
Open Object Rexx™

RxSock TCP/IP Socket Functions Reference
Version 4.1.0 Edition
Draft - SVN Rev 6346

November 2010

W. David Ashley
Rony G. Flatscher

Mark Hessling
Rick McGuire
Mark Miesfeld

Lee Peedin
Jon Wolfers

Open Object Rexx™: RxSock TCP/IP Socket Functions Reference
by
W. David Ashley
Rony G. Flatscher
Mark Hessling
Rick McGuire
Mark Miesfeld
Lee Peedin
Jon Wolfers

Version 4.1.0 Edition
Published November 2010
Copyright © 1995, 2004 IBM Corporation and others. All rights reserved.
Copyright © 2005, 2006, 2007, 2008, 2009, 2010 Rexx Language Association. All rights reserved.

This program and the accompanying materials are made available under the terms of the Common Public License Version 1.0.

Before using this information and the product it supports, be sure to read the general information under Notices.

This document was originally owned and copyrighted by IBM Corporation 1995, 2004. It was donated as open source under the Common Public

License Version 1.0 to the Rexx Language Association in 2004.

Thanks to Julian Choy for the ooRexx logo design.

Table of Contents
About This Book ...ix

1. Related Information ..ix
2. How to Read the Syntax Diagrams ...ix
3. A Note About Program Examples in this Document ...x
4. Getting Help ...x

4.1. The Rexx Language Association Mailing List ..x
4.2. The Open Object Rexx SourceForge Site...xi
4.3. comp.lang.rexx Newsgroup.. xii

1. What is RxSock? ..1
2. Installation and Removal ..3
3. Parameters and Return Values...5

3.1. Stem Variables...6

4. Special Variables ..9
5. Function Reference ..11

5.1. SockLoadFuncs ...11
5.2. SockDropFuncs ...12
5.3. SockVersion ..12
5.4. SockAccept ...12
5.5. SockBind...14
5.6. SockClose..15
5.7. SockConnect ...16
5.8. SockGetHostByAddr ..18
5.9. SockGetHostByName ...18
5.10. SockGetHostId ..19
5.11. SockGetPeerName ..19
5.12. SockGetSockName ...20
5.13. SockGetSockOpt ...21
5.14. SockInit ...24
5.15. SockIoctl ...24
5.16. SockListen...25
5.17. SockPSock_Errno ...26
5.18. SockRecv ..26
5.19. SockRecvFrom..28
5.20. SockSelect ...29
5.21. SockSend...31
5.22. SockSendTo...32
5.23. SockSetSockOpt..34
5.24. SockShutDown..37
5.25. SockSock_Errno..38
5.26. SockSocket..38
5.27. SockSoClose ...39

ooRexx RxSock Reference Version 4.1.0 iii Draft - SVN Rev 6346

6. Socket Class Reference..41
6.1. Installation...41
6.2. The Socket Class ...41

6.2.1. getHostByAddr (class) method ..41
6.2.2. getHostByName (class) method ...42
6.2.3. getHostId (class) method..42
6.2.4. accept method...42
6.2.5. bind method ..42
6.2.6. close method...42
6.2.7. connect method...42
6.2.8. getOption method ...43
6.2.9. getPeerName method..43
6.2.10. getSockName method...43
6.2.11. new (class) method ...43
6.2.12. ioctl method ..44
6.2.13. listen method ..44
6.2.14. recv method ..44
6.2.15. recvFrom method..44
6.2.16. select method ..44
6.2.17. Send method ...45
6.2.18. setOption method..45
6.2.19. string method ..45

6.3. The InetAddress Class ..45
6.3.1. address method ...46
6.3.2. address= method...46

6.3.2.1. family method)...46
6.3.2.2. family= method..46
6.3.2.3. init method ...46
6.3.2.4. makeStem method..47
6.3.2.5. port method ..47
6.3.2.6. port= method..47

6.3.3. The HostInfo Class ...47
6.3.3.1. addr method ...48
6.3.3.2. address method...48
6.3.3.3. alias method ...48
6.3.3.4. name method..48
6.3.3.5. init method ...48
6.3.3.6. makeStem method..49

6.4. Socket Class Example ...49

7. StreamSocket Class Reference..51
7.1. Installation...51
7.2. The StreamSocket Class..51

7.2.1. Inherited Methods...52
7.2.2. new (Inherited Class Method) ..53
7.2.3. arrayIn...53
7.2.4. arrayOut..53
7.2.5. charIn..53

Draft - SVN Rev 6346 iv ooRexx RxSock Reference Version 4.1.0

7.2.6. charOut ...53
7.2.7. chars..54
7.2.8. close..54
7.2.9. description ..54
7.2.10. lineIn...54
7.2.11. lineOut ..54
7.2.12. lines...55
7.2.13. open ..55
7.2.14. position ...55
7.2.15. say...55
7.2.16. state...55
7.2.17. string ...56

8. SMTP Class Reference ..57
8.1. Installation...57
8.2. The SMTP Class ...57

8.2.1. new (Class Method)..58
8.2.2. authid ..58
8.2.3. cmdrespomse ..58
8.2.4. connect..59
8.2.5. debug ..59
8.2.6. localhost..59
8.2.7. logoff ..59
8.2.8. password ...59
8.2.9. response ..60
8.2.10. send...60
8.2.11. smtperrno..60

8.3. The SMTPMsg Class ..60
8.3.1. new (Class Method)..61
8.3.2. addRecipient ...61
8.3.3. content ..61
8.3.4. from ..62
8.3.5. recipients...62
8.3.6. subject...62

9. Mime Classes Reference..63
9.1. Installation...63
9.2. The MimePart Class..63

9.2.1. New (class) method ..64
9.2.2. addContent method...64
9.2.3. content method ...64
9.2.4. description method ...64
9.2.5. disposition method..64
9.2.6. encoding method ..65
9.2.7. id method ..65
9.2.8. string method ..65
9.2.9. type method ..65

9.3. The MimeMultiPart Class ...66
9.3.1. New (class) method ..66

ooRexx RxSock Reference Version 4.1.0 v Draft - SVN Rev 6346

9.3.2. addPart method...66
9.3.3. description method ...67
9.3.4. disposition method..67
9.3.5. encoding method ..67
9.3.6. id method ..67
9.3.7. string method ..68
9.3.8. type method ..68

A. Notices ..69
A.1. Trademarks...69
A.2. Source Code For This Document ...70

B. Common Public License Version 1.0 ...71
B.1. Definitions ..71
B.2. Grant of Rights ...71
B.3. Requirements..72
B.4. Commercial Distribution ..72
B.5. No Warranty ...73
B.6. Disclaimer of Liability ...73
B.7. General ...74

Index..75

Draft - SVN Rev 6346 vi ooRexx RxSock Reference Version 4.1.0

List of Figures
6-1. The Socket Class ..41
6-2. The InetAddress Class..46
6-3. The HostInfo Class...48
7-1. The StreamSocket class and methods ..51
8-1. The SMTP class and methods ..57
8-2. The SMTPMsg class and methods ...60
9-1. The MimePart class and methods...63
9-2. The MimeMultiPart class and methods..66

ooRexx RxSock Reference Version 4.1.0 vii Draft - SVN Rev 6346

Draft - SVN Rev 6346 viii ooRexx RxSock Reference Version 4.1.0

About This Book
This book describes the Open Object Rexx™ TCP/IP Sockets Function Library. .

This book is intended for people who plan to develop applications using Rexx and TCP/IP sockets. Its
users range from the novice, who might have experience in some programming language but no Rexx or
sockets experience, to the experienced application developer, who might have had some experience with
Object Rexx and sockets.

This book is a reference rather than a tutorial. It assumes you are already familiar with object-oriented
programming concepts.

Descriptions include the use and syntax of the language and explain how the language processor
"interprets" the language as a program is running.

1. Related Information
See also: Open Object Rexx: Reference

2. How to Read the Syntax Diagrams
Throughout this book, syntax is described using the structure defined below.

• Read the syntax diagrams from left to right, from top to bottom, following the path of the line.

The >>--- symbol indicates the beginning of a statement.

The ---> symbol indicates that the statement syntax is continued on the next line.

The >--- symbol indicates that a statement is continued from the previous line.

The --->< symbol indicates the end of a statement.

Diagrams of syntactical units other than complete statements start with the >--- symbol and end with
the ---> symbol.

• Required items appear on the horizontal line (the main path).

>>-STATEMENT--required_item------------------------------------><

• Optional items appear below the main path.

>>-STATEMENT--+---------------+--------------------------------><

+-optional_item-+

• If you can choose from two or more items, they appear vertically, in a stack. If you must choose one of
the items, one item of the stack appears on the main path.

>>-STATEMENT--+-required_choice1-+-----------------------------><

+-required_choice2-+

• If choosing one of the items is optional, the entire stack appears below the main path.

>>-STATEMENT--+------------------+-----------------------------><

+-optional_choice1-+

ooRexx RxSock Reference Version 4.1.0 ix Draft - SVN Rev 6346

About This Book

+-optional_choice2-+

• If one of the items is the default, it appears above the main path and the remaining choices are shown
below.

+-default_choice--+

>>-STATEMENT--+-----------------+------------------------------><

+-optional_choice-+

+-optional_choice-+

• An arrow returning to the left above the main line indicates an item that can be repeated.

+-----------------+

V |

>>-STATEMENT----repeatable_item-+------------------------------><

A repeat arrow above a stack indicates that you can repeat the items in the stack.

• A set of vertical bars around an item indicates that the item is a fragment, a part of the syntax diagram
that appears in greater detail below the main diagram.

>>-STATEMENT--| fragment |-------------------------------------><

fragment:

|--expansion_provides_greater_detail----------------------------|

• Keywords appear in uppercase (for example, PARM1). They must be spelled exactly as shown but you
can type them in upper, lower, or mixed case. Variables appear in all lowercase letters (for example,
parmx). They represent user-supplied names or values.

• If punctuation marks, parentheses, arithmetic operators, or such symbols are shown, you must enter
them as part of the syntax.

The following example shows how the syntax is described:

+-,------+

V |

>>-MAX(----number-+--)---><

3. A Note About Program Examples in this Document
The program examples in this document are rendered in a mono-spaced font that is not completely
compatible for cut-and-paste functionality. Pasting text into an editor could result in some characters
outside of the standard ASCII character set. Specifically, single-quote and double-quote characters are
sometimes converted incorrectly when pasted into an editor.

4. Getting Help
The Open Object Rexx Project has a number of methods to obtain help for ooRexx. These methods, in
no particular order of preference, are listed below.

Draft - SVN Rev 6346 x ooRexx RxSock Reference Version 4.1.0

About This Book

4.1. The Rexx Language Association Mailing List
The Rexx Language Association (http://www.rexxla.org/) maintains a mailing list for its members. This
mailing list is only available to RexxLA members thus you will need to join RexxLA in order to get on
the list. The dues for RexxLA membership are small and are charged on a yearly basis. For details on
joining RexxLA please refer to the RexxLA Home Page (http://rexxla.org/) or the RexxLA Membership
Application (http://www.rexxla.org/rexxla/join.html) page.

4.2. The Open Object Rexx SourceForge Site
The Open Object Rexx Project (http://www.oorexx.org/) utilizes SourceForge (http://sourceforge.net/) to
house the ooRexx Project (http://sourceforge.net/projects/oorexx) source repositories, mailing lists and
other project features. Here is a list of some of the most useful facilities.

The ooRexx Forums

The ooRexx project maintains a set of forums that anyone may contribute to or monitor. They are
located on the ooRexx Forums (http://sourceforge.net/forum/?group_id=119701) page. There are
currently three forums available: Help, Developers and Open Discussion. In addition, you can
monitor the forums via email.

The Developer Mailing List

You can subscribe to the oorexx-devel mailing list at ooRexx Mailing List Subscriptions
(http://sourceforge.net/mail/?group_id=119701) page. This list is for discussing ooRexx project
development activities and future interpreter enhancements. It also supports a historical archive of
past messages.

The Users Mailing List

You can subscribe to the oorexx-users mailing list at ooRexx Mailing List Subscriptions
(http://sourceforge.net/mail/?group_id=119701) page. This list is for discussing using ooRexx. It
also supports a historical archive of past messages.

The Announcements Mailing List

You can subscribe to the oorexx-announce mailing list at ooRexx Mailing List Subscriptions
(http://sourceforge.net/mail/?group_id=119701) page. This list is only used to announce significant
ooRexx project events.

The Bug Mailing List

You can subscribe to the oorexx-bugs mailing list at ooRexx Mailing List Subscriptions
(http://sourceforge.net/mail/?group_id=119701) page. This list is only used for monitoring changes
to the ooRexx bug tracking system.

Bug Reports

You can create a bug report at ooRexx Bug Report
(http://sourceforge.net/tracker/?group_id=119701&atid=684730) page. Please try to provide as
much information in the bug report as possible so that the developers can determine the problem as

ooRexx RxSock Reference Version 4.1.0 xi Draft - SVN Rev 6346

About This Book

quickly as possible. Sample programs that can reproduce your problem will make it easier to debug
reported problems.

Request For Enhancement

You can suggest ooRexx features at the ooRexx Feature Requests
(http://sourceforge.net/tracker/?group_id=119701&atid=684733) page.

Patch Reports

If you create an enhancement patch for ooRexx please post the patch using the ooRexx Patch Report
(http://sourceforge.net/tracker/?group_id=119701&atid=684732) page. Please provide as much
information in the patch report as possible so that the developers can evaluate the enhancement as
quickly as possible.

Please do not post bug patches here, instead you should open a bug report and attach the patch to it.

4.3. comp.lang.rexx Newsgroup
The comp.lang.rexx (news:comp.lang.rexx) newsgroup is a good place to obtain help from many
individuals within the Rexx community. You can obtain help on Open Object Rexx or on any number of
other Rexx interpreters and tools.

Draft - SVN Rev 6346 xii ooRexx RxSock Reference Version 4.1.0

Chapter 1. What is RxSock?
RxSock is a Rexx function package providing access to the TCP/IP socket APIs available to the C
programming environment. Most of the functions described in this reference are similar to the
corresponding C functions available in the TCP/IP socket library.

It is assumed that you are familiar with the basic socket APIs and can reference those specific to the
system. For more information, refer to the book Internetworking with TCP/IP, Volume I: Principles,
Protocols and Architecture by Douglas Comer (Prentice Hall PTR).

The RxSock package requires TCP/IP support to be active on your system.

ooRexx RxSock Reference Version 4.1.0 1 Draft - SVN Rev 6346

Chapter 1. What is RxSock?

Draft - SVN Rev 6346 2 ooRexx RxSock Reference Version 4.1.0

Chapter 2. Installation and Removal
The RxSock package is contained in the file rxsock.dll. This file must be placed in a directory listed in
your LIBPATH. To get access to the functions in the RxSock package, execute the following Rexx code:

If RxFuncQuery("SockDropFuncs") then

do

rc = RxFuncAdd("SockLoadFuncs","rxsock","SockLoadFuncs")

rc = SockLoadFuncs()

end

To unload the DLL, call the SockDropFuncs() function and then exit all CMD.EXE shells. After exiting
all command shells, the DLL is dropped by the system and can be deleted or replaced.

ooRexx RxSock Reference Version 4.1.0 3 Draft - SVN Rev 6346

Chapter 2. Installation and Removal

Draft - SVN Rev 6346 4 ooRexx RxSock Reference Version 4.1.0

Chapter 3. Parameters and Return Values
Unless otherwise stated, the return values are the same as for the corresponding C functions. The
following standard parameter types are referred to throughout this reference:

socket

is a socket value, which is an integral number.

domain

is a domain value. Currently, only the domain AF_INET is supported.

address

is the stem of a stem variable with the following values:

address.family

must always be AF_INET.

address.port

is a port number.

address.addr

is a dotted decimal address or INADDR_ANY, where appropriate.

When this parameter is needed, set it the name of a stem variable for the function to set (or that
the function will read from). For example, if you pass the string xxx.! as a parameter, the
following variables are set or queried by the function:
"xxx.!family"
"xxx.!port"
"xxx.!addr"

A null address is an address with the family field being AF_INET, the port field being 0, and
the addr field being 0.0.0.0.

dotAddress

is the standard dotted decimal address. For example, the string 9.23.19.63 is a valid address.

host

is the stem of a stem variable with the following values:

host.name

is the standard name of the host.

host.alias.0

is the number of aliases for this host.

ooRexx RxSock Reference Version 4.1.0
5 Draft - SVN Rev 6346

Chapter 3. Parameters and Return Values

host.alias.1

is the first alias for this host.

host.alias.n

is the nth alias for this host.

host.addrtype

must always be AF_INET.

host.addr

is a dotted decimal address (default address).

host.addr.0

is the number of addresses for this host.

host.addr.1

is the first address for this host.

host.addr.n

is the nth address for this host.

When this parameter is needed, set it the name of a stem variable for the function to set
(or that the function will read from). For example, if you pass the string xxx.! as a
parameter, the following variables are set or queried by the function:
"xxx.!name"
"xxx.!alias.0", "xxx.!alias.1" ... "xxx.!alias.n"
"xxx.!addrtype"
"xxx.!addr"
"xxx.!addr.0", "xxx.!addr.1" ... "xxx.!addr.n"

3.1. Stem Variables
The address and host type of a parameter are stems of a stem variable. Normally, when you pass a string
like addr. as a parameter, you expect the variables addr.family, addr.port, and addr.addr to be set by the
function. In the previous examples, however, the stem contained an exclamation mark. This exclamation
mark helps prevent the value that follows from getting misused as a normal variable. Example:

port = 923

sNew = SockAccept(sOld,"addr.")

say addr.port

In this example, you might expect the say statement to write the port number of the accepted socket.
Instead, it writes the value of the variable, namely addr.923, because the port variable is set to this value.

Because exclamation marks are rarely used in variables, it is unlikely that the variable !port is used in
your program.

Draft - SVN Rev 6346 6 ooRexx RxSock Reference Version 4.1.0

Chapter 3. Parameters and Return Values

Note: Do not use the characters _, 0, and 1 to prefix tail values. 0 and 1 are difficult to distinguish
from O, I, and l.

ooRexx RxSock Reference Version 4.1.0 7 Draft - SVN Rev 6346

Chapter 3. Parameters and Return Values

Draft - SVN Rev 6346 8 ooRexx RxSock Reference Version 4.1.0

Chapter 4. Special Variables
The following variables are maintained by the system: errno and h_errno.

Variable errno

The variable errno is set after each RxSock call. It can have one of the following values or any other
numeric value:

• EWOULDBLOCK

• EINPROGRESS

• EALREADY

• ENOTSOCK

• EDESTADDRREQ

• EMSGSIZE

• EPROTOTYPE

• ENOPROTOOPT

• EPROTONOSUPPORT

• ESOCKTNOSUPPORT

• EOPNOTSUPP

• EPFNOSUPPORT

• EAFNOSUPPORT

• EADDRINUSE

• EADDRNOTAVAIL

• ENETDOWN

• ENETUNREACH

• ENETRESET

• ECONNABORTED

• ECONNRESET

• ENOBUFS

• EISCONN

• ENOTCONN

• ESHUTDOWN

• ETOOMANYREFS

• ETIMEDOUT

• ECONNREFUSED

• ELOOP

ooRexx RxSock Reference Version 4.1.0 9 Draft - SVN Rev 6346

Chapter 4. Special Variables

• ENAMETOOLONG

• EHOSTDOWN

• EHOSTUNREACH

• ENOTEMPTY

Note: The value is set even if the function called does not set the variable, in which case the value
has no meaning. A value of 0 indicates that no error occurred.

Variable h_errno

The variable h_errno is set after each RxSock call. It can have one of the following values or any
other numeric value:

• HOST_NOT_FOUND

• TRY_AGAIN

• NO_RECOVERY

• NO_ADDRESS

Note: The value is set even if the function called does not set the variable, in which case the value
has no meaning. A value of 0 indicates that no error occurred.

Draft - SVN Rev 6346 10 ooRexx RxSock Reference Version 4.1.0

Chapter 5. Function Reference
The following sections describe how the individual functions contained in RxSock are invoked from the
Rexx programming environment:

• SockLoadFuncs

• SockDropFuncs

• SockVersion

• SockAccept

• SockBind

• SockClose

• SockConnect

• SockGetHostByAddr

• SockGetHostByName

• SockGetHostId

• SockGetPeerName

• SockGetSockName

• SockGetSockOpt

• SockInit

• SockIoctl

• SockListen

• SockPSock_Errno

• SockRecv

• SockRecvFrom

• SockSelect

• SockSend

• SockSendTo

• SockSetSockOpt

• SockShutDown

• SockSock_Errno

• SockSocket

• SockSoClose

ooRexx RxSock Reference Version 4.1.0
11 Draft - SVN Rev 6346

Chapter 5. Function Reference

5.1. SockLoadFuncs
The SockLoadFuncs() call loads all RxSock functions.

Syntax:

>>--SockLoadFuncs(--+--------+--)--><

+--parm--+

All parameters that you supply are only used to bypass copyright information.

5.2. SockDropFuncs
The SockDropFuncs call drops all RxSock functions.

Syntax:

SockDropFuncs()

To unload the dynamic load library (DLL), first call SockDropFuncs() and then exit all CMD.EXE shells.
After exiting all command shells, the DLL is dropped by the system and can be deleted or replaced.

5.3. SockVersion
The SockVersion() call provides the version of RxSock.

Syntax:

>>--SockVersion()--><

Return Values:

The returned value is in the form version.subversion, for example 2.1.

Prior to Version 1.2, this function did not exist. To check if a former version of Rxsock is installed, use
the following code after loading the function package with SockLoadFuncs():

/* oldVersion is 1 if a version of RxSock < 1.2 is loaded */

oldVersion = (1 = RxFuncQuery("SockVersion"))

5.4. SockAccept
The SockAccept() call accepts a connection request from a remote host.

Syntax:

>>--SockAccept(socket--+-------------+--)--------------------------------><

+--, address--+

Draft - SVN Rev 6346 12 ooRexx RxSock Reference Version 4.1.0

Chapter 5. Function Reference

where:

socket

is the socket descriptor created with the SockSocket() call. It is bound to an address using the
SockBind() call and must be enabled to accept connections using theSockListen() call.

address

is a stem variable that contains the socket address of the connection client when the SockAccept()
call returns. This parameter is optional.

SockAccept() is used by a server in a connection-oriented mode to accept a connection request from a
client. The call accepts the first connection on its queue of pending connection requests. It creates a new
socket descriptor with the same properties as socket and returns it to the caller. This new socket
descriptor cannot be used to accept new connections. Only the original socket can accept more
connection requests.

If the queue has no pending connection requests, SockAccept() blocks the caller unless the socket is in
nonblocking mode. If no connection requests are queued and the socket is in nonblocking mode,
SockAccept() returns a value of -1 and sets the return code to the value EWOULDBLOCK.

You cannot get information on requesters without calling SockAccept(). The application cannot tell the
system from which requesters it will accept connections. The caller can close a connection immediately
after identifying the requester.

The SockSelect() call can be used to check the socket for incoming connection requests.

Return Values:

A positive value indicates successful execution of the call. The value -1 indicates an error. You can get
the specific error code by calling SockSock_Errno() or SockPSock_Errno(). Possible values:

ENOTSOCK

socket is not a valid socket descriptor.

EINTR

Interrupted system call.

EINVAL

SockListen() was not called for socket.

EOPNOTSUPP

socket is not connection-oriented.

EWOULDBLOCK

socket is in nonblocking mode, and there are no connection requests queued.

ECONNABORTED

The software caused a connection close.

ooRexx RxSock Reference Version 4.1.0 13 Draft - SVN Rev 6346

Chapter 5. Function Reference

Note: SockAccept() interfaces with the C function accept().

5.5. SockBind
The SockBind() call binds a local name to the socket.

Syntax:

>>--SockBind(socket, address)--><

where:

socket

is the socket descriptor returned by a previous call to SockSocket().

address

is a stem variable containing the address that is to be bound to socket.

SockBind() binds the unique local name address to the socket with descriptor socket. After calling
SockSocket(), a descriptor does not have a name. However, it belongs to a particular address family that
you specified when calling SockSocket().

Because socket was created in the AF_INET domain, the fields of the stem address are as follows:

The family field must be set to AF_INET. The port field is set to the port to which the application must
bind. If port is set to 0, the caller allows the system to assign an available port. The application can call
SockGetSockName() to discover the port number assigned. The addr field is set to the Internet address.
On hosts with more than one network interface (called multihomed hosts), a caller can select the
interface with which it is to bind.

Only UDP packets and TCP connection requests from this interface that match the bound name are
routed to the application. This is important when a server offers a service to several networks. If addr is
set to INADDR_ANY, the caller requests socket be bound to all network interfaces on the host. If you do
not specify an address, the server can accept all UDP packets and TCP connection requests made to its
port, regardless of the network interface on which the requests arrived.

Return values:

The value 0 indicates successful execution of the call. The value -1 indicates an error. You can get the
specific error code by calling SockSock_Errno() or SockPSock_Errno(). Possible values:

EADDRINUSE

address is already in use. See the SO_REUSEADDR option described under SockGetSockOpt()
and the SO_REUSEADDR option described under SockSetSockOpt().

EADDRNOTAVAIL

The address specified is not valid on this host. For example, the Internet address does not specify a
valid network interface.

Draft - SVN Rev 6346 14 ooRexx RxSock Reference Version 4.1.0

Chapter 5. Function Reference

EAFNOSUPPORT

The address family is not supported.

ENOTSOCK

socket is not a valid socket descriptor.

EINVAL

socket is already bound to an address.

ENOBUFS

No buffer space available.

Note: SockBind() interfaces with the C function bind().

5.6. SockClose
The SockClose() call shuts down a socket and frees resources allocated to the socket.

Syntax

>>--SockClose(socket)--><

where:

socket

is the descriptor of the socket to be closed.

If the SO_LINGER option of SockSetSockOpt() is enabled, any queued data is sent. If this option is
disabled, any queued data is flushed.

Return values:

The value 0 indicates successful execution of the call. The value -1 indicates an error. You can get the
specific error code by calling SockSock_Errno() or SockPSock_Errno(). Possible values are:

ENOTSOCK

socket is not a valid socket descriptor.

EALREADY

The socket is in nonblocking mode. A previous connection attempt has not completed.

SockClose() is exactly the same as SockSoClose().

Note: SockClose() interfaces with the C function soclose() or, in the Windows environments, with
closesocket().

ooRexx RxSock Reference Version 4.1.0 15 Draft - SVN Rev 6346

Chapter 5. Function Reference

5.7. SockConnect
The SockConnect() socket call requests a connection to a remote host.

Syntax:

>>--SockConnect(socket, address)---><

where:

socket

is the socket descriptor used to issue the connection request.

address

is a stem variable containing the address of the socket to which a connection is to be established.

The SockConnect() call performs the following tasks when called for a stream socket:

1. It completes the binding for a socket, if necessary.

2. It attempts to create a connection between two sockets.

This call is used by the client side of socket-based applications to establish a connection with a server.
The remote server must have a passive open pending, which means it must successfully call SockBind()
and SockListen(). Otherwise, SockConnect() returns the value -1 and the error value is set to
ECONNREFUSED.

In the Internet communication domain, a timeout occurs if a connection to the remote host is not
established within 75 seconds.

If the socket is in blocking mode, the SockConnect() call blocks the caller until the connection is
established or an error is received. If the socket is in nonblocking mode, SockConnect() returns the value
-1 and sets the error value to EINPROGRESS if the connection was successfully initiated. The caller can
test the completion of the connection by calling:

• SockSelect(), to test for the ability to write to the socket

• SockGetsockOpt(), with option SO_ERROR, to test if the connection was established

Stream sockets can call SockConnect() only once.

Datagram or raw sockets normally transfer data without being connected to the sender or receiver.
However, an application can connect to such a socket by calling SockConnect(). SockConnect() specifies
and stores the destination peer address for the socket. The system then knows to which address to send
data and the destination peer address does not have to be specified for each datagram sent. The address is
kept until the next SockConnect() call. This permits the use of the SockRecv() and SockSend() calls,
which are usually reserved for connection-oriented sockets. However, data is still not necessarily
delivered, which means the normal features of sockets using connectionless data transfer are maintained.
The application can therefore still use the SockSendTo()and SockRecvFrom() calls.

Datagram and raw sockets can call SockConnect() several times. The application can change their
destination address by specifying a new address on the SockConnect() call. In addition, the socket can be
returned to a connectionless mode by calling SockConnect() with a null destination address. The null

Draft - SVN Rev 6346 16 ooRexx RxSock Reference Version 4.1.0

Chapter 5. Function Reference

address is created by setting the stem variable address as follows: the family field to AF_INET, the port
field to 0, and the addr field to 0.0.0.0.

The call to SockConnect returns the value -1, indicating that the connection to the null address cannot be
established. Calling SockSock_Errno() returns the value EADDRNOTAVAIL.

Return values:

The value 0 indicates successful execution of the call. The value -1 indicates an error. You can get the
specific error code by calling SockSock_Errno() or SockPSock_Errno(). Possible values are:

EADDRNOTAVAIL

The calling host cannot reach the specified destination.

EAFNOSUPPORT

The address family is not supported.

EALREADY

The socket is in nonblocking mode. A previous connection attempt has not completed.

ENOTSOCK

The socket is not a valid socket descriptor.

ECONNREFUSED

The destination host rejected the connection request.

EINPROGRESS

socket is in nonblocking mode, and the connection cannot be completed immediately.
EINPROGRESS does not indicate an error.

EINTR

Interrupted system call.

EISCONN

socket is already connected.

ENETUNREACH

The network cannot be reached from this host.

ETIMEDOUT

Establishing the connection timed out.

ENOBUFS

There is no buffer space available.

EOPNOTSUPP

The operation is not supported on socket.

ooRexx RxSock Reference Version 4.1.0 17 Draft - SVN Rev 6346

Chapter 5. Function Reference

Note: SockConnect interfaces with the C function connect().

5.8. SockGetHostByAddr
The SockGetHostByAddr() call retrieves information about a specific host using its address.

Syntax:

>>--SockGetHostByAddr(dotAddress, host--+------------+--)----------------><

+--, domain--+

where:

dotAddress

is the standard dotted decimal address of the host.

host

is a stem variable that is to receive the information on the host.

domain

is the domain AF_INET. This parameter is optional.

Return values:

The value 1 indicates successful execution of the call. The value 0 indicates an error.

Note: SockGetHostByAdress() interfaces with the C function gethostbyaddr().

5.9. SockGetHostByName
The SockGetHostByName() call retrieves host information on a specific host using its name or any alias.

Syntax:

>>--SockGetHostByName(nameAddress, host)---------------------------------><

where:

nameAddress

is the name of a host, for example www.ibm.com.

Draft - SVN Rev 6346 18 ooRexx RxSock Reference Version 4.1.0

Chapter 5. Function Reference

host

is the name of a stem variable to receive the information on the host.

Return values:

The value 1 indicates successful execution of the call. The value 0 indicates an error.

Note: SockGetHostByName() interfaces with the C function gethostbyname().

5.10. SockGetHostId
The SockGetHostId() call retrieves the dotAddress of the local host.

Syntax:

>>--SockGetHostId()--><

The return value is the dotAddress of the local host.

Note: SockGetHostId() interfaces with the C function gethostid().

5.11. SockGetPeerName
The SockGetPeerName() call gets the name of the peer connected to a socket.

Syntax:

>>--SockGetPeerName(socket, address)-------------------------------------><

where:

socket

is the socket descriptor.

address

is a stem variable that will contain the address of the peer connected to socket.

Return values:

The value 0 indicates successful execution of the call. The value -1 indicates an error. You can get the
specific error code by calling SockSock_Errno() or SockPSock_Errno(). Possible values are:

ENOTSOCK

socket is not a valid socket descriptor.

ooRexx RxSock Reference Version 4.1.0 19 Draft - SVN Rev 6346

Chapter 5. Function Reference

ENOTCONN

socket is not connected.

ENOBUFS

There is no buffer space available.

Note: SockGetPeerName() interfaces with the C function getpeername().

5.12. SockGetSockName
The SockGetSockName() call gets the local socket name.

Syntax:

>>--SockGetSockName(socket, address)-------------------------------------><

where:

socket

is the socket descriptor.

address

is a stem variable that is to receive the address of the socket returned.

SockGetSockName() returns the address for socket in the stem variable address. If the socket is not
bound to an address, the call returns a null address.

The returned null address is a stem variable with the family field set to AF_INET, the port field set to 0,
and the addr field set to 0.0.0.0.

All sockets are explicitly assigned an address after a successful call to SockBind(). Stream sockets are
implicitly assigned an address after a successful call to SockConnect() or SockAccept() if SockBind()
was not called.

The SockGetSockName() call is often used to identify the port assigned to a socket after the socket has
been implicitly bound to a port. For example, an application can call SockConnect() without previously
calling SockBind(). In this case, the SockConnect() call completes the binding necessary by assigning a
port to the socket.

Return values:

The value 0 indicates successful execution of the call. The value -1 indicates an error. You can get the
specific error code by calling SockSock_Errno() or SockPSock_Errno(). Possible values are:

ENOTSOCK

socket is not a valid socket descriptor.

Draft - SVN Rev 6346 20 ooRexx RxSock Reference Version 4.1.0

Chapter 5. Function Reference

ENOBUFS

There is no buffer space available.

Note: SockGetSockName() interfaces with the C function getsockname().

5.13. SockGetSockOpt
The SockGetSockOpt() call gets the socket options associated with a socket.

Syntax:

>>--SockGetSockOpt(socket, level, optName, optVal)-----------------------><

where:

socket

is the socket descriptor.

level

specifies which option level is queried for the specified optname. The only supported level is
SOL_SOCKET.

optname

is the name of the specified socket option. Only one option can be specified with a call.

optval

is the variable to receive the option values requested. For socket options that are Boolean the option
is enabled if optval is nonzero and disabled if optval is 0.

SockGetSockOpt() returns the value of a socket option at the socket level. It can be requested for sockets
of all domain types. Some options are supported only for specific socket types.

The following options are recognized for SOL_SOCKET:

SO_BROADCAST

returns the information whether datagram sockets are able to broadcast messages. If this option is
enabled, the application can send broadcast messages using datagram socket, if the interface
specified in the destination supports broadcasting of packets.

SO_DEBUG

returns the information whether debug information can be recorded for a socket.

ooRexx RxSock Reference Version 4.1.0 21 Draft - SVN Rev 6346

Chapter 5. Function Reference

SO_DONTROUTE

returns the information whether the socket is able to bypass the routing of outgoing messages. If
this option is enabled, outgoing messages are directed to the network interface specified in the
network portion of the destination address. When enabled, packets can only be sent to directly
connected networks.

SO_ERROR

returns any error pending at the socket and clears the error status. It can be used to check for
asynchronous errors at connected datagram sockets or for asynchronous errors that are not explicitly
returned by one of the socket calls.

SO_KEEPALIVE

returns the information whether stream sockets are able to send keepalive packets. TCP uses a timer
called the keepalive timer. This timer monitors idle connections that might have been disconnected
because of a peer crash or timeout. If this option is enabled, a keepalive packet is periodically sent
to the peer.

This option is mainly used to enable servers to close connections that are no longer active as a result
of clients ending connections without properly closing them.

SO_LINGER

returns the information whether stream sockets are able to linger on close if data is present. If this
option is enabled and there is data still to be sent when SockSoClose() is called, the calling
application is blocked during the SockSoClose() call until the data is transmitted or the connection
has timed out. If this option is disabled, the SockSoClose() call returns without blocking the caller
while TCP is trying to send the data. Although the data transfer is usually successful, it cannot be
guaranteed because TCP tries to send the data only for a specific amount of time.

SO_OOBINLINE

returns the information whether stream sockets are able to receive out-of-band data. If this option is
enabled, out-of-band data is placed in the normal data input queue as it is received. It is then made
available to SockRecv() and SockRecvFrom() without the MSG_OOB flag being specified in those
calls. If this option is disabled, out-of-band data is placed in the priority data input queue as it is
received. It can then only be made available to SockRecv() and SockRecvFrom() by specifying the
MSG_OOB flag in those calls.

SO_RCVBUF

returns the buffer size for input.

SO_RCVLOWAT

returns the receive low-water mark.

SO_RCVTIMEO

returns the timeout value for a receive operation.

Draft - SVN Rev 6346 22 ooRexx RxSock Reference Version 4.1.0

Chapter 5. Function Reference

SO_REUSEADDR

returns the information whether stream and datagram sockets are able to reuse local addresses. If
this option is enabled, the local addresses that are already in use can then be bound. This alters the
normal algorithm used in the SockBind() call. At connection time, the system checks whether the
local addresses and ports differ from foreign addresses and ports. If not, the error value
EADDRINUSE is returned.

SO_SNDBUF

returns the size of the send buffer.

SO_SNDLOWAT

returns the send low-water mark. This mark is ignored for nonblocking calls and not used in the
Internet domain.

SO_SNDTIMEO

returns the timeout value for a send operation.

SO_TYPE

returns the socket type. The integer pointed to by optval is then set to one of the following:
STREAM, DGRAM, RAW, or UNKNOWN.

SO_USELOOPBACK

bypasses hardware where possible.

All option values are integral except for SO_LINGER, which contains the following blank-delimited
integers:

• The l_onoff value. It is set to 0 if the SO_LINGER option is disabled.

• The l_linger value. It specifies the amount of time, in seconds, to be lingered on close. A value of 0
causes SockSoClose() to wait until disconnection completes.

Return values:

The value 0 indicates successful execution of the call. The value -1 indicates an error. You can get the
specific error code by calling SockSock_Errno() or SockPSock_Errno(). Possible values are:

EADDRINUSE

The address is already in use.

ENOTSOCK

socket is not a valid socket descriptor.

ENOPROTOOPT

optname or level is not recognized.

Note: SockGetSockOpt() interfaces with the C function getsockopt().

ooRexx RxSock Reference Version 4.1.0 23 Draft - SVN Rev 6346

Chapter 5. Function Reference

5.14. SockInit
The SockInit() call initializes the socket data structures and checks whether the TCP/IP network is active.

Syntax:

>>--SockInit()---><

SockInit() can be called at the beginning of each program that uses SockSocket(). However, it is not
obligatory because each RxSock function is automatically initialized. For this reason, explicit
initialization is not available in all system environments.

Return values:

The value 0 indicates successful execution of the call. The value 1 indicates an error.

Note: SockInit() interfaces with the C function sock_init().

5.15. SockIoctl
The SockIoctl() call performs special operations on the socket.

Syntax:

>>--SockIoctl(socket, ioctlCmd, ioctlData)-------------------------------><

where:

socket

is the socket descriptor.

ioctlCmd

is the ioctl command to be performed.

ioctlData

is a variable containing data associated with the particular command. Its format depends on the
command requested. Valid commands are:

FIONBIO

sets or clears nonblocking input or output for a socket. This command is an integer. If the
integer is 0, nonblocking input or output on the socket is cleared. If the integer is a number
other than 0, input or output calls do not block until the call is completed.

FIONREAD

gets the number of immediately readable bytes for the socket. This command is an integer.

Draft - SVN Rev 6346 24 ooRexx RxSock Reference Version 4.1.0

Chapter 5. Function Reference

Return values:

The value 0 indicates successful execution of the call. The value -1 indicates an error. You can get the
specific error code SockSock_Errno() or SockPSock_Errno(). Possible values are:

ENOTSOCK

socket is not a valid socket descriptor.

EINVAL

The request is not valid or not supported.

EOPNOTSUPP

The operation is not supported on the socket.

Note: SockIoctl() interfaces with the C function ioctl() or, in the Windows environments, with
ioctlsocket().

5.16. SockListen
The SockListen() call completes the binding necessary for a socket to accept connections and creates a
connection request queue for incoming requests.

Syntax:

>>--SockListen(socket, backlog)--><

where:

socket

is the socket descriptor.

backlog

controls the maximum queue length for pending connections.

SockListen() performs the following tasks:

1. 1. It completes the binding necessary for socket, if SockBind() has not been called for the socket.

2. It creates a connection request queue with a length of backlog to queue incoming connection
requests.

When the queue is full, additional connection requests are ignored.

SockListen() can only be called for connection-oriented sockets.

SockListen() is called after allocating a socket with SockSocket() and after binding a name to socket
with SockBind(). It must be called before SockAccept().

ooRexx RxSock Reference Version 4.1.0 25 Draft - SVN Rev 6346

Chapter 5. Function Reference

SockListen() indicates when it is ready to accept client connection requests. It transforms an active
socket to a passive socket. After it is called, socket cannot be used as an active socket to initiate
connection requests.

If backlog is smaller than 0, SockListen() interprets the backlog to be 0. If it is greater than the maximum
value defined by the network system, SockListen() interprets the backlog to be this maximum value.

Return values:

The value 0 indicates successful execution of the call. The value -1 indicates an error. You can get the
specific error code SockSock_Errno() or SockPSock_Errno(). Possible values are:

ENOTSOCK

socket is not a valid socket descriptor.

EOPNOTSUPP

socket is not a socket descriptor that supports the SockListen() call.

Note: SockListen() interfaces with the C function listen().

5.17. SockPSock_Errno
The SockPSock_Errno() call writes a short error message to the standard error device. It describes the
last error encountered during a call to a socket library function.

Syntax:

>>--SockPSock_Errno(--+----------------+--)------------------------------><

+--error_string--+

where:

error_string

is the error string written to the standard error device describing the last error encountered. The
string printed is followed by a colon, a space, and then the message. If it is omitted or empty, only
the message is printed. The string is optional.

The error code is acquired by calling SockSock_Errno(). It is set when errors occur. Subsequent socket
calls do not clear the error code.

Note: SockPSock_Errno() interfaces with the C function psock_errno().

Draft - SVN Rev 6346 26 ooRexx RxSock Reference Version 4.1.0

Chapter 5. Function Reference

5.18. SockRecv
The SockRecv() call receives data on a connected socket.

Syntax:

>>--SockRecv(socket, var, len--+-----------+--)--------------------------><

+--, flags--+

where:

socket

is the socket descriptor.

var

is the name of a Rexx variable to receive the data.

len

is the maximum amount of data to be read.

flags

is a blank-delimited list of options:

MSG_OOB

reads any out-of-band data on the socket.

MSG_PEEK

peeks at the data on the socket. The data is returned but not removed, so the subsequent receive
operation sees the same data.

SockRecv() receives data on a socket with descriptor socket and stores it in the Rexx variable var. It
applies only to connected sockets. For information on how to use SockRecv() with datagram and raw
sockets, see Datagram or raw sockets.

SockRecv() returns the length of the incoming data. If a datagram is too long to fit the buffer, the
excessive data is discarded. No data is discarded for stream sockets. If data is not available at socket, the
SockRecv() call waits for a message and blocks the caller unless the socket is in nonblocking mode. See
SockIoctl() for a description of how to set the nonblocking mode.

SockRecv() may return fewer bytes than requested. This is due to the underlying TCP/IP subsystem and
is not controllable by the RxSock programmer. When you receive fewer bytes than you request you
should follow immediately with another request for the balance of the requested bytes. You may have to
call SockRecv() repeatedly to obtain all the bytes. Each subsequent call should request the difference
between the previous request number of bytes and the number of bytes actually received.

Return values:

ooRexx RxSock Reference Version 4.1.0 27 Draft - SVN Rev 6346

Chapter 5. Function Reference

If successful, the length of the data in bytes is returned. The value 0 indicates that the connection is
closed. The value -1 indicates an error. You can get the specific error code SockSock_Errno() or
SockPSock_Errno(). Possible values are:

ENOTSOCK

socket is not a valid socket descriptor.

EINTR

Interrupted system call.

EINVAL

Invalid argument.

EWOULDBLOCK

socket is in nonblocking mode and no data is available, or the SO_RCVTIMEO option has been set
for socket and the timeout expired before any data arrived.

Note: SockRecv() interfaces to the C function recv().

5.19. SockRecvFrom
The SockRecvFrom() call receives data on a socket.

Syntax:

>>--SockRecvFrom(socket, var, len--+-----------+--, address)-------------><

+--, flags--+

where:

socket

is the socket descriptor.

var

is the name of a Rexx variable to receive the data.

len

is the maximum amount of data to be read.

flags

is a blank delimited list of options:

Draft - SVN Rev 6346 28 ooRexx RxSock Reference Version 4.1.0

Chapter 5. Function Reference

MSG_OOB

reads any out-of-band data on the socket.

MSG_PEEK

peeks at the data present on the socket. The data is returned but not consumed. The subsequent
receive operation thus sees the same data.

address

is a stem variable specifying the address of the sender from which the data is received, unless it is a
null address.

SockRecvFrom() receives data on a socket with descriptor socket and stores it in a Rexx variable named
var. It applies to any socket type, whether connected or not.

SockRecvFrom() returns the length of the incoming message or data. If a datagram is too long to fit the
supplied buffer, the excessive data is discarded. No data is discarded for stream sockets. If data is not
available at socket, the SockRecvFrom() call waits for a message to arrive and blocks the caller, unless
the socket is in nonblocking mode. See SockIoctl() for a description of how to set the nonblocking mode.

Return values:

If successful, the length of the data in bytes is returned. The value -1 indicates an error. You can get the
specific error code SockSock_Errno() or SockPSock_Errno(). Possible values are:

ENOTSOCK

socket is not a valid socket descriptor.

EINVAL

Invalid argument.

EWOULDBLOCK

socket is in nonblocking mode, no data is available, or the SO_RCVTIMEO option has been set for
socket and the timeout expired before data arrived.

Note: SockRecvFrom() interfaces with the C function recvfrom().

5.20. SockSelect
The SockSelect() call monitors the activity on a socket with regard to readability, readiness for writing,
and pending exceptional conditions.

Syntax:

>>--SockSelect(reads, writes, excepts--+-------------+--)----------------><

+--, timeout--+

ooRexx RxSock Reference Version 4.1.0 29 Draft - SVN Rev 6346

Chapter 5. Function Reference

where:

reads

is the number of sockets to be checked for readability.

writes

is the number of sockets to be checked for readiness for writing.

excepts

is the number of sockets to be checked for pending exceptional conditions. For Network Services
sockets, the only pending exceptional condition is out-of-band data in the receive buffer.

timeout

is the maximum number of seconds the system waits for the selection to complete. Set the timeout
parameter to 0 for a blocking operation. If the socket is ready, the return will be immediate.

Each parameter specifying a number of sockets is qualified by a stem variable which is queried and set
by this function. The stem variable has the following format: stem.0 contains the number of sockets,
stem.1 the first socket, and so on. Upon return, the stem variables are reset to the sockets that are ready. If
any of the stem variables are empty (), or no parameter is passed, no sockets for that type are checked.

The timeout value must be integral (no fractional values). Nonnumeric and negative numbers are
considered to be 0. If no timeout value is passed, an empty string () is assumed.

If the timeout value is 0, SockSelect() does not wait before returning. If the timeout value is an empty
string (), SockSelect() does not time out, but returns when a socket becomes ready. If the timeout value is
in seconds, SockSelect() waits for the specified interval before returning. It checks all indicated sockets
at the same time and returns as soon as one of them is ready.

Return values:

The number of ready sockets is returned. The value 0 indicates an expired time limit. In this case, the
stem variables are not modified. The value -1 indicates an error. You can get the specific error code
SockSock_Errno() or SockPSock_Errno(). Possible values are:

ENOTSOCK

socket is not a valid socket descriptor.

EFAULT

The address is not valid.

EINVAL

Invalid argument.

EINTR

Interrupted system call.

Examples:

r.0 = 2 /* specify 2 sockets for read in stem r. */

Draft - SVN Rev 6346 30 ooRexx RxSock Reference Version 4.1.0

Chapter 5. Function Reference

r.1 = 101

r.2 = 102

/* specify 1 socket for write in stem w. */

w.0 = 1

w.1 = 103

/* no sockets for exceptions in stem e. */

e.0 = 0

rc = SockSelect("r.","w.","e.")

do i = 1 to r.0 /* display sockets ready for read */

say "socket" r.i "is ready for reading."

end

That SockSelect() call can be invoked as:

rc = SockSelect("r.","w.","")

or

rc = SockSelect("r.","w.",)

The function call SockSelect(, , , x) results in the program pausing for x seconds.

Note: SockSelect() interfaces with the C function select().

5.21. SockSend
The SockSend() call sends data to a connected socket.

Syntax:

>>--SockSend(socket, data--+-----------+--)------------------------------><

+--, flags--+

where:

socket

is the socket descriptor.

data

is the name of a Rexx variable containing the data to be transmitted.

flags

is a blank delimited list of options:

MSG_OOB

sends out-of-band data to sockets that support SOCK_STREAM communication.

ooRexx RxSock Reference Version 4.1.0 31 Draft - SVN Rev 6346

Chapter 5. Function Reference

MSG_DONTROUTE

turns on the SO_DONTROUTE option for the duration of the send operation. This option is
usually only used by diagnostic or routing programs.

SockSend() sends data to a connected socket with descriptor socket. For information on how to use
SockSend() with datagram and raw sockets, see Datagram or raw sockets.

If the socket does not have enough buffer space to hold the data to be sent, the SockSend() call blocks
unless the socket is placed in nonblocking mode. See SockIoctl() for a description of how to set the
nonblocking mode. Use the SockSelect() call to determine when it is possible to send more data.

Return values:

If successful, the number of bytes of the socket with descriptor socket that is added to the send buffer is
returned. Successful completion does not imply that the data has already been delivered to the receiver.

The return value -1 indicates that an error was detected on the sending side of the connection. You can
get the specific error code SockSock_Errno() or SockPSock_Errno(). Possible values are:

ENOTSOCK

socket is not a valid socket descriptor.

EINTR

Interrupted system call.

EINVAL

Invalid argument.

ENOBUFS

There is no buffer space available to send the message.

EWOULDBLOCK

socket is in nonblocking mode, the data cannot be sent without blocking, or the SO_SNDTIMEO
option has been set for socket and the timeout expired before any data was sent.

Note: SockSend() interfaces with the C function send().

5.22. SockSendTo
The SockSentTo() call sends data to a connected or unconnected socket.

Syntax:

>>--SockSendTo(socket, data--+-----------+--, address)-------------------><

+--, flags--+

Draft - SVN Rev 6346 32 ooRexx RxSock Reference Version 4.1.0

Chapter 5. Function Reference

where:

socket

is the socket descriptor.

data

is a string of data to be transmitted.

flags

is a blank delimited list of options:

MSG_OOB

sends out-of-band data to sockets that support SOCK_STREAM communication.

MSG_DONTROUTE

turns on the SO_DONTROUTE option for the duration of the send operation. This option is
usually only used by diagnostic or routing programs.

address

is a stem variable containing the destination address.

SockSendTo() sends data to a connected or unconnected socket with descriptor socket. For unconnected
datagram and raw sockets, it sends data to the specified destination address. For stream sockets, the
destination address is ignored.

Datagram sockets are connected by calling SockConnect(). This call identifies the peer to send or receive
the datagram. After a datagram socket is connected to a peer, you can still use the SockSendTo() call but
you cannot include a destination address.

To change the peer address when using connected datagram sockets, issue SockConnect() with a null
address. Specifying a null address removes the peer address specification. You can then issue either a
SockSendTo() call and specify a different destination address or a SockConnect() call to connect to a
different peer. For more information on connecting datagram sockets and specifying null addresses, see
Datagram or raw sockets.

Return values:

If successful, the number of bytes sent is returned. Successful completion does not guarantee that the
data is delivered to the receiver. The return value -1 indicates that an error was detected on the sending
side. You can get the specific error code SockSock_Errno() or SockPSock_Errno(). Possible values are:

ENOTSOCK

socket is not a valid socket descriptor.

EMSGSIZE

The message data was too big to be sent as a single datagram.

ooRexx RxSock Reference Version 4.1.0 33 Draft - SVN Rev 6346

Chapter 5. Function Reference

ENOBUFS

There is no buffer space available to send the message.

EWOULDBLOCK

socket is in nonblocking mode, the data cannot be sent without blocking, or the SO_SNDTIMEO
option has been set for socket and the timeout expired before any data was sent.

ENOTCONN

The socket is not connected.

EDESTADDRREQ

Destination address required.

Note: SockSendTo() interfaces with the C function sendto().

5.23. SockSetSockOpt
The SockSetSockOpt() call sets options associated with a socket.

Syntax:

>>--SockSetSockOpt(socket, level, optName, optVal)-----------------------><

where:

socket

is the socket descriptor.

level

specifies which option level is set. The only supported level is SOL_SOCKET.

optname

is the name of a specified socket option.

optval

is the variable containing the data needed by the set command. It is optional.

SockSetSockOpt() sets options associated with a socket with descriptor socket such as enabling
debugging at the socket or protocol level, controlling timeouts, or permitting socket data broadcasting.
Options can exist at the socket or the protocol level. They are always present at the highest socket level.
When setting socket options, the option level and name must be specified.

For socket options that are toggles, the option is enabled if optval is nonzero and disabled if optval is 0.

The following options are recognized for SOL_SOCKET:

Draft - SVN Rev 6346 34 ooRexx RxSock Reference Version 4.1.0

Chapter 5. Function Reference

SO_BROADCAST

enables datagram sockets to broadcast messages. The application can then send broadcast messages
using datagram socket, if the interface specified in the destination supports broadcasting of packets.

SO_DEBUG

enables debug information to be recorded for a socket.

SO_DONTROUTE

enables the socket to bypass the routing of outgoing messages. Outgoing messages are then directed
to the network interface specified in the network portion of the destination address. When enabled,
packets can only be sent to directly connected networks.

SO_KEEPALIVE

enables stream sockets to send keepalive packets, which keep the connection alive. TCP uses a
timer called the keepalive timer. This timer monitors idle connections that might have been
disconnected because of a peer crash or timeout. If this option is enabled, a keepalive packet is
periodically sent to the peer.

This option is mainly used to enable servers to close connections that are no longer active as a result
of clients ending connections without properly closing them.

SO_LINGER

enables stream sockets to linger on close if data is present. If this option is enabled and there is data
still to be sent when SockSoClose() is called, the calling application is blocked during the
SockSoClose() call until the data is transmitted or the connection has timed out. If this option is
disabled, the SockSoClose() call returns without blocking the caller while TCP is trying to send the
data. Although the data transfer is usually successful, it cannot be guaranteed because TCP tries to
send the data only for a specific amount of time.

SO_OOBINLINE

enables stream sockets to receive out-of-band data, which is a logically separate data path using the
same connection as the normal data path. If this option is enabled, out-of-band data is placed in the
normal data input queue as it is received. It is then made available to SockRecv() and
SockRecvFrom() without the MSG_OOB flag being specified in those calls. If this option is
disabled, out-of-band data is placed in the priority data input queue as it is received. It can then only
be made available to SockRecv() and SockRecvFrom() by specifying the MSG_OOB flag in those
calls.

SO_RCVBUF

sets the buffer size for input. This option sets the size of the receive buffer to the value contained in
the buffer pointed to by optval. In this way, the buffer size can be tailored for specific application
needs, such as increasing the buffer size for high-volume connections.

SO_RCVLOWAT

sets the receive low-water mark.

ooRexx RxSock Reference Version 4.1.0 35 Draft - SVN Rev 6346

Chapter 5. Function Reference

SO_RCVTIMEO

sets the timeout value for a receive operation.

SO_REUSEADDR

enables stream and datagram sockets to reuse local addresses. Local addresses that are already in
use can then be bound. This alters the normal algorithm used in the SockBind() call. At connection
time, the system checks whether the local addresses and ports differ from foreign addresses and
ports. If not, the error value EADDRINUSE is returned.

SO_SNDBUF

Sets the buffer size for output. This option sets the size of the send buffer to the value contained in
the buffer pointed to by optval. In this way, the send buffer size can be tailored for specific
application needs, such as increasing the buffer size for high-volume connections.

SO_SNDLOWAT

sets the send low-water mark. This mark is ignored for nonblocking calls and not used in the
Internet domain.

SO_SNDTIMEO

sets the timeout value for a send operation.

SO_USELOOPBACK

bypasses hardware where possible.

Except for SO_LINGER, all values are integral. SO_LINGER expects two blank delimited integers:

1. The l_onoff value. It is set to 0 if the SO_LINGER option is disabled.

2. the l_linger value. The l_linger field specifies the amount of time, in seconds, to be lingered on
close. A value of 0 causes SockSoClose() to wait until disconnection completes.

Return values:

The value 0 indicates successful execution of the call. The value -1 indicates an error. You can get the
specific error code SockSock_Errno() or SockPSock_Errno(). Possible values are:

EADDRINUSE

The address is already in use.

ENOTSOCK

socket is not a valid socket descriptor.

ENOPROTOOPT

optname is not recognized.

EINVAL

Invalid argument.

Draft - SVN Rev 6346 36 ooRexx RxSock Reference Version 4.1.0

Chapter 5. Function Reference

ENOBUFS

There is no buffer space available.

Note: SockSetSockOpt() interfaces with the C function setsockopt().

5.24. SockShutDown
The SockShutDown() call shuts down all, or part, of a full duplex connection. This call is optional.

Syntax:

>>--SockShutDown(socket, howto)--><

>where:

socket

is the socket descriptor.

howto

is the condition of the shutdown of socket.

Because data flows in different directions are independent of each other, SockShutDown() allows you to
independently stop data flows in one direction, or all data flows, with one API call. For example, you can
enable yourself to send data but disable other senders to send data to you.

The howto parameter sets the condition for shutting down the connection to socket socket. It can be set to
one of the following:

0

No more data can be received on socket.

1

No more output is allowed on socket.

2

No more data can be sent or received on socket.

Return values:

The value 0 indicates successful execution of the call. The value -1 indicates an error. You can get the
specific error code SockSock_Errno() or SockPSock_Errno(). Possible values are:

ENOTSOCK

socket is not a valid socket descriptor.

ooRexx RxSock Reference Version 4.1.0 37 Draft - SVN Rev 6346

Chapter 5. Function Reference

EINVAL

howto was not set to a valid value.

Note: SockShutDown() interfaces with the C function shutdown().

5.25. SockSock_Errno
The SockSock_Errno() call returns the last error code set by a socket call. Subsequent socket API calls
do not reset this error code.

Syntax:

>>--SockSock_Errno()---><

Note: SockSock_Errno() interfaces with the C function sock_errno().

5.26. SockSocket
The SockSocket() call creates an end point for communication and returns a socket descriptor
representing the end point. Each socket type provides a different communication service.

Syntax:

>>--SockSocket(domain, type, protocol)-----------------------------------><

where:

domain

is the communication domain requested. It specifies the protocol family to be used. Currently, only
the domain AF_INET is supported, which uses addresses in the Internet address format.

type

is the type of socket created. The following types are supported:

SOCK_STREAM

provides sequenced, two-way byte streams that are reliable and connection-oriented. It
supports a mechanism for out-of-band data. Stream sockets are supported by the Internet
(AF_INET) communication domain.

Draft - SVN Rev 6346 38 ooRexx RxSock Reference Version 4.1.0

Chapter 5. Function Reference

SOCK_DGRAM

provides datagrams, which are connectionless messages of a fixed length whose reliability is
not guaranteed. Datagrams can be received out of order, lost, or delivered several times.
Datagram sockets are supported by the Internet (AF_INET) communication domain.

SOCK_RAW

provides the interface to internal protocols, such as IP and ICMP. Raw sockets are supported
by the Internet (AF_INET) communication domain.

protocol

is the protocol to be used with the socket. It can be IPPROTO_UDP, IPPROTO_TCP, or 0. If it is set
to 0, which is the default, the system selects the default protocol number for the domain and socket
type requested.

Sockets are deallocated with the SockClose() call.

Return values:

A non-negative socket descriptor return value indicates successful execution of the call. The return value
-1 indicates an error. You can get the specific error code SockSock_Errno() or SockPSock_Errno().
Possible values are:

EMFILE

The maximum number of sockets are currently in use.

EPROTONOSUPPORT

The protocol is not supported in the specified domain or the protocol is not supported for the
specified socket type.

EPFNOSUPPORT

The protocol family is not supported.

ESOCKTNOSUPPORT

The socket type is not supported.

Note: SockSocket() interfaces with the C function socket().

5.27. SockSoClose
The SockSoClose() call shuts down a socket and frees resources allocated to the socket.

Syntax:

>>--SockSoClose(socket)--><

ooRexx RxSock Reference Version 4.1.0 39 Draft - SVN Rev 6346

Chapter 5. Function Reference

where:

socket

is the socket descriptor of the socket to be closed.

This function is identical to SockClose().

Draft - SVN Rev 6346 40 ooRexx RxSock Reference Version 4.1.0

Chapter 6. Socket Class Reference
The following sections describe the socket class supplied with ooRexx. This class encapsulates the
rxsock external functions into several classes that improve the functionality if the external function
library by extending the error checking and reducing the amount of code needed in an average rxsock
program.

6.1. Installation
The Socket class package is contained in the file socket.cls. This file must be placed in a directory listed
in your PATH. To get access to the class and methods in the Socket class, include the following statement
in your Rexx program:

::requires ’socket.cls’

6.2. The Socket Class

Figure 6-1. The Socket Class

Object

gethostbyaddr
gethostbyname
gethostid

Socket

accept
bind
close
connect
getOption
getPeerName
getSockName
init
ioctl
listen

recv
recvFrom
selectend
setOption
string

ooRexx RxSock Reference Version 4.1.0 41 Draft - SVN Rev 6346

Chapter 6. Socket Class Reference

6.2.1. getHostByAddr (class) method
>>--getHostByAddr(ipaddr)--------------------------------------><

This is a class method. It returns an instance of the HostInfo class.

6.2.2. getHostByName (class) method
>>--getHostByName(hostname)------------------------------------><

This is a class method. It returns an instance of the HostInfo class.

6.2.3. getHostId (class) method
>>--getHostId()--><

This is a class method. It returns the dotted decimal host id of the local machine.

6.2.4. accept method
>>--accept()---><

This method returns a new socket class instance that is connected to a remote host that has requested a
connection from a server socket.

6.2.5. bind method
>>--bind(address)--><

This method binds a socket to a particular local ip address specified by an instance of the InetAddress
class contained in the address argument.

6.2.6. close method
>>--close()--><

This method closes this socket instance.

6.2.7. connect method
>>--connect(address)---><

Draft - SVN Rev 6346 42 ooRexx RxSock Reference Version 4.1.0

Chapter 6. Socket Class Reference

This method connect the socket to a remote address specified by an instance of the InetAddress class
contained in the address argument.

6.2.8. getOption method
>>--getOption(option)--><

This method returns the value of the options specified by the option argument.

The option argument must be one of the following:

SO_BROADCAST
SO_DEBUG
SO_DONTROUTE
SO_ERROR
SO_KEEPALIVE
SO_LINGER
SO_OOBINLINE
SO_RCVBUF
SO_RCVLOWAT
SO_RCVTIMEO
SO_REUSEADDR
SO_SNDBUF
SO_SNDLOWAT
SO_SNDTIMEO
SO_TYPE
SO_USELOOPBACK

6.2.9. getPeerName method
>>--getPeerName()--><

This method returns the peer name of the remote connection.

6.2.10. getSockName method
>>--getSockName()--><

This method returns an instance of the InetAddress class than is the name information of the remote
machine.

6.2.11. new (class) method
>>--new(--+--+--)------><

+--domain--+----------------------------+--+

+--, type--+--------------+--+

+--, protocol--+

ooRexx RxSock Reference Version 4.1.0 43 Draft - SVN Rev 6346

Chapter 6. Socket Class Reference

This method returns a new instance of the Socket.

domain

If specified, this argument must be AF_INET.

type

If specified, this argument must be SOCK_STREAM, SOCK_DGRAM or SOCK_RAW.
SOCK_STREAM is the default.

protocol

If specified, this argument must be 0, IPPROTO_UDP or IPPROTO_TCP. 0 is the default.

6.2.12. ioctl method
>>--ioctl(cmd, data)---><

This method sends a special command to the socket. The cmd and the data are not checked for valid
values.

6.2.13. listen method
>>--listen(backlog)--><

This method turns the socket into a server listening socket. The backlog is the number of connection
requests the socket should cache.

6.2.14. recv method
>>--recv(length)---><

This method recieves data on a socket connection. The length is the maximum number of bytes the
socket should receive. This method returns the data received, which could be less than the maximum
length specified.

6.2.15. recvFrom method
>>--recv(length, address)--------------------------------------><

This method recieves data on a socket connection from the specified address. The address must be an
instance of the InetAddress class. The length is the maximum number of bytes the socket should receive.
This method returns the data received, which could be less than the maximum length specified.

Draft - SVN Rev 6346 44 ooRexx RxSock Reference Version 4.1.0

Chapter 6. Socket Class Reference

6.2.16. select method
>>--select(reads, writes, excepts, timeout)--------------------><

This method monitors activity on a set of sockets. It returns the number of sockets ready for activity.
Upon return the input argument arrays will be reset to only the sockets that are ready.

reads

An array of socket instances to monitor for read activity.

writes

An array of socket instances to monitor for write activity.

excepts

An array of socket instances to monitor for exception activity.

timeout

The timeout in seconds. This must be a whole number (no fractions allowed).

6.2.17. Send method
>>--send(data)---><

This method sends the data on the socket. It returns the number of bytes sent, which could be less than
the length of data.

6.2.18. setOption method
>>--setOption(name, value)-------------------------------------><

This method sets the option given by name with the data in value. See the method getOption for the list
of valid names.

6.2.19. string method
>>--string()---><

This method returns the string representing the socket.

ooRexx RxSock Reference Version 4.1.0 45 Draft - SVN Rev 6346

Chapter 6. Socket Class Reference

6.3. The InetAddress Class

Figure 6-2. The InetAddress Class

Object

address
address=
family
family=
init
makeStem
port
port=

InetAddress

6.3.1. address method
>>--address()--><

This method returns the ip address of the original hostname.

6.3.2. address= method
>>--address(ipaddress)---><

6.3.2.1. family method)

>>--family()---><

This method returns the ip address family of the original hostname.

6.3.2.2. family= method

>>--family(newfamily)--><

This method sets the ip address family of the original hostname.

Draft - SVN Rev 6346 46 ooRexx RxSock Reference Version 4.1.0

Chapter 6. Socket Class Reference

6.3.2.3. init method

>>--init(hostname, port +------------+--)----------------------><

+--, family--+

This method creates a new instance of the InetAddress class.

hostname

The ip address or host name of the host machine.

port

The port number of the connection.

family

The address family. The only valid value is AF_INET.

6.3.2.4. makeStem method

>>--makeStem()---><

This method returns a stem variable set to the current values of the instance. This method has limited
usefulness to the programmer.

6.3.2.5. port method

>>--port()---><

This method returns port number of the original hostname.

6.3.2.6. port= method

>>--port(newport)--><

This method sets the port number of the original hostname.

ooRexx RxSock Reference Version 4.1.0 47 Draft - SVN Rev 6346

Chapter 6. Socket Class Reference

6.3.3. The HostInfo Class

Figure 6-3. The HostInfo Class

Object

addr
address
alias
name
init
makeStem

HostInfo

6.3.3.1. addr method

>>--addr()---><

This method returns an array of ip addresses of the host.

6.3.3.2. address method

>>--address()--><

This method returns the main ip address of the host.

6.3.3.3. alias method

>>--alias()--><

This method returns an array of alias host name of the host.

6.3.3.4. name method

>>--alias()--><

This method returns the main host name of the host.

Draft - SVN Rev 6346 48 ooRexx RxSock Reference Version 4.1.0

Chapter 6. Socket Class Reference

6.3.3.5. init method

>>--init(hostname)---><

This method create an instance of the HostInfo class and sets all the attribute methods of the instance.
The hostname can be either a valid DNS host name or an ip address.

6.3.3.6. makeStem method

>>--makeStem()---><

This method returns a stem variable set to the current values of the instance. This method has limited
usefulness to the programmer.

6.4. Socket Class Example
host = ’127.0.0.1’

port = 8080

srvr = .server~new(host, port)

call syssleep(1) -- just to let the server get started

call client host, port, ’This is test 1’

call client host, port, ’This is test 2’

call client host, port, ’stop’

return

::requires ’socket.cls’

::routine client

use strict arg host, port, message

-- get a new socket

s = .socket~new()

-- set the server address/port to connection information

addr = .inetaddress~new(host, port)

-- connect to the server

retc = s~connect(addr)

if retc <> 0 then do

say ’Error’ s~errno() ’connecting to server socket.’

return

end

-- send the command

retc = s~send(message)

-- receive the command back

say s~recv(4096)

-- close the socket

s~close()

return

::class server

ooRexx RxSock Reference Version 4.1.0 49 Draft - SVN Rev 6346

Chapter 6. Socket Class Reference

::method init

use strict arg host, port

-- get a new socket

s = .socket~new()

if s = -1 then do

say ’Error’ s~errno() ’creating server socket’

return

end

-- set the socket to reuse the addresses assigned to it

retc = s~setoption(’SO_REUSEADDR’, 1)

if retc = -1 then do

say ’Error’ s~errno() ’setting socket option’

return

end

-- bind the socket to an address/port

addr = .inetaddress~new(host, port)

retc = s~bind(addr)

if retc = -1 then do

say ’Error’ s~errno() ’binding socket’

return

end

-- mark it as a listening socket

retc = s~listen(3)

if retc = -1 then do

say ’Error’ s~errno() ’making the socket a listening socket’

return

end

say ’Server starting’

reply

stop = .false

do while \stop

-- accept a client connection socket

cs = s~accept()

if cs = .nil then do

say ’Error accepting new socket’

iterate

end

-- receive the command from the client

cmd = cs~recv(4096)

-- echo the command back to the client

cs~send(cmd)

-- close the client connection socket

cs~close()

-- if the command was stop then stop the server

if cmd~upper() = ’STOP’ then do

stop = .true

end

end

-- close the socket

s~close()

return

Draft - SVN Rev 6346 50 ooRexx RxSock Reference Version 4.1.0

Chapter 7. StreamSocket Class Reference
The following sections describe the streamsocket class supplied with ooRexx. This class encapsulates the
rxsock external functions into a class that treats the socket as a standard ooRexx input/output stream. It
improves error checking and reduces the amount of code needed in an average rxsock program.

7.1. Installation
The StreamSocket class package is contained in the file streamsocket.cls. This file must be placed in a
directory listed in your PATH. To get access to the class and methods in the StreamSocket class, include
the following statement in your Rexx program:

::requires ’streamsocket.cls’

7.2. The StreamSocket Class
A streamsocket object allows external communication from Rexx to a socket.

The StreamSocket class is a subclass of the InputOutputStream class.

ooRexx RxSock Reference Version 4.1.0 51 Draft - SVN Rev 6346

Chapter 7. StreamSocket Class Reference

Figure 7-1. The StreamSocket class and methods

Object

charIn
charOut
chars
close
description
init
lineIn

InputOutputStream

StreamSocket

Lineout
lines
open
say
state
string

+ InputStream
+ OutputStream

Note: The StreamSocket class also has available class methods that its metaclass, the Class class,
defines. It also inherits methods from the InputOutputStream class.

7.2.1. Inherited Methods
Methods inherited from the InputStream class.

Note: This class is searched second for inherited methods.

arrayIn close open
charIn lineIn position
charOut lineOut
chars lines

Methods inherited from the OutputStream class.

Note: This class is searched first for inherited methods.

Draft - SVN Rev 6346 52 ooRexx RxSock Reference Version 4.1.0

Chapter 7. StreamSocket Class Reference

arrayOut close open
charIn lineIn position
charOut lineOut
chars lines

7.2.2. new (Inherited Class Method)
>>-new(host, port--+-------------+--)--------------------------><

+--, bufsize--+

Initializes a stream object for the host and port, but does not open the stream. Returns the new stream
object.

host

The host name or TCP/IP address of an Internet host.

port

The port number of the host.

bufsize

(optional) The buffersize to use for read operations. The default size is 4096.

7.2.3. arrayIn
This method is invalid for this class and will raise an error if invoked.

7.2.4. arrayOut
This method is invalid for this class and will raise an error if invoked.

7.2.5. charIn
>>-charIn-+----------------------------+-----------------------><

+-(-+-------+--+---------+-)-+

+-start-+ +-,length-+

Returns a string of up to length characters from the input stream. If you omit length, it defaults to 1. If
you specify start, it will be ignored since sockets are considered not to be persistent streams. If the
stream is not already open, the stream attempts to open for reading and writing. If that fails, the stream
opens for input only.

ooRexx RxSock Reference Version 4.1.0 53 Draft - SVN Rev 6346

Chapter 7. StreamSocket Class Reference

7.2.6. charOut
>>-charOut-+----------------------------+----------------------><

+-(-+--------+--+--------+-)-+

+-string-+ +-,start-+

Returns the count of characters remaining after trying to write string to the output stream.

The string can be the null string. In this case, charOut writes no characters to the stream and returns 0. If
you omit string, charOut writes no characters to the stream and returns 0.

If you specify start it will be ignored since socket streams are not considered persistent.

7.2.7. chars
>>-chars---><

Returns 1 if the stream is open. Otherwise returns0.

7.2.8. close
>>-close---><

Closes the stream. close returns READY: if closing the stream is successful, or an appropriate error
message. If you have tried to close an unopened socket, then the close method returns a null string ("").

7.2.9. description
>>-description---><

Returns any descriptive string associated with the current state of the stream or the Nil object if no
descriptive string is available. The description method is identical with the STATE method except that
the string that description returns is followed by a colon and, if available, additional information about
ERROR or NOTREADY states. (The state method describes these states.)

7.2.10. lineIn
>>-lineIn-+-------------------------+--------------------------><

+-(-+------+-+--------+-)-+

+-line-+ +-,count-+

Returns the next count lines. The count must be 0 or 1. If you omit count, it defaults to 1. A line number
may be given but it will be ignored since sockets are not considered to be a persistent stream. If the
stream is not already open, the it tries to open the stream for reading and writing.

Draft - SVN Rev 6346 54 ooRexx RxSock Reference Version 4.1.0

Chapter 7. StreamSocket Class Reference

7.2.11. lineOut
>>-lineOut-+--------------------------+------------------------><

+-(-+--------+-+-------+-)-+

+-string-+ +-,line-+

Returns 0 if successful in writing string to the output stream or 1 if an error occurs while writing the line.
If you specify line it will be ignored since a socket is not considered to be a persistent stream.

7.2.12. lines
>>-lines---><

Returns 1 if the stream is open. Otherwise returns0.

7.2.13. open
>>-open---><

Opens the stream for input and output and returns READY:. If the method is unsuccessful, it returns an
error message string in the same form that the description method uses.

For most error conditions, the additional information is in the form of a numeric return code. This return
code is the value of ERRNO, which is set whenever one of the file system primitives returns with a -1.

7.2.14. position
>>-position--><

This method is invalid for this class and will raise an error if invoked.

7.2.15. say
>>-say--+----------------+-------------------------------------><

+-(-+--------+-)-+

+-string-+

Returns 0 if successful in writing string to the output stream or 1 if an error occurs while writing the line.

7.2.16. state
>>-state---><

Returns a string indicating the current stream state.

The returned strings are as follows:

ooRexx RxSock Reference Version 4.1.0 55 Draft - SVN Rev 6346

Chapter 7. StreamSocket Class Reference

ERROR

The stream has been subject to an erroneous operation (possibly during input or output. You might
be able to obtain additional information about the error with the description method.

NOTREADY

The stream is known to be in such a state that the usual input or output operations attempted upon
would raise the NOTREADY condition.

READY

The stream is known to be in such a state that the usual input or output operations might be
attempted. This is the usual state for a stream, although it does not guarantee that any particular
operation will succeed.

UNKNOWN

The state of the stream is unknown. This generally means that the stream is closed or has not yet
been opened.

7.2.17. string
>>-string--><

Returns a string that indicates the name of the object the stream represents i.e. the hostname:port.

Draft - SVN Rev 6346 56 ooRexx RxSock Reference Version 4.1.0

Chapter 8. SMTP Class Reference
The following sections describe the smtp class supplied with ooRexx. This class can send SMTP
messages to an SMTP server. It utilizes the StreamSocket class to perform the communications with the
server.

8.1. Installation
The SMTP class package is contained in the file smtp.cls. This file must be placed in a directory listed in
your PATH. To get access to the class and methods in the SMTP class, include the following statement in
your Rexx program:

::requires ’smtp.cls’

8.2. The SMTP Class
This class encapsulates all the communications necessary to send mail via an SMTP server.

ooRexx RxSock Reference Version 4.1.0 57 Draft - SVN Rev 6346

Chapter 8. SMTP Class Reference

Figure 8-1. The SMTP class and methods

Object

authid
cmdresponse
connect
debug
localhost
logoff
password
response
send
smtperrno

SMTP

new

Note: The SMTP class also has available class methods that its metaclass, the Class class, defines.

8.2.1. new (Class Method)
>>-new---><

Initializes the object. Returns the new smtp object.

8.2.2. authid
>>-authid()--><

>>-authid(newauthid)---><

This method either sets the authid or returns the current authid. The default value for the authid is a
zero-length string.

Draft - SVN Rev 6346 58 ooRexx RxSock Reference Version 4.1.0

Chapter 8. SMTP Class Reference

8.2.3. cmdrespomse
>>-cmdresponse---><

This method returns an array containing all the commands sent to the SMTP server and the responses
from that server.

8.2.4. connect
>>-connect(smtphost--+--------------------------------+--)-------><

+--, authid-----+--------------+-+

+--, password--+

This opens the connection to the SMTP host machine.

smtphost

The host name or TCP/IP address of the SMTP host. This string can contain a port designation.

authid

(Optional) The account authid to be used if needed.

password

(optional) The password for the specified authid.

8.2.5. debug
>>-debug---><

>>-debug(flag)---><

This method either sets the debug flag or returns the current flag value. The default value for the flag is 0
(false) which suppresses debug messages.

8.2.6. localhost
>>-localhost---><

This method returns the local host name.

8.2.7. logoff
>>-logoff--><

This method logs off the session to the SMTP host.

ooRexx RxSock Reference Version 4.1.0 59 Draft - SVN Rev 6346

Chapter 8. SMTP Class Reference

8.2.8. password
>>-password--><

>>-password(newpassword)---------------------------------------><

This method either sets the smtp server account passwordor returns the password value. The default
value for the password is a zero-length string.

8.2.9. response
>>-response--><

This method returns the parsed response to the last command sent to the SMTP server. The initial value
for the repsonse is a zero-length string.

8.2.10. send
>>-send(msg)---><

This method sends an SMTP message to the SMTP server. The msg must be an instance of the
SMTPMsg class.

8.2.11. smtperrno
>>-smtperrno---><

This method returns the return code of the last command sent to the SMTP server. The initial value for
the repsonse is a zero-length string.

8.3. The SMTPMsg Class
This class encapsulates all information needed to communicate a complete message to the SMTP server.

Draft - SVN Rev 6346 60 ooRexx RxSock Reference Version 4.1.0

Chapter 8. SMTP Class Reference

Figure 8-2. The SMTPMsg class and methods

Object

addRecipient
content
from
subject
recipients

SMTPMsg

new

Note: The SMTPMsg class also has available class methods that its metaclass, the Class class,
defines.

8.3.1. new (Class Method)
>>-new---><

Initializes the object. Returns the new smtpmsg object.

8.3.2. addRecipient
>>-addRecipient(recp)--><

This method adds a new recipient of the message.

8.3.3. content
>>-content---><

>>-content(part)---><

ooRexx RxSock Reference Version 4.1.0 61 Draft - SVN Rev 6346

Chapter 8. SMTP Class Reference

This method sets a piece of the SMTP message. The part must be an instance of the MimePart class,
MimeMultiPart class or a plain string.

8.3.4. from
>>-from--><

>>-from(fromaddress)---><

This method sets or fetches the "From" mail header field.

8.3.5. recipients
>>-recipients--><

This returns an array of the mail header "Recipient" fields.

8.3.6. subject
>>-subject---><

>>-subject(newsubject)---><

This method sets or fetches the "Subject" mail header field.

Draft - SVN Rev 6346 62 ooRexx RxSock Reference Version 4.1.0

Chapter 9. Mime Classes Reference
The following sections describe the mime classes supplied with ooRexx. These classes encapsulates a
mime object. This is most useful for sending complicated email messages vie the SMTP class.

9.1. Installation
The Mime class package is contained in the file mime.cls. This file must be placed in a directory listed in
your PATH. To get access to the class and methods in the Mime class, include the following statement in
your Rexx program:

::requires ’mime.cls’

9.2. The MimePart Class

Figure 9-1. The MimePart class and methods

Object

addContent
content
description
disposition
encoding
id
string
type

MimePart

new

Note: The MimePart class also has available class methods that its metaclass, the Class class,
defines.

ooRexx RxSock Reference Version 4.1.0 63 Draft - SVN Rev 6346

Chapter 9. Mime Classes Reference

9.2.1. New (class) method
>>--new(--+--------+--)--><

+--type--+

This is a class method. It returns an instance of the MimePart class.

type

(Optional) The mime type string. The default if not given is "text/plain".

9.2.2. addContent method
>>--addContent(string)---><

This method adds content to the mime-content field. This filed may only contain ASCII strings.

string

The ASCII string to be added to the content.

9.2.3. content method
>>--content--><

This method returns the mime-content string.

9.2.4. description method
>>--description--><

>>--description(newdescription)--------------------------------><

This method sets or returns the mime-description string.

newdescription

The mime-description string.

9.2.5. disposition method
>>--disposition--><

Draft - SVN Rev 6346 64 ooRexx RxSock Reference Version 4.1.0

Chapter 9. Mime Classes Reference

>>--disposition(newdisposition)--------------------------------><

This method sets or returns the mime-disposition string.

newdisposition

The mime-disposition string.

9.2.6. encoding method
>>--encoding---><

>>--encoding(newencoding)--------------------------------------><

This method sets or returns the mime-encoding string.

newencoding

The mime-encoding string.

9.2.7. id method
>>--id---><

>>--id(newid)--><

This method sets or returns the mime-id string.

newid

The mime-id string.

9.2.8. string method
>>--string---><

This method returns the formatted mime part string.

9.2.9. type method
>>--type---><

>>--type(newtype)--><

This method sets or returns the mime-type string.

ooRexx RxSock Reference Version 4.1.0 65 Draft - SVN Rev 6346

Chapter 9. Mime Classes Reference

newtype

The mime-type string.

9.3. The MimeMultiPart Class

Figure 9-2. The MimeMultiPart class and methods

Object

addPart
description
disposition
encoding
id
string
type

MimeMultiPart

new

Note: The MimeMultiPart class also has available class methods that its metaclass, the Class class,
defines.

9.3.1. New (class) method
>>--new(--+--------+--)--><

+--type--+

This is a class method. It returns an instance of the MimeMultiPart class.

type

(Optional) The mime type string. The default if not given is "multipart/mixed".

Draft - SVN Rev 6346 66 ooRexx RxSock Reference Version 4.1.0

Chapter 9. Mime Classes Reference

9.3.2. addPart method
>>--addPart(part)--><

This method adds a new part to the mime object. part must be a

part

The part to be added. The part must be an instance of the MimePart class.

9.3.3. description method
>>--description--><

>>--description(newdescription)--------------------------------><

This method sets or returns the mime-description string.

newdescription

The mime-description string.

9.3.4. disposition method
>>--disposition--><

>>--disposition(newdisposition)--------------------------------><

This method sets or returns the mime-disposition string.

newdisposition

The mime-disposition string.

9.3.5. encoding method
>>--encoding---><

>>--encoding(newencoding)--------------------------------------><

This method sets or returns the mime-encoding string.

newencoding

The mime-encoding string.

ooRexx RxSock Reference Version 4.1.0 67 Draft - SVN Rev 6346

Chapter 9. Mime Classes Reference

9.3.6. id method
>>--id---><

>>--id(newid)--><

This method sets or returns the mime-id string.

newid

The mime-id string.

9.3.7. string method
>>--string---><

This method returns the formatted mime part string.

9.3.8. type method
>>--type---><

>>--type(newtype)--><

This method sets or returns the mime-type string.

newtype

The mime-type string.

Draft - SVN Rev 6346 68 ooRexx RxSock Reference Version 4.1.0

Appendix A. Notices
Any reference to a non-open source product, program, or service is not intended to state or imply that
only non-open source product, program, or service may be used. Any functionally equivalent product,
program, or service that does not infringe any Rexx Language Association (RexxLA) intellectual
property right may be used instead. However, it is the user’s responsibility to evaluate and verify the
operation of any non-open source product, program, or service.

Any performance data contained herein was determined in a controlled environment. Therefore, the
results obtained in other operating environments may vary significantly. Some measurements may have
been made on development-level systems and there is no guarantee that these measurements will be the
same on generally available systems. Furthermore, some measurement may have been estimated through
extrapolation. Actual results may vary. Users of this document should verify the applicable data for their
specific environment.

Information concerning non-open source products was obtained from the suppliers of those products,
their published announcements or other publicly available sources. RexxLA has not tested those products
and cannot confirm the accuracy of performance, compatibility or any other claims related to
non-RexxLA packages. Questions on the capabilities of non-RexxLA packages should be addressed to
the suppliers of those products.

All statements regarding RexxLA’s future direction or intent are subject to change or withdrawal without
notice, and represent goals and objectives only.

This information contains examples of data and reports used in daily business operations. To illustrate
them as completely as possible, the examples include the names of individuals, companies, brands, and
products. All of these names are fictitious and any similarity to the names and addresses used by an
actual business enterprise is entirely coincidental.

A.1. Trademarks
Open Object Rexx™ and ooRexx™ are trademarks of the Rexx Language Association.

The following terms are trademarks of the IBM Corporation in the United States, other countries, or both:

1-2-3
AIX
IBM
Lotus
OS/2
S/390
VisualAge

AMD is a trademark of Advance Micro Devices, Inc.

Intel, Intel Inside (logos), MMX and Pentium are trademarks of Intel Corporation in the United States,
other countries, or both.

Java and all Java-based trademarks are trademarks of Sun Microsystems, Inc. in the Unites States, other
countries, or both.

Linux is a trademark of Linus Torvalds in the United States, other countries, or both.

Microsoft, Windows, Windows NT, and the Windows logo are trademarks of Microsoft Corporation in

ooRexx RxSock Reference Version 4.1.0
69 Draft - SVN Rev 6346

Appendix A. Notices

the United States, other countries, or both.

UNIX is a registered trademark of The Open Group in the United States and other countries.

Other company, product, or service names may be trademarks or service marks of others.

A.2. Source Code For This Document
The source code for this document is available under the terms of the Common Public License v1.0
which accompanies this distribution and is available in the appendix Common Public License Version
1.0. The source code itself is available at
http://sourceforge.net/project/showfiles.php?group_id=119701.

The source code for this document is maintained in DocBook SGML/XML format.

Draft - SVN Rev 6346 70 ooRexx RxSock Reference Version 4.1.0

Appendix B. Common Public License Version
1.0

THE ACCOMPANYING PROGRAM IS PROVIDED UNDER THE TERMS OF THIS COMMON
PUBLIC LICENSE ("AGREEMENT"). ANY USE, REPRODUCTION OR DISTRIBUTION OF THE
PROGRAM CONSTITUTES RECIPIENT’S ACCEPTANCE OF THIS AGREEMENT.

B.1. Definitions
"Contribution" means:

1. in the case of the initial Contributor, the initial code and documentation distributed under this
Agreement, and

2. in the case of each subsequent Contributor:

a. changes to the Program, and

b. additions to the Program;

where such changes and/or additions to the Program originate from and are distributed by that particular
Contributor. A Contribution ’originates’ from a Contributor if it was added to the Program by such
Contributor itself or anyone acting on such Contributor’s behalf. Contributions do not include additions
to the Program which: (i) are separate modules of software distributed in conjunction with the Program
under their own license agreement, and (ii) are not derivative works of the Program.

"Contributor" means any person or entity that distributes the Program.

"Licensed Patents " mean patent claims licensable by a Contributor which are necessarily infringed by
the use or sale of its Contribution alone or when combined with the Program.

"Program" means the Contributions distributed in accordance with this Agreement.

"Recipient" means anyone who receives the Program under this Agreement, including all Contributors.

B.2. Grant of Rights

1. Subject to the terms of this Agreement, each Contributor hereby grants Recipient a non-exclusive,
worldwide, royalty-free copyright license to reproduce, prepare derivative works of, publicly
display, publicly perform, distribute and sublicense the Contribution of such Contributor, if any, and
such derivative works, in source code and object code form.

2. Subject to the terms of this Agreement, each Contributor hereby grants Recipient a non-exclusive,
worldwide, royalty-free patent license under Licensed Patents to make, use, sell, offer to sell, import
and otherwise transfer the Contribution of such Contributor, if any, in source code and object code
form. This patent license shall apply to the combination of the Contribution and the Program if, at
the time the Contribution is added by the Contributor, such addition of the Contribution causes such

ooRexx RxSock Reference Version 4.1.0 71 Draft - SVN Rev 6346

Appendix B. Common Public License Version 1.0

combination to be covered by the Licensed Patents. The patent license shall not apply to any other
combinations which include the Contribution. No hardware per se is licensed hereunder.

3. Recipient understands that although each Contributor grants the licenses to its Contributions set
forth herein, no assurances are provided by any Contributor that the Program does not infringe the
patent or other intellectual property rights of any other entity. Each Contributor disclaims any
liability to Recipient for claims brought by any other entity based on infringement of intellectual
property rights or otherwise. As a condition to exercising the rights and licenses granted hereunder,
each Recipient hereby assumes sole responsibility to secure any other intellectual property rights
needed, if any. For example, if a third party patent license is required to allow Recipient to distribute
the Program, it is Recipient’s responsibility to acquire that license before distributing the Program.

4. Each Contributor represents that to its knowledge it has sufficient copyright rights in its
Contribution, if any, to grant the copyright license set forth in this Agreement.

B.3. Requirements
A Contributor may choose to distribute the Program in object code form under its own license
agreement, provided that:

1. it complies with the terms and conditions of this Agreement; and

2. its license agreement:

a. effectively disclaims on behalf of all Contributors all warranties and conditions, express and
implied, including warranties or conditions of title and non-infringement, and implied
warranties or conditions of merchantability and fitness for a particular purpose;

b. effectively excludes on behalf of all Contributors all liability for damages, including direct,
indirect, special, incidental and consequential damages, such as lost profits;

c. states that any provisions which differ from this Agreement are offered by that Contributor
alone and not by any other party; and

d. states that source code for the Program is available from such Contributor, and informs
licensees how to obtain it in a reasonable manner on or through a medium customarily used for
software exchange.

When the Program is made available in source code form:

1. it must be made available under this Agreement; and

2. a copy of this Agreement must be included with each copy of the Program.

Contributors may not remove or alter any copyright notices contained within the Program.

Each Contributor must identify itself as the originator of its Contribution, if any, in a manner that
reasonably allows subsequent Recipients to identify the originator of the Contribution.

Draft - SVN Rev 6346 72 ooRexx RxSock Reference Version 4.1.0

Appendix B. Common Public License Version 1.0

B.4. Commercial Distribution
Commercial distributors of software may accept certain responsibilities with respect to end users,
business partners and the like. While this license is intended to facilitate the commercial use of the
Program, the Contributor who includes the Program in a commercial product offering should do so in a
manner which does not create potential liability for other Contributors. Therefore, if a Contributor
includes the Program in a commercial product offering, such Contributor ("Commercial Contributor")
hereby agrees to defend and indemnify every other Contributor ("Indemnified Contributor") against any
losses, damages and costs (collectively "Losses") arising from claims, lawsuits and other legal actions
brought by a third party against the Indemnified Contributor to the extent caused by the acts or omissions
of such Commercial Contributor in connection with its distribution of the Program in a commercial
product offering. The obligations in this section do not apply to any claims or Losses relating to any
actual or alleged intellectual property infringement. In order to qualify, an Indemnified Contributor must:
a) promptly notify the Commercial Contributor in writing of such claim, and b) allow the Commercial
Contributor to control, and cooperate with the Commercial Contributor in, the defense and any related
settlement negotiations. The Indemnified Contributor may participate in any such claim at its own
expense.

For example, a Contributor might include the Program in a commercial product offering, Product X. That
Contributor is then a Commercial Contributor. If that Commercial Contributor then makes performance
claims, or offers warranties related to Product X, those performance claims and warranties are such
Commercial Contributor’s responsibility alone. Under this section, the Commercial Contributor would
have to defend claims against the other Contributors related to those performance claims and warranties,
and if a court requires any other Contributor to pay any damages as a result, the Commercial Contributor
must pay those damages.

B.5. No Warranty
EXCEPT AS EXPRESSLY SET FORTH IN THIS AGREEMENT, THE PROGRAM IS PROVIDED
ON AN "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, EITHER
EXPRESS OR IMPLIED INCLUDING, WITHOUT LIMITATION, ANY WARRANTIES OR
CONDITIONS OF TITLE, NON-INFRINGEMENT, MERCHANTABILITY OR FITNESS FOR A
PARTICULAR PURPOSE. Each Recipient is solely responsible for determining the appropriateness of
using and distributing the Program and assumes all risks associated with its exercise of rights under this
Agreement, including but not limited to the risks and costs of program errors, compliance with applicable
laws, damage to or loss of data, programs or equipment, and unavailability or interruption of operations.

B.6. Disclaimer of Liability
EXCEPT AS EXPRESSLY SET FORTH IN THIS AGREEMENT, NEITHER RECIPIENT NOR ANY
CONTRIBUTORS SHALL HAVE ANY LIABILITY FOR ANY DIRECT, INDIRECT, INCIDENTAL,
SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING WITHOUT
LIMITATION LOST PROFITS), HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY,
WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR
OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OR DISTRIBUTION OF THE

ooRexx RxSock Reference Version 4.1.0 73 Draft - SVN Rev 6346

Appendix B. Common Public License Version 1.0

PROGRAM OR THE EXERCISE OF ANY RIGHTS GRANTED HEREUNDER, EVEN IF ADVISED
OF THE POSSIBILITY OF SUCH DAMAGES.

B.7. General
If any provision of this Agreement is invalid or unenforceable under applicable law, it shall not affect the
validity or enforceability of the remainder of the terms of this Agreement, and without further action by
the parties hereto, such provision shall be reformed to the minimum extent necessary to make such
provision valid and enforceable.

If Recipient institutes patent litigation against a Contributor with respect to a patent applicable to
software (including a cross-claim or counterclaim in a lawsuit), then any patent licenses granted by that
Contributor to such Recipient under this Agreement shall terminate as of the date such litigation is filed.
In addition, if Recipient institutes patent litigation against any entity (including a cross-claim or
counterclaim in a lawsuit) alleging that the Program itself (excluding combinations of the Program with
other software or hardware) infringes such Recipient’s patent(s), then such Recipient’s rights granted
under Section 2(b) shall terminate as of the date such litigation is filed.

All Recipient’s rights under this Agreement shall terminate if it fails to comply with any of the material
terms or conditions of this Agreement and does not cure such failure in a reasonable period of time after
becoming aware of such noncompliance. If all Recipient’s rights under this Agreement terminate,
Recipient agrees to cease use and distribution of the Program as soon as reasonably practicable.
However, Recipient’s obligations under this Agreement and any licenses granted by Recipient relating to
the Program shall continue and survive.

Everyone is permitted to copy and distribute copies of this Agreement, but in order to avoid inconsistency
the Agreement is copyrighted and may only be modified in the following manner. The Agreement
Steward reserves the right to publish new versions (including revisions) of this Agreement from time to
time. No one other than the Agreement Steward has the right to modify this Agreement. IBM is the
initial Agreement Steward. IBM may assign the responsibility to serve as the Agreement Steward to a
suitable separate entity. Each new version of the Agreement will be given a distinguishing version
number. The Program (including Contributions) may always be distributed subject to the version of the
Agreement under which it was received. In addition, after a new version of the Agreement is published,
Contributor may elect to distribute the Program (including its Contributions) under the new version.
Except as expressly stated in Sections 2(a) and 2(b) above, Recipient receives no rights or licenses to the
intellectual property of any Contributor under this Agreement, whether expressly, by implication,
estoppel or otherwise. All rights in the Program not expressly granted under this Agreement are reserved.

This Agreement is governed by the laws of the State of New York and the intellectual property laws of
the United States of America. No party to this Agreement will bring a legal action under this Agreement
more than one year after the cause of action arose. Each party waives its rights to a jury trial in any
resulting litigation.

Draft - SVN Rev 6346 74 ooRexx RxSock Reference Version 4.1.0

Index

A
accept method

of Socket class, 42
accepting a socket connection, 12
addContent method

of MimePart class, 64
addPart method

of MimeMultiPart class, 67
addr method

of HostInfo class, 48
addRecipient method

of SMTPMsg class, 61
address method

of HostInfo class, 48
of InetAddress class, 46

address= method
of InetAddress class, 46

alias method
of HostInfo class, 48

arrayIn method
of StreamSocket class, 53

arrayOut method
of StreamSocket class, 53

authid method
of SMTP class, 58

B
bind method

of Socket class, 42
binding to a port, 14

C
charIn method

of StreamSocket class, 53
charOut method

of StreamSocket class, 54
chars method

of StreamSocket class, 54

class
SMTP class, 57
SMTPMsg class, 60
StreamSocket class, 51

class method
new

of Socket class, 43
class, mime, 63
class, SMTP, 57
class, socket, 41
class, StreamSocket, 51
close method

of Socket class, 42
of StreamSocket class, 54

closing a socket, 15, 39
cmdresponse method

of SMTP class, 59
Common Public License, 71
connect

of Socket class, 42
connect method

of SMTP class, 59
connect to a host, 16
connection, accepting a socket, 12
connection, listen on a socket for a, 25
content method

of MimePart class, 64
of SMTPMsg class, 61

CPL, 71

D
data on socket, receive, 27, 28
data on socket, send, 31, 32
debug method

of SMTP class, 59
definition of a socket, 1
description method

of MimeMultiPart class, 67
of MimePart class, 64
of StreamSocket class, 54

description, RxSock, 1
disposition method

of MimeMultiPart class, 67
of MimePart class, 64

dropping functions, 12

ooRexx RxSock Reference Version 4.1.0
75 Draft - SVN Rev 6346

E
encoding method

of MimeMultiPart class, 67
of MimePart class, 65

error messages, writing, 26
error, get last socket, 38
example

of Socket class, 49

F
family method

of InetAddress class, 46
family= method

of InetAddress class, 46
from method

of SMTPMsg class, 62
function

SockAccept, 12
SockBind, 14
SockClose, 15
SockConnect, 16
SockDropFuncs, 12
SockGetHostByAddr, 18
SockGetHostById, 19
SockGetHostByName, 18
SockGetPeerName, 19
SockGetSockName, 20
SockGetSockOpt, 21
SockInit, 24
SockIoctl, 24
SockListen, 25
SockLoadFuncs, 12
SockPSock, 26
SockRecv, 27
SockRecvFrom, 28
SockSelect, 29
SockSend, 31
SockSendTo, 32
SockSetSockOpt, 34
SockShutDown, 37
SockSocket, 38
SockSock_Errno, 38
SockSoClose, 39
SockVersion, 12

function parameters, 5

function return values, 5
functions, dropping, 12
functions, list of, 11
functions, loading, 12
functions, version of, 12

G
get a new socket, 38
get last socket error, 38
getHostByAddr class method

of Socket class, 42
getHostByName class method

of Socket class, 42
getHostId class method

of Socket class, 42
getOption

of Socket class, 43
getPeerName

of Socket class, 43
getSockName

of Socket class, 43

H
host information, lookup, 18, 18
host name, lookup remote connected, 19
host, connect to a, 16

I
id method

of MimeMultiPart class, 68
of MimePart class, 65

init method
of HostInfo class, 49
of InetAddress class, 47

initialize a socket, 24
installation, mime class, 63
installation, RxSock, 3
installation, socket class, 41
installation, streamsocket class, 51, 57
ioctl

of Socket class, 44

Draft - SVN Rev 6346 76 ooRexx RxSock Reference Version 4.1.0

L
License, Common Public, 71
License, Open Object Rexx, 71
lineIn method

of StreamSocket class, 54
lineOut method

of StreamSocket class, 55
lines method

of StreamSocket class, 55
list of functions, 11
listen

of Socket class, 44
listen on a socket for a connection, 25
loading functions, 12
local host ip address, lookup, 19
local socket name, lookup, 20
localhost method

of SMTP class, 59
logoff method

of SMTP class, 59
lookup host information, 18, 18
lookup local host ip address, 19
lookup local socket name, 20
lookup remote connected host name, 19

M
makeStem method

of HostInfo class, 49
of InetAddress class, 47

method
accept method

of Socket class, 42
addContent method

of MimePart class, 64
addPart method

of MimeMultiPart class, 67
addr method

of HostInfo class, 48
addRecipient method

of SMTPMsg class, 61
address method

of HostInfo class, 48
of InetAddress class, 46

address= method
of InetAddress class, 46

alias method
of HostInfo class, 48

arrayIn method
of StreamSocket class, 53

arrayOut method
of StreamSocket class, 53

authid method
of SMTP class, 58

bind method
of Socket class, 42

charIn method
of StreamSocket class, 53

charOut method
of StreamSocket class, 54

chars method
of StreamSocket class, 54

close method
of Socket class, 42
of StreamSocket class, 54

cmdresponse method
of SMTP class, 59

connect
of Socket class, 42

connect method
of SMTP class, 59

content method
of MimePart class, 64
of SMTPMsg class, 61

debug method
of SMTP class, 59

description method
of MimeMultiPart class, 67
of MimePart class, 64
of StreamSocket class, 54

disposition method
of MimeMultiPart class, 67
of MimePart class, 64

encoding method
of MimeMultiPart class, 67
of MimePart class, 65

family method
of InetAddress class, 46

family= method
of InetAddress class, 46

from method
of SMTPMsg class, 62

getHostByAddr class method
of Socket class, 42

ooRexx RxSock Reference Version 4.1.0 77 Draft - SVN Rev 6346

getHostByName class method
of Socket class, 42

getHostId class method
of Socket class, 42

getOption
of Socket class, 43

getPeerName
of Socket class, 43

getSockName
of Socket class, 43

id method
of MimeMultiPart class, 68
of MimePart class, 65

init method
of HostInfo class, 49
of InetAddress class, 47

ioctl
of Socket class, 44

lineIn method
of StreamSocket class, 54

lineOut method
of StreamSocket class, 55

lines method
of StreamSocket class, 55

listen
of Socket class, 44

localhost method
of SMTP class, 59

logoff method
of SMTP class, 59

makeStem method
of HostInfo class, 49
of InetAddress class, 47

name method
of HostInfo class, 48

New class method
of MimeMultiPart class, 66
of MimePart class, 64

new method
of SMTP class, 58
of SMTPMsg class, 61
of StreamSocket class, 53

open method
of StreamSocket class, 55

password method
of SMTP class, 60

port method
of InetAddress class, 47

port= method

of InetAddress class, 47

position method

of StreamSocket class, 55

recipients method

of SMTPMsg class, 62

recv

of Socket class, 44

recvFrom

of Socket class, 44

response method

of SMTP class, 60

say method

of StreamSocket class, 55

seclect

of Socket class, 45

send

of Socket class, 45

send method

of SMTP class, 60

setOption

of Socket class, 45

smtperrno method

of SMTP class, 60

state method

of StreamSocket class, 55

string

of Socket class, 45

string method

of MimeMultiPart class, 68

of MimePart class, 65

of StreamSocket class, 56

subject method

of SMTPMsg class, 62

type method

of MimeMultiPart class, 68

of MimePart class, 65

mime class, 63

mime class installation, 63

monitor a socket, 29

Draft - SVN Rev 6346 78 ooRexx RxSock Reference Version 4.1.0

N
name method

of HostInfo class, 48
new

of Socket class, 43
New class method

of MimeMultiPart class, 66
of MimePart class, 64

new method
of SMTP class, 58
of SMTPMsg class, 61
of StreamSocket class, 53

new socket, get a, 38
Notices, 69

O
ooRexx License, 71
open method

of StreamSocket class, 55
Open Object Rexx License, 71
option of a socket, set an, 34

P
parameters, function, 5
password method

of SMTP class, 60
port method

of InetAddress class, 47
port, binding to a, 14
port= method

of InetAddress class, 47
position method

of StreamSocket class, 55

R
receive data on socket, 27, 28
recipients method

of SMTPMsg class, 62
recv

of Socket class, 44

recvFrom
of Socket class, 44

registering functions, 12
response method

of SMTP class, 60
retrieve socket options, 21
return values, function, 5
RxSock description, 1
RxSock installation, 3

S
say method

of StreamSocket class, 55
select

of Socket class, 45
send

of Socket class, 45
send data on socket, 31, 32
send method

of SMTP class, 60
set an option of a socket, 34
setOption

of Socket class, 45
shutdown a socket, 37
SMTP class, 57, 57
smtperrno method

of SMTP class, 60
SMTPMsg class, 60
SockAccept, 12
SockBind, 14
SockClose, 15
SockConnect, 16
SockDropFuncs, 12
socket class, 41
Socket class example, 49
socket class installation, 41
socket error, get last, 38
socket options, retrieve, 21
socket special operations, 24
socket, definition of a, 1
socket, get a new, 38
socket, initialize a, 24
socket, monitor a, 29
socket, shutdown a, 37
socket, status of a, 29
SockGetHostAddr, 18

ooRexx RxSock Reference Version 4.1.0 79 Draft - SVN Rev 6346

SockGetHostId, 19

SockGetHostName, 18

SockGetPeerName, 19

SockGetSockName, 20

SockGetSockOpt, 21

SockInit, 24

SockIoctl, 24

SockListen, 25

SockLoadFuncs, 12

SockPSock, 26

SockRecv, 27

SockRecvFrom, 28

SockSelect, 29

SockSend, 31

SockSendTo, 32

SockSetSockOpt, 34

SockShutDown, 37

SockSocket, 38

SockSock_Errno, 38

SockSoClose, 39

SockVersion, 12

special operations, socket, 24

special variables, 9

state method

of StreamSocket class, 55

status of a socket, 29

stem variables, usage of, 6

StreamSocket class, 51, 51

streamsocket class installation, 51, 57

string

of Socket class, 45

string method

of MimeMultiPart class, 68

of MimePart class, 65

of StreamSocket class, 56

subject method

of SMTPMsg class, 62

T
TCP/IP, 1

type method

of MimeMultiPart class, 68

of MimePart class, 65

U
usage of stem variables, 6

V
variables, special, 9
version of functions, 12

W
writing error messages, 26

Draft - SVN Rev 6346 80 ooRexx RxSock Reference Version 4.1.0

	Open Object Rexx
	Table of Contents
	List of Figures
	About This Book
	1. Related Information
	2. How to Read the Syntax Diagrams
	3. A Note About Program Examples in this Document
	4. Getting Help
	4.1. The Rexx Language Association Mailing List
	4.2. The Open Object Rexx SourceForge Site
	4.3. comp.lang.rexx Newsgroup

	Chapter 1. What is RxSock?
	Chapter 2. Installation and Removal
	Chapter 3. Parameters and Return Values
	3.1. Stem Variables

	Chapter 4. Special Variables
	Chapter 5. Function Reference
	5.1. SockLoadFuncs
	5.2. SockDropFuncs
	5.3. SockVersion
	5.4. SockAccept
	5.5. SockBind
	5.6. SockClose
	5.7. SockConnect
	5.8. SockGetHostByAddr
	5.9. SockGetHostByName
	5.10. SockGetHostId
	5.11. SockGetPeerName
	5.12. SockGetSockName
	5.13. SockGetSockOpt
	5.14. SockInit
	5.15. SockIoctl
	5.16. SockListen
	5.17. SockPSockErrno
	5.18. SockRecv
	5.19. SockRecvFrom
	5.20. SockSelect
	5.21. SockSend
	5.22. SockSendTo
	5.23. SockSetSockOpt
	5.24. SockShutDown
	5.25. SockSockErrno
	5.26. SockSocket
	5.27. SockSoClose

	Chapter 6. Socket Class Reference
	6.1. Installation
	6.2. The Socket Class
	6.2.1. getHostByAddr (class) method
	6.2.2. getHostByName (class) method
	6.2.3. getHostId (class) method
	6.2.4. accept method
	6.2.5. bind method
	6.2.6. close method
	6.2.7. connect method
	6.2.8. getOption method
	6.2.9. getPeerName method
	6.2.10. getSockName method
	6.2.11. new (class) method
	6.2.12. ioctl method
	6.2.13. listen method
	6.2.14. recv method
	6.2.15. recvFrom method
	6.2.16. select method
	6.2.17. Send method
	6.2.18. setOption method
	6.2.19. string method

	6.3. The InetAddress Class
	6.3.1. address method
	6.3.2. address= method
	6.3.2.1. family method)
	6.3.2.2. family= method
	6.3.2.3. init method
	6.3.2.4. makeStem method
	6.3.2.5. port method
	6.3.2.6. port= method

	6.3.3. The HostInfo Class
	6.3.3.1. addr method
	6.3.3.2. address method
	6.3.3.3. alias method
	6.3.3.4. name method
	6.3.3.5. init method
	6.3.3.6. makeStem method

	6.4. Socket Class Example

	Chapter 7. StreamSocket Class Reference
	7.1. Installation
	7.2. The StreamSocket Class
	7.2.1. Inherited Methods
	7.2.2. new (Inherited Class Method)
	7.2.3. arrayIn
	7.2.4. arrayOut
	7.2.5. charIn
	7.2.6. charOut
	7.2.7. chars
	7.2.8. close
	7.2.9. description
	7.2.10. lineIn
	7.2.11. lineOut
	7.2.12. lines
	7.2.13. open
	7.2.14. position
	7.2.15. say
	7.2.16. state
	7.2.17. string

	Chapter 8. SMTP Class Reference
	8.1. Installation
	8.2. The SMTP Class
	8.2.1. new (Class Method)
	8.2.2. authid
	8.2.3. cmdrespomse
	8.2.4. connect
	8.2.5. debug
	8.2.6. localhost
	8.2.7. logoff
	8.2.8. password
	8.2.9. response
	8.2.10. send
	8.2.11. smtperrno

	8.3. The SMTPMsg Class
	8.3.1. new (Class Method)
	8.3.2. addRecipient
	8.3.3. content
	8.3.4. from
	8.3.5. recipients
	8.3.6. subject

	Chapter 9. Mime Classes Reference
	9.1. Installation
	9.2. The MimePart Class
	9.2.1. New (class) method
	9.2.2. addContent method
	9.2.3. content method
	9.2.4. description method
	9.2.5. disposition method
	9.2.6. encoding method
	9.2.7. id method
	9.2.8. string method
	9.2.9. type method

	9.3. The MimeMultiPart Class
	9.3.1. New (class) method
	9.3.2. addPart method
	9.3.3. description method
	9.3.4. disposition method
	9.3.5. encoding method
	9.3.6. id method
	9.3.7. string method
	9.3.8. type method

	Appendix A. Notices
	A.1. Trademarks
	A.2. Source Code For This Document

	Appendix B. Common Public License Version 1.0
	B.1. Definitions
	B.2. Grant of Rights
	B.3. Requirements
	B.4. Commercial Distribution
	B.5. No Warranty
	B.6. Disclaimer of Liability
	B.7. General

	Index
	A
	B
	C
	D
	E
	F
	G
	H
	I
	L
	M
	N
	O
	P
	R
	S
	T
	U
	V
	W

