be moved
anywhere within the extent of the file as it existed when the file was opened.

REPLACE

Sets the write pointer to the beginning of the stream and truncates the file. In other words, this
option deletes all data that was in the stream when opened.

SHARED

Enables another process to work with the stream in a shared mode. This mode must be
compatible with the shared mode (SHARED, SHAREREAD, or SHAREWRITE) used by the
process that opened the stream.

Draft - SVN Rev 6346 192 ooRexx Reference Version 4.1.0

Chapter 5. The Builtin Classes

SHAREREAD

Enables another process to read the stream in a shared mode.

SHAREWRITE

Enables another process to write the stream in a shared mode.

NOBUFFER

Turns off buffering of the stream. All data written to the stream is flushed immediately to the
operating system for writing. This option can have a severe impact on output performance. Use
it only when data integrity is a concern, or to force interleaved output to a stream to appear in
the exact order in which it was written.

BINARY

Opens the stream in binary mode. This means that line end characters are ignored; they are
treated like any other byte of data. This is intended to process binary data using the line
operations.

Note: Specifying the BINARY option for a stream that does not exist but is opened for
writing also requires the RECLENGTH option to be specified. Omitting the RECLENGTH
option in this case raises an error condition.

RECLENGTH length

Allows the specification of an exact length for each line in a stream. This allows line operations
on binary-mode streams to operate on individual fixed-length records. Without this option, line
operations on binary-mode files operate on the entire file (for example, as if you specified the
RECLENGTH option with a length equal to that of the file). The length must be 1 or greater.

Examples:

stream_name” command ("open")
stream_name~command("open write")
stream_name”command ("open read")
stream_name”command ("open read shared")

CLOSE

closes the stream object. The COMMAND method with the CLOSE option returns READY : if the
stream is successfully closed or an appropriate error message otherwise. If an attempt to close an
unopened file occurs, then the COMMAND method with the CLOSE option returns a null string
(ll ll).

FLUSH

forces any data currently buffered for writing to be written to this stream.

ooRexx Reference Version 4.1.0 193 Draft - SVN Rev 6346

Chapter 5. The Builtin Classes

SEEK offset

sets the read or write position to a given number (offser) within a persistent stream. If the stream is
open for both reading and writing and you do not specify READ or WRITE, both the read and write
positions are set.

Note: See Input and Output Streams for a discussion of read and write positions in a persistent
stream.

To use this command, you must first open the stream (with the OPEN stream command described
previously or implicitly with an input or output operation). One of the following characters can
precede the offset number.

explicitly specifies the offset from the beginning of the stream. This is the default if you supply
no prefix. For example, an offset of 1 with the LINE option means the beginning of the stream.

specifies offset from the end of the stream.

specifies offset forward from the current read or write position.

specifies offset backward from the current read or write position.

The command method with the SEEK option returns the new position in the stream if the read or
write position is successfully located, or an appropriate error message.

The following is a description of the options for SEEK:

READ

specifies that this command sets the read position.

WRITE

specifies that this command sets the write position.

CHAR

specifies the positioning in terms of characters. This is the default.

LINE

specifies the positioning in terms of lines. For non-binary streams, this is potentially an
operation that can take a long time to complete because, in most cases, the file must be scanned
from the top to count the line-end characters. However, for binary streams with a specified
record length, the new resulting line number is simply multiplied by the record length before

Draft - SVN Rev 6346 194 ooRexx Reference Version 4.1.0

Chapter 5. The Builtin Classes

character positioning. See Line versus Character Positioning for a detailed discussion of this
issue.

Note: If you do line positioning in a file open only for writing, you receive an error message.

Examples:

stream_name~command("seek =2 read")
stream_name~command("seek +15 read")
stream_name~command ("seek -7 write line")
fromend = 125

stream_name~command ("seek <"fromend read)

POSITION
is a synonym for SEEK.

Used with these stream_commands, the COMMAND method returns specific information about a
stream. Except for QUERY HANDLE and QUERY POSITION, the stream returns the query
information even if the stream is not open. The stream returns the null string for nonexistent streams.

QUERY DATETIME

Returns the date and time stamps of a stream in US format. For example:

stream_name”command("query datetime")
A sample output might be:
11-12-95 03:29:12

QUERY EXISTS

Returns the full path specification of the stream object, if it exists, or a null string. For example:

stream_name”command ("query exists")

A sample output might be:

c:\data\file.txt

QUERY HANDLE

Returns the handle associated with the open stream. For example:

stream_name”command("query handle")

A sample output might be: 3

QUERY POSITION

Returns the current read or write position for the stream, as qualified by the following options:

READ

Returns the current read position.

ooRexx Reference Version 4.1.0 195 Draft - SVN Rev 6346

Chapter 5. The Builtin Classes

WRITE

Returns the current write position.

Note: If the stream is open for both reading and writing, this returns the read position by default.
Otherwise, this returns the appropriate position by default.

CHAR

Returns the position in terms of characters. This is the default.

LINE

Returns the position in terms of lines. For non-binary streams, this operation can take a long
time to complete. This is because the language processor starts tracking the current line
number if not already doing so, and, thus, might require a scan of the stream from the top to
count the line-end characters. See Line versus Character Positioning for a detailed discussion
of this issue. For example:

stream_name~command("query position write")

A sample output might be:
247

SYS

Returns the operating system stream position in terms of characters.

QUERY SEEK
Is a synonym for QUERY POSITION.

QUERY SIZE

Returns the size, in bytes, of a persistent stream. For example:

stream_name”command ("query size")

A sample output might be:
1305

QUERY STREAMTYPE

Returns a string indicating whether the stream is PERSISTENT, TRANSIENT, or UNKNOWN.

QUERY TIMESTAMP

Returns the date and time stamps of a persistent stream in an international format. This is the
preferred method of getting date and time because it provides the full 4-digit year. For example:

stream_name”command ("query timestamp")
A sample output might be:
1995-11-12 03:29:12

Draft - SVN Rev 6346 196 ooRexx Reference Version 4.1.0

Chapter 5. The Builtin Classes

5.2.4.10. description

>>-description---- - - e - ><

Returns any descriptive string associated with the current state of the stream or the Nil object if no
descriptive string is available. The description method is identical with the STATE method except that
the string that description returns is followed by a colon and, if available, additional information about
ERROR or NOTREADY states.

5.2.4.11. flush

>>-flush----- -- -- -- -- -- ><

Returns READY:. It forces the stream to write any buffered data to the output stream.

5.2.4.12. init

>>—init(name) ————————mmm ><

Initializes a stream object defined by name.

5.2.4.13. lineln

>>-lineIn-+---——--——————————————————— domm e - - ><
+=(—t———— b —) 4

+-line-+ +-,count-+

Returns the next count lines. The count must be 0 or 1. The stream advances the read pointer. If you omit
count, it defaults to 1. A line number may be given to set the read position to the start of a specified line.
This line number must be positive and within the bounds of the stream, and must not be specified for a
transient stream. A value of 1 for line refers to the first line in the stream. If the stream is not already
open, then the interpreter tries to open the stream for reading and writing. If that fails, the stream is
opened for input only.

5.2.4.14. lineOut

>>-lineQut-+------ - —_ + _— _— . ><
B G e T e e ¥

+-string-+ +-,line-+

Returns 0 if successful in writing string to the output stream or 1 if an error occurs while writing the line.
The stream advances the write pointer. If you omit string, the stream is closed. If you specify line, this
positions the write pointer before writing. If the stream is not already open, the stream attempts to open
for reading and writing. If that fails, the stream is opened for output only.

ooRexx Reference Version 4.1.0 197 Draft - SVN Rev 6346

Chapter 5. The Builtin Classes

5.2.4.15. lines

+-Count--+

>>-lines(-—+ ——+-==) -
+-Normal-+

><

Returns the number of completed lines that available for input. If the stream has already been read with
charInemphasis. this can include an initial partial line. For persistent streams the count starts at the
current read position. In effect, lines reports whether a read action of charln (see charln) or lineln (see
lineIn) will succeed. (For an explanation of input and output, see Input and Output Streams.)

For a Queue, lines returns the actual number of lines.

Note: The chars method returns the number of characters in a persistent stream or the presence of
data in a transient stream. The linesemphasis method determines the actual number of lines by
scanning the stream starting at the current position and counting the lines. For large streams, this
can be a time-consuming operation. Therefore, avoid the use of the LINES method in the condition of
a loop reading a stream. It is recommended that you use the chars method.

The ANSI Standard has extended this function to allow an option: "Count". If this option is used, lines
returns the actual number of complete lines remaining in the stream, irrespective of how long this

operation takes.

The option "Normal" returns 1 if there is at least one complete line remaining in the file or 0 if no lines

remain.

The default is "Count".

5.2.4.16. makeArray

+-(LINES) -+
>>-makeArray--+--- + -

+-(CHARS) -+

><

Returns a fixed array that contains the data of the stream in line or character format, starting from the

current read position. The line format is the default.

If you have used the charIn method, the first line can be a partial line.

5.2.4.17. open

+-(BOTH-| Write Options |--+ +-SHARED----- +

>>-open—-—+-
+-SHAREREAD--+
+-SHAREWRITE-+

—————— B e it San L

I - - - —+
v I
S - - - -
Draft - SVN Rev 6346 198

-->

><

ooRexx Reference Version 4.1.0

Chapter 5. The Builtin Classes

+-NOBUFFER----——=——=——=——=——=——- + +-) -+
+-BINARY——+-—————————————————— +—+
+-RECLENGTH--length-+

Write Options:

V +-APPEND--+ |

| ————+———— +—+ - -

+-REPLACE-+

Opens the stream and returns READY :. If the method is unsuccessful, it returns an error message string in
the same form that the description method uses.

For most error conditions, the additional information is in the form of a numeric return code. This return
code is the value of ERRNO, which is set whenever one of the file system primitives returns with a -1.

By default, open opens the stream for both reading and writing data, for example: 'open BOTH'. To
specify that the stream be only opened for input or output, specify READ or WRITE.

The options for the open method are:

READ

Opens the stream for input only.

WRITE

Opens the stream for output only.

BOTH

Opens the stream for both input and output. (This is the default.) The stream maintains separate read
and write pointers.

APPEND

Positions the write pointer at the end of the stream. (This is the default.) The write pointer cannot be
moved anywhere within the extent of the file as it existed when the file was opened.

REPLACE

Sets the write pointer to the beginning of the stream and truncates the file. In other words, this
option deletes all data that was in the stream when opened.

SHARED

Enables another process to work with the stream in a shared mode. (This is the default.) This mode
must be compatible with the shared mode (SHARED, SHAREREAD, or SHAREWRITE) used by
the process that opened the stream.

SHAREREAD

Enables another process to read the stream in a shared mode.

ooRexx Reference Version 4.1.0 199 Draft - SVN Rev 6346

Chapter 5. The Builtin Classes

SHAREWRITE

Enables another process to write the stream in a shared mode.

NOBUFFER

Turns off buffering of the stream. All data written to the stream is flushed immediately to the
operating system for writing. This option can have a severe impact on output performance. Use it
only when data integrity is a concern, or to force interleaved output to a stream to appear in the
exact order in which it was written.

BINARY

Opens the stream in binary mode. This means that line-end characters are ignored; they are treated
like any other byte of data. This is for processing binary record data using the line operations.

Note: Specifying the BINARY option for a stream that does not exist but is opened for writing
also requires the RECLENGTH option to be specified. Omitting the RECLENGTH option in this
case raises an error condition.

RECLENGTH length

Allows the specification of an exact length for each line in a stream. This allows line operations on
binary-mode streams to operate on individual fixed-length records. Without this option, line
operations on binary-mode files operate on the entire file (for example, as if you specified the
RECLENGTH option with a length equal to that of the file). The length must be 1 or greater.

Examples:
stream_name~open

stream_name~open("write")
stream_name~open("read")

5.2.4.18. position

+- = -+ +-CHAR—+
>>-position(-+-----+-offset-+-READ--+-+ —+-)--- -- ><

+- < -+ +-WRITE-+ +-LINE—+

-+ -+

+- - -+

position is a synonym for seek. (See seek .)

5.2.4.19. qualify

>>-qualify- -- ><

Returns the stream’s fully qualified name. The stream need not be open.

Draft - SVN Rev 6346 200 ooRexx Reference Version 4.1.0

Chapter 5. The Builtin Classes

5.2.4.20. query

>>-query (--+-DATETIME---- -- -- ——mt=) -- ><
+-EXISTS -- ———+
+=HANDLE--============———m———mm e +
| +-CHAR-+ |
+-+-SEEK-----+--+-READ-—+-—————+-—+-+
| +-POSITION-+ | +-LINE-+ | |
| [+-CHAR-+ | |
| +-WRITE-—+-—--—- +-+ |
| [+-LINE-+ | |
| +-8YS-----——————-- + |
+-SIZE- -- -+
+-STREAMTYPE-- -- ———+
+-TIMESTAMP--- - -- ———+

Used with these options, the query method returns specific information about a stream. Except for query
HANDLE and query POSITION, the stream returns the query information even if the stream is not
open. A null string is returned for nonexistent streams.

DATETIME
returns the date and time stamps of a persistent stream in US format. For example:
stream_name~query("datetime")

A sample output might be:
11-12-98 03:29:12

EXISTS
returns the full path specification of the stream, if it exists, or a null string. For example:
stream_name ~query ("exists")
A sample output might be:

c:\data\file.txt

HANDLE
returns the handle associated with the open stream. For example:

stream_name ~query("handle")

A sample output might be:
3

POSITION

returns the current read or write position for the stream, as qualified by the following options:

READ

returns the current read position.

ooRexx Reference Version 4.1.0 201 Draft - SVN Rev 6346

Chapter 5. The Builtin Classes
WRITE
returns the current write position.

Note: If the stream is open for both reading and writing, this returns the read position by default.
Otherwise, this returns the specified position.

CHAR

returns the position in terms of characters. This is the default.

LINE

returns the position in terms of lines. For non-binary streams, this operation can take a long
time to complete. This is because the language processor starts tracking the current line
number if not already doing so, and, thus, might require a scan of the stream from the top to
count the line-end characters. See Line versus Character Positioning for a detailed discussion
of this issue. For example:

stream_name ~“query ("position write")
A sample output might be:
247

SYS

returns the operating system stream position in terms of characters.

SIZE

returns the size, in bytes, of a persistent stream. For example:
stream_name ~query("size")

A sample output might be:

1305

STREAMTYPE
returns a string indicating whether the stream object is PERSISTENT, TRANSIENT, or UNKNOWN.

TIMESTAMP

returns the date and time stamps of a persistent stream in an international format. This is the
preferred method of getting the date and time because it provides the full 4-digit year. For example:

stream_name ~query ("timestamp")
A sample output might be:
1998-11-12 03:29:12

Draft - SVN Rev 6346 202 ooRexx Reference Version 4.1.0

Chapter 5. The Builtin Classes

5.2.4.21. say

>>-say-—+--—- ——t———— - - - ><
e e S R e

+-string-+

Returns 0 if successful in writing string to the output stream or 1 if an error occurs while writing the line.

5.2.4.22. seek
+- = -+ +-CHAR-+
>>-seek(-+-—--—+-offset—+-——————+—+-—————+-) ><
+- < -+ +-READ--+ +-LINE-+
+= + -+ +-WRITE-+
+- - -+

Sets the read or write position to a given number (offset) within a persistent stream. If the stream is open
for both reading and writing and you do not specify READ or WRITE, both the read and write positions
are set.

Note: See Input and Output Streams for a discussion of read and write positions in a persistent

stream.

To use this method, you must first open the stream object (with the OPEN method described previously
or implicitly with an input or output operation). One of the following characters can precede the offset
number:

Explicitly specifies the offset from the beginning of the stream. This is the default if you supply no
prefix. For example, an offset of 1 means the beginning of the stream.

Specifies offset from the end of the stream.

Specifies offset forward from the current read or write position.

Specifies offset backward from the current read or write position.

The seek method returns the new position in the stream if the read or write position is successfully
located, or an appropriate error message.

The following is a description of the options for seek:

READ

specifies that the read position be set.

ooRexx Reference Version 4.1.0 203 Draft - SVN Rev 6346

Chapter 5. The Builtin Classes

WRITE

specifies that the write position be set.

CHAR

specifies that positioning be done in terms of characters. This is the default.

LINE

specifies that the positioning be done in terms of lines. For non-binary streams, this is potentially an
operation that can take a long time to complete because, in most cases, the file must be scanned
from the top to count the line-end characters. However, for binary streams with a specified record
length, the new resulting line number is simply multiplied by the record length before character
positioning. See Line versus Character Positioning for a detailed discussion of this issue.

Note: If you do line positioning in a file open only for writing, you receive an error message.

Examples:

stream_name “seek("=2 read")
stream_name “seek("+15 read")
stream_name “seek("-7 write line")
fromend = 125
stream_name ~seek ("<"fromend read)

5.2.4.23. state

>>-state-—- - - - - ><

Returns a string indicating the current stream state.

The returned strings are as follows:

ERROR

The stream has been subject to an erroneous operation (possibly during input, output, or through the
STREAM function). See Errors during Input and Output. You might be able to obtain additional
information about the error with the description method or by calling the STREAM function with a
request for the description.

NOTREADY

The stream is known to be in such a state that the usual input or output operations attempted upon
would raise the NOTREADY condition. (See Errors during Input and Output.) For example, a
simple input stream can have a defined length. An attempt to read that stream (with CHARIN or
LINEIN, perhaps) beyond that limit can make the stream unavailable until the stream has been
closed (for example, with LINEOUT (rname)) and then reopened.

Draft - SVN Rev 6346 204 ooRexx Reference Version 4.1.0

Chapter 5. The Builtin Classes

READY

The stream is known to be in such a state that the usual input or output operations might be
attempted. This is the usual state for a stream, although it does not guarantee that any particular
operation will succeed.

UNKNOWN

The state of the stream is unknown. This generally means that the stream is closed or has not yet
been opened.

5.2.4.24. string

>>-string-- - - - - ><

Returns a string that indicates the name of the object the stream represents i.e. the name of the file.

5.2.4.25. supplier

>>-supplier - - ><

Returns a StreamSupplier object for the stream containing the remaining stream lines and linenumber
positions for the stream.

5.2.4.26. uninit

>>-uninit-- - ><
This method cleans up the object when it is garbage collected. It should not be invoked directly except
via an uninit method of a subclass of the Stream class.

If the Stream class is subclassed and the subclass provides an uninit method then that method must
invoke the superclass uninit method. For example:

::class CustomStream subclass Stream

::method uninit

/* the subclass instance cleanup code should be placed here */
super uninit -- this should be the last action in the method
return

ooRexx Reference Version 4.1.0 205 Draft - SVN Rev 6346

Chapter 5. The Builtin Classes

5.3. The Collection Classes

A collection is an object that contains a number of items, which can be any objects. Every item stored in
a Rexx collection has an associated index that you can use to retrieve the item from the collection with
the AT or [] methods.

Each collection defines its own acceptable index types. Rexx provides the following collection classes:

Array

A sequenced collection of objects ordered by whole-number indexes.

Bag
A collection where the index and the item are the same object. Bag indexes can be any object and
each index can appear more than once.

CircularQueue

The CircularQueue class allows for storing objects in a circular queue of a predefined size. Once the
end of the queue has been reached, new item objects are inserted from the beginning, replacing
earlier entries. The collected objects can be processed in FIFO (first in, first out) or in a stack-like
LIFO (last in, first out) order.

Directory
A collection with character string indexes. Index comparisons are performed using the string ==
comparison method.

List
A sequenced collection that lets you add new items at any position in the sequence. A list generates
and returns an index value for each item placed in the list. The returned index remains valid until the
item is removed from the list.

Properties
A collection with character string indexes and values. Properties collections include support for
saving and loading from disk files.

Queue

A sequenced collection with the items ordered as a queue. You can remove items from the head of
the queue and add items at either its tail or its head. Queues index the items with whole-number
indexes, in the order in which the items would be removed. The current head of the queue has index
1, the item after the head item has index 2, up to the number of items in the queue.

Relation

A collection with indexes that can be any object. A relation can contain duplicate indexes.

Set

A collection where the index and the item are the same object. Set indexes can be any object and
each index is unique.

Draft - SVN Rev 6346 206 ooRexx Reference Version 4.1.0

Chapter 5. The Builtin Classes

Stem

A collection with character string indexes constructed from one or more string segments. Index
comparisons are performed using the string == comparison method.

Table

A collection with indexes that can be any object. A table contains no duplicate indexes.

IdentityTable

A collection with indexes that can be any object. The IdentityTable class determines index item
matches by using an object identity comparison. With object identity matches, an index will only
match the same object instance. An identity table contains no duplicate indexes.

5.3.1. Organization of the Collection Classes

The following shows the logical organization of the Collection Classes. This does NOT represent the
order that methods are inherited but rather the organization of the classes.

Collection
MapCollection
Directory
Properties
Relation
Stem
Table
IdentityTable
OrderedCollection
Array
List
Queue
CircularQueue
SetCollection
Bag
Set

5.3.2. The Collection Class

The Collection class is a MIXIN class that defines the basic set of methods implemented by all
Collections. Many of the Collection class methods are abstract and must be implemented the inheriting
subclasses.

ooRexx Reference Version 4.1.0 207 Draft - SVN Rev 6346

Chapter 5. The Builtin Classes

Figure 5-12. The Collection Class

Object

Collection
allindexes items
allltems makeArray
at, [] put, []=
difference subset
haslIndex supplier
hasltem union
index Xor
intersection

5.3.2.1.]

v I

>>-[---index-+-]--

><

Returns the item associated with the specified index or indexes. If the collection has no item associated
with the specified index or indexes, this method returns the Nil object. This is an abstract method that

must be implemented by a subclasses.

5.3.2.2.[]=

v |

>>-[---index-+-]=value--- -

><

Add an item to the collection at the specified index. This is an abstract method that must be implemented

by a subclasses.

5.3.2.3. allindexes

>>-allIndexes - - -

><

Return an array of all indexes used by this collection. This is an abstract method that must be

implemented by a subclasses.

Draft - SVN Rev 6346 208

ooRexx Reference Version 4.1.0

Chapter 5. The Builtin Classes

5.3.2.4. allltems

>>-allltems—- - - mmm e -- ><

Return an array containing all items stored in the collection. This is an abstract method that must be
implemented by a subclasses.

5.3.2.5. at

v |
>>-at (---index—+-) -- et -- -- ><

Returns the item associated with the specified index or indexes. If the collection has no item associated
with the specified index or indexes, this method returns the Nil object. This is an abstract method that
must be implemented by a subclasses.

5.3.2.6. difference

>>-difference(argument)------------—-—-————- - - ><

Returns a new collection (of the same class as the receiver) containing only those items from the receiver
whose indexes the argument collection does not contain. The argument can be any collection class
object. The argument must also allow all of the index values in the receiver collection.

5.3.2.7. hasindex

v |
>>-hasIndex (-—-index-+-) - - - - ><

Returns 1 (true) if the array contains an item associated with the specified index or indexes. Returns 0
(false) otherwise.

5.3.2.8. hasltem

>>-hasItem(item)-- -- - - - ><

Returns 1 (true) if the collection contains the specified item at any index location. Returns 0 (false)
otherwise.

5.3.2.9. index

>>-index(item)---- - - - ><

ooRexx Reference Version 4.1.0 209 Draft - SVN Rev 6346

Chapter 5. The Builtin Classes

Return the index associated with item. If item occurs more than once in the collection, the returned index
value is undetermined. This is an abstract method which must be implemented by a subclass of this class.

5.3.2.10. intersection

>>-intersection(argument) - ><

Returns a new collection (of the same class as the receiver) containing only those items from the receiver
whose indexes are in both the receiver collection and the argument collection. The argument can be any
collection class object. The argument must also allow all of the index values in the receiver collection.

5.3.2.11. items

>>-items—-—- - ><

Returns the number of items in the collection.

5.3.2.12. makeArray

>>-makeArray - ><

Returns a single-index array with the same number of items as the receiver object. Any index with no
associated item is omitted from the new array. Items in the new array will have the same order as the
source array.

5.3.2.13. put

v |
>>-put (item---,index—+-)- - ><

Add an item to the collection at the specified index. This is an abstract method that must be implemented
by a subclass if this class.

5.3.2.14. subset

>>-subset (argument) - ><

Returns 1 (true) if all indexes in the receiver collection are also contained in the argument collection;
returns 0 (false) otherwise. The argument can be any collection class object. The argument must also
allow all of the index values in the receiver collection.

Draft - SVN Rev 6346 210 ooRexx Reference Version 4.1.0

Chapter 5. The Builtin Classes

5.3.2.15. supplier

>>-supplier-- - - e - ><

Returns a Supplier object for the collection. The supplier allows you to enumerate through the index/item
pairs for the collection. The supplier is created from a snapshot of the collection and is unaffected by
subsequent changes to the collection’s contents.

5.3.2.16. union

>>-union(argument)------- - ———m— - ><

Returns a new collection of the same class as the receiver that contains all the items from the receiver
collection and selected items from the argument collection. This method includes an item from argument
in the new collection only if there is no item with the same associated index in the receiver collection and
the method has not already included an item with the same index. The order in which this method selects
items in argument is unspecified (the program should not rely on any order.). The argument can be any
collection class object. The argument must also allow all of the index values in the receiver collection.

5.3.2.17. xor

>>-xor (argument) -~ -- -- - - - ><

Returns a new collection of the same class as the receiver that contains all items from the receiver
collection and the argument collection; all indexes that appear in both collections are removed. The
argument can be any collection class object. The argument must also allow all of the index values in the
receiver collection.

5.3.3. The MapCollection Class

The MapCollection class is a MIXIN class that defines the basic set of methods implemented by all
collections that use create a mapping from an index object to a value.

ooRexx Reference Version 4.1.0 211 Draft - SVN Rev 6346

Chapter 5. The Builtin Classes

Figure 5-13. The MapCollection class

Object

Collection

MapCollection

putAll
makeArray

This class is defined as a mixin class.

5.3.3.1. Inherited Methods

Methods inherited from the Object class.

new (class method) instanceMethod send
=\===\== <> >< instanceMethods sendWith

class isA setMethod
copy isInstanceOf start
defaultName objectName startWith
hasMethod objectName= string
identityHash Request unsetMethod
init Run

Methods inherited from the Collection class.

[hasIndex put

[I= hasltem subset
alllndexes index supplier
allltems intersection union

at 1tems Xor

difference makeArray

5.3.3.2. putAll

>>-putAll(collection)---- - - ><

Adds all items collection to the target directory. The collection argument can be any object that supports
a supplier method. Items from collection are added using the index values returned by the supplier. The
item indexes from the source collection must be strings. The items are added in the order provided by the
supplier object. If duplicate indexes exist in collection, the last item provided by the supplier will
overwrite previous items with the same index.

Draft - SVN Rev 6346 212 ooRexx Reference Version 4.1.0

Chapter 5. The Builtin Classes

5.3.3.3. makeArray

>>-makeArray--—--------—--- - —mmmmm e - ><

Returns a single-index array of the index values used by the receiver object. The index objects will not be
ordered in any predictable order.

5.3.4. The OrderedCollection Class

The OrderedCollection class is a MIXIN class that defines the basic set of methods implemented by all
collections that have an inherent index ordering, such as an array or a list.

Figure 5-14. The OrderedCollection class

Object

Collections

OrderedCollection

append
appendAll
difference
intersection
subset
union

xor

This class is defined as a mixin class.

5.3.4.1. append

>>-append (item)--- - ><

Append an item to the end of the collection ordering. This is an abstract method that must be
implemented by a subclass if this class.

5.3.4.2. appendAll

>>-appendAll(collection)- - ><

ooRexx Reference Version 4.1.0 213 Draft - SVN Rev 6346

Chapter 5. The Builtin Classes

Appends all items in collection to the end of the target collection. The collection may be any object that
implements an allltems() method.

5.3.4.3. difference

>>-difference (argument)-- - ><

Returns a new collection (of the same class as the receiver) containing only those items from the receiver
that are not also contained in the argument collection. The argument can be any collection class object.

5.3.4.4. intersection

>>-intersection(argument) - ><

Returns a new collection (of the same class as the receiver) containing only those items from the receiver
that are in both the receiver collection and the argument collection. The argument can be any collection
class object.

5.3.4.5. subset

>>-subset (argument) - ><

Returns 1 (true) if all items in the receiver collection are also contained in the argument collection;
returns O (false) otherwise. The argument can be any collection class object.

5.3.4.6. union

>>-union(argument) - ><

Returns a new collection of the same class as the receiver that contains all the items from the receiver
collection and selected items from the argument collection. This method includes an item from argument
in the new collection only if there is no equivalent item in the receiver collection and the method has not
already included. The order in which this method selects items in argument is unspecified (the program
should not rely on any order.). The argument can be any collection class object.

5.3.4.7. xor

>>-xor (argument)-- - - ><

Returns a new collection of the same class as the receiver that contains all items from the receiver
collection and the argument collection; all items that appear in both collections are removed. The
argument can be any collection class object.

Draft - SVN Rev 6346 214 ooRexx Reference Version 4.1.0

Chapter 5. The Builtin Classes

5.3.5. The SetCollection Class

This is a tagging mixin class only and does not define any methods of its own. Collections that
implement SetCollection are MapCollections that constrain the index and item to be be the same object.

Figure 5-15. The SetCollection class

Object

Collection

SetCollection

put, [1=

This class is defined as a mixin class.
5.3.5.1. Inherited Methods
Methods inherited from the Object class.

new (class method) instanceMethod send
=\===\== <> >< instanceMethods sendWith

class iSA setMethod
copy isInstanceOf start
defaultName objectName startWith
hasMethod objectName= string
identityHash Request unsetMethod
init Run

Methods inherited from the Collection class.

1 hasIndex put

1= hasltem subset
alllndexes index supplier
allltems intersection union

at items Xor

difference makeArray

5.3.6. The Array Class

An array is a possibly sparse collection with indexes that are positive whole numbers. You can reference
array items by using one or more indexes. The number of indexes is the same as the number of
dimensions of the array. This number is called the dimensionality of the array.

ooRexx Reference Version 4.1.0 215 Draft - SVN Rev 6346

Chapter 5. The Builtin Classes

Array items can be any valid Rexx object. If an object has not been assigned to an array index then that
index is considered to contain the NIL object.

Figure 5-16. The Array class and methods

Object

Array
+ OrderedCollection
new
of
allindexes makeString
allltems next
append previous
at, [] put, []=
dimension remove
empty removeltem
first section
haslndex size
hasltem sort
index sortWith
isSEmpty stableSort
items stableSortWith
last supplier
makeArray toString

Note: The Array class also has available class methods that its metaclass, the Class class, defines.
It also inherits methods from the Ordered Collection class.

Array objects are variable-sized. The dimensionality of an array is fixed, but the size of each dimension
is variable. When you create an array, you can specify a hint about how many elements you expect to put
into the array or the array’s dimensionality. However, you do not need to specify a size or dimensionality

of an array when you are creating it. You can use any whole-number indexes to reference items in an

array.

For any array method that takes an index, the index may be specified as either individual arguments or as
an array of indexes. For example, the following are equivalent:

x = myarray[1,2,3] -- retrieves an item from a multi-dimension array

index = .array~of(1,2,3)

Draft - SVN Rev 6346

-- create an index list

216 ooRexx Reference Version 4.1.0

Chapter 5. The Builtin Classes

x = myarray[index] -- also retrieves from "1,2,3"

Methods such as index() that return index items will return a single numeric value for single-dimension
arrays and an array of indexes for multi-dimension arrays.

5.3.6.1. Inherited Methods

Methods inherited from the Object class.

new (class method) instanceMethod send

=\===\== <> >< instanceMethods sendWith
class isA setMethod
copy isInstanceOf start
defaultName objectName startWith
hasMethod objectName= string
identityHash Request unsetMethod
init Run

Methods inherited from the Collection class.

N hasIndex put

1= hasltem subset
alllndexes index supplier
allltems intersection union

at 1items Xor

difference makeArray

Methods inherited from the OrderedCollection class.

append intersection xor
appendAll subset
difference union

5.3.6.2. new (Class Method)

+-(----size—+--)-+

Returns a new empty array. If you specify any size arguments, the size is taken as a hint about how big
each dimension should be. The Array classes uses this only to allocate the initial array object. For
multiple dimension arrays, you can also specify how much space is to be allocated initially for each
dimension of the array.

Each size argument must a non-negative whole number. If it is 0, the corresponding dimension is initially

empty.
Examples:
a = .array new() -- create an new, empty array

ooRexx Reference Version 4.1.0 217 Draft - SVN Rev 6346

Chapter 5. The Builtin Classes

5.3.6.3. of (Class Method)

+-(-———item—+--)—+
Returns a newly created single-index array containing the specified ifem objects. The first itern has index
1, the second has index 2, and so on.

If you use the OF method and omit any argument items, the returned array does not include the indexes
corresponding to those you omitted.

Examples:
a = .array of ("Fred", "Mike", "David")
do name over a

say name -- displays "Fred", "Mike", and "David"
end

5.3.6.4. []

v I
>>-[---index-+-]-- -- -- -- -- ><

Returns the same value as the at() method.

Note that the index argument may also be specified as an array of indexes.

5.3.6.5. []=

v |
>>-[---index-+-]=value--- - - __ s<

This method is the same as the put() method.

Note that the index argument may also be specified as an array of indexes.

5.3.6.6. allindexes

>>-allIndexes—---- - e~ - _ ><

Returns an array of all index positions in the array containing items. For multi-dimension arrays, each
returned index will be an array of index values.

Examples:

a = .array of ("Fred", "Mike", "David")

Draft - SVN Rev 6346 218 ooRexx Reference Version 4.1.0

do name over a~alllndexes

Chapter 5. The Builtin Classes

say name -- displays "1", "2", and "3"

end

a“remove(2) -- remove second item

do name over a“alllndexes

say name -- displays "1" and "3"

end

5.3.6.7. allltems

>>-allltems - - - - ><
Returns an array of all items contained in the array.
Examples:
a = .array of ("Fred", "Mike", "David")
do name over a“allltems
say name -- displays "Fred", "Mike", and "David"
end
a“remove(2) -- remove second item
do name over a“allltems
say name -- displays "Fred" and "David"
end
5.3.6.8. append
>>-append (item)--- - ><

Appends an item to the array after the last item (the item with the highest index). The return value is the

index of newly added item.

Examples:

a = .array~of ("Mike", "Rick")

a“append("Fred") -- a = .array~of("Mike", "Rick", "Fred")

v |

>>-at (---index—+-)-—----- --

ooRexx Reference Version 4.1.0

219 Draft - SVN Rev 6346

Chapter 5. The Builtin Classes

Returns the item associated with the specified index or indexes. If the array has no item associated with
the specified index or indexes, this method returns the Nil object.

Note that the index argument may also be specified as an array of indexes.

Examples:

a = .array~of ("Mike", "Rick")
say a~at(2) -- says: "Rick"

5.3.6.10. dimension

>>-dimension-+----- o - - - ><
+-(n) -+

Returns the current size (upper bound) of dimension 7 (a positive whole number). If you omit r, this
method returns the dimensionality (number of dimensions) of the array. If the number of dimensions has
not been determined, 0 is returned.

Examples:
a = .array~of(,"Mike", "Rick")
say a“dimension -- says: 1 (number of dimensions in the array)

say a"dimension(1l) -- says: 3 (upper bound of dimension one)

a = .array new” “put("Mike",1,1) "put("Rick",1,2)

say a"dimension -- says: 2 (number of dimensions in the array)
say a"dimension(1l) -- says: 1 (upper bound of dimension one)
say a“dimension(2) -- says: 2 (upper bound of dimension two)
5.3.6.11. empty
>>-empty-—- == == ><

Removes all items from the array.

Examples:

a = .array~of ("Mike", "Rick", "Fred", "Rick")

a“empty -- a = .array new
5.3.6.12. first
>>-first--—- - ><

Returns the index of the first item in the array or the Nil object if the array is empty. For multi-dimention
arrays, the index is returned as an array of index values.

Examples:

Draft - SVN Rev 6346 220 ooRexx Reference Version 4.1.0

Chapter 5. The Builtin Classes

a = .array of ("Mike", "Rick", "Fred", "Rick")

say a"first -- says: 1
a = .array”of(,"Mike", "Rick")
say a"first -- says: 2

5.3.6.13. hasindex

v |
>>-hasIndex(---index-+-)-———-———————————————— - - ><

Returns 1 (true) if the array contains an item associated with the specified index or indexes. Returns 0
(false) otherwise.

Note that the index argument may also be specified as an array of indexes.
Examples:
a = .array of ("Mike", "Rick", "Fred", "Rick")

say a"hasIndex(2) -- says: 1
say a"hasIndex(5) -- says: O

5.3.6.14. hasltem

>>-hasItem(item)-- - ><

Returns 1 (true) if the array contains the specified item at any index location. Returns 0 (false) otherwise.
Item equality is determined by using the == method of item.

Examples:
a = .array of ("Mike", "Rick", "Fred", "Rick")

say a"hasItem("Rick") -- says: 1
say a"hasItem("Mark") -- says: O

5.3.6.15. index

>>-index(item) - - - - - ><

Returns the index of the specified item within the array. If the target item appears at more than one index,
the first located index will be returned. For multi-dimension arrays, the index is returned as an array of
index values. If the array does not contain the specified item, .nil is returned. Item equality is determined
by using the == method of item.

Examples:

a = .array~of ("Mike", "Rick", "Fred", "Rick")

say a"index("Rick") -- says: 2

ooRexx Reference Version 4.1.0 221 Draft - SVN Rev 6346

Chapter 5. The Builtin Classes

5.3.6.16. isEmpty

>>-isEmpty--- - - e — ><

Returns 1 (true) if the array is empty. Returns 0 (false) otherwise.

Examples:
a = .array new
say a”isEmpty -- says: 1
a [1] =N 1 "
say a”isEmpty -- says: O

5.3.6.17. items

>>-items-—- - - - - ><

Returns the number of items in the collection.

Examples:
a = .array of ("Fred", , "Mike", , "David")
say a“items -- says: 3

5.3.6.18. last

>>-last-———- - ><

Returns the index of the last item in the array or the Nil object if the array is empty. For multi-dimension
arrays, index is returned as an array of index items.

Examples:
a = .array of ("Fred", , "Mike", , "David")
say a“last -- says: b5

5.3.6.19. makeArray

>>-makeArray -- ><

Returns a single-index array with the same number of items as the receiver object. Any index with no
associated item is omitted from the new array. Items in the new array will have the same order as the
source array. Multi-dimension arrays arrays will be converted into a non-sparse single dimension array.

Examples:
a = .array of ("Fred", , "Mike", , "David")
b = a"makeArray -- b = .array~of("Fred", "Mike", "David")

Draft - SVN Rev 6346 222 ooRexx Reference Version 4.1.0

Chapter 5. The Builtin Classes

5.3.6.20. makeString

+-,separator—+

+=(LINE) ——+-—-——=——==—= +-+
>>-makeString(-+-- -= -= ———+=)- -= -= ><
+-(CHAR) —————-——=——=————- +

Returns a string that contains the data of an array. The elements of the array are treated either in line or
character format, starting at the first element in the array. The line format is the default. If the line format
is use, a separator string can be specified. The separator will be used between concatenated elements
instead of the default line end separator.

Examples:

See toString for examples.

5.3.6.21. next

>>-next (index)---- - ————m—— - - ><

Returns the index of the item that follows the array item having index index or returns the Nil object if
the item having that index is last in the array. For multi-dimention arrays, the same ordering used by the
allltems method is used to determine the next position and the index is returned as an array of index
values.

Note that the index argument may also be specified as an array of indexes.

Examples:
a = .array of ("Fred", , "Mike", , "David")
say a"next(3) -- says: 5

5.3.6.22. previous

>>-previous (index) - - - - - ><

Returns the index of the item that precedes the array item having index index or the Nil object if the item
having that index is first in the array. For multi-dimention arrays, the same ordering used by the allltems
method is used to determine the previous position and the index is returned as an array of index values.

Note that the index argument may also be specified as an array of indexes.

Examples:
a = .array of ("Fred", , "Mike", , "David")
say a"previous(3) -- says: 1

5.3.6.23. put

ooRexx Reference Version 4.1.0 223 Draft - SVN Rev 6346

Chapter 5. The Builtin Classes

>>-put (item---,index—+-)- - - - ><

Makes the object ifem a member item of the array and associates it with the specified index or indexes.
This replaces any existing item associated with the specified index or indexes with the new item. If the
index for a particular dimension is greater than the current size of that dimension, the array is expanded
to the new dimension size.

Note that the index argument may also be specified as an array of indexes.

Examples:

a = .array new

a“put ("Fred", 1) -- a = .array of ("Fred")
a“put("Mike", 2) -- a = .array of("Fred", "Mike")
a“put ("Mike", 1) -- a .array~of ("Mike", "Mike")

do name over a
say name
end

/* Output would be: */

Mike
Mike

5.3.6.24. remove

v |
>>-remove (---index—+-) —————————————————————— - - ><

Returns and removes the member item with the specified index or indexes from the array. If there is no
item with the specified index or indexes, the Nil object is returned and no item is removed.

Note that the index argument may also be specified as an array of indexes.

Examples:

a = .array of ("Fred", "Mike", "Mike", "David")

a“remove(2) -- removes "Mike"

5.3.6.25. removeltem

>>-removeIltem(item)------ - —— e - ><

Removes an item from the array. If the target item exists at more than one index, the first located item is
removed. Item equality is determined by using the == method of item. The return value is the removed
item.

Examples:

a = .array of ("Fred", "Mike", "Mike", "David")

Draft - SVN Rev 6346 224 ooRexx Reference Version 4.1.0

Chapter 5. The Builtin Classes

a“removeltem("Mike") -- removes the item at index "2"

5.3.6.26. section

>>-section(start-+-------- +=)——- - - ><
+-,items-+

Returns a new array (of the same class as the receiver) containing selected items from the receiver array.
The first item in the new array is the item corresponding to index start in the receiver array. Subsequent
items in the new array correspond to those in the receiver array (in the same sequence). If you specify the
whole number items, the new array contains only this number of items (or the number of subsequent
items in the receiver array, if this is less than items). If you do not specify items, the new array contains
all subsequent items of the receiver array. The receiver array remains unchanged. The section() method is
valid only for single-index arrays.

Note that the start argument, (the index argument,) may also be specified as an array of indexes.

Examples:
a = .array of(1,2,3,4) -- Loads the array
b = a“section(2) -- b = .array~of(2,3,4)
c = a"section(2,2) -- ¢ = .array~of(2,3)
d = a"section(2,0) -- d = .array new
5.3.6.27. size
>>-size -- -- -- -- ><

Returns the number of items that can be placed in the array before it needs to be extended. This value is
the same as the product of the sizes of the dimensions in the array.

5.3.6.28. sort

>>-sort---- -- -- -- -- ><

Sorts an array of Comparable items into ascending order using an unstable Quicksort algorithm. See
Sorting Arrays for details.

5.3.6.29. sortWith

>>-sortWith(comparator)-- - - - ><

Sorts an array of items into ascending order using an unstable Quicksort algorithm. Ordering of elements
is determined using the comparator argument. See Sorting Arrays for details.

ooRexx Reference Version 4.1.0 225 Draft - SVN Rev 6346

Chapter 5. The Builtin Classes

5.3.6.30. stableSort

>>-stableSort -- -- —mmmm————— -- ><

Sorts an array of Comparable items into ascending order using a stable Mergesort algorithm. See Sorting
Arrays for details.

5.3.6.31. stableSortWith
>>-stableSortWith(comparator)-—------—-——-————=———————————————— ><

Sorts an array of items into ascending order using a stable Mergesort algorithm. Ordering of elements is
determined using the comparator argament. See Sorting Arrays for details.

5.3.6.32. supplier

>>-supplier------- -= e ><

Returns a Supplier object for the collection. The supplier allows you to iterate over the index/item pairs
for the collection. The supplier enumerates the array items in their sequenced order. For
multi-dimensional arrays, the supplier index method will return the index values as an array of index
numbers.

Examples:

a = .array of ("Fred", "Mike", "David")
sup = a"supplier

a~append("Joe")

do while sup~available

say sup~item -- displays "Fred", "Mike", and "David"
sup next
end
5.3.6.33. toString
+-,separator-+
+=(LINE) -—+-————=====—= +-+
>>-toString(—+---- -- -- —+=)——- -- -- ><
+-(CHAR) -———————=——==———- +

Returns a string that contains the data of an array (one to n dimensional). The elements of the array are
treated either in line or character format, starting at the first element in the array. The line format is the
default. If the line format is use, a separator string can be specified. The separator will be used between
concatenated elements instead of the default line end separator.

Examples:

a = .array of(1,2,3,4) -- Loads the array

Draft - SVN Rev 6346 226 ooRexx Reference Version 4.1.0

Chapter 5. The Builtin Classes

say a"toString -- Produces: 1
- 2
- 3
- 4
say a“toString("c") -- Produces: 1234
say a“toString(, ", ") -- Produces: 1, 2, 3, 4

5.3.6.34. Examples

arrayl=.array~of(1,2,3,4) /* Loads the array */

/* Alternative way to create and load an array */

array2=.array new(4) /* Creates array2, containing 4 items */

do i=1 to 4 /* Loads the array */
array2[i]=i

end

You can produce the elements loaded into an array, for example:

do i=1 to 4
say arrayll[i]
end

If you omit any argument values before arguments you supply, the corresponding indexes are skipped in
the returned array:

directions=.array~of ("North","South", ,"West")
do i=1 to 4 /* Produces: North */
say directions[i] /* South */
/* The Nil object */
end /* West */

Here is an example using the ~~:

z=.array~of (1,2,3) " "put(4,4)
do i =1 to z"size

say z[i] /* Produces: 1 2 3 4 */
end

5.3.7. The Bag Class

A bag is a non-sparse collection that restricts the elements to having an item that is the same as the index.
Any object can be placed in a bag, and the same object can be placed in a bag several times.

ooRexx Reference Version 4.1.0 227 Draft - SVN Rev 6346

Chapter 5. The Builtin Classes

Figure 5-17. The Bag class and methods

Object

Relation

+ MapCollection
Bag

+ SetCollection
of
difference putAll
haslndex subset
intersection union
makeArray xor
put, [1=

Note: The Bag class also has available class methods that its metaclass, the Class class, defines. It
also inherits methods from the Set Collection class, although there are not currently any methods
defined in that class.

The Bag class is a subclass of the Relation class. In addition to its own methods, it inherits the methods
of the Object class and the Relation class.

5.3.7.1. Inherited Methods

Methods inherited from the Object class.

new (class method)
=\===\== <> ><
class

copy
defaultName

hasMethod
identityHash
init

instanceMethod send
instanceMethods sendWith

iSA setMethod
isInstanceOf start
objectName startWith
objectName= string
Request unsetMethod
Run

Methods inherited from the Collection class.

[1 hasIndex

[1= hasltem

Draft - SVN Rev 6346

put
subset

228

ooRexx Reference Version 4.1.0

Chapter 5. The Builtin Classes

alllndexes index supplier
allltems intersection union
at 1tems xor

difference makeArray

Methods inherited from the MapCollection class.

putAll

Methods inherited from the Relation class.

new (class method) empty put

allAt hasIndex [1=
allIndex hasltem remove
alllndexes index removeltem
allltems intersection subset

at isEmpty supplier

[1 items union
difference makeArray xor

5.3.7.2. of (Class Method)

v |
>>—of (———item—+-) - ><

Returns a newly created bag containing the specified item objects.

5.3.7.3.[]=

>>-[index]=item--- ><

Adds an item to the Bag. This method is the same as the put() method.

5.3.7.4. difference

>>-difference (argument)-- ><

Returns a new Bag containing only those items from the receiver that the the argument collection does
not contain. The argument can be any collection class object.

5.3.7.5. hasindex

>>-hasIndex (index) - ><

Returns 1 (true) if the collection contains any item associated with index index, or 0 (false). Index
equality is determined by using the == method of index.

ooRexx Reference Version 4.1.0 229 Draft - SVN Rev 6346

Chapter 5. The Builtin Classes

5.3.7.6. intersection

>>-intersection(argument) - ————m - ><

Returns a new Bag containing only those items from the receiver that are in also in the argument
collection. The argument can be any collection class object.

5.3.7.7. put

>>-put (item,index) ———--———-————-———-———m oo ><

Makes the object ifem a member item of the bag and associates it with index index. If the relation already
contains any items with index index, this method adds a new member item ifem with the same index,
without removing any existing member items.

5.3.7.8. putAll

>>-putAll(collection) ————=——=———————————————— ><

Adds all items collection to the target bag. The collection argument can be any object that supports a
supplier method. Items from collection are added using the item values returned by the supplier.

5.3.7.9. subset

>>-subset (argument) —————--—————————————————— - - ><

Returns 1 (true) if all indexes in the receiver collection are also contained in the argument collection;
returns 0 (false) otherwise. The argument can be any collection class object.

5.3.7.10. union

>>-union(argument) -- —mmmmmm—m e -- -- ><

Returns a new Bag that contains all the items from the receiver collection and selected items from the
argument collection. The order in which this method selects items in argument is unspecified. The
argument can be any collection class object.

5.3.7.11. xor

>>-xor (argument)-- -- —mmmmmm—m o -- -- ><

Returns a new Bag that contains all items from the receiver collection and the argument collection; items
that appear in both collections are removed. The argument can be any collection class object.

Draft - SVN Rev 6346 230 ooRexx Reference Version 4.1.0

5.3.7.12. Examples

/* Create a bag of fruit */

fruit = .bag~of ("Apple", "Orange", "Apple", "Pear")
say fruit~items /* How many pieces? (4)

say fruit~items("Apple") /* How many apples? (2)
fruit~remove ("Apple") /* Remove one of the apples.
fruit”~put("Banana") “put ("Orange") /* Add a couple.
say fruit~items /* How many pieces? (5)

5.3.8. The CircularQueue Class

*/
*/
*/
*/
*/

Chapter 5. The Builtin Classes

The CircularQueue class allows for storing objects in a circular queue of a predefined size. Once the end
of the queue has been reached, new item objects are inserted from the beginning, replacing earlier
entries. Any object can be placed in the queue and the same object can occupy more than one position in

the queue.

Figure 5-18. The CircularQueue class and methods

Object

Queue

+ OrderedCollection

CircularQueue

of

init resize
makeArray size
push string
queue supplier

Note: The CircularQueue class also has available class methods that its metaclass, the Class class,

defines.

The collected objects can be processed in FIFO (first in, first out) or in a stack-like LIFO (last in, first

out) order.

ooRexx Reference Version 4.1.0 231

Draft - SVN Rev 6346

Chapter 5. The Builtin Classes

5.3.8.1. Inherited Methods

Methods inherited from the Object class.

new (class method) instanceMethod send

=\===\== <> >< instanceMethods sendWith
class isA setMethod
copy isInstanceOf start
defaultName objectName startWith
hasMethod objectName= string
identityHash Request unsetMethod
init Run

Methods inherited from the Collection class.

1 hasIndex put

1= hasltem subset
alllndexes index supplier
allltems intersection union

at items Xor
difference makeArray

Methods inherited from the OrderedCollection class.
append intersection xor

appendAll subset
difference union

Methods inherited from the Queue class.

new (class method) hasltem pull

of (class method) index push
alllndexes insert put

allltems isEmpty [1=

append items queue

at last remove

[makeArray removeltem
empty next supplier
first peek

hasIndex previous

5.3.8.2. of (Class Method)

>>=0f ~+-—————mmmmm +- ><

+-(—---item-+--) -+

Returns a newly created circular queue containing the specified item objects. The first ifem has index 1,
the second has index 2, and so on. The number of item objects determines the size of the circular queue.

5.3.8.3. init

>>-init(--size--)- -- -- -- -- ><

Draft - SVN Rev 6346 232 ooRexx Reference Version 4.1.0

Chapter 5. The Builtin Classes

Performs initialization of the circular queue. The required size argument, a non-negative whole number,
specifies the initial size of the queue.

5.3.8.4. makeArray

>>-makeArray (-+--------- +-)-———- ><
+--order-—+

Returns a single-index array containing the items of the circular queue in the specified order.

The following order can be used. (Only the capitalized letter is needed; all characters following it are
ignored.)

Fifo

First-in, first-out order. This is the default.

Lifo

Last-in, first-out order (stacklike).

5.3.8.5. push

>>-push(item—+-----——---—- +)———- - - — ——><
+--,option-——-+

Makes the object ifem a member item of the circular queue, inserting the item object in front of the first
item in the queue. The pushed item object will be the new first item in the circular queue.

If the circular queue is full, than the last item stored in the circular queue will be deleted, before the
insertion takes place. In this case the deleted item will be returned, otherwise .nil.

If option is specified, it may be "Normal" or "Unique". The default is "Normal". Only the first letter of
the option capitalized letter is required; all characters following it are ignored. If option is *Unique’, any
matching item already in the queue will be removed before before ifem is added to the queue. removed
before the operation is performed. This allows you to maintain a list like the recent files list of an editor.

5.3.8.6. queue

+--,Normal---+

>>-queue (item—+-—---—-—-—---- +)-—- ><
+--,Unique---+

Makes the object ifem a member item of the circular queue, inserting the item at the end of the circular
queue.

If the circular queue is full, than the first item will be deleted, before the insertion takes place. In this
case the deleted item will be returned, otherwise .nil.

If option is specified, it may be "Normal" or "Unique". The default is "Normal". Only the first letter of
the option capitalized letter is required; all characters following it are ignored. If option is *Unique’, any

ooRexx Reference Version 4.1.0 233 Draft - SVN Rev 6346

Chapter 5. The Builtin Classes

matching item already in the queue will be removed before before ifem is added to the queue. removed
before the operation is performed. This allows you to maintain a list like the recent files list of an editor.

5.3.8.7. resize

>>-resize(-newSize-+---------- +=)——-- ><
+--,order--+

Resizes the circular queue object to be able to contain newSize items. If the previous size was larger than
newSize, any extra items are removed in the specified order.

The following order can be used. (Only the capitalized letter is needed; all characters following it are
ignored.)

Fifo

First-in, first-out. This keeps the most recently added items. This is the default action.

Lifo

Last-in, first-out (stacklike). This removes the most recently added items.

Note:: Resizing with a value of o removes all items from the circular queue.

5.3.8.8. size

>>-size -- -- -- -- ><

Returns the maximum number of objects that can be stored in the circular queue.

5.3.8.9. string

] s | + +-, -Fifo-—+
>>-string(-+---—--—----- L) 8
+-delimiter-+ +-,-order-+

Returns a string object that concatenates the string values of the collected item objects, using the
delimiter string to delimit them, in the specified order. The default delimiter is a single comma.

If the delimiter string argument is omitted the comma character (",") is used as the default delimiter
string.

The following order can be used. (Only the capitalized letter is needed; all characters following it are
ignored.)

Fifo

First-in, first-out. This is the default

Draft - SVN Rev 6346 234 ooRexx Reference Version 4.1.0

Chapter 5. The Builtin Classes

Lifo

Last-in, first-out (stacklike)

5.3.8.10. supplier

>>-supplier (-+-----—----- +-)———— — - ><
+--order---+

Returns a Supplier object for the collection. The supplier allows you to iterate over the items that were in
the queue at the time of the supplier’s creation.

The supplier will iterate over the items in the specified order. (Only the capitalized letter is needed; all
characters following it are ignored.)

Fifo

First-in, first-out, default

Lifo

Last-in, first-out (stacklike)

5.3.8.11. Example

—-- create a circular buffer with five items

u=.circularQueue~of ("a", "b", "c", "d", "e")

say "content: ["u"]l," "content (LIFO0): ["u"string("->","L")"]"

say

u“resize(4, "FIFO") -- resize fifo-style (keep newest)

say "after resizing to 4 items in FIFO style (keeping the newest):"
say "content: ["u"]," "content (LIFO): ["u“string("->","L")"]"

say

u“resize(2, "LILO") -- resize lifo-style (keep oldest)

say "after resizing to 2 items in LIFO style (keeping the oldest):"
say "content: ["u"l," "content (LIFO0): ["u"string("->","L")"1"

say

u“resize(0) -- resize lifo-style (keep oldest)

say "after resizing to O items, thereby deleting all items:"

say "content: ["u"]," "content (LIFO): ["u“string("->","L")"]"

say

u“resize(2) -- resize lifo-style (keep oldest)

say "after resizing to 2, size="u"size "and items="u"items
u~"queue('x") "~“queue('y') “~queue('z")

say "after queuing the three items 'x', 'y', 'z':"

say "content: ["u"]," "content (LIFO): ["u"string("->","L")"]"
say

ooRexx Reference Version 4.1.0 235 Draft - SVN Rev 6346

Chapter 5. The Builtin Classes

u”“push('1') ““push('2') “~push('3")
say "after pushing the three items '1', '2', '3":"

say "content: ["u"]," "content (LIF0): ["u"string("->","L")"]"
say
Output:

content: [a,b,c,d,e], content (LIF0): [e->d->c->b->a]

after resizing to 4 items in FIFO style (keeping the newest):
content: [b,c,d,e], content (LIFQ0): [e->d->c->b]

after resizing to 2 items in LIFO style (keeping the oldest):
content: [b,c], content (LIF0): [c->b]

after resizing to O items, thereby deleting all items:
content: [], content (LIFOD): []

after resizing to 2, size=2 and items=0
after queuing the three items 'x', 'y',
content: [y,z], content (LIF0): [z->y]

1 ’zV:

after pushing the three items '1', '2', '3":

content: [3,2], content (LIF0): [2->3]

5.3.9. The Directory Class

A Directory is a MapCollection using unique character string indexes. The items of the collection can be
any valid Rexx object.

Draft - SVN Rev 6346 236 ooRexx Reference Version 4.1.0

Figure 5-19. The Directory class and methods

Object
Directory
+ MapCollection
new
allindexes makeArray
allltems put, []=
at, [] remove
empty removeltem
entry setEntry
hasEntry setMethod
haslndex supplier
hasltem unknown
index unSetMethod
isSEmpty xor
items

Chapter 5. The Builtin Classes

Note: The Directory class also has available class methods that metaclass, the Class class, defines.
It also inherits methods from the Map Collection class, although there are not currently any methods
defined in that class.

In addition to the standard put() and at() methods defined for Collections, Directories provide access to
objects using methods. For example:

mydir =

mydir~“name = "Mike"

say mydir“name

.directory new

-- same as mydir~put("Mike", "NAME")
-- same as say mydir[’NAME’]

5.3.9.1. Inherited Methods

Methods inherited from the Object class.

new (class method)
=\===\== <> >
class

copy

defaultName
hasMethod
identityHash

ooRexx Reference Version 4.1.0

instanceMethod send
instanceMethods sendWith
iSA setMethod
isInstanceOf start
objectName startWith
objectName= string
Request unsetMethod
237

Draft - SVN Rev 6346

Chapter 5. The Builtin Classes

init Run

Methods inherited from the Collection class.

[1 hasIndex put

1= hasltem subset
alllndexes index supplier
allltems intersection union

at 1tems Xor

difference makeArray

Methods inherited from the MapCollection class.

putAll

5.3.9.2. new (Class Method)

>>-new ittt - ettt - ><

Returns an empty Directory object.

5.3.9.3. []

>>-[name]--------- -- oo -- -- ><

Returns the item corresponding to name. This method is the same as the at method.

5.3.9.4. []=

>>-[name] =item--—- - - - - - ><

Adds or replaces the entry at index name. This method is the same as the put method.

5.3.9.5. allindexes

>>-allIndexes -- - - - ><

Returns an array of all the directory indexes, including those of all the setMethod methods.

5.3.9.6. allltems

>>-allltems - - ><

Returns an array of all items contained in the directory, including those returned by all setMethod
methods.

Draft - SVN Rev 6346 238 ooRexx Reference Version 4.1.0

Chapter 5. The Builtin Classes

5.3.9.7. at

>>-at (name) -- -- -- —mmmm—m - -- ><

Returns the item associated with index name. If a method defined using setMethod is associated with
index name, the result of running this method is returned. If the collection has no item or method
associated with index name, the Nill object is returned.

Example:

say .environment~at("OBJECT") /% Produces: "The Object class" */

5.3.9.8. empty

>>-empty-—- -= ><

Removes all items from the directory. Empty also removes all methods added using setMethod.

5.3.9.9. entry

>>-entry(name)---- - ><

Returns the directory entry with name name (translated to uppercase). If there is no such entry, name
returns the item for any method that setMethod supplied. If there is neither an entry nor a method for
name the Nil object is returned.

5.3.9.10. hasEntry

>>-hasEntry (name) - - ><

Returns 1 (true) if the directory has an entry or a method for name name (translated to uppercase), or 0
(false).

5.3.9.11. hasindex

>>-hasIndex (name) - - ><

Returns 1 (true) if the collection contains any item associated with index name, or 0 (false).

5.3.9.12. hasltem

>>-hasItem(item)-- e ><

Returns 1 (true) if the collection contains the ifem at any index position or otherwise returns 0 (false).
Item equality is determined by using the == method of item.

ooRexx Reference Version 4.1.0 239 Draft - SVN Rev 6346

Chapter 5. The Builtin Classes

5.3.9.13. index

>>-index(item)---- - - i - ><

Returns the index of the specified item within the directory. If the target item appears at more than one
index, the first located index will be returned. If the directory does not contain the specified item, the Nil
object is returned. Item equality is determined by using the == method of item.

5.3.9.14. isEmpty

>>-isEmpty--------------- - e - S<

Returns 1 (true) if the directory is empty. Returns 0 (false) otherwise.

5.3.9.15. items

>>-items-——--———--- - ettt ><

Returns the number of items in the collection.

5.3.9.16. makeArray

>>-makeArray------ - ittt - - ><

Returns a single-index array containing the index objects. The array indexes range from 1 to the number
of items. The collection items appear in the array in an unspecified order. (The program should not rely
on any order.)

5.3.9.17. put

>>-put (item,name)- -- —mmmmmm—m o -- -- ><

Makes the object item a member item of the collection and associates it with index name. The new item
replaces any existing item or method associated with index name.

5.3.9.18. remove

>>-remove (name) --- -- - - - ><

Returns and removes the member item with index name from a collection. If a method is associated with
setMethod for index name, the method is removed and running the method is returned. If there is no item
or method with index name, the Nil object is returned.

Draft - SVN Rev 6346 240 ooRexx Reference Version 4.1.0

Chapter 5. The Builtin Classes

5.3.9.19. removeltem

>>-removeIltem(item)------ - ————— - ><

Removes an item from the directory. If the target item exists at more than one index, the first located item
is removed. The return value is the removed item. Item equality is determined by using the == method of
item.

5.3.9.20. setEntry

>>-setEntry (name—+-------- +=) === ———m— - ><
+-,entry-+

Sets the directory entry with name name (translated to uppercase) to the object entry, replacing any
existing entry or method for name. If you omit entry, this method removes any entry or method with this
name.

5.3.9.21. setMethod

>>-setMethod (name—+--——-————+-) - ><
+-,method-+

Associates entry name name (translated to uppercase) with method method. Thus, the object returns the
result of running method when you access this entry. This occurs when you specify name on the at, entry,
or remove method. This method replaces any existing item or method for name.

You can specify the name "UNKNOWN" as name. Doing so supplies a method that is run whenever an
at() or entry() message specifies a name for which no item or method exists in the collection. This
method’s first argument is the specified directory index. This method has no effect on the action of any
hasEntry, hasIndex, items, remove, or supplier message sent to the collection.

The method can be a string containing a method source line instead of a method object. Alternatively, an
array of strings containing individual method lines can be passed. In either case, an equivalent method
object is created.

If you omit method, setMethod() removes the entry with the specified name.

5.3.9.22. supplier

>>-supplier------- - ittt - - ><

Returns a Supplier object for the collection. The supplier allows you to iterate over the index/item pairs in
the directory at the time the supplier was created. The supplier iterates the items in an unspecified order.

5.3.9.23. unknown

>>-unknown (messagename ,messageargs) —— - - - ><

ooRexx Reference Version 4.1.0 241 Draft - SVN Rev 6346

Chapter 5. The Builtin Classes

Runs either the entry or setEntry method, depending on whether messagename ends with an equal sign.
If messagename does not end with an equal sign, this method runs the entry() method, passing
messagename as its argument. The messageargs argument is ignored. The entry() method is the return
result.

If messagename does end with an equal sign, this method runs the setEntry() method, passing the first
part of messagename (up to, but not including, the final equal sign) as its first argument, and the first item
in the array messageargs as its second argument. In this case, unknown() returns no result.

5.3.9.24. unsetMethod
>>-unsetMethod (name) ——————=———==———————-— - ><

Removes the association between entry name name (translated to uppercase) and a method.

5.3.9.25. xor

>>-xor (argument)-- -- e -- -- ><

Returns a new Directory object containing all items from the receiver collection and the argument
collection; all indexes that appear in both collections are removed. The argument can be any collection
class object. The argument must also allow all of the index values in the receiver collection.

5.3.9.26. Examples

[HRF KA AR AR KA K KA KKK KA A KKK KA K KKK KKK Ko KK KooK KK ok KoK K ok KoK ok ok ok K ok koK
/* A Phone Book Directory program */

/* This program demonstrates use of the directory class. x/
[/ skskokokskok ok skskok ok sk sk ok ok sk sk sk sk sk ok sk sk ke ok sk ki sk sk sk ok stk ok sk sk ke sksksk ok stk sk ok sk ki sk sk ok skok ok sk sk ok sk ok /

/* Define an UNKNOWN method that adds an abbreviation lookup feature. */
/* Directories do not have to have an UNKNOWN method. */
book = .directory new” ~“setMethod("UNKNOWN", .methods["UNKNOWN"])

book["ANN"] = "Ann B. 555-6220"

book["ann" = "Little annie . 555-1234"

book ["JEFF"] = "Jeff G. 555-5115"

book["MARK"] = "Mark C. 555-5017"

book ["MIKE"] = "Mike H. 555-6123"

book™Rick = "Rick M. 555-5110" /* Same as book["RICK"] = ... */
Do i over book /* Iterate over the collection */

Say book[i]

end i

Say "" /* Index lookup is case sensitive... x/
Say book~entry("Mike") /* ENTRY method uppercases before lookup */
Say book["ANN"] /* Exact match x/
Say book~ann /* Message sends uppercase before lookup x/

Draft - SVN Rev 6346 242 ooRexx Reference Version 4.1.0

Chapter 5.

Say book["ann"] /* Exact match with lowercase index
Say nn

Say book["M"] /* Uses UNKNOWN method for lookup
Say book["Z"]

Exit

/* Define an unknown method to handle indexes not found.
/* Check for abbreviations or indicate listing not found
: :Method unknown
Parse arg at_index
value = ""
Do i over self
If abbrev(i, at_index) then do

If value <> "" then value = value", "
value = value || self~at(i)
end
end i
If value = "" then value = "No listing found for" at_index

Return value

5.3.10. The List Class

The Builtin Classes

*/

*/

*/
*/

A list is a non-sparse sequenced collection similar to the Array Class to which you can add new items at
any position in the sequence. The List creates a new index value whenever an item is added to the list and
the associated index value remains valid for that item regardless of other additions or removals. Only

indexes the list object generates are valid i.e. the list is never a sparse list and the list object will not

modify indexes for items in the list.

ooRexx Reference Version 4.1.0 243

Draft - SVN Rev 6346

Chapter 5. The Builtin Classes

Figure 5-20. The List class and methods

Object
List

+ OrderedCollection
new
of
allindexes items
allltems last
append lastltem
at, [] makeArray
e_mpty next
first previous
firstltem put, []=
hasindex remove
hasltem removeltem
!ndex section
insert supplier
iIsEmpty

Note: The List class also has available class methods that its metaclass, metaclass, the Class class,
defines. It also inherits methods from the Ordered Collection class, although there are not currently
any methods defined in that class.

5.3.10.1. Inherited Methods

Methods inherited from the Object class.

new (class method)
=\===\==<> ><
class

copy
defaultName

hasMethod
identityHash
init

instanceMethod send
instanceMethods sendWith
iSA setMethod
isInstanceOf start
objectName startWith
objectName= string
Request unsetMethod
Run

Methods inherited from the Collection class.

Draft - SVN Rev 6346

244

ooRexx Reference Version 4.1.0

Chapter 5. The Builtin Classes

[hasIndex put

[I= hasltem subset
alllndexes index supplier
allltems intersection union

at 1tems Xor

difference makeArray

Methods inherited from the OrderedCollection class.

append intersection xor
appendAll subset
difference union

5.3.10.2. new (Class Method)

>>-new - - - - ><

Returns a new empty List object.

5.3.10.3. of (Class Method)

v |
>>-of (---item—+-)- -- —mm—mmm—mo - -- -- ><

Returns a newly created list containing the specified ifem objects in the order specified.

5.3.10.4. []

>>-[index]- - - - - ><

Returns the item located at index. This is the same as the at method.

5.3.10.5. []=

>>- [index] =item—--- - - - _ ><

Replaces the item at index with item. This method is the same as the put method.

5.3.10.6. allindexes

>>-allIndexes - ><

Returns an array of all indexes contained in the list in the same order they are used in the list.

ooRexx Reference Version 4.1.0 245 Draft - SVN Rev 6346

Chapter 5. The Builtin Classes

5.3.10.7. allltems

>>-allltems-- - - i - ><

Returns an array of all items contained in the list in list iteration order.

5.3.10.8. append

>>-append (item) ————————=—=—=———— ><

Appends item to the end of the list, returning the index associated with item.

5.3.10.9. at

>>-at (index)------ - - - - ><

Returns the item associated with index index. Returns the Nil object if the list has no item associated
with index.

5.3.10.10. empty

>>-empty-—-— - - ———————————— —_ _— ><

Removes all items from the list.

5.3.10.11. first

>>-first-—- - - - - ><

Returns the index of the first item in the list or the Nil object if the list is empty.

5.3.10.12. firstltem

>>-firstItem -- - - - ><

Returns the first item in the list or the Nil object if the list is empty.

Example:
musketeers=.list~of (Porthos,Athos,Aramis) /* Creates list MUSKETEERS */
item=musketeers”firstItem /* Gives first item in list */

/* (Assigns "Porthos" to item) */

Draft - SVN Rev 6346 246 ooRexx Reference Version 4.1.0

Chapter 5. The Builtin Classes

5.3.10.13. hasindex

>>-hasIndex (index) - - —————— e - ><

Returns 1 (true) if the list contains any item associated with index index, or 0 (false).

5.3.10.14. hasltem

>>-hasTtem(item)———————————————————————— ><

Returns 1 (true) if the list contains the ifem at any index position or otherwise returns 0 (false). Item
equality is determined by using the == method of item.

5.3.10.15. index

>>-index (item)--—- -~ - - -~ ><

Returns the index of the specified item within the list. If the target item appears at more than one index,
the first located index will be returned. Returns the Nil object if the list does not contain the specified
item. Item equality is determined by using the == method of item.

5.3.10.16. insert

>>-insert (item-+--------) -- -- ><
+-,index-+

Returns a list-supplied index for item itern, which is added to the list. The inserted item follows an
existing item with index index in the list ordering. If index is the Nil object, ifem becomes the first item in
the list. If you omit index, the item becomes the last item in the list.

Inserting an item in the list at position index will cause the items in the list after position index to have
their relative positions shifted by the list object. The index values for any items in the list are not
modified by the insertion.

musketeers=.list~of (Porthos,Athos,Aramis) /* Creates list MUSKETEERS */
/* consisting of: Porthos */
/* Athos */
/* Aramis x/
index=musketeers~first /* Gives index of first item */
musketeers~insert("D'Artagnan",index) /* Adds D'Artagnan after Porthos */
/* List is now: Porthos */
/* D'Artagnan */
/* Athos */
/* Aramis */

/* Alternately, you could use */

musketeers~insert ("D'Artagnan",.nil) /* Adds D'Artagnan before Porthos */
/* List is now: D'Artagnan */
/* Porthos */
/* Athos */

ooRexx Reference Version 4.1.0 247 Draft - SVN Rev 6346

Chapter 5. The Builtin Classes

/* Aramis */
/* Alternately, you could use */
musketeers~insert ("D'Artagnan") /* Adds D'Artagnan after Aramis */
/* List is now: Porthos */
/* Athos */
/* Aramis */
/* D'Artagnan */
5.3.10.17. isEmpty
>>-isEmpty- - ><

Returns 1 (true) if the list is empty. Returns 0 (false) otherwise.

5.3.10.18. items

>>-items-—- - ><

Returns the number of items in the list.

5.3.10.19. last

>>-last——---- -- -- -- ><

Returns the index of the last item in the list or the Nil object if the list is empty.

5.3.10.20. lastltem

>>-lastItem-- - - - - — ><

Returns the last item in the list or the Nil object if the list is empty.

5.3.10.21. makeArray

>>-makeArray-—-----———-----———-- - ——— oo ><

Returns a single-index array containing the list collection items. The array indexes range from 1 to the
number of items. The order in which the collection items appear in the array is the same as their
sequence in the list collection.

5.3.10.22. next

>>-next (index) ————=— == m e ><

Draft - SVN Rev 6346 248 ooRexx Reference Version 4.1.0

Chapter 5. The Builtin Classes

Returns the index of the item that follows the list item having index index. Returns the Nil object if index
is the end of the list.

5.3.10.23. previous

>>-previous(index) - ><

Returns the index of the item that precedes the list item having index index. Returns the Nil object if
index is the beginning of the list.

5.3.10.24. put

>>-put (item, index) - ><

Replaces any existing item associated with the specified index with the item. If index does not exist in the
list, an error is raised.

5.3.10.25. remove

>>-remove (index) -- - ><

Returns and removes from a collection the member item with index index. If no item has index index,
this method returns the Nil object and removes no item.

Removing an item from the list at position index will shift the relative position of items after position
index. The index values assigned to those items will not change.

5.3.10.26. removeltem

>>-removeIltem(item)------ - - - ><

Removes an item from the list. If the target item exists at more than one index, the first located item is
removed. The return value is the removed item. Item equality is determined by using the == method of
item.

5.3.10.27. section

>>-section(start-+-------- +=)——- - — ><
+-,items-+

Returns a new list (of the same class as the receiver) containing selected items from the receiver list. The
first item in the new list is the item corresponding to index start in the receiver list. Subsequent items in
the new list correspond to those in the receiver list (in the same sequence). If you specify the whole
number items, the new list contains only this number of items (or the number of subsequent items in the
receiver list, if this is less than items). If you do not specify ifems, the new list contains all subsequent
items from the receiver list. The receiver list remains unchanged.

ooRexx Reference Version 4.1.0 249 Draft - SVN Rev 6346

Chapter 5. The Builtin Classes

Draft -

5.3.10.28. supplier

>>-supplier-———--------—--- - e - ><

Returns a Supplier object for the list. The supplier allows you to iterate over the index/item pairs stored
in the list at the time the supplier is created. The iteration is in the same order as the list sequence order.

5.3.11. The Properties Class

A properties object is a collection with unique indexes that are character strings representing names and
items that are also restricted to character string values. Properties objects are useful for processing
bundles of application option values.

Figure 5-21. The Properties class and methods

Object
Directory

+ MapCollection

Properties
load
new
getLogical save
getProperty setLogical
getWhole setProperty
load setWhole
put, []=

Note: The Properties class also has available class methods that its metaclass, the Class class,
defines.

5.3.11.1. Inherited Methods
Methods inherited from the Object class.
new (class method) instanceMethod send

=\===\== <> >< instanceMethods sendWith
class iSA setMethod

SVN Rev 6346 250 o0oRexx Reference Version 4.1.0

Chapter 5. The Builtin Classes

ooRexx Reference Version 4.1.0 251

copy isInstanceOf start
defaultName objectName startWith
hasMethod objectName= string
identityHash Request unsetMethod
init Run

Methods inherited from the Collection class.

[1 hasIndex put

1= hasltem subset
alllndexes index supplier
allltems intersection union

at 1tems xor

difference makeArray

Methods inherited from the MapCollection class.

putAll

Methods inherited from the Directory class.

alllndexes hasIndex [1=

allltems hasltem remove

at index removeltem
[isEmpty setEntry
empty items setMethod
entry makeArray supplier
hasEntry put unsetMethod

5.3.11.2. load (Class method)

>>-load(source)--- - ><

Loads a set of properties from source and returns them as a new Properties object. The load source can
be either the string name of a file or a stream object. Properties are read from the source as individual
lines using linein(). Blank lines and lines with a Rexx line comment ("--") as the first non-blank
characters are ignored. Otherwise, the lines are assumed to be of the form "name=value" and are added
to the receiver Properties value using name as the index for the value.

5.3.11.3. new (Class method)

>>-new - ><

Returns an empty Properties object.

5.3.11.4. []=

>>-[name]=item - ><

Adds item using the index index. This method is the same as the put() method.

Draft - SVN Rev 6346

Chapter 5. The Builtin Classes

5.3.11.5. getlLogical

>>-getLogical (name-+---------- +-)—m———- -- -- ><
+-,default-+

Returns the value of name as either .true or .false. The raw value of the name may be either the numeric
values "0" or "1" or the string values "true" or "false". Any other value will raise a syntax error. If the
property name does not exist and default has been specified, the default value will be returned. If default
has not been specified, a syntax error is raised for missing values.

5.3.11.6. getProperty

>>-getProperty (name-+---------- +-)—-- ><
+-,default-+

Returns the value of name. If property name does not exist and default has been specified, the default
value will be returned. If default has not been specified, the Nil object is returned.

5.3.11.7. getWhole

>>-getWhole (name-+---------- e et -- -- ><
+-,default-+

Returns the value of name, validated as being a Rexx whole number. If property name does not exist and
default has been specified, the default value will be returned. If default has not been specified, a syntax
error is raised for missing values.

5.3.11.8. load

>>-load(source) --- - - ><

Loads a set of properties into the receiving Properties object from source. The load source can be either
the string name of a file or a stream object. Properties are read from the source as individual lines using
linein(). Blank lines and lines with a Rexx line comment ("--") as the first non-blank characters are
ignored. Otherwise, the lines are assumed to be of the form "name=value" and are added to the receiver
Properties value using name as the index for the value. Properties loaded from source that have the same
names as existing items will replace the current entries.

5.3.11.9. put

>>-put (item,name) - - - ><

Makes the object ifem a member item of the collection and associates it with index name. The item value
must be a character string. The new item replaces any existing item or method associated with index
name.

Draft - SVN Rev 6346 252 ooRexx Reference Version 4.1.0

Chapter 5. The Builtin Classes

5.3.11.10. save

>>-save(target)--- - - ————m - ><

Saves a set of properties into farget. The save target can be either the string name of a file or a stream
object. Properties are stored as individual lines using lineout(). The lines are written in the form
"name=value". A saved Properties file can be reloaded using the Properties load() method.

5.3.11.11. setLogical

>>-setLogical (name,value) - ————m - ><

Sets a logical value in the property bundle. The value argument must be either the numbers "0" or "1", or
the logical values .true or .false. The property value will be added with value converted in to the
appropriate "true" or "false" string value.

5.3.11.12. setProperty

>>-setProperty(name,value) ————==———=———=-———-————o———— oo ><

Sets a named property in the property bundle. The value argument must be a character string value.

5.3.11.13. setWhole
>>-setWhole (name,value) —— ><

Sets a whole number value in the property bundle. The value argument must be a valid Rexx whole
number.

5.3.12. The Queue Class

A queue is a non-sparse sequenced collection with whole-number indexes. The indexes specify the
position of an item relative to the head (first item) of the queue. Adding or removing an item changes the
association of an index to its queue item. You can add items at either the tail or the head of the queue.

ooRexx Reference Version 4.1.0 253 Draft - SVN Rev 6346

Chapter 5. The Builtin Classes

Figure 5-22. The Queue class and methods

Object
Queue
+ OrderedCollection
new
of
allindexes last
allltems makeArray
append next
at, [] peek
empty previous
first pull
haslndex push
hasltem put, [1=
index queue
insert remove
isSEmpty removeltem
items supplier

Note: The Queue class also has available class methods that its metaclass, the Class class, defines.

It also inherits methods from the Ordered Collection class.

5.3.12.1. Inherited Methods

Methods inherited from the Object class.

new (class method)
=\===\==<> ><
class

copy
defaultName

hasMethod
identityHash
init

instanceMethod send
instanceMethods sendWith

iSA
isInstanceOf
objectName
objectName=
Request

Run

setMethod
start

startWith
string
unsetMethod

Methods inherited from the Collection class.

[1 hasIndex

Draft - SVN Rev 6346

put

254

ooRexx Reference Version 4.1.0

Chapter 5. The Builtin Classes

1= hasltem subset
alllndexes index supplier
allltems intersection union

at items Xxor

difference makeArray

Methods inherited from the OrderedCollection class.

append intersection xor
appendAll subset
difference union

5.3.12.2. new (Class Method)

>>-new - ><

Returns a new empty Queue object.

5.3.12.3. of (Class Method)

v |
>>-0f (———item—+-) - -- ><

Returns a newly created queue containing the specified item objects in the order specified.

5.3.12.4.]

>>-[index]--—- - - - ><

Returns the item located at index index. This is the same as the at() method.

5.3.12.5. []=

>>-[index]=item--- — - - - . s<¢

Replaces item at index with item. This method is the same as the put() method.

5.3.12.6. allindexes

>>-allIndexes———————————————-———--—-——— - ><

Returns an array of all index values for the queue. For the Queue class, the indices are integers 1 - items.

ooRexx Reference Version 4.1.0 255 Draft - SVN Rev 6346

Chapter 5. The Builtin Classes

5.3.12.7. allltems

>>-allltems-- - - i - ><

Returns an array of all items contained in the queue, in queue order.

5.3.12.8. append
>>-append (item) ————————=—=—=———— ><

Appends item to the end of the queue, returning the index of the inserted item.

5.3.12.9. at

>>-at (index)------ - - - - ><

Returns the item associated with index index. Returns the Nil object if the collection has no item
associated with index.

5.3.12.10. empty

>>—empty--- -- -- -- -- -- -- ><

Removes all items from the queue.

5.3.12.11. first

>>-first-—- - - - - ><

Returns the index of the first item in the queue or the Nil object if the queue is empty. The index will
always be 1 for non-empty queues.

5.3.12.12. hasindex

>>-hasIndex(index) -- - - - ><

Returns 1 (true) if the queue contains any item associated with index index, or 0 (false).

5.3.12.13. hasltem

>>-hasItem(item)-- - - ———><

Returns 1 (true) if the queue contains the ifem at any index position or otherwise returns 0 (false). Item
equality is determined by using the == method of item.

Draft - SVN Rev 6346 256 ooRexx Reference Version 4.1.0

Chapter 5. The Builtin Classes

5.3.12.14. index

>>-index(item)---- - - - - - ><

Returns the index of the specified item within the queue. If the target item appears at more than one
index, the first located index will be returned. Returns the Nil object if the queue does not contain the
specified item. Item equality is determined by using the == method of item.

5.3.12.15. insert

>>-insert(item—+-------- +=) === e - ><
+-,index-+

Returns a queue-supplied index for item, which is added to the queue. The inserted item follows any
existing item with index index in the queue ordering. If index is the Nil object, item is inserted at the head
of the queue. If you omit index, item becomes the last item in the queue.

Inserting an item in the queue at position index will cause the items in the queue after position index to
have their indexes modified by the queue object.

musketeers=.queue”of (Porthos,Athos,Aramis) /* Creates queue MUSKETEERS */
/* consisting of: Porthos */
/* Athos */
/* Aramis */
index=musketeers”first /* Gives index of first item */
musketeers”insert ("D'Artagnan",index) /* Adds D'Artagnan after Porthos */
/* List is now: Porthos */
/* D'Artagnan */
/* Athos */
/* Aramis */

/* Alternately, you could use */
musketeers~insert("D'Artagnan",.nil) /* Adds D'Artagnan before Porthos */
/* List is now: D'Artagnan */

/* Porthos */
/* Athos */
/* Aramis */
/* Alternately, you could use */
musketeers~insert ("D'Artagnan") /* Adds D'Artagnan after Aramis */
/* List is now: Porthos */
/% Athos */
/* Aramis */
/% D'Artagnan */
5.3.12.16. isEmpty
>>-isEmpty----—------—-—--- - i - ><

Returns 1 (true) if the queue is empty. Returns 0 (false) otherwise.

ooRexx Reference Version 4.1.0 257 Draft - SVN Rev 6346

Chapter 5. The Builtin Classes

5.3.12.17. items

>>-items----- -- -- e -- ><

Returns the number of items in the collection.

5.3.12.18. last

>>-last-————————-—- ><

Returns the index of the last item in the queue or the Nil object if the queue is empty.

5.3.12.19. makeArray

>>-makeArray------ - ittt - - ><

Returns a single-index array containing the receiver queue items. The array indexes range from 1 to the
number of items. The order in which the queue items appear in the array is the same as their queuing
order, with the head of the queue as index 1.

5.3.12.20. next

>>-next (index)---- -- —mmmmm——m e -- -- ><

Returns the index of the item that follows the queue item having index index or returns the Nil object if
the item having that index is last in the queue.

5.3.12.21. peek

>>-peek---- - -- -- -- -- ><

Returns the item at the head of the queue. Returns the Nil object if the queue is empty. The collection
remains unchanged.

5.3.12.22. previous

>>-previous (index) -- -- - - ><

Returns the index of the item that precedes the queue item having index index or the Nil object if the item
having that index is first in the queue.

5.3.12.23. pull

>>-pull---- -- -- -- -- ><

Draft - SVN Rev 6346 258 ooRexx Reference Version 4.1.0

Chapter 5. The Builtin Classes

Returns and removes the item at the head of the queue. Returns the Nil object if the queue is empty.

5.3.12.24. push

>>-push(item) - ><

Adds the object item to the head of the queue.

5.3.12.25. put

>>-put (item, index) - ><

Replaces any existing item associated with the specified index with the new item. If the index does not
exist in the queue, an error is raised.

5.3.12.26. queue

>>-queue (item)---- - ><

Adds the object item to the tail of the queue.

5.3.12.27. remove

>>-remove (index) -- - ><

Returns and removes from a collection the member item with index index. Returns the Nil object if no
item has index index.

5.3.12.28. removeltem

>>-removeltem(item) -- ><

Removes an item from the queue. If the target item exists at more than one index, the first located item is
removed. The return value is the removed item. Item equality is determined by using the == method of
item.

5.3.12.29. supplier

>>-supplier -- -- ><

Returns a Supplierobject for the queue. The supplier allows you to iterate over the index/item pair
contained in the queue at the time the supplier was created. The supplier iterates the items in their
queuing order, with the head of the queue first.

ooRexx Reference Version 4.1.0 259 Draft - SVN Rev 6346

Chapter 5. The Builtin Classes

5.3.13. The Relation Class

A relation is a collection with indexes that can be any object. In a relation, each item is associated with a
single index, but there can be more than one item with the same index (unlike a table, which can contain
only one item for any index).

Figure 5-23. The Relation class and methods

Object
Relation
+ MapCollection
new
allAt iIsEmpty
allindex items
allindexes makeArray
allltems put, []=
at, [] remove
difference removeltem
empty subset
haslndex supplier
hasltem union
index xor
intersection

Note: The Relation class also has available class methods that its metaclass, the Class class,

defines. It also inherits methods from the Map Collection class.

5.3.13.1. Inherited Methods

Methods inherited from the Object class.

new (class method)
=\===\==<> ><
class

copy
defaultName

hasMethod
identityHash
init

Draft - SVN Rev 6346

instanceMethod send

instanceMethods sendWith
isSA setMethod
isInstanceOf start
objectName startWith
objectName= string
Request unsetMethod
Run

260

ooRexx Reference Version 4.1.0

Chapter 5. The Builtin Classes

Methods inherited from the Collection class.

[1 hasIndex put

[I= hasltem subset
alllndexes index supplier
allltems intersection union

at items Xxor

difference makeArray

Methods inherited from the MapCollection class.

putAll

5.3.13.2. new (Class Method)

>>-new - - - - ><

Returns an empty Relation object.

5.3.13.3.]

>>-[index]--- - -- —mmmmmm e - ><

Returns an item associated with index. Thie is the same as the at() method.

5.3.13.4. []=

>>-[index]=item--- -- e -- -- ><

Adds item to the relation associated with index index. This is the same as the put() method.

5.3.13.5. allAt

>>-allAt (index)--- - - - - _ ><

Returns a single-index array containing all the items associated with index index. Items in the array
appear in an unspecified order. Index equality is determined by using the == method of index.

5.3.13.6. allindex

>>-allIndex(item)- - - - - ><

Returns a single-index array containing all indexes for item ifem, in an unspecified order. Item equality is
determined by using the == method of item.

ooRexx Reference Version 4.1.0 261 Draft - SVN Rev 6346

Chapter 5. The Builtin Classes

5.3.13.7. allindexes

>>-allIndexes - - e - ><

Returns an array of all indexes contained in the Relation. The returned array will have one index for
every item stored in the relation, including duplicates. Duplicate indexes can be removed easily by
converted the array to a set.

-- retrieve the unique index items

indexes = .set"new"union(relation~allindexes)
5.3.13.8. allltems
>>-allltems - - -= - ><

Returns an array of all items contained in the relation.

5.3.13.9. at

>>-at (index) - ><

Returns the item associated with index index. If the relation contains more than one item associated with
index index, the item returned is unspecified. (The program should not rely on any particular item being
returned.) Returns the Nil object if the relation has no item associated with index index. Index equality is
determined by using the == method of index.

5.3.13.10. difference

>>-difference (argument)-- - ><

Returns a new Relation containing only those items that the argument collection does not contain (with
the same associated index). The argument can be any collection class object.

5.3.13.11. empty

>>-empty-—- -= ><

Removes all items from the relation.

5.3.13.12. hasindex

>>-hasIndex (index) - ><

Returns 1 (true) if the collection contains any item associated with index index, or 0 (false). Index
equality is determined by using the == method of index.

Draft - SVN Rev 6346 262 ooRexx Reference Version 4.1.0

Chapter 5. The Builtin Classes

5.3.13.13. hasltem

>>-hasItem(item—+-------- +=)-——- —m—mm——mm o ettt ><
+-,index-+

Returns 1 (true) if the relation contains the member item item, 0 (false). If index is specified, hasIndex()
will only return true if the relation contains the pairing of item associated with index index. Item and
index equality is determined by using the == method.

5.3.13.14. index

>>-index(item)---- - ><

Returns the index for item item. If there is more than one index associated with item item, the one
returned is not defined. Item equality is determined by using the == method of item.

5.3.13.15. intersection

>>-intersection(argument) - ><

Returns a new collection (of the same class as the receiver) containing only those items that are in both
the receiver collection and the argument collection with the same associated index. The argument can be
any collection class object.

5.3.13.16. isEmpty

>>-isEmpty- - ><

Returns 1 (true) if the relation is empty. Returns 0 (false) otherwise.

5.3.13.17. items

>>-items—+- —t-———= - ><
+-(index) -+

Returns the number of relation items with index index. If you specify no index, this method returns the
total number of items associated with all indexes in the relation. Index equality is determined by using
the == method of index.

5.3.13.18. makeArray

>>-makeArray - - - - ><

Returns a single-index array containing the index objects. The collection items appear in the array in an
unspecified order.

ooRexx Reference Version 4.1.0 263 Draft - SVN Rev 6346

Chapter 5. The Builtin Classes

5.3.13.19. put

>>-put (item, index) -- -- ittt -- ><

Makes the object ifem a member item of the relation and associates it with index index. If the relation
already contains any items with index index, this method adds a new member item itern with the same
index, without removing any existing member items.

5.3.13.20. remove

>>-remove (index) -—------- - ———m— - ><

Returns and removes from a relation the member item with index index. If the relation contains more
than one item associated with index index, the item returned and removed is unspecified. Returns the Nil
object if no item has index index. Index equality is determined by using the == method of index.

5.3.13.21. removeltem

>>-removeltem(item,index) - —————— e - ><

Returns and removes from a relation the member item item (associated with index index). Returns the Nil
object if value is not a member item associated with index index. If item is the only member with index)
then the index) is also removed from the Relation.

5.3.13.22. subset

>>-subset (argument) ————=—=—=——————————————— ><

Returns 1 (true) if all items in the receiver Relation are also contained in the argument collection with the
same associated index; returns 0 (false) otherwise. The argument can be any collection class object.

5.3.13.23. supplier

>>-supplier——+---- + o ><
+-(index) -+

Returns a The Supplier Class object for the relation. The supplier allows you to iterate over all
index/item pairs in the relation at the time the supplier was created. The supplier enumerates the items in
an unspecified order. If you specify index, the supplier contains all of the items with the specified index.

5.3.13.24. union

>>-union(argument) - - ><

Returns a new collection containing all items from the receiver collection and the argument collection.
The argument can be any collection class object.

Draft - SVN Rev 6346 264 ooRexx Reference Version 4.1.0

Chapter 5. The Builtin Classes

5.3.13.25. xor

>>-xor (argument)-- - - - - - ><

Returns a new collection of the same class as the receiver that contains all items from the receiver
collection and the argument collection. All index-item pairs that appear in both collections are removed.
The argument can be any collection class object.

5.3.13.26. Examples

/* Use a relation to express parent-child relationships */

family = .relation"new

family["Henry"] = "Peter" /* Peter is Henry's child */
family["Peter"] = "Bridget" /* Bridget is Peter's child */
family["Henry"] = "Jane" /* Jane is Henry's child x/

/* Show all children of Henry recorded in the family relation */
henrys_kids = family~allAt("Henry")
Say "Here are all the listed children of Henry:"
Do kid Over henrys_kids
Say " "kid
End

/* Show all parents of Bridget recorded in the family relation */
bridgets_parents = family~allIndex("Bridget")
Say "Here are all the listed parents of Bridget:"
Do parent Over bridgets_parents
Say " '"parent
End

/* Display all the grandparent relationships we know about. */

checked_for_grandkids = .set™new /* Records those we have checked */
Do grandparent Over family /* Iterate for each index in family */
If checked_for_grandkids~hasIndex(grandparent)

Then Iterate /* Already checked this one */
kids = family~allat(grandparent) /* Current grandparent's children */
Do kid Over kids /* Iterate for each item in kids */

grandkids = family~allAt(kid) /* Current kid's children */

Do grandkid Over grandkids /* Iterate for each item in grandkids */

Say grandparent "has a grandchild named" grandkid"."

End
End
checked_for_grandkids~put (grandparent) /* Add to already-checked set */

End

ooRexx Reference Version 4.1.0 265 Draft - SVN Rev 6346

Chapter 5. The Builtin Classes

5.3.14. The Set Class

A Set is a collection containing member items where the index is the same as the item (similar to a Bag
collection). Any object can be placed in a set. There can be only one occurrence of any object in a set
(unlike a Bag collection). Item equality is determined by using the == method.

Figure 5-24. The Set class and methods

Object

Table
+ MapCollection

Set
+ SetCollection

of

intersection
put, []=
putAll
subset
union

xor

Note: The Set class also has available class methods that its metaclass, the Class class, defines.

The Set class is a subclass of the Table class. In addition to its own methods, it inherits the methods of
the Object class (see The Object Class) and the Table class. It also inherits methods from the Set

Collection class.

5.3.14.1. Inherited Methods

Methods inherited from the Object class.

new (class method) instanceMethod
=\===\== <> >< instanceMethods
class isA

copy isInstance Of
defaultName objectName
hasMethod objectName=
identityHash Request

Draft - SVN Rev 6346

send
sendWith
setMethod
start

startWith
string
unsetMethod

266

ooRexx Reference Version 4.1.0

Chapter 5. The Builtin Classes

init Run

Methods inherited from the Collection class.

[1 hasIndex put

1= hasltem subset
alllndexes index supplier
allltems intersection union

at 1tems Xor

difference makeArray

Methods inherited from the MapCollection class.

putAll

Methods inherited from the Table class.

new (class method) hasIndex put

alllndexes hasltem [1=
allltems index remove

at isEmpty removeltem
[1] items supplier
empty makeArray

5.3.14.2. of (Class Method)

v |
>>-of (———item—+-) - -- ><

Returns a newly created set containing the specified item objects.

5.3.14.3. []=

>>-[index]=item--- - ><

Add an item to the Set. This method is the same as the put() method.

5.3.14.4. intersection

>>-intersection(argument) -- -- ><

Returns a new collection (of the same class as the receiver) containing only those items from the receiver
whose indexes are in both the receiver collection and the argument collection. The argument can be any
collection class object. The argument must also allow all of the index values in the receiver collection.

5.3.14.5. put

>>-put (item—+ ———t-)- - - - — ——><

ooRexx Reference Version 4.1.0 267 Draft - SVN Rev 6346

Chapter 5. The Builtin Classes
+-,index-+

Adds item to the Set. If there is an equivalent item in the Set, the exiting item will be replaced by the new
instance. Item equality is determined by using the == method of item. If index is specified, it must be the
same as item.

5.3.14.6. putAll

>>-putAll(collection)---- - - - - ><

Adds all items collection to the target set. The collection argument can be any object that supports a
supplier method. Items from collection are added using the item values returned by the supplier. If
duplicate items exist in collection, the last item provided by the supplier will overwrite previous items
with the same index.

5.3.14.7. subset

>>-subset (argument) ------ - - ><

Returns 1 (true) if all items in the receiver collection are also contained in the argument collection;
returns O (false) otherwise. The argument can be any collection class object. The argument must also
allow all of the index values in the receiver collection.

5.3.14.8. union

>>-union(argument) -- - - -- -- ><

Returns a new Set contains all the items from the receiver collection and selected items from the
argument collection. This method includes an item from argument in the new collection only if there is
no item already in the in the receiver collection and the method has not already included a matching
item. The order in which this method selects items in argument is unspecified. The argument can be any
collection class object. The argument must also allow all of the index values in the receiver collection.

5.3.14.9. xor

>>-xor (argument)-- - - - - ><

Returns a new Set that contains all items from the receiver collection and the argument collection; all
items that appear in both collections are removed. The argument can be any collection class object. The
argument must also allow all of the index values in the receiver collection.

5.3.15. The Stem Class

A stem object is a collection with unique indexes that are character strings.

Draft - SVN Rev 6346 268 ooRexx Reference Version 4.1.0

Chapter 5. The Builtin Classes

Figure 5-25. The Stem class and methods

Object

Stem
+ MapCollection
new
= \= == \== <> >< items
allindexes makeArray
allltems put, []=
at, [] remove
empty removeltem
haslndex request
hasltem supplier
index toDirectory
iIsEmpty unknown

Note: The Stem class also has available class methods that its metaclass, the Class class, defines.
It also inherits methods from the Map Collection class.

Stems are automatically created whenever a Rexx stem variable or Rexx compound variable is used. For
example:

a.1 =2

creates a new stem collection with the name A. and assigns it to the Rexx variable A.; it also assigns the
value 2 to entry 1 in the collection.

The value of an uninitialized stem index is the stem object NAME concatenated with the derived stem
index. For example

say a.[1,2] -- implicitly creates stem object with name "A."
-- displays "A.1.2"

a = .stem™new("B.")
say al1,2] -- displays "B.1.2"

In addition to the items explicitly assigned to the collection indexes, a value may be assigned to all
possible stem indexes. The [1= method (with no index argument) will assign the target value to all
possible stem indexes. Following assignment, a reference to any index will return the new value until
another value is assigned or the index is dropped.

ooRexx Reference Version 4.1.0 269 Draft - SVN Rev 6346

Chapter 5. The Builtin Classes

The [] method (with no index specified) will retrieve any globally assigned value. By default, this
returns the stem NAME value.

In addition to the methods defined in the following, the Stem class removes the methods =, ==, \=, \==,
<>, and >< using the DEFINE method.

5.3.15.1. Inherited Methods

Methods inherited from the Object class.

new (class method) instanceMethod send

=\===\== <> >< instanceMethods sendWith
class isA setMethod
copy isInstanceOf start
defaultName objectName startWith
hasMethod objectName= string
identityHash Request unsetMethod
init Run

Methods inherited from the Collection class.

[1 hasIndex put

[1= hasltem subset
alllndexes index supplier
allltems intersection union

at items Xor

difference makeArray

Methods inherited from the MapCollection class.

putAll

5.3.15.2. new (Class Method)

>>-new—+--- + - - - - ><
+-(name) -+

Returns a new stem object. If you specify a string name, this value is used to create the derived name of
compound variables. The default stem name is a null string ("").

5.3.15.3.]

+-index-+

Returns the item associated with the specified indexes. Each index is an expression; use commas to
separate the expressions. The Stem object concatenates the index string values, separating them with a
period (.), to create a derived index. A null string ("") is used for any omitted expressions. The resulting
string is the index of the target stem item. If the stem has no item associated with the specified final

Draft - SVN Rev 6346 270 ooRexx Reference Version 4.1.0

Chapter 5. The Builtin Classes

index, the stem default value is returned. If a default value has not been set, the stem name concatenated
with the final index string is returned.

If you do not specify index, the stem default value is returned. If no default value has been assigned, the
stem name is returned.

Note: You cannot use the [] method in a DROP or PROCEDURE instruction.

5.3.15.4. []=

>>=[-=—4=——————+-+-] =value------ ><
+-index-+

Makes the value a member item of the stem collection and associates it with the specified index. The
final index is derived by concatenation each of the index arguments together with a "." separator. If you
specify no index arguments, a new default stem value is assigned. Assigning a new default value will

re-initialize the stem and remove all existing assigned indexes.

5.3.15.5. allindexes

>>-allIndexes—---- - P - _ ><

Returns an array of all the stem tail names used in the stem.

5.3.15.6. allltems

>>-allltems - - - - - ><

Returns an array of all items contained in the stem.

5.3.15.7. at

>>-at(tai1) - - _ _ ><

Returns the item associated with the specified tail. The Nil object is returned if the stem has no item
associated with the specified fail.

5.3.15.8. empty

>>—empty--- -- -- -- -- ><

Removes all items from the stem.

ooRexx Reference Version 4.1.0 271 Draft - SVN Rev 6346

Chapter 5. The Builtin Classes

5.3.15.9. hasindex

>>-hasIndex(tail)- - - —————— e - ><

Returns 1 (true) if the collection contains any item associated with a stem tail tail, or 0 (false).

5.3.15.10. hasltem

>>-hasItem(value) ———=——=——=————— - ><

Returns 1 (true) if the collection contains the value at any tail position or otherwise returns 0 (false). Item
equality is determined by using the == method of item.

5.3.15.11. index

>>-index (item)--—- -~ - - -~ ><

Returns the index of the specified item within the stem. Returns the Nil object if the stem does not
contain the specified item. Item equality is determined by using the == method of item.

5.3.15.12. isEmpty

>>-isEmpty-------- - e~ - —— ><

Returns 1 (true) if the stem is empty. Returns 0 (false) otherwise.

5.3.15.13. items

>>-items-—- - - - - ><

Returns the number of items in the collection.

5.3.15.14. makeArray

>>-makeArray - - - - ><

Returns an array of all stem indexes that currently have an associated value. The items appear in the
array in an unspecified order.

5.3.15.15. put

>>-put (item,tail)- -- - - - ><

Replaces any existing item associated with the specified tail with the new item item.

Draft - SVN Rev 6346 272 ooRexx Reference Version 4.1.0

Chapter 5. The Builtin Classes

5.3.15.16. remove

>>-remove (tail)--- - - ————— - ><

Returns and removes from the stem the member item with index fail. Returns the Nil object if no item
has index zail.

5.3.15.17. removeltem

>>-removeltem(item) ————=—==—==————m ><

Removes an item from the stem. If the target item exists at more than one tail, the first located item is
removed. Item equality is determined by using the == method of item. The return value is the removed
item.

5.3.15.18. request

>>-request(classid)-——————————————————————————————————— ><

This method requests conversion to a specific class. All conversion requests except Array are forwarded
to the stem’s current stem default value. Returns the result of the Stem class makeArray method, if the
requested class is Array. For all other classes, request forwards the message to the stem object’s default
value.

5.3.15.19. supplier

>>-supplier--—-------——--——————— - ><

Returns a Supplier object for the stem. The supplier allows you to iterate though the index/item pairs
contained in the Stem object at the time the supplier was created. The supplier iterams the items in an
unspecified order.

5.3.15.20. toDirectory

>>-toDirectory-----——-----———————————— - ><

Returns a Directory object for the stem. The directory will contain a name/value pair for each stem index
with a directly assigned value.

5.3.15.21. unknown
>>-unknown- (nessagename ,messageargs) ——————————————————————————— ><

Reissues or forwards all unknown messages to the stem’s current default value. For additional
information, see Defining an unknown Method.

ooRexx Reference Version 4.1.0 273 Draft - SVN Rev 6346

Chapter 5. The Builtin Classes

5.3.16. The Table Class

A table is a collection with indexes that can be any object. In a table, each item is associated with a single
index, and there can be only one item for each index (unlike a relation, which can contain more than one
item with the same index). Index equality is determined by using the == method.

Figure 5-26. The Table class and methods

Object

Table
+ MapCollection
new
allindexes iIsEmpty
allltems items
at, [] makeArray
empty put, []=
haslndex remove
hasltem removeltem
index supplier

Note: The Table class also has available class methods that its metaclass, the Class class, defines.

It also inherits methods from the Map Collection class.

5.3.16.1. Inherited Methods

Methods inherited from the Object class.

new (class method)
=\===\==<> ><
class

copy
defaultName

hasMethod
identityHash
init

instanceMethod
instanceMethods
iSA

isInstanceOf
objectName
objectName=
Request

Run

send
sendWith
setMethod
start

startWith
string
unsetMethod

Methods inherited from the Collection class.

[1 hasIndex

[1= hasltem

Draft - SVN Rev 6346

put
subset

274

ooRexx Reference Version 4.1.0

Chapter 5. The Builtin Classes

alllndexes index supplier
allltems intersection union
at 1tems Xor

difference makeArray

Methods inherited from the MapCollection class.

putAll

5.3.16.2. new (Class Method)

>>-new - - ><

Returns an empty Table object.

5.3.16.3. []

>>-[index]- - ><

Returns the item associated with index. This is the same as the at() method.

5.3.16.4. []=

>>-[index]=item—-- - ><

Adds item to the table at index index. This method is the same as the put() method.

5.3.16.5. allindexes

>>-allIndexes - ><

Returns an array of all indexes contained in the table.

5.3.16.6. allltems

>>-allltems - ><

Returns an array of all items contained in the table.

5.3.16.7. at

>>-at (index)- - - -- ><

Returns the item associated with index index. Returns the Nil object if the collection has no item
associated with index.

ooRexx Reference Version 4.1.0 275 Draft - SVN Rev 6346

Chapter 5. The Builtin Classes

5.3.16.8. empty

>>-empty----- - - i - ><

Removes all items from the table.

5.3.16.9. hasindex

>>-hasIndex (index) —————=—=—==— == —m ><

Returns 1 (true) if the collection contains any item associated with index index, or 0 (false).

5.3.16.10. hasltem

>>-hasItem(value)- -- ————— -- -- ><

Returns 1 (true) if the collection contains the value at any index position or otherwise returns 0 (false).
Item equality is determined by using the == method of item.

5.3.16.11. index

>>-index(item)---- - - - - _— ><

Returns the index of the specified item within the table. If the target item appears at more than one index,
the first located index will be returned. Returns the Nil object if the table does not contain the specified
item. Item equality is determined by using the == method of item.

5.3.16.12. isEmpty

>>-isEmpty- - - - - - ><

Returns 1 (true) if the table is empty. Returns 0 (false) otherwise.

5.3.16.13. items

>>-items-—- - - - - ><

Returns the number of items in the collection.

5.3.16.14. makeArray

>>-makeArray - - — - ><

Returns a single-index array containing the index objects. The array indexes range from 1 to the number
of items. The collection items appear in the array in an unspecified order.

Draft - SVN Rev 6346 276 ooRexx Reference Version 4.1.0

Chapter 5. The Builtin Classes

5.3.16.15. put

>>-put (item, index) -- -- ittt -- ><

Makes the object ifem a member item of the collection and associates it with index index. The new item
replaces any existing items associated with index index.

5.3.16.16. remove

>>-remove (index) ————=—= === m e ><

Returns and removes the table item with index index. Returns the Nil object if no item has index index.

5.3.16.17. removeltem

>>-removeltem(item)-------------——-——-——-——- -- -- ><

Removes an item from the table. If the target item exists at more than one index, the first located item is
removed. The return value is the removed item. Item equality is determined by using the == method of
item.

5.3.16.18. supplier

>>-supplier------- - ittty - - ><

Returns a Supplier object for the collection. The supplier allows you iterate over the index/item pairs
contained in the table at the time the supplier was created. The supplier iterates over the items in an
unspecified order.

5.3.17. The IdentityTable Class

An identity table is a collection with indexes that can be any object. In an identity table, each item is
associated with a single index, and there can be only one item for each index. Index and item matches in
an identity table are made using an object identity comparison. That is, an index will only match if the
same instance is used in the collection.

ooRexx Reference Version 4.1.0 277 Draft - SVN Rev 6346

Chapter 5. The Builtin Classes

Figure 5-27. The IdentityTable class and methods

Object

IdentityTable
+ MapCollection
new
allindexes iIsEmpty
allltems items
at, [] makeArray
empty put, []=
hasIndex remove
hasltem removeltem
index supplier

Note: The IdentityTable class also has available class methods that its metaclass, the Class class,

defines. It also inherits methods from the Map Collection class.

5.3.17.1. Inherited Methods

Methods inherited from the Object class.

new (class method)
=\===\== <> ><
class

copy
defaultName

hasMethod
identityHash
init

instanceMethod send
instanceMethods sendWith

isA setMethod
isInstanceOf start
objectName startWith
objectName= string
Request unsetMethod
Run

Methods inherited from the Collection class.

[1 hasIndex
[1= hasItem
alllndexes index

put
subset
supplier

allltems intersection union

at items

XOor

difference makeArray

Methods inherited from the MapCollection class.

Draft - SVN Rev 6346

278

ooRexx Reference Version 4.1.0

Chapter 5. The Builtin Classes

putAll

5.3.17.2. new (Class Method)

>>-new - ><

Returns an empty IdentityTable object.

5.3.17.3.]

>>-[index]--- -- -- -- ><

Returns the item associated with index. This is the same as the at() method.

5.3.17.4. [I=

>>-[index]=item—-- - - - - - ><

Adds item to the table at index index. This method is the same as the put() method.

5.3.17.5. allindexes

>>-allIndexes————————---- - —mmmmmm e - ><

Returns an array of all indices contained in the table.

5.3.17.6. allltems

>>-allltems———---- - ettt ><

Returns an array of all items contained in the table.

5.3.17.7. at

>>-at (index)------ - - - - ><

Returns the item associated with index index. Returns the Nil object if the collection has no item
associated with index.

5.3.17.8. empty

>>—empty--- -- -- -- -- -- ><

Removes all items from the table.

ooRexx Reference Version 4.1.0 279 Draft - SVN Rev 6346

Chapter 5. The Builtin Classes

5.3.17.9. hasindex

>>-hasIndex (index) - - —————— e - ><

Returns 1 (true) if the collection contains any item associated with index index, or 0 (false).

5.3.17.10. hasltem

>>-hasTtem(item)———————————————————————— ><

Returns 1 (true) if the collection contains the item at any index position or otherwise returns 0 (false).

5.3.17.11. index

>>-index (item)--—- - - - - ><

Returns the index of the specified item within the table. If the target item appears at more than one index,
the first located index will be returned. Returns the Nil object if the table does not contain the specified
item.

5.3.17.12. isEmpty

>>-isEmpty-------- - e~ - —— ><

Returns 1 (true) if the table is empty. Returns 0 (false) otherwise.

5.3.17.13. items

>>-items-—- - - - - ><

Returns the number of items in the collection.

5.3.17.14. makeArray

>>-makeArray - - - - ><

Returns a single-index array containing the index objects. The array indexes range from 1 to the number
of items. The collection items appear in the array in an unspecified order.

5.3.17.15. put

>>-put (item, index) -- - - - ><

Makes the object item a member item of the collection and associates it with index index. The new item
replaces any existing items associated with index index.

Draft - SVN Rev 6346 280 ooRexx Reference Version 4.1.0

Chapter 5. The Builtin Classes

5.3.17.16. remove

>>-remove (index)-- - - ————— - ><

Returns and removes from a collection the member item with index index. Returns the Nil object if no
item has index index.

5.3.17.17. removeltem
>>-removeltem(item)————=—-—=————————————— ><

Removes an item from the table. If the target item exists at more than one index, the first located item is
removed. The return value is the removed item.

5.3.17.18. supplier

>>-supplier------- -= ———— e ><

Returns a Supplier object for the collection. The supplier allows you iterate over the index/item pairs
contained in the table at the time the supplier was created. The supplier iterates over the items in an
unspecified order.

5.3.18. Sorting Arrays

Any non-sparse Array instance can have its elements placed into sorted order using the sort method of
the Array class. The simplest sort is sorting an array of strings. For example:

myArray = .array of("Zoe", "Fred", "Xavier", "Andy")
myArray~sort

do name over myArray
say name
end

will display the names in the order "Andy", "Fred", "Xavier", "Zoe".

The sort method orders the strings by using the compareTo method of the String class. The compareTo
method knows how to compare one string to another, and returns the values -1 (less than), 0 (equal), or 1
(greater than) to indicate the relative ordering of the two strings.

5.3.18.1. Sorting non-strings

Sorting is not limited to string values. Any object that inherits the Comparable mixin class and
implements a compareTo method can be sorted. The DateTime Class and TimeSpan Class are examples
of built-in Rexx classes that can be sorted. Any user created class may also implement a compareTo()
method to enable sorting. For example, consider the following simple class:

ooRexx Reference Version 4.1.0 281 Draft - SVN Rev 6346

Chapter 5. The Builtin Classes

::class Employee inherit Comparable
::method init

expose id name

use arg id, name
::method id attribute
::method name attribute
::method compareTo

expose id

use arg other

return id~compareTo(other~id) -- comparison performed using employee id
::method string

expose name

use arg name

return "Employee" name

The Employee class implements its sort order using the employee identification number. When the sort
method needs to compare two Employee instances, it will call the compareTo method on one of the
instances, passing the second instance as an argument. The compareTo method tells the sort method
which of the two instances should be first.

a = .array new
al1] .Employee~new(654321, "Fred")

a[2] = .Employee™new(123456, "George")
a[3] = .Employee™new(333333, "William")
a“sort

do employee over a
say employee -- sorted order is "George", "William", "Fred"
end

5.3.18.2. Sorting with more than one order

The String class compareTo method only implements a sort ordering for an ascending sort using a strict
comparison. Frequently it’s desirable to override a class-defined sort order or even to sort items that do
not implement a compareTo method. To change the sorting criteria, use the Array sortWith method.
The sortWith method takes a single argument, which is a Comparator object that implements a compare
method. The compare method performs comparisons between pairs of items. Different comparators can
be customized for different comparison purposes. For example, the Rexx language provides a
DescendingComparator class that will sort items into descending order:

::CLASS ’DescendingComparator’ MIXINCLASS Comparator
: :METHOD compare

use strict arg left, right

return -left”compareTo(right)

The DescendingComparator merely inverts the result returned by the item compareTo method. Our
previous example

myArray = .array of("Zoe", "Fred", "Xavier", "Andy")
myArray~sortWith(.DescendingComparator “new)

Draft - SVN Rev 6346 282 ooRexx Reference Version 4.1.0

Chapter 5. The Builtin Classes

do name over myArray
say name
end

now displays in the order "Zoe", "Xavier", "Fred", "Andy".

Custom Comparators are simple to create for any sorting purpose. The only requirement is implementing
a compare method that knows how to compare pairs of items in some particular manner. For example, to
sort our Employee class by name instead of the default employee id, we can use the following simple
comparator class:

: :CLASS EmployeeNameSorter MIXINCLASS Comparator
: :METHOD compare
use strict arg left, right
return left“name”compareTo(right“name) -- do the comparison using the names

5.3.18.3. Builtin Comparators

Rexx includes a number of built-in Comparators for common sorting operations.

Comparator
Base comparator. The Comparator class just uses the compareTo method of the first argument to
generate the result. Using sortWith and a Comparator instance is equivalent to using the sort
method and no comparator.

DescendingComparator
The reverse of the Comparator class. The DescendingComparator can be used to sort items in
descending order.

InvertingComparator
The InvertingComparator will invert the result returned by another Comparator instance. This
comparator can be combined with another comparator instance to reverse the sort order.

CaselessComparator

Like the base comparator, but uses the caselessCompareTo method to determine order. The String
class implements caselessCompareTo, so the CaselessComparator can be used to sort arrays of
strings independent of case.

ColumnComparator

The ColumnComparator will sort string items using specific substrings within each string item. If
sorting is performed on multiple column positions, the stableSortWith method is recommended to
ensure the results of previous sort operations are retained.

CaselessColumnComparator

Like the ColumnComparator, but the substring comparisons are done independently of case.

ooRexx Reference Version 4.1.0 283 Draft - SVN Rev 6346

Chapter 5. The Builtin Classes

5.3.18.4. Stable and Unstable Sorts

The default sorting algorithm is a Quicksort. A Quicksort is a very efficient sorting algorithm that does
not require any additional memory to implement. Unfortunately, a Quicksort is also an unstable sort. In
an unstable sort, items are not guaranteed to maintain their original positions if they compare equal
during the sort. Consider the following simple example:

a = .array of ("Fred", "George", "FRED", "Mike", "fred")
a"sortwith(.caselesscomparator~“new)
do name over a
say name
end

This example displays the 3 occurrences of Fred in the order "Fred", "fred", "FRED", even though they
compare equal using a caseless comparison.

The Array class implements a second sort algorithm that is available using the stableSort and
stableSortWith methods. These methods use a Mergesort algorithm, which is less efficient than the
default Quicksort and requires additional memory. The Mergesort is a stable algorithm that maintains the
original relative ordering of equivalent items. Our example above, sorted with stableSortWith, would
display "Fred", "FRED", "fred".

5.3.19. The Concept of Set Operations

The following sections describe the concept of set operations to help you work with set operators, in
particular if the receiver collection class differs from the argument collection class.

Rexx provides the following set-operator methods:

« difference
« intersection
« subset

« union

. XOr

These methods are available to instances of the following collection classes:

« The OrderedCollections Array, List, and Queue
« The MapCollections Directory, Stem, Table, and Relation
+ The SetCollections Set and Bag.

result = receiver”setoperator (argument)

where:

receiver

is the collection object receiving the set-operator message.

Draft - SVN Rev 6346 284 ooRexx Reference Version 4.1.0

Chapter 5. The Builtin Classes

setoperator

is the set-operator method used.

argument

is the argument collection supplier supplied to the method. It can be an instance of one of the Rexx
collection classes or any object that implements a makearray method or supplier method,
depending on class of receiver.

The result object is of the same class as the receiver collection object.

5.3.19.1. The Principles of Operation

A set operation is performed by iterating over the elements of the receiver collection to compare each
element of the receiver with each element of the argument collection. The element is defined as the tuple
< index,item> (see Determining the Identity of an Item). Depending on the set-operator method and the
result of the comparison, an element of the receiver collection is, or is not, included in the resulting
collection. A receiver collection that allows for duplicate elements can, depending on the set-operator
method, also accept elements of the argument collection after they have been coerced to the type of the
receiver collection.

The following examples are to help you understand the semantics of set operations. The collections are
represented as a list of elements enclosed in curly brackets. The list elements are separated by a comma.

5.3.19.2. Set Operations on Collections without Duplicates

Assume that the example sets are A={a,b} and B={b, c,d}. The result of a set operation is another set.
The only exception is a subset resulting in a Boolean .true or .false. Using the collection A and B, the
different set operators produce the following:

UNION operation
All elements of A and B are united:

A UNION B = {a,b,c,d}

DIFFERENCE operation

The resulting collection contains all elements of the first set except for those that also appear in the
second set. The system iterates over the elements of the second set and removes them from the first
set one by one.

A DIFFERENCE B
B DIFFERENCE A

{a}
{c,d}

XOR operation

The resulting collection contains all elements of the first set that are not in the second set and all
elements of the second set that are not in the first set:

A XOR B = {a,c,d}

ooRexx Reference Version 4.1.0 285 Draft - SVN Rev 6346

Chapter 5. The Builtin Classes

INTERSECTION operation

The resulting collection contains all elements that appear in both sets:

A INTERSECTION B = {b}

SUBSET operation

Returns . true if the first set contains only elements that also appear in the second set, otherwise it
returns .false:

A SUBSET B = .false
B SUBSET A = .false

5.3.19.3. Set-Like Operations on Collections with Duplicates

Assume that the example bags are A={a,b,b} and B={b,b,c,c,d}. The result of any set-like operation is
a collection, in this case a bag. The only exception is subset resulting in a Boolean .true or .false. Using
the collections A and B, the different set-like operators produce the following:

UNION operation
All elements of A and B are united:

A UNION B = {a,b,b,b,b,c,c,d}

DIFFERENCE operation

The resulting collection contains all elements of the first bag except for those that also appear in the
second bag. The system iterates over the elements of the second bag and removes them from the
first bag one by one.

{a}
{c,c,d}

A DIFFERENCE B
B DIFFERENCE A

XOR operation

The resulting collection contains all elements of the first bag that are not in the second bag and all
elements of the second bag that are not in the second bag:

A XOR B = {a,c,c,d}

INTERSECTION operation

The resulting collection contains all elements that appear in both bags:

A INTERSECTION B = {b,b}

SUBSET operation

Returns .true if the first set contains only elements that also appear in the second set, otherwise it
returns .false:

A SUBSET B = .false
B SUBSET A = .false

Draft - SVN Rev 6346 286 ooRexx Reference Version 4.1.0

Chapter 5. The Builtin Classes

5.3.19.4. Determining the Identity of an ltem

Set operations require the definition of the identity of an element to determine whether a certain element
exists in the receiver collection. The element of a collection is conceived as the tuple <index,item>. The
index is used as the identification tag associated with the item. Depending on the collection class, the
index is an instance of a particular class, for example, the string class for a directory element, an integer
for an array, or any arbitrary class for a relation. The Array class is an exception because it can be
multidimensional having more than one index. However, as a collection, it is conceptionally linearized
by the set operator.

For collection classes that require unique indexes, namely the Set, IdentityTable, Table, Directory, and
Stem, an item is identified by its index. For collections of collection classes that allow several items to
have the same index, namely the Relation class, an item is identified by both its index and its item. For
the Bag and the Set subclasses, where several items can have the same index but index and ifem must be
identical, the item is identified by its index. For Array, List, and Queue classes, the index is derived from
an object’s position within the collection’s order. Items are identified using only item.

When collections with different index semantics are used in set operations, the argument collection is
coerced into a collection of the same type as the receiver, and the operation is then performed using the
converted collection. The coercion process differs based on the types of both the receiver and the
argument collection. According to this concept, an item of a collection is identified for the different
receiver categories as follows:

Map Collection

If argument is a MapCollection, then index values are used to determine membership, and items are
inserted into the result using the index and item pairs.

If argument is an OrderedCollection or SetCollection, argument is converted into a MapCollection
using the collection items as both index and item values. Since the argument collection may contain
duplicate items, the converted collection is effectively a Relation instance.

For all other argument objects, the makearray method is used to obtain a set of values which are
used as if argument was an OrderedCollection.
Ordered Collection and Set Collection

If argument is an instance of Collection, the matching set is obtained from the allltems method. For
any other class of object, the makearray method is used. The hasItem method is used to perform
the matching operations between the two collections.

Relation

If argument is a MapCollection, then index values are used to determine membership, and items are
inserted into the result using the index and item pairs.

If argument is an OrderedCollection or SetCollection, argument is converted into a MapCollection
using the collection items as both index and item values. Since the argument collection may contain
duplicate items, the converted collection is effectively a Relation instance.

For all other argument objects, the makearray method is used to obtain a set of values which are
used as if argument was an OrderedCollection. All tests for result membership are made using both
the index and item values.

ooRexx Reference Version 4.1.0 287 Draft - SVN Rev 6346

Chapter 5. The Builtin Classes

5.4. The Utility Classes

This section describes the Rexx utility classes.

5.4.1. The DateTime Class

A DateTime object represents a point in between 1 January 0001 at 00:00.000000 and 31 December
9999 at 23:59:59.999999. A DateTime object has methods to allow formatting a date or time in various
formats, as well as allowing arithmetic operations between dates.

Figure 5-28. The DateTime class and methods

Object
DateTime
+ Comparable
+ Orderable
]tromBgs_el_Date fromStandardDate
romCivilTime .
fromEuropeanDate from Ticks
: fromUsaDate
romlsoDate f
fromLonaTime romUTClsoDate
9 maxDate
fromNormalDate minDate
fromNormalTime toda
fromOrderedDate y
+ - daysinMonth normalTime
addDays daysInYear offset
addHours elapsed orderedDate
addMicroseconds europeanDate seconds
addMinutes fullDate string
add Seconds hashCode standardDate
addWeeks hours ticks
addYears init timeOfDay
baseDate isLeapYear toLocalTime
civilTime isoDate toTimeZone
compareTo languageDate toUtcTime
date longTime usaDate
day microseconds utclsoDate
dayMicroseconds minutes year
dayMinutes month yearDay
dayName monthName yearWeek
daySeconds normalDate
Draft - SVN Rev 6346 288 ooRexx Reference Version 4.1.0

Chapter 5. The Builtin Classes

Note: The DateTime class also has available class methods that its metaclass, the Class class,
defines.

5.4.1.1. Inherited Methods

Methods inherited from the Object class.

new (class method) instanceMethod send

=\===\== <> >< instanceMethods sendWith
class isA setMethod
copy isInstanceOf start
defaultName objectName startWith
hasMethod objectName= string
identityHash Request unsetMethod
init Run

Methods inherited from the Comparable class.

- compareTo

Methods inherited from the Orderable class.

=\ ==\ <O, > >, < >\ <E)\, >, < oo\ <<=, \ > >

5.4.1.2. minDate (Class Method)

>>-minDate- - -- - ><

Returns a DateTime instance representing the minimum supported Rexx date, 1 January 0001 at
00:00:00.000000.

5.4.1.3. maxDate (Class Method)

>>-maxDate--- -= -= -= -= ><

Returns a DateTime instance representing the maximum supported Rexx date, 31 December 9999 at
23:59:59.999999.

5.4.1.4. today (Class Method)

>>-today----- - - -- -- -- ><

Returns a DateTime instance for the current day, with a time value of 00:00:00.000000.

ooRexx Reference Version 4.1.0 289 Draft - SVN Rev 6346

Chapter 5. The Builtin Classes

5.4.1.5. fromNormalDate (Class Method)

>>-fromNormalDate (-date—+-————————————————————————— =) mmm ><
o, - e ettt +-+

+-separator-+ +-,offset-+
Creates a DateTime object from a string returned by the Normal option of the Date() built-in function.
The time component will be set to the beginning of the input day (00:00:00.000000).

If specified, separator identifies the field separator character used in the string. The separator must be a
single character or the null string (""). A blank (" ") is the default separator.

If specified, offset is the offset from UTC, in minutes. The offset must be valid whole number value. The
default offset is the current system offset timezone offset.

5.4.1.6. fromEuropeanDate (Class Method)

>>-fromEuropeanDate (-date-+----- e —-—=><
=, —- —————t et

+-separator-+ +-,offset-+
Creates a DateTime object from a string returned by the European option of the Date() built-in function.
The time component will be set to the beginning of the input day (00:00:00.000000).

If specified, separator identifies the field separator character used in the string. The separator must be a
single character or the null string (""). A slash ("/") is the default separator. The time component will be
set to the beginning of the input day (00:00:00.000000).

If specified, offset is the offset from UTC, in minutes. The offser must be valid whole number value. The
default offset is the current system offset timezone offset.

5.4.1.7. fromOrderedDate (Class Method)

>>-fromOrderedDate (-date—+--———-———-———————————————————— e Bttt ><
T e +—+

+-separator-+ +-,offset-+
Creates a DateTime object from a string returned by the Ordered option of the Date() built-in function.
The time component will be set to the beginning of the input day (00:00:00.000000).

If specified, separator identifies the field separator character used in the string. The separator must be a
single character or the null string (""). A slash ("/") is the default separator. The time component will be
set to the beginning of the input day (00:00:00.000000).

If specified, offset is the offset from UTC, in minutes. The offset must be valid whole number value. The
default offset is the current system offset timezone offset.

5.4.1.8. fromStandardDate (Class Method)

>>-fromStandardDate (-date-+----- o) - ><

+-,—+- - +-—+ - +-+

Draft - SVN Rev 6346 290 ooRexx Reference Version 4.1.0

Chapter 5. The Builtin Classes
+-separator-+ +-,offset-+

Creates a DateTime object from a string returned by the Standard option of the Date() built-in function.
The time component will be set to the beginning of the input day (00:00:00.000000).

If specified, separator identifies the field separator character used in the string. The separator must be a
single character or the null string (""). A null string ("") is the default separator.

If specified, offset is the offset from UTC, in minutes. The offset must be valid whole number value. The
default offset is the current system offset timezone offset.

5.4.1.9. fromUsaDate (Class Method)

>>-fromUsaDate (-date-+--- -- —m—tm) mm e ><
T e oo mmm e +—+

+-separator-+ +-,offset-+
Creates a DateTime object from a string returned by the Usa option of the Date() built-in function. The
time component will be set to the beginning of the input day (00:00:00.000000).

If specified, separator identifies the field separator character used in the string. The separator must be a
single character or the null string (""). A slash ("/") is the default separator.

If specified, offset is the offset from UTC, in minutes. The offset must be valid whole number value. The
default offset is the current system offset timezone offset.

5.4.1.10. fromNormalTime (Class Method)

>>-fromNormalTime (time-—+--—-———--- +=)-- -—=><
+-,0ffset—+

Creates a DateTime object from a string returned by the Normal option of the Time() built-in function.
The date component will be set to 1 January 0001.

If specified, offset is the offset from UTC, in minutes. The offset must be valid whole number value. The
default offset is the current system offset timezone offset.

5.4.1.11. fromCivilTime (Class Method)

>>-fromCivilTime (time-—+--------- D B ><
+-,0ffset-+

Creates a DateTime object from a string returned by the Civil option of the Time() built-in function. The
date component will be set to 1 January 0001.

If specified, offset is the offset from UTC, in minutes. The offset must be valid whole number value. The
default offset is the current system offset timezone offset.

ooRexx Reference Version 4.1.0 291 Draft - SVN Rev 6346

Chapter 5. The Builtin Classes

5.4.1.12. fromLongTime (Class Method)

>>-fromLongTime (time-—+--------- D R -==><
+-,0ffset—+

Creates a DateTime object from a string returned by the Long option of the Time() built-in function. The
date component will be set to 1 January 0001.

If specified, offset is the offset from UTC, in minutes. The offset must be valid whole number value. The
default offset is the current system offset timezone offset.

5.4.1.13. fromBaseDate (Class Method)

>>-fromBaseDate (date-—+--------- +-)-- -- -- -—=><
+-,0ffset—+

Creates a DateTime object from a string returned by the Basedate option of the Date() built-in function.
The time component will be set to the beginning of the input day (00:00:00.000000).

If specified, offset is the offset from UTC, in minutes. The offset must be valid whole number value. The
default offset is the current system offset timezone offset.

5.4.1.14. fromTicks (Class Method)

>>-fromTicks (time-—+--———---—- +-) ><
+-,0ffset-+

Creates a DateTime object from a string returned by the Ticks option of the Date() or Time() built-in
functions.

If specified, offset is the offset from UTC, in minutes. The offset must be valid whole number value. The
default offset is the current system offset timezone offset.

5.4.1.15. fromlsoDate (Class Method)

>>-fromIsoDate(date--+--------- +=) === - -=><
+-,0ffset-+

Creates a DateTime object from a string in ISO date format (yyyy-mm-ddThh:mm:ss.uuuuuu). The
DateTime string method returns the ISO format as the string form of a DateTime object.

If specified, offset is the offset from UTC, in minutes. The offset must be valid whole number value. The
default offset is the current system offset timezone offset.

5.4.1.16. fromUTClsoDate (Class Method)

>>-fromUTCIsoDate(date) ———-——-——-————————————————m oo ><

Draft - SVN Rev 6346 292 ooRexx Reference Version 4.1.0

Chapter 5. The Builtin Classes
Creates a DateTime object from a string in ISO timezone qualified date format

(yyyy-mm-ddThh:mm:ss.uuuuuu+hhmm). The DateTime string method returns the ISO format as the
string form of a DateTime object.

5.4.1.17. init

>>-init---- -- -- ><

>>-init(fullDate-—+---———---- +-)- 3¢
+-,0ffset-+

>>-init (year,month,day-+--------- +-—- -- -- -—=)---—><
+-,0ffset—-+

>>-init(year,month,day,hours,minutes,seconds——+---- -- -- - ——+=)=><
B B +-+

+-microseconds-+ +-,offset-+

Initializes a new DateTime instance. If no arguments are specified, the DateTime instance is set to the
current date and time. If the single fullDate argument is used, the DateTime argument is initialized to the
date and time calculated by adding fullDate microseconds to 0001-01-01T00:00:00.000000. If the year,
month, day, form is used, the DateTime instance is initialized to 00:00:00.000000 on the indicated date.
Otherwise, the DateTime instance is initialized to the year, month, day, hours, minutes, seconds, and
microseconds components. Each of these components must be a valid whole number within the
acceptable range for the given component. For example, year must be in the range 1-9999, while minutes
must be in the range 0-59.

If specified, offset is the offset from UTC, in minutes. The offset must be valid whole number value. The
default offset is the current system offset timezone offset.

Examples:

today = .DateTime™new -- initializes to current date and time

-- initializes to 9 Sep 2007 at 00:00:00.000000
.DateTime new(date(’F’, "20070930", "S"))

-- also initializes to 9 Sep 2007 at 00:00:00.000000
day = .DateTime™new(2007, 9, 30)

-- initializes to 9 Sep 2007 at 10:33:00.000000
.DateTime " new (2007, 9, 30, 10, 33, 00)

day

day

5.4.1.18. Arithmetic Methods

>>-arithmetic_operator(argument) -— ><

Note: For the prefix + operators, omit the parentheses and argument.

ooRexx Reference Version 4.1.0 293 Draft - SVN Rev 6346

Chapter 5. The Builtin Classes

Returns the result of performing the specified arithmetic operation on the receiver DateTime object.
Depending on the operation, the argument be either a TimeSpan object or a DateTime object. See the
description of the individual operations for details. The arithmetic_operator can be:

+ Addition. Adds a TimeSpan to the DateTime object, returning a new DateTime
instance. The receiver DateTime object is not changed. The TimeSpan may be
either positive or negative.

- Subtraction. If argument is a DateTime object, the two times are subtracted, and a
TimeSpan object representing the interval between the two times is returned. If
the receiver DateTime is less than the argument argument DateTime, a negative
TimeSpan interval is returned. The receiver DateTime object is not changed.

If argument is a TimeSpan object, subtracts the TimeSpan from the DateTime
object, returning a new DateTime instance. The receiver DateTime object is not
changed. The TimeSpan may be either positive or negative.

Prefix - A prefix - operation on a DateTime object will raise a SYNTAX error condition.
Prefix + Returns a new instance of the DateTime object with the same time value.
Examples:

t = .dateTime"new”timeOfDay -- returns TimeSpan for current time.

say t -- displays "11:27:12.437000", perhaps

d = .dateTime"new(2010, 4, 11) -- creates new date

future = d + t -- adds timespan to d

say future -- displays "2010-04-11T11:27:12.437000"

-- "real" start of next century
nextCentury = .dateTime™new(2101, 1, 1)

-- displays "34060.12:25:49.922000", perhaps
say "The next century starts in" (nextCentury - .dateTime new)

5.4.1.19. compareTo

>>-compareTo (other) - - ———3

This method returns "-1" if the other is larger than the receiving object, "0" if the two objects are equal,
and "1" if other is smaller than the receiving object.

5.4.1.20. year

Returns the year represented by this DateTime instance.

Draft - SVN Rev 6346 294 ooRexx Reference Version 4.1.0

5.4.1.21. month

>>-month------——-———=—————- - e ><

Returns the month represented by this DateTime instance.

5.4.1.22. day

Returns the day represented by this DateTime instance.

5.4.1.23. hours

>>-hours---------- - Ittt ><

Returns number of whole hours since midnight.

5.4.1.24. minutes

>>-minutes-— -- - - e ><

Returns minutes portion of the timestamp time-of-day.

5.4.1.25. seconds

>>-seconds- -- T ><

Returns seconds portion of the timestamp time-of-day.

5.4.1.26. microseconds

>>-microseconds--- -- - — ><

Returns microseconds portion of the timestamp time-of-day.

5.4.1.27. dayMinutes

>>-dayMinutes - - ><

Returns the number of minutes since midnight in the time-of-day.

o0oRexx Reference Version 4.1.0 295

Chapter 5. The Builtin Classes

Draft - SVN Rev 6346

Chapter 5. The Builtin Classes

5.4.1.28. daySeconds

>>-daySeconds - - S ><

Returns the number of seconds since midnight in the time-of-day.

5.4.1.29. dayMicroseconds

>>-dayMicroseconds——-——=======-—————————————— oo ><

Returns the number of microseconds since midnight in the time-of-day.

5.4.1.30. hashCode

>>-hashCode------- - Sttt ><

Returns a string value that is used as a hash value for a MapCollection such as Table, Relation, Set, Bag,
and Directory.

5.4.1.31. addYears

>>-addYears (years) -- Bttt ><

Add a number of years to the DateTime object, returning a new DateTime instance. The receiver
DateTime object is unchanged. The years value must be a valid whole number. Negative values result in
years being subtracted from the DateTime value.

The addYears method will take leap years into account. If the addition result would fall on February 29th
of a non-leap year, the day will be rolled back to the 28th.

date = .DateTime new(2008, 2, 29)
say date -- Displays "2008-02-29T00:00:00.000000"
say date~addYears(1) -- Displays "2009-02-29T00:00:00.000000"

5.4.1.32. addWeeks

>>-addWeeks (weeks) - - - - -———=><

Adds weeks to the DateTime object, returning a new DateTime instance. The receiver DateTime object is
unchanged. The weeks value must be a valid number, including fractional values. Negative values result
in week being subtracted from the DateTime value.

5.4.1.33. addDays

>>-addDays (days) -~ - - - - —-—==><

Draft - SVN Rev 6346 296 ooRexx Reference Version 4.1.0

Chapter 5. The Builtin Classes

Adds days to the DateTime object, returning a new DateTime instance. The receiver DateTime object is
unchanged. The days value must be a valid number, including fractional values. Negative values result in
days being subtracted from the DateTime value.

date = .DateTime new(2008, 2, 29)
say date —-- Displays "2008-02-29T00:00:00.000000"
say date~addDays(1.5) -- Displays "2008-03-01T12:00:00.000000"

5.4.1.34. addHours

>>-addHours (hours) - - ——><

Adds hours to the DateTime object, returning a new DateTime instance. The receiver DateTime object is
unchanged. The hours value must be a valid number, including fractional values. Negative values result
in hours being subtracted from the DateTime value.

5.4.1.35. addMinutes

>>-addMinutes (minutes)--- - ——><

Adds minutes to the DateTime object, returning a new DateTime instance. The receiver DateTime object
is unchanged. The minutes value must be a valid number, including fractional values. Negative values
result in minutes being subtracted from the DateTime value.

5.4.1.36. addSeconds

>>-addSeconds (seconds) -—— - ——><

Adds seconds to the DateTime object, returning a new DateTime instance. The receiver DateTime object
is unchanged. The seconds value must be a valid number, including fractional values. Negative values
result in seconds being subtracted from the DateTime value.

5.4.1.37. addMicroseconds

>>-addMicroseconds (microseconds) -=><

Adds microseconds to the DateTime object, returning a new DateTime instance. The receiver DateTime
object is unchanged. The microseconds value must be a valid whole number. Negative values result in
microseconds being subtracted from the DateTime value.

5.4.1.38. isoDate

>>-isoDate- - ——><

Returns a String formatted into ISO date format, yyyy-dd-mmThh:mm:ss.uuuuuu.

ooRexx Reference Version 4.1.0 297 Draft - SVN Rev 6346

Chapter 5. The Builtin Classes

5.4.1.39. utclsoDate

>>-utcIsoDate -- -- —mmmm————— -——=><

Returns a String formatted into a fully qualified ISO date format. If the timezone offiset is 0, the format
is yyyy-dd-mmThh:mm:ss.uuuuuuZ. If the offset is positive, the date is formatted as
yyyy-dd-mmThh:mm:ss.uuuuuu+hhmm. If the offset is negative, the result will be in the format
yyyy-dd-mmThh:mm:ss.uuuuuu-hhmm.

5.4.1.40. baseDate

>>-baseDate-- - - - - ———3<

Returns the number of complete days (that is, not including the current day) since and including the base
date, 1 January 0001, in the format: dddddd (no leading zeros or whitespace characters).

The base date of 1 January 1970 is determined by extending the current Gregorian calendar backward
(365 days each year, with an extra day every year that is divisible by 4 except century years that are not
divisible by 400. It does not take into account any errors in the calendar system that created the
Gregorian calendar originally.

5.4.1.41. yearDay

>>-yearDay- - -=><

Returns the number of days, including the current day, that have passed in the DateTime year in the
format ddd (no leading zeros or blanks).

5.4.1.42. weekDay

>>-weekDay- - -—><

Returns the day of the week, as an integer. The values returned use the ISO convention for day
numbering. Monday is "1", Tuesday is "2", running through "7" for Sunday.

5.4.1.43. europeanDate

>>-europeanDate (—+-———--—-———- +-) ><
+-separator-+

Returns the date in the format dd/mm/yy. If specified, separator identifies the field separator character
used in the returned date. The separator must be a single character or the null string (""). A slash ("/") is
the default separator.

Draft - SVN Rev 6346 298 ooRexx Reference Version 4.1.0

Chapter 5. The Builtin Classes

5.4.1.44. languageDate

>>-languageDate--- -- -- —mmmm————— -——=><

Returns the date in an implementation- and language-dependent, or local, date format. The format is dd
month yyyy. The name of the month is according to the national language installed on the system. If no
local date format is available, the default format is returned.

Note: This format is intended to be used as a whole; Rexx programs must not make any
assumptions about the form or content of the returned string.

5.4.1.45. monthName

>>-monthName------ - ———————————————— ><

Returns the name of the DateTime month, in English.

5.4.1.46. dayName

>>-dayName- - - - - --><

Returns the name of the DateTime day, in English.

5.4.1.47. normalDate

>>-normalDate (-+---—-—--———- +-)—— ——————— ><
+-separator-+

Returns the date in the format dd mon yyyy. If specified, separator identifies the field separator character
used in the returned date. The separator must be a single character or the null string (""). A blank (" ") is
the default separator.

5.4.1.48. orderedDate

>>-orderedDate (—+--—-—----—- +-)- - S — ><
+-separator-+

Returns the date in the format yy/mm/dd. If specified, separator identifies the field separator character
used in the returned date. The separator must be a single character or the null string (""). A slash ("/") is
the default separator.

ooRexx Reference Version 4.1.0 299 Draft - SVN Rev 6346

Chapter 5. The Builtin Classes

5.4.1.49. standardDate

>>-standardDate (—+----------- +-) ————m - ><
+-separator-+

Returns the date in the format yyyymmdd. If specified, separator identifies the field separator character
used in the returned date. The separator must be a single character or the null string (""). A null string
("") is the default separator.

5.4.1.50. usaDate

>>-usaDate (-+--——-—------ +=) === ><
+-separator—+

Returns the date in the format mm/dd/yy. If specified, separator identifies the field separator character
used in the returned date. The separator must be a single character or the null string (""). A slash ("/") is
the default separator.

5.4.1.51. civilTime

>>-civilTime-—----- -- ————————— ><

Returns the time in Civil format hh:mmxx. The hours can take the values 1 through 12, and the minutes
the values 00 through 59. The minutes are followed immediately by the letters am or pm. This
distinguishes times in the morning (12 midnight through 11:59 a.m.--appearing as 12:00am through
11:59am) from noon and afternoon (12 noon through 11:59 p.m.--appearing as 12:00pm through
11:59pm). The hour has no leading zero. The minute field shows the current minute (rather than the
nearest minute) for consistency with other TIME results.

5.4.1.52. normalTime

>>-normalTime----——----———---———————————————— - ————— ><

Returns the time in the default format hh:mm:ss. The hours can have the values 00 through 23, and
minutes and seconds, 00 through 59. There are always two digits. Any fractions of seconds are ignored
(times are never rounded). This is the default.

5.4.1.53. longTime

>>-longTime-———————————————————————— - ><

Returns time in the format hh:mm:ss.uuuuuu (Where uuuuuu are microseconds).

Draft - SVN Rev 6346 300 0oRexx Reference Version 4.1.0

Chapter 5. The Builtin Classes

5.4.1.54. fullDate

>>-fullDate-- -- -- mmmm --><

Returns the number of microseconds since 00:00:00.000000 on 1 January 0001, in the format:
dddddddddddddddddd (no leading zeros or blanks).

5.4.1.55. utcDate

>>-utcDate--——-----———---——————————— - ><

Returns the date converted to UTC time as the number of microseconds since 00:00:00.000000 on 1
January 0001, in the format: dddddddddddddddddd (no leading zeros or blanks).

5.4.1.56. toLocalTime

>>-toLocalTime---- - S ><

Returns a new DateTime object representing the time for the local timezone.

5.4.1.57. toUtcTime

>>-toUtcTime-——---- - ————————————————— ><

Returns a new DateTime object representing the time for the UTC timezone (offset 0).

5.4.1.58. toTimeZone

>>-toTimeZone (—+-------- e -- -><
+-offset-+

Returns a new DateTime object representing the time for the timezone indicated by offset. If specified,
offset is the offset from UTC, in minutes. The offset must be valid whole number value. The default offset
0, which creates a DateTime object for UTC.

5.4.1.59. ticks

>>-ticks---—- - - - ><

returns the number of seconds since 00:00:00.000000 on 1 January 1970, in the format: dddddddddddd
(no leading zeros or blanks). Times prior to 1 January 1970 are returned as a negative value.

ooRexx Reference Version 4.1.0 301 Draft - SVN Rev 6346

Chapter 5. The Builtin Classes

5.4.1.60. offset

>>-offset—-—- - - ——mmm - --><

Returns the timezone for the DateTime instance as the offset in minutes from UTC. Timezones east of
UTC will return a positive offset. Timezones west of UTC will return a negative offset.

5.4.1.61. date

>>-date-———-———————————— - ><

Returns a new DateTime object instance for the current date, with the time component set to
00:00:00.000000.

5.4.1.62. timeOfDay

>>-time0fDay------ - ettt ><

Returns the interval since 00:00:00.000000 of the current day as a TimeSpan object.

5.4.1.63. elapsed

>>-elapsed-------- - Sttt ><

Returns the difference between current time and the receiver DateTime as a TimeSpan object. The
TimeSpan will be negative if the receiver DateTime represents a time in the future.

5.4.1.64. isLeapyear

>>-isLeapyear——---- - - - - ——><

Returns true ("1") if the current year is leap year. Returns false ("0") if the current year is not a leap year.

5.4.1.65. daysinMonth

>>-daysInMonth---- - - - ——><

Returns the number of days in the current month. For example, for dates in January, 31 is returned. The
daysInMonth method takes leap years into account, returning 28 days for February in non-leap years,
and 29 days for leap years.

5.4.1.66. daysinYear

>>-daysInYear - - - ——><

Draft - SVN Rev 6346 302 ooRexx Reference Version 4.1.0

Chapter 5. The Builtin Classes

Returns the number of days in the current year. For leap years, 366 is returned. For non-leap years, this
returns 365.

5.4.1.67. string

>>-string-—- - ><

Returns DateTime formatted as a string. The string value is returned in ISO format.

5.4.2. The Alarm Class

An alarm object provides timing and notification capability by supplying a facility to send any message
to any object at a given time. You can cancel an alarm before it sends its message.

Figure 5-29. The Alarm class and methods

Object

Alarm

cancel
init

Note: The Alarm class also has available class methods that its metaclass, the Class class, defines.

5.4.2.1. Inherited Methods

Methods inherited from the Object class.

new (class method) instanceMethod send
=\===\== <> >< instanceMethods sendWith

class iSA setMethod
copy isInstanceOf start
defaultName objectName startWith
hasMethod objectName= string
identityHash Request unsetMethod
init Run

5.4.2.2. cancel

>>-cancel-- - - - - ><

o0oRexx Reference Version 4.1.0 303 Draft - SVN Rev 6346

Chapter 5. The Builtin Classes

Cancels the pending alarm request represented by the receiver. This method takes no action if the
specified time has already been reached.

5.4.2.3. init

>>-init(atime,message)-—— - ><

Sets up an alarm for a future time atime. At this time, the alarm object sends the message that message, a
message object, specifies. (See The Message Class.) The atime can a String, DateTime object, or
TimeSpan object.

If atime is a DateTime object, the DateTime specifies a time when the alarm will be triggered. The
DateTime must be greater than the current time.

If atime is a TimeSpan, the Alarm will be set to the current time plus the TimeSpan. The TimeSpan must
not be a negative interval.

If atime is a String, you can specify this as a date and time ('hh:mm: ss') or as a number of seconds
starting at the present time. If you use the date and time format, you can specify a date in the default
format ('dd Mmm yyyy') after the time with a single blank separating the time and date. Leading and
trailing whitespace characters are not allowed in the atime. If you do not specify a date, the Alarm uses
the first future occurrence of the specified time. You can use the cancel() method to cancel a pending
alarm. See Initialization for more information.

5.4.2.4. Examples

The following code sets up an alarm at 5:10 p.m. on December 15, 2007. (Assume today’s date/time is
prior to December 15, 2007.)

/* Alarm Examples */

PersonalMessage=.MyMessageClass“new("Call the Bank")
msg=.message"new(PersonalMessage,"RemindMe”)

time = .DateTime~fromIsoDate("2007-12-15T17:10:00.000000")

a=.alarm"new(time, msg)

exit

::class MyMessageClass public

::method init

expose inmsg

use arg inmsg

::method RemindMe

expose inmsg

say "It is now" "TIME"("C")".Please "inmsg

/* On the specified data and time, displays the following message: */
/* "It is now 5:10pm. Please Call the Bank" */

For the following example, the user uses the same code as in the preceding example to define msg, a
message object to run at the specified time. The following code sets up an alarm to run the msg message
object in 30 seconds from the current time:

Draft - SVN Rev 6346 304 ooRexx Reference Version 4.1.0

a=.alarm"new(30,msg)

5.4.3. The TimeSpan Class

A TimeSpan object represents a point in between 1 January 0001 at 00:00.000000 and 31 December
9999 at 23:59:59.999999. A TimeSpan object has methods to allow formatting a date or time in various

formats, as well as allowing arithmetic operations between dates.

Figure 5-30. The TimeSpan class and methods

Chapter 5. The Builtin Classes

Object
TimeSpan

+ Comparable
+ Orderable
fromCivilTime
fromDays
fromHours
fromLongTime
fromMicroseconds
fromMinutes
fromNormalTime
fromSeconds
+ -/ hours
addDays init
addHours microseconds
addMicroseconds minutes
addMinutes seconds
addSeconds sign
addWeeks string
compareTo totalDays
days totalHours
duration totalMicroseconds
fromStringFormat totalMinutes
hashCode totalSeconds

ooRexx Reference Version 4.1.0

305

Draft - SVN Rev 6346

Chapter 5. The Builtin Classes

Note: The TimeSpan class also has available class methods that its metaclass, the Class class,
defines.

5.4.3.1. Inherited Methods

Methods inherited from the Object class.

new (class method) instanceMethod send

=\===\== <> >< instanceMethods sendWith
class isA setMethod
copy isInstanceOf start
defaultName objectName startWith
hasMethod objectName= string
identityHash Request unsetMethod
init Run

Methods inherited from the Comparable class.

« compareTo

Methods inherited from the Orderable class.

= \= ==\, <O, > >, < O\ <E 0\, >0, < oo\ <<=, \ > >

5.4.3.2. fromDays (Class Method)

>>-fromDays (days) - -- e ><

Creates a TimeSpan object from a number of days. The days argument must be a valid Rexx number.

5.4.3.3. fromHours (Class Method)

>>-fromHours (hours) -—-———- - - ———————————— ><

Creates a TimeSpan object from a number of hours. The hours argument must be a valid Rexx number.

5.4.3.4. fromMinutes (Class Method)

>>-fromMinutes (minutes)-———--—-——-—————-———————————— ><

Creates a TimeSpan object from a number of minutes. The minutes argument must be a valid Rexx
number.

5.4.3.5. fromSeconds (Class Method)

>>-fromSeconds (seconds) ———-——-——--—--—-———————————o—— oo ><

Draft - SVN Rev 6346 306 o0oRexx Reference Version 4.1.0

Chapter 5. The Builtin Classes

Creates a TimeSpan object from a number of seconds. The seconds argument must be a valid Rexx
number.

5.4.3.6. fromMicroseconds (Class Method)

>>-fromMicroseconds (microseconds)---- - ——=><

Creates a TimeSpan object from a number of microseconds. The microseconds argument must be a valid
Rexx number.

5.4.3.7. fromNormalTime (Class Method)

>>-fromNormalTime (time)-— e e, ><

Creates a TimeSpan object from a string returned by the Normal option of the Time() built-in function.
The TimeSpan will contain an interval equal to the time of day represented by the string.

5.4.3.8. fromCivilTime (Class Method)

>>-fromCivilTime (time) -—- -— ———3¢

Creates a TimeSpan object from a string returned by the Civil option of the Time() built-in function. The
TimeSpan will contain an interval equal to the time of day represented by the string.

5.4.3.9. fromLongTime (Class Method)

>>-fromLongTime (time)---- - ——><

Creates a TimeSpan object from a string returned by the Long option of the Time() built-in function. The
TimeSpan will contain an interval equal to the time of day represented by the string.

5.4.3.10. fromStringFormat (Class Method)

>>-fromStringFormat (time) - ——><

Creates a TimeSpan object from a string in the format returned by the TimeSpan string method.

5.4.3.11. init

>>-init(fullDate)- - - ——><
>>-init (hours, minutes, seconds) - ———————————— ><
>>-init(day, hours, minutes, second, microseconds)------------ ><

o0oRexx Reference Version 4.1.0 307 Draft - SVN Rev 6346

Chapter 5. The Builtin Classes

Initializes a new TimeSpan instance. If the single fullDate argument is used, the TimeSpan argument is
initialized to the time span fullDate microseconds. Otherwise, the TimeSpan instance is initialized to
either the hours, minutes, and seconds or the days, hours, minutes, seconds, and microseconds
components. Each of these components must be a valid whole number within the acceptable range for
the given component. For example, hours must be in the range 0-23, while minutes must be in the range

0-59.
Examples:
-- initializes to 15 hours, 37 minutes and 30 seconds
-- (15:37:30.000000)
span = .TimeSpan~new(time(’F’, "15:37:30", "N))
-- also initializes to 15:37:30.000000
span = .TimeSpan~new(15, 37, 30)
-- initializes to 6.04:33:15.000100
span = .TimeSpan~new(6, 4, 33, 15, 100)

5.4.3.12. Arithmetic Methods

>>-arithmetic_operator(argument) - - ><

Note: For the prefix + operators, omit the parentheses and argument.

Returns the result of performing the specified arithmetic operation on the receiver TimeSpan object.
Depending on the operation, the argument be either a TimeSpan object, a DateTime object, or a number.
See the description of the individual operations for details. The arithmetic_operator can be:

+ Addition. If argument is a DateTime object, the TimeSpan is added to the
DateTime object, returning a new DateTime instance. Neither the receiver
TimeSpan or the argument DateTime object is altered by this operation. The
TimeSpan may be either positive or negative.
If argument is a TimeSpan object, the two TimeSpans are added together, and a
new TimeSpan instance is returned. Neither the TimeSpan object is altered by
this operation.

- Subtraction. The argument must be a TimeSpan object. The argument TimeSpan
is subtracted from the receiver TimeSpan and a new TimeSpan instance is
returned. Neither the TimeSpan object is altered by this operation.

* Multiplication. The argument must be a valid Rexx number. The TimeSpan is
multiplied by the argument value, and a new TimeSpan instance is returned. The
receiver TimeSpan object is not altered by this operation.

/ Division. The argument must be a valid Rexx number. The TimeSpan is divided
by the argument value, and a new TimeSpan instance is returned. The receiver
TimeSpan object is not altered by this operation. The / operator and % produce the
same result.

Draft - SVN Rev 6346 308 0oRexx Reference Version 4.1.0

Chapter 5. The Builtin Classes

% Integer Division. The argument must be a valid Rexx number. The TimeSpan is
divided by the argument value, and a new TimeSpan instance is returned. The
receiver TimeSpan object is not altered by this operation. The / operator and %
produce the same result.

/! Remainder Division. The argument must be a valid Rexx number. The TimeSpan
is divided by the argument value and the division remainder is returned as a new
TimeSpan instance. The receiver TimeSpan object is not altered by this operation.

Prefix - The TimeSpan is negated, returning a new TimeSpan instance. The receiver
TimeSpan is not altered by this operation.
Prefix + Returns a new instance of the TimeSpan object with the same time value.
Examples:
tl = .timespan~fromHours(1)

t2 = t1 % 2
-- displays "01:00:00.000000 02:00:00.000000 03:00:00.000000"
say t1 t2 (t1 + t2)

5.4.3.13. compareTo

>>-compareTo (other)------ - - - ———3<

" "

This method returns if the other is larger than the receiving object, "0" if the two objects are equal,
and "1" if other is smaller than the receiving object.

5.4.3.14. duration

>>-duration -— - ——3<

Returns a new TimeSpan object containing the absolute value of the receiver TimeSpan object.

5.4.3.15. days

>>-days---- -- ———><

Returns the number of whole days in the TimeSpan, as a positive number.

5.4.3.16. hours

>>-hours--- - -—==><

Returns the hours component of the TimeSpan, as a positive number.

o0oRexx Reference Version 4.1.0 309 Draft - SVN Rev 6346

Chapter 5. The Builtin Classes

5.4.3.17. minutes

>>-minutes--- - - i - —-—==><

Returns the minutes component of the TimeSpan, as a positive number.

5.4.3.18. seconds
>>-seconds——————mm T T oo oo oo ><

Returns the seconds component of the TimeSpan, as a positive number.

5.4.3.19. microseconds

>>-microseconds--- - ittty - - -=><

Returns the microseconds component of the TimeSpan, as a positive number.

5.4.3.20. totalDays

>>-totalDays————-- - - - - ——><

Returns the time span expressed as a number of days. The result includes any fractional part and retains
the sign of the receiver TimeSpan.

5.4.3.21. totalHours

>>-totalHours - - - - ———><

Returns the time span expressed as a number of hours. The result includes any fractional part and retains
the sign of the receiver TimeSpan.

5.4.3.22. totalMinutes

>>-totalMinutes——- - - - - ———><

Returns the time span expressed as a number of minutes. The result includes any fractional part and
retains the sign of the receiver TimeSpan.

5.4.3.23. totalSeconds

>>-totalSeconds--- - - - - ———><

Returns the time span expressed as a number of seconds. The result includes any fractional part and
retains the sign of the receiver TimeSpan.

Draft - SVN Rev 6346 310 ooRexx Reference Version 4.1.0

Chapter 5. The Builtin Classes

5.4.3.24. totalMicroseconds

>>-totalMicroseconds—----- - —mm—mm————— - -=—=><

Returns the time span expressed as a number of microseconds. The result retains the sign of the receiver
TimeSpan.

5.4.3.25. hashCode
>>-hashCode-—---—————————————mmmm oo ><

Returns a string value that is used as a hash value for MapCollection such as Table, Relation, Set, Bag,
and Directory.

5.4.3.26. addWeeks

>>-addWeeks (weeks) - mm e ><

Adds weeks to the TimeSpan object, returning a new TimeSpan instance. The receiver TimeSpan object
is unchanged. The weeks value must be a valid number, including fractional values. Negative values
result in week being subtracted from the TimeSpan value.

5.4.3.27. addDays
>>-addDays (days) —————————————————————— - - - ><

Adds days to the TimeSpan object, returning a new TimeSpan instance. The receiver TimeSpan object is
unchanged. The days value must be a valid number, including fractional values. Negative values result in
days being subtracted from the TimeSpan value.

5.4.3.28. addHours
>>-addHours (hours) ————-———=———————————————————— ><

Adds hours to the TimeSpan object, returning a new TimeSpan instance. The receiver TimeSpan object is
unchanged. The hours value must be a valid number, including fractional values. Negative values result
in hours being subtracted from the TimeSpan value.

5.4.3.29. addMinutes
>>-addMinutes (minutes)-——————-———————————————————————— ><

Adds minutes to the TimeSpan object, returning a new TimeSpan instance. The receiver TimeSpan
object is unchanged. The minutes value must be a valid number, including fractional values. Negative
values result in minutes being subtracted from the TimeSpan value.

ooRexx Reference Version 4.1.0 311 Draft - SVN Rev 6346

Chapter 5. The Builtin Classes

5.4.3.30. addSeconds

>>-addSeconds (seconds)--- - —————————————— —-——=><

Adds seconds to the TimeSpan object, returning a new TimeSpan instance. The receiver TimeSpan
object is unchanged. The seconds value must be a valid number, including fractional values. Negative
values result in seconds being subtracted from the TimeSpan value.

5.4.3.31. addMicroseconds

>>-addMicroseconds (microseconds) ————————— e -——=><

Adds microseconds to the TimeSpan object, returning a new TimeSpan instance. The receiver TimeSpan
object is unchanged. The microseconds value must be a valid whole number. Negative values result in
microseconds being subtracted from the TimeSpan value.

5.4.3.32. sign

Returns "-1" if the TimeSpan is negative, "1" if the TimeSpan is positive, and "0" if the TimeSpan
duration is zero.

5.4.3.33. string

>>-string-———---—————————————— ><

Returns TimeSpan formatted as a string. The string value is in the format
"-dddddddd.hh:mm:ss.uuuuuu". If the TimeSpan is positive or zero, the sign is omitted. The days field
will be formatted without leading zeros or blanks. If the TimeSpan duration is less than a day, the days
field and the period separator will be omitted.

5.4.4. The Comparable Class

This class is defined as a mixin class.

Draft - SVN Rev 6346 312 ooRexx Reference Version 4.1.0

Chapter 5. The Builtin Classes

Figure 5-31. The Comparable class and methods

Object

Comparable

compareTo

Note: The Comparable class also has available class methods that its metaclass, the Class class,
defines.

5.4.4.1. Inherited Methods

Methods inherited from the Object class.

new (class method) instanceMethod send
=\===\== <> >< instanceMethods sendWith

class iSA setMethod
copy isInstanceOf start
defaultName objectName startWith
hasMethod objectName= string
identityHash Request unsetMethod
init Run

5.4.4.2. compareTo

This method compares the receiving object to the object supplied in the comparable argument.

>>-compareTo (other)------ - - ——><

This method returns "-1" if the other is larger than the receiving object, "0" if the two objects are equal,
and "1" if other is smaller than the receiving object.

5.4.5. The Orderable Class

The Orderable class can be inherited by classes which wish to provide each of the comparison operator
methods without needing to implement each of the individual methods. The inheriting class need only
implement the Comparable compareTo() method. See This class is defined as a mixin class.

ooRexx Reference Version 4.1.0 313 Draft - SVN Rev 6346

Chapter 5. The Builtin Classes

Figure 5-32. The Orderable class and methods

Object

Orderable

compareTo

= \= <> >< ==\==
> >= \> < <= \<
>> >>= << <<=
\<< \>>

5.4.5.1. Inherited Methods

Methods inherited from the Object class.

new (class method) instanceMethod send
=\===\== <> >< instanceMethods sendWith

class iSA setMethod
copy isInstanceOf start
defaultName objectName startWith
hasMethod objectName= string
identityHash Request unsetMethod
init Run

5.4.5.2. Comparison Methods

>>-comparison_operator (argument) ><

Returns 1 (true) or 0 (false), the result of performing the specified comparison operation. The receiver
object and the argument are the terms compared.

The comparison operators you can use in a message are:

= True if the terms are equal

\=, ><, <> True if the terms are not equal (inverse of =)
> Greater than

< Less than

>= Greater than or equal to

\< Not less than

<= Less than or equal to

\> Not greater than

All strict comparison operations have one of the characters doubled that define the operator. The

Draft - SVN Rev 6346 314 ooRexx Reference Version 4.1.0

Chapter 5. The Builtin Classes

Orderable strict comparison operators produce the same results as the non-strict comparisons.

The strict comparison operators you can use in a message are:

== True if terms are strictly equal

\== True if the terms are NOT strictly equal (inverse of ==
>> Strictly greater than

<< Strictly less than

>>= Strictly greater than or equal to

\<< Strictly NOT less than

<<= Strictly less than or equal to

\>> Strictly NOT greater than

5.4.6. The Comparator Class

The Comparator class is the base class for implementing Comparator objects that can be used with the
Array sortWith() or stableSortWith() method. The compare() method implements some form of
comparison that determines the relative ordering of two objects. Many Comparator implementations are

specific to particilar object types.

Figure 5-33. The Comparator class and methods

Object

Comparator

compare

Note: The Comparator class also has available class methods that its metaclass, the Class class,
defines.

This class is defined as a mixin class.
5.4.6.1. Inherited Methods
Methods inherited from the Object class.

new (class method) instanceMethod send
=\===\== <> >< instanceMethods sendWith

ooRexx Reference Version 4.1.0 315 Draft - SVN Rev 6346

Chapter 5. The Builtin Classes

class isA setMethod
copy isInstanceOf start
defaultName objectName startWith
hasMethod objectName= string
identityHash Request unsetMethod
init Run

5.4.6.2. compare

>>-compare (first,second) - - - ><

This method returns "-1" if the second is larger than first object, "0" if the two objects are equal, and "1"
second is smaller than first .

The default Comparator compare() method assumes that first is an object that implements the
Comparable compareTo() method. Subclasses may override this to implement more specific
comparisons.

5.4.7. The CaselessComparator Class

The CaselessComparator class performs caseless orderings of String objects.

Figure 5-34. The CaselessComparator class and methods

Object

Comparator

CaselessComparator

compare

Note: The CaselessComparator class also has available class methods that its metaclass, the Class
class, defines.

This class is defined as a mixin class.

5.4.7.1. Inherited Methods

Methods inherited from the Object class.

new (class method) instanceMethod send

Draft - SVN Rev 6346 316 ooRexx Reference Version 4.1.0

Chapter 5. The Builtin Classes

=\===\== <> >< instanceMethods sendWith

class iSA setMethod
copy isInstanceOf start
defaultName objectName startWith
hasMethod objectName= string
identityHash Request unsetMethod
init Run

Methods inherited from the Comparator class.

compare

5.4.7.2. compare

>>-compare (first,second) ———————————————————————————————— ><

This method returns "-1" if the second is larger than first object, "0" if the two objects are equal, and "1"
second is smaller than first. The two strings are compared using a caseless comparison.

5.4.8. The ColumnComparator Class

The CaselessColumnComparator class performs orderings based on specific substrings of String objects.

Figure 5-35. The ColumnComparator class and methods

Object

Comparator

ColumnComparator

compare
init

Note: The ColumnComparator class also has available class methods that its metaclass, the Class
class, defines.

This class is defined as a mixin class.

5.4.8.1. Inherited Methods

Methods inherited from the Object class.

ooRexx Reference Version 4.1.0 317 Draft - SVN Rev 6346

Chapter 5. The Builtin Classes

new (class method) instanceMethod send
=\===\== <> >< instanceMethods sendWith

class iSA setMethod
copy isInstanceOf start
defaultName objectName startWith
hasMethod objectName= string
identityHash Request unsetMethod
init Run

Methods inherited from the Comparator class.

compare

5.4.8.2. compare

>>-compare (first,second) - - - ><

This method returns "-1" if the second is larger than first object, "0" if the two objects are equal, and "1"
second is smaller than first. Only the defined columns of the strings are compared.

5.4.8.3. init

>>-init(start, length)--- - - ><

Initializes a comparator to sort strings starting at position start for length characters.

5.4.9. The CaselessColumnComparator Class

The CaselessColumnComparator class performs caseless orderings of specific substrings of String
objects.

Figure 5-36. The CaselessColumnComparator class and methods

Object

Comparator

CaselessColumnComparator

compare
init

Draft - SVN Rev 6346 318 ooRexx Reference Version 4.1.0

Chapter 5. The Builtin Classes

Note: The CaselessColumnComparator class also has available class methods that its metaclass,
the Class class, defines.

This class is defined as a mixin class.
5.4.9.1. Inherited Methods
Methods inherited from the Object class.

new (class method) instanceMethod send
=\===\== <> >< instanceMethods sendWith

class iSA setMethod
copy isInstanceOf start
defaultName objectName startWith
hasMethod objectName= string
identityHash Request unsetMethod
init Run

Methods inherited from the Comparator class.

compare

5.4.9.2. compare

>>-compare (first,second) - - - ><

This method returns "-1" if the second is larger than first object, "0" if the two objects are equal, and "1"
second is smaller than first. Only the defined columns of the strings are compared, using a caseless
comparison.

5.4.9.3. init

>>-init(start, length)--- - - ><

Initializes a comparator to sort strings starting at position start for length characters.

5.4.10. The DescendingComparator Class

The DescendingComparator class performs sort orderings in descending order. This is the inverse of a
Comparator sort order.

This class is defined as a mixin class. It must be used by inheriting from it as a mixin.

ooRexx Reference Version 4.1.0 319 Draft - SVN Rev 6346

Chapter 5. The Builtin Classes

Figure 5-37. The DescendingComparator class and methods

Object

Comparator

DescendingComparator

compare

Note: The DescendingComparator class also has available class methods that its metaclass, the
Class class, defines.

This class is defined as a mixin class.

5.4.10.1. Inherited Methods

Methods inherited from the Object class.

new (class method) instanceMethod send

=\===\== <> >< instanceMethods sendWith
class isA setMethod
copy isInstanceOf start
defaultName objectName startWith
hasMethod objectName= string
identityHash Request unsetMethod
init Run

Methods inherited from the Comparator class.

compare

5.4.10.2. compare

>>-compare (first,second) - - ><

This method returns "1" if the second is larger than first object, "0" if the two objects are equal, and "-1"
second is smaller than first, resulting in a descending sort sequence. The DescendingComparator
assumes the first object implements the Comparable compareTo() method.

Draft - SVN Rev 6346 320 ooRexx Reference Version 4.1.0

Chapter 5. The Builtin Classes

5.4.11. The CaselessDescendingComparator Class

The CaselessDescendingComparator class performs caseless string sort orderings in descending order.
This is the inverse of a CaselessComparator sort order.

Figure 5-38. The CaselessDescendingComparator class and methods

Object

Comparator

CaselessDescendingComparator

compare

Note: The CaselessDescendingComparator class also has available class methods that its
metaclass, the Class class, defines.

This class is defined as a mixin class.

5.4.11.1. Inherited Methods

Methods inherited from the Object class.

new (class method) instanceMethod send

=\===\== <> >< instanceMethods sendWith
class isA setMethod
copy isInstanceOf start
defaultName objectName startWith
hasMethod objectName= string
identityHash Request unsetMethod
init Run

Methods inherited from the Comparator class.

compare

5.4.11.2. compare

>>-compare (first,second) - - ><

This method returns "1" if the second is larger than first object, "0" if the two objects are equal, and "-1"
second is smaller than first. The two strings are compared using a caseless comparison.

ooRexx Reference Version 4.1.0 321 Draft - SVN Rev 6346

Chapter 5. The Builtin Classes

5.4.12. The InvertingComparator Class

The InvertingComparator class inverts the comparison results of another Comparator object to reverse
the resulting sort order.

Figure 5-39. The InvertingComparator class and methods

Object

Comparator

InvertingComparator

compare
init

Note: The InvertingComparator class also has available class methods that its metaclass, the Class
class, defines.

This class is defined as a mixin class.

5.4.12.1. Inherited Methods

Methods inherited from the Object class.

new (class method) instanceMethod send

=\===\== <> >< instanceMethods sendWith
class isA setMethod
copy isInstanceOf start
defaultName objectName startWith
hasMethod objectName= string
identityHash Request unsetMethod
init Run

Methods inherited from the Comparator class.

compare

5.4.12.2. compare

>>-compare (first,second) - - ><

This method returns "1" if the second is larger than first object, "0" if the two objects are equal, and "-1"
second is smaller than first, resulting in a descending sort sequence. The InvertingComparator will invert

Draft - SVN Rev 6346 322 ooRexx Reference Version 4.1.0

Chapter 5. The Builtin Classes

the ordering returned by the provided Comparator.

5.4.12.3. init

>>-init(comparator) - -—><

Initializes an inverting comparator to sort strings using an inversion of the result from the comparator
compare() method.

5.4.13. The Monitor Class

The Monitor class acts as a proxy for other objects. Messages sent to the Monitor object are forwarded to
a different target object. The message target can be changed dynamically.

Figure 5-40. The Monitor class and methods

Object
Monitor
current
destination
init
unknown

Note: The Monitor class also has available class methods that its metaclass, the Class class,
defines.

5.4.13.1. Inherited Methods

Methods inherited from the Object class.

new (class method) instanceMethod send

=\===\== <> >< instanceMethods sendWith
class isA setMethod
copy isInstanceOf start
defaultName objectName startWith
hasMethod objectName= string
identityHash Request unsetMethod
init Run

ooRexx Reference Version 4.1.0 323 Draft - SVN Rev 6346

Chapter 5. The Builtin Classes

5.4.13.2. current

>>-current--- - - ittt - ><

Returns the current destination object.

5.4.13.3. destination

>>-destination--+------—-—-—--———- e ><
+-(destination)-+

Returns a new destination object. If you specify destination, this becomes the new destination for any
forwarded messages. If you omit destination, the previous destination object becomes the new
destination for any forwarded messages.

5.4.13.4. init

>>-init--+- + -- ><

+-(destination) -+

Initializes the newly created monitor object.

5.4.13.5. unknown

>>-unknown (messagename ,messageargs) —— -- - ><

Reissues or forwards to the current monitor destination all unknown messages sent to a monitor object.
For additional information, see Defining an unknown Method.

5.4.13.6. Examples

.local”setentry("output", .monitor new(.stream™new("my.new")~~command("open nobuffer")))

/* The following sets the destination */
previous_destination=.output~destination(.stream™new("my.out")~~command("open write"))
/* The following resets the destination */

.output”destination

.output~destination(.Stdout)
current_output_destination_stream_object=.output current

5.4.14. The MutableBuffer Class

The MutableBuffer class is a buffer on which certain string operations such as concatenation can be
performed very efficiently. Unlike String objects, MutableBuffers can be altered without requiring a new

Draft - SVN Rev 6346 324 ooRexx Reference Version 4.1.0

Chapter 5. The Builtin Classes

object allocation. A MutableBuffer object can provide better performance for algorithms that involve
frequent concatenations to build up longer string objects because it creates fewer intermediate objects.

Figure 5-41. The MutableBuffer class and methods

Object

MutableBuffer
new
append overlay
caselessChangeStr pos
caselessCountStr replaceAt
caselesslLastPos setBufferSize
caselessMatch string
caselessMatchChar subChar
caselessPos subStr
cadelessWordPos subWord
changestr translate
countstr upper
delete verify
delStr word
delWord wordIndex
getBufferSize wordLength
insert wordPos
lastPos words
length
lower
makeArray
match
matchChar

Note: The MutableBuffer class also has available class methods that its metaclass, the Class class,

defines.

5.4.14.1. Inherited Methods

Methods inherited from the Object class.

new (class method) instanceMethod send

ooRexx Reference Version 4.1.0 325 Draft - SVN Rev 6346

Chapter 5. The Builtin Classes

=\===\== <> >< instanceMethods sendWith

class iSA setMethod
copy isInstanceOf start
defaultName objectName startWith
hasMethod objectName= string
identityHash Request unsetMethod
init Run

5.4.14.2. new

>>-new(-+-- e e +-) -- -—><
+-string-+ +-,-buffersize--+

Initialize the buffer, optionally assign a buffer content and a starting buffer size. The default size is 256;
the buffer size increases to the length of string if the string does not fit into the buffer.

5.4.14.3. append

>>-append (string)- -- - - - ——><

Appends string to the buffer content. The buffer size is increased if necessary.

5.4.14.4. caselessChangeStr

>>-caselessChangeStr(needle,newneedle——+--—----- +-=)—————= -- —mmmm——————— - ><
+-,count-+

Returns the receiver MutableBuffer newneedle replacing occurrences of needle. If count is not specified,
all occurrences of needle are replaced. If count is specified, it must be a positive, whole number that
gives the maximum number of occurrences to be replaced. The needle searches are performed using
caseless comparisons.

5.4.14.5. caselessCountStr

>>-caselessCountStr(needle) -——-- - - -><

Returns a count of the occurrences of needle in the receiving MutableBuffer that do not overlap. All
matches are made using caseless comparisons.

5.4.14.6. caselessLastPos

>>-caselessLastPos(needle-+--——- ———t+=)-—-><
T — A +—+

2
+-start-+ +-,length-+

Returns the position of the last occurrence of a string, needle, in the receiving buffer. (See also POS.) It
returns 0 if needle is the null string or not found. By default, the search starts at the last character of the

Draft - SVN Rev 6346 326 ooRexx Reference Version 4.1.0

Chapter 5. The Builtin Classes

receiving buffer and scans backward to the beginning of the string. You can override this by specifying
start, the point at which the backward scan starts and length, the range of characters to scan. The start
must be a positive whole number and defaults to receiving_buffer~length if larger than that value or
omitted. The length must be a non-negative whole number and defaults to szart. The search is performed
using caseless comparisons.

5.4.14.7. caselessMatch

>>-caselessMatch(start,other—+-- -- B e R ittt ><

o, m—t———t——+

+ ——+

+-n-+ +-,length-+

Returns .true ("1") if the characters of the other match the characters of the target buffer beginning at
position start. Return .false ("0") if the characters are not a match. The matching is performed using
caseless comparisons. start must be a positive whole number less than or equal to the length of the target
buffer.

If n is specified, the match will be performed starting with character n of other. The default value for n is
"1". n must be a positive whole number less than or equal to the length of other.

If length is specified, it defines a substring of other that is used for the match. length must be a positive
whole number and the combination of n and length must be a valid substring within the bounds of other.

The caselessMatch method is useful for efficient string parsing as it does not require new string objects
be extracted from the target string.

5.4.14.8. caselessMatchChar

>>-caselessMatchChar (n,chars)--- ——=><

Returns .true ("1") if the character at position n matches any character of the string chars. Returns .false
("0") if the character does not match any of the characters in the reference set. The match is made using
caseless comparisons. The argument n must be a positive whole number less than or equal to the length
of the target MutableBuffer.

5.4.14.9. caselessPos

>>-caselessPos(needle-+-- - +=)——=><
A U

b
+-start-+ +-,length-+

Returns the position in the receiving buffer of a needle string. (See also caselessLastPos.) It returns 0 if
needle is the null string or is not found or if start is greater than the length of the receiving buffer. The
search is performed using caseless comparisons. By default, the search starts at the first character of the
receiving buffer (that is, the value of start is 1), and continues to the end of the buffer. You can override
this by specifying start, the point at which the search starts, and length, the bounding limit for the search.
If specified, start must be a positive whole number and length must be a non-negative whole number.

ooRexx Reference Version 4.1.0 327 Draft - SVN Rev 6346

Chapter 5. The Builtin Classes

5.4.14.10. caselessWordPos

>>-caselessWordPos (phrase-+----- +=)—mmm - - -><
+-,start-+

Returns the word number of the first word of phrase found in the receiving buffer, or 0 if phrase contains
no words or if phrase is not found. Word matches are made independent of case. Multiple whitespace
characters between words in either phrase or the receiving buffer are treated as a single blank for the
comparison, but, otherwise, the words must match exactly.

By default the search starts at the first word in the receiving string. You can override this by specifying
start (which must be positive), the word at which the search is to be started.

5.4.14.11. changeStr

>>-changeStr(needle,newneedle-—+--——----- +--) - - - - ><

Returns the receiver MutableBuffer with newneedle replacing occurrences of needle.

If count is not specified, all occurrences of needle are replaced. If count is specified, it must be a positive,
whole number that gives the maximum number of occurrences to be replaced.

5.4.14.12. countStr

>>-countStr(needle) - - ><

Returns a count of the occurrences of needle in the receiving buffer that do not overlap.

5.4.14.13. delete

>>-delete(n———+--- R P o<
+-,length-+

Deletes length characters from the buffer beginning at the n’th character. If length is omitted, or if length
is greater than the number of characters from 7 to the end of the buffer, the method deletes the remaining
buffer contents (including the n’th character). The length must be a positive integer or zero. The n must
be a positive integer. If n is greater than the length of the buffer or zero, the method does not modify the
buffer content.

5.4.14.14. delstr

>>-delstr(n--—+--------- B Rt ><
+-,length-+

Deletes length characters from the buffer beginning at the n’th character. If length is omitted, or if length
is greater than the number of characters from # to the end of the buffer, the method deletes the remaining
buffer contents (including the n’th character). The length must be a positive integer or zero. The n must

Draft - SVN Rev 6346 328 ooRexx Reference Version 4.1.0

Chapter 5. The Builtin Classes

be a positive integer. If n is greater than the length of the buffer or zero, the method does not modify the
buffer content. The delstr() method is the same as the delete() method. It is provided for polymorphism
with the String class.

5.4.14.15. delWord
>>-delWord (n-—+--------- +-=)———= ><
+-,length-+

Deletes a substring from the MutableBuffer the substring that starts at the nth word and is of length
whitespace-delimited words. If you omit length, or if length is greater than the number of words from n
to the end of the receiving buftfer, the method deletes the remaining words in the receiving buffer
(including the nth word). The length must be a positive whole number or zero. The n must be a positive
whole number. If n is greater than the number of words in the receiving buffer, the method returns the
receiving buffer unchanged. The portion deleted includes any whitespace characters following the final
word involved but none of the whitespace characters preceding the first word involved.

5.4.14.16. getBufferSize

>>-getBufferSize-- - -- - ——><

Retrieves the current buffer size.

5.4.14.17. insert

>>-insert (new—+--- - - ettt +-=)><
Tt e —t+——+

+-n-+ -, ——o——————— e +-—+
+-length-+ +-,pad-+

Inserts the string new, padded or truncated to length length, into the mutable buffer after the n’th
character. The default value for n is 0, which means insertion at the beginning of the string. If specified, n
and length must be positive integers or zeros. If n is greater than the length of the buffer contents, the
string new is padded at the beginning. The default value for length is the length of new. If length is less
than the length of string new, insert truncates new to length length. The default pad character is a blank.

5.4.14.18. lastPos

>>-lastPos(needle-+-----———+-)-- — ><
+-,start-+

Returns the position of the last occurrence of a string, needle, in the receiving buffer. (See also POS.) It
returns 0 if needle is the null string or not found. By default, the search starts at the last character of the
receiving buffer and scans backward. You can override this by specifying start, the point at which the
backward scan starts. The start must be a positive whole number and defaults to
receiving_buffer~length if larger than that value or omitted.

ooRexx Reference Version 4.1.0 329 Draft - SVN Rev 6346

Chapter 5. The Builtin Classes

Examples:

x1 - .mutablebuffer new("abc def ghi")
x1~lastPos(" ") -> 8

x1 - .mutablebuffer new("abcdefghi')
x1”lastPos(" ") -> 0

x1 - .mutablebuffer”new("efgxyz")
x17lastPos ("xy") -> 4

x1 - .mutablebuffer”new("abc def ghi")
x1~lastPos(" ",7) -> 4

5.4.14.19. length

>>-length-- - - - -—-><

Returns length of data in buffer.

5.4.14.20. lower

>>-lower (+=——+——4-————————- +-—=)- —-——=><
+-n-+ +-,length-+

Returns the receiving buffer with the characters of the target string beginning with character n for length
characters converted to lowercase. If n is specified, it must be a positive whole number. If # is not
specified, the case conversion will start with the first character. If length is specified, it must be a
non-negative whole number. If length the default is to convert the remainder of the buffer.

5.4.14.21. makeArray

>>-makeArray (-+----------—- +=)———= ><
+-Separator-+

This method returns an array of strings containing the substrings that were separated using the separator
character. The default separator is the newline character.

5.4.14.22. match

>>-match(start,other—+--- - +=) — ——><
e Fomm +
+-n-+ +-,length-+

Returns .true ("1") if the characters of the other match the characters of the target buffer beginning at
position start. Return .false ("0") if the characters are not a match. start must be a positive whole number
less than or equal to the length of the target buffer.

If n is specified, the match will be performed starting with character n of other. The default value for n is
"1". n must be a positive whole number less than or equal to the length of other.

Draft - SVN Rev 6346 330 o0oRexx Reference Version 4.1.0

Chapter 5. The Builtin Classes

If length is specified, it defines a substring of other that is used for the match. length must be a positive
whole number and the combination of n and length must be a valid substring within the bounds of other.

The match method is useful for efficient string parsing as it does not require new string objects be
extracted from the target buffer.

5.4.14.23. matchChar

>>-matchChar(n, chars)----------—-——-——-——-———- ><

Returns .true ("1") if the character at position n matches any character of the string chars. Returns .false
("0") if the character does not match any of the characters in the reference set. The argument n» must be a
positive whole number less than or equal to the length of the target buffer.

5.4.14.24. overlay

>>-overlay (new-+-- -- e Fo)==><
e i e -4

+-n-+ +-,-—+———————- +o——————— +-—+
+-length-+ +-,pad-+

Modifies the buffer content by overlaying it, starting at the rn’th character, with the string new, padded or
truncated to length length. The overlay can extend beyond the end of the buffer. In this case the buffer
size will be increased. If you specify length, it must be a positive integer or zero. The default value for
length is the length of new. If n is greater than the length of the buffer content, padding is added before
the new string. The default pad character is a blank, and the default value for n is 1. If you specify n, it
must be a positive integer.

5.4.14.25. pos

>>-pos(needle-+-------- +=)—————= - ><
+-,start-+

Returns the position in the receiving buffer of another string, needle. (See also lastPos.) It returns 0 if
needle is the null string or is not found or if start is greater than the length of the receiving buffer. By
default, the search starts at the first character of the receiving buffer (that is, the value of start is 1). You
can override this by specifying start (which must be a positive whole number), the point at which the
search starts.

Examples:

x1 = .mutablebuffer~new("Saturday")

x17pos("day") -> 6
x1 = .mutablebuffer~new("abc def ghi")
x1"pos("x") -> 0
x1"pos(" ") -> 4
x1"pos(" ",5) -> 8

ooRexx Reference Version 4.1.0 331 Draft - SVN Rev 6346

Chapter 5. The Builtin Classes

5.4.14.26. replaceAt

>>-replaceAt (new,n,length-+------ e ><
+-,pad-+

Returns the receiving buffer with the characters from the nth character for length characters replaced
with new. The replacement position and length can extend beyond the end of the receiving string. The
starting position, n, must be a positive whole number, and the length must be a positive whole number or
zero. If n is greater than the length of the receiving string, padding is added before the new string. The
default pad character is a blank.

5.4.14.27. setBufferSize

>>-setBufferSize(n) - ——><

Sets the buffer size. If n is less than the length of buffer content, the content is truncated. If n is 0, the
entire contents is erased and the new buffer size is the value given in the init method.

5.4.14.28. string

>>-string-- - ——><

Retrieves the content of the buffer as a string.

5.4.14.29. subchar

>>-subchar (n) - ——><

Returns the n’th character of the receiving buffer. » must be a positive whole number. If 7 is greater that
the length of the receiving buffer then a zero-length string is returned.

5.4.14.30. substr

>>-substr(n-+----- - e et B ><
R it +-—+
+-length-+ +-,pad-+

Returns a substring from the buffer content that begins at the n’th character and is of length length,
padded with pad if necessary. The n must be a positive integer. If n is greater than
receiving_string~length, only pad characters are returned. If you omit length, the remaining buffer
content is returned. The default pad character is a blank.

5.4.14.31. subWord

>>-subWord (n—+--------- +=)—————= - - ><
+-,length-+

Draft - SVN Rev 6346 332 ooRexx Reference Version 4.1.0

Chapter 5. The Builtin Classes

Returns the substring of the receiving buffer that starts at the nth word and is up to length
whitespace-delimited words. The n must be a positive whole number. If you omit length, it defaults to the
number of remaining words in the receiving buffer. The returned string never has leading or trailing
whitespace characters, but includes all whitespace characters between the selected words.

5.4.14.32. translate
>>-translate-+---- -- -- -- ————t-
><
+-(-—-+ B B e et +-)-———+
+-tableo——+-—————————mmmm e e A s D e e

T s et S e +-n-+ +-,length-+
+-tablei-+ +-,pad-+

Returns the receiving buffer with each character translated to another character or unchanged.

The output table is fableo and the input translation table is fablei. translate searches tablei for each
character in the receiving buffer. If the character is found, the corresponding character in tableo is
replaces the character in the buffer. If there are duplicates in fablei, the first (leftmost) occurrence is used.
If the character is not found, the original character in the receiving buffer is unchanged.

The tables can be of any length. If you specify neither translation table and omit pad, the receiving string
is translated to uppercase (that is, lowercase a-z to uppercase A-Z), but if you include pad the buffer
translates the entire string to pad characters. tablei defaults to XRANGE("00"x, "FF"x), and fableo defaults
to the null string and is padded with pad or truncated as necessary. The default pad is a blank.

n is the position of the first character of the translated range. The default starting position is 1. length is
the range of characters to be translated. If omitted, length remainder of the buffer from the starting
position to the end is used.

5.4.14.33. upper

>>-upper (+-——+-—+-———————- +-—=)- —-—==><
+-n-+ +-,length-+

Returns the receiving buffer with the characters of the target string beginning with character n for length
characters converted to uppercase. If n is specified, it must be a positive whole number. If n is not
specified, the case conversion will start with the first character. If length is specified, it must be a
non-negative whole number. If length the default is to convert the remainder of the buffer.

5.4.14.34. verify

>>-verify(reference-+---- -- - S YIS
Tt +-—+ -- -- ——t—+

B

+-option-+ +-,--+- Lt +-+
+-start-+ +-,length-+

o0oRexx Reference Version 4.1.0 333 Draft - SVN Rev 6346

Chapter 5. The Builtin Classes

Returns a number that, by default, indicates whether the receiving buffer is composed only of characters
from reference. It returns 0 if all characters in the receiving buffer are in reference or returns the position
of the first character in the receiving buffer not in reference.

The option can be either Nomatch (the default) or Match. (You need to specify only the first capitalized
and highlighted letter; all characters following the first character are ignored, which can be in uppercase
or lowercase.)

If you specify Match, the method returns the position of the first character in the receiving buffer that is in
reference, or returns 0 if none of the characters are found.

The default for start is 1. Thus, the search starts at the first character of the receiving buffer. You can
override this by specifying a different start point, which must be a positive whole number.

The default for length is the length of the buffer from szart to the end of the buffer. Thus, the search
proceeds to the end of the receiving buffer. You can override this by specifying a different length, which
must be a non-negative whole number.

If the receiving string is null, the method returns 0, regardless of the value of the option. Similarly, if
start is greater than receiving_buffer~length, the method returns 0. If reference is null, the method
returns 0 if you specify Match. Otherwise, the method returns the start value.

Examples:

.mutablebuffer new(’123’) “verify(’1234567890°) -> 0
.mutablebuffer~new(’1Z3’) “verify(’1234567890°) -> 2
.mutablebuffer new(’AB4T’) “verify(’1234567890°) -> 1
.mutablebuffer~new(’AB4T’) “verify(’ 1234567890 ,°M’) -> 3
.mutablebuffer new(’AB4T’) “verify(’ 1234567890 ,°N’) -> 1
.mutablebuffer~new(’1P3Q4’) “verify(’1234567890°, ,3) -> 4
.mutablebuffer new(’123’) “verify("",N,2) -> 2
.mutablebuffer new(’ABCDE’) “verify("", ,3) -> 3
.mutablebuffer new(’AB3CD5’) “verify(’1234567890°,°M’,4) -> 6
.mutablebuffer new(’ABCDEF’) “verify(’ABC’,"N",2,3) -> 4
.mutablebuffer~new(’ABCDEF’) “verify(’ADEF’,"M",2,3) -> 4
5.4.14.35. word

>>-word(n)--- - - e - ><

Returns the nth whitespace-delimited word in the receiving buffer or the null string if the receiving buffer
has fewer than n words. The n must be a positive whole number. This method is exactly equivalent to

receiving_buffer~subWord(n,1).

5.4.14.36. wordIndex

>>-wordIndex(n)---------- - —— e - ><

Returns the position of the first character in the nth whitespace-delimited word in the receiving buffer. It
returns 0 if the receiving buffer has fewer than n words. The n must be a positive whole number.

Draft - SVN Rev 6346 334 ooRexx Reference Version 4.1.0

Chapter 5. The Builtin Classes

5.4.14.37. wordLength

>>-wordLength(n)-- - - ————— - ><

Returns the length of the nth whitespace-delimited word in the receiving buffer or 0 if the receiving
buffer has fewer than n words. The n must be a positive whole number.

5.4.14.38. wordPos

>>-wordPos (phrase-+-------- R et ><
+-,start-+

Returns the word number of the first word of phrase found in the receiving buffer, or 0 if phrase contains
no words or if phrase is not found. Multiple whitespace characters between words in either phrase or the
receiving buffer are treated as a single blank for the comparison, but, otherwise, the words must match
exactly.

By default the search starts at the first word in the receiving buffer. You can override this by specifying
start (which must be positive), the word at which the search is to be started.

5.4.14.39. words

>>-yords-—- - - - - ><

Returns the number of whitespace-delimited words in the receiving buffer.

5.4.15. The RegularExpression Class

This class provides support for regular expressions. A regular expression is a pattern you can use to
match strings.

Note: The RegularExpression class is not a built-in class and is NOT preloaded. It is defined in the
rxregexp.cls file. This means you must use a : :requires statement to activate its functionality, as
follows:

::requires '"rxregexp.cls"

o0oRexx Reference Version 4.1.0 335 Draft - SVN Rev 6346

Chapter 5. The Builtin Classes

Figure 5-42. The RegularExpression class and methods

Object

RegularExpression
;:requires rxregexp.cls

init
match
parse
pos
position

Note: The RegularExpression class also has available class methods that its metaclass, the Class
class, defines.

Here is a description of the syntax:

| OR operator between the left and right expression

? Matches any single character

* Matches the previous expression zero or more times

+ Matches the previous expression one or more times

\ "Escape” symbol: use the next character literally

0 Expression in parenthesis (use where needed)

{n} Matches previous expression n times (n>1)

[Set definition: matches any single character out of the defined set.
A "N right after the opening bracket means that none of the following characters
should be matched.

A '-' (if not used with '\') defines a range between the last specified character and
the one following '-'. If it is the first character in the set definition, it is used
literally.

The following symbolic names (they must start and end with ") can be used to abbreviate common sets:

:ALPHA: Characters in the range A-Z and a-z
:LOWER: Characters in the range a-z
:UPPER: Characters in the range A-Z
:DIGIT: Characters in the range 0-9
:ALNUM: Characters in :DIGIT: and : ALPHA:
Draft - SVN Rev 6346 336 ooRexx Reference Version 4.1.0

:XDIGIT:
:BLANK:
:SPACE:

:CNTRL:
:PRINT:

:GRAPH:
:PUNCT:

Examples:

Chapter 5. The Builtin Classes

Characters in :DIGIT:, A-F and a-f
Space and tab characters

Characters "09"x to "OD"x and space
Characters "00"x to "1F"x and "7F"x
Characters in the range "20"x to "7E"x

Characters in :PRINT: without space

All :PRINT: characters without space and not in :ALNUM:

::requires "rxregexp.cls"

"(Hi|Hello) World"

"file.7?7?7?"

"file.?{3}"
" xb"

"a +b"

"file. [bd]at"
"[A-Za-z]+"

"[:ALPHA:]+"
"[~0-9] "

"[:DIGIT::LOWER:]"

"This is (very)+nice."

Matches

"Hi World" and

"Hello World".

Matches

any file with three

characters after "."

Same as
Matches
Ilall and

arbitrary number of spaces in between

both.

Same as
must be
Matches
Matches

above.
all strings that begin with
end with "b" and have an

above, but at least one space
present.

"file.bat" and "file.dat".
any string containing only

letters.

Same as
Matches
numbers

above, using symbolic names.
any string containing no
, including the empty string.

A single character, either a digit or

a lower
Matches

case character.
all strings with one or more

occurrences of "very " between

"This is " and "nice.".

5.4.15.1. Inherited Methods

Methods inherited from the Object class.

new (class method)
= \: = \== <> >
class

copy
defaultName

hasMethod
identityHash
init

ooRexx Reference Version 4.1.0

instanceMethod
instanceMethods

iSA

isInstanceOf
objectName
objectName=

Request
Run

send
sendWith

setMethod
start

startWith
string
unsetMethod

337

Draft - SVN Rev 6346

Chapter 5. The Builtin Classes

5.4.15.2. init

+-,-"MAXIMAL"--+
>>—init (-+- bm +-) —><
+-Pattern-+ +-,-"MINIMAL"--+

Instantiates a RegularExpression object. Use the optional parameter Pattern to define a pattern that is
used to match strings. See the introductory text below for a description of the syntax. If the strings
match, you can decide whether you want to apply "greedy" matching (a maximum-length match) or
"non-greedy" matching (a minimum-length match).

Examples:

myRE1
myRE2

.RegularExpression™new
.RegularExpression™new("Hello7*")

5.4.15.3. match

>>-match(-string-) - -- - —><

This method tries to match string to the regular expression that was defined on the "new" invocation or
on the "parse" invocation. It returns O on an unsuccessful match and 1 on a successful match. For an
example see Parse.

5.4.15.4. parse

+-,="CURRENT"-—+
>>-parse(-Pattern-+------------——- +-—= -><
+-,~"MAXIMAL"-~+
+-,~"MINIMAL"-—+

This method creates the matcher used to match a string from the regular expression specified with
Pattern. The RegularExpression object uses this regular expression until a new invocation of Parse takes
place. The second (optional) parameter specifies whether to use minimal or maximal matching. The
default is to use the current matching behavior.

Return values:

0

Regular expression was parsed successfully.
1

An unexpected symbol was met during parsing.
2

A missing ')' was found.

Draft - SVN Rev 6346 338 o0oRexx Reference Version 4.1.0

Chapter 5. The Builtin Classes

3
An illegal set was defined.
4
The regular expression ended unexpectedly.
5
An illegal number was specified.
Example 1:
a.0 = "does not match regular expression"
a.1l = "matches regular expression"
b = .array~of ("This is a nice flower.",
"This is a yellow flower.",
"This is a blue flower.",
"Hi there!")
myRE = .RegularExpression™new

e = myRE"parse("This is a 7777 flower.")
if e == 0 then do
do i over b
j = myRE"match(i)
say i~left(24) ">>" a.j
end
end
else
say "Error" e "occurred!"
exit

::requires "rxregexp.cls"

Output:

This is a nice flower. >> Does match regular expression
This is a yellow flower. >> Does not match regular expression
This is a blue flower. >> Does match regular expression

Hi there! >> Does not match regular expression
Example 2:

a.0 = "an invalid number!"

a.l = "a valid number."

b= . array”o:f (II 1" s ngon s non s "5436412" s "ig" s llf43gll)

myRE = .RegularExpression~new("[1-9] [0-9]*")
do i over b
j = myRE"match(i)
say i "is" a.j
end
say

/* Now allow "hex" numbers and a single 0 */

o0oRexx Reference Version 4.1.0 339 Draft - SVN Rev 6346

Chapter 5. The Builtin Classes

if myRE~parse("0|([1-9a-f] [0-9a-f]*)") == 0 then do
do i over b
j = myRE"match(i)
say i1 "is" a.j
end
end
else
say "invalid regular expression!"

exit

::requires "rxregexp.cls"

Example 3:

str = "<p>Paragraph 1</p><p>Paragraph 2</p>"

myRE1 = .RegularExpression~new("<p>7*</p>","MINIMAL")
myRE1 match(str)

myRE2 = .RegularExpression~new("<p>7*</p>","MAXIMAL")

myRE2"match(str)

say "myREl (minimal) matched" str~substr(l,myRE1~position)
say "myRE2 (maximal) matched" str~substr(l,myRE2~position)

::requires '"rxregexp.cls"
Output:

myRE1 (minimal) matched <p>Paragraph 1</p>
myRE2 (maximal) matched <p>Paragraph 1</p><p>Paragraph 2</p>

5.4.15.5. pos

>>-pos-(-haystack-)--—---- -- - ——><

This method tries to locate a string defined by the regular expression on the "new" invocation or on the
"parse" invocation in the given haystack string. It returns O on an unsuccessful match or the starting
position on a successful match. The end position of the match can be retrieved with the position method.

Example:

str = "It is the year 2002!"
myRE = .RegularExpression~new("[1-9] [0-9]*")
begin = myRE~pos(str)
if begin > O then do
year = str-substr(begin, myRE~position - begin + 1)
say "Found the number" year "in this sentence."
end

::requires "rxregexp.cls"

Output:

Draft - SVN Rev 6346 340 ooRexx Reference Version 4.1.0

Chapter 5. The Builtin Classes

Found the number 2002 in this sentence.

5.4.15.6. position

>>-position - - - ——><

Returns the character position at which the last parse(), pos(), or match() method ended.

Example:

myRE = .RegularExpression”new

myRE~parse (" [abc") -- illegal set definition
say myRE“position -- will be 4

myRE = .RegularExpression~new("[abc]12")
myRE“match("c12")
say myRE"position -- will be 3

myRE"match("a13")
say myRE“position -- will be 2 (failure to match)

::requires '"rxregexp.cls"

5.4.16. The RexxQueue Class

The RexxQueue class provides object-style access to Rexx external data queues.

ooRexx Reference Version 4.1.0 341 Draft - SVN Rev 6346

Chapter 5. The Builtin Classes

Figure 5-43. The RexxQueue class and methods

Object

RexxQueue

create
delete
exists
open

delete
empty
get

init
lineln
lineOut
makeArray
pull
push
queue
queued
say

set

Note: The RexxQueue class also has available class methods that its metaclass, the Class class,
defines.

5.4.16.1. Inherited Methods

Methods inherited from the Object class.

new (class method) instanceMethod send
=\===\== <> >< instanceMethods sendWith

class isA setMethod
copy isInstanceOf start
defaultName objectName startWith
hasMethod objectName= string
identityHash Request unsetMethod
init Run
Draft - SVN Rev 6346 342 ooRexx Reference Version 4.1.0

Chapter 5. The Builtin Classes

5.4.16.2. create (Class Method)

>>-create(name) --- - - S, o3¢

Attempts to create an external Rexx named queue using name. If a name queue already exists, a new
queue with a Rexx-generated name will be created. This method returns the name of the created queue,
which will be either name, or a generated name if there is a conflict.

5.4.16.3. delete (Class Method)

>>-delete(name) ————------ - ————— -—=><

Attempts to delete an external Rexx named queue named name. This method returns "0" if the queue was
successfully deleted. Non-zero results are the error codes from the RexxDeleteQueue() programming
interface.

5.4.16.4. exists (Class Method)

>>-exists(name) ————————=— = mmm ><

Tests if an external Rexx queue name currently exists, returning 1 (true) if it does and O (false) otherwise.

5.4.16.5. open (Class Method)

>>-open(name) ————————————————— - - ><

Tests if the external Rexx named queue nameexists and creates the queue if it does not.

5.4.16.6. delete

>>-delete—- - - —————————— ><

Deletes the Rexx external queue associated with this RexxQueue instance.

5.4.16.7. empty

>>-empty-—- -= -= - -><

Removes all items from the Rexx external queue associated with this RexxQueue instance.

5.4.16.8. get

>>-get - e ><

Returns the name of the Rexx external queue associated with this instance.

ooRexx Reference Version 4.1.0 343 Draft - SVN Rev 6346

Chapter 5. The Builtin Classes

5.4.16.9. init

>>-init (~+-————=+-)—————- - e ><
+-name—+

Initializes a new RexxQueue instance associated with the named Rexx external queue. If name is not
specified, the SESSION queue is used. If the named queue does not exist, one will be created.

5.4.16.10. lineln

>>-lineln—- - -><

Reads a single line from the Rexx external queue. If the queue is empty, lineIn will wait until a line is
added to the queue.

5.4.16.11. lineOut

>>-lineQut (~+------+-)--- -- ><
+-line-+

Adds a line to the Rexx external queue in first-in-first-out (FIFO) order. If line is not specified, a null
string ("") is added.

5.4.16.12. makeArray

>>-makeArray -- -- -- -><

Returns a single-index array with the same number of items as the receiver object. Items in the new array
will have the same order as the items in the external queue. The external queue is emptied.

5.4.16.13. pull

>>-pull---- -- -- -- -><

Reads a line from the Rexx external queue. If the queue is currently empty, this method will immediately
return the Nil Object without waiting for lines to be added to the queue.

5.4.16.14. push

>>-push (—+----—- +=)—————— - ———-><
+-line—+

Adds a line to the Rexx external queue in last-in-last-out (LIFO) order. If line is not specified, a null
string ("") is added.

Draft - SVN Rev 6346 344 ooRexx Reference Version 4.1.0

Chapter 5. The Builtin Classes

5.4.16.15. queue

>>-queue (—+------ +-)————— - S — ><
+-line-+

Adds a line to the Rexx external queue in first-in-first-out (FIFO) order. If line is not specified, a null
string ("") is added.

5.4.16.16. queued

>>-queued-- - -==><

Returns the count of lines currently in the Rexx external queue.

5.4.16.17. say

>>-say (-+--—----+-) - -><
+-line-+

Adds a line to the Rexx external queue in first-in-first-out (FIFO) order. If line is not specified, a null
string ("") is added.

5.4.16.18. set

>>-set (name) - - --><

Switches the Rexx external queue associated with the RexxQueue instance. The new queue must have
been previously created. The method return value is the name of current queue being used by the
instance.

5.4.17. The Supplier Class

You can use a supplier object to iterate over items of a collection. Supplier objects are created from a
snapshot of a collection. The iteration results are not affected by later changes to the source collection
object.

ooRexx Reference Version 4.1.0 345 Draft - SVN Rev 6346

Chapter 5. The Builtin Classes

Figure 5-44. The Supplier class and methods

Object

Supplier

new

allindexes
allltems
available
getArrays
index

init

items

next
supplier

Note: The Supplier class also has available class methods that its metaclass, the Class class,
defines.

5.4.17.1. Inherited Methods

Methods inherited from the Object class.

new (class method) instanceMethod send
=\===\== <> >< instanceMethods sendWith

class iSA setMethod
copy isInstanceOf start
defaultName objectName startWith
hasMethod objectName= string
identityHash Request unsetMethod
init Run

5.4.17.2. new (Class Method)

>>-new(items, indexes)---- - ———><

Returns a new supplier object. The items argument must be an array of objects over which the supplier
iterates. The indexes argument is an array of index values with a one-to-one correspondence to the

objects contained in the items array. The created supplier iterates over the arrays, returning elements of
the values array in response to items messages, and elements of the indexes array in response to index

Draft - SVN Rev 6346 346 ooRexx Reference Version 4.1.0

Chapter 5. The Builtin Classes

messages. The supplier iterates for the number of items contained in the values array, returning the Nil
object for any nonexistent items in either array.

5.4.17.3. allindexes

>>-allltems - ———3<

Returns an array of all index values from the current supplier position to the end of the supplier. Once
allIndexes is called, no additional items can be retrieved from the supplier. Calls to available will return
"0" (false).

5.4.17.4. allltems

>>-allltems - ——3<

Returns an array of all items from the current supplier position to the end of the supplier. Once allltems
is called, no additional items can be retrieved from the supplier. Calls to available will return "0" (false).

5.4.17.5. available

>>-available - ><

Returns 1 (true) if an item is available from the supplier (that is, if the item method would return a value).
It returns 0 (false) if the collection is empty or the supplier has already enumerated the entire collection.

5.4.17.6. index

>>-index-—- - ><

Returns the index of the current item in the collection. If no item is available, that is, if available would
return false, the supplier raises an error.

5.4.17.7. init

>>-injit---- - ><

Initializes the object instance.

5.4.17.8. item

>>-item - ><

Returns the current item in the collection. If no item is available, that is, if available would return false,
the supplier raises an error.

ooRexx Reference Version 4.1.0 347 Draft - SVN Rev 6346

Chapter 5. The Builtin Classes

5.4.17.9. next

>>-next------ - - e _ ><

Moves to the next item in the collection. By repeatedly sending next to the supplier (as long as available
returns true), you can enumerate all items in the collection. If no item is available, that is, if available
would return false, the supplier raises an error.

5.4.17.10. Examples

desserts=.array~of (apples, peaches, pumpkins, 3.14159) /* Creates array */
say "The desserts we have are:"
baker=desserts”supplier /* Creates supplier object named BAKER */
do while baker~available /* Array suppliers are sequenced */
if baker~index=4
then say baker“item "is pi, not pie!!!"
else say baker~item
baker“next
end

/* Produces: */

/* The desserts we have are: */

/* APPLES */
/* PEACHES */
/* PUMPKINS */

/* 3.14159 is pi, not pie!!! */

5.4.17.11. supplier

>>-supplier-- - - - - - ——><

Returns the target supplier as a result. This method allows an existing supplier to be passed to methods
that expect an object that implements a supplier method as an argument.

5.4.18. The StreamSupplier Class

A subclass of the Supplier class that will provided stream lines using supplier semantics. This allows the
programmer to iterate over the remaining lines in a stream. A StreamSupplier object provides a snapshot
of the stream at the point in time it is created, including the current line read position. In general, the
iteration is not effected by later changes to the read and write positioning of the stream. However, forces
external to the iteration may change the content of the remaining lines as the itertion progresses.

Draft - SVN Rev 6346 348 ooRexx Reference Version 4.1.0

Chapter 5. The Builtin Classes

Figure 5-45. The StreamSupplier class and methods

Object

Supplier

StreamSupplier

available
index
init

item
next

Note: The StreamSupplier class also has available class methods that its metaclass, the Class
class, defines.

5.4.18.1. Inherited Methods

Methods inherited from the Object class.

new (class method) instanceMethod send
=\===\== <> >< instanceMethods sendWith

class iSA setMethod
copy isInstanceOf start
defaultName objectName startWith
hasMethod objectName= string
identityHash Request unsetMethod
init Run

Methods inherited from the Supplier class.

new (class method) available item

alllndexes index next
allltems init supplier

5.4.18.2. available

>>-available - ><

Returns 1 (true) if an item is available from the supplier (that is, if the item method would return a value).
It returns 0 (false) if the collection is empty or the supplier has already enumerated the entire collection.

ooRexx Reference Version 4.1.0 349 Draft - SVN Rev 6346

Chapter 5. The Builtin Classes

5.4.18.3. index

>>-index----- - - i - ><

Returns the index of the current item in the collection. If no item is available, that is, if available would
return false, the supplier raises an error.

5.4.18.4. init

>N o ><

Initializes the object instance.

5.4.18.5. item

>>-item-———————— e mmmmm oo -- -- ><

Returns the current item in the collection. If no item is available, that is, if available would return false,
the supplier raises an error.

5.4.18.6. next

>>-next----------- -- - -- -- ><

Moves to the next item in the collection. By repeatedly sending next to the supplier (as long as available
returns true), you can enumerate all items in the collection. If no item is available, that is, if available
would return false, the supplier raises an error.

5.4.19. The RexxContext Class

The RexxContext class gives access to context information about the currently executing Rexx code.
Instances of the RexxContext class can only be obtained via the . CONTEXT environment symbol. They
cannot be directly created by the user. It is a subclass of the Object class.

Draft - SVN Rev 6346 350 o0oRexx Reference Version 4.1.0

Chapter 5. The Builtin Classes

Figure 5-46. The RexxContext class and methods

Object

RexxContext

args
condition
digits
executable
form

fuzz

line
package
rs
variables

5.4.19.1. Inherited Methods

Methods inherited from the Object class.

new (class method) instanceMethod send
=\===\== <> >< instanceMethods sendWith

class iSA setMethod
copy isInstanceOf start
defaultName objectName startWith
hasMethod objectName= string
identityHash Request unsetMethod
init Run
5.4.19.2. args
>>-args---- -- -><

Returns the arguments used to invoke the current context as an array. This is equivalent to using the
Arg(1,’A’) built-in function.

5.4.19.3. condition

>>-condition - -><

ooRexx Reference Version 4.1.0 351 Draft - SVN Rev 6346

Chapter 5. The Builtin Classes

Returns the current context condition object, or the Nil object if the context does not currently have a
trapped condition. This is equivalent to using the Condition(’O’) built-in function.

5.4.19.4. digits

>>-digits—- - -><

Returns the current context digits setting. This is equivalent to using the digits() built-in function.

5.4.19.5. executable

>>-executable - ——3<

Returns the current executable object for the current context. The executable will be either a Routine or
Method object, depending on the type of the active context.

5.4.19.6. form

>>-form - -—==><

Returns the current context form setting. This is equivalent to using the form() built-in function.

5.4.19.7. fuzz

>>-fuzz---- - -——=><

Returns the current context fuzz setting. This is equivalent to using the fuzz() built-in function.

5.4.19.8. line

>>-1line---- - -——-><

Returns the context current execution line. This is equivalent to using the .LINE environment symbol.

5.4.19.9. package

>>-package--- - - - -—==><

Returns the Package object associated with the current executable object.

5.4.19.10.rs

>>-rs- - - - e ———><

Draft - SVN Rev 6346 352 ooRexx Reference Version 4.1.0

Chapter 5. The Builtin Classes

Returns the context current return status value. If no host commands have been issued in the current
context, the Nil object is returned. This is equivalent to using the .RS environment symbol.

5.4.19.11. variables

>>-variables - ———3<

Returns a directory object containing all of the variables in the current execution context. The directory
keys will be the variable names and the mapped values are the values of the variables. The directory will
only contain simple variables and stem variables. Compound variable values may be accessed by using
the stem objects that are returned for the stem variable names.

5.4.20. The WeakReference Class

A WeakReference instance maintains a non-pinning reference to another object. A non-pinning reference
does not prevent an object from getting garbage collected or having its uninit method run when there are
no longer normal references maintained to the object. Once the referenced object is eligible for garbage
collection, the reference inside the WeakReference instance will be cleared and the VALUE method will
return .nil on all subsequent calls. WeakReferences are useful for maintaining caches of objects without
preventing the objects from being reclaimed by the garbage collector when needed.

Figure 5-47. The WeakReference class and methods

Object

WeakReference

new

value

Note: The WeakReference class also has available class methods that its metaclass, the Class
class, defines.

5.4.20.1. Inherited Methods

Methods inherited from the Object class.

new (class method) instanceMethod send

=\===\== <> >< instanceMethods sendWith
class iSA setMethod
copy isInstanceOf start

o0oRexx Reference Version 4.1.0 353 Draft - SVN Rev 6346

Chapter 5. The Builtin Classes

defaultName objectName startWith
hasMethod objectName= string
identityHash Request unsetMethod
init Run

5.4.20.2. new (Class Method)

>>-new-(object)-—- -- —mmmmm—— o -- -- ><

Returns a new WeakReference instance containing a reference to object.

5.4.20.3. value

>>-value--- - - - ><

This method returns the referenced object. If the object has been garbage collected, then the Nil object is
returned.

5.4.21. The Pointer Class

Figure 5-48. The Pointer class and methods

Object
Pointer
new
=>_< <> \==
isNull

A Pointer instance is a wrapper around a native pointer value. This class is designed primarily for writing
methods and functions in native code and can only be created using the native code application
programming interfaces. The Pointer class new method will raise an error if invoked.

Note: The Pointer class also has available class methods that its metaclass, the Class class, defines.

Draft - SVN Rev 6346 354 ooRexx Reference Version 4.1.0

Chapter 5. The Builtin Classes

5.4.21.1. Inherited Methods

Methods inherited from the Object class.

new (class method) instanceMethod send

=\===\== <> >< instanceMethods sendWith
class isA setMethod
copy isInstanceOf start
defaultName objectName startWith
hasMethod objectName= string
identityHash Request unsetMethod
init Run

5.4.21.2. new (Class Method)

>>-new-—--—-——---- -- o -- -- ><

Creating Pointer object instances directly from Rexx code is not supported. The Pointer class new
method will raise an error if invoked.

5.4.21.3. Operator Methods

>>-comparison_operator (argument)-—---------- - - ><

Returns 1 (true) or 0 (false), the result of performing a specified comparison operation.

For the Pointer class, the argument object must be a pointer object instance and the wrappered pointer
value must be the same.

The comparison operators you can use in a message are:

=, == True if the wrappered pointer values are the same.

\=, ><, <>, \== True if the wrappered pointer values are not the same.

5.4.21.4. isNull

>>-igNull--------- -- —————— e ><

Returns 1 (true) if the wrappered pointer value is a NULL pointer (0) value. Returns 0 (false) if the
pointer value is non-zero.

ooRexx Reference Version 4.1.0 355 Draft - SVN Rev 6346

Chapter 5. The Builtin Classes

5.4.22. The Buffer Class

Figure 5-49. The Buffer class and methods

Object

Buffer

new

A Buffer instance is a Rexx interpreter managed block of storage. This class is designed primarily for
writing methods and functions in native code and can only be created using the native code application
programming interfaces. The Buffer class new method will raise an error if invoked.

Note: The Buffer also has available class methods that its metaclass, the Class class, defines.

5.4.22.1. Inherited Methods

Methods inherited from the Object class.

new (class method) instanceMethod send
=\===\== <> >< instanceMethods sendWith

class isA setMethod
copy isInstanceOf start
defaultName objectName startWith
hasMethod objectName= string
identityHash Request unsetMethod
init Run

5.4.22.2. new (Class Method)

>>-new - - - - - - ><

Creating Buffer object instances directly from Rexx code is not supported. The Buffer class new method
will raise an error if invoked.

Draft - SVN Rev 6346 356 0oRexx Reference Version 4.1.0

Chapter 6. Rexx Runtime Objects

In addition to the class objects described in the previous chapter, the Rexx runtime environment also
provides objects that are accessible via environment symbols (see Environment Symbols).

6.1. The Environment Directory (.ENVIRONMENT)

The Environment object is a directory of public objects that are always accessible. The Environment
object is automatically searched when environment symbols are used, or the Environment object may be
directly accessed using the . ENVIRONMENT symbol. Entries stored in the Environment use the same
name as the corresponding environment symbol, but without a leading period. For example:

say .true -- Displays "1"
say .environment true -- Also displays "1"

The Environment object directory contains all of the Rexx built-in classes (Array, etc.), plus special Rexx
constants such as .NIL, .TRUE, and .FALSE.

6.1.1. The ENDOFLINE Constant (.ENDOFLINE)

The ENDOFLINE object is a string constant representing the line terminator used for file line end
markers for a given system. This constant is "0dOa"x on Windows (carriage return/linefeed) and "0a"x
(linefeed) on Unix platforms.

6.1.2. The FALSE Constant (.FALSE)

The FALSE object is the constant "0" representing a FALSE result for logical and comparison operations.

6.1.3. The NIL Object (.NIL)

The Nil object is a special object that does not contain data. It usually represents the absence of an
object, as a null string represents a string with no characters. It has only the methods of the Object class.
Note that you use the Nil object (rather than the null string ("")) to test for the absence of data in an array
or other Collection class entry:

nn

if .nil = board[row,coll /* .NIL rather than "" */
then ...

6.1.4. The TRUE Constant (.TRUE)

The TRUE object is the constant "1", representing a true result for logical and comparison operations.

ooRexx Reference Version 4.1.0 357 Draft - SVN Rev 6346

Chapter 6. Rexx Runtime Objects

6.2. The Local Directory (.LOCAL)

The Local environment object is a directory of interpreter instance objects that are always accessible.
You can access objects in the Local environment object in the same way as objects in the Environment
object. The Local object contains the INPUT, .OUTPUT, and .ERROR Monitor objects used for Rexx
console I/O, the .STDIN, .STDOUT, and .STDERR output streams that are the default I/O targets, and
the .STDQUE RexxQueue instance used for Rexx external queue operations.

Because both . ENVIRONMENT and .LOCAL are directory objects, you can place objects into, or
retrieve objects from, these environments by using any of the directory methods ([],[]=, PUT, AT,
SETENTRY, ENTRY, or SETMETHOD). To avoid potential name clashes with built-in objects and
public objects that Rexx provides, each object that your programs add to these environments should have
a period in its index.

Examples:

/* .LOCAL example--places something in the Local environment directory */
.local™my.alarm = theAlarm

/* To retrieve it */
say .local™my.alarm

/* Another .LOCAL example (Windows) */
.environment ["MYAPP.PASSWORD"] = "topsecret"
.environment ["MYAPP.UID"] = 200

/* Create a local directory for my stuff */
.local ["MYAPP.LOCAL"] = .directory new

/* Add log file for my local directory x/
.myapp.local["LOG"] = .stream™new("myapp.log")

say .myapp.password /* Displays "topsecret" x/
say .myapp.uid /* Displays "200" x/

/* Write a line to the log file */
.myapp.local“log~lineout("Logon at "time()" on "date())

/* Redirect SAY lines into a file: */

.output~destination(.stream new("SAY_REDIRECT.TXT"))
say "This goes into a file, and not onto the screen!"

6.3. The Error Monitor (.ERROR)

This monitor object (see The Monitor Class) holds the trace stream object. You can redirect the trace
output in the same way as with the output object in the Monitor class example.

The default for this object’s initial destination is the .STDERR stream.

Draft - SVN Rev 6346 358 o0oRexx Reference Version 4.1.0

Chapter 6. Rexx Runtime Objects

6.4. The Input Monitor (.INPUT)

This monitor object (see The Monitor Class) holds the default input stream object (see Input and Output
Streams). This input stream is the source for the PARSE LINEIN instruction, the LINEIN method of the
Stream class, and, if you specify no stream name, the LINEIN built-in function. It is also the source for
the PULL and PARSE PULL instructions if the external data queue is empty.

The default for this object’s initial source is the .STDIN stream.

6.5. The Output Monitor (.OUTPUT)

This monitor object (see The Monitor Class) holds the default output stream object (see Input and Output
Streams). This is the destination for output from the SAY instruction, the LINEOUT method
(.OUTPUT~LINEOUT), and, if you specify no stream name, the LINEOUT built-in function. You can
replace this object in the environment to direct such output elsewhere (for example, to a transcript
window).

The default for this object’s initial destination is the .STDOUT stream.

6.6. The STDERR Stream (.STDERR)

This stream object (see The Stream Class) is the default stream used for trace and error message output.

6.7. The STDIN Stream (.STDIN)

This is the stream object (see The Stream Class) representing the representing the standard input file of a
process. It is the startup default stream for the INPUT object.

6.8. The STDOUT Stream (.STDOUT)

This is the stream object (see The Stream Class) representing the representing the standard output file of
a process. It is the startup default stream for the .OUTPUT object.

6.9. The STDQUE Queue (.STDQUE)

This RexxQueue object (see The RexxQueue Class) is the destination for the PUSH and QUEUE
instruction, and the source for queue lines for the PULL and PARSE PULL instructions.

o0oRexx Reference Version 4.1.0 359 Draft - SVN Rev 6346

Chapter 6. Rexx Runtime Objects

6.10. The Rexx Context (.CONTEXT)

The .CONTEXT environment symbol accesses a RexxContext instance for the currently active Rexx
execution environment. See The RexxContext Class) for details on the RexxContext object. The returned
context object is only active until the current method call, routine call, or program terminates. Once the
context object is deactivated, an error will be raised if any of the RexxContext methods are called.

6.11. The Line Number (.LINE)

.LINE is set to the line number of the instruction currently being executed. If the current instruction is
defined within an INTERPRET instruction, the line number of INTERPRET instruction is returned.

6.12. The METHODS Directory ((METHODS)

The .METHODS environment symbol identifies a directory (see The Directory Class) of methods that
::METHOD directives in the currently running program define. The directory indexes are the method
names. The directory values are the method objects. See The Method Class.

Only methods and/or attributes that are not preceded by a ::CLASS directive are in the METHODS
directory. These are known as floating methods. If there are no such methods, the METHODS symbol
has the default value of .METHODS.

Example:

/* .methods contains one entry with the index (method name) "TALK" */
o=.object~enhanced(.methods) /* create object, enhance it with methods */
o"talk("echo this text") /* test "TALK" method */
::method talk /* floating method by the name of "TALK" */

use arg text /* retrieve the argument */

say text /* display received argument */

6.13. The Return Status (.RS)

.RS is set to the return status from any executed command (including those submitted with the
ADDRESS instruction). The .RS environment symbol has a value of -1 when a command returns a
FAILURE condition, a value of 1 when a command returns an ERROR condition, and a value of 0 when
a command indicates successful completion. The value of .RS is also available after trapping the ERROR
or FAILURE condition.

Note: Commands executed manually during interactive tracing do not change the value of .RS. The
initial value of .RS is .Rs.

Draft - SVN Rev 6346 360 o0oRexx Reference Version 4.1.0

Chapter 7. Functions

A function is an internal, built-in, or external routine that returns a single result object. (A subroutine is a
function that is an internal, built-in, or external routine that might return a result and is called with the
CALL instruction.)

7.1. Syntax

A function call is a term in an expression calling a routine that carries out some procedures and returns
an object. This object replaces the function call in the continuing evaluation of the expression. You can
include function calls to internal and external routines in an expression anywhere that a data term (such
as a string) would be valid, using the following notation:

>>-function_name (----+--- e e D Attt -- -- ><
+-expression-+

The function_name is a literal string or a single symbol, which is taken to be a constant.

There can be any number of expressions, separated by commas, between the parentheses. These
expressions are called the arguments to the function. Each argument expression can include further
function calls.

Note that the left parenthesis must be adjacent to the name of the function, with no whitespace characters
in between. (A blank operator would be assumed at this point instead.) Only a comment can appear
between the name and the left parenthesis.

The arguments are evaluated in turn from left to right and the resulting objects are then all passed to the
function. This function then runs some operation (usually dependent on the argument objects passed,
though arguments are not mandatory) and eventually returns a single object. This object is then included
in the original expression as though the entire function reference had been replaced by the name of a
variable whose value is the returned object.

For example, the function SUBSTR is built into the language processor and could be used as:

N1="abcdefghi jk"
Z1="Part of N1 is: "substr(N1,2,7)
/* Sets Z1 to "Part of N1 is: bcdefgh" */

A function can have a variable number of arguments. You need to specify only those required. For
example, SUBSTR ("ABCDEF",4) would return DEF.

7.2. Functions and Subroutines

Functions and subroutines are called in the same way. The only difference between functions and
subroutines is that functions must return data, whereas subroutines need not.

The following types of routines can be called as functions:

361 Draft - SVN Rev 6346
ooRexx Reference Version 4.1.0

Chapter 7. Functions

Internal

If the routine name exists as a label in the program, the current processing status is saved for a later
return to the point of invocation to resume execution. Control is then passed to the first label in the
program that matches the name. As with a routine called by the CALL instruction, status
information, such as TRACE and NUMERIC settings, is saved too. See the CALL instruction
(CALL) for details.

If you call an internal routine as a function, you must specify an expression in any RETURN
instruction so that the routine can return. This is not necessary if it is called as a subroutine.

Example:

/* Recursive internal function execution... */

arg x

say x"! =" factorial(x)

exit

factorial: procedure /* Calculate factorial by x/
arg n /* recursive invocation. x/

if n=0 then return 1
return factorial(n-1) * n

FACTORIAL is unusual in that it calls itself (this is recursive invocation). The PROCEDURE
instruction ensures that a new variable n is created for each invocation.
Built-in

These functions are always available and are defined in Built-in Functions.

External

You can write or use functions that are external to your program and to the language processor. An
external routine can be written in any language, including Rexx, that supports the system-dependent
interfaces the language processor uses to call it. You can call a Rexx program as a function and, in
this case, pass more than one argument string. The ARG, PARSE ARG, or USE ARG instruction or
the ARG built-in function can retrieve these argument strings. When called as a function, a program
must return data to the caller.

Notes:

1. Calling an external Rexx program as a function is similar to calling an internal routine. For an
external routine, however, the caller’s variables are hidden. To leave the called Rexx program,
you can use either EXIT or RETURN. In either case, you must specify an expression.

2. You can use the INTERPRET instruction to process a function with a variable function name.
However, avoid this if possible because it reduces the clarity of the program.

7.2.1. Search Order

Functions are searched in the following sequence: internal routines, built-in functions, external functions.

Function calls or subroutines may use a name that is specified as a symbol or a literal string. For
example, these calls are equivalent:

Draft - SVN Rev 6346 362 ooRexx Reference Version 4.1.0

Chapter 7. Functions

call MyProcedure
call ’MYPROCEDURE’

Note that the name value when specified as a symbol is the symbol name translated to upper case. Both
of the calls above will search for a routine named "M YPROCEDURE". When the name is specified as a
literal string, then the literal string value is used as-is. Thus the following two calls are not equivalent:

call MyProcedure -- calls "MYPROCEDURE"
call ’MyProcedure’ -- calls "MyProcedure"

Some steps of the function and subroutine search order are case sensitive, so some care may need to be
exercised that the correct name form is used:

« Internal routines. Normally, labels are specified as a symbol followed by a ":". These labels have a
name value that’s all uppercase. Since unquoted (symbol) names also have uppercase values, these
will match easily. It is also possible to use literal strings for label names. If these labels contain
lowercase characters, they will not be located using normal call mechanisms

« Built-in functions. The built-in function names are all uppercase, so using a mixed-case literal string
built-in function name will fail to locate the function.

wordPos (needle, haystack) -- calls "WORDPOS", which works
"wordPos" (needle, haystack) —-- calls "wordPos", which will fail

X

« External routines. Some steps of the external function search order may be case sensitive, depending
on the system. This may occasionally require a function or subroutine name to be specified as a mixed
case literal string to be located.

If the call or function invocation uses a literal string, then the search for internal label is bypassed. This
bypass mechanism allows you to extend the capabilities of an existing internal function, for example, and
call it as a built-in function or external routine under the same name as the existing internal function. To
call the target built-in or external routine from inside your internal routine, you must use a literal string
for the function name.

Example:

/* This internal DATE function modifies the */

/* default for the DATE function to standard date. */

date: procedure
arg in
if in="" then in="Standard"
-- This calls the DATE built-in function rather than recursively
-- calling the DATE: internal routine. Note that the name needs to
-- be all uppercase because built-in functions have uppercase names.
return "DATE" (in)

Since built-in functions have uppercase names the literal string must also be in uppercase for the search
to succeed.

External functions and subroutines have a system-defined search order.

The search order for external functions is as follows:

1. Functions defined on ::ROUTINE directives within the program.

o0oRexx Reference Version 4.1.0 363 Draft - SVN Rev 6346

Chapter 7. Functions

2.
3.

4.

5.
6.

Public functions defined on ::ROUTINE directives of programs referenced with ::REQUIRES.

Functions that have been loaded into the macrospace for preorder execution. (See the Open Object

Rexx: Programming Guide for details.)

Functions that are part of a function package or library package. (See the Open Object Rexx:
Programming Guide for details.)

Rexx functions located in an external file. See below for how these external files are located.

Functions that have been loaded into the macrospace for postorder execution.

7.2.1.1. Locating External Rexx Files

Rexx uses an extensive search procedure for locating program files. The first element of the search
procedure is the locations that will be checked for files. The locations, in order of checking, are:

5.
6.

. The same directory the program invoking the external routine is located. If this is an initial program

execution or the calling program was loaded from the macrospace, this location is skipped.
Checking in this directory allows related program files to be called without requiring the directory
be added to the search path.

. The current filesystem directory.
. The current filesystem directory.

. Some applications using Rexx as a scripting language may define an extension path used to locate

called programs. If the Rexx program was invoked directly from the system command line, the no
extension path is defined.

Any directories specified via the REXX_PATH environment variable.

Any directories specified via the PATH environment variable.

The second element of the search process is the file extension. If the routine name contains contains at

least one period, then this routine is extension qualified. The search locations above will be checked for
the target file unchanged, and no additional steps will be taken. If the routine name is not extension
qualified, then additional searches will be performed by adding file extensions to the name. The
following extensions may be used:

1.

2.

3.
4.

If the calling program has a file extension, then the interpreter will attempt to locate a file using the
same extension as the caller. All directory locations will be checked for a given extension before
moving to the next potential extension.

Some applications Rexx as a scripting language may define extensions that should be added to the
search order. For example, an editor might define a preferred extension that should be used for editor
macros. This extension would be searched next.

The default system extensions (.REX).

If the target file has not been located using any of the above extensions, the file name is tried without
an added extension.

There are some system file system considerations involved when search for files. The Windows file

system is case insensitive, so files can be located regardless of how the call is specified. Unix-based
systems have a case sensitive file system, so files much be exact case matches in order to be located. For

Draft - SVN Rev 6346 364 ooRexx Reference Version 4.1.0

Chapter 7. Functions

these systems, each time a file name probe is attempted, the name will be tried in the case specified and
also as a lower case name.

Figure 7-1. Function and Routine Resolution and Execution

Start
yes yes
Is name in quotation marks? —
¢ no
yes
An internal function (a label)? ————®
W no
yes
A built-in function? —————»r
¢ no
yes
Function defined on ::ROUTINE? ¥
¢ no
Public function defined on ::ROUTINE yes |
in program referenced with ::REQUIRES?
¢ no
yes
Macrospace pre-order? —————»r
¢ no
yes
Part of external function package? L
¢ no
yes
External Rexx file? I—
¢ no
yes
Macrospace post-order? "
no
v v
Error Execute

o0oRexx Reference Version 4.1.0 365 Draft - SVN Rev 6346

Chapter 7. Functions

Figure 7-2. Function and Routine External File Resolution

Start
yes yes
Name have an extension?
¢ no
Located on search path with caller's yes >
extension?
¢ no
Located on search path with application yes >
extension?
¢ no
Located on search path with default yes
. 4.,
system extension?
>¢ no
Located on search path with original yes |
routine name?
yes
Proceed to next search step —————»r
\4
Execute

7.2.2. Errors during Execution

If an external or built-in function detects an error, the language processor is informed, and a syntax error
results. Syntax errors can be trapped in the caller using SIGNAL ON SYNTAX and recovery might be
possible. If the error is not trapped, the program is ended.

7.3. Return Values

A function usually returns a value that is substituted for the function call when the expression is
evaluated.

Draft - SVN Rev 6346 366 o0oRexx Reference Version 4.1.0

Chapter 7. Functions

How the value returned by a function (or any Rexx routine) is handled depends on whether it is called by
a function call or as a subroutine with the CALL instruction.

« A routine called as a subroutine: If the routine returns a value, that value is stored in the special
variable named RESULT. Otherwise, the RESULT variable is dropped, and its value is the string
RESULT.

« A routine called as a function: If the function returns a value, that value is substituted in the expression
at the position where the function was called. Otherwise, the language processor stops with an error
message.

Here are some examples of how to call a Rexx procedure:
call Beep 500, 100 /* Example 1: a subroutine call */

The built-in function BEEP is called as a Rexx subroutine. The return value from BEEP is placed in the
Rexx special variable RESULT.

bc = Beep(500, 100) /* Example 2: a function call */

BEEP is called as a Rexx function. The return value from the function is substituted for the function call.
The clause itself is an assignment instruction; the return value from the BEEP function is placed in the
variable bc.

Beep (500, 100) /* Example 3: result passed as */
/* a command */

The BEEP function is processed and its return value is substituted in the expression for the function call,
like in the preceding example. In this case, however, the clause as a whole evaluates to a single
expression. Therefore, the evaluated expression is passed to the current default environment as a
command.

Note: Many other languages, such as C, throw away the return value of a function if it is not assigned
to a variable. In Rexx, however, a value returned like in the third example is passed on to the current
environment or subcommand handler. If that environment is the default, the operating system
performs a disk search for what seems to be a command.

7.4. Built-in Functions

Rexx provides a set of built-in functions, including character manipulation, conversion, and information
functions. The following are general notes on the built-in functions:

« The parentheses in a function are always needed, even if no arguments are required. The first
parenthesis must follow the name of the function with no whitespace in between.

+ The built-in functions internally work with NUMERIC DIGITS 9 for 32-bit systems or NUMERIC
DIGITS 18 for 64-bit systems, and NUMERIC FUZZ 0 and are unaffected by changes to the
NUMERIC settings, except where stated. Any argument named as a number is rounded, if necessary,

o0oRexx Reference Version 4.1.0 367 Draft - SVN Rev 6346

Chapter 7. Functions

according to the current setting of NUMERIC DIGITS (as though the number had been added to 0)
and checked for validity before use. This occurs in the following functions: ABS, FORMAT, MAX,
MIN, SIGN, and TRUNC, and for certain options of DATATYPE.

« Any argument named as a string can be a null string.

« If an argument specifies a length, it must be a positive whole number or zero. If it specifies a start
character or word in a string, it must be a positive whole number, unless otherwise stated.

« If the last argument is optional, you can always include a comma to indicate that you have omitted it.
For example, DATATYPE(1,), like DATATYPE (1), would return NUM. You can include any number of
trailing commas; they are ignored. If there are actual parameters, the default values apply.

« If you specify a pad character, it must be exactly one character long. A pad character extends a string,
usually on the right. For an example, see the LEFT built-in function LEFT.

- If a function has an option that you can select by specifying the first character of a string, that
character can be in uppercase or lowercase.

« Many of the built-in functions invoked methos of the String class. For the functions ABBREV, ABS,
BITAND, BITOR, BITXOR, B2X, CENTER, CENTRE, CHANGESTR, COMPARE, COPIES,
COUNTSTR, C2D, C2X, DATATYPE, DELSTR, DELWORD, D2C, D2X, FORMAT, LEFT,
LENGTH, LOWER, MAX, MIN, REVERSE, RIGHT, SIGN, SPACE, STRIP, SUBSTR,
SUBWORD, TRANSLATE, TRUNC, UPPER, VERIFY, WORD, WORDINDEX, WORDLENGTH,
WORDS, X2B, X2C, and X2D, the first argument to the built-in function is used as the receiver object
for the message sent, and the remaining arguments are used in the same order as the message
arguments. For example, SUBSTR("abcde",3,2) is equivalent to "abcde"~SUBSTR(3,2).

For the functions INSERT, LASTPOS, OVERLAY, POS, and WORDPOS, the second argument to the
built-in functions is used as the receiver object for the message sent, and the other arguments are used
in the same order as the message arguments. For example, POS("a", "Haystack",3) is equivalent to
"Haystack"~“P0S("a",3).

« The language processor evaluates all built-in function arguments to produce character strings.

7.4.1. ABBREV (Abbreviation)

>>-ABBREV (information,info-—+-------—- +-=) - - - ><
+-,length-+

Returns 1 if info is equal to the leading characters of information and the length of info is not less than
length. Tt returns 0 if either of these conditions is not met.

If you specify length, it must be a positive whole number or zero. The default for length is the number of
characters in info.

Here are some examples:

ABBREV ("Print","Pri") -> 1
ABBREV ("PRINT","Pri") -> 0
ABBREV ("PRINT","PRI",4) -> 0
ABBREV ("PRINT","PRY") -> 0
ABBREV ("PRINT","") -> 1
ABBREV ("PRINT","",1) -> 0

Draft - SVN Rev 6346 368 o0oRexx Reference Version 4.1.0

Chapter 7. Functions

Note: A null string always matches if a length of o, or the default, is used. This allows a default
keyword to be selected automatically if desired; for example:
say "Enter option:"; pull option .
select /* keywordl is to be the default */
when abbrev("keywordl",option) then ...

when abbrev("keyword2",option) then ...

otherwise nop;
end;

7.4.2. ABS (Absolute Value)

>>-ABS (number) ——————=———————— - ><

Returns the absolute value of number. The result has no sign and is formatted according to the current
NUMERIC settings.

Here are some examples:

ABS("12.3") -> 12.3
ABS(" -0.307") =-> 0.307

7.4.3. ADDRESS

>>—ADDRESS() - - —_ _ ><

Returns the name of the environment to which commands are currently submitted. Trailing whitespace
characters are removed from the result.

Here is an example:

ADDRESS () -> "CMD" /* default under Windows */

ADDRESS () -> "bash" /* default under Linux */

7.4.4. ARG (Argument)

>>-ARG(——+-——————————————— +-=)—- - - ><
+-p——t——m—————— +—+

+-,option-+

Returns one or more arguments, or information about the arguments to a program, internal routine, or
method.

If you do not specify n, the number of arguments passed to the program or internal routine is returned.

o0oRexx Reference Version 4.1.0 369 Draft - SVN Rev 6346

Chapter 7. Functions

If you specify only n, the nth argument object is returned. If the argument object does not exist, the null
string is returned. n must be a positive whole number.

If you specify option, the value returned depends on the value of option. The following are valid options.
(Only the capitalized letter is needed; all characters following it are ignored.)

Array

returns a single-index array containing the arguments, starting with the nth argument. The array
indexes correspond to the argument positions, so that the nth argument is at index 1, the following
argument at index 2, and so on. If any arguments are omitted, their corresponding indexes are
absent.

Exists
returns 1 if the nth argument exists; that is, if it was explicitly specified when the routine was called.
Otherwise, it returns 0.

Normal

returns the nth argument, if it exists, or a null string.

Omitted

returns 1 if the nth argument was omitted; that is, if it was not explicitly specified when the routine
was called. Otherwise, it returns 0.

Here are some examples:

/* following "Call name;" (no arguments) */

ARGQ) -> 0
ARG(1) -> "
ARG(2) -> "
ARG(1,"e") -> 0
ARG(1,"0") -> 1
ARG(1,"a") -> .array~of ()

/* following "Call name 'a', ,'b';" */

ARGQO) -> 3

ARG(1) -> "a"

ARG(2) -> nn

ARG (3) -> "b"

ARG (n) -> nn /* for n>=4 x/
ARG(1,"e") -> 1

ARG(2,"E") -> 0

ARG(2,"0") -> 1

ARG(3,"0") -> 0

ARG(4,"0") -> 1

ARG(1,"A"™) -> .array~of(a, ,b)
ARG(3,"a") -> .array”~of (b)
Notes:

Draft - SVN Rev 6346 370 o0oRexx Reference Version 4.1.0

Chapter 7. Functions

1. The number of argument strings is the largest number n for which ARG (n, "e") returns 1 or 0 if there
are no explicit argument strings. That is, it is the position of the last explicitly specified argument
string.

2. Programs called as commands can have only 0 or 1 argument strings. The program has 0 argument
strings if it is called with the name only and has 1 argument string if anything else (including
whitespace characters) is included in the command.

3. Programs called by the RexxStart entry point can have several argument strings. (See the Open
Object Rexx: Programming Guide for information about RexxStart.)

4. You can access the argument objects of a program with the USE instruction. See USE for more
information.

5. You can retrieve and directly parse the argument strings of a program or internal routine with the
ARG or PARSE ARG instructions.

7.4.5. B2X (Binary to Hexadecimal)

>>-B2X (binary_string)---- - ><

Returns a string, in character format, that represents binary_string converted to hexadecimal.

The binary_string is a string of binary (0 or 1) digits. It can be of any length. You can optionally include
whitespace characters in binary_string (at 4-digit boundaries only, not leading or trailing) to improve
readability; they are ignored.

The returned string uses uppercase alphabetical characters for the values A-F, and does not include blanks
or horizontal tabs.

If binary_string is the null string, B2X returns a null string. If the number of binary digits in
binary_string is not a multiple of 4, then up to three 0 digits are added on the left before the conversion
to make a total that is a multiple of 4.

Here are some examples:

B2X("11000011") > ugan
B2X("10111") -> nqn
B2X("101") > ngn

B2X("1 1111 0000") -> "1FO"

You can combine B2X with the functions X2D and X2C to convert a binary number into other forms. For
example:

X2D(B2X("10111")) > "23" /* decimal 23 */

7.4.6. BEEP

>>-BEEP (frequency,duration) ----- ><

ooRexx Reference Version 4.1.0 371 Draft - SVN Rev 6346

Chapter 7. Functions

Sounds the speaker at frequency (Hertz) for duration (milliseconds). The frequency can be any whole
number in the range 37 to 32767 Hertz. The duration can be any number in the range 1 to 60000
milliseconds.

This routine is most useful when called as a subroutine. A null string is returned.

Note: Both parameters (frequency, duration) are ignored on Windows 95 and Linux. On computers
with multimedia support the function plays the default sound event. On computers without
soundcard, the function plays the standard system beep (if activated).

Here is an example for Windows NT:

/* C scale */

note.1l = 262 /* middle C */
note.2 = 294 /* D x/
note.3 = 330 /* E */
note.4 = 349 /* F */
note.5 = 392 /* G */
note.6 = 440 /* A */
note.7 = 494 /* B */
note.8 = 523 /* C */
do i=1 to 8

call beep note.i,250 /* hold each note for */
/* one-quarter second */
end

7.4.7. BITAND (Bit by Bit AND)

>>-BITAND(stringl-—+----- - - o) - ><
+-, +——p—————— +-+

>

+-string2-+ +-,pad-+

Returns a string composed of the two input strings logically ANDed, bit by bit. (The encodings of the
strings are used in the logical operation.) The length of the result is the length of the longer of the two
strings. If no pad character is provided, the AND operation stops when the shorter of the two strings is
exhausted, and the unprocessed portion of the longer string is appended to the partial result. If pad is
provided, it extends the shorter of the two strings on the right before carrying out the logical operation.
The default for string?2 is the zero-length (null) string.

Here are some examples:

BITAND("12"x) -> gy

BITAND ("73"x, "27"x) -> no3nx
BITAND("13"x,"5555"x) -> "1155"x
BITAND("13"x,"5555"x,"74"x) -> "1154"x

BITAND ("pQrS", ,"DF"x) -> "PQRS" /* ASCIT */

Draft - SVN Rev 6346 372 ooRexx Reference Version 4.1.0

Chapter 7. Functions

7.4.8. BITOR (Bit by Bit OR)

>>-BITOR(stringl-—+-————————————————————————— =) m—m ><
T s +—+

+-string2-+ +-,pad-+

Returns a string composed of the two input strings logically inclusive-ORed, bit by bit. (The encodings
of the strings are used in the logical operation.) The length of the result is the length of the longer of the
two strings. If no pad character is provided, the OR operation stops when the shorter of the two strings is
exhausted, and the unprocessed portion of the longer string is appended to the partial result. If pad is
provided, it extends the shorter of the two strings on the right before carrying out the logical operation.
The default for string?2 is the zero-length (null) string.

Here are some examples:

BITOR("12"x) -> "12"x
BITOR("15"x,"24"x) -> "35"x
BITOR("15"x,"2456"x) -> "3556"x
BITOR("15"x,"2456"x,"F0"x) -> "35F6"x
BITOR("1111"x, ,"4D"x) -> "5D5D"x
BITOR("pQrS", ,"20"x) -> "pars" /x ASCII */

7.4.9. BITXOR (Bit by Bit Exclusive OR)

>>-BITXOR(stringl-—+----- - ——t—)- S<
e Fo—t—————— +—+

>

+-string2-+ +-,pad-+

Returns a string composed of the two input strings logically eXclusive-ORed, bit by bit. (The encodings
of the strings are used in the logical operation.) The length of the result is the length of the longer of the
two strings. If no pad character is provided, the XOR operation stops when the shorter of the two strings
is exhausted, and the unprocessed portion of the longer string is appended to the partial result. If pad is
provided, it extends the shorter of the two strings on the right before carrying out the logical operation.
The default for string?2 is the zero-length (null) string.

Here are some examples:

BITXOR("12"x) -> "12"x
BITXOR("12"x,"22"x) -> "30"x
BITXOR("1211"x,"22"x) -> "3011"x
BITXOR("1111"x,"444444"x) -> "bbbb544"x
BITXOR("1111"x,"444444"x,"40"x) -> "b555504"x
BITXOR("1111"x, ,"4D"x) -> "5C5C"x
BITXOR("C711"x,"222222"x," ") -> "EB3302"x /* ASCII */

7.4.10. C2D (Character to Decimal)

>>-C2D(string-—+--——-+--)- - — 5<

o0oRexx Reference Version 4.1.0 373 Draft - SVN Rev 6346

Chapter 7. Functions
+-,n-+

Returns the decimal value of the binary representation of string. If the result cannot be expressed as a
whole number, an error results. That is, the result must not have more digits than the current setting of
NUMERIC DIGITS. If you specify n, it is the length of the returned result. If you do not specify n, string
is processed as an unsigned binary number.

If string is null, 0 is returned.

Here are some examples:

C2D("09"X) -> 9
Cc2D("81"X) -> 129
C2D("FF81"X) -> 65409
c2D("") -> 0
c2D("a") -> 97 /* ASCII %/

If you specify n, the string is taken as a signed number expressed in n characters. The number is positive
if the leftmost bit is off, and negative if the leftmost bit is on. In both cases, it is converted to a whole
number, which can be negative. The string is padded on the left with "00"x characters (not
"sign-extended"), or truncated on the left to n characters. This padding or truncation is as though

RIGHT (string, n,"00"x) had been processed. If n is 0, C2D always returns 0.

Here are some examples:

c2D("81"X,1) -> -127
C2D("81"X,2) -> 129
C2D("FF81"X,2) -> -127
C2D("FF81"X,1) -> -127
C2D("FF7F"X,1) -> 127
C2D("F081"X,2) -> -3967
C2D("F081"X,1) -> -127
C2D("0031"X,0) -> 0

7.4.11. C2X (Character to Hexadecimal)

>>-C2X (string) -—-- - - S<

Returns a string, in character format, that represents string converted to hexadecimal. The returned string
contains twice as many bytes as the input string. On an ASCII system, C2X(1) returns 31 because the
ASCII representation of the character 1 is "31"X.

The string returned uses uppercase alphabetical characters for the values A-F and does not include
whitespace characters. The string can be of any length. If string is null, a null string is returned.

Here are some examples:

C2X("0123"X) -> "0123" /* "30313233"X in ASCII =/
C2X("ZD8") -> "5A4438" /* "354134343338"X in ASCII */

Draft - SVN Rev 6346 374 ooRexx Reference Version 4.1.0

Chapter 7. Functions

7.4.12. CENTER (or CENTRE)

>>-+-CENTER (-+--string,length-—+--——--+--) - -- -- ><
+-CENTRE (-+ +-,pad-+

Returns a string of length length with string centered in it and with pad characters added as necessary to
make up length. The length must be a positive whole number or zero. The default pad character is blank.
If the string is longer than length, it is truncated at both ends to fit. If an odd number of characters is
truncated or added, the right-hand end loses or gains one more character than the left-hand end.

Here are some examples:

CENTER (abc,7) -> " ABC "
CENTER (abc,8,"-") -> "--ABC-—--"
CENTRE("The blue sky",8) -> "e blue s"
CENTRE("The blue sky",7) -> "e blue "

Note: To avoid errors because of the difference between British and American spellings, this function
can be called either CENTRE or CENTER.

7.4.13. CHANGESTR

>>-CHANGESTR (needle,haystack,newneedle-—+-------- +-=)————- - - ><

Returns a copy of haystack in which newneedle replaces occurrences of needle. If count is not specified,
all occurrences of needle are replaced. If count is specified, it must be a positive, whole number that
gives the maximum number of occurrences to be replaced. The following defines the effect:

result = ""
1
do forever

$tempx

$tempy = pos(needle, haystack, $tempx)
if $tempy = O then leave
result = result || substr(haystack, $tempx, $tempy - $tempx) || newneedle
$tempx = $tempy + length(needle)
end
result = result || substr(haystack, $tempx)

Here are some examples:

CHANGESTR("1","101100","") -> "000"
CHANGESTR("1","101100","X") -> "X0XX00"
CHANGESTR("1","101100","X", 1) -> "X01100"

ooRexx Reference Version 4.1.0 375 Draft - SVN Rev 6346

Chapter 7. Functions

7.4.14. CHARIN (Character Input)

>>-CHARIN (—-+ ———t—— Rttt =) mm ><

+-start-+ +-,length-+

Returns a string of up to length characters read from the character input stream name. (To understand the
input and output functions, see Input and Output Streams.) If you omit name, characters are read from
STDIN, which is the default input stream. The default length is 1.

For persistent streams, a read position is maintained for each stream. Any read from the stream starts at
the current read position by default. When the language processor completes reading, the read position is
increased by the number of characters read. You can give a start value to specify an explicit read position.
This read position must be a positive whole number and within the bounds of the stream, and must not be
specified for a transient stream. A value of 1 for start refers to the first character in the stream. If start is
not a positive whole number the appropriate syntax condition is raised. When the read position is past the
bounds of the stream, the empty string is returned and the NOTREADY condition is raised.

If you specify a length of 0, then the read position is set to the value of start, but no characters are read
and the null string is returned.

In a transient stream, if there are fewer than length characters available, the execution of the program
generally stops until sufficient characters become available. If, however, it is impossible for those
characters to become available because of an error or another problem, the NOTREADY condition is
raised (see Errors during Input and Output) and CHARIN returns with fewer than the requested number
of characters.

Here are some examples:

CHARIN(myfile,1,3) -> "MFC" /* the first 3 */

/* characters x/
CHARIN (myfile,1,0) -> " /* now at start */
CHARIN (myfile) - "M /* after last call */
CHARIN (myfile, ,2) -> "FC" /* after last call */

/* Reading from the default input (here, the keyboard) */

/* User types "abcd efg" x/

CHARIN() -> "a" /* default is */
/* 1 character x/

CHARIN(, ,5) -> "bcd e"

Notes:

1. CHARIN returns all characters that appear in the stream, including control characters such as line
feed, carriage return, and end of file.

2. When CHARIN reads from the keyboard, program execution stops until you press the Enter key.

7.4.15. CHAROUT (Character Output)

>>-CHAROUT (——+---———+--+ ————————— e SR ><

Draft - SVN Rev 6346 376 o0oRexx Reference Version 4.1.0

Chapter 7. Functions
+-string-+ +-,start-+

Returns the count of characters remaining after attempting to write string to the character output stream
name. (To understand the input and output functions, see Input and Output Streams.) If you omit name,
characters in string are written to STDOUT (generally the display), which is the default output stream.
The string can be a null string, in which case no characters are written to the stream, and 0 is always
returned.

For persistent streams, a write position is maintained for each stream. Any write to the stream starts at
the current write position by default. When the language processor completes writing, the write position
is increased by the number of characters written. When the stream is first opened, the write position is at
the end of the stream so that calls to CHAROUT append characters to the end of the stream.

You can give a start value to specify an explicit write position for a persistent stream. This write position
must be a positive whole number. A value of 1 for start refers to the first character in the stream.

You can omit the string for persistent streams. In this case, the write position is set to the value of start
that was given, no characters are written to the stream, and 0 is returned. If you do not specify start or
string, the stream is closed and 0 is returned.

Execution of the program usually stops until the output operation is complete.

For example, when data is sent to a printer, the system accepts the data and returns control to Rexx, even
though the output data might not have been printed. Rexx considers this to be complete, even though the
data has not been printed. If, however, it is impossible for all the characters to be written, the
NOTREADY condition is raised (see Errors during Input and Output) and CHAROUT returns with the
number of characters that could not be written (the residual count).

Here are some examples:

CHAROUT (myfile, "Hi") -> 0 /* typically */
CHAROUT (myfile,"Hi",56) -> 0 /* typically */
CHAROUT (myfile, ,6) -> 0 /* now at char 6 */
CHAROUT (myfile) -> 0 /* at end of stream */
CHAROUT(, "Hi") -> 0 /% typically */
CHAROUT(, "Hello") -> 2 /* maybe */

Note: This routine is often best called as a subroutine. The residual count is then available in the
variable RESULT.

For example:

Call CHAROUT myfile,"Hello"
Call CHAROUT myfile,"Hi",6
Call CHAROUT myfile

7.4.16. CHARS (Characters Remaining)

>>-CHARS (-—+------ e - -- -- ><

ooRexx Reference Version 4.1.0 377 Draft - SVN Rev 6346

Chapter 7. Functions

Returns the total number of characters remaining in the character input stream name. The count includes
any line separator characters, if these are defined for the stream. In the case of persistent streams, it is the
count of characters from the current read position. (See Input and Output Streams for a discussion of
Rexx input and output.) If you omit name, the number of characters available in the default input stream
(STDIN) is returned.

The total number of characters remaining cannot be determined for some streams (for example, STDIN).
For these streams, the CHARS function returns 1 to indicate that data is present, or 0 if no data is present.
For windows devices, CHARS always returns 1.

Here are some examples:

CHARS (myfile) -> 42 /% perhaps */
CHARS (nonfile) -> 0
CHARS () -> 1 /* perhaps */

7.4.17. COMPARE

>>-COMPARE (stringl,string2-—+-—-----+-=)-——————-——-- -- ><
+-,pad-+

Returns 0 if the strings stringl and string2 are identical. Otherwise, it returns the position of the first
character that does not match. The shorter string is padded on the right with pad if necessary. The default
pad character is a blank.

Here are some examples:

COMPARE("abc","abc") -> 0
COMPARE ("abc", "ak") -> 2
COMPARE("ab ","ab") -> 0
COMPARE("ab ","ab"," ") -> 0
COMPARE("ab ","ab","x") -> 3
COMPARE ("ab-- ","ab","-") -> 5

7.4.18. CONDITION

>>-CONDITION(-—+-------- +-=)———— - - ><
+-option-+

Returns the condition information associated with the current trapped condition. (See Conditions and
Condition Traps for a description of condition traps.) You can request the following pieces of
information:

+ The name of the current trapped condition
+ Any descriptive string associated with that condition
+ Any condition-specific information associated with the current trapped condition

« The instruction processed as a result of the condition trap (CALL or SIGNAL)

Draft - SVN Rev 6346 378 o0oRexx Reference Version 4.1.0

Chapter 7. Functions

« The status of the trapped condition
In addition, you can request a condition object containing all of the preceding information.

To select the information to be returned, use the following options. (Only the capitalized letter is needed;
all characters following it are ignored.)

Additional

returns any additional object information associated with the current trapped condition. See

Additional Object Information for a list of possible values. If no additional object information is

available or no condition has been trapped, the language processor returns the Nil object.
Condition name

returns the name of the current trapped condition. For user conditions, the returned string is a

concatenation of the word USER and the user condition name, separated by a whitespace character.
Description

returns any descriptive string associated with the current trapped condition. See Descriptive Strings
for the list of possible values. If no description is available or no condition has been trapped, it
returns a null string.

Instruction

returns either CALL or SIGNAL, the keyword for the instruction processed when the current condition
was trapped. This is the default if you omit option. If no condition has been trapped, it returns a null
string.

Object
returns an object that contains all the information about the current trapped condition. See
Conditions and Condition Traps for more information. If no condition has been trapped, it returns
the Nil object.

Status

returns the status of the current trapped condition. This can change during processing, and is one of
the following:

+ 0N - the condition is enabled

« OFF - the condition is disabled

« DELAY - any new occurrence of the condition is delayed or ignored
If no condition has been trapped, a null string is returned.

Here are some examples:

CONDITION() -> "CALL" /* perhaps */
CONDITION("C") -> "FAILURE"

CONDITION("I") -> "CALL"

CONDITION("D") -> "FailureTest"
CONDITION("S") -> "OFF" /* perhaps */

o0oRexx Reference Version 4.1.0 379 Draft - SVN Rev 6346

Chapter 7. Functions

Note: The CONDITION function returns condition information that is saved and restored across
subroutine calls (including those a CALL ON condition trap causes). Therefore, after a subroutine
called with CALL ON trapname has returned, the current trapped condition reverts to the condition
that was current before the CALL took place (which can be none). CONDITION returns the values it
returned before the condition was trapped.

7.4.19. COPIES

>>-COPIES(string,n) - ><

Returns n concatenated copies of string. The n must be a positive whole number or zero.

Here are some examples:

COPIES("abc",3) -> "abcabcabc"
COPIES("abc",0) -> "o

7.4.20. COUNTSTR

>>-COUNTSTR (needle,haystack) ——--———-———==———=———-—————————————m ><

Returns a count of the occurrences of needle in haystack that do not overlap. The following defines the
effect:

result=0

$tempx=pos(needle,haystack)

do while $temp > O

result=result+1

$temp=pos (needle,haystack, $temp+length(needle))
end

Here are some examples:

COUNTSTR("1","101101") ->
COUNTSTR("KK", "JOKKKO") -> 1

7.4.21. D2C (Decimal to Character)

>>-D2C(wholenumber—-—+---=+-=) -—=——=——-——-——- -- -- ><
+-,n-+

Returns a string, in character format, that is the ASCII representation of the decimal number. If you
specify n, it is the length of the final result in characters; leading "00"x (for a positive wholenumber) or
"FF"x (for a negative wholenumber) characters are added to the result string as necessary. n must be a
positive whole number or zero.

Draft - SVN Rev 6346 380 o0oRexx Reference Version 4.1.0

Chapter 7. Functions

Wholenumber must not have more digits than the current setting of NUMERIC DIGITS.

If you omit n, wholenumber must be a positive whole number or zero, and the result length is as needed.
Therefore, the returned result has no leading "00"x characters.

Here are some examples:

D2C(65) -> "A" /* "41"x is an ASCII "A" */
D2C(65,1) -> "AM

D2C(65,2) -> " AM /* the leading character is a "00"x */
D2C(65,5) - " A" /% the leading characters are "00"x x/
D2C(109) -> "m" /* "6D"x is an ASCII "m" x/
D2C(-109,1) -> "o" /* "93"x is an ASCII "o" */

D2C(76,2) -> "L /* "4C"x is an ASCII "L" x/
D2C(-180,2) -> " L" /* the leading character is a "FF'"x */

Implementation maximum: The output string must not have more than 250 significant characters,
although it can be longer if it contains leading sign characters ("00"x and "FF"x).

7.4.22. D2X (Decimal to Hexadecimal)

>>-D2X (wholenumber——+-—-——+--)-—— ><
+-,n—+

Returns a string, in character format, that repr